
Journal of Mathematical Chemistry 12(1993)81-95 81 

Resistance distance* 

D.J. Klein 
Department of Marine Sciences, Texas A&M University at Galveston, Galveston, 

TX 77553-1675, USA 

and 

M. Randi~ 
Department of Mathematics, Drake University, Des Moines, IA 50311, USA 

The theory of resistive electrical networks is invoked to develop a novel view: if 
fixed resistors are assigned to each edge of a connected graph, then the effective 
resistance between pairs of vertices is a graphical distance. Several theorems concerning 
this novel distance function are established. 

1. Orientation 

Professor Frank Harary has had a singular influence on graph theory through 
his own extensive original research, through the training of  several researchers who 
themselves have made many important contributions, and through popularizing work, 
most significantly his text Graph Theory [1]. Frank Harary has contributed to a 
number of  more advanced specialized texts, like that of  Buckley and Harary [2] on 
graphical distance. What might well be the general lesson from all this work is: the 
possibilities for the development of the field of graph theory are ever open for 
innovative ideas. 

An example exhibiting the openness of the field is found in the charming 
monograph by Doyle and Snell [3], wherein a novel probabilistic representation and 
consequent theorems for electric-circuit conduction problems are described. This 
work evidently builds from some initial mathematical work of  Nash-Williams [4] in 
1960, although the graph-theoretic study of electric circuits began over 150 years ago 
with Kirchhoff 's analysis [5], with much modem work in electrical engineering. 

Presumably, a qualitative new graphical distance would potentially be of  great 
interest. Judging from the book Distances in Graphs by Buckley and Harary [2], 
earlier work has exclusively concemed one general type of graphical distance, where 
the distance between two sites of  a graph is taken as the minimal sum of  (positive) 
edge weights along a path between the two sites. The simplest "canonical" case takes 
each edge to be of unit weight, but more general weights should be of relevance in 

*Research supported by the Robert A. Welch Foundation of Houston, Texas, TX, USA. 

© J.C. Baltzer AG, Science Publishers 



82 D.J. Klein, M. Randid, Resistance distance 

a great variety of circumstances. For example, in chemistry different multiplicity 
bonds are crucially distinct, so the associated edge weights might reasonably be taken 
to be ordered inversely to the bond multiplicities (or bond orders). But if multiple 
bonds indicate shorter distances, then multiple shortest paths between two more well- 
separated vertices might be anticipated to indicate a shorter "chemical distance" also. 
That is, for example ,  in fig. 1 the "effective distances" between a and b might be 
considered to decrease in going from graph G1 to G2 to G3, even though all edge 
weights are taken to be unity. One might imagine that the "difficulty" of transport 

• b G a . . . .  t 

Fig. 1. Three graphs with the same conventional graphical distance 
between vertices a and b, although in successive graphs the 
"communication" between a and b might be imagined to be improved. 

from a to b is a measure of distance and further that the "difficulty" increases the 
fewer the number of traffic mutes between a and b. Indeed, even with two paths of 
different lengths one might imagine that the ease of communication between a and 
b might be enhanced somewhat by the longer path, so that the two sites could be 
viewed as closer than were they only connected by one of  the two paths. With the 
allowance of  such a mutual influence of multiple pathways, discontinuities in relevant 
paths might be avoided as one smoothly changes the weights so that the shortest 
pathway changes. 

Here we propose a new distance function with the characteristic of multiple- 
route distance diminishment. Indeed, our approach is based on electrical network 
theory, wherein a fixed resistor is imagined on each edge. Then the distance between 
two vertices is defined as the (effective) resistance between the two nodes (when a 
battery is connected across them). Thence, to identify the distance between vertices 
a and b for graphs Gl, G2 and G3 of fig. 1, we imagine corresponding electrical 
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III 

a 

~ 3  
b 

Fig. 2. The three graphs of fig. 1 with resistors (denoted 
by---A/VV- ) introduced on each edge, while a battery 
(denoted by ---~ I---) is linked between the a, b-pair of vertices. 

networks as in fig. 2. Thence, for all the resistors taking a value of 1 (ohm), one 
obtains (using standard series and parallel relations) respective resistance distances 

O a b = l + l = 2  for G 1, 

I 1 $'2ab = 1 / ( ~ +  ~) = 1 for G2, (1.1) 

1 + 1 + 1 ) = 2  for G3. .C2ab = 1/(~ ~- ~ ~- 

The distances between other pairs of vertices are obtained as effective resistances 
for other patterns of connection of the battery between other pairs of vertices, as 
in fig. 3. The distances (in ohm) here may be found, after some analysis, to be 1, 
3/4 and 2/3. Notably, a distance between two vertices separated by two bonds is 
not necessarily the sum of the distances along these two intervening bonds. 

Generally, for a battery delivering a current I the voltage (or potential across 
a and b) will be 

V~b = I ~ab. (1.2) 
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ao Gt 

b 

Fig. 3. The three graphs of fig. 1, again with resistors on each edge, 
but now with the battery connected to a different pair of vertices. 

To determine £2ij for other pairs of  vertices, the battery would be detached from a 
and b, then reattached between i and j. As an alternative to a battery, one could 
simply imagine using an ohm-meter. We assume our graphs are finite, and for the 
most part we follow standard [1] graph-theoretic nomenclature, e.g., V(G) and E(G) 
being the vertex and edge sets for graph G. 

2. Background ideas 

A formal presentation of  some standard electrical network ideas [3, 6] is of  
use in the following sections. A G-flow from vertex a to b of  a graph G is defined 
to be a function i on pairs of  adjacent sites such that 

and 
= -iy  (2.1) 

~ X  

ixy = l•(x, a) - l(~(x, b) x ~ V(G), (2.2) 
y 

where the sum is over y ~ V(G) adjacent to vertex x. Here, I is said to be the value 
of  the net current out of  the source site a and into the sink site b. Relation (2.2) 
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is known as Kirchhoff 's  current-flow law (for the special case o f  a single source 
and sink). A G-flow is further said to be physical if there is an associated potential 
function v on the vertices of  G such that 

ixy rxy = v~ - 1~ x, y ~ E(G), (2.3) 

where rxy-  r, if  e = {x, y}. The potential function is also called the "voltage", 
although in a hydraulic framework it is called the "pressure". Relation (2.3) is 
known as Ohm's law. That for a G-flow there is such a potential may be shown to 
be equivalent to the requirement of  Kirchhoff 's circuital law, 

c 
ixyrxy = 0 all C, (2.4) 

x - y  

where the sum is over the edges of  a cycle C in G with the arguments of  i ordered 
sequentially around C. 

Associated to a graph G we identify a normed space with an orthonormal 
basis whose elements are in one-to-one correspondence with the vertices of  G. Such 
a basis vector is denoted by Ix), x ~ V(G). There are several matrices (i.e. linear 
operators) of  importance acting on this space. The admittance (or bond-order) matrix 
A has elements given as 

(1 /rry  x -  Y 1 A n = (x I A l Y) = x, y ~ V(G). (2.5) 
0 otherwise 

Clearly, for the standard choice of unit resistances, A reduces to the adjacency 
matrix of  G. A second simple matrix also arises, namely the degree matrix A with 
elements 

- -X 

A~y = (xlAlY) = ~(x,y)~.~l/r=, (2.6) 
z 

where the sum is over the z ~ V(G) that are adjacent to x. In the following section, 
the combination A -  A plays a crucial role, and sometimes it is given a name, e.g. 
"Laplacian" matrix or "admittance" matrix (whence +A is renamed as the "edge- 
admittance" or "mutual admittance" matrix). It is useful to have the following: 

LEMMA 0 

The matrix A -  A has real eigenvalues, the minimum one of  which is zero. 
If G is connected, this eigenvalue is nondegenerate and the associated eigenvector 
is (up to a scalar factor) 

 lx). 
x 
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The first step of  the proof, that the eigenvalues are real, is a well-known 
consequence of  the fact that the matrix in question is Hermitean. Since all the off- 
diagonal elements of  A - A  are non-positive, the Frobenius-Per ron  theorem [7] 
implies that it has an eigenvector for the minimum eigenvalue such that all the 
nonzero components of  the eigenvector may be chosen of  like phase, the convenient 
choice being real positive. By application of  A - A  to the vector I$), identified in 
the lemma statement, one has 

(A - A)I¢)  = 0, (2.7) 

so that I¢) is an eigenvector satisfying the criterion of non-negative components 
(here, all equal to 1). Since all eigenvectors to any other eigenvalue must (for a 
Hermitean matrix) be orthogonal to I q~), none of  these others can share this non- 
negativity criterion, and 0 must be the minimum eigenvalue to A -  A. Finally, if G 
is connected, then for every x, y ~ V(G), one sees that (xl(A - A)"Iy) ~: 0 for some 
(x, y-dependent) choice of  m. Thence, a final part of  the Frobenius-Perron theory [7] 
implies that this minimum eigenvalue occurs as a nondegenerate root of  the secular 
polynomial, and the proof is complete. 

As a consequence of  this lemma, A - A  has no inverse. However, within the 
subspace orthogonal to I~), it does have an inverse. The matrix equal on this 
subspace to this inverse and otherwise being 0 is denoted by Q/(A-  A), where Q 
is the (Hermitean and idempotent) projection 

1 
Q = 1 15) ( $ l .  (2.8) 

(~ I~) 

This "resolvent" matrix {Q/(A-A)} satisfies 

{Q/(A - A) } (A - A) = (A - A) {Q/(A - A) } = Q, 

{Q/ (A-  A)}Q = Q{Q[(A-A)} = {Q/(A-A)}  
(2.9) 

and is called the generalized inverse of A -  A. 

. E f f e c t i v e  r e s i s t a n c e  

We are now ready for a known [6] basic result: 

LEMMA A 

A physical G-flow from vertex a to b of a connected graph G exists, is 
unique, and is given by 

I 
ixy = ( x - Y l a / ( A - A ) l a - b ) ,  % 

where la - b) --- la) - I b ) .  
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To prove this, substitute from (2.3) into (2.2) to obtain 

y %  
{v x - vy}  = I S ( x , a )  - I S ( x , b ) .  

However, with the use of  (2.6) and (2.5), this becomes 

(3.1) 

(xlA I x ) v x  - ~ ( x l A l y ) v y  = l ( x l a  - b). 
y 

Since this is true for arbitrary x ~ V ( G ) ,  this may be recast as 

(3.2) 

( b  - A)  ~ v ~ l x )  = l l a -  b). (3.3) 
X 

Then, because of  lemma 0, this relation may be inverted on the subspace orthogonal 
to I~) of  (2.7). As a consequence, 

VxlX)  = I { Q / ( A  - A ) } l a -  b) + c l~), (3.4) 
X 

where c is an as yet undetermined constant. This yields directly the formula of  our 
theorem, thereby establishing the uniqueness of these differences. The potential 
difference between a pair of  vertices x, y is consequently given as 

v x - vy = l ( x  - y I Q / ( A  - A)  la - b). (3.5) 

Then, Ohm's  law of  (2.3) yields the formula of the lemma, the uniqueness o f / ,  and 
its existence. 

The potential difference between two points is seen in (3.6) to be directly 
proportional to I. For the choice x = a a n d  y = b, this proportionality constant is 
termed the effective res i s tance  £2ab between a and b. Thence, we have the basic 
result of  this section: 

THEOREM A 

For a physical G-flow from a to b, 

I-2~b = (a - b l Q / ( A  - A ) l a  - b). 

The result of  this theorem may be cast as a more conventional matrix equality 
if we introduce the diagonal matrix V with elements 

Vab - 6 a b ( a l Q / ( A -  A ) l b  ). 

Then a simple rearrangement of  the result of  the theorem gives 

(3.6) 
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COROLLARY A 

A graph G has a resistance matrix 

£2 = V I ¢ ) ( O I + I O ) ( O I V - 2 { Q / ( A - A ) } .  

As a consequence, all effective resistances are obtained via a matrix inversion. If 
desired, the generalized inverse Q/(A - A) may be computed in terms of an ordinary 
inverse: by finding the ordinary inverse to A-A+I~) (01 ,  then subtracting 
10) (0 I/(010) 2. 

For example, for the ("square") graph G2 of fig. 1, we have (for r = 1 ohm) 

A - A =  

2 -1 0 
2 -1 

-1 2 
0 -1 

5 -1 -3 -1 
Q 1 -1 5 -1 

A - A  - 16 -1 5 (3.7) 

-3  -1 

[ i  3 / 4 1 3 / 1 4 ]  
3 4  0 3 / 4  

.(-2= 3/4 0 3/4 / 

oJ L3/4 1 3/4 

The traditional "series" and "parallel" manipulations (alluded to in section 1) also 
serve in this special case to yield 1"2 rather directly. 

4. Resistance is distance 

In this section, we formally establish the identification of effective resistances 
as distances. By a distance function on G, we mean (as is standard [2]) a mapping 
p from the Cartesian product V(G) x V(G) to the real numbers such that the following 
axioms are satisfied: 

p(b, a) >_ O, 

p(a, b) = 0 ~:~ a = b, 

p(a, b) = p(b, a), 

p(a, x) + p(x, b) >- p(a, b), (4.1) 
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for any vertices a, x,  b ~ V(G) .  The value p(a ,  b)  is said to be the p-d is tance  (or 
distance, in abbreviated nomenclature) between a and b. The first two, the third and 
the fourth conditions of  (4.1) are termed non-negativity, symmetric and triangle 
conditions, respectively. 

Our fundamental result is: 

THEOREM B 

The resistance function on a graph is a distance function. 

To begin the proof, we note that corollary A and the properties of  the 
operator A - A as appear in lemma A yield the result that t'2~b is symmetric and non- 
negative with .(2,, b = 0 iff  a = b. The focus of  the proof  then is the triangle inequality 
(on the last line of  (4.1)). Let i and i '  be G-flows from a to x and from x to b 
associated with potentials v and v ' ,  respectively. Then it is easily verified that 

j - i + i '  (4.2) 

is a n / - f l o w  from a to b with associated potential 

w = v + v' .  (4.3) 
NOW, 

II'2ab = w a - w b = {V a - Vb} + {1) a -- 1);}. (4.4) 

However,  the extreme values of  the potential vy must be at y = a and x, since 
otherwise some other more extreme site would be either a source or a sink. Likewise, 
v~ is extreme at y = x and  b. Thence, 

l£2ab <_ {1) a -- Vx} + {v" x - V'b} = IOax + l£2xb (4.5) 

and the theorem follows. 

5. Resistance sum rules 

The general result of  this section is: 

THEOREM C 

If G is a connected graph and Z is an arbitrary symmetric matrix, then 

(b I(A - A)Z(A - A) I a).f2ab = 2 tr(A - A)Z.  
a,b 

To prove this, abbreviate ( A -  A ) Z ( A -  A) to X and use theorem A to obtain 

~ ( b l X l a ) l ' 4 b  = 2 ~ ( b l X l a ) { ( a l Q / ( A - A ) l a ) - ( a l Q / ( A - A ) l b ) } .  (5.1) 
a,b a,b 
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The right-hand side of  this equation yields two double-sum terms, the first of  which 
entails a factor 

(blX l a) = (~I(A - A)Z(A - A) la) = 0, (5.2) 
b 

where we have recalled the eigenvector I~0) of  lemma 0. Thence, 

(blXla)-Qab = - 2  ~ ( b l ( A -  A ) Z ( A -  A)la)(alA- lb) 
a,b a,b 

Q 
= - 2 tr(A - A)Z(A - A) A-- A 

= - 2 tr(A - A)Z, (5.3) 

which is the desired result. 
This sum rule for resistances may be viewed as more special than theorem A; 

the present theorem has the feature that it avoids the (generalized) inverse of  A -  A. 
One special choice for Z is as Q/(A - A), whence via (2.9) we obtain a result noted 
earlier by Weinberg [8]: 

COROLLARY C1 

For a connected graph, 

(alAIb)K2ab = 2(IV(G) I -  1). 
a,b 

A whole sequence of  rules is obtained by taking Z as ( A -  A)"; 

COROLLARY C2 

For a connected graph 

(al(A - A)nlb)Oab = - 2  tr(A - Af  t, 
a,b 

with n a non-negative integer. 

For more highly symmetric graphs, these two corollaries yield nearer-neighbor 
effective resistances: 

COROLLARY C3 

For e ~ E(G) of  an edge-transitive graph 

I V(G) I -  1 
- IE(G)I  r, 

where r is the internal resistance common to all edges. 
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COROLLARY C4 

For a vertex- and edge-transitive graph such that all paths of length 2 are 
equivalent, the effective resistance between two next-nearest neighbor nnn sites is 

2 
_ 2 {1 V~G)I}r,  Onnn d - 1  I 

where d is the common vertex degree. 

Fig. 4. The cube graph, upon each edge 
of which one may imagine a resistor r. 

As an example, one might consider the cubic graph (of fig. 4) with equal 
resistors r on each edge. Then, 

8 - 1  7r 
~e = ~ r  = T~, 

On,~ = 1 -  r = --4- . 

(5.4) 

Returning to corollary C2 with n = 2, after some manipulation one can even obtain 
the remaining resistance of 5r/6. 

6. Comparison 

First, we note an intuitively appealing result (which Doyle and Snell [3] refer 
to as "Rayleigh's Monotonicity Law"): 

LEMMA D 

The resistance 12~b is a nondecreasing function of the edge resistances. This 
function is constant only for those edges not lying on any path between a and b. 
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The proof of  this first statement may start with theorem A to take a derivative 
of  12ab with respect to a general edge resistance rxy, 

~ff2ab = {i x y l I}  2 >-- O. (6.1) 
0 %  

The second part is more delicate, but may be approached in the case of no xy- 
containing path between a and b by G finding a cut-point to separate G into two 
pieces, o n e  Gxy containing x and y, while the other contains a and b, and then show 
via Kirchhoff 's  laws that there is no current flow anywhere in G:,y and ixy = 0. The 
result is proved in more detail (via another approach) in the publication by Doyle 
and Snell [3]. 

The conventional type of  graphical distance between vertices a and b of  G 
is [2] 

Dab ~ min~r e~--'a,r L,re (6.2) 

whence the minimum is taken over all paths Jr from a to b, and the sum is over all 
edges of  re. We have: 

THEOREM D 
For all distinct pairs of  vertices a, b in G, Dab > I'2ab, with equality iff  there 

is but a single path between a and b. 

For the proof, let zr be a path which gives a minimum sum in (6.2). Now 
consider how l-2a b changes as resistances are increased, denoting the initial value 
by 12ab. Increasing a resistance r, for any edge e not in 7r does not increase 
12ab, as is seen from lemma D. Further, this lemma implies that if e is in any other 
path between a and b, then there is a strict decrease in Qab. Taking all re ~ ~ for 
all e not in re, one finally obtains 12ao ~ Dab. However, then 12ab > Dao with equality 
only as indicated in the theorem. 

Recalling the standard result that there is a single unique path between any 
two points of  a tree, one immediately has: 

COROLLARY D 
The conventional and resistance distances are the same between every pair 

of  vertices of  a connected graph iff  the graph is a tree. 

Thence, earlier results already found in the case of  trees for D apply equally 
for 1"2. See, for example, ref. [9]. 
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7. An analogue theorem 

One might anticipate some results which hold for the conventional graphical 
distance function Dab to hold also for 12,,b. Indeed, we note here one such analogue 
to a result due to Graham et al. [9]. However, first we start with what is in essence 
the standard result for "series" resistances: 

LEMMA E 

Let x be a cut-point of  a commerical graph, and let a and b be points 
occurring in different components which arise upon deletion of  x. Then, 

Oab = ha,, + n t,. 

The proof may be briefly indicated if we consider the assumptive circumstances 
as indicated in fig. 5. If vertex a is the source of  current I, then since sink b is not 

Fig. 5. The general form of the graph assumed for theorem 
D. Note that x but nothing to the right is included in 
Ga, whereas x but nothing to the left is included in Gb. 

in the part G a, all the current from a must pass through x, so that in the Ga portion, 
x acts as a sink with 

Vax=t£2ax. (7.1) 

Further, since the net current into x is 0, the current leaving x into part Gb must 
be I, whence one is led to 

"Oxb = l,f2xb. (7.2) 

Addition of  these two potential differences gives 

Vat, = 'Oax + Vxb = I(12ax + g'2xb), (7.3) 

whereupon one obtains the theorem. 
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Of course, there are other possible standard results [6] for parallel resistors 
(or star-triangle transformations), but our sought after "analogue" distance result 
can be obtained using just lemma E and a few definitions. Let cof Yc/'denote the sum 
of the co-factors (of the determinant) of a square matrix Yd. Also, a block of a 
graph is defined to be a maximal subgraph without cut-points. Further, here we 
label resistance distance matrices by the graph to which they are associated. Thence, 
in analogy to the result [10] for D(G): 

THEOREM E 

If G is a connected graph with blocks Ga, then 

cofI2(G) = H cofi2(G~), 

¢:(X 

det K2(G) = ~ det £2(G~) I-I cof K2(G#). 

The proof exactly follows that for the conventional graphical distance matrix 
D(G) [10]. The crucial property required (beyond that of being a distance function) 
is that of lemma E. 

8. Analogue definitions 

Various quantities already introduced with regard to the conventional distance 
matrix D might also be introduced for £2. Associated to the distance matrix £2, there 
is a characteristic polynomial 

a~(x) - det ( x l -  12), (8.1) 

which we call the resistance distance polynomial. For the case of the graphical 
distances of the preceding section, such a polynomial has already found much use 
[2,9, 11], so that the presently defined quantity should also be of interest. 

The so-called Wiener index has found much use in chemistry, as reviewed 
elsewhere [12]. Originally, it was defined [13] for trees as 

W = ~Dab ,  (8.2) 
a<b 

but for trees Dab = I2ab (as noted in corollary D), so that an extension to other 
connected graphs could be 

w '  - aob,  (8 .3)  
a<b 

although the usual extension has been via (8.2). We have a convenient general 
formula: 
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THEOREM F 

For  a connected graph with N vertices, 

W'  - N tr{Q/(A - A}. 

It is a simple mat ter  o f  algebra to obtain 

W" 1 = -~ ~ (a - b l Q / ( A  - A) la - b) = N tr{Q/(A - A} - 2(OIQ/(A - A)I ~). (8.4) 
a,b 

However ,  since Q / ( A - A )  is null on the I q~)-space one immedia te ly  obtains the 
theorem. 

9. Prospects 

What  we believe is that a novel  and fundamental  distance funct ion on graphs 
has been identified. That  its properties are already widely  invest igated in other  
contexts  (both in electrical engineering and in mathemat ics)  seems but an indicat ion 
of  the fundamenta l  mathematical  nature of  this resistance distance function.  The 
results developed here are intended to indicate some first mathemat ica l  features o f  
resistance distance. The possibili ty for chemical  uti l i ty seems to us l ikely since, 
first, the convent ional  distance has found several uses and second,  the resistance 
distance has "mult iple-route distance d iminishment"  features which we have already 
indicated (in section 1) and should have chemical  relevance. Professor  Harary  has 
often noted for novel  graph-theoretical concepts that further work seems warranted,  
which we believe is also the case here. 
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