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players of the team behind after 5 games may make a major effort in game 6 
which cannot be sustained for game 7, while the players on the team ahead after 
5 games individually husband resources in game 6. Perhaps readers will have 
other explanations. 
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CLOSEST UNITARY, ORTHOGONAL AND HERMITIAN 
OPERATORS TO A GIVEN OPERATOR 

JOSEPH B. KELLER, Courant Institute of Mathematical Sciences, New York University 

1. Introduction. It is often of interest to find an operator UO, in some 
specified class of operators Vl, which is closest to a given operator A. We shall 
describe various situations in which this kind of problem arises, and then show 
how to solve it for several choices of 'U. 

1. A simple example of this kind arises when one tries to determine a rotation 
matrix by measuring or by computing its entries. Because of inevitable experi- 
mental or computational errors, the resulting matrix A will generally not be 
orthogonal. Therefore we may wish to adjust its entries to make it orthogonal. A 
reasonable way to do so is to change it into that orthogonal matrix Uo which is 
closest to A in some appropriate norm. Finding UO is a problem of the type 
described above with 'U being the class of orthogonal matrices. This problem 
was solved by K. Fan and A. J. Hoffman [1], who found the unitary and 
hermitian matrices closest to a given matrix. Their result is independent of the 
norm, provided the norm is unitarily invariant, i.e., provided that 11IA 11 = 11 UA 11= 
I|AU|I when U is unitary. 

2. Another example arises in factor analysis of psychological test data and 
latent structure analysis of sociological data. In both of these cases an m by n 
data matrix A is supposed to be a product of an m by r matrix B times an r by n 
matrix C, with r < m and r < n. The product BC has rank - r, but the rank of A 
will generally exceed r, so there is no such factorization in general. Therefore it 
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is customary to seek the best approximate factorization. This corresponds to 
finding the matrix UO closest to A in the class il of m by n matrices of rank r, 
since every matrix in il can be factored in the desired manner, and every 
factorizable matrix is in 'l. This problem was solved by C. Eckart and G. Young 
[2] and by J. B. Keller [3] using the euclidean norm. L. Mirsky [4] showed that 
the result is independent of the norm, provided the norm is unitarily invariant. 

3. A modification of the above problem also arises in factor analysis, in 
which the matrix C is given. Then 'U is the class of matrices BC where B is an 
arbitrary m by r matrix and C is given. Alternatively, B may be given and C 
may be arbitrary. These problems were solved by B. Green [5], J. B. Keller [3] 
and P. Schonemann [6] using the euclidean norm. 

4. A special case of problem 3 is that with m = n = r and A = I, the identity 
matrix. Then the problem is to find a matrix B which makes BC closest to the 
identity. Such a matrix B we call a generalized left inverse of C. Similarly if B is 
given and if C makes BC closest to I, we call C a generalized right inverse of B. 
These problems have been solved by R. Penrose [7]. 

5. A Fredholm integral equation of the second kind is an equation of the 
form 

(X) + K(x y)k(y)dy = f(x). 

Here 4 (x) is the unknown function, f is a given inhomogeneous term, and K is a 
given function called the kernel. The equation can be reduced to a system of n 
linear algebraic equations for n unknowns, and then it can be solved easily, if K 
is a degenerate kernel of rank n. This is a kernel of the form 

n 
Kn (X )=, Y g (x) hi(y). 

j =1 

Therefore one way to obtain an approximate solution of the integral equation is 
to approximate its kernel K by a degenerate kernel of rank n. Naturally it is 
desirable to obtain the best such approximation, and this is again an instance of 
the general problem described above. The solution is given by R. Courant and D. 
Hilbert [8]. 

G. H. Golub [9] has given the solutions of problems 1-4 together with a 
numerical procedure for computing them. 

We shall describe two methods for analyzing such problems. The first is the 
direct method of showing that a particular UO is closer to A than any other U in 
'U be comparing the norm IA - Uo|| of A - UO with IA - UII. The virtue of this 
method is its simplicity and generality. It applies to operators on infinite 
dimensional spaces as well as to matrices of finite dimension. However, it has 
the disadvantage that the solution UO must be known before it can be used. The 
second method is the usual indirect method which is used to find minima in 
calculus. It consists in representing U as a matrix, differentiating IfA - Ull with 
respect to the matrix elements, and equating the derivatives to zero. In doing 
this, the condition that U is in Ql must be taken into account by the use of 



194 MATHEMATICS MAGAZINE [Sept.-Oct. 

Lagrange multipliers. This method leads to an equation which must be satisfied 
by U.. Thus it has the virtue that UO need not be known in advance. Its 
disadvantage is that after Uo has been found, it must still be shown that UO does 
yield the smallest value of |IA - U|1. 

I wish to thank my colleague A. B. Novikoff for some stimulating discussions 
of these topics. 

2. Closest hermitian and anti-hermitian operators. Let A be a linear operator 
and 'l a set of linear operators which map a unitary space into itself. The 
euclidean norm 11 U of an operator U is defined as the positive square root of 
the trace of U times its adjoint U', so that 

(1) | Ull2 = tr UU+. 

This is an inner product norm, so the notion of orthogonal projection can be 
introduced in ol, but we shall not make use of it explicitly. In terms of the matrix 
elements ui, of U with respect to an orthonormal basis of the space, 11 U 12 is 
given by 

(2) 11 UJ12= E ui 12. 
t,j 

We define UO E 'l to be closest to A if UO minimizes the distance ||A - U || 
among all U E 1l. We shall now prove 

THEOREM 1. Among all hermitian operators, the unique operator closest to A 
is Uo=2(A +A+). 

Proof. U is an hermitian operator if U = U+, so obviously UO = 2(A + A +) is 
hermitian and so is V = U - UO. Therefore any hermitian operator U can be 
represented as a sum U = UO+ V where V = V+. Now (1) yields 

IIA - U112= IIA - U0- V2 

(3) =IIA - UoIf2+tr[(A - Uo)V++ V(A+- U0)]?IfVII2. 

By using the facts that UO = UO+, V = V+ and that the trace of a product is 
invariant under cyclic permutation of the factors, we find 

tr[(A - Uo)V+ + V(A + - UO+)] = tr[(A - Uo)V + V(A + - U0)] 
(4) 

= tr[(A + A + - 2Uo)V] = 0. 

The last equality in (4) follows from the definition of UO. Upon using (4) in (3) we 
obtain 

AU112= JAUo112 + 11 V 112'-AU0112. (5) IhA I 12=IA I I2? ~ A- 

This proves the theorem since V 112 > 0 unless V = 0. 
An anti-hermitian operator is an operator U for which U= - U+. By 

changing a few signs in the proof above, we can prove 

THEOREM 2. Among all anti-hermitian operators, the unique operator closest 
to A is Uo=2(A -A+). 
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3. Closest unitary and orthogonal operators. 

THEOREM 3. A closest unitary operator to A is any unitary operator UO which 
occurs in a polar decomposition A = (AA ) UO of A. If A is invertible then 
UO = (AA ')-LA is the unique closest unitary operator to A. 

In the polar decomposition the positive square root is used. This theorem 
provides a characterization of the unitary factor Uo in the polar decomposition. 

Proof. Since UO is unitary, UoU+ = L Let U be any unitary operator and let 
V = U -. UO. From the unitarity of U and UO it follows that 

(6) UoV+ + VU?+ + VV+ =O. 

Thus any unitary U can be written as U = UO + V where V satisfies (6). Now we 
can write 

||A - U I2= |A - UO- VlI2= A-UO2-tr[(A - UO)V++ V(A+- UO)- VV+] 

(7) = 11A - UO112-tr[AV++ VA+]. 

The last equality follows from (6). Next we use the polar decomposition of A in 
the last term in (7), then use the invariance of the trace of a product under cyclic 
permutation of the factors and then use (6) to obtain 

tr [AV++ VA+] = tr [(AA+)1 Uo V+ + VUO+(AA +)2] 

(8) = tr [(AA +)1(Uo V+ + VU+)] = -tr [(AA+)1 VV+]. 
Since (AA +)2 and VV+ are both hermitian and nonnegative, the trace of their 
product is nonnegative. 

Upon using (8) in (7) and noting that the last trace in (8) is nonnegative, we 
obtain 

(9) IA - U12 = IIA - UO112+ tr [(AA +)2 VV+] ? A - UO2 
This proves the first part of the theorem. If A is invertible then AA + is 
invertible, so the trace in (9) can vanish if and only if V = 0. Therefore inequality 
holds in (9) unless U = UO. This proves the second part of the theorem. 

If A is real then A + = A T where A T, the transpose of A, is also real. 
Therefore UO is real and orthogonal. As a consequence Theorem 3 yields 

THEOREM 4. A closest orthogonal operator to a real operator A is any 
orthogonal operator UO which occurs in a polar decomposition A = (AA T)2 Uo of 
A. If A is invertible then Uo = (AA T)-A is the unique closest orthogonal 
operator to A. 

If A is not necessarily real then by slightly modifying the proof of Theorem 3 
we can prove 

THEOREM 5. A closest orthogonal operator to A is any orthogonal operator 
UO which occurs in a polar decomposition Re A = (Re A Re A T)2 Uo of Re A. If 
Re A is invertible then Uo = (Re A Re A T)-'Re A. 



196 MATHEMATICS MAGAZINE [Sept.-Oct. 

4. Generalized left and right inverses. In the introduction we defined a 
generalized left inverse of A as an operator U0 which minimizes || UA - I l. Now 
we shall prove 

THEOREM 6. U. is a generalized left inverse of A if it is a solution of the 
equation UoAA + = A '. If A is invertible then Uo = A-. 

Proof. Any operator U can be written as U = U0 + V where V = U - U0. 
Then 

|| UA_-I 112 = ||l(Uo + V)A -I 112 
(10) = || UoA _ I 112 + || VA 112 +tr[(UoA - I)A + V+ - VA (A + Uo+ - I)]. 
The trace in (10) vanishes in view of the equation satisfied by Uo and (10) yields, 
since |I VA 112? 0 

(11) 11 UA_ II12= I 1UoAII2?+ 1I VA 112? 11UoA-III2. 

This proves the theorem. Similarly we can prove 

THEOREM 7. UO is a generalized right inverse of A if it is a solution of the 
equation A +A Uo = A +. If A is invertible then UO = A -'. 

Penrose [7] has shown for matrices, i.e., operators on a finite dimensional 
space, that there exists a unique U0, called a generalized inverse of A, which 
satisfies both UoAA + = A + and A +A Uo = A '. From the theorems above, this Uo 
is both a generalized left and genralized right inverse of A. Furthermore he has 
shown that UoB is the unique best approximate solution of the equation 
AX = B. The best approximate solution is defined to be that X which minimizes 
I1AX - B 11, and if there is more than one minimizer, then it has the least value of 
"IXII. 

5. Lagrange multiplier method. We shall now illustrate the indirect method 
by using it to find a closest unitary matrix U to the matrix A of dimension n. We 
first introduce the matrix A of Lagrange multipliers Ai; and consider the function 
?(U) defined by 

(12) ?(U) = IIA - UII2?E [Aik(Uiju1j -)ik) + A]k(U.iUk . A 
2,j,k 

We now differentiate (12) with respect to ui1 and set dE luji = 0. This yields 

(13) -a-i j + 2 E (AikUkj + Akiuk;) = 0. 

In differentiating (12) we used the fact that 11 U 12 = n to avoid differentiating 
U 112. Differentiation of (12) with respect to u *i yields the complex conjugate of 

(13). If A+ A+ is nonsingular, the solution of (13) is 

(14) U* = 2(A + A+)-A*. 
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To determine A we use (14) in UU+ = I and obtain 

(15) 4(A* 4- AT)-'AA +(AT + A*)-'= L 

Multiplication of (15) on the left and on the right by (AT + A*) yields 

(16) 4AA + = (AT + A*)2. 

The solution of (16) is 

(17) AT + A* = 2(AA +). 

Then (14) and (17) yield the solution, which we denote by U., 

(18) UO = (AA +)-'A. 

This result holds only if (AA +) is nonsingular, which is the case if and only if A 
is nonsingular. 

The result (18) for the closest unitary matrix to A is ambiguous because the 
choice of square root has not been determined. To determine it we use (18) to 
evaluate I|A - UoLI2 and find 

(19) IIA - Uoll2 = IA I2+ n -Tr(AU++ UoA+) = IIA I2+ n - 2Tr(AA+)". 

We see from (19) that to minimize IA - Uoll we must choose the square root 
which maximizes Tr(AA )l. This is just the positive square root. The proof that 
UO given by (18) is actually closest to A is given in Section 3. 

In case A is real and U is orthogonal, we may seek U in either the class with 
determinant plus one or that with determinant minus one. Then we must restrict 
the square root in (18) so that det UO = + or - 1 and maximize Tr(AA +) subject 
to this restriction. 

Research supported by the National Science Foundation under Grant No. NSF GP-32996X. 
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