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Abstract: In this paper we prove the strong consistence and the central limit theorems for
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1 Introduction and main results

In actuarial science, an insurance risk X is usually defined as non-negative random variable
(r.v.) and its premium refers to a functional H(X) : X — [0,00). Let F be the distribution
function (d.f.) of X and denote S = 1 — F. Wang [1],[2] defined the so called PH-transform
premium as

H(X)=H,(X)= / S (z)dz, (1.1)
0
where o € (0,1) is constant. Suppose that the expectation EX of X exists. Then we have
oo
EX = / S(z)dx.
0

Another important quantity is the risk loading D(X) := H(X) — EX. If H,(X) is defined as
(1.1) with o = 1/2, then

D(X)—/OOO mdx—/ooo S(z)da
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is named as the right tail deviation by Wang [3]. This was generalized by Li [4] who also called
Da(X) := Ha(X) — B(X) = / S (2)da — / S(b)dt (1.2)
0 0

as the right tail deviation. It follows from Wang, Young and Panjer [5] that under five reasonable
axioms for insurance principle H, there exists a > 0 such that (1.1) holds and under a natural
restriction H(X) > E(X), the « has to be in the interval (0, 1]. From now on, we shall assume
a € (0,1) since the case o = 1 is trivial.

Let {X1, Xo, -} be independent and identically distributed (i.i.d.) random variables de-
fined on probability space {Q,F, P} with the common d.f. F, ie. {Xi,---,X,} be sample
of size n from the population F' for n = 1,2,---. In practice, we do not know the F' exactly.
Hence Wang [3] suggested replacing F' by its empirical d.f.

1 n
Fo(z) = - ZI{Xiém}vx € [0, 00).
i=1

Therefore the estimators of H,(X) and D, (X) are
H,.(X) = / [1— F,(x)]%dx;
0

Dy, o(X)

/000[1 — Fo(2)]%dz — /000[1 — Fy(a)]dz.

Thus problems arise as follows: how are H,, (X) and D, (X) respectively close to H,(X)
and D, (X)?For the weak consistency of D,, o(X), one may see Li [4]. This paper is to devote
to discussing strong consistency and the asymptotic normality for those two estimators.

As for the strong consistency, our result may be stated as follows.

Theorem 1 If there exists § > 0 such that

EXY 10 < o0, (1.3)

then
nlLIEOH,L,a(X) = Hy(X) as; (1.4)
nlLH;oDn,a(X) = D.(X) a.s. (1.5)

Denote the left continuous inversion of F' by
F=(t):=inf{z € R: F(z) > t},Vt € (0,1).

Our second result is about the asymptotic normality of Hy, (X) and D,, o(X).
Theorem 2 If there exists § € (1/2,1) such that

/ (1 —t)*%dF—(t) < oo, (1.6)
0,1)



then as n — oo,

VilHpyo(X) — Ho(X)] -5 N(0,0%0%,); (1.7)
VD o(X) = Da(X)] -5 N(0,0%,), (1.8)
where
9 o sNt—st (s N
tha = [ f scton [ —ppma T (@0 (19)
2 = s -5 s (s - .
0h = //S’te(m)( At — st)J(s)J(t)dF(s)dF = (t) (1.10)

and J(t) =1 —a(l —t)~(0-),
The following Corollary is easily obtained.

Corollary of Theorem 2 If

/ (1 -t dF(t) < 00
(0,1)

holds for « € (3/4,1), then as n — oo, (1.7) and (1.8) hold.
In section 2, we will give the proof of Theorem 1. In section 3, some lemmas are proved on
the Skorokhod construction, then in section 4 the proof of Theorem 2 is given.

2 Proof of Theorem 1

We shall denote the value of X at w € Q by X;(w) for ¢ = 1,2,--- and the value of F,(x) at
w € Q by F,(z,w) for all x € [0, c0).

Let
Q1 = {weQ: lim sup| F,(t,w) — F(t) |= 0},
n—oo t
1 n —1 —1
_ T a” " +6 _ a” " +6
Q = {we: 7Lh_)rgo - g:l X (w) = EX] }

and Qo = Q1 N Q2. Then we have P(Q2;) = 1 by the Glivenko-Cantelli theorem ([6], page 52)
and P(02) = 1 by the strong laws of large numbers ([6], page 51). Therefore P(€2y) = 1 holds.



Fix w € Q. For any T > 0, we have

/Too [1- Fn(t7w)]adt - /TOO [/too Fn(dx,w)rdt 2.1)
/Too [/too an(d%w)rdt

— /TOO t“'% [/too x‘fl*‘SFn(dx,w)} “dt

oo 1 oo _ @
< / ﬁ[/ z” 1+5Fn(dw7W)} dt
r T L)y

T S X W)

IN

ad { n }
T—a6 o1 N
- e BT

as n — oo. It is easily seen that (1.3) implies / [1 — F(t)]*dt < oo. Therefore we also have
0

o0

lim [ [1—F(t)]%dt=0. (2.2)

T—oo Jp

In the following inequality

/000[1 Bt w)]dl — /000[1 _ F(t)]“dt‘
/mu - F(t)]o‘dt’

T

<

/00[1 - Fn(t,w)]adt‘ +

T

+

)

T T
/0 [1— Fu(t,w)]*dt — /O [1— F(t)]°dt

let n — oo and T — oo in turn. Then (1.4) follows from the Glivenko-Cantelli theorem, the
dominated convergence theorem, limit (2.1) and limit (2.2). Note that (1.3) implies F|X;| < oo
and therefore by the strong laws of large numbers,

oo 1 n
1—FE,@M)dt =-S5 X, — EX, as. .
/0 [ )] nz — 1 a.s. as n— oo

i=1

The limit (1.5) is also obtained by combining the above with (1.4).



3 Some lemmas on the Skorokhod construction

Let D denote the space consisting of all functions on [0, 1], that are right continuous and
possess left-hand limits at each point. For any f,g € D, define the uniform metric

If =gl = sup |f(t) —g(t)].

S
te[0,1]

Then the Skorokhod construction ([7], page 93) may be stated as follows: There exists a prob-
ability space (0, F,P) on which a triangular array of row-independent uniform [0,1] r.v.’s
{&n1:6n2: €nnsn=1,2,---} and a Brown bridge U are defined such that

lim |U, —-U||=0 a.s.
n—oo
where Uy, denotes the empirical processes determined by &n.1,8n,2,+* ,&non, that is,

Un(t) = \/ﬁ[rn(t) - t]

‘ 1 ¢
with T (t) = — 21{5%@},% € [0,1].
Moreover, for the Skorokhod construction, we have the following property ([7], page 140): if
1

q is a nondecreasing function on [0,1/2], symmetric about 1/2 and satisfying / q 2(t)dt < oo,
0

then

P

HU”_U’ 0, 71— oo. (3.1)
q

In the following, notation n ~ N(u,0?) will be used to denote a normal r.v. 7 with mean
and variance o2 if 02 > 0 or a degenerate r.v. at u if 02 = 0. Our first lemma in this section is
about the Brown bridge U.

Lemma 1 If
/ (1 -1 Y2dF—(t) < oo, (3.2)
(0,1)

then 0% , and o7, , defined in (1.9) and (1.10) are finite. Moreover, it holds that

b(U) = /(071)(1£]g)16!dF‘_(t)~N(0,o§{,a); (3.3)
o(U) = /(Ol)U(t)J(t)dF‘_(t)~N(O7J%,a). (3.4)



Proof We shall show o7, is finite and (3.3) holds. The proofs of the finiteness of o7, , and
(3.4) are similar.
It follows from the Fubini theorem, the Schwarz inequality and (3.2) that

E [ Ul - tdre@)
(0,1)

B /(0 1)[E‘U(t)|](1 —t)* 1 dF(t)

< VEU2(t) )AL dF (1)
(0,1)

= VL= t)(1 =) dF(t)
(0,1)

< / (1= )" 2dF=(t) < oc.
©.1)

Therefore we have
|[v(U)| < / [U@)|(1 - t)o‘*ldFH(t) <o a.s.,
(0,1)

i.e. 1 determines a random variable. By using Fubini theorem, the Schwarz inequality and
(3.2) again, we get

2

EXU) = E - t)afldF“(t)} (3.5)

= FE

o
v

U2
< 5 / gat )> o} { [ @)
on 1-t (0.1)
2
< {/ (1— t)a_l/zdF‘_(t)} < o0.
Hence the variance of the r.v. ¢(U) exists. For any 0 < a < b < 1land n = 1,2,---, let
Tn; =a+i(b—a)/n for i =1,--- ,n, then we have from the definition of Riemann-Stieltjes

integral that

Y({U)= lim lim Z( U(zn,i)

a]0,b71 n—o0 4 1—ap,)t-
=1 ’

[F(_ (xmi) - F‘_(aj‘nﬂ'_l)] . (36)

Note that if a limit r.v. of sequence consisting of normal r.v.’s with mean 0 and degenerate
r.v.’s at 0 has finite variance, then it has to be normal with mean 0 or degenerate at 0. We



obtain ¢ ~ N (0, E4?(U)) from (3.5) and (3.6), where

B (U) = E{/(Ol)U(t)uzs)cvlczW(t)}2

E/ / te ol)U(S>U(t)[(1 —5)(L=8)]* ' dF~ (s)dF (1)

// te(0 1)[EU(S)U(t)][(1 —s)(1=t)]* " 1dF~ (s)dF* (t)

sAt— st _ _ _
//s,te(m) [(1—s)(1 =)t dF™ (s)dF™(t) = 0} 0

completing the proof of the lemma.

Lemma 2 For the Skorokhod construction, if there exists § € (1/2,1) such that (1.6) holds,
then as n — oo,

Un(t N U(t) —(p.
/( T TaC =t (3.7)
/ U, ()T () dF—(t) > U () (t)dF—(0). (3.8)
(0,1) (0,1)

Proof We shall show (3.7) only. The proof of (3.8) is similar. Let g(t) = [t(1 —t)]'~?. Then
(3.1) holds since

1 1
/ q_2(t)dt:/ tZ=D=1(1 — )DLt < o0,
0 0

Therefore denoting I(t) =¢,Vt € (0,1), we get
Ualt) oo v
'/ <1—t>1 e R W e =l

(1 —t)*°dF—(t)

0 1)
( 1)
as n — 00, so that (3.7) holds.
For the Skorokhod construction, the order statistics of &, 1, -+, &, n is denoted by &,.1 <

: S gn:n for n = 17 2, --- and we define
AY = / (1 —t)*dF(t);
[ nin, )

or e L U2(t)
"V g =D (- ) AL-Tu(0]}

dF=(t).



Lemma 3 For Skorokhod construction, if (1.6) holds, then as n — oo,
VnAr-£50;
5% -50.

Proof Note that

P{n(l — €pn) <z} = Plnépy <at=1—(1— g)n —1-e", Yz €[0,00),

(3.9)
(3.10)

(3.11)

ie. {n(l —¢&,.n)} converges in distribution to a standard exponential r.v.. Since Eninl, (1.6)

implies

/ (1— 1) 2qF—(t)-250.
[€nin 1)

Then we get as n — oo,

VRAL = v (1= 8)/2(1 = )" V2dF (1)

n
[Enin,1)

n(l = &) / (1 —t)*=2qF—(t)-20.
[‘En:nvl)

IN

This proves (3.9).
It is easily seen that

L
T Vioe T {lvl—Fn(t)}dF (t)

it L1 U)o
1—rn<t>’} Vi Joey G-t

. LU
} V1 J0,60.0) (17t)2—adF (t),

IA

14+ sup
t€(0,€n:n)

t
{1 + sup
te[éml,l)

I (t)

where énl =1—¢un—it+1 and fn is the empirical d.f. determined by ém-,i =1,2,---

the inequality in [7] (page 451), we have

t
P{ sup
t€l€nin,l) Fn(t)

> )\} < Ae MLV >0,

and therefore for all A\, > 0,

A+1 UZ2(t) a1
P{6,>n} <P / L _dFT(t) >y 4+ e M
t / { Vi Sk (L=1)270 “

(3.12)



Since (3.11) and

o[ U

(0,1)

a (1 —t)*°dF—(t) (3.13)
- / BULO) (1~ yosap—(
(0.1)

1-1¢

IN

/ (1—t)*%dF—(t) < 00
(0,1)
holds, we get

L OO gy L[ 000U
Vi S0 1 =1)2" A1) = Vi Joe,.y (1—)F1=9

< w0 (- g0 [ B yeetar Lo
(0,1) +7—

dF= (1)

Hence (3.10) follows by letting n — oo and A — oo in (3.12), completing the proof of the
lemma.

Lemma 4 For the Skorokhod construction, if (1.6) holds, then as n — oo,

/[ | MdF“(t)LO. (3.14)

nin,1

Proof The limit (3.14) follows from (3.13), the fact that §n:ni>1 and the following inequality

/K )(1(ilf()1)| de(t):/[ >(1(flt()?|5'(1—t)a‘5dF*(t)

nin,1

_ 71/2 |U7’L(t)| _ oa— —
S (1 fn:n)é /(071) T (1 t) JdF (t)
5 Un(t) 5 i 5 i
_ —-1/2 n . _ a— — . _ na— —
< (1= Gu) { [, T e <t>} { [, amrar (t)} -

4 The proof of Theorem 2

For any nonnegative Borel measurable function f defined on (0,1), a typical argument leads
to

/ F(F(2))ds = F)AF=(t).

(0,1)



Therefore we have

H, o(X) — Hy(X)

Il

/000[1 By (2)]de — /000[1 _ F(2)]*dx
JA

/ [ — D (8)]°dF—(t) - / (1 t)2dF—(t)
(0,1)

(0,1)

n(F(x))]%dx — /000[1 — F(x)]%dz

with the uniform empirical d.f. T',, defined in the Skorokhod construction, and similarly
A, = Dy o(X)—Dy(X) (4.1)
1
{1-T,)]*=Q=t)“}dF(¢t) + 7/ U, (t)dF—(t).
v Jo.)

[l

(07]‘)

Proof We will prove (1.8) only, the proof of (1.7) is similar. For this, we need the following

inequality
aly—z) [, (-a)ly—z) Sya_xaga(y—w)
xlfoz x A y xlfa

N,y >0, (4.2)

which may be obtained as follows. Since the function f(z) = 2®,2 > 0 is concave, we have

@gya—xagw,vayzo. (4.3)
y « €T [e3
And one can prove that
l-a _ 1—« 1— —« _ 1— _
yt (et ()
Yy ye T
l-a _ 1—« 1— —« _ 1— _
vt a0y
Yy Yy Y
Following the above two inequalities,
aly — ) aly — =) y'm* —alte
yl—a = ajl—a 1= yl—a
_ 1— _
> a(yl_ax) {1 (1-a)(y $)},Vx,y>0
T TNy
holds. Combining the above inequality with (4.3), (4.2) is proved.
It follows from (4.1) that
Ap =Dy o(X) = Do(X) L Ay + Dpo + Ay s, (4.4)

10



where

Apy = / (L= TW(0)]" — (1 — )} dF (1)
(0,€n:n)

Ans = % /(O | U= (o)

Aps = ) {1-T,@)]* = (1=t} dF~(t).

For ¢t > gn:na Fn(t) =1, so
Bag=- [ (-0rdr@) = -4y
[&n:nal)

Then by (3.9) we have
Vil A s = VAL -0,
Therefore from (4.4) the sequences of r.v.’s {/nA,} and {y/n[A, 1 + A, 2]} have the same

asymptotic d.f..
By using the inequality (4.2), it holds that

_a[Fn(t) —t] B a(l—a)[T,(t) —t)?
(1=t A=) {Q-t) A1 -Tn)}
a[Fn(t) _t]

< [1 - Fn(t)]a - (1 - t)a < - vt € (Oagnn)

(1—t)t=e’
Un (1)
o) (L= D)7
< Vn(Ana +A)
S 70[5,1 + \/ﬁAn,Z

Un(t
—a W gpewx [ UL)dF ).
/(o,gm) (I—t)t—= ) ©.1) E)dF

Combining the above with (3.10), we assert that the sequence of r.v.’s {\/n[A, 1 + A, 2]} and
the sequence of r.v.’s

Hence denoting d,, := / dF (t) and letting 0% as in Lemma 3, we get further
©

—ad, —a(l —a)dr + vVnAp o

W O )
{ /<0’£mn> TN (tH/ Un(t)dF ()}

0.1)

have the same asymptotic d.f..
Finally, it follows from (3.14) that the sequence

— Uni(t) — -
{ /(oyfm)( dF(t) + / Un(t)dF—(t)}

1 —t)t-« (0,1)

11



and the sequence

Un(t _ _ _
{Z, = _a/m,l) (1_t()1_adF (t)+/(071) U, (t)dF—(t) =/(071) Un(t)J (t)dF(t)}

have the same asymptotic d.f. . Now we have shown that the sequences {\/nA,} and {Z,}
have the same limit d.f.. By Lemma 1 and Lemma 2, the limit distribution of the sequence
{Zn} is N(0,0% ). Then by the definition of (4.1), the limit distribution of the sequence
{V/n[Dy o(X) — Do(X)]} is N(0,0% ), completing the proof of (1.8).
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