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Abstract In this paper we prove that in a survivorship group, the force of mortality of
the group must follow Gompertz’s law provided that, for the joint-life status of every two
lives, one can find a single-life status whose time-until-death’s distribution equals that of the
joint-life status. Therefore, the assumption that the force of mortality follows Gompertz’s
law is the necessary and sufficient criterion to guarantee that every joint-life status’ survival
pattern can be replaced by a single-life status’ in the group.
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1 Introduction
In annuities and insurances, multiple life models play an important role, and the applica-

tions of multiple life actuarial models are common. For example, in estate and gift taxation
the investment income from a trust can be paid to a group of heirs as long as at least one
of the group survives. See [1],[2] and [3] for more examples. In this paper, we discuss the
condition under which multiple life models can be replaced by single life models.

In a survivorship group, for the single life model, we use X to represent one individual’s
age-at-death. And (x) is used to denote a life-age-x. For the individual aged x, T (x) = X−x
denotes the future lifetime of the life (x). Thus, the random variable T (x) can be interpreted
as the period of survival of the status and also as the time-until-failure of the status. For
the multiple lives (x1), (x2), . . . , (xm), the joint-life status (x1x2 · · ·xm) (one multiple life
model), is defined as a status that exists as long as all lives survive and fails upon the first
death. The time-until-failure of the joint-life status is defined as

T (x1, x2, · · · , xn) = min[T (x1), T (x2), . . . , T (xn)],

which is the time-until-death of the life who first dies. In this paper we restrict our attention
to the two-life case, and assume they are independent.

In actuarial science and demography, one important approach to describe the survival
pattern is the force of mortality. We use µ(t) to denote the group’s force of mortality. It is
defined mathematically as

µ(t) =
fX(t)

1− FX(t)
, t ∈ [0,∞)
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where fX(t) and FX(t) are respectively the density function and the distribution function of
X. For each age t, it gives the value of the conditional probability density function (p.d.f.)
of X at exact age t, given survival to that age. It is easy to prove that (x)’ force of mortality,
denoted by µx(t), is equal to µ(x+ t). For (xy)’s force of mortality, we denote by µxy(t). In
this paper we assume µ(t) is continuous in [0,∞).

To simplify the evaluation of integrals involving multiple lives, there are several well-
known assumptions about the survival distribution of the group. In 1825, Gompertz intro-
duced the following important type.

Assumption A. The force of mortality for the group follows Gompertz’s law, i.e., µ(x) =
Bcx with B > 0 and c > 1.

In this case, we can substitute for the joint-life status (xy) by a single-life status (w)
satisfying µw(t) = µxy(t), where w is determined by the equality

cx + cy = cw.

We refer to reference [2] for details. Therefore, we can simplify the joint-life status to the
single-life status. However, the existence of such single-life status in the general case is not
a known fact. So we state the following

Assumption B. In one survivorship group, for every two lives (x) and (y) , there exists a
single-life status (w) in the group, such that T (w)’s distribution equals T (xy)’.

It is known that Assumption A implies Assumption B. In this paper we will prove a
striking result, which claims that the converse is true.

Theorem 1.1. Assumption B implies Assumption A.

Therefore, Assumption A is equivalent to Assumption B. This means, the assumption
that mortality for each life follows Gompertz’s law is the necessary and sufficient criterion
to guarantee that the joint-life status can be substituted for by a single-life status which has
the same force of mortality as that of the joint-life status.

For the usage of Gompertz’s law, we refer readers to references [3] ,[4] and [6]

2 Proof of Theorem 1.1
For the single-life statue (x) and (y), their force of mortality are µ(x + t) and µ(y + t).

Since the force of mortality for the joint-life status is the sum of the forces of mortality
for the associated lives, the force of mortality µxy(t) of the joint-life status (xy) is equal to
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µ(x + t) + µ(y + t). Then, Assumption (B) is equivalent to that there exists a single-life
status (w) such that

µ(x + t) + µ(y + t) = µ(w + t), t ∈ [0,∞). (2.1)

Now we formulate Theorem 1.1 into the following mathematical proposition.

Theorem 2.1. Suppose that µ : [0, +∞) → [0, +∞) is a nonnegative and continuous func-
tion satisfying µ 6≡ 0. If there exists a function w : [0, +∞)× [0, +∞) → [0, +∞) such that
for every x, y, t ≥ 0,

µ(x + t) + µ(y + t) = µ
(
w(x, y) + t

)
. (2.2)

Then for every x, y ≥ 0,

µ(x) = Bcx, w(x, y) =
ln(cx + cy)

ln c
(2.3)

with constants B > 0, c > 1.

Remark 2.2. It is obvious that the function defined in (2.3) satisfies

∫ ∞

0

µ(x)dx = ∞,

which is the necessary and sufficient condition for µ to be the force of mortality.

Before proving Theorem 2.1, we need several technical lemmas.

Lemma 2.3. Suppose that g ∈ C[0, +∞) satisfies, for every x, y > 0,

g(x + y) = g(x) · g(y) (2.4)

and g(x) 6≡ 0. Then for every x ≥ 0,

g(x) = cx with c = g(1). (2.5)

This is a known result of Advanced Calculus, and we omit the proof.
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Lemma 2.4. Suppose that µ(x) and w(x, y) are the two functions defined in Theorem 2.1.
Then we have
(i) µ(x) is unbounded on [0, +∞);
(ii) w(0, 0) > 0 and w(x, y) is continuous on [0, +∞)× [0, +∞).

Proof.
(i) Since µ 6≡ 0, we find a point z0 ≥ 0 such that µ(z0) > 0. Choosing x = y = 0 in (2.2),

we have that for every t ≥ 0,
2µ(t) = µ

(
w(0, 0) + t

)
. (2.6)

If w(0, 0) = 0, then µ(t) ≡ 0. This contradicts our assumption µ 6≡ 0. Therefore, we have
w(0, 0) > 0. And it follows from (2.6) that

2mµ(z0) = µ
(
mw(0, 0) + z0) (2.7)

where m is any positive integer. Denote zm = mw(0, 0) + z0. Letting m → +∞ in (2.6), we
find that µ(zm) → +∞. Therefore, the function µ(x) is unbounded.

(ii) For every x0, y0 ≥ 0, we will prove that

lim
(x,y)→(x0,y0)

w(x, y) = w(x0, y0).

Fix (x0, y0) and denote

d+ = lim sup
(x,y)→(x0,y0)

w(x, y), d− = lim inf
(x,y)→(x0,y0)

w(x, y), d0 = w(x0, y0).

If we prove that d+ = d0 = d−, we will finish the proof of (ii). First we show that
d+ < +∞. By the definition of d+, we may find two sequences {xn}, {yn}, n = 1, . . . , such
that

xn → x0, yn → y0, w(xn, yn) = dn → d+.

Let z0 ≥ 0 be as in the proof of (i). Noting that

µ(xn + t) + µ(yn + t) = µ(dn + t) (2.8)

for every t ≥ 0 and choosing

t = tn =
([ dn

w(0, 0)
]
+ 1

)
w(0, 0)− dn + z0



5

in (2.8), we have

µ(xn + tn) + µ(yn + tn) = µ
(
(
[ dn

w(0, 0)
]
+ 1)w(0, 0) + z0

)
. (2.9)

Here [dn/w(0, 0)] denotes the integral part of the number dn/w(0, 0). By the definition of
tn, we find that tn ≤ w(0, 0) + z0. Therefore the sequences {xn + tn} and {yn + tn} are
bounded. Recalling (2.7) and (2.9), we deduce that

µ(xn + tn) + µ(yn + tn) = 2[dn/w(0,0)]+1µ(z0). (2.10)

If dn → +∞, then the right hand side tends to +∞ while the left hand side of (2.10)
remains bounded. That is impossible. Therefore d+ < +∞.

Now we prove that d+ = d− = d0.
Recalling (2.2) and letting n → +∞ in (2.8), we conclude that

µ(d0 + t) = µ
(
w(x0, y0) + t

)
= µ(x0 + t) + µ(y0 + t) = µ(d+ + t) (2.11)

for every t ≥ 0. If d+ 6= d0, without loss of generality, we assume that d+ > d0. Then it
follows from (2.11) that

µ(d+ − d0 + s) = µ(s)

for every s ≥ d0. Therefore µ(s) is a periodic function on [d0,+∞). That implies that µ(x) is
bounded in [0, +∞). This contradicts (i). Therefore, we have d+ = d0. Since d− ≤ d+ < ∞,
by the same reasoning as above we obtain that d− = d0 = µ(x0, y0). Therefore the function
w(x, y) is continuous at (x0, y0).

In the following we assume that

µ ∈ C1(0,+∞). (2.12)

And later we will prove that this assumption is redundant by an approximation argument.

Lemma 2.5. Suppose that µ(x) and w(x, y) are determined in Theorem 2.1 and more-
over, µ(x) satisfies (2.12). Then ∂w/∂x and ∂w/∂y exist for every x, y > 0 and belong to
C

(
[0, +∞)× [0,∞)

)
.

Proof. Let x0, y0 ≥ 0 be fixed. We assert that there exists a point z0 > w(x0, y0) such that
µ′(z0) 6= 0. Otherwise, µ′(z) ≡ 0 for z > w(x0, y0). That means µ(z) is a constant when
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z > w(x0, y0). Since µ(z) is continuous on [0, w(x0, y0)], it follows that µ(z) is bounded on
[0,+∞). That is impossible because it contradicts (i) in Lemma 2.4.

Now we choose t = z0 − w(x0, y0) in (2.2) to obtain

µ
(
x + z0 − w(x0, y0)

)
+ µ

(
y + z0 − w(x0, y0)

)
= µ

(
w(x, y) + z0 − w(x0, y0)

)
.

Since
µ′

(
w(x, y) + z0 − w(x0, y0)

)∣∣
x=x0,y=y0

= µ′(z0) 6= 0

and µ′(x), w(x, y) are continuous, by the Implicit Function Theorem there exists a δ > 0
such that

w(x, y) =µ−1
(
µ
(
x + z0 − w(x0, y0)

)
+ µ

(
y + z0 − w(x0, y0)

))

+ w(x0, y0)− z0

(2.13)

for all x, y satisfying |x−x0|+ |y− y0| < δ. Because all functions involved in the right hand
side of (2.13) are C1-differentiable, w(x, y) is C1-differentiable at (x0, y0) too.

Lemma 2.6. Suppose that µ(x) and w(x, y) are determined in Theorem 2.1 and moreover,
µ(x) satisfies (2.12). Then there exist two constants B > 0, c > 1 such that for every
x, y ≥ 0,

µ(x) = Bcx, w(x, y) =
ln(cx + cy)

ln c
.

Proof. Set y = 0 in (2.2) and denote f(x) = w(x, 0). Then

µ(x + t) + µ(t) = µ
(
w(x, 0) + t

)
= µ

(
f(x) + t

)

where x, t ≥ 0. That is, for every x, y > 0,

µ(x + y) + µ(y) = µ
(
f(x) + y

)

where f ∈ C1[0,+∞) by Lemma 2.5. Differentiating with respect to x and y, we obtain

µ′(x + y) = µ′
(
f(x) + y

)
f ′(x), µ′(x + y) + µ′(y) = µ′

(
f(x) + y

)

for every x, y > 0.
Canceling the same term µ′

(
f(x)+y

)
in the above equalities, we conclude that, for every

x, y > 0,
µ′(y)f ′(x) = µ′(x + y)

(
1− f ′(x)

)
. (2.14)
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Exchanging the variables x, y in (2.14) we have

µ′(x)f ′(y) = µ′(x + y)
(
1− f ′(y)

)
. (2.15)

We first assert that for every x > 0,

f ′(x) 6= 1, f ′(x) 6= 0. (2.16)

Otherwise, there exists a point x0 > 0 such that f ′(x0) = 1 or f ′(x0) = 0. In the first case,
it follows from (2.14) with x = x0 that µ′(y) = 0 for every y > 0. This implies that µ(x) is a
constant. This contradicts (i) in Lemma 2.4. In the second case, it follows from (2.14) with
x = x0 that µ′(x0 + y) = 0 for every y > 0. This fact and the continuity µ(x) imply that
µ(x) is bounded, too. This also leads to a contradiction to (i) in Lemma 2.4. Therefore,
(2.16) holds. Using the same argument we can easily show that for every x > 0,

µ′(x) 6= 0. (2.17)

Now denote

g(x) =
f ′(x)

1− f ′(x)
.

It follows from (2.14) and (2.15) that

µ′(x + y) = g(y)µ′(x) = g(x)µ′(y), (2.18)

which implies that for every x, y > 0,

µ′(x)
g(x)

=
µ′(y)
g(y)

= C (2.19)

with the constant C 6= 0. By virtue of (2.18), we obtain

g(x + y) = g(x)g(y).

Since g(x) 6= 0, we apply Lemma 2.3 to conclude that g(x) = cx with c = g(1) > 0.
Solving the ordinary differential equation (2.19), we deduce, for every x > 0,

µ(x) = A + Bcx,
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where A,B are two constants. Choosing x = y = 0 in (2.2) we have that for every t ≥ 0,

2(A + Bct) = 2µ(t) = µ
(
w(0, 0) + t

)
= A + Bcw(0,0)+t,

which implies A = 0 and c = 2
1

w(0,0) . Since µ(x) ≥ 0 is unbounded, B > 0 and c > 1 follows.
By the direct calculation we obtain that w(x, y) = ln(cx + cy)/ ln c and complete the proof
of the lemma.

Now we are in the position to prove Theorem 2.1. Our strategy is to regularize the function
µ(x) in Theorem 2.1, then use Lemma 2.6 to determine the approximation functions and
finally take the limit to obtain the result.

Proof of Theorem 2.1. Now let φ(x) ∈ C∞0 be a mollifier in (−∞, +∞). That means, φ ≥ 0,
supp φ ⊂ (−1, 1) and

∫ 1

−1
φ(x) dx = 1. For every ε, 0 < ε ≤ 1, we set

φε(x) =
1
ε
φ
(x

ε

)
,

and define

µε(x) =
∫ ε

−ε

u(x− z)φε(z) dz =
∫ x+ε

x−ε

µ(z)φε(x− z) dz

for every x ≥ ε. It is obvious that µε ∈ C∞[ε, +∞). It follows from (2.2) that, for every
t ≥ ε and x, y ≥ 0,

µε(x + t) + µε(y + t) = µε

(
w(x, y) + t

)
. (2.20)

For every x ≥ 0, define
νε(x) = µε(x + ε).

It follows from (2.20) that, for every x, y, t ≥ 0

νε(x + t) + νε(y + t) = νε

(
w(x, y) + t

)
.

Moreover, νε satisfies (2.12). By virtue of Lemma 2.5 we conclude that there exist B̄ε > 0
and cε > 1 such that

νε(x) = B̄εc
x
ε .

Thus we have that for every x ≥ ε,

µε(x) = νε(x− ε) = B̄εc
x−ε
ε = Bεc

x
ε
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with Bε = B̄εc
−ε
ε . Fix any point x ∈ (0, +∞). For every ε ≤ x, µε(x) makes sense. Recalling

the continuity of µ(x), we have that for every x > 0,

µε(x) → µ(x), as ε → 0.

That is, for x ∈ (0, +∞),
Bεc

x
ε → µ(x), as ε → 0.

Let z0 ≥ 0 be a point such that µ(z0) > 0. It follows from (2.6) and (2.7) that

2µ(z0) = µ
(
w(0, 0) + z0

)
, 4µ(z0) = µ

(
2w(0, 0) + z0

)
. (2.21)

It follows from (2.21) that

cw(0,0)
ε =

µε

(
2w(0, 0) + z0

)

µε

(
w(0, 0) + z0

) → µ(2w(0, 0) + z0)
µ
(
w(0, 0) + z0

) = 2,

which implies that
cε → c = 2

1
w(0,0) .

And we have

Bε =
µε(z0)

cz0
ε

→ µ(z0)
cz0

= B > 0.

Therefore µ(x) = Bcx for every x > 0. Because µ(x) is continuous at x=0, the first equality
in (2.3) holds for every x ≥ 0. And the second equality follows by the direct calculation. As
µ(x) ≥ 0 is unbounded, c > 1 follows. Therefore we complete the proof of Theorem 2.1.

Based on Theorem 2.1, Theorem 1.1 follows.
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