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Abstract

In this paper we study approximating the total loss associated with the individual insurance risk model by a compound Poisson
random variable. By minimizing the expectation of the absolute deviation of the compound Poisson random variable from the
true total loss, we investigate not only the optimal compound Poisson random variable but also the numerical calculation of the
approximation error. We also discuss the influence of the Poisson parameter on the approximation error.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In actuarial science, the approximation of the individual risk model by a compound Poisson model plays an
important role. This is mainly due to the compound Poisson model’s advantages in recursive calculation(Panjer,
1981), combination and decomposition (Panjer and Willmot, 1992, Chapter 6or Kaas et al., 2001, Chapter 3). In
the development on this topic, there are a lot of papers concerned with the approximation.Bühlmann et al. (1977)
illustrated why a cautious insurer should prefer the compound Poisson model to the individual risk model in the sense
of stop-loss order.Gerber (1979, Chapter 4)gave a description of the choice of the Poisson parameter and introduced
two cases which are often used in the later discussions.Gerber (1984), Hipp (1985, 1986), Michel (1987), De Pril
and Dhaene (1992), Sundt (1993)andDhaene and Sundt (1997)investigated the error bounds for approximation in
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terms of distribution or stop-loss premium.Kaas et al. (1988b)discussed the approximation of the aggregate claims
and the stop-loss premiums by approximating the aggregate claims by the sum of a compound Poisson random
variable (r.v.) and another r.v. determined by stop-loss order.Kuon et al. (1993)studied the approximation quality
when the portfolio keeps growing.

The former papers are mainly focused on approximation in the aggregate claims distribution and related functions,
such as stop-loss premiums. However, in practice one initially concerns about the individual risk model. Thus one
natural question arises: given the observation data from the individual risk model, how should one determine the
r.v.’s in the corresponding compound Poisson model? From the practical viewpoint, the r.v.’s in the approximation
model have to be determined from the observation data.

The aim of this paper is to develop a method for carrying out such an approximation. By minimizing the
expectation of the absolute deviation of compound Poisson r.v.’s from the total loss associated with the individual risk
model, we present an optimal approximation model. We also give a numerical method to evaluate the approximation
error. Finally we discuss the influence of the Poisson parameter on the approximation error. Throughout this paper,
it is always assumed that the individual risks are independent. We first consider the case that the individual risks
are homogenous, then apply the homogenous results to approximate the heterogenous risk model.

Consider a portfolio containingnhomogenous insurance risks. LetXi denote the loss associated with theith risk,
i = 1,2, . . . , n. Assume thatX1, X2, . . . , Xn are independent identically distributed with common distributionF,
where the variance Var(X1) is finite and 0< F (0)< 1. The total loss for the portfolio{X1, X2, . . . , Xn} can be
written as

Sn =
n∑
i=1

Xi. (1.1)

The number of claims for the portfolio is denoted asNn, i.e.,

Nn = #{i : Xi > 0, i ≤ n}.

For the technical reason, an auxiliary sequence of risks{Xn+1, Xn+2, . . . , } is introduced, whereX1, X2, . . . are
independent identically distributed. Denote

M1 = inf {i ≥ 1 :Xi > 0},
Mn = inf {i > Mn−1 : Xi > 0}, n ≥ 2.

It is known thatP(Mi <∞) = 1.Mi is the index of the risk that a claim occurs andMi is strictly increasing with
respect toi. By using the auxiliary risks{Xn+1, Xn+2, . . .}, we can define a claim sequence

Yi = XMi, i ≥ 1,

which is a subsequence of{Xi, i ≥ 1} and is well-defined.
It is proved thatYi, i ≥ 1 are independent with common distribution function

FY (x) = F (x) − F (0)

1 − F (0)
, x ≥ 0.

It can also be shown thatNn is Binomial(n, q) with parameterq = 1 − F (0),

P(Nn = m) = Cmn qm(1 − q)n−m, m = 0,1, . . . , n,
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andNn is independent of the sequenceYi, i ≥ 1. HereCmn denotes (nm). Based on the above method, the link between
the homogenous individual risk model and the compound binomial model has been established. We refer toLi and
Yang (2001)for the above theoretical results.

By the definition of{Yi}, we know thatSn in (1.1)can be expressed as

Sn =
Nn∑
i=1

Yi. (1.2)

Each termYi of Sn in (1.2)corresponds to an actual claim while there are many termsXi in (1.1)which may equal
zero. Among these terms in(1.2), the individual claimsYi, i ≥ 1 are independent and identically distributed,Nn
is the number of claims in the portfolio{X1, X2, . . . , Xn}, and the independence betweenNn andYi is fulfilled.
Summing over the firstNn claims of the sequenceYi, i ≥ 1, we thus obtain the total lossSn associated with the
portfolio {X1, X2, . . . , Xn}.

Now we consider the approximation model. It is natural to assume that the approximation model has the same
claim sequence as the individual risk model. The number of claimsN(θ), as a Poisson r.v., should be estimated from
the observation data. Furthermore, the independence betweenN(θ) andYi, i ≥ 1 is assumed. An approximation to
Sn is defined by

S∗ =
N(θ)∑
i=1

Yi. (1.3)

In the above approximation, the main problem is to determine the Poisson r.v.N(θ).
Let Fpoi(θ) denote Poisson distribution with meanθ, andFbin(n,q) denote binomial distribution with parameters

(n, q), whereq = 1 − F (0). The family of all Poisson r.v.’s, which have common meanθ and are independent of the
claim sequenceYi, i ≥ 1, is denoted asR(Fpoi(θ)). As mentioned above, the optimal Poisson r.v.N0

n(θ) ∈ R(Fpoi(θ))
is determined by the following minimizing principle:

Hn(θ) =: E

∣∣∣∣∣∣Sn −
N0
n (θ)∑
i=1

Yi

∣∣∣∣∣∣ = inf
N(θ)∈R(Fpoi(θ))

E|Sn − S∗|, (1.4)

whereSn andS∗ are given, respectively, in(1.2) and (1.3). HereHn(θ) represents the approximation error.
We organize our paper in the following frame. InSections 2–6we investigate the homogenous individual risk

models. We first concentrate on the case that the Poisson parameterθ is fixed, then study the influence of the Poisson
parameter on the approximation error. InSection 2we show the existence of the optimal Poisson r.v.N0

n(θ), and
give an explicit expression forN0

n(θ). In Section 3we prove some optimal properties ofN0
n(θ). In Section 4we

present a numerical method to evaluate the approximation error. InSection 5we apply our approximation argument
to the functions of the total loss. InSection 6we demonstrate thatHn(θ) has a unique minimum point, and make a
comparison between the minimum Poisson parameter and those parameters normally used in literatures. InSection
7 we apply our main results to the heterogenous individual risk model. InAppendix Awe give the detailed proof
of the main theorems inSection 6.

2. The existence of the optimal Poisson r.v.

Given the risk sequence{X1, X2, . . .}, a r.v.U can be defined as below. Construct r.v.’sUm,m = 0,1, . . . , n
such thatUm,m = 0,1, . . . , n andXi, i ≥ 1 are independent. It is assumed thatUm is uniformly distributed over
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(Fbin(n,q)(m− 1)), Fbin(n,q)(m)] with probability density function

1

Fbin(n,q)(m) − Fbin(n,q)(m− 1)
.

Then define

U =
n∑
m=0

UmI{Nn=m}.

Under the above construction,Um,m = 0,1,2, . . . , n are independent of the number of claimsNn and the claim
sequenceYi, i = 1,2, . . .. Thus by the independence betweenNn andYi, U is also independent ofYi. Moreover,

P(U ≤ x|Nn = m) =




1, x ≥ Fbin(n,q)(m),
x− Fbin(n,q)(m− 1)

Fbin(n,q)(m) − Fbin(n,q)(m− 1)
, Fbin(n,q)(m− 1) ≤ x < Fbin(n,q)(m),

0, x < Fbin(n,q)(m− 1).

(2.1)

The inverse functionF−1
bin(n,q)(y) of Fbin(n,q)(y) is defined as

F−1
bin(n,q)(y) = inf {x : Fbin(n,q)(x) ≥ y}, y ∈ [0,1]

and the inverse functionF−1
poi(θ)(y) of Fpoi(θ)(y) is defined as

F−1
poi(θ)(y) = inf {x : Fpoi(θ)(x) ≥ y}.

Lemma 1. The r.v. U is uniformly distributed over[0,1], and

Nn = F−1
bin(n,q)(U).

Proof. For fixeds ∈ (0,1), denoteM = sup{k : Fbin(n,q)(k) ≤ s, k = 0,1, . . .}. It follows from (2.1) that:

P(U ≤ s|Nn = M + 1) = s− Fbin(n,q)(M)

Fbin(n,q)(M + 1) − Fbin(n,q)(M)

and

P(U ≤ s|Nn = m) = 0, m > M + 1; P(U ≤ s|Nn = m) = 1, m ≤ M.

Thus

P(U ≤ s) =
n∑
m=0

P(U ≤ s|Nn = m)P(Nn = m)

=
n∑

m=M+1

P(U ≤ s|Nn = m)P(Nn = m) +
M∑
m=0

P(U ≤ s|Nn = m)P(Nn = m)
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= P(U ≤ s|Nn = M + 1)P(Nn = M + 1) +
M∑
m=0

P(Nn = m)

= s− Fbin(n,q)(M)

Fbin(n,q)(M + 1) − Fbin(n,q)(M)
× {Fbin(n,q)(M + 1) − Fbin(n,q)(M)} + Fbin(n,q)(M) = s.

That is, the r.v.U is uniformly distributed over [0,1].
Next we prove thatNn = F−1

bin(n,q)(U) holds. Fix non-negative integerm,0 ≤ m ≤ n. Suppose thatNn = m.

ThusFbin(n,q)(m− 1)< U ≤ Fbin(n,q)(m) follows. Equivalently,F−1
bin(n,q)(U) = m. HenceNn = F−1

bin(n,q)(U) = m.
The lemma is proved. �

In the following theorem we prove the existence of the optimal Poisson r.v.N0
n(θ), and then give a mathematical

expression for the corresponding approximation error.
Theorem 1. The Poisson r.v.N0

n(θ) defined byN0
n(θ) = F−1

poi(θ)(U) satisfies(1.4), i.e.,F−1
poi(θ)(U) is a possible choice

for the optimal Poisson r.v. with meanθ. Moreover, the approximation errorHn(θ) satisfies

Hn(θ) = E(Y1)E|F−1
bin(n,q)(U) − F−1

poi(θ)(U)| = E(Y1)
∫ ∞

0
|Fbin(n,q)(x) − Fpoi(θ)(x)| dx. (2.2)

Proof. Let R(Fbin(n,q), Fpoi(θ)) denote the family containing all random vectors (W,V ), whereW has distribu-
tion Fbin(n,q) andV has distributionFpoi(θ), and (W,V ) is independent of the claim sequenceYi, i ≥ 1. Using the
independence relation betweenYi, i ≥ 1 andR(Fbin(n,q), Fpoi(θ)), we find that

inf
(W,V )∈R(Fbin(n,q),Fpoi(θ))

E

∣∣∣∣∣
W∑
i=1

Yi −
V∑
i=1

Yi

∣∣∣∣∣ = inf
(W,V )∈R(Fbin(n,q),Fpoi(θ))

E

∣∣∣∣∣∣I{V<W}
W∑

i=V+1

Yi + I{V>W}
V∑

i=W+1

Yi

∣∣∣∣∣∣
= E(Y1) inf

(W,V )∈R(Fbin(n,q),Fpoi(θ))
E|W − V |. (2.3)

From the result ofL1-Wassertein distance (Barrio et al., 1999, or Shorack and Wellner, 1986), it holds that

inf
(W,V )∈R(Fbin(n,q),Fpoi(θ))

E|W − V | = E|F−1
bin(n,q)(U) − F−1

poi(θ)(U)| =
∫ ∞

0
|Fbin(n,q)(x) − Fpoi(θ)(x)| dx. (2.4)

It is obvious that

Hn(θ) = inf
N∈R(Fpoi(θ))

E

∣∣∣∣∣
Nn∑
i=1

Yi −
N∑
i=1

Yi

∣∣∣∣∣ = inf
(W,V )∈R(Fbin(n,q),Fpoi(θ))

E

∣∣∣∣∣
W∑
i=1

Yi −
V∑
i=1

Yi

∣∣∣∣∣ . (2.5)

Combining Eqs.(2.3)–(2.5), we obtain(2.2)and complete the proof.�
In this paper we choose the optimal Poisson r.v. as

N0
n(θ) = F−1

poi(θ)(U). (2.6)

In modern risk theory, comonotonicity is an important concept. The two risksP andQ are comonotonic if there
exist two non-decreasing real-valued functionsu, v and a riskZ such that

P = u(Z), Q = v(Z)

(seeWang et al., 1997). By Lemma 1and(2.6),N0
n(θ) andNn are both non-decreasing functions of the r.v.U. Thus

they are comonotonic. It means that with the varying ofU,N0
n(θ) increases whenNn increases, andN0

n(θ) decreases
whenNn decreases.
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3. Some results onN0
n(θ)

The joint distributionFNn,N(θ) of (Nn,N(θ)) satisfies

max{Fbin(n,q)(x) + Fpoi(θ)(y) − 1,0} ≤ FNn,N(θ)(x, y) ≤ min{Fbin(n,q)(x), Fpoi(θ)(y)}. (3.1)

SeeJoe (1997)for its related discussion. Note that the distribution function of (Nn,N
0
n(θ)) equals the upper bound

min{Fbin(n,q)(x), Fpoi(θ)(y)}.

3.1. Some optimal properties

We will show some optimal properties ofN0
n(θ) in the following theorem.

Theorem 2. The optimal r.v.N0
n(θ) in (2.6) is optimal in the following senses:

E(Nn −N0
n(θ))

2 = inf
N(θ)∈R(Fpoi(θ))

E(Nn −N(θ))2 (3.2)

and

Var(Nn −N0
n(θ)) = inf

N(θ)∈R(Fpoi(θ))
Var(Nn −N(θ)). (3.3)

Proof. Recalling inequality(3.1)we have that forx, y ∈ [0,∞),

P(Nn > x,N(θ) > y) ≤ min{P(Nn > x), P(N(θ) > y)}.

Applying Hoeffding’s identity (Joe, 1997, p. 23), we obtain

E{Nn ×N(θ)} =
∫ ∞

0

∫ ∞

0
P(Nn > x,N(θ) > y) dx dy ≤

∫ ∞

0

∫ ∞

0
min{P(Nn > x), P(N(θ) > y)} dx dy

=
∫ ∞

0

∫ ∞

0
P(Nn > x,N

0
n(θ) > y) dx dy = E{NnN0

n(θ)}.

Thus we have

E(Nn −N(θ))2 = EN2
n + E(N(θ))2 − 2E{Nn ×N(θ)} ≥ EN2

n + E(N(θ))2 − 2E{Nn ×N0
n(θ)}

= E(Nn −N0
n(θ))

2,

which implies(3.2).
By using(3.2)and

Var(Nn −N(θ)) = E(Nn −N(θ))2 − (ENn − EN(θ))2 = E(Nn −N(θ))2 − (nq− θ)2,

we obtain(3.3). Thus we complete the proof of the theorem.�

The above theorem asserts the optimality ofN0
n(θ) in the senses of(3.2) and (3.3).

3.2. The joint probability of(Nn,N0
n(θ))

In this section we give several formulas to evaluate the joint distribution of (Nn,N
0
n(θ)).
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GivenNn = m,m = 0,1, . . . , n, the conditional probability

P(N0
n(θ) = k|Nn = m) = P(F−1

poi(θ)(U) = k|U ∈ (Fbin(n,q)(m− 1), Fbin(n,q)(m)])

= P(U ∈ (Fpoi(θ)(k − 1), Fpoi(θ)(k))|U ∈ (Fbin(n,q)(m− 1), Fbin(n,q)(m)])

= min{Fpoi(θ)(k), Fbin(n,q)(m)} − max{Fpoi(θ)(k − 1), Fbin(n,q)(m− 1)}
Fbin(n,q)(m) − Fbin(n,q)(m− 1)

∨ 0.

Then the joint probability

P(Nn = m,N0
n(θ) = k) = P(N0

n(θ) = k|Nn = m)P(Nn = m)

= (min{Fpoi(θ)(k), Fbin(n,q)(m)} − max{Fpoi(θ)(k − 1), Fbin(n,q)(m− 1)}) ∨ 0. (3.4)

Furthermore, the probabilityP(N0
n(θ) = Nn) can be evaluated by

P(N0
n(θ) = Nn) =

n∑
i=1

P(N0
n(θ) = Nn = i)

=
n∑
i=0

(min{Fpoi(θ)(i), Fbin(n,q)(i)} − max{Fpoi(θ)(i− 1), Fbin(n,q)(i− 1)}) ∨ 0.

Table 1gives some values of the joint probabilities of (Nn,N0
n(θ)) in the casen = 1000, θ = 1, p = 0.001, EY1 = 1,

calculated by(3.4). Table 2gives some results in the casen = 10, θ = 0.01, p = 0.001, EY1 = 1. The values in
the two tables show the comonotonic trend betweenNn andN0

n(θ).

Table 1
The probabilityP(Nn = i, N0

n (θ) = j) whenn = 1000, θ = 1, p = 0.001 andEY1 = 1

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

i = 0 0.3677 0 0 0 0 0 0
i = 1 0.0002 0.3679 3.0687E−08 0 0 0 0
i = 2 0 0 0.1840 9.2054E−05 0 0 0
i = 3 0 0 0 0.0612 6.1323E−05 0 0
i = 4 0 0 0 0 0.0153 2.2969E−05 0
i = 5 0 0 0 0 0 0.0030 6.1147E−06
i = 6 0 0 0 0 0 0 0.0005
i = 7 0 0 0 0 0 0 0

Table 2
The probabilityP(Nn = i, N0

n (θ) = j) whenn = 10, θ = 0.01, p = 0.001 andEY1 = 1

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

i = 0 0.9900 0 0 0 0 0 0
i = 1 4.9535E−06 0.0099 4.9072E−06 0 0 0 0
i = 2 0 0 4.4595E−05 4.6050E−08 0 0 0
i = 3 0 0 0 1.1896E−07 2.0435E−10 0 0
i = 4 0 0 0 0 2.0817E−10 5.7532E−13 0
i = 5 0 0 0 0 0 2.498E−13 8.8819E−16
i = 6 0 0 0 0 0 0 2.2205E−16
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4. Evaluating the approximation error

Hn(θ) measures the expectation of the absolute approximation error. In this section we will show how to compute
the error.

At the beginning we will list a useful lemma.

Lemma 2. If θ ≥ −n log(1− q), thenFbin(n,q)(t) ≥ Fpoi(θ)(t) for all t. Conversely, if Fbin(n,q)(0) ≥ Fpoi(θ)(0), then
θ ≥ −n log(1− q).

Lemma 2can be obtained directly by Theorem 1 ofDe Pril and Dhaene (1992).

Theorem 3.

(a) If θ ≥ −n log(1− q), then
Hn(θ) = (θ − nq)EY1. (4.1)

(b) If 0 ≤ θ < −n log(1− q), then

Hn(θ) =

2

n∑
i=0

i∑
j=0

(i− j)P(Nn = i, N0
n(θ) = j) + θ − nq


EY1. (4.2)

Proof.

(a) In the caseθ ≥ −n log(1− q), by Lemma 2we have

P(Nn > t) ≤ P(N0
n(θ) > t), t ∈ [0,∞].

Then using(2.2), we obtain

Hn(θ) = EY1

∫ ∞

0
|P(Nn ≤ t) − P(N0

n(θ) ≤ t)| dt = EY1

∫ ∞

0
{P(N0

n(θ) > t) − P(Nn > t)} dt

= EY1(EN0
n(θ) − ENn) = EY1(θ − nq).

(b) In the case 0≤ θ < −n log(1− q), by Theorem 1we have

Hn(θ) = EY1 × E|Nn −N0
n(θ)| = EY1 × {2E(Nn −N0

n(θ))+ − E(Nn −N0
n(θ)}

= EY1 × {2E(Nn −N0
n(θ))+ + θ − nq}

=

2

n∑
i=0

i∑
j=0

(i− j)P(Nn = i, N0
n(θ) = j) + θ − nq


EY1,

where the probability function of (Nn,N0
n(θ)) can be calculated by(3.4). �

The Poisson parameterθ is often chosen asθ = nq or θ = −n log(1− q) (Gerber, 1979, Chapter 4). Tables
3–5 provide some numerical values ofHn(nq) andHn(−n log(1− q)) whenEY1 = 1. By comparingHn(nq)
with Hn(−n log(1− q)), one can analyze the accuracy of the approximation. For instance, in the casenq = 0.05,
H10(nq) > H10(−n log(1− q)), H100(nq) < H100(−n log(1− q)) andH1000(nq) < H1000(−n log(1− q)). Gener-
ally speaking, one cannot assert that the parameternq is optimal than the parameter−n log(1− q).



J. Yang et al. / Insurance: Mathematics and Economics 36 (2005) 57–77 65

Table 3
The expected errors whenn = 10

q nq n log(1− q) Hn(nq) Hn(−n log(1− q))
0.001 0.01 0.010005 0.000010 0.000005
0.005 0.05 0.050125 0.000239 0.000125
0.01 0.1 0.100503 0.000911 0.000503
0.05 0.5 0.512933 0.015587 0.012933
0.1 1 1.053605 0.038402 0.053605
0.5 5 6.931472 0.524205 1.931472

Table 4
The expected errors whenn = 100

q nq n log(1− q) Hn(nq) Hn(−n log(1− q))
0.0001 0.01 0.010001 9.90116E−07 5.00033E − 07
0.001 0.1 0.100050 0.000091 0.000050
0.005 0.5 0.501254 0.001520 0.001254
0.01 1 1.005034 0.003694 0.005034
0.05 5 5.129329 0.044504 0.129329
0.1 10 10.536051 0.128624 0.536051
0.5 50 69.314718 1.653039 19.314718

Table 5
The expected errors whenn = 1000

q nq n log(1− q) Hn(nq) Hn(−n log(1− q))
0.0001 0.1 0.100005 0.000009 0.000005
0.001 1 1.000500 0.000368 0.000500
0.005 0.5 5.012542 0.004393 0.012542
0.01 10 10.050336 0.012545 0.050336
0.05 50 51.293294 0.142642 1.293294

5. Approximation to the total loss and related functions

Given the values{Nn, Y1, Y2, . . . , YNn} determined from the portfolio{X1, X2, . . . , Xn}, the optimal Poisson
r.v. in (2.6)can be determined as follows. First simulate the r.v.U by (2.1), then calculate the Poisson r.v.N0

n(θ) =
F−1

poi(θ)(U). In the caseNn ≥ N0
n(θ), the values of the claim sequenceY1, Y2, . . . , YN0

n (θ) can be obtained from the
set{Y1, Y2, . . . , YNn}. Otherwise, simulation is needed to obtain the r.v.’s{YNn+1, . . . , YN0

n (θ)}.
Now we consider the total amount of the type

∑n
i=1 g(Xi), whereg is a non-negative measurable function and

g(0) = 0. An approximation for
∑n
i=1 g(Xi) is

N0
n (θ)∑
i=1

g(Yi).

The corresponding approximation error equals

hn(θ, g) =:
n∑
i=1

g(Xi) −
N0
n (θ)∑
i=1

g(Yi).
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Note that wheng(x) = x,

Sn =
N0
n (θ)∑
i=1

Yi + hn(θ, g).

Theorem 4. For the non-negative function g withg(0) = 0,

Ehn(θ, g) = (nq− θ)Eg(Y1) (5.1)

and

E|hn(θ, g)| = Eg(Y1)

EY1
Hn(θ). (5.2)

Proof. It is easy to prove(5.1). Here we only prove(5.2) in detail.
Sinceg(0) = 0, we have

n∑
i=1

g(Xi) =
Nn∑
i=1

g(Yi).

Thus

E|hn(θ, g)| = E
∣∣∣∣∣∣
Nn∑
i=1

g(Yi) −
N0
n (θ)∑
i=1

g(Yi)

∣∣∣∣∣∣ = Eg(Y1)

EY1
Hn(θ).

Therefore, the theorem is proved.�

We would like to mention one interesting fact whenθ = −n log(1− q). In this case, byLemma 2we have

F−1
poi(θ)(s) ≥ F−1

bin(n,q)(s), s ∈ (0,1)

Then

Nn = F−1
bin(n,q)(U) ≤ F−1

poi(θ)(U) = N0
n(θ).

Hence

n∑
i=1

g(Xi) =
Nn∑
i=1

g(Yi) ≤
N0
n (θ)∑
i=1

g(Yi).

Thus the approximated total amount is always greater than the actual aggregate claims.
For the portfolio{X1, X2, . . . , Xn}, we consider the excess-of-loss reinsurance treaty with retentionM. The

direct insurer pays the amount

SD,n(M) =
n∑
i=1

Xi ∧M
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and the reinsurer pays the amount

SR,n(M) =
n∑
i=1

(Xi −M)+,

whereXi ∧M = min{Xi,M} and (Xi −M)+ = max{Xi −M,0}. Use the two compound Poisson r.v.’s

SAPD,n(M) =
N0
n (θ)∑
i=1

Yi ∧M and SAPR,n(M) =
N0
n (θ)∑
i=1

(Yi −M)+

to approximateSD,n(M) andSR,n(M), respectively. ByTheorem 4, the expected approximation errors are

E|SR,n(M) − SAPR,n(M)| = E(Y1 ∧M)

EY1
Hn(θ), E|SD,n(M) − SAPD,n(M)| = E(Y1 −M)+

EY1
Hn(θ),

respectively. Note that the sum of the expected approximation errors equalsHn(θ), i.e.,

E|SR,n(M) − SAPR,n(M)| + E|SD,n(M) − SAPD,n(M)| = Hn(θ).

6. The uniqueness of the Poisson parameter to minimizingHn(θ)

In this section we investigate whether there exists a uniqueθ0
n, such that

Hn(θ
0
n) = min

θ≥0
Hn(θ). (6.1)

The answer to this problem is affirmative.
Fork = 0,1,2, . . . , n− 1, denoteθ(k) to be the solution of equation

Fbin(n,q)(k) = Fpoi(θ(k))(k).

Then we have the following result.

Theorem 5. It holds that

θ(n−1) > θ(n−2) > · · · > θ(1) > θ(0).

Denote

sign(Fbin(n,q)(x) − Fpoi(θ)(x)) =




1 if Fbin(n,q)(x) > Fpoi(θ)(x),

0 if Fbin(n,q)(x) = Fpoi(θ)(x),

−1 if Fbin(n,q)(x) < Fpoi(θ)(x).

In the following we give a theorem on the uniqueness ofθ0
n and present an approach to solveθ0

n. Here for
simplicity we assumeEY1 = 1.
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Theorem 6. There exists a uniqueθ0
n with 0 ≤ θ0

n ≤ −n log(1− q), such that(6.1) holds. Further, forθ ∈
(θ(k+1), θ(k)), k = 0,1,2, . . . , n− 1, the derivative function ofHn with respect toθ satisfies

H ′
n(θ) =

n−1∑
k=0

(sign(Fbin(n,q)(k) − Fpoi(θ)(k)) − 1)
e−θ θk

k!
+ 1. (6.2)

H ′
n(θ) is strictly increasing forθ �= θ(k), k = 0,1,2, . . . , n− 1 and

H ′
n(θ

0
n−) ≤ 0, H ′

n(θ
0
n+) ≥ 0, (6.3)

whereH ′
n(θ

0
n−) andH ′

n(θ
0
n+) denote, respectively, the left and right limits ofH ′

n at pointθ
0
n.

We will proveTheorems 5 and 6in Appendix A.
In the casen = 1, (6.2)can be used to findθ0

1. Forθ < − log(1− q), Fbin(1,q)(0)< Fpoi(θ)(0). Then by(6.2)we
have

H ′
1(θ) = −2 e−θ + 1.

SolvingH ′
1(θ) = 0, we haveθ = log 2. Moreover,H ′

1(θ) < 0 for θ < log 2. Then we can conclude that in the case
q > 0.5,Hn(θ) achieves its minimum log 2+ q− 1 at pointθ0

1 = log 2; whenq ≤ 0.5,Hn(θ) achieves its minimum
−q− log(1− q) at pointθ0

1 = − log(1− q).
In general,θ0

n can be solved numerically. ByTheorem 6, θ0
n is the solution ofH ′

n(θ) = 0 if the solution exits.
Otherwise, it satisfiesH ′

n(θ−) ≥ 0 andH ′
n(θ+) ≤ 0. Thus byTheorem 6, we can focus on the strictly increasing

functionh(θ) defined as

h(θ) =
n−1∑
k=0

(sign(Fbin(n,q)(k) − Fpoi(θ)(k)) − 1)
e−θ θk

k!
+ 1, θ ∈ [0,∞)

and use the Newtonian method to locateθ0
n.

Table 6lists some numerical results. It can be seen that whenn is large, the difference betweenθ0
n andnq is very

small. Thusnq is a good approximation forθ0
n whennq is large while−n log(1− q) is a good approximation when

nq is small.

7. Approximation to the heterogenous individual risk model

In practice, the individual risksXi of a portfolio are often independent, but not identically distributed. In this
section, we will apply the above results to the heterogenous individual risk model.

We can divide the heterogenous portfolio into several independent homogenous portfolios, then approximate
every homogenous portfolio separately by our method. Assume that the portfolio can be divided intomhomogenous
portfolios and the aggregate claims from theith portfolio can be represented byIS(i) for i = 1,2, . . . , m. For the
ith homogenous portfolio,

IS(i) =
N(i)∑
j=1

Yi,j,
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Table 6
The optimalθ0

n and the corresponding errorHn(θ0
n)

n q nq −n log(1− q) θ0
n Hn(nq) Hn(−n log(1− q)) Hn(θ0

n)

2 0.001 0.002 0.002001 0.002001 1.997E−06 1.001E− 06 1.001E−06
2 0.01 0.02 0.020101 0.020101 0.000197 0.000101 0.000101
2 0.10 0.2 0.210721 0.210721 0.017462 0.010721 0.010721
2 0.5 1 1.386294 0.961278 0.235797 0.386294 0.226086

10 0.001 0.01 0.010005 0.010005 0.00001 0.000005 0.000005
10 0.01 0.1 0.100503 0.100503 0.000911 0.000503 0.000503
10 0.10 1 1.053605 0.99907 0.038402 0.053605 0.038161
10 0.5 5 6.931472 4.95961 0.524205 1.931472 0.519686

100 0.001 0.1 0.100050 0.100050 0.000091 0.000050 0.000050
100 0.01 1 1.005034 1.000 0.003694 0.005034 0.003694
100 0.1 10 10.536051 9.9991 0.128624 0.536051 0.128548
100 0.5 50 69.314718 49.959 1.653039 19.314718 1.651654

1000 0.001 1 1.0005 1.000 0.000368 0.000500 0.000368
1000 0.01 10 10.050336 10.00 0.012545 0.050336 0.012545

whereN(i) is the number of claims and the claim sequencesYi,j, j = 1,2, . . ., are determined as inSection 1,
i = 1,2, . . . , m. Then the aggregate claims for the heterogenous portfolio is

IS =
m∑
i=1

IS(i) =
m∑
i=1

N(i)∑
j=1

Yi,j.

Note that the following properties hold:

1. N(i), i = 1,2, . . . , m, are independent.
2. For a giveni, Yi,j, j = 1,2, . . . are independent identically distributed, here the common distribution is denoted

asFi. Further,Yi,j, i = 1,2, . . . , m, j = 1,2, . . . , are independent.
3. Claim sequences are independent of the numbers of claims.

LetCS(i, θi) be compound Poisson with Poisson r.v.N(i, θi) and claim sequenceYi,j, j = 1,2, . . .,N(i, θi) and
Yi,j, j = 1,2, . . . are independent. Hereθi is the Poisson parameter. Then

CS(i, θi) =
N(i,θi)∑
j=1

Yi,j.

The ith group’s optimal Poisson r.v. determined by(2.6) is denoted asN0(i, θi), the optimal Poisson parameter
satisfying(6.1)is denoted asθ0(i). The independence between the Poisson r.v.’sN(i, θi), i = 1,2, . . . , m is assumed.

Denote

CS∗(i, θi) =
N0(i,θi)∑
j=1

Yi,j,

CS(θ1, θ2, . . . , θm) =
m∑
j=1

CS(i, θi)
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and

CS∗(θ1, θ2, . . . , θm) =
m∑
j=1

CS∗(i, θi).

CS(θ1, θ2, . . . , θm) andCS∗(θ1, θ2, . . . , θm) are compound Poisson r.v.’s, each with Poisson parameter
∑m
i=1 θi and

claim distribution

m∑
j=1

θj∑m
i=1 θi

Fj.

Among allCS(θ1, θ2, . . . , θm)’s, we will prove thatCS∗(θ1, θ2, . . . , θm) is optimal in the following sense.

Theorem 7. It holds that

E(IS − CS∗(θ1, θ2, . . . , θm))2 = inf
N(i,θi),i≤m

E(IS − CS(θ1, θ2, . . . , θm))2 (7.1)

and

E|IS − CS∗(θ1, θ2, . . . , θm)| ≤
m∑
i=1

E|IS(i) − CS∗(i, θi)| ≤
m∑
i=1

E|IS(i) − CS(i, θi)|. (7.2)

Proof. According to the above notations, we have

E(IS − CS(θ1, θ2, . . . , θm))2 = Var(IS − CS(θ1, θ2, . . . , θm)) + {E(IS − CS(θ1, θ2, . . . , θm))}2

=
m∑
i=1

Var(IS(i) − CS(i, θi)) +
{
m∑
i=1

EYi,1 × E(N(i) − θi)
}2

=
m∑
i=1

E|N(i) −N(i, θi)| Var(Yi,1) +
m∑
i=1

Var(N(i) −N(i, θi))E(Y2
i,1)

+
{
m∑
i=1

E(Yi,1)E(N(i) − θi)
}2

.

Thus byTheorems 1 and 2, it holds that

E(IS − CS∗(θ1, θ2, . . . , θm))2

=
m∑
i=1

E|N(i) −N0(i, θi)| Var(Yi,1) +
m∑
i=1

Var(N(i) −N0(i, θi))E(Y2
i,1) +

{
m∑
i=1

E(Yi,1)E(N(i) − θi)
}2

≤
m∑
i=1

E|N(i) −N(i, θi)| Var(Yi,1) +
m∑
i=1

Var(N(i) −N(i, θi))E(Y2
i,1) +

{
m∑
i=1

E(Yi,1)E(N(i) − θi)
}2

= E(IS − CS(θ1, θ2, . . . , θm))2,

thus(7.1)holds. It is obvious that(7.2)holds. Now we complete the proof.�
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When every homogenous portfolio’s size is large enough, it is advised to chooseθi = EN(i), i = 1,2, . . . , m. For
this choice of the Poisson parameter, the approximationCS∗(θ1, θ2, . . . , θm) produces good approximation effects.
It can be seen from the following two aspects:

(1) First, fromTable 6we can find that

θ0(i) ∼ EN(i).

ThusEN(i) is a good approximation for the optimal Poisson parameterθ0(i).
(2) Second,(7.2)shows that the approximation error is bounded by the sum of the approximation errors for each

homogenous portfolio. Thus the corresponding error is small when every homogenous portfolio’s size is large
enough.

8. Conclusions

In this paper, we presented a new method to approximate the individual risk model by a compound Poisson r.v. We
investigated the determination of the r.v.’s in the compound Poisson model and the calculation of the approximation
error. During our discussion, we first focused on the homogenous individual risk models, then applied the results to
the heterogenous individual risk models. Numerical results showed that our approximation model provides a good
approximation.
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Appendix A

In what follows, we will proveTheorems 5 and 6. First we introduce several lemmas.

Lemma A.1. There exists a non-negative integerC ≤ n− 1 such that

P(Nn = k + 1)

P(Nn = k)




>
P(N(θ) = k + 1)

P(N(θ) = k) , k < C,

<
P(N(θ) = k + 1)

P(N(θ) = k) , n > k > C,

≥ P(N(θ) = k + 1)

P(N(θ) = k) , k = C.

Proof. It is easy to verify that fork + 1 ≤ n,

P(Nn = k + 1)

P(Nn = k) = Ck+1
n qk+1(1 − q)n−k−1

Cknq
k(1 − q)n−k = n− k

k + 1

q

1 − q (A.1)
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and

P(N(θ) = k + 1)

P(N(θ) = k) = θ

k + 1
. (A.2)

Comparing(A.1) with (A.2), we observe that

P(Nn = k + 1)

P(Nn = k) ≥ P(N(θ) = k + 1)

P(N(θ) = k)

if and only if (n− k){q/(1 − q)} ≥ θ, i.e.,

k ≤ n− θ(1 − q)
q

.

Denote

C = min

{
n− 1,

[
n− θ(1 − q)

q

]}
.

Here [x] denotes the integral part ofx. Thus ifC < n− 1, for the integern > k > C it holds that

P(Nn = k + 1)

P(Nn = k) <
P(N(θ) = k + 1)

P(N(θ) = k) .

And if k < C,

P(Nn = k + 1)

P(Nn = k) >
P(N(θ) = k + 1)

P(N(θ) = k)

holds. In the casek = C, it holds that

P(Nn = k + 1)

P(Nn = k) ≥ P(N(θ) = k + 1)

P(N(θ) = k)

Hence the lemma is proved.�

It is easy to verify the following lemma. We omit its proof here.

Lemma A.2. Supposean > 0, bn > 0 andan+1/an ≥ bn+1/bn, n ≥ 0.Then forn ≥ 1,

an + an−1 + · · · + a0

an−1 + · · · + a0
≥ bn + bn−1 + · · · + b0

bn−1 + · · · + b0
.

Lemma A.3. Suppose that for non-negative integer M, Fbin(n,q)(M) ≥ Fpoi(θ)(M). Then

Fbin(n,q)(M + 1)> Fpoi(θ)(M + 1). (A.3)

Proof. It is trivial for the caseM ≥ n. Now we consider the caseM < n. Assumeθ < −n log(1− q). Otherwise,
by Lemma 4.1 we see thatFbin(n,q)(k) ≥ Fpoi(θ)(k), k = 0,1,2, . . ., thus(A.3) holds. We will divide our proof into
two casesM ≤ C andM > C, whereC is the integer defined inLemma A.1.
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Case A.1 (M ≤ C).
Sinceθ < −n log(1− q), it leads toP(Nn = 0)< P(N(θ) = 0). Then according to the definition ofC and

Fbin(n,q)(M) ≥ Fpoi(θ)(M), by Lemmas A.1 and A.2we conclude that

P(Nn = M) > P(N(θ) = M).

Also byLemma A.1we have

P(Nn = M + 1)

P(Nn = M)
≥ P(N(θ) = M + 1)

P(N(θ) = M)
.

Then it follows that:

P(Nn = M + 1)> P(N(θ) = M + 1).

Thus

Fbin(n,q)(M + 1) = Fbin(n,q)(M) + P(Nn = M + 1)> Fpoi(θ)(M) + P(N(θ) = M + 1) = Fpoi(θ)(M + 1),

which implies(A.3).

Case A.2 (M > C).
If P(Nn = M + 1) ≥ P(N(θ) = M + 1), then it is obvious that(A.3) holds. Next we consider the case

P(Nn = M + 1)< P(N(θ) = M + 1).
SinceP(Nn = M + 1)< P(N(θ) = M + 1) andM > C, by Lemma A.1we have

P(Nn = k) < P(N(θ) = k), k ≥ M + 1.

Then

P(Nn ≤ M + 1) = 1 −
n∑

k=M+2

P(Nn = k) > 1 −
n∑

k=M+2

P(N(θ) = k)

> 1 −
∞∑

k=M+2

P(N(θ) = k) = P(N(θ) ≤ M + 1).

Thus the lemma is proved.�

Proof of Theorem 5. Fix k < n. From the definitionFbin(n,q)(k) = Fpoi(θ(k))(k) andLemma A.3, we have

Fbin(n,q)(k + 1)> Fpoi(θ(k))(k + 1).

Since for fixedk the functionFpoi(θ)(k + 1) is strictly decreasing aboutθ, we have

θ(k+1) < θ(k).

Now we complete the proof of the theorem.
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Lemma A.4. For θ �= θ(i), i = 0,1, . . . , n− 1, the derivativeH ′
n(θ) ofHn(θ) exists and

H ′
n(θ) =

n−1∑
k=0

(sign(Fbin(n,q)(k) − Fpoi(θ)(k)) − 1)
e−θ θk

k!
+ 1. (A.4)

Proof. Fix θ0 > 0 andθ0 �= θ(i), i = 0,1, . . . , n− 1. Denote

g(θ, x) = Fbin(n,q)(x) − Fpoi(θ)(x).

First consider the caseθ > θ0. From(2.2)we have

Hn(θ) −Hn(θ0)

θ − θ0 = 1

θ − θ0

∫ ∞

0
(|g(θ, x)| − |g(θ0, x)|) dx

= 1

θ − θ0

∫ ∞

0
(g(θ, x)I{g(θ,x)>0} − g(θ0, x)I{g(θ0,x)>0}) dx

+ 1

θ − θ0

∫ ∞

0
(−g(θ, x)I{g(θ,x)<0} + g(θ0, x)I{g(θ0,x)<0}) dx =: A+ B. (A.5)

By using the fact thatg(θ, x) > g(θ0, x) for θ > θ0 andg(θ0, x) �= 0, we have

A = 1

θ − θ0

∫ ∞

0
(g(θ, x)I{g(θ,x)>0} − g(θ0, x)I{g(θ,x)>0}) dx

+ 1

θ − θ0

∫ ∞

0
(g(θ0, x)(I{g(θ,x)>0} − I{g(θ0,x)>0}) dx

= 1

θ − θ0

∫ ∞

0
(Fpoi(θ0)(x) − Fpoi(θ)(x))I{g(θ,x)>0} dx

+ 1

θ − θ0

∫ ∞

0
(Fbin(n,q)(x) − Fpoi(θ0)(x))I{g(θ,x)>0,g(θ0,x)<0} dx. (A.6)

For the caseg(θ, x) > 0 andg(θ0, x) < 0, it holds thatFbin(n,q)(x) > Fpoi(θ)(x) andFbin(n,q)(x) < Fpoi(θ0)(x). Thus
in this case it follows that:

0 ≤
∫ ∞

0

∣∣∣∣Fbin(n,q)(x) − Fpoi(θ0)(x)

θ − θ0

∣∣∣∣ I{g(θ,x)>0,g(θ0,x)<0}| dx

≤
∫ ∞

0

Fpoi(θ0)(x) − Fpoi(θ)(x)

θ − θ0 I{g(θ,x)>0,g(θ0,x)<0} dx. (A.7)

Forx ∈ [0,∞),

∂

∂θ
Fpoi(θ)(x) = e−θ θ[x]

[x]!
≤ (2θ0)[x]

[x]!
, θ < 2θ0,

where [x] is the integral part ofx. Then by the dominated convergence theorem andg(θ, x) → g(θ0, x) we have

1

θ − θ0

∫ ∞

0
(Fpoi(θ0)(x) − Fpoi(θ)(x))I{g(θ,x)>0} dx→

∫ ∞

0

e−θ0 θ[x]
0

[x]!
I{g(θ0,x)>0} dx, (A.8)
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and by(A.7) we obtain∣∣∣∣
∫ ∞

0

Fbin(n,q)(x) − Fpoi(θ)(x)

θ − θ0 I{g(θ,x)>0,g(θ0,x)<0} dx

∣∣∣∣
≤

∫ ∞

0

Fpoi(θ0)(x) − Fpoi(θ)(x)

θ − θ0 I{g(θ,x)>0,g(θ0,x)<0} dx→ 0. (A.9)

Combining(A.8) and (A.9), we conclude that

lim
θ↘θ0

A =
∫ ∞

0

e−θ0 θ[x]
0

[x]!
I{g(θ0,x)>0} dx.

Similarly, we have

lim
θ↘θ0

B = −
∫ ∞

0

e−θ0 θ[x]
0

[x]!
I{g(θ0,x)<0} dx.

Summarizing the above two equations and(A.5), we deduce that

lim
θ↘θ0

Hn(θ) −Hn(θ0)

θ − θ0 =
∫ ∞

0

e−θ0 θ[x]
0

[x]!
sign(Fbin(n,q)(x) − Fpoi(θ0)(x)) dx. (A.10)

Similarly,

lim
θ↗θ0

Hn(θ) −Hn(θ0)

θ − θ0 =
∫ ∞

0

e−θ0 θ[x]
0

[x]!
sign(Fbin(n,q)(x) − Fpoi(θ0)(x)) dx (A.11)

holds. Thus combining(A.10) and (A.11), we obtain

H ′
n(θ0) =

∫ ∞

0

e−θ θ[x]
0

[x]!
sign(Fbin(n,q)(x) − Fpoi(θ0)(x)) dx

=
n−1∑
k=0

sign(Fbin(n,q)(k) − Fpoi(θ0)(k))
e−θ0 θk0
k!

+
∞∑
k=n

e−θ0 θk0
k!

=
n−1∑
k=0

(sign(Fbin(n,q)(k) − Fpoi(θ0)(k)) − 1)
e−θ0 θk0
k!

+ 1. �

Proof of Theorem 6. Fix θ ∈ (θ(i+1), θ(i)). Since

Fbin(n,q)(i) = Fpoi(θ(i))(i), Fbin(n,q)(i+ 1) = Fpoi(θ(i+1))(i+ 1),

we have

Fbin(n,q)(i) < Fpoi(θ)(i), Fbin(n,q)(i+ 1)> Fpoi(θ)(i+ 1).

Thus byLemma A.3we assert that

Fbin(n,q)(k) < Fpoi(θ)(k), k ≤ i



76 J. Yang et al. / Insurance: Mathematics and Economics 36 (2005) 57–77

and

Fbin(n,q)(k) > Fpoi(θ)(k), k ≥ i+ 1.

Then byLemma A.4we have

H ′(θ) = −2
i∑
k=0

e−θ θk

k!
+ 1,

which is strictly increasing with respect toθ ∈ (θ(i+1), θ(i)).
From the above equation it is easy to verify

H ′(θ(i)−) < H ′(θ(i)+), i = 0,1,2, . . . , n− 1.

Thus we conclude thatH ′(θ) is strictly increasing with respect toθ �= θ(i).

SinceHn(θ) is continuous, fromTheorem 3we assert that the minimum pointθ0
n exists andθ0

n ≤ n log(1− q). By
the monotonicity ofH ′

n(θ) with respect toθ, we assert thatH ′
n(θ

0
n+) ≥ 0 andH ′

n(θ
0
n−) ≤ 0. SinceH ′

n(θ) is strictly
increasing, thusθ0

n is unique. Hence the uniqueness is proved.
As (6.2)has been proved inLemma A.4, we now complete the proof ofTheorem 6. �
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