CHARACTERISTIC CYCLES AND NON-ACYCLICITY CLASSES FOR CONSTRUCTIBLE ETALE SHEAVES

JIANGNAN XIONG[†] AND ENLIN YANG[‡]

To the memory of Professor Linsheng Yin (1963–2015)

ABSTRACT. Let $f: X \to S$ be a morphism between smooth schemes over a perfect field k. Let \mathcal{F} be a constructible sheaf on X and Z a closed subscheme of X such that f is $SS(\mathcal{F})$ -transversal outside Z. We construct a class supported on the non-transversality locus Z by using the characteristic cycle $CC(\mathcal{F})$ defined by T.Saito. This class is a geometric counterpart of the non-acyclicity class introduced by the second author and Zhao in [15]. Under certain conditions, the formation of this class is compatible with base change and proper push-forward. It also satisfies the Milnor formula proved by Saito and a conductor formula. We conjecture that the image of this class under the cycle class map is the non-acyclicity class. This conjecture can be viewed as a (relative version of) Milnor type formula for non-isolated singularities.

We expect that this class can be lifted to a cycle supported on the cotangent bundle of X. For this, we introduce the singular support of \mathcal{F} relatively to a morphism $f: X \to S$. When f = id, this goes back to Beilinson's definition of singular supports.

CONTENTS

1.	Introduction	1
2.	Transversality condition	3
3.	Geometric non-acyclicity classes	6
References		15

1. INTRODUCTION

1.1. Let k be a perfect field of characteristic p > 0 and S = Speck. Let Λ be a finite field of characteristic $\ell \neq p$. Let X be a smooth scheme over S and $f: X \to Y$ a flat morphism of finite type to a smooth curve Y over S. If f has an isolated singularity at a closed point $x_0 \in |X|$, there is an invariant $\mu(X/Y, x_0)$ supported on x_0 , called the Milnor number. The Milnor formula [4, Théorème 2.4] proved by Deligne says that the Milnor number is related to the total dimension at x_0 of the vanishing cycles $R\Phi(f, \Lambda)$ of f for the constant sheaf Λ , i.e.,

(1.1.1)
$$(-1)^n \mu(X/Y, x_0) = -\operatorname{dim} \operatorname{tot} R\Phi_{\overline{x}_0}(f, \Lambda),$$

[‡]Enlin Yang is the corresponding author.

[‡]yangenlin@math.pku.edu.cn.

[‡]School of Mathematical Sciences, Peking University, No.5 Yiheyuan Road Haidian District., Beijing, 100871, P.R. China.

[†]2000010637@stu.pku.edu.cn.

[†]School of Mathematical Sciences, Peking University, No.5 Yiheyuan Road Haidian District., Beijing, 100871, P.R. China.

April 26, 2024.

where $n = \dim X$ and $\dim tot = \dim + Sw$ denotes the total dimension. Later in [5], Deligne proposed a Milnor formula for any constructible sheaf \mathcal{F} of Λ -modules on X, which is realized and proved by Saito in [11]. If $x_0 \in |X|$ is at most an isolated characteristic point of f with respect to the singular support of \mathcal{F} , then Saito's theorem [11, Theorem 5.9] says

(1.1.2)
$$(CC(\mathcal{F}), df)_{T^*X, x_0} = -\mathrm{dim}\mathrm{tot}R\Phi_{\overline{x}_0}(f, \mathcal{F}),$$

where $CC(\mathcal{F})$ is the characteristic cycle of \mathcal{F} . Now we propose the following question:

Question 1.2. Is there a Milnor type formula for non-isolated singular/characteristic points?

1.3. If f is a projective flat morphism and if f is smooth outside $f^{-1}(y)$ for a closed point y of the curve Y, then the conductor formula of Bloch (cf. [12, Theorem 2.2.3 and Corollary 2.2.4])

(1.3.1)
$$-a_y(Rf_*\Lambda) = (-1)^n (X, X)_{T^*X, X_y} = (-1)^n \text{deg} c^X_{n, X_y}(\Omega^1_{X/Y}) \cap [X]$$

gives a partial answer to the Question 1.2. We view (1.1.1), (1.1.2) and (1.3.1) in the form

(1.3.2) deg(geometric class on singular locus) = deg(cohomology class on singular locus).

We expect the equality holds without taking degree, i.e.,

$$(1.3.3) cl(geometric class) = cohomology class,$$

where cl is the cycle class map. In the paper [15], the second author with Yigeng Zhao introduce a (cohomological) non-acyclicity class which is supported on non-acyclicity locus. Let Y be a smooth scheme over k and $X \to Y$ a separated morphism between schemes of finite type over k. Let $Z \subseteq X$ be a closed subscheme and $\mathcal{F} \in D_{ctf}(X, \Lambda)$ such that $X \setminus Z \to Y$ is universally locally acyclic relatively to $\mathcal{F}|_{X \setminus Z}$. Then the cohomological non-acyclicity class $\tilde{C}^Z_{X/Y/k}(\mathcal{F})$ is a class in $H^0_Z(X, \mathcal{K}_{X/Y/k})$, where $\mathcal{K}_{X/Y/k}$ sits in a distinguished triangle

(1.3.4)
$$\mathcal{K}_{X/Y} \to \mathcal{K}_{X/k} \to \mathcal{K}_{X/Y/k} \xrightarrow{+1} \cdot$$

In this paper, we construct the geometric counterpart of the non-acyclicity class $\tilde{C}_{X/Y/k}^Z(\mathcal{F})$. More precisely, when $X \to Y$ is a morphism between smooth schemes over k such that $X \to Y$ is $SS(\mathcal{F})$ -transversal outside Z, then we construct a class $cc_{X/Y/k}^Z(\mathcal{F}) \in CH_0(Z)$ (cf. (3.10.5)), called the geometric non-acyclicity class of \mathcal{F} . If moreover dim $Z < \dim Y$, then we have the following fibration formula (3.10.5)

(1.3.5)
$$cc_{X/k}(\mathcal{F}) = c_{\dim Y}(f^*\Omega^{1,\vee}_{Y/k}) \cap cc_{X/Y}(\mathcal{F}) + cc^Z_{X/Y/k}(\mathcal{F}).$$

Under certain conditions, we prove that the formation of the geometric non-acyclicity class $cc_{X/Y/k}^{Z}(\mathcal{F})$ is compatible with pullback (3.18.2) and proper push-forward (3.20.1). It also satisfies the Milnor formula (3.12.1) and a conductor formula (3.21.1). It is natural to expect the following conjecture holds:

Conjecture 1.4 (Conjecture 3.13). We have

(1.4.1)
$$\widetilde{C}^{Z}_{X/Y/k}(\mathcal{F}) = \widetilde{\mathrm{cl}}(cc^{Z}_{X/Y/k}(\mathcal{F})) \quad \text{in} \quad H^{0}_{Z}(X, \mathcal{K}_{X/Y/k})$$

where $\widetilde{\mathrm{cl}}: \mathrm{CH}_0(Z) \xrightarrow{\mathrm{cl}} H^0_Z(X, \mathcal{K}_{X/k}) \xrightarrow{(1.3.4)} H^0_Z(X, \mathcal{K}_{X/Y/k})$ and cl is the cycle class map.

We hope (1.4.1) gives a formulation of Question 1.2 in some sense.

Acknowledgments. The authors would like to thank Yigeng Zhao for the helpful discussion. This work was partially supported by the National Key R&D Program of China (Grant No.2021YFA1001400), NSFC Grant No.11901008 and NSFC Grant No.12271006. The first author is supported by Beijing Municipal Natural Science Foundation (Grant No.QY23005)

Notation and Conventions.

- (1) Let S be a Noetherian scheme and Sch_S the category of separated schemes of finite type over S.
- (2) Let Λ be a Noetherian ring such that $m\Lambda = 0$ for some integer *m* invertible on *S* unless otherwise stated explicitly.
- (3) For any scheme $X \in \operatorname{Sch}_S$, we denote by $D_{\operatorname{ctf}}(X, \Lambda)$ the derived category of complexes of Λ -modules of finite tor-dimension with constructible cohomology groups on X.
- (4) For any separated morphism $f: X \to Y$ in Sch_S, we use the following notation

$$\mathcal{K}_{X/Y} = Rf^!\Lambda, \quad D_{X/Y}(-) = R\mathcal{H}om(-,\mathcal{K}_{X/Y}).$$

- (5) For $\mathcal{F} \in D_{\mathrm{ctf}}(X, \Lambda)$ and $\mathcal{G} \in D_{\mathrm{ctf}}(Y, \Lambda)$ on S-schemes X and Y respectively, $\mathcal{F} \boxtimes_S^L \mathcal{G}$ denotes $\mathrm{pr}_1^* \mathcal{F} \otimes^L \mathrm{pr}_2^* \mathcal{G}$ on $X \times_S Y$.
- (6) To simplify our notation, we omit to write R or L to denote the derived functors unless otherwise stated explicitly or for RHom.

2. TRANSVERSALITY CONDITION

2.1. We recall the (cohomological) transversality condition introduced in [15, 2.1], which is a relative version of the transversality condition studied by Saito [11, Definition 8.5]. Consider the following cartesian diagram in Sch_S :

(2.1.1)
$$\begin{array}{c} X \xrightarrow{i} Y \\ p \downarrow & \Box & \downarrow f \\ W \xrightarrow{\delta} T. \end{array}$$

Let $\mathcal{F} \in D_{\mathrm{ctf}}(Y, \Lambda)$ and $\mathcal{G} \in D_{\mathrm{ctf}}(T, \Lambda)$. Let $c_{\delta, f, \mathcal{F}, \mathcal{G}}$ be the composition

$$(2.1.2) \begin{array}{c} c_{\delta,f,\mathcal{F},\mathcal{G}}: i^*\mathcal{F} \otimes^L p^* \delta^! \mathcal{G} \xrightarrow{id\otimes b.c} i^*\mathcal{F} \otimes^L i^! f^*\mathcal{G} \\ \xrightarrow{\operatorname{adj}} i^! i_! (i^*\mathcal{F} \otimes^L i^! f^*\mathcal{G}) \\ \xrightarrow{\operatorname{proj.formula}} i^! (\mathcal{F} \otimes^L i_! i^! f^*\mathcal{G}) \xrightarrow{\operatorname{adj}} i^! (\mathcal{F} \otimes^L f^*\mathcal{G}). \end{array}$$

We put $c_{\delta,f,\mathcal{F}} := c_{\delta,f,\mathcal{F},\Lambda} : i^*\mathcal{F} \otimes^L p^*\delta^!\Lambda \to i^!\mathcal{F}$. If $c_{\delta,f,\mathcal{F}}$ is an isomorphism, then we say that the morphism δ is \mathcal{F} -transversal. If $c_{i,\mathrm{id},\mathcal{F}}$ is an isomorphism, then we say i is \mathcal{F} -transversal.

By [15, 2.11], there is a functor $\delta^{\Delta} : D_{\text{ctf}}(Y, \Lambda) \to D_{\text{ctf}}(X, \Lambda)$ such that for any $\mathcal{F} \in D_{\text{ctf}}(Y, \Lambda)$, we have a distinguished triangle

(2.1.3)
$$i^* \mathcal{F} \otimes^L p^* \delta^! \Lambda \xrightarrow{c_{\delta,f,\mathcal{F}}} i^! \mathcal{F} \to \delta^\Delta \mathcal{F} \xrightarrow{+1}$$
.

Then δ is \mathcal{F} -transversal if and only if $\delta^{\Delta}(\mathcal{F})=0$ (cf. [15, Lemma 2.12]).

The following lemma gives an equivalence characterization between transversality condition and (universally) locally acyclicity condition.

Lemma 2.2. Let $f : X \to S$ be a morphism of finite type between Noetherian schemes and $\mathcal{F} \in D_{\text{ctf}}(X, \Lambda)$. The following conditions are equivalent:

- (1) The morphism f is locally acyclic relatively to \mathcal{F} .
- (2) The morphism f is universally locally acyclic relatively to \mathcal{F} .
- (3) For any $\mathcal{G} \in D_{\operatorname{ctf}}(X, \Lambda)$, the canonical map

$$(2.2.1) D_{X/S}(\mathcal{G}) \boxtimes^{L} \mathcal{F} \to R\mathcal{H}om_{X \times_{S} X}(\mathrm{pr}_{1}^{*}\mathcal{G}, \mathrm{pr}_{2}^{!}\mathcal{F})$$

is an isomorphism in $D_{\text{ctf}}(X \times_S X, \Lambda)$, where $\text{pr}_1 : X \times_S X \to X$ and $\text{pr}_2 : X \times_S X \to X$ are the projections.

(4) The canonical map

(2.2.2)
$$D_{X/S}(\mathcal{F}) \boxtimes^{L} \mathcal{F} \to R\mathcal{H}om_{X \times_{S} X}(\mathrm{pr}_{1}^{*}\mathcal{F}, \mathrm{pr}_{2}^{!}\mathcal{F})$$

is an isomorphism.

(5) For any cartesian diagram between Noetherian schemes

$$\begin{array}{c} Y \times_S X \xrightarrow{\operatorname{pr}_2} X \\ P^{r_1} \bigvee & \Box & \bigvee \\ Y \xrightarrow{\delta} S \end{array}$$

the morphism δ is \mathcal{F} -transversal.

- (6) For any cartesian diagram (2.2.3) and any $\mathcal{G} \in D_{\mathrm{ctf}}(S,\Lambda)$, the morphism $c_{\delta,f,\mathcal{F},\mathcal{G}}$ is an isomorphism.
- (7) For any cartesian diagram between Noetherian schemes

$$\begin{array}{c|c} Y \times_S X \xrightarrow{\operatorname{pr}_2} X' \longrightarrow X \\ & & \downarrow^{\operatorname{pr}_1} & \square & \downarrow^{f'} \square & \downarrow^f \\ & Y \xrightarrow{\delta} S' \longrightarrow S, \end{array}$$

the morphism δ is $\mathcal{F}|_{X'}$ -transversal.

(8) For any cartesian diagram (2.2.4) and any $\mathcal{G} \in D_{\mathrm{ctf}}(S', \Lambda)$, the morphism $c_{\delta, f', \mathcal{F}|_{X'}, \mathcal{G}}$ is an isomorphism.

When S is a scheme of finite type over a field k, then the equivalence between (2) and (7) follows from [15, Proposition 2.4.(2) and Proposition 2.5]. In this case, we may require Y and S' smooth over k in (7).

Proof. By a result of Gabber [9, Corollary 6.6], (1) and (2) are equivalent. The equivalence between (2),(3) and (4) follows from [10, Proposition 2.5, Lemma 2.14, Theorem 2.16]. By [15, Proposition 2.4.(2)], (2) implies (6). It is clear that (6) implies (5).

Now we show (5) implies (1). Since δ is \mathcal{F} -transversal, we have an isomorphism

(2.2.5)
$$\mathcal{K}_{Y/S} \boxtimes^L \mathcal{F} \xrightarrow{\simeq} \operatorname{pr}_2^! \mathcal{F}.$$

By the projection formula, for any proper morphism $g: Y' \to Y$, the following canonical morphism

(2.2.6)
$$g_!g^!\mathcal{K}_{Y/S}\boxtimes^L \mathcal{F} \xrightarrow{\simeq} (g \times \mathrm{id})_!(g^!\mathcal{K}_{Y/S}\boxtimes^L \mathcal{F})$$

is an isomorphism. If $g: Y' \to Y$ is an open immersion with closed complementary $\tau: Z = Y \setminus Y' \to Y$, we have a commutative diagram between distinguished triangles

$$(2.2.7) \qquad \begin{array}{c} \tau_{!}\tau^{!}\mathcal{K}_{Y/S}\boxtimes^{L}\mathcal{F} \longrightarrow \mathcal{K}_{Y/S}\boxtimes^{L}\mathcal{F} \longrightarrow g_{*}g^{*}\mathcal{K}_{Y/S}\boxtimes^{L}\mathcal{F} \longrightarrow \stackrel{+1}{\longrightarrow} \\ (2.2.6) \downarrow^{\simeq} & \downarrow^{\simeq} & \downarrow^{\simeq} \\ (2.2.7) \qquad (\tau \times \mathrm{id})_{!}(\tau^{!}\mathcal{K}_{Y/S}\boxtimes^{L}\mathcal{F}) \longrightarrow \mathcal{K}_{Y/S}\boxtimes^{L}\mathcal{F} \longrightarrow (g \times \mathrm{id})_{*}(g^{*}\mathcal{K}_{Y/S}\boxtimes^{L}\mathcal{F}) \\ (2.2.5) \downarrow^{\simeq} & \downarrow^{\simeq} \\ (\tau \times \mathrm{id})_{!}(\tau \times \mathrm{id})^{!}(\mathcal{K}_{Y/S}\boxtimes^{L}\mathcal{F}) \longrightarrow \mathcal{K}_{Y/S}\boxtimes^{L}\mathcal{F} \longrightarrow (g \times \mathrm{id})_{*}(g \times \mathrm{id})^{*}(\mathcal{K}_{Y/S}\boxtimes^{L}\mathcal{F}) \xrightarrow{+1} \end{array}$$

(

Thus

(2.2.8)
$$g_*g^*\mathcal{K}_{Y/S}\boxtimes^L \mathcal{F} \to (g \times \mathrm{id})_*(g^*\mathcal{K}_{Y/S}\boxtimes^L \mathcal{F})$$

is an isomorphism. Now we show that for any $\mathcal{H} \in D_{\mathrm{ctf}}(Y, \Lambda)$, the canonical morphism

(2.2.9)
$$D_{Y/S}(\mathcal{H}) \boxtimes^L \mathcal{F} \to R\mathcal{H}om(\mathrm{pr}_1^*\mathcal{H}, \mathrm{pr}_2^!\mathcal{F})$$

is an isomorphism. We may assume $\mathcal{H} = j_! \Lambda$ for $j : U \to Y$ étale with U affine. Then (2.2.9) is equivalent to the following composition

(2.2.10)
$$j_*j^*\mathcal{K}_{Y/S} \boxtimes^L \mathcal{F} \to (j \times \mathrm{id})_*(j^*\mathcal{K}_{Y/S} \boxtimes^L \mathcal{F}) \xrightarrow{(2.2.5)} (j \times \mathrm{id})_*(j \times \mathrm{id})^*\mathrm{pr}_2^!\mathcal{F}.$$

We show $j_*j^*\mathcal{K}_{Y/S} \boxtimes \mathcal{F} \to (j \times \mathrm{id})_*(j^*\mathcal{K}_{Y/S} \boxtimes \mathcal{F})$ is an isomorphism. We write j as a composition of a proper morphism and an open immersion. Then we may further assume that j is an open immersion. This is okay by (2.2.8). Thus (2.2.9) is an isomorphism. By [10, Theorem 2.16], the morphism $f: X \to S$ is (universally) locally acyclic relatively to \mathcal{F} .

We show (2) implies (8). By assumption, f' is also universally locally acyclic relatively to $\mathcal{F}|_{X'}$. Thus by (6), the morphism $c_{\delta,f',\mathcal{F}|_{X'},\mathcal{G}}$ is an isomorphism.

Finally, it is clear that (8) implies (7) and (7) implies (5).

2.3. Now we recall the geometric transversality condition (cf. [1, 1.2] and [11, Definition 7.1 and Definition 5.3]). Let X be a smooth scheme over a field k. Let C be a conical closed subset of T^*X , i.e., a closed subset which is stable under the action of the multiplicative group \mathbb{G}_m . We denote by $T^*_X X \subseteq T^*X$ the zero section of the cotangent bundle T^*X of X.

- (1) Let $h: W \to X$ be a morphism from a smooth scheme W over k. We say that h is C-transversal if the fiber $(C \times_X W) \cap dh^{-1}(T^*_W W)$ is contained in the zero-section $T^*_X X \times_X W \subseteq T^*X \times_X W$, where $dh: T^*X \times_X W \to T^*W$ is the canonical map.
- (2) Assume that X and C are purely of dimension d and that W is purely of dimension m. We say that a C-transversal map $h: W \to X$ is properly C-transversal if every irreducible component of $C \times_X W$ is of dimension m.
- (3) We say that a morphism $f: X \to Y$ to a smooth scheme Y over k is C-transversal if the inverse image $df^{-1}(C)$ is contained in the zero-section $T_Y^*Y \times_Y X \subseteq T^*Y \times_Y X$, where $df: T^*Y \times_Y X \to T^*X$ is the canonical map.

The cohomological transversality condition and geometric transversality condition are related as follows. Let X be a smooth scheme of purely dimension d and Λ a finite local ring such that the characteristic ℓ of the residue field of Λ is invertible in k. Let $\mathcal{F} \in D_{\text{ctf}}(X, \Lambda)$. The singular support $SS(\mathcal{F})$ defined by Beilinson [1] is a d-dimensional conical closed subset of T^*X . We have the following properties:

- (1) $SS(\mathcal{F}) \cap T_X^*X = \operatorname{supp}(\mathcal{F}).$
- (2) Let $f: X \to Y$ be a morphism to a smooth scheme Y over k. If f is $SS(\mathcal{F})$ -transversal, then f is universally locally acyclic relatively to \mathcal{F} .
- (3) Let $f: W \to X$ be a morphism from a smooth scheme W over k. If f is $SS(\mathcal{F})$ -transversal, then f is \mathcal{F} -transversal.

Now assume k is a perfect field. By [11, Theorem 5.9 and Theorem 5.19], the characteristic cycle $CC(\mathcal{F})$ is the unique d-cycle $CC(\mathcal{F})$ supported on $SS(\mathcal{F})$ with \mathbb{Z} -coefficients such that $CC(\mathcal{F})$ satisfies the Milnor formula (1.1.2) for \mathcal{F} .

JIANGNAN XIONG AND ENLIN YANG

3. Geometric non-acyclicity classes

3.1. Let S be a Noetherian scheme and Λ a Noetherian ring such that $m\Lambda = 0$ for some integer m invertible on S. Consider the following cartesian diagram in Sch_S

$$(3.1.1) \qquad \begin{array}{c} X \times_S Y \xrightarrow{\operatorname{pr}_1} X \\ p_{r_2} \bigvee & \Box & \bigvee h \\ Y \xrightarrow{g} S, \end{array}$$

where pr_1 and pr_2 are the projections. For any $\mathcal{F} \in D_{ctf}(X, \Lambda)$ and $\mathcal{G} \in D_{ctf}(Y, \Lambda)$, we have canonical morphisms

(3.1.2)
$$\mathcal{F} \boxtimes_{S}^{L} \mathcal{K}_{Y/S} = \mathrm{pr}_{1}^{*} \mathcal{F} \otimes^{L} \mathrm{pr}_{2}^{*} g^{!} \Lambda \xrightarrow{c_{g,h,\mathcal{F}}} \mathrm{pr}_{1}^{!} \mathcal{F},$$

(3.1.3)
$$\mathcal{F} \boxtimes_{S}^{L} D_{Y/S}(\mathcal{G}) \to R\mathcal{H}om_{X \times_{S} Y}(\mathrm{pr}_{2}^{*}\mathcal{G}, \mathrm{pr}_{1}^{!}\mathcal{F}),$$

where (3.1.3) is adjoint to

(3.1.4)
$$\mathcal{F} \boxtimes_{S}^{L} (D_{Y/S}(\mathcal{G}) \otimes^{L} \mathcal{G}) \xrightarrow{id \boxtimes e_{Y}} \mathcal{F} \boxtimes_{S}^{L} \mathcal{K}_{Y/S} \xrightarrow{(3.1.2)} \operatorname{pr}_{1}^{!} \mathcal{F}.$$

Note that (3.1.2) is a special case of (3.1.3) by taking $\mathcal{G} = \Lambda$. If moreover $X \to S$ is universally locally acyclic relatively to \mathcal{F} , then (3.1.3) is an isomorphism by (2.2.9). For a morphism $c = (c_1, c_2) : C \to X \times_S Y$, we have a canonical isomorphism by [3, Corollaire 3.1.12.2]

(3.1.5)
$$R\mathcal{H}om(c_2^*\mathcal{G}, c_1^!\mathcal{F}) \xrightarrow{\simeq} c^! R\mathcal{H}om(\mathrm{pr}_2^*\mathcal{G}, \mathrm{pr}_1^!\mathcal{F})$$

3.2. Consider a commutative diagram in Sch_S :

where $\tau : Z \to X$ is a closed immersion and g is a smooth morphism. Let $i : X \times_Y X \to X \times_S X$ be the base change of the diagonal morphism $\delta : Y \to Y \times_S Y$:

$$(3.2.2) \qquad \qquad \begin{array}{c} X = & X \\ & & & & \\ & & & \\ f \begin{pmatrix} \lambda_1 \\ & &$$

where δ_0 and δ_1 are the diagonal morphisms. Put $\mathcal{K}_{X/Y/S} := \delta^{\Delta} \mathcal{K}_{X/S} \simeq \delta_1^* \delta^{\Delta} \delta_{0*} \mathcal{K}_{X/S}$. By (2.1.3), we have the following distinguished triangle (see also [15, (4.2.5)])

(3.2.3)
$$\mathcal{K}_{X/Y} \to \mathcal{K}_{X/S} \to \mathcal{K}_{X/Y/S} \xrightarrow{+1}$$

Let $\mathcal{F} \in D_{\mathrm{ctf}}(X, \Lambda)$ such that $X \setminus Z \to Y$ is universally locally acyclic relatively to $\mathcal{F}|_{X \setminus Z}$ and that $h: X \to S$ is universally locally acyclic relatively to \mathcal{F} . We put

(3.2.4)
$$\mathcal{H}_S = R\mathcal{H}om_{X \times_S X}(\mathrm{pr}_2^*\mathcal{F}, \mathrm{pr}_1^!\mathcal{F}), \qquad \mathcal{T}_S = \mathcal{F} \boxtimes_S^L D_{X/S}(\mathcal{F}).$$

The relative cohomological characteristic class $C_{X/S}(\mathcal{F})$ is the composition (cf. [15, 3.1])

(3.2.5)
$$\Lambda \xrightarrow{\mathrm{id}} R\mathcal{H}om(\mathcal{F}, \mathcal{F}) \xrightarrow{(3.1.5)}{\simeq} \delta_0^! \mathcal{H}_S \xleftarrow{(3.1.3)}{\simeq} \delta_0^! \mathcal{T}_S \to \delta_0^* \mathcal{T}_S \xrightarrow{\mathrm{ev}} \mathcal{K}_{X/S}.$$

By the assumption on \mathcal{F} , $\delta_1^* \delta^{\Delta} \mathcal{T}_S$ is supported on Z by [15, 4.4]. The non-acyclicity class $\widetilde{C}^Z_{X/Y/S}(\mathcal{F})$ is the composition (cf. [15, Definition 4.6])

$$(3.2.6) \qquad \Lambda \to \delta_0^! \mathcal{H}_S \stackrel{\simeq}{\leftarrow} \delta_0^! \mathcal{T}_S \simeq \delta_1^! i^! \mathcal{T}_S \to \delta_1^* i^! \mathcal{T}_S \to \delta_1^* \delta^{\Delta} \mathcal{T}_S \stackrel{\simeq}{\leftarrow} \tau_* \tau^! \delta_1^* \delta^{\Delta} \mathcal{T}_S \to \tau_* \tau^! \mathcal{K}_{X/Y/S}.$$
If the following condition holds:

If the following condition holds:

(3.2.7)
$$H^0(Z, \mathcal{K}_{Z/Y}) = 0 \text{ and } H^1(Z, \mathcal{K}_{Z/Y}) = 0$$

then the map $H^0_Z(X, \mathcal{K}_{X/S}) \xrightarrow{(3.2.3)} H^0_Z(X, \mathcal{K}_{X/Y/S})$ is an isomorphism. In this case, the class $\widetilde{C}^Z_{X/Y/S}(\mathcal{F}) \in H^0_Z(X, \mathcal{K}_{X/Y/S})$ defines an element of $H^0_Z(X, \mathcal{K}_{X/S})$, which is denoted by $C^Z_{X/Y/S}(\mathcal{F})$. Now we summarize the functorial properties for the non-acyclicity classes (cf. [15, Theorem 1.9, Proposition 1.11, Theorem 1.12, Theorem 1.14]).

Proposition 3.3. Let us denote the diagram (3.2.1) simply by $\Delta = \Delta_{X/Y/S}^Z$ and $\widetilde{C}_{X/Y/S}^Z(\mathcal{F})$ by $C_{\Delta}(\mathcal{F})$. Let $\mathcal{F} \in D_{\text{ctf}}(X, \Lambda)$. Assume that $Y \to S$ is smooth, $X \setminus Z \to Y$ is universally locally acyclic relatively to $\mathcal{F}|_{X \setminus Z}$ and that $X \to S$ is universally locally acyclic relatively to \mathcal{F} .

(1) (Fibration formula) If $H^0(Z, \mathcal{K}_{Z/Y}) = H^1(Z, \mathcal{K}_{Z/Y}) = 0$, then we have

(3.3.1)
$$C_{X/S}(\mathcal{F}) = c_r(f^*\Omega_{Y/S}^{1,\vee}) \cap C_{X/Y}(\mathcal{F}) + C_{\Delta}(\mathcal{F}) \quad \text{in} \quad H^0(X, \mathcal{K}_{X/S}).$$

(2) (Pull-back) Let $b: S' \to S$ be a morphism of Noetherian schemes. Let $\Delta' = \Delta_{X'/Y'/S'}^{Z'}$ be the base change of $\Delta = \Delta_{X/Y/S}^{Z}$ by $b: S' \to S$. Let $b_X: X' = X \times_S S' \to X$ be the base change of b by $X \to S$. Then we have

(3.3.2)
$$b_X^* C_\Delta(\mathcal{F}) = C_{\Delta'}(b_X^* \mathcal{F}) \quad \text{in} \quad H^0_{Z'}(X', \mathcal{K}_{X'/Y'/S'})$$

where $b_X^*: H^0_Z(X, \mathcal{K}_{X/Y/S}) \to H^0_{Z'}(X', \mathcal{K}_{X'/Y'/S'})$ is the induced pull-back morphism.

(3) (Proper push-forward) Consider a diagram $\Delta' = \Delta_{X'/Y/S}^{Z'}$. Let $s : X \to X'$ be a proper morphism over Y such that $Z \subseteq s^{-1}(Z')$. Then we have

(3.3.3)
$$s_*(C_\Delta(\mathcal{F})) = C_{\Delta'}(Rs_*\mathcal{F}) \quad \text{in} \quad H^0_{Z'}(X', \mathcal{K}_{X'/Y/S}),$$

where $s_*: H^0_Z(X, \mathcal{K}_{X/Y/S}) \to H^0_{Z'}(X', \mathcal{K}_{X'/Y/S})$ is the induced push-forward morphism.

(4) (Cohomological Milnor formula) Assume S = Speck for a perfect field k of characteristic p > 0 and Λ is a finite local ring such that the characteristic of the residue field is invertible in k. If $Z = \{x\}$, then we have

(3.3.4)
$$C_{\Delta}(\mathcal{F}) = -\operatorname{dim}\operatorname{tot} R\Phi_{\bar{x}}(\mathcal{F}, f) \quad \text{in} \quad \Lambda = H^0_x(X, \mathcal{K}_{X/k}),$$

where $R\Phi(\mathcal{F}, f)$ is the complex of vanishing cycles and dimtot = dim + Sw is the total dimension.

(5) (Cohomological conductor formula) Assume S = Speck for a perfect field k of characteristic p > 0 and Λ is a finite local ring such that the characteristic of the residue field is invertible in k. If Y is a smooth connected curve over k and $Z = f^{-1}(y)$ for a closed point $y \in |Y|$, then we have

$$f_*C_\Delta(\mathcal{F}) = -a_y(Rf_*\mathcal{F})$$
 in $\Lambda = H_y^0(Y, \mathcal{K}_{Y/k}),$

where $a_y(\mathcal{G}) = \operatorname{rank} \mathcal{G}|_{\bar{\eta}} - \operatorname{rank} \mathcal{G}_{\bar{y}} + \operatorname{Sw}_y \mathcal{G}$ is the Artin conductor of an object $\mathcal{G} \in D_{\operatorname{ctf}}(Y, \Lambda)$ at y and η is the generic point of Y. The formation of non-acyclicity classes is also compatible with specialization maps (cf. [15, Proposition 4.17]).

3.4. Let X be a smooth connected curve over k. Let $\mathcal{F} \in D_{\mathrm{ctf}}(X, \Lambda)$ and $Z \subseteq X$ be a finite set of closed points such that the cohomology sheaves of $\mathcal{F}|_{X\setminus Z}$ are locally constant. By the cohomological Milnor formula (3.3.4), we have the following (motivic) expression for the Artin conductor of \mathcal{F} at $x \in Z$

(3.4.1)
$$a_x(\mathcal{F}) = \operatorname{dimtot} R\Phi_{\bar{x}}(\mathcal{F}, \operatorname{id}) = -C_{U/U/k}^{\{x\}}(\mathcal{F}|_U),$$

where U is any open subscheme of X such that $U \cap Z = \{x\}$. By (3.3.1), we get the following cohomological Grothendieck-Ogg-Shafarevich formula (cf. [15, Corollary 6.6]):

(3.4.2)
$$C_{X/k}(\mathcal{F}) = \operatorname{rank} \mathcal{F} \cdot c_1(\Omega^{1,\vee}_{X/k}) - \sum_{x \in \mathbb{Z}} a_x(\mathcal{F}) \cdot [x] \quad \text{in} \quad H^0(X, \mathcal{K}_{X/k}).$$

Here we give a new proof of (3.4.1) by using Gabber-Katz extension (cf. [8]). For simplicity, we assume $Z = \{x\}$ and k is algebraically closed. Since the formation $C_{X/X/k}^{\{x\}}(\mathcal{F})$ is etale local around x, we may assume there is an etale morphism $f : X \to \mathbb{P}_k^1$ such that $f(x) = \infty$. Let \mathcal{G} be the Gabber-Katz extension of $\mathcal{F}|_{X(\bar{x})}$ to \mathbb{G}_m . Then \mathcal{G} is smooth on \mathbb{G}_m , tamely ramified at $0 \in \mathbb{A}_k^1$ and $\mathcal{G}|_{X(\bar{x})} \simeq \mathcal{F}|_{X(\bar{x})}$. Let $A = \mathbb{P}_k^1 \setminus \{0\}$. We have $C_{X/X/k}^{\{x\}}(\mathcal{F}) = C_{A/A/k}^{\{\infty\}}(\mathcal{G})$. By the formula (3.3.1) and the Grothendieck-Ogg-Shafarevich formula for \mathbb{P}^1 , we get

(3.4.3)
$$-C^{\{\infty\}}_{A/A/k}(\mathcal{G}) - C^{\{0\}}_{\mathbb{A}^1_k/\mathbb{A}^1_k/\mathbb{A}^1_k/\mathbb{A}^1}(\mathcal{G}) = a_{\infty}(\mathcal{G}) + a_0(\mathcal{G}).$$

We only need to show: $-C_{\mathbb{A}^1_k/\mathbb{A}^1_k/\mathbb{A}^1_k}^{\{0\}}(\mathcal{G}) = a_0(\mathcal{G})$. Replacing \mathcal{G} by the Gabber-Katz extension of $\mathcal{G}|_{\mathbb{A}^1_{k,(\bar{0})}}$, we may assume \mathcal{G} is a smooth sheaf on \mathbb{G}_m such that \mathcal{G} is tamely ramified at 0 and ∞ . We may further assume $\mathcal{G}_{\bar{0}} = \mathcal{G}_{\bar{\infty}} = 0$. By the formula (3.3.1) and the Grothendieck-Ogg-Shafarevich formula for \mathbb{P}^1 , we get

(3.4.4)
$$-2C^{\{0\}}_{\mathbb{A}^1_k/\mathbb{A}^1_k/\mathbb{A}^1_k/\mathbb{G}}(\mathcal{G}) = 2a_0(\mathcal{G}) = 2\mathrm{rank}\mathcal{G},$$

which implies $-C^{\{0\}}_{\mathbb{A}^1_k/\mathbb{A}^1_k/k}(\mathcal{G}) = a_0(\mathcal{G}) = \operatorname{rank}\mathcal{G}$. This finishes the proof of (3.4.2).

3.5. Now we start to construct and prove a geometric counterpart of Proposition 3.3. Let k be a perfect field of characteristic p and Λ be a finite local ring whose residue field is of characteristic $\ell \neq p$. Let Sm_k be the category of smooth schemes over k. Let S be a smooth connected scheme of dimension s over k. Let $f: X \to S$ be a morphism in Sm_k . Let $\mathcal{F} \in D_{\operatorname{ctf}}(X, \Lambda)$ such that f is $SS(\mathcal{F})$ -transversal. Consider the following morphisms

$$(3.5.1) X \xrightarrow{0} T^*S \times_S X \xrightarrow{df} T^*X,$$

where 0 stands for the zero section. By assumption, $df^{-1}(SS(\mathcal{F}))$ is contained in 0(X). We define the relative characteristic class of \mathcal{F} to be the following s-cycle class on X:

(3.5.2)
$$cc_{X/S}(\mathcal{F}) := (-1)^s \cdot (df)^! (CC(\mathcal{F})) \quad \text{in} \quad CH_s(X),$$

where $(df)^!$ is the refined Gysin pullback. We don't know how to define $cc_{X/S}(\mathcal{F})$ if one only assume f is universally locally acyclic relatively to \mathcal{F} . When f is a smooth morphism, then we have

a cartesian diagram

(3.5.3)

In this case, we have $cc_{X/S}(\mathcal{F}) = (-1)^s \cdot 0^!_{X/S}(CC(\mathcal{F}))$ (cf. [14, Definition 2.11]). If f is a smooth morphism of relative dimension r and if \mathcal{F} is locally constant, then we have

$$(3.5.4) cc_{X/S}(\mathcal{F}) = (-1)^s \cdot 0^!_{X/S}((-1)^{\dim X} \cdot \operatorname{rank} \mathcal{F} \cdot [X]) = \operatorname{rank} \mathcal{F} \cdot c_r(\Omega^{1,\vee}_{X/S}) \cap [X]$$

We propose the following conjecture:

Conjecture 3.6. Let S be a smooth connected scheme of dimension s over k. Let $f : X \to S$ be a morphism in Sm_k . Let $\mathcal{F} \in D_{\text{ctf}}(X, \Lambda)$ such that f is $SS(\mathcal{F})$ -transversal. Then we have

(3.6.1)
$$\operatorname{cl}(cc_{X/S}(\mathcal{F})) = C_{X/S}(\mathcal{F}) \quad \text{in} \quad H^0(X, \mathcal{K}_{X/S}),$$

where $cl: CH_s(X) \to H^0(X, \mathcal{K}_{X/S})$ is the cycle class map.

When S = Speck, then it is Saito's conjecture [11, Conjecture 6.8.1], which is proved under quasi-projective assumption in [15, Theorem 1.3]. When $f: X \to S$ is a smooth morphism, then (3.6.1) is true for a locally constant constructible (flat) sheaf \mathcal{F} of Λ -modules. Indeed, this follows from (3.5.4), [15, Lemma 3.3] and (3.3.1).

Question 3.7. How to define a relative cycle class map from groups of relative cycle classes to $H^0(X, \mathcal{K}_{X/S})$? It is interesting to see whether $cc_{X/S}(\mathcal{F})$ is a relative cycle class over S. Is there a canonical way to lift $cc_{X/S}(\mathcal{F})$ to a relative cycle (other than a class)?

3.8. Consider a commutative diagram in Sm_k :

$$(3.8.1) \qquad \qquad Z \xrightarrow{f} Y$$

where $\tau : Z \to X$ is a closed immersion, g is a smooth morphism of relative dimension r and $s = \dim S$. Let $\mathcal{F} \in D_{\mathrm{ctf}}(X, \Lambda)$ such that $X \setminus Z \to Y$ is $SS(\mathcal{F}|_{X \setminus Z})$ -transversal and that $X \to S$ is $SS(\mathcal{F})$ -transversal. We have a commutative diagram on vector bundles

$$(3.8.2) \begin{array}{c} X = & X \\ \downarrow & \Box & \downarrow^{0} \\ T^*S \times_S X \xrightarrow{dg_X} T^*Y \times_Y X \xrightarrow{df} T^*X \\ \downarrow & \Box & \downarrow \\ T^*S \times_S Y \xrightarrow{dg} T^*Y \\ \downarrow & \Box & \downarrow \\ Y \xrightarrow{0} T^*(Y/S), \end{array}$$

where dg_X is the base change of dg. By assumption, $df^{-1}(SS(\mathcal{F}))$ is supported on $0(X) \cup T^*Y \times_Y Z$ and $dh^{-1}(SS(\mathcal{F})) = dg_X^{-1}df^{-1}(SS(\mathcal{F}))$ is contained in the zero section $0(X) \subseteq T^*S \times_S X$. Consider the following class on $df^{-1}(SS(\mathcal{F})) \cap (T^*Y \times_Y Z)$

(3.8.3)
$$df^!(CC(\mathcal{F}))|_{T^*Y\times_YZ} := ((T^*Y\times_YX)\cdot CC(\mathcal{F}))^{df^{-1}(SS(\mathcal{F}))\cap(T^*Y\times_YZ)},$$

which is the part of $df^!(CC(\mathcal{F}))$ supported on $df^{-1}(SS(\mathcal{F})) \cap (T^*Y \times_Y Z)$ (cf. [6, P.95]). We define the geometric non-acyclicity class $cc^Z_{X/Y/S}(\mathcal{F})$ of \mathcal{F} to be

(3.8.4)
$$cc_{X/Y/S}^{Z}(\mathcal{F}) := (-1)^{s} \cdot dg_{X}^{!}(df^{!}(CC(\mathcal{F}))|_{T^{*}Y \times_{Y}Z}) \quad \text{in} \quad CH_{s}(Z).$$

Remark 3.9. If Z = X, then $cc^{Z}_{X/Y/S}(\mathcal{F}) = cc_{X/S}(\mathcal{F})$.

3.10. Assume moreover that $\dim Z < r + s$. Then the restriction map $\operatorname{CH}_{r+s}(X) \xrightarrow{\simeq} \operatorname{CH}_{r+s}(X \setminus Z)$ is an isomorphism. In this case, we define the relative characteristic class $cc_{X/Y}(\mathcal{F})$ to be

(3.10.1)
$$cc_{X/Y}(\mathcal{F}) := cc_{X\setminus Z/Y}(\mathcal{F}|_{X\setminus Z}) \quad \text{in} \quad \mathrm{CH}_{r+s}(X),$$

which is also equal to $(-1)^{r+s} \cdot ((T^*Y \times_Y X) \cdot CC(\mathcal{F}))^{0(X)}$, which is the part of $(-1)^{r+s} \cdot df^! CC(\mathcal{F})$ supported on 0(X). Then we have

(3.10.2)
$$(-1)^s \cdot df^! (CC(\mathcal{F})) = (-1)^r \cdot cc_{X/Y}(\mathcal{F}) + (-1)^s \cdot df^! (CC(\mathcal{F}))|_{T^*Y \times_Y Z}.$$

Applying $dg_X^!$ to the above formula, we get

(3.10.3)
$$cc_{X/S}(\mathcal{F}) = (-1)^r \cdot dg_X^! cc_{X/Y}(\mathcal{F}) + cc_{X/Y/S}^Z(\mathcal{F}) \quad \text{in } CH_s(X).$$

By the excess intersection formula [6, Theorem 6.3], we have

(3.10.4)
$$(-1)^r \cdot dg_X^! cc_{X/Y}(\mathcal{F}) = c_r(f^* \Omega_{Y/S}^{1,\vee}) \cap cc_{X/Y}(\mathcal{F}).$$

Thus if $\dim Z < r + s$, then we have

(3.10.5)
$$cc_{X/S}(\mathcal{F}) = c_r(f^*\Omega^{1,\vee}_{Y/S}) \cap cc_{X/Y}(\mathcal{F}) + cc^Z_{X/Y/S}(\mathcal{F}).$$

In particular, if Z is empty, then we have

(3.10.6)
$$cc_{X/S}(\mathcal{F}) = c_r(f^*\Omega^{1,\vee}_{Y/S}) \cap cc_{X/Y}(\mathcal{F})$$

Remark 3.11. Assume that $X \to S$ is smooth of relative dimension r and that $X \setminus Z \to Y$ is smooth of relative dimension n (n < r). Then $\Omega^1_{X/Y}$ is locally free of rank n on $X \setminus Z$ and we have the localized Chern classes $c_{i,Z}^X(\Omega^1_{X/Y})$ for i > n (cf. [2, Section 1]). By [12, Lemma 2.1.4], we have

(3.11.1)
$$cc_{X/Y/S}^{Z}(\Lambda) = (-1)^{r}c_{r,Z}^{X}(\Omega_{X/Y}^{1}) \cap [X] \quad \text{in} \quad \mathrm{CH}_{s}(Z).$$

Theorem 3.12 (Saito's Milnor formula). Assume S = Speck. Let X be a smooth scheme over S and $f: X \to Y = \mathbb{A}^1_k$ a separated morphism. Let x be a closed point of X and $Z = \{x\}$. Let $\mathcal{F} \in D_{\text{ctf}}(X, \Lambda)$ such that f is $SS(\mathcal{F})$ -transversal outside Z. Then we have

(3.12.1)
$$cc_{X/Y/S}^{Z}(\mathcal{F}) = -\operatorname{dim}\operatorname{tot} R\Phi_{\bar{x}}(\mathcal{F}, f) \quad \text{in} \quad \mathbb{Z} = \operatorname{CH}_{0}(\{x\}).$$

Proof. By [13, (3.4.5.4)-(3.4.5.5)], we have $cc_{X/Y/S}^{Z}(\mathcal{F}) = (CC(\mathcal{F}), df)_{T^*X,x} \cdot [x]$. Now the result follows from Saito's Milnor formula [11, Theorem 5.9].

We expect the following Milnor type formula for non-isolated singular/characteristic points holds.

Conjecture 3.13. Let S be a smooth connected k-scheme of dimension s. Consider the commutative diagram (3.8.1). Let $\mathcal{F} \in D_{ctf}(X, \Lambda)$ such that $X \setminus Z \to Y$ is $SS(\mathcal{F}|_{X \setminus Z})$ -transversal and that $X \to S$ is $SS(\mathcal{F})$ -transversal. Then we have an equality

(3.13.1)
$$\widetilde{C}_{X/Y/S}^{Z}(\mathcal{F}) = \widetilde{\operatorname{cl}}(cc_{X/Y/S}^{Z}(\mathcal{F})) \quad \text{in} \quad H_{Z}^{0}(X, \mathcal{K}_{X/Y/S}),$$

where \widetilde{cl} is the composition $CH_s(Z) \xrightarrow{cl} H^0_Z(X, \mathcal{K}_{X/S}) \xrightarrow{(3.2.3)} H^0_Z(X, \mathcal{K}_{X/Y/S}).$

When S = Speck, $Y = \mathbb{A}_k^1$ and $Z = \{x\}$, then Conjecture 3.13 follows from Saito's Milnor formula (3.12.1) and the cohomological Milnor formula (3.3.4).

When Z = X, then $\widetilde{C}^{Z}_{X/Y/S}(\mathcal{F}) = C_{X/S}(\mathcal{F})$ in $H^{0}(X, \mathcal{K}_{X/Y/S})$ and $cc^{Z}_{X/Y/S}(\mathcal{F}) = cc_{X/S}(\mathcal{F})$ in $CH_{s}(X)$. In this case, (3.13.1) is a weak version of Conjecture 3.6.

Remark 3.14. Let $f : X \to Y$ be a separated morphism between smooth schemes over k. Let $Z \subseteq X$ be a closed subset and $\mathcal{F} \in D_{ctf}(X, \Lambda)$. Assume that f is universally locally acyclicity outside Z. Let $n = \dim X$. We expect that there is a *n*-cycle $CC_{X/Y}^{Z}(\mathcal{F})$ supported on $T^*X \times_X Z$ such that

(3.14.1)
$$\operatorname{cl}(0_X^! CC_{X/Y}^Z(\mathcal{F})) = \widetilde{C}_{X/Y/k}^Z(\mathcal{F}) \quad \text{in} \quad H_Z^0(X, \mathcal{K}_{X/Y/k}).$$

If Y is a smooth curve and Z is a finite set of closed points of X, then

(3.14.2)
$$CC_{X/Y}^{Z}(\mathcal{F}) = -\sum_{x \in Z} \operatorname{dimtot} R\Phi_{\bar{x}}(\mathcal{F}, f) \cdot [T_{x}^{*}X].$$

If f = id and Z is the smallest closed subset of X such that $\mathcal{F}|_{X \setminus Z}$ is smooth, then

(3.14.3)
$$CC_{X/Y}^{Z}(\mathcal{F}) = CC(\mathcal{F}) - \operatorname{rank}\mathcal{F} \cdot CC(\Lambda).$$

In order to construct $CC_{X/Y}^Z(\mathcal{F})$, we will introduce f-singular support (singular support with respect to a morphism $f : X \to Y$). When f is the identity morphism, then id-singular support is the singular support defined by Beilinson [1]. We expect the f-singular support is exist under suitable conditions and the non-acyclicity cycle $CC_{X/Y}^Z(\mathcal{F})$ is a cycle supported on the f-singular support. Details will appear in the near future.

Proposition 3.15. Consider a cartesian diagram in Sm_k

We assume that f and f' are smooth morphisms, and S and S' are connected of dimension s and s' respectively. Let $\mathcal{F} \in D_{ctf}(X, \Lambda)$. Assume that $X \to S$ is $SS(\mathcal{F})$ -transversal and i is properly $SS(\mathcal{F})$ -transversal. Then we have

(3.15.2)
$$i^! cc_{X/S}(\mathcal{F}) = cc_{X'/S'}(i^*\mathcal{F}) \text{ in } CH_{s'}(X'),$$

where $i^!: CH_s(X) \to CH_{s'}(X')$ is the refined Gysin pull-back.

Since f is $SS(\mathcal{F})$ -transversal, the morphism i is $SS(\mathcal{F})$ -transversal. We don't know how to remove the properly assumption on i.

Proof. We consider the following diagram

Note that the square containing the morphisms di and $d\delta$ is cartesian. In the following calculations, even though di and $d\delta$ are not proper, but we can still applying di_* and $d\delta_*$ since di is finite on the support of $\mathrm{pr}^{-1}(SS\mathcal{F})$ and $d\delta$ is finite on the zero section X' of $T^*S \times_S X'$. We have

$$cc_{X'/S'}(i^{*}\mathcal{F}) = (-1)^{s'} \cdot 0^{!}_{X'/S'}CC(i^{*}\mathcal{F})$$

$$\stackrel{(a)}{=} (-1)^{s'} \cdot 0^{!}_{X'/S'}(di_{*}\mathrm{pr}^{!}CC(\mathcal{F}) \cdot (-1)^{-\dim(X')+\dim(X)})$$

$$= d\delta_{*}0^{!}_{X'/S'}\mathrm{pr}^{!}CC(\mathcal{F}) \cdot (-1)^{s'-\dim(X')+\dim(X)}$$

$$\stackrel{(b)}{=} 0^{!}_{X'/S'}\mathrm{pr}^{!}CC(\mathcal{F}) \cdot (-1)^{s} = 0^{!}_{X/S}\mathrm{pr}^{!}CC(\mathcal{F}) \cdot (-1)^{s}$$

$$= i^{!}(0^{!}_{X/S}CC(\mathcal{F}) \cdot (-1)^{s}) = i^{!}cc_{X/S}(\mathcal{F}).$$

where (a) follows from [11, Theorem 7.6] and (b) follows from the fact that $0^!_{X'/S'} \operatorname{pr}^! CC(\mathcal{F})$ is supported on the zero section of $T^*S \times_S X'$.

3.16. Consider a commutative diagram in Sm_k :

Let $\mathcal{F} \in D_{\mathrm{ctf}}(X, \Lambda)$ such that h is $SS(\mathcal{F})$ -transversal. Assume f is proper on $B(SS(\mathcal{F})) = \mathrm{supp}(\mathcal{F})$. By [11, Lemma 3.8], g is $f_{\circ}SS(\mathcal{F})$ -transversal. By [1, Lemma 2.2(ii)], $SS(Rf_*\mathcal{F}) \subseteq f_{\circ}SS(\mathcal{F})$. Thus $g: Y \to S$ is also $SS(Rf_*\mathcal{F})$ -transversal and the class $cc_{Y/S}(Rf_*\mathcal{F})$ is well-defined.

Proposition 3.17. Consider the assumptions in 3.16. Assume moreover that Y is projective, $f: X \to Y$ is quasi-projective and $\dim f_{\circ}SS(\mathcal{F}) \leq \dim Y$. Then we have

$$f_*cc_{X/S}(\mathcal{F}) = cc_{Y/S}(Rf_*\mathcal{F})$$
 in $CH_s(Y)$.

We don't know how to remove the assumption $\dim f_{\circ}SS(\mathcal{F}) \leq \dim Y$.

Proof. Consider the following commutative diagram

$$(3.17.1) \begin{array}{c} X \xrightarrow{f} Y \\ \downarrow 0_X & \downarrow 0_Y \\ T^*S \times_S X \xrightarrow{\operatorname{id} \times f} T^*S \times_S Y \\ \downarrow dh & \downarrow r & \downarrow dg \\ T^*X \xleftarrow{dh} T^*Y \times_Y X \xrightarrow{\operatorname{id} \times f} T^*Y \end{array}$$

Then we have

(3.17.2)

$$f_*cc_{X/S}(\mathcal{F}) \stackrel{(3.5.2)}{=} (-1)^s \cdot f_*dh^!(CC(\mathcal{F})) = (-1)^s \cdot (\operatorname{id} \times f)_*r^!df^!(CC(\mathcal{F}))$$

$$= (-1)^s \cdot dg^!(\operatorname{id} \times f)_*df^!(CC(\mathcal{F}))$$

$$\stackrel{(a)}{=} (-1)^s \cdot dg^!CC(Rf_*\mathcal{F}) \stackrel{(3.5.2)}{=} cc_{Y/S}(Rf_*\mathcal{F}).$$

where (a) follows from [12, Theorem 2.2.5].

Proposition 3.18. Consider a commutative diagram in Sm_k

where squares are cartesian diagrams. Let $Z \subseteq X$ be a closed subscheme and $Z' = Z \times_X X'$. Let $\mathcal{F} \in D_{\mathrm{ctf}}(X,\Lambda)$ such that $X \to S$ is $SS(\mathcal{F})$ -transversal and $X \setminus Z \to Y$ is $SS(\mathcal{F}|_{X \setminus Z})$ -transversal. Assume that f and g are smooth morphisms and that i_X is properly $SS(\mathcal{F})$ -transversal. Assume S (resp. S') is connected of dimension s (resp. s'). Then we have

(3.18.2)
$$i_X^! cc_{X/Y/S}^Z(\mathcal{F}) = cc_{X'/Y'/S'}^{Z'}(i_X^*\mathcal{F}) \quad \text{in} \quad CH_{s'}(Z').$$

where $i_X^!: CH_s(Z) \to CH_{s'}(Z')$ is the refined Gysin pull-back.

We don't know how to remove the assumption that f is smooth and i_X is properly $SS(\mathcal{F})$ -transversal.

Proof. Consider the following commutative diagram

$$(3.18.3) \qquad \begin{array}{c} T^*S' \times_{S'} X' \xrightarrow{dg'_{X'}} T^*Y' \times_{Y'} X' \xrightarrow{df'} T^*X' \\ d\delta & \square & di_Y & \square & \uparrow di_X \\ T^*S \times_S X' \xrightarrow{dg_{X'}} T^*Y \times_Y X' \xrightarrow{df_{X'}} T^*X \times_X X' \\ 1 \times i_X & \downarrow & 1 \times i_X \\ T^*S \times_S X \xrightarrow{dg_X} T^*Y \times_Y X \xrightarrow{df} T^*X. \end{array}$$

By [11, Theorem 7.6], we have

(3.18.4)
$$CC(i^*\mathcal{F}) = di_{X*} \operatorname{pr}_1^! CC(\mathcal{F}) \cdot (-1)^{-\dim(X') + \dim(X)}$$

Now the result follows from the following identities:

$$cc_{X'/Y'/S'}^{Z'}(i_X^*\mathcal{F}) = (-1)^{s'} \cdot dg_{X'}^{!!}(df'^!CC(i_X^*\mathcal{F})|_{T^*Y'\times_{Y'}Z'})$$

$$= (-1)^{s'-\dim(X')+\dim(X)} \cdot dg_{X'}^{!!}(df'^!(di_{X*}\mathrm{pr}_1^!CC(\mathcal{F}))|_{T^*Y'\times_{Y'}Z'})$$

$$= (-1)^s \cdot d\delta_* dg_{X'}^{!!}(df_{X'}^!\mathrm{pr}_1^!CC(\mathcal{F})|_{T^*Y\times_{Y}Z'})$$

$$= (-1)^s \cdot d\delta_* (1 \times i_X)^! dg_X^!(df^!CC(\mathcal{F})|_{T^*Y\times_{Y}Z}) = i_X^!cc_{X/Y/S}^Z(\mathcal{F}).$$

3.19. Let $g: Y \to S$ be a smooth morphism in Sm_k . Consider a commutative diagram in Sm_k :

$$(3.19.1) \qquad \qquad X \xrightarrow{p} X' \\ f \xrightarrow{f'} f' \\ Y \xrightarrow{f'} f'$$

Let $Z \subseteq X$ be a closed subscheme. Let $\mathcal{F} \in D_{\mathrm{ctf}}(X, \Lambda)$ such that $X \to S$ is $SS(\mathcal{F})$ -transversal and that $X \setminus Z \to Y$ is $SS(\mathcal{F}|_Z)$ -transversal. Assume p is a proper morphism and put Z' = p(Z). By [11, Lemma 3.8 and Lemma 4.2.6], the morphism $X' \to S$ is $SS(Rp_*\mathcal{F})$ -transversal and that $X' \setminus Z' \to Y$ is $SS(Rp_*\mathcal{F}|_Z)$ -transversal. Then we have well defined classes $cc_{X/Y/S}^Z(\mathcal{F}) \in \mathrm{CH}_s(Z)$ and $cc_{X'/Y/S}^Z(Rp_*\mathcal{F}) \in \mathrm{CH}_s(Z')$.

Proposition 3.20. Consider the assumptions in 3.19. Assume moreover $\dim p_{\circ}SS(\mathcal{F}) \leq \dim X'$, Y is projective and p is quasi-projective. Then we have

(3.20.1)
$$p_* cc_{X/Y/S}^Z(\mathcal{F}) = cc_{X'/Y/S}^{Z'}(Rp_*\mathcal{F}),$$

where $p_* : CH_s(Z) \to CH_s(Z')$ is the proper push-forward.

We don't know how to remove the assumptions that $\dim p_{\circ}SS(\mathcal{F}) \leq \dim X'$, Y is projective and p is quasi-projective.

Proof. Consider the following commutative diagram

where squares are cartesian diagrams. By [12, Theorem 2.2.5], we have an equality in $Z_{\dim X'}(p_{\circ}SS(\mathcal{F}))$:

(3.20.3)
$$CC(Rp_*\mathcal{F}) = \operatorname{pr}_{2*}dp^!(CC(\mathcal{F})).$$

Then we have

$$cc_{X'/Y/S}^{Z'}(Rp_{*}\mathcal{F}) = (-1)^{s} \cdot dg_{X'}^{!}(df'^{!}(CC(Rp_{*}\mathcal{F})|_{T^{*}Y\times_{Y}Z}))$$

$$\stackrel{(3.20.3)}{=} (-1)^{s} \cdot dg_{X'}^{!}(df'^{!}(pr_{2*}dp^{!}CC(\mathcal{F})|_{T^{*}Y\times_{Y}Z}))$$

$$= (-1)^{s} \cdot dg_{X'}^{!}(1 \times p)_{*}((df_{X}'dp^{!}CC(\mathcal{F}))|_{T^{*}Y\times_{Y}Z})$$

$$= (-1)^{s} \cdot dg_{X'}^{!}(1 \times p)_{*}(df^{!}CC(\mathcal{F})|_{T^{*}Y\times_{Y}Z})$$

$$= (-1)^{s} \cdot (1 \times p)_{*}dg_{X}^{!}(df^{!}CC(\mathcal{F})|_{T^{*}Y\times_{Y}Z}) = p_{*}cc_{X/Y/S}^{Z}(\mathcal{F}),$$

which proves the equality (3.20.1).

Corollary 3.21 (Saito, [12, Theorem 2.2.3]). Let $f : X \to Y$ be a projective morphism of smooth schemes over a perfect field k, and let $y \in Y$ be a closed point. Let $\mathcal{F} \in D_{ctf}(X, \Lambda)$. Assume Y is a smooth and connected curve and that f is properly $SS(\mathcal{F})$ -transversal outside X_y . Then we have

(3.21.1)
$$-a_y(Rf_*\mathcal{F}) = f_*cc_{X/Y/k}^{X_y}(\mathcal{F}).$$

Proof. By Proposition 3.20 and Theorem 3.12, we have

(3.21.2)
$$f_* cc_{X/Y/k}^{X_y}(\mathcal{F}) \stackrel{(3.20.1)}{=} cc_{Y/Y/k}^{\{y\}}(Rf_*\mathcal{F}) \stackrel{(3.12.1)}{=} -\dim \operatorname{tot} R\Phi_{\bar{y}}(Rf_*\mathcal{F}, \operatorname{id}) = -a_y(Rf_*\mathcal{F}).$$

References

- [1] A. Beilinson, Constructible sheaves are holonomic, Sel. Math. New Ser. 22, (2016): 1797–1819. ↑5, ↑11, ↑12
- [2] S. Bloch, Cycles on arithmetic schemes and Euler characteristics of curves, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, (1987): 421–450. ^{↑10}
- [3] P. Deligne, La formule de dualité globale, Exposé XVIII, pp.481-587 in SGA4 Tome 3: Théorie des topos et cohomologie étale des schémas, edited by M.Artin et al., Lecture Notes in Math.305, Springer, 1973. ^{↑6}
- [4] P. Deligne, La formule de Milnor, Exposé XVI, pp.197-211 in SGA7 II: Groupes de Monodromie en Géométrie Algébrique, Lecture Notes in Math. 340, Springer, 1973. [↑]1
- [5] P. Deligne, Notes sur Euler-Poincaré: brouillon project, 8/2/2011. ²
- [6] William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Gren zgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer Verlag, Berlin, 1998. ^{↑10}
- [7] H. Hu and E. Yang, Relative singular support and the semi-continuity of characteristic cycles for étale sheaves, Selecta Mathematica, New Series, 24,(2018): 2235-2273.
- [8] N. M. Katz, Local-to-global extensions of representations of fundamental groups, Annales de l'institut Fourier, tome 36, 4 (1986): 69-106. [↑]8
- [9] Q. Lu and W. Zheng, Duality and nearby cycles over general bases, Duke Math. J. 168(16), (2019):3135–3213. $\uparrow 4$
- [10] Q. Lu, W. Zheng, Categorical traces and a relative Lefschetz-Verdier formula, Forum of Mathematics, Sigma, Vol.10 (2022): 1-24. [↑]4, [↑]5
- T. Saito, The characteristic cycle and the singular support of a constructible sheaf, Inventiones mathematicae, 207 (2017): 597-695. [↑]2, [↑]3, [↑]5, [↑]9, [↑]10, [↑]12, [↑]14
- [12] T. Saito, Characteristic cycles and the conductor of direct image, J. Amer. Math. Soc. 34 (2021): 369-410. $\uparrow 2$, $\uparrow 10$, $\uparrow 13$, $\uparrow 14$, $\uparrow 15$
- [13] N. Umezaki, E. Yang and Y. Zhao, Characteristic class and the ε-factor of an étale sheaf, Trans. Amer. Math. Soc. 373 (2020): 6887-6927. [↑]10
- [14] E. Yang and Y. Zhao, On the relative twist formula of ℓ-adic sheaves, Acta. Math. Sin.-English Ser. 37 (2021): 73–94. [↑]9
- [15] E. Yang and Y. Zhao, Cohomological Milnor formula and Saito's conjecture on characteristic classes, 2022, arXiv:2209.11086. ↑1, ↑2, ↑3, ↑4, ↑6, ↑7, ↑8, ↑9