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Abstract

We incorporate the Latent Semantic Indexing (LSID) technique
into a competition-based neural network model for information
retrieval. The original neural network model was based on a
causal inference network, incorporating Roget’s Thesaurus, that
connects the index terms and related documents. Since the process
of creating or updating a thesaurus is rather expensive, we apply the
LSI technique to provide an automated procedure that captures the
semantic relationship between the documents and index terms. Qur
experimental results using four standard text collections show that
the LSI-based model generates appreciable improvement in retrieval
effectiveness with faster query evaluation over the thesaurus-based
model.

1 Introduction

In conventional information retrieval models, such as the
Boolean models, vector space models, and probabilistic
models, documents and queries are represented by a set
of subject terms or keywords, sometimes with associated
weights. The Boolean models determine the relationship
between a document and a user query by matching the
document terms and the exact combination of the search
terms specified in the query. The vector space models
calculate the similarity measures between documents and
the user query based on the term weights which determine
the degree of importance of the terms. The probabilistic
models rank the documients by the probability that each
document would be judged relevant to a given query [TC91};
the probability is estimated by considering the presence or
absence of certain terms in the document while comparing to
the terms in a user query, together with the information about
term distribution in the document collection {Sal89].

Since the individual terms and keywords are not adequate
discriminators of the semantic content of the documents
and queries [FLGD87], the performance of the conventional
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retrieval models often suffers from either missing relevant
documents which are not indexed by the keywords used in the
query, but by synonyms; or retrieving irrelevant documents
which are indexed by unintended sense of the keywords in
the query [BCB92]. Therefore, there has been great interest
in text retrieval research that is based on semantics matching
instead of strictly keyword matching.

Latent Semantic Indexing (LSI) using Singular-Value De-
composition (SVD) is a particular approach to overcoming
some of the deficiencies of term-matching retrieval tech-
niques. The LSI technique performs truncated SVD to
analyze the conceptual structure of the word usage across
documents [BD94]. Using the singular values and the as-
sociated vectors obtained from the truncated SVD, a high-
dimensional vector space representing term-document asso-
ciations is mapped onto a vector space of a lower dimension
which reflects the major associative patterns in the data, while
ignoring the less important associations. Thus, terms which
occur in similar documents will be near each other in the
reduced vector space, and documents may be retrieved to
satisfy a user query when they share terms that are close in
the reduced space. Since documents are represented in the
reduced vector space by the statistically derived conceptual
indices, instead of by individual words, the LSI technique
overcomes some of the drawbacks of keyword matching
techniques. Also, since the statistically derived vectors are
more robust indicators of the semantic meaning than individ-
ual words, the retrieval performance based on the reduced
vector space may be better than that of the original space
[BCB92, BD94].

Several recent papers report the use of the LSI method in
information retrieval. In [DDFL90], the LSI method equaled
or outperformed the standard vector space method. The
results reported in [Dum91] show that the LSI performance
can be substantially improved using either the differential
term weighting scheme or relevance feedback. In [DN92],
the LSI method was used to automating the assignment
of submitted manuscripts to reviewers of the Hypertex’9l
conference. Based on the interests of each reviewer, a set of
relevant manuscripts were retrieved and sent to the reviewer.
The results demonstrated that this automated assignment
method achieved better matching between the reviewers
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and their interests, when compared to the assignments
produced by the human experts. In [BCB92], the LSI
method was compared to Multidimensional Scaling (MDS)
algorithms. MDS is a class of data analysis techniques
for representing data points in a multidimensional real-
value space. Using MDS, the objects are represented so
that the inter-point similarities in the space match inter-
object similarity information provided by the researcher.
The results demonstrate that the document representations
given by LSI are equivalent to the optimal representations
found using MDS. The LSI method was compared to Metric
Similarity Modeling (MSM) [Bar94]. The results show
that the optimal MSM solution is identical to the document
indexing solution provided by LSI. Recently, LSI is applied
to the routing and adhoc retrievals using large collections
in the TREC conferences [Dum94, Dum92, Dum95]. The
results were comparable to the best results submitted to
those conferences. Furthmore, these results demonstrated
that the large, sparse SVD problems could be solved without
concerns for numerical convergence. In [BD94], a survey
of the computation requirements for managing LSI-encoded
databases for information retrieval was presented. Recently,
LSI has also been applied to information filtering and text
categorization [Fol90, Hul94, WPW95].

In this paper, we present the technique of incorporating
Latent Semantic Indexing into a neural network model for
text retrieval. The original neural network model was based
on a causal inference network that connects the terms and
related documents. The model also used Roget’s Thesaurus
to relate synonymous index terms [SL94b]. Using four
standard document collections, CACM, CISI, ADINUL, and
CRANFIELD, we demonstrated that the neural network
model’s retrieval performance, in terms of precision and
recall, was comparable to or better than that of the recent
text retrieval models [SL94b]. However, in a thesaurus-
based information retrieval model, the semantic information
embodied is reflected by the terms in its thesauri and the
documents stored in its database [HM86]. When new
documents are indexed and stored in the database, the
indexing vocabulary needs to be updated to account for
the changes in the domain knowledge it covers. Since the
1911 edition of Roget’s Thesaurus we used for constructing
the original model lacks many crucial index terms [SL94a],
and the process of merging or updating thesauri is rather
expensive, we incorporated the Latent Semantic Indexing
technique into our neural network model, in stead of using a
thesaurus, in an attempt to capture the semantic relationship
between the documents and the index terms. Our results
reported here show that by incorporating the LSI method, the
neural network model generates an appreciable improvement
over the thesaurus-based model.

The remainder of this paper is as follows. Section 2
provides a overview of the Latent Semantic Indexing method
as applied to information retrieval. Section 3 briefly reviews
our original neural network model. Section 4 reports the
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experimental results comparing the LSI-based model and
the thesaurus-based model in their retrieval performance.
Section 5 is the conclusion.

2 Overview of the LSI Method

In the conventional vector space models, the representations
of documents and terms are explicitly taken into account for
the result of the retrieval. Using Latent Semantic Indexing
(LSI), which is an extension of the vector space retrieval
method, it is assumed that there is some underlying or
“latent™ association in the pattern of terms or keywords
used across documents [DN92], and this latent association
can be estimated by using statistical techniques. Singular-
Value Decomposition (SVD) is a technique closely related
to eigenvector decomposition and factor analysis used in
statistics [CW85], and Latent Semantic Indexing (LSI) using
SVD s a particular approach to modeling the latent semantic
relationships between the documents and the index terms.
This approach performs singular-value decomposition on
a term-by-document matrix, generating a reduced space
with lower dimension. In the reduced space, the semantic
association between two documents is captured based on how
frequently the index terms used in each of the documents co-
occur in other documents. Similarly, the semantic association
between two index terms can be captured based on how
frequently they are used in the similar contexts (documents).
Using the LSI representation, documents are retrieved to
satisfy a user query when they share terms of similar
semantic meaning. As a result, LSI overcomes some of
the deficiencies of term-matching retrieval, and provides an
automated procedure that relates synonymous index terms
without the need for constructing or updating a thesaurus.
Since the dimension of the resulting semantic space is
typically much smaller than the number of unique index
terms used in a document collection (e.g. 100 to 300 vs.
several thousands [Dum94)), a retrieval model using LSI can
also benefit from requiring less time and memory for query
processing.

We now briefly explain the properties of SVD, and describe
the conversion of document and query representations from
the original vector space to the reduced vector space.

2.1 Singular-Value Decomposition (SVD)

1t is known that SVD is the most reliable tool available for
matrix factorization [KMS89]. For any matrix 4, AT A has
nonnegative eigenvalues. The nonnegative square roots of
the eigenvalues of AT A are called the singular values of
A, and the number of the non-zero singular values is equal
to the rank of A4, rank(A4) [Ort87]. If A isan m x n matrix
and rank(A) = r, the singular-value decomposition of A is
defined as

A=UWVT, )
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Figure 1: A schema of the truncated SVD of a term-by-
document matrix A. -

where the sizes of U, V', and W are, respectively, m x m,

"n x n,and m x n; both U and V7T are orthogonal matrices,
ie, UTU = I, and VVT = I,; W is a diagonal matrix
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The o;’s are the singular values of A, 0y > 02 > -+ > 0, >
O,ando; =0fori>r+ 1.

In order to perform SVD in the LSI retrieval model, a
term-by-document matrix A which represents the documents
in a collection must be constructed. Using SVD, there is a
simple strategy for generating optimal approximation of the
document representation specified by the matrix A. Since the
singular values in W are ordered by size, the first k largest
may be kept and the remaining smaller ones are set to zero.
As a result, the representations of the matrices U, V,and W
can be reduced as follows: 1) Obtain a new diagonal matrix
W by removing column and rows which are zeros from W
2) Obtain a matrix Uy, by removing the (k -+ 1)st to the mth
columns from U; and 3) Obtain a matrix Vi by removing
the (k + 1)st to the nth rows from V. The product of the
resulting matrices is a matrix A; which is an approximation
of the matrix A (see Eq. 2), and rank(Ax) = k. Figure 1
presents a schema of the truncated SVD of matrix A.

Ay = Wi VT @

The LSI method using SVD can be viewed as a technique
for derivinga set of uncorrelated indexing variables or factors
(i.e. the singular values) [DDFL90]. The documents and
queries are then represented by vectors of factor values,
instead of the individual index terms. The use of the
k-largest factors captures most of the important latent
associations between documents and index terms, and avoids
unintended sense in word usage. A more detailed account
of the mathematical properties of SVD can be found in
[Bas94, Gol89].
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Figure 2: An example of the connectionist model.

2.2 Document and Query Representations ‘
Using the singular-value decomposition (Eq. 2), a term-
by-document matrix A is mapped into a reduced k£ x n
matrix represented by Wi VT, which relates k factors to
n documents. Similarly, a user query g, treated as a single
document m-vector, can be converted into a k-factor vector
¢’ using Eq. 3.

¢ =@FnwhH)T 3)

3 The Neural Network

The original neural network model was developed based
on the causal inference network described in [PR89]. The
implementation of the original model was explained in detail
in [SL94b]. In this section, we briefly describe the network
structure and the activation mechanism used in the original
model.

The neural network model is a two-layer network (see
Figure 2): the document layer D (output), the index term
layer T (input),and a relation R connecting D and 7 [PR89].
There are no inhibitory or intra-set links. Based on the
relation R, two sets, e f fects(d; ) and causes(r; ), are defined
for each d; € D and each 7; € T: ef fects(d;) = {7 | <
di, 7 > € R}, and causes(r;)={d; | < 7;, di > € R}.
Intuitively, e f fects(d;) contains all the index terms caused
by document d;, and causes(7;) contains all the documents
that can cause index term 7;. Each document node d; € D
has an activation level at time ¢ during the computation,
denoted d;(t) € [0, 1]; each index term node 7; has an
activation level 7;(t) € [0, 1].

Initially, d;(0) = p;, where

1
~ total number of documents’

4
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which represents the prior probability that a document d;
appears relevant to a given query. Each index term node
7; € T is marked to be present (r; € T7) if it is present in



the user’s query; otherwise, it is marked absent (r; € 77).
Each link (connection) is associated with a constant weight
representing the approximate implication strength r;; of term
7; on document d;:

tfii - idfj

mazx_tf; - log(total number of documents)

rij = ,» (5)
where tf;; is the frequency that a term 7; appears in
a document d;, idf; is the inverse document frequency
corresponding to 7j, and maz.1 f; is the maximum ¢ f value
of the index terms in the document d; [TC91].

To process a user query, the index terms that are present in
the query, or synonymous to any that is present, are marked in
the neural network. (We denote the set of marked index term
nodes 7+.) A “winners-take-all” competition algorithm is
then used which iteratively updates the activation levels of
the nodes in 77, followed by updating the activation levels
of the document nodes in D. This process continues until
an equilibrium is reached at time t., at which point each
d;(t.) is approximately equal to 0 or 1. A subset of the entire
document collection, D, = {d; | d;(t.) =~ 1.0}, is taken
to be the retrieval for a given user query.

We now briefly describe the equations used in updating the
activation levels. Assuming a discrete representation of time,
the index term nodes in 7+ are updated using the activation

rule
I a-rdioy). (6)

d;Ecauses(r;)

) =1-

To update the activation levels for the documnent nodes, a
function in;(t) indicates the desired direction of change for
d;(t) in order to obtain local optimization. The value in;(t)
is determined by the rule

(1 + 7ij ) ()

ing (t) =K;. H
T €T‘+
where ;¥ = T% N effects(d;); K; is a constant
factor representing the influence of 7~ nodes, and prior
probabilities p;, on document activations. The constant K; is
computed once for each document node d; at the beginning
of the neural network computation, and is defined by

K= ][ (1—r,-,-).(1—{iﬁ>

T, €T,

1-7()
73 (t) — rijdi(t)

(8)

where 7,7 = T~ N effects(d;). Also, a ramp function is
used to bound the change rate of d;(¢) in [—1, 1]. The ramp
function f(z) = 1ifz > 1; -1 if £ < —1; « otherwise.
Finally, the activation level d;(¢) is defined by the following
equation

di(t +1) = di(t) + f(ini(1) - 1) - (1 - di(¥)) - &, (9)

where A is a constant controllingthe rate of change; we set it
t0 0.1. If d;(¢ + 1) is less than 0.0 from Eq. 9, then d;{t + 1)
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issett00.0. Thus, a desired d;(t) is guaranteed tobe in [0, 1’
at any time £.

When the computation reaches an equilibriumand outputs
aretrieval set of documents (i.e. those with d;(¢) ~ 1.0), we
often need to rank these documents based on their relevance
to the given query. We used Eq. 10 to compute the documen:
ranking values. The derivation of Eq 10 is described in detail
in [SL96].

a(di®)) = ] (- T @-m)l- T TI Q-res

TJ'€T:+ dr €Dy ThET;_ dx €Dy
(10

4 Experiments and Results

In this section, we explain the construction of the neural
network which is based on the document representation
derived from SVD. We also explain the method to compute
the precision and recall values in our model, and show the
experimental results and the performance comparisons. We
then derive formulas which estimate the actual time required
for our experiments.

4.1 Network Construction and the Experiments

Since both the theoretical foundation and empirical studies
are important issues in measuring the effectiveness of infor-
mation retrieval models, we used four standard document
collections, CACM, CISI, CRANFIELD, and ADINUL, to
test the retrieval performance of our original neural network
model [SL96]. In order to compare the performance of the
LSI model with that of the original model, the same docu-
ment collections were used in the experiments reported here.
These collections contain information of the authors, titles.
abstracts, and citations of the articles published in different
research journals. Each collection consists of a set of doc-
uments and queries. The document-query relevance judge-
ments are also provided. Table 1 shows the pertinent statis-
tics for these collections. The performance of our LSI model
is also compared with that of a vector space model (SVM)
which uses the cosine measure to estimate the similarity be-
tween the document vectors and the query vectors.

To evaluate the neural network’s retrieval performance
on these document collections, we need to extract the
index terms of each collection and generate a term-by-
document matrix A = [a;;] as the initial representation of
the docurnents. Only noun index terms are selected fromr
each collection by using Roget’s Thesaurus. The connection
strength values a;; in matrix A are computed using Eq. 5.

In a collection of n documents and m unique index terms,
the initial representation of the collection is an m x n matrix.
After the initial matrix is generated, we performed singular.
value decomposition on the matrix to obtain a reduced
matrix of rank k (see Section 2). The choice of the rank
value k is critical to the retrieval performance. Idealy, the
value of k should be large enough to represent the real



CACM | CISI | CRAN- | ADINUL
FIELD
Number of
Documents 3204 | 1460 | 1398 §2
Number of
Queries 50 112 225 35
Number of Unique
Index Terms 1649 | 1725 | 1276 376
Average Number of
Relevant Documents 16 28 8 5
per Query
Average Number of
Relevant Queries 0.1 0.1 0.2 0.5
per Document

Table 1: Collection statistics.

information in a collection, and also small enough so that
the unimportant details will not be included [DDFL90].
The choice of a proper k value is an open issue in the
literature on Factor Analysis [Gol89, Bas94]. However,
the experimental results reported in [DDFL90, Dum94] have
shown that the best results are obtained when 100 < k£ < 300
for small collections (e.g. 1000-2000 abstracts) and for
large collections (e.g. collections outlined in the TREC
conference). In our experiments, we used various rank values
to test the performance of our networks for each collection.
For the CACM, CISI, and CRANFIELD collections, we
used rank values 10, 50, 100, 150, 200, 300, and 400. For
the ADINUL collection, since its initial representation is a
376 x 82 matrix, we used rank values 10, 20, 30, 40, 50,
70, and 82. Since computing the truncated SVD of large
term-by-document matrices is very time-consuming, it was
executed once for each collection, and the resulting matrices
U, W and V (see Eq. 1) were saved in disk files. These
files were then used to generate the reduced matrices Uy, W,
and V; for each tested rank value k. The SVD program was
adapted from [PTVF92] and was run on a Sun SparcStation
System 600,

For each rank value k, a two-layer neural network is
constructed based on a k x n matrix W3 V,T': the document
layer of n document nodes, and the factor layer of k factors.
The value a;; of the matrix W, VT can be viewed as the
connection strength value r;; between a document d; and
a factor f;. After a neural network is constructed, a given
query is processed and is represented as an m-element vector
g. The query vector ¢ is mapped into a k-factor vector ¢’ using
Eq. 3. The query vector ¢ is then used to mark the k factor
nodes in the neural network. We note that by substitutingthe
index terms with factors, the equations used in our original
model for computing the index term and document activation
levels (Egs. 6and 9) can be adapted to compute the activation
levels of the factor and document nodes, respectively.
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In each of the experiments we performed, the neural
network algorithm retrieved a set of documents for each given
query, then these documents were sorted by their ranking
values using Eq. 10. A common approach to evaluating
retrieval performance is to report the precision percentages
at different recall levels. Thus, to compute the retrieval
precision at the 2% recall level, 1 < z < 100, we scanned
the list of the retrieved documents in ranking order, using the
correct retrieval set provided by the test collection as basis,
until the £% recall is met. At that point, the precision value
is calculated as the percentage of relevant documents within
the list of the retrieved documents scanned so far. Since our
model returns a retrieval set of documents for a user query,
instead of ranking all the documents in the collection, there
is one modification required for computing the precisions in
our model. It is possible that the % recall is not met even
after the entire list of the retrieved documents is scanned.
In that case, it is reasonable to report that the corresponding
precision value is zero.

42 Results and Performance Comparison

For each test collection, the overall performance was
determined by computing the average precision at 10 recall
points of 0.1, 0.2,..., 1.0. Our experiment results show
that the neural networks of rank 100 (consisting of 100
factor nodes) outperform the networks using other rank
values for the CISI and CRANFIELD collections; the neural
network of rank 150 outperforms the networks of other rank
values for the CACM collection; and the neural network
of rank 70 outperforms the networks of other rank values
for the ADINUL collection. Figures 3 and 4 plot the
performance comparisons among the LSI model, the original
neural network model with Roget’s Thesaurus, and the neural
network model without Roget’s Thesaurus. For the LSI
model, the figures include the results of three rank values:
the optimal rank, the smallest, and the largest ranks. Figures
3 and 4 demonstrate that the neural network model using
Roget’s Thesaurus outperforms the neural network model
without using Roget’s Thesaurus (as reported in [SL96]), and
the LSI model using the optimal rank value is better than the
neural network model with Roget’s Thesaurus. Therefore,
the semantic association between documents and index terms
can be better represented using the LSI method. Tables 2 to
5 show the percentage changes in precision at different recall
levels when comparing the LSI model (using the optimal
rank) with the original neural network model using Roget’s
Thesaurus.

We also compare the performance of our LSI neural
network model with that of a LSI vector space model using
the cosine similarity measure The performance of the LSI
vector space model was also tested using various rank values
for each collection. The experimental results show that the
optimal rank values for CACM, CISI, CRANFIELD, and
ADINUL are 200, 200, 100, and 70, respectively. The
comparisons between the optimal performance of our LSI
neural network model and that of the LSI vector space model



Precision (% change) CACM
Recall | Original LSI
10 66.4 71.0 (+6.9)
20 58.7 62.2 (+5.9)
30 53.0 548 (+3.4)
40 42.1 47.3 (+12.1)
50 35.2 394 (+11.9)
60 324 35.2 (+8.6)
70 26.5 30.8 (+16.2)
80 227 26.6 (+17.2)
90 12.6 19.1 (+51.5)
100 9.9 12.0 (+21.2)
average 36.0 39.8 (+10.6)

Table 2: Comparison of LSI model (rank 150) and the

thesaurus-based model for CACM,
Precision (% change) CISI
Recall | Original LSI
10 52.1 62.4 (+19.8)
20 477 57.7 (+21.0)
30 354 41.1 (+16.1)
40 257 31.7(+23.3)
50 20.2 28.1 (+39.3)
60 154 25.2 (+63.6)
70 16.7 20.8 (+24.6)
80 8.5 14.5 (+70.6)
90 8.2 12.6 (+53.7)
100 6.3 10.1 (+60.3)
average 23.7 30.4 (+28.3)

Table 3: Comparison of LSI model (rank 100) and the

thesaurus-based model for CISI.
Precision (% change) CRANFIELD
Recall | Original LSI
10 54.7 70.7 (+29.3)
20 49.6 67.5 (+36.1)
30 473 62.4 (+31.9)
40 46.1 59.2 (+28.4)
50 45.0 55.1 (+224)
60 36.2 484 (+33.7)
70 332 43.1 (+29.8)
80 254 28.8 (+13.4)
90 15.7 23.2 (+1.5)
100 13.1 19.1 +(45.8)
average 36.6 47.8 (+30.6)

Table 4: Comparison of LSI (rank 100) model and the
thesaurus-based model for CRANFIELD.

150

Precision (% change) ADINUL
Recall | Original LSI
10 34.0 37.1(+9.1)
20 335 36.5 (+9.0)
30 33.6 35.1(+4.5)
40 313 33.1(+5.8)
50 312 33.0 (+5.8)
60 16.4 23.4 (+42.7)
70 13.0 16.2 (+24.6)
80 12.5 14.2 (+13.6)
90 9.9 12.7 (+28.3)
100 9.4 9.9 (+5.4)
average 22.5 25.1 (+11.6)

Table 5: Comparison of LSI model (rank 70) and the

thesaurus-based model for ADINUL.
Precision (% change) CACM
Recall | VSM Neural Network
10 66.9 71.0 (+6.1)
20 58.7 62.2 (+6.0)
30 55.2 54.8 (—4.0)
40 43.5 473 (+8.7)
50 334 39.4 (+18.0)
60 31.2 352 (+12.8)
70 28.3 30.8 (+8.8)
80 22.7 26.6 (+17.2)
90 13.0 19.1 (+46.9)
100 9.2 12.0 (+30.4)
average | 36.2 39.8 (+9.9)

Table 6: Comparison of LSI neural network model (rank
150) and LSI vector space model (rank 200) for CACM.

Precision (% change) CISI
Recall { VSM | Neural Network
10 58.0 62.4 (+9.3)
20 48.5 57.7 (+18.4)
30 38.2 41.1 (+16.1)
40 26.1 31.7 (+28.3)
50 20.1 28.1 (+41.1)
60 15.7 25.2 (+63.6)
70 13.9 20.8 (+51.8)
80 12.1 14.5 (+38.1)
9 | 106 12.6 (+37.0)
100 9.5 10.1 (+12.2)
average | 25.3 30.4 (+20.2)

Table 7: Comparison of LSI neural network model (rank
100) and LSI vector space model (rank 200) for CISI.



Precision (% change) CRANFIELD
Recall | VSM Neural Network
10 65.1 70.7 (+8.6)
20 59.6 67.5 (+13.3)
30 49.3 62.4 (+26.6)
40 46.2 59.2 (+28.1)
50 443 55.1 (+24.4)
60 372 484 (+30.1)
70 33.6 43.1 (+43.2)
80 244 28.8 (+18.0)
90 159 23.2 (+45.9)
100 15.1 19.1 +(26.5)
average | 39.9 478 (+19.8)

Table 8: Comparison of LSI neural network model (rank 100)
and LSI vector space model (rank 100) for CRANFIELD.
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Figure 3: Recall-precision graphs.

Precision (% change) ADINUL
Recall | VSM Neural Network
10 35.0 37.1 (+6.0)
20 325 36.5 (+12.3)
30 325 35.1 (+8.0)
40 31.0 33.1 (+6.8)
50 312 33.0 (+5.8)
60 184 234 (+217.2)
70 15.0 16.2 (+8.0)
80 12.1 14.2 (+17.4)
90 9.5 12.7 (+33.7)
100 9.2 9.9 (+7.6)
average | 22.6 25.1 (+11.1)

Table 9: Comparison of LSI neural network model (rank 70)
and LSI vector space model (rank 70) for ADINUL.

Preamon

0 N " L 1 " N A
10 20 30 0 50 60 k] 60 0 100
Recall

CRANFIELD Collection

Preasion

ADINUL Collection

Figure 4: Recall-precision graphs.
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are reported in Tables 6 to 9. The results show that our LSI
neural network model performs better than the LSI vector
space model.

4.3 Time Analysis

The experiment for each collection includes three procedures:
SVD, preprocessing, and query evaluation. For each
collection, the SVD procedure was performed once; the
preprocessing and query evalution procedures were executed
once for each k value.

The formulas to estimate the time required for processing
a collection with n documents and m unique index terms are
as follows:

e SVD

n x cost(U) + m x cost(VT) +n x cost(W) (11)

e Preprocessing
cost(Ax) + m x n X cost(s) (12)
e Query Evaluation (for each query)
tavg X cost(M)+ NI x (TFO x cost(d;) + (13)

DFO x cost(1;))

A brief summary of the symbols used in the formulas is given
in Table 10. For the sake of brievity, we only describe the
comparison between the estimated time and the actual time
for the CACM and CISI collections. The result is shown
in Table 11. The computation detail of the cost for each
procedure is not listed.

Based on Table 11, we note that the actual time for
preprocessing and query evaluation is on average 6% higher
than the corresponding estimated time for both CACM and
CISI. However, there is a 10% and 11% discrepancy between
the actual SVD processing time and estimated time for
CACM and CISI, respectively. The discrepancy can be
attributed to the system overhead and the inaccuracy in
estimating parameters TFO, DF O, t,4,, €tc.

5 Conclusion

In this paper, we incorporated the Latent Semantic Indexing
(LSD) technique into a competition-based neural network
model for information retrieval. The LSI technique
provides an automated procedure that captures the semantic
associations between the documents and the index terms,
without using a thesaurus. Our experiments using four
document collections demonstrated that the LSI-based model
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using optimal rank values outperforms the thesaurus-based
model in retrieval effectiveness. Also, since the LSI model
uses a smaller network, it usually requires less memory
space and query evaluation time. Therefore, our LSI-
based neural network model has the potential to handle
large document collections such as those outlined in the
TREC conferences. Furthermore, since neural network
computations are inherently parallel, our LSI model has the
potential for efficient parallel implementations.

Symbol | Definition

cost(U) | cost for calculating the matrix U (see
Eq. 1)

cost(VT) | cost for calculating the matrix V7 (see
Eq. 1)

cost(W) | cost for calculating the matrix W (see
Eq. 1)

cost(Ax) | cost for calculating the reduced matrix
Apg (see Eq. 2)

cost(s) cost for initializing a connection strength
(see Eq. 5)

tavg average number of marked index terms

cost(M) | cost for marking an index term

NI average number of iterations to reach
equilibrium (22 for both CACM and CISI)

TFO average number of the most connections
linked to an index term node

DFO average number of the most connections
linked to a document node

cost(r;) | cost for updating an index term node
activation (see Eq. 6)

cost(d;) | cost for updating a document node
activation (see Eq. 9)

Table 10: Symbols used in formulas for estimating collection
processing time.

Procedure CACM CISI
Estimated | Actual | Estimated | Actual
SVD 65200 72000 52000 57600
Preprocessing 482 512 210 224
Query Evaluation 195 208 309 324
(entire collection)

Table 11: Comparison (in seconds) between the estimated
time and actual time for collection processing.
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