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Markov Chain Monte Carlo Convergence 
Diagnostics: A Comparative Review 

Mary Kathryn COWLES and Bradley P. CARLIN 

A critical issue for users of Markov chain Monte Carlo (MCMC) methods in applications is how to determine when it is safe to 
stop sampling and use the samples to estimate characteristics of the distribution of interest. Research into methods of computing 
theoretical convergence bounds holds promise for the future but to date has yielded relatively little of practical use in applied 
work. Consequently, most MCMC users address the convergence problem by applying diagnostic tools to the output produced by 
running their samplers. After giving a brief overview of the area, we provide an expository review of 13 convergence diagnostics, 
describing the theoretical basis and practical implementation of each. We then compare their performance in two simple models 
and conclude that all of the methods can fail to detect the sorts of convergence failure that they were designed to identify. We thus 
recommend a combination of strategies aimed at evaluating and accelerating MCMC sampler convergence, including applying 
diagnostic procedures to a small number of parallel chains, monitoring autocorrelations and cross-correlations, and modifying 
parameterizations or sampling algorithms appropriately. We emphasize, however, that it is not possible to say with certainty that 
a finite sample from an MCMC algorithm is representative of an underlying stationary distribution. 

KEY WORDS: Autocorrelation; Gibbs sampler; Metropolis-Hastings algorithm. 

1. INTRODUCTION 

In a surprisingly short period, Markov chain Monte Carlo 
(MCMC) integration methods, especially the Metropolis- 
Hastings algorithm (Hastings 1970; Metropolis, Rosen- 
bluth, Rosenbluth, Teller, and Teller 1953) and the Gibbs 
sampler (Geman and Geman 1984; Gelfand and Smith 
1990) have emerged as extremely popular tools for the 
analysis of complex statistical models. This is especially 
true in the field of Bayesian analysis, which requires eval- 
uation of complex and often high-dimensional integrals to 
obtain posterior distributions for the unobserved quantities 
of interest in the model (i.e., unknown parameters, miss- 
ing data, and data that are yet to be observed). In many 
such settings, alternative methodologies (such as asymp- 
totic approximation, traditional numerical quadrature, and 
noniterative Monte Carlo methods) either are infeasible or 
fail to provide sufficiently accurate results. Properly defined 
and implemented, MCMC methods enable the user to suc- 
cessively sample values from a convergent Markov chain, 
the limiting distribution of which is the true joint posterior 
of the model unobservables. Important features of MCMC 
methods that enhance their applicability include their abil- 
ity to reduce complex multidimensional problems to a se- 
quence of much lower-dimensional ones and their relative 
indifference to the presence or absence of conjugate struc- 
ture between the likelihood and the prior distribution. 

Although MCMC methods have been most widely used in 
Bayesian analysis, they have also been used by frequentists 
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in missing- and dependent-data settings where the likeli- 
hood itself involves complicated high-dimensional integrals 
(see, for example, Gelfand and Carlin 1993, and Geyer and 
Thompson 1992). Excellent tutorials on the methodology 
have recently been provided by Albert (1993) and Casella 
and George (1992); a more complete and advanced sum- 
mary was given by Tierney (1995). The statistical applica- 
tions of MCMC in just the last 5 years are far too numer- 
ous to list, covering such disparate areas as the modeling of 
human immunodeficiency virus (HIV) progression (Lange, 
Carlin, and Gelfand 1992), archaeological shape estimation 
(Buck, Litton, and Stephens 1993), determination of fuel 
economy potential in automobiles (Andrews, Berger, and 
Smith 1993), and the analysis of home run hitters in major 
league baseball (Albert 1992). 

Although MCMC algorithms allow an enormous expan- 
sion of the class of candidate models for a given dataset, 
they also suffer from a well-known and potentially serious 
drawback: It is often difficult to decide when it is safe to 
terminate them and conclude their "convergence." That is, 
at what point is it reasonable to believe that the samples are 
truly representative of the underlying stationary distribution 
of the Markov chain? It is immediately clear that this is a 
more general notion of convergence than is usual for itera- 
tive procedures, because what is produced by the algorithm 
at convergence is not a single number or even a distribu- 
tion, but rather a sample from a distribution. Worse yet, the 
Markov nature of the algorithm means that members of this 
sample will generally be correlated with each other, slow- 
ing the algorithm in its attempt to sample from the entire 
stationary distribution and muddying the determination of 
appropriate Monte Carlo variances for estimates of model 
characteristics based on the output. Much of the aforemen- 
tioned applied work has shown that such high correlations, 
both within the output for a single model parameter (auto- 
correlations) and across parameters (cross-correlations) are 
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not uncommon, caused, for example, by a poor choice of 
parameterization or perhaps overparameterization. The lat- 
ter situation can of course lead to "ridges" in the posterior 
or likelihood surface, long the bane of familiar statistical 
optimization algorithms. 

Efforts at a solution to the problem of determining 
MCMC algorithm convergence have been concentrated in 
two areas. The first is theoretical, wherein the Markov tran- 
sition kernel of the chain is analyzed in an attempt to pre- 
determine a number of iterations that will ensure conver- 
gence in total variation distance to within a specified tol- 
erance of the true stationary distribution. (Notice that this 
goes beyond merely proving that a certain algorithm will 
converge for a given problem, or even providing a rate for 
this convergence.) For example, Polson (1994) developed 
polynomial time convergence bounds for a discrete-jump 
Metropolis algorithm operating on a log-concave target 
distribution in a discretized state space. Rosenthal (1993, 
1995a, 1995b) instead used Markov minorization condi- 
tions, providing bounds in continuous settings involving 
finite-sample spaces and certain hierarchical models. Al- 
though approaches like these hold promise, they typically 
involve sophisticated mathematics, as well as laborious cal- 
culations that must be repeated for every model under con- 
sideration. Moreover, in most examples analyzed thus far 
using these tools, the bounds obtained are quite loose, sug- 
gesting numbers of iterations that are several orders of mag- 
nitude beyond what would be considered reasonable or fea- 
sible in practice-though Rosenthal (1996) obtained tight 
bounds in a hierarchical normal means model related to 
James-Stein estimation. 

As a result, almost all of the applied work involving 
MCMC methods has relied on the second approach to the 
convergence problem: applying diagnostic tools to output 
produced by the algorithm. Early attempts by statisticians 
in this regard involved comparing the empirical distribu- 
tions of output produced at consecutive (or nearly consec- 
utive) iterations and concluding convergence when the dif- 
ference between the two was negligible in some sense. This 
led to samplers using a large number of parallel, indepen- 
dent chains to obtain simple moment, quantile, and density 
estimates. Indeed, not long ago a widely used diagnostic 
was the so-called "thick felt-tip pen test" of Gelfand and 
Smith (1990), where convergence was concluded if den- 
sity estimates spaced far enough apart to be considered in- 
dependent (say, five iterations) differed graphically by less 
than the width of a thick felt-tip pen. Besides the inherent 
waste of preconvergence samples in this massively parallel 
approach, the diagnostic often suggested convergence pre- 
maturely for slowly mixing samplers, because it measured 
the distance separating the sampled distribution at two dif- 
ferent iterations rather than the distance separating either 
distribution from the true stationary distribution. 

Of course, because the stationary distribution will al- 
ways be unknown to us in practice, this same basic dif- 
ficulty will plague any convergence diagnostic. Indeed, this 
is what leads many theoreticians to conclude that all such 
diagnostics are fundamentally unsound. Many researchers 

in other areas where MCMC methods have been used for 
many years (e.g., physics and operations research) have also 
reached this conclusion. Still, many statisticians rely heav- 
ily on such diagnostics, if for no other reason than "a weak 
diagnostic is better than no diagnostic at all." 

In Section 2 we introduce the MCMC convergence di- 
agnostics in our study. For each, we briefly review their 
theoretical bases and discuss their practicality of implemen- 
tation. We also classify the methods according to whether 
they measure the convergence of univariate quantities or of 
the full joint distribution and whether their results are quan- 
titative or qualitative (i.e., graphical) in nature. Finally, we 
assess the extent to which each addresses the competing is- 
sues of bias and variance in the resulting estimated features 
of the stationary distribution. Virtually all convergence di- 
agnostics seek to uncover bias arising from a sample that 
is not representative of the underlying distribution; a few 
also attempt to instruct the user as to how many (autocor- 
related) samples should be drawn to produce estimates with 
variance small enough to inspire confidence in their accu- 
racy. For those diagnostics not addressing this latter issue, 
an alternative is to use batching (see, e.g., Ripley 1987, sec. 
6.2), or perhaps more sophisticated time series methods (as 
in Geyer 1992). 

In Sections 3 and 4 we apply our collection of diagnos- 
tics to some relatively simple statistical models. In so doing, 
we investigate whether use is indeed appropriate within the 
realm of common statistical practice. We find that many of 
the diagnostics produce results that are difficult to interpret 
and potentially misleading even in these idealized settings. 
Finally, in Section 5 we discuss our findings and offer rec- 
ommendations on how to proceed in this thorny area. 

2. MCMC CONVERGENCE DIAGNOSTICS 

The convergence diagnostics of Gelman and Rubin (1992) 
and of Raftery and Lewis (1992) currently are the most pop- 
ular in the statistical community, at least in part because 
computer programs for their implementation are available 
from their creators. In addition to these two, we discuss the 
methods of Garren and Smith (1993), Geweke (1992), John- 
son (1994), Liu, Liu, and Rubin (1992), Mykland, Tiermey, 
and Yu (1995), Ritter and Tanner (1992), Roberts (1992, 
1994), Yu (1994), Yu and Mykland (1994), and Zellner and 
Min (1995). Furthermore, we mention some related ideas 
from the operations research literature, focusing on the 
technique of Heidelberger and Welch (1983). 

2.1 Gelman and Rubin 

Based on normal theory approximations to exact Bayesian 
posterior inference, Gelman and Rubin's (1992) method in- 
volves two steps. Step 1, to be carried out before sampling 
begins, is to obtain an overdispersed estimate of the target 
distribution and to generate from it the starting points for 
the desired number of independent chains (say 10 if only 
one major mode was found, and more in the case of multi- 
ple modes). Step 2 is to be carried out for each scalar quan- 
tity of interest (after appropriate transformation to approx- 
imate normality, if needed) after running the Gibbs sampler 
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chains for the desired number of iterations, say 2n. It in- 
volves using the last n iterations to reestimate the target 
distribution of the scalar quantity as a conservative Stu- 
dent t distribution, the scale parameter of which involves 
both the between-chain variance and the within-chain vari- 
ance. Convergence is monitored by estimating the factor by 
which the scale parameter might shrink if sampling were 
continued indefinitely, namely 

n (- I 
m?+B\ df 

inmn W] df -2' 

where B is the variance between the means from the m 
parallel chains, W is the average of the m within-chain 
variances, and df is the degrees of freedom of the approxi- 
mating t density. Slowly mixing samplers will initially have 
B much larger than W, because the chain starting points are 
overdispersed relative to the target density. Gelman and Ru- 
bin recommended an iterative process of running additional 
iterations of the parallel chains and redoing step 2 until the 
"shrink factors" for all quantities of interest are near 1; 
at that point, assuming that each chain has been run for a 
grand total of 2n iterations, inference may be carried out 
using the combined values from iterations n + 1 to 2n from 
all chains. S-language code is available to perform step 2; 
it reports both the point estimate and the .975 quantile of 
the shrink factors, as well as empirical quantiles of sampled 
quantities computed from the pooled samples and estimated 
quantiles based on the Student t distribution. 

Though created for the Gibbs sampler, Gelman and Ru- 
bin's method may be applied to the output of any MCMC 
algorithm. Their approach emphasizes reducing bias in es- 
timation. They interpreted the fact that the "shrink fac- 
tor" approaches 1 when the pooled within-chain variance 
dominates the between-chain variance to mean that at that 
point, all chains have escaped the influence of their start- 
ing points and have traversed all of the target distribution. 
They posited that there is no way to determine that this 
has occurred in a single chain without having additional in- 
dependent chains, started from dispersed initial values, for 
comparison. 

A number of criticisms of Gelman and Rubin's method 
have been made. It relies heavily on the user's ability to 
find a starting distribution that is indeed overdispersed with 
respect to the target distribution, a condition that requires 
knowledge of the latter to verify. Second, because the Gibbs 
sampler is most needed when the normal approximation to 
the posterior distribution is inadequate for purposes of esti- 
mation and inference, reliance on normal approximation for 
diagnosing convergence to the true posterior may be ques- 
tionable. Also, the approach essentially is univariate. But 
Gelman and Rubin suggested applying their procedure to 
-2 times the log of the posterior density as a way of sum- 
marizing the convergence of the joint density. Advocates 
of running a single long chain consider it very inefficient 
to run multiple chains and discard a substantial number of 
early iterations from each. Furthermore, they point out that 
if one compares, for example, a single chain run for 10,000 
iterations with 10 independent chains each run for 1,000 it- 

erations, then the last 9,000 iterations from the single long 
chain are all drawn from distributions that are likely to be 
closer to the true target distribution than those reached by 
any of the shorter chains. 

2.2 Raftery and Lewis 

Raftery and Lewis's (1992) method is intended both to 
detect convergence to the stationary distribution and to pro- 
vide a way of bounding the variance of estimates of quan- 
tiles of functions of parameters. The user must first run a 
single-chain Gibbs sampler for Nmin, the minimum number 
of iterations that would be, needed to obtain the desired pre- 
cision of estimation if the samples were independent. Then 
either Raftery and Lewis's Fortran program (available from 
Statlib) or the corresponding S-Plus function in the CODA 
package (see Sec. 5) may be run for each quantity of interest 
in turn, using the Gibbs chains for that quantity as input. 
Each program prompts the user to specify the quantile q 
to be estimated (e.g., .025), the desired accuracy r (e.g., 
? .005), the required probability s of attaining the speci- 
fied accuracy, and a convergence tolerance (explained later) 
6, usually given as .001. The program then reports "nprec" 
(the total number of iterations that should be run), "nburn" 
(how many of the beginning iterations should be discarded), 
and "k" (where only every kth one of the remaining iter- 
ates should be used in inference). Iterations corresponding 
to the largest value of "nprec" obtained for any quantity 
tested may then be run and, if desired, the diagnostic pro- 
cess may be repeated to verify that they are sufficient. 

The approach is based on two-state Markov chain the- 
ory, as well as standard sample size formulas involving bi- 
nomial variance. A binary sequence {Z} is formed with a 
0/1 indicator for each iteration of the original Gibbs chain 
as to whether the value of the quantity of interest is less 
than a particular cutoff. "K" is the smallest skip-interval 
for which the behavior of the new binary sequence {Z(k)} 
formed by extracting every kth iterate approximates that of 
a first-order Markov chain. "Nburn" is the number of itera- 
tions that it takes for {Z(k) } to approach within 6 (specified 
by the user as mentioned earlier) of its estimated stationary 
distribution. A large value of "nburn" suggests slow con- 
vergence to the stationary distribution, whereas a value of 
"nprec" much larger than Nmin and/or "k" greater than 1 
suggests strong autocorrelations within the chain. The fact 
that the formula for Nmin is based on binomial variance 
leads to the counterintuitive result that more iterations are 
required for estimating quantiles near the median than ex- 
treme quantiles to obtain the same degree of accuracy. This 
approach may be applied to the output of any MCMC al- 
gorithm. 

Raftery and Lewis emphasized that being able to pin 
down the accuracy of the estimation of quantiles is very 
useful, because they are at the heart of density estimation 
and also provide robust estimates of center and spread of 
a distribution. Critics point out that the method can pro- 
duce variable estimates of the required number of iterations 
needed given different initial chains for the same problem 
and that it is univariate rather than giving information about 
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the full joint posterior distribution. It is also somewhat im- 
practical in that convergence must be "rediagnosed" for ev- 
ery quantile of interest. Finally, recent work by MacEach- 
ern and Berliner (1994) showed that estimation quality is 
always degraded by discarding samples, so that the whole 
enterprise of estimating a skip-interval k may be inappro- 
priate. 

2.3 Geweke 

Geweke (1992) recommended using methods from spec- 
tral analysis to assess convergence of the Gibbs sampler 
when the intent of the analysis is to estimate the mean of 
some function g of the parameters 0 being simulated. If val- 
ues of g(0(J)) are computed after each iteration of the Gibbs 
sampler, then the resulting sequence may be regarded as a 
time series. Geweke's method rests on the assumption that 
the nature of the MCMC process and of the function g im- 
ply the existence of a spectral density Sg(w) for this time 
series that has no discontinuities at frequency zero. If this 
assumption is met, then for the estimator of E[g(0)] based 
on n iterations of the Gibbs sampler, 

En= l (0(i) 
gn- - gn 

=n 

the asymptotic variance is Sg(O)/n. The square root of this 
asymptotic variance may be used to estimate the standard 
error of the mean. Geweke referred to this estimate as the 
"numeric standard error" (NSE). 

Geweke's convergence diagnostic after n iterations of the 
Gibbs sampler is calculated by taking the difference be- 
tween the means g(0)A, based on the first nA iterations, 
and -(0)B, based on the last nB iterations, and dividing by 
the asymptotic standard error of the difference, computed 
as earlier from spectral density estimates for the two pieces 
of the sequence. If the ratios nA/n and nB/n are held fixed 
and nA + nB < n, then by the central limit theorem, the 
distribution of this diagnostic approaches a standard normal 
as n tends to infinity. Geweke suggested using nA =. ln and 
nB = .5n. He implied that this diagnostic may be used to 
determine how many initial iterations to discard. Then a 
sufficient number of subsequent iterations must be run to 
obtain the desired precision, as given by the NSE. 

Geweke's method attempts to address the issues of both 
bias and variance. It is available in the CODA package 
(Best, Cowles, and Vines 1995). Like Gelman and Rubin's 
convergence diagnostic, Geweke's is essentially univariate, 
but if g(O) were taken to be -2 times the log of the poste- 
rior density, then it also might be used to investigate conver- 
gence of the joint posterior. It requires only a single sampler 
chain and may be applied with any MCMC method. 

Disadvantages of Geweke's method include its sensitiv- 
ity to the specification of the spectral window. In addition, 
although his diagnostic is quantitative, Geweke does not 
specify a procedure for applying it but instead leaves that 
to the experience and subjective choice of the statistician. 

2.4 Roberts 

Roberts (1992) presented a one-dimensional diagnostic 

intended to assess convergence of the entire joint distribu- 
tion. His method is applicable when the distributions of the 
iterates of the Gibbs sampler have continuous densities. 

Roberts's method requires a symmetrized Gibbs sampler 
algorithm in which each iteration consists of a pass through 
all the full conditionals in a predetermined order, followed 
by a pass back through all of them in the reverse order. 
Roberts defined a function space and an inner product under 
which the transition operator induced by the kernel of such 
a Gibbs sampler chain is self-adjoint. He then proved that 
under certain regularity conditions, 

11If,n f 11 
n? vo 

where j is the norm associated with the specified inner 
product, f(n) is the density of the values generated at the 
nth iteration of the Gibbs sampler, and f is the true target 
joint density. 

Roberts's convergence diagnostic is an unbiased estima- 
tor of Ilf(n) - f 11 + 1. It requires running m parallel revers- 
ible Gibbs sampler chains, all starting at the same initial 
values 0(0), and is computed as 

-_ 1 k(0(1/2), 0(2n-1) 

m(m - 
1)lp f p ) 

where 1 and p are replications of the sampler, 0(1/2) is the 
value obtained after the "forward" half of the first iteration 
of the Ith chain, 0pn) is the value obtained after the nth 
complete iteration of the pth chain, and k is the kernel of 
the "backward" half of the reversible sampler. Normaliz- 
ing constants for all full conditionals, or good approxima- 
tions to them, are needed in computing the numerator of 
the foregoing sum. Roberts suggested graphically evaluat- 
ing the monotonic convergence of values of this diagnostic. 
In the usual case in which the Gibbs sampler is used, be- 
cause the normalizing constant of the density f is unknown, 
the constant toward which the values of the diagnostic are 
converging is also unknown; hence the practitioner can look 
only for stabilization of the values, and the diagnostic does 
not estimate Ilf(n) - f + 1. 

In a subsequent paper, Roberts (1994) modified his diag- 
nostic somewhat, improving its practicality. Writing 

Xn and Xn = Xn v 

he defined the within-chain dependence term Dn = 1/m 
Z 1x and the between-chain interaction term In 

= /m(m - 1) P xn. Roberts showed that E(In) 
< E(Dn), var(In) < var(Dn), and most importantly, E(In) 
= E(Dn) at convergence. He thus recommended choosing 
m = 10 to 20 different starting points (e.g., sampled from 
a distribution overdispersed relative to the target density) 
and monitoring In and Dn until both series are station- 
ary and have similar locations. A reversible sampler must 
still be used, though Roberts noted that a random visita- 
tion scheme or storing dual iterations will also result in the 
required self-adjoint Gibbs transition kernel. 
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Roberts's approach attempts to address bias in estimation 
rather than variance and is evaluated in a graphical way. 
Although the 1992 version depends on the form of the full 
conditionals, the 1994 paper generalizes the technique to 
other MCMC algorithms. Advantages of Roberts's method 
of diagnosing convergence are its rigorous mathematical 
foundation and the fact that it assesses convergence of the 
entire joint distribution rather than of univariate quantities. 
But there are also several pragmatic disadvantages. The re- 
quirement for a reversible sampler makes for more compli- 
cated coding than in the standard Gibbs sampler algorithm 
for the same problem, and the special coding is problem- 
specific rather than generic. The variance of the statis- 
tic is large and may obscure the monotonic convergence. 
Two methods of stabilizing the variance-log transforma- 
tion alnd increasing the number of replicate chains-have 
their own disadvantages. Log-transformed values become 
very volatile when the untransformed statistic is near zero, 
and the larger the number of replicate chains, the slower 
the entire computational process becomes. 

2.5 Ritter and Tanner 

Like Roberts's method, Ritter and Tanner's "Gibbs Stop- 
per" (Ritter and Tanner 1992) is an effort to assess distri- 
butional convergence. The method may be applied either 
with multiple parallel chains or by dividing the output of a 
single long chain into batches. An importance weight is as- 
signed to each vector drawn at each Gibbs sampler iteration. 
Histograms are drawn of the importance weights obtained 
either at each iteration across multiple chains or within each 
batch of a single chain. As with Roberts's method, conver- 
gence is assessed primarily in a graphical way by observing 
when the histogrammed values become tightly clustered, 
although Wei and Tanner (1990) noted that the standard 
deviations of the weights should also be monitored quanti- 
tatively. 

The importance weight w assigned to the vector 

(X(i), X Xi), .X)) drawn at iteration i of the Gibbs sam- 
pler is calculated as 

q (X (i) X (i) x(i)) 

- 'X (i) X (i) x (i)A 
9 It 2 v***v d J 

where q is a function proportional to the joint posterior 
density and gi is the current Gibbs sampler approxima- 
tion to the joint posterior. Whereas q is always available 
in Bayesian problems because the joint posterior density 
is always known up to a normalizing constant, gi must be 
approximated by Monte Carlo integration as follows. Let 
K(O', 0) denote the probability of moving from X(i) = 0' 
to X(i+l) = 0 in one iteration of the Gibbs sampler, which 
is the product of the full conditionals. Then if gi-I is the 
joint density of the sample obtained at iteration i - 1, the 
joint density of the sample obtained at iteration i is given 
by 

9i J K(O',O)gii- (O') dMO'). 

This integral may be approximated by the Monte Carlo 
sum 

m 

gi (0) -1 E K(Oi, 0)l 
j=1 

where the observations 01, 02 .. .. Om may be obtained ei- 
ther from m parallel chains at iteration i - 1 or from a 
batch of size m of consecutive iterates in a single chain. As 
in computing the Roberts diagnostic, exact or approximate 
normalizing constants for all full conditionals are needed 
in the formation of this sum. 

Concerned with distributional convergence, the Gibbs 
Stopper purports to deal with reducing bias, rather than 
variance, in estimating the desired quantities. It is applica- 
ble only with the Gibbs sampler. The required coding is 
problem-specific, and computation of weights can be time- 
intensive, particularly when full conditionals are not stan- 
dard distributions, so that the normalizing constants must 
be estimated. If the Gibbs sampler has reached equilibrium, 
then the value around which the Gibbs Stopper weights sta- 
bilize provides an estimate of the normalizing constant of 
the joint target distribution. 

2.6 Zellner and Min 

With the aim of determining not only whether the 
Gibbs sampler converges in distribution but also whether 
it converges to the correct distribution, Zellner and Min 
(1995) proposed two "Gibbs Sampler Convergence Crite- 
ria" (GSC2) based on conditional probability. Both are ap- 
plicable when the model parameters may be divided into 
two (vector or scalar) parts ae and /, in terms of which 
the joint posterior may be written analytically and for each 
of which explicit and easily sampled posterior condition- 
als may be derived. Then, using marginals P(ae) and P(0) 
estimated by "Rao-Blackwellization" of the Gibbs sampler 
output (see Gelfand and Smith 1990) for a particular value 
of the parameters a,i and /1, the "Gibbs sampler difference 
convergence criterion" may be calculated as 

A(?l)P(l lol) - PWOlP(ailoip) = 71 

The components needed for the "Gibbs sampler ratio con- 
vergence criterion" may be computed using two values of 
the parameters (ar1, /1) and (ar2, /32): 

OA - (c1)P(/1 lcr) 
P(a 32 )P0J2) 

P(/32)P(a21 /32) 
P (/32)P ( ?2 /i2 )' 

and 

0 w(aei, 31)f(a i3, i1 y) 

wF(a2,/32)f(aU2,AJ2 Y) 

where wr is the prior and f is the likelihood. Then if the 
Gibbs sampler has converged, i1 0 and 69A O9B 0. Both 
Bayesian and large-sample sampling theory procedures are 
used to test for equality in these expressions. 
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These convergence diagnostics are intended to address 
bias rather than variance in estimation. They are quanti- 
tative and require only a single sampler chain. Coding is 
problem-specific, and analytical work is needed when the 
factorization into two sets of parameters is not obvious. De- 
spite the name, the diagnostics may be used with MCMC 
samplers other than the Gibbs sampler; however, the class 
of problems to which these diagnostics may be applied is 
limited to those in which the joint posterior may be factored 
as indicated. 

2.7 Liu, Liu, and Rubin 

Like Roberts (1992, 1994), Liu et al. (1992) proposed the 
use of a single statistic, or "global control variable," to as- 
sess the convergence of the full joint posterior distribution. 
The method requires running m parallel chains started from 
dispersed initial values. For each pair of distinct chains i and 
j, the following statistic is calculated at each iteration t: 

U(i,j,t) _ 7r(XUjt) ) K(XUj,`1) X(i,t) ) 

7r(X(i,t) ) K(XUjxt-1) XUjx0)) 

where X(U,t) represents the vector of parameters generated 
at iteration t of chain j and K(X, Y) is defined as in Section 
2.5. Liu et al. proved that 

Eo(U(iit)) = var,,(Pt(X) + 1 

where the expectation on the left side is with respect to 
the distribution of the initial values and the variance on the 
right is with respect to the target distribution. 

Liu et al. suggested two ways of using this "global con- 
trol variable." One is to divide the parallel chains into m/2 
independent pairs (i.e., pairs that share no common chain), 
and to apply the method of Gelman and Rubin described 
in Section 2.1 to the sequences of U values calculated at 
each iteration for each pair. The other is to plot the sample 
cumulative distribution function of the U values aggregated 
across parallel chains at the same iteration. 

An important problem with the method is that the vari- 
ance of the "control variable" may be unacceptably large, 
even infinite. One solution is to log transform the "global 
control variable" and apply the method of Gelman and Ru- 
bin to that; however, the expected value of the log transform 
is less interpretable than that of the original "global control 
variable." Another remedy is to use a very large number of 
parallel chains, but this of course may be infeasible due to 
computational time in complex models. 

Liu et al.'s method is similar to the methods of Ritter and 
Tanner and of Roberts in that it requires problem-specific 
coding, is aimed at reducing bias rather than variance in 
estimation, and is specific to the Gibbs sampler. 

2.8- Garren and Smith 

Like Roberts (1992), Garren and Smith (1993) attacked 
the convergence diagnosis problem from a rigorous math- 
ematical perspective. Because the convergence rate of an 
MCMC algorithm is governed by how close the second- 

largest eigenvalue of its transition matrix (or kernel density) 
is to 1, these authors attempted to estimate this eigenvalue 
directly from the sample output. Reminiscent of Raftery 
and Lewis (1992), they defined z(i) = I (X(i) E E) for some 
specified subset E of the state space, so that p(i) _ E(Z(O)) 
is the posterior probability of E at iteration i. Assuming that 
the transition operator is self-adjoint and Hilbert-Schmidt 
(Schervish and Carlin 1992), we may write 

p(i) =p+a2A2 +( 1A3 1i)v 

where p = limi, p(i), a2 is some real number, and I A3 

< A2 I< A 1 are the three largest eigenvalues of the 
kernel density. Note that this strict inequality among the 
eigenvalues (a "spectral gap") need not occur for samples 
on uncountable state spaces; in fact, it will typically not 
occur for Metropolis-Hastings samplers, where candidates 
are not accepted with probability 1 (Chan and Geyer 1994). 

Now suppose that we have m parallel sampling chains 
(all started from the same point in the state space), burn- 
in period K, and total run length N, where 1 < K < N. 
For i = (K + 1), . , N, estimate p(i) as Z(i), the sample 
proportion of times that X(i) E E over the m replications. 
Then take the value 0 = &(, A2) that minimizes 

N 

S(p, a2, A2)= (Z-() - p-a2A' )2 

i=K+l 

as a nonlinear least squares estimate of 0. Garren and 
Smith showed that 0 is asymptotically normal and ob- 
tained explicit expressions for its asymptotic mean and 
variance. Their diagnostic procedure then involves plotting 
the sample values of the three components of 0 and their 
corresponding approximate 95% confidence bands for K 
= 1, 2, .. ., and looking for the point at which the system- 
atic bias in the estimates disappears. Because this may be 
difficult to identify, Garren and Smith also suggested look- 
ing for the point where the estimates become unstable (and 
the confidence bands widen dramatically). This value of K 
is then chosen as the proper amount of sampler burn-in. 

Garren and Smith's method addresses only burn-in (bias) 
and not the issue of variance in estimation. It is multivariate 
in a limited sense, through the set of interest E. Its depen- 
dence on the existence of a spectral gap limits its applica- 
bility to the Gibbs sampler. It involves a very large number 
of parallel chains (the authors used m = 250 and 5,000 in 
their examples), but because they must all share the same 
starting point, this extra computational effort does not serve 
to explore different regions of the state space (though the 
authors stated that a multistart version of their algorithm 
should be possible). Finally, the authors' own empirical re- 
sults are disappointing, involving substantial methodologi- 
cal and computational labor to provide plots that are very 
difficult to interpret (the point at which the estimates be- 
come "unstable" is open to question). 

2.9 Johnson 

Johnson (1994) used the notion of convergence as the 
mixing of chains initialized from an overdispersed starting 
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distribution, but from a nonstochastic point of view. Sup- 
pose that a Gibbs sampling chain can be created from a 
stream of uniform random deviates {ui} (e.g., using the in- 
version method for each full conditional distribution). For 
countable state spaces, Johnson showed that parallel sam- 
pling chains started from different locations but based on 
the same stream of uniform deviates must all eventually 
converge to a single sample path. He thus reasoned that 
when several chains started from an overdispersed start- 
ing distribution all agree to some tolerance E > 0, the 
sampler has indeed "forgotten" where it started and thus 
must have converged. More conservatively, the process may 
be repeated with several different random number streams 
and/or sets of starting points, and convergence time defined 
as the median or even maximum time to overlap. 

Johnson's method is quantitative, and multivariate in the 
sense that chain overlap can be precisely verified in arbitrar- 
ily high dimensions, but in practice convergence of univari- 
ate quantities is often monitored graphically. The method 
does not directly address the bias issue, though Johnson 
did assert that convergence time can also be thought of as 
an upper bound on the time required to obtain approxi- 
mately independent samples. Because Johnson's method is 
essentially a deterministic version of Gelman and Rubin's 
popular approach, it also relies on an adequately overdis- 
persed starting distribution; indeed, Johnson recommended 
the preliminary mode-finding approach of Gelman and Ru- 
bin for initializing the parallel chains. For slowly mixing 
or highly multimodal samplers, the addition of one more 
chain can result in a substantial increase in time to over- 
lap. Finally, in fully conjugate sampling settings, a common 
stream of uniform random numbers will typically arise from 
the use of the same seed for the random number generator 
in each chain, so that the user need not perform the in- 
version explicitly. For nonconjugate full conditionals, how- 
ever, implementation may be complicated. For Metropolis- 
Hastings-type algorithms, the approach is typically inappli- 
cable, though it could be used with an independence chain 
Hastings algorithm by using the {ui} sequence in the re- 
jection steps and a second, independent sequence {vi} to 
determine the candidates. 

2.10 Heidelberger and Welch and Schruben, 
Singh, and Tierney 

Combining the method of Schruben (1982) and Schruben, 
Singh, and Tierney (1983) for detecting nonstationarity in 
simulation output with a spectral analysis approach to esti- 
mating the variance of the sample mean, Heidelberger and 
Welch (1983) devised a comprehensive procedure for gen- 
erating a confidence interval of prespecified width for the 
mean when there is an "initial transient"-that is, when 
the simulation does not start off in its stationary distribu- 
tion. Their procedure is to be applied to a single chain. 
Although their approach antedates the Gibbs sampler and 
was designed for use in discrete-event simulation work in 
the operations research field, it is applicable to the output 
of the Gibbs sampler and other MCMC algorithms. 

The approach of Schruben (1982) and Schruben et al. 
(1983) to diagnosing convergence is a hypothesis test based 
on Brownian bridge theory. The null hypothesis is that the 
sequence of iterates is from a stationary process that is 0 
mixing. In Markov chains, this is equivalent to uniform er- 
godicity, a condition that essentially applies only to compact 
state spaces. But it appears that the approach would still 
be valid for chains that are merely geometrically ergodic 
(Meyn and Tweedie 1993, sec. 17.4.2), a condition satisfied 
by many convergent Gibbs and Metropolis-Hastings algo- 
rithms on general state spaces. If Y(i) is the jth iterate in 
the output sequence, S(O) is the spectral density of the se- 
quence evaluated at zero, [*] is the greatest integer less than 
or equal to ., n is the total number of iterations, and 

To = 0, 

k 

Tk=ZY(j), k> 1 
j=1 

En y(i) 
y 

11- 2 n 
and 

Bn(t)= -T[t] [t]Y<t< 

then under the null hypothesis, for large n, Bn= {Bn (t), 
0 < t < 1} is distributed approximately as a Brownian 
bridge. Thus the Cramer-von Mises statistic, 

XBn(t)2 dt, 

may be used to test the hypothesis. Because S(0) is un- 
known, it must be estimated from the data and the estimate 
used in computing Bn (t). 

Heidelberger and Welch incorporated this test for station- 
arity into the following process for detecting and eliminat- 
ing an initial transient, generating confidence intervals, and 
controlling run length. The user of the method must spec- 
ify two parameters: j,ax, the maximum number of itera- 
tions that can be run, and E, the desired relative half-width 
for confidence intervals. An initial number of iterations, 
il = ljmax, is run. Because a spectral density estimate of 
S(0) based on a sequence that contained an initial transient 
would tend to be too large, thus reducing the size of the 
test statistic and consequently decreasing the power of the 
test, an estimate of S(0) based on the second half of this 
run is used to perform Schruben's stationarity test on the 
entire run. If the null hypothesis is rejected, then the first 
10% of the iterations are discarded and the stationarity test 
is repeated. If the null hypothesis is rejected again, then the 
test is repeated after an additional 10% of the iterations are 
discarded from the beginning of the run. The process con- 
tinues until either a portion of the output of length greater 
than or equal to .5ji is found for which the stationarity test 
is passed or 50% of the iterations have been discarded and 
the test still rejects. In the former case, the spectral density 
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Table 1. Summary of Convergence Diagnostics 

Single or Univariate/ Ease 
Quantitative multiple full joint Bias! of 

Method graphical chains Theoretical basis distribution variance Applicability use 

Gelman and Rubin (1992) Quantitative Multiple Large-sample normal theory Univariate Bias Any MCMC a 

Raftery and Lewis (1992) Quantitative Single 2-state Markov chain theory Univariate Both Any MCMC a 

Geweke (1992) Quantitative Single Spectral analysis Univariate Both Any MCMC a 

Roberts (1992, 1994) Graphical Multiple Probability theory Joint Bias Some c 

Ritter and Tanner (1992) Graphical Either Importance weighting Joint Bias Gibbs only c 

Zellner and Min (1995) Quantitative Single Conditional probability Joint Bias Some d 

Liu, Liu, and Rubin (1992) Both Multiple Probability theory Joint Bias Gibbs only c 

Garren and Smith (1993) Qualitative Multiple Eigenvalue analysis Univariate Bias Gibbs only b 

Johnson (1994) Quantitative Multiple Fixed-point theorems Joint Bias Some a or c 

Heidelberger and Welch Quantitative Single Brownian bridge, spectral Univariate Both Any MCMC a 
(1983) analysis 

Mykland, Tierney, and Graphical Single Markov chain regeneration Joint Bias Some d 
Yu (1995) 

Yu (1994) Graphical Single L1 distance, kernel density Joint Bias Some d 
estimation 

Yu and Mykland (1994) Graphical Single Cusum path plots Univariate Both Any MCMC b 

NOTE: When all full conditionals are conjugate, Johnson's method requires no additional coding beyond that required for implementing the regular Gibbs sampler. Otherwise, Johnson's method 
may require special, problem-specific coding to use the inversion algorithm to generate from the nonconjugate full conditionals. 

S(O) is reestimated from the entire portion of the output for 
which the stationarity test was passed, and the standard er- 

ror of the mean is estimated as S(O)/mp, where np is the 
length of the retained output. If the half-width of the confi- 
dence interval generated accordingly is less than E times the 
sample mean of the retained iterates, then the process stops 
and sample mean and confidence interval are reported. 

If either the stationarity test was failed or the confidence 
interval was too wide, then the iterates that were removed 
from the beginning of the sequence during the stationarity 
tests are restored and more iterations are run to obtain a to- 
tal run length of j2 = 1.5jj. The stationarity test/confidence 
interval generation procedure is then applied to the new 
longer sequence in the same manner as earlier, without re- 
gard for the results of the stationarity test on the initial 
sequence. If a stationary portion still is not found, or if a 
sufficiently narrow confidence interval still is not obtained, 
then the process may be repeated with longer and longer 
run lengths ik, where each jk+l = min(l.5jk, jmax), until 
either an acceptable confidence interval is generated or the 
run length reaches jmax. If the run length reaches jmax, then 
the stationarity test is performed. If it is failed, then no con- 
fidence interval can be formed for the mean. If the test is 
passed, then a confidence interval is generated, which may 
or may not meet the accuracy criterion E. 

Heidelberger and Welch tested their procedure on a vari- 
ety of discrete-event simulations with different strengths 
and lengths of initial transients and concluded that "the 
procedure with transient removal produced point estimates 
with less bias and narrower confidence intervals with more 
proper coverage from shorter simulations than the proce- 

dure without transient removal" (1983, p. 1143). But they 
found that the stationarity test had little power to detect an 
initial transient when the run length was shorter than the 
extent of the initial transient. 

2.11 Mykland, Tierney, and Yu 

The mathematically rigorous method of Mykland et al. 
(1995) is based on regenerative simulation. A stochastic 
process, such as a Markov chain sampler, is called "regen- 
erative" if there exist times To < T, < ... such that at 
each Ti, the future of the process is independent of the past 
and identically distributed. "Tours"-sets of iterations be- 
tween regeneration times-are independent and identically 
distributed. Assuming that a single chain has been run for a 
fixed number of tours n, Mykland et al. proposed plotting 
Ti/Tn on the y axis versus i/n on the x axis. If the chain 
has reached equilibrium, then this plot, which they called a 
"scaled regeneration quantile" (SRQ) plot, should approxi- 
mate a straight line through the origin with slope equal to 
1. If there are large deviations from a straight line (i.e., if 
some tours are much longer than others), then either the 
sampler simply must be run longer or the examination of 
the states traversed during long tours might suggest ways 
to improve its performance. 

To implement this diagnostic, analytical work and 
problem-specific coding are required either to generate 
a Markov chain with recognizable regeneration times or, 
more likely, to identify regeneration times in the output of 
a sampler that already has been run. Let {Xn: n = 0,1, . . . 
be the output of an irreducible, Harris-recurrent Markov 
chain on a state space E with transition kernel P and in- 
variant distribution p. Then a function s(x) and a probability 
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Figure 1. Plots for Trivariate Normals, High Correlations. (a) G & R = 1.23, 1.53; (b) G = -5.17, H&W= ---, lag 1 autocorrelation .95; (c) 
G = -4, H&W = 300, lag 1 autocorrelation .92; (d) G = -1.5, H&W= ---, lag 1 autocorrelation .96; (e) G = -11.67, H&W= ---, lag 1 
autocorrelation .95; (f) G = 3.73, H&W = ---, lag 1 autocorrelation .95. 

measure v(dy) must be found satisfying 

a Ir(s) J s(x)rr (dx) > 0 and P(x, A) > s(x)v(A) 

for all points x in E and all sets A in E. Together, s(x) and vi 

constitute an "atom" of the kernel P. Then a corresponding 
sequence of Bernoulli variables {S,} must be generated 
from the conditional distribution 

P(Sn = 1 { Xn = Xi Xn+l-) = ) s(x)v(dy) 
P (X, dy) 

The iterations k such that Sk = 1 are regeneration times for 
the chain. Although this method is theoretically applicable 
to any MCMC algorithm, it will not always be possible to 
find an atom or to perform the needed variate generations. 
Mykland et al. provided examples of how to find an atom 
for certain special cases of Metropolis-Hastings and Gibbs 
chains. Their method addresses bias rather than variance 
and assesses convergence of the joint target distribution. 

2.12 Yu 

Yu's (1994) diagnostic approach seeks to monitor the con- 
vergence of the full joint distribution by constructing two 
plots based on the output of a single chain from any MCMC 
algorithm. She stated that although in general diagnostics 
based on a single chain may be misleading, running multi- 

ple parallel chains is not the only solution. She proposed as 
an alternative using the information contained in the unnor- 
malized target density in combination with the output of a 
single chain; indeed, in many problems for which MCMC 
methods are used, particularly for computing Bayesian pos- 
terior densities, the target density is known up to the nor- 
malizing constant. Yu's method assumes geometric ergo- 
dicity of the Markov chain. 

If {Xn, n = 0, 1, 2,. ..} is a Markov chain sampler with 
d-dimensional target density 7r(x) = Og(x), with g known 
and 0 the inverse of the unknown normalization constant, 
then Yu proposed the following procedure to construct two 
plots for monitoring convergence: 

Step 1. Choose a one-dimensional bounded symmetric 
kernel K(.) such that fRd K (IxI ) dx = 1, and define h(*) 
to be the d-dimensional kernel with bandwidth ar > 0 such 
that 

4d K(r), 

where . I is the Euclidean norm in Rd. Then the kernel 
estimator of 7r(Q) with bandwidth bn is 

I 1 n 
rn (x) =!-Ehb.(X-Xi), 

i=l 
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Table 2. Raftery and Lewis's Method Applied to Trivariate Normal With High Correlations 

q=.025 q=.25 q=.50 

Chain k nburn nprec k nburn nprec k nburn nprec 

1 1 26 1,983 2 34 29,442 2 36 44,252 
2 1 19 1,662 2 36 32,758 2 36 44,252 
3 1 41 4,346 2 56 48,128 1 35 41,142 
4 1 19 2,173 3 39 35,811 3 72 88,671 
5 2 34 3,726 1 26 22,674 2 38 48,096 

and based on this kernel estimator with fixed bandwidth a, 
an efficient estimator of the inverse of the normalization 
constant is 

1 h, (Xi-Xj) 

ff n(n- 1) E g(Xj) 

Yu proved that Og(x) converges more quickly to 7r(x) than 
does the kernel estimator n(x). With the Gibbs sampler 
specifically, an alternative estimator of 7r(x) that converges 
more quickly than the kernel estimator is the product of 
a mixture estimator for a marginal density (Gelfand and 
Smith 1990) times the known form of a conditional density. 

Step 2. Generate Xo from a well-dispersed starting dis- 
tribution, and run a single chain Xn for n = 1, 2, . .. 

Step 3. Choose a compact subset A of the support of 
the target distribution, which contains those points x where 

Chain 1 Iters 1 - 100 

o= - 
o 0 

0 

0 1 2 3 4 5 
Mean 0.82; Std dev 0.71 

Chain 1 Iters 101 - 200 

0 
0e Chi .@tdv. 

o - 
00 - 

cY 
0 

0 1 2 3 4 5 
Mean 0.87; Std dev 0.3 

Chain 1 Iters 201 - 300 

00 

r l - 

0 _ 
0 1 2 3 4 5 

Mean 0.71; Std dev 0.44 

Chain 1 Iters 301 - 400 

00 

0 0 

0 1 2 3 4 5 
Mean 0.79; Std dev 0.46 

Chain 1 Iters 401 - 500 

0 12 3 4 5 
Mean 0.94; Std dev 0.67 

discrepancies between n (x) and either Og(x) or the Gibbs 
alternative are most likely. Yu suggested that Gelman and 
Rubin's method for choosing an overdispersed starting dis- 
tribution might be helpful in choosing A. 

Step 4. Based on computing resources, choose an incre- 
ment nstep defining the intervals at which convergence will 
be monitored. 

Step 5. At intervals n = nstep, 2nstep, 3nstep, . . ., select 
the optimal bandwidth bn for the kernel density estimator 
using a data-driven method proposed by Yu, compute 0, and 
use numerical integration to evaluate the following estima- 
tor of the L1 distance over A between the kernel density 
estimator and 7r: 

In (A) I X f*n (x) - g (x) dx. 

Chain 1 Iters 1 - 500 

O ..................... . _ 
0 2 3 4 5 

Mean 0.96; Std dev 0.41 

Chain 1 Iters 501 - 1000 

0 ._. .. ....... 

0 1 2 3 4 5 
Mean 0.97; Std dev 0.47 

Figure 2. Histograms of Gibbs Stopper Statistics, Multivariate Normal, High Correlations. 
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Figure 3. Roberts (1992, 1994) Convergence Diagnostics for Trivariate Normal, High Correlations. (a) Roberts (1992) convergence diagnostic, 
chains started 2 standard deviations below mean; (b) Roberts (1992) convergence diagnostic, chains started at mean; (c) Roberts (1992) conver- 
gence diagnostic, chains started 2 standard deviations above mean; (d) Smoothed log Roberts (1994) convergence diagnostic: solid line, log Dn; 
dotted line, log In. 

In addition, compute e>(A) = 2 2/7[fRd K2(ltl) dt]1/2 

fA(0g(x))1/2 dx. Then 

I(A) 

eff (A) =2e- (A) 

is an estimator of the ratio of the expected L1 error of 
the kernel density estimator based on the Markov chain 
output to that of the same kernel estimator based on an iid 
sample. With the Gibbs sampler, the appropriate product of 

a marginal and a conditional density would be used instead 
of Og(x) in the foregoing expressions. 

Step 6. At n = nstep, 2nstep, 3nstep ..., construct two 
convergence monitoring plots: the L1 error plot of I'n(A) 
versus n, and the efficiency plot of effn (A) versus n. Val- 
ues of In (A) greater than .3 show that the chain has not 
produced a satisfactory sample from 7r(x). Failure of the 
efficiency plot to stabilize around a value less than 2 sug- 
gests slow mixing. 

Yu warned that both plots can falsely indicate conver- 
gence if both the sample path and the chosen set A omit 

Table 3. Gibbs Sampler Difference Convergence Criterion Applied to Trivariate Normal 
with High Correlations. All Table Entries x 104 

Parameter 
values 
Chain (0.0, 0.0, 0.0) (-1.0, -1.0, 1.0) (0.0, -5.0, 10, 0) (-1.0, 0.0, 10.0) 

1 -6.67 (+8.46) .36 (+.37) 1.21 (+5.05)* -.060 (+.013) 
2 2.83 (+8.88)* -.25 (+ 39) 5.33 (+5.91) -.23 (+-13) 
3 10.04 (+7.19) -.75 (+.36) .60 (+5.29) .002 (+.011) 
4 -6.33 (+8.77) -.32 (+.42) -4.28 (+6.24)* -.044 (+-011) 
5 -2.66 (+6.57) -2.00 (+.04) 14.70 (+9.29) .059 (+.009) 

* The 95% credible set includes zero. 
NOTE: Standard errors in parentheses. 
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Figure 4. Liu, Liu, and Rub/n Plots for Trivariate Normal, High Correlations, Log-Transformed U Statistics. (a) G&R = 1.33, 1.89; (b) iteration 
100; (c) iteration 200; (d) iteration 300; (e) iteration 400; (f) iteration 500. 

the same important mode of 7r(x). If the dimension d is 
large, then computing resources may preclude integrating 
over a compact set A, and it may be necessary instead to 
choose as many points xj as feasible at which to evalu- 
ate (*n(Xj) - fOg(xj)). To date, this method has not been 
illustrated for dimensions larger than two. 

2.13 Yu and Mykiand 

Yu and Mykland (1994) proposed a graphical procedure 
based on cusum path plots applied to a univariate summary 
statistic (such as a single parameter) from a single chain 
from any MCMC sampler. Another method, such as a se- 

0 
cq 1 

co I 

.0 

clJ 

0 100 200 300 400 500 

Iteration 

Figure 5. Johnson Plots for Trivariate Normals, High Correlations. 

quential plot of the values of the summary statistic from 
iteration to iteration, first must be used to determine the 
number of burn-in iterations no to discard. Cusum path 
plots are then constructed as follows for iteration no + 1 
to iteration n, the last iteration generated. 

If the chosen summary statistic is designated T(X), then 
the estimate of its mean based on the retained iterates is 

1 n 

a = n -no 
E T(X(A)), 

-=no+l 

and the observed cusum or partial sum is 

t 
St= [T(X(j)) -a t = no + 1...,n. 

j=no+l 

The cusum path plot is obtained by plotting {St} against 
t, t = no + ..... n, and connecting the successive points. 
Such a plot will always begin and end at zero. 

Yu and Mykland showed that the slower-mixing ("stick- 
ier") the MCMC process, the smoother the cusum plot will 
be and the farther it will wander from zero; conversely, a 
"hairy" cusum path plot indicates a fast-mixing chain. They 
suggested comparing the cusum plot from an MCMC sam- 
pler to a "benchmark" cusum path plot obtained from iid 
variates generated from a normal distribution with its mean 
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Figure 6. Cusum Path Plots for Trivariate Normals, High Correlations. (a) X2, chain 1; (b) X2, chain 2; (c) X2, chain 3; (d) X2, chain 4; (e) X2, 

chain 5. 

and variance matched to the sample mean and variance of 
the MCMC iterates. 

Yu and Mykland posited that the cusum plot may ob- 
viate the need in convergence diagnosis for additional in- 
formation beyond that contained in the output of a single 
chain. But they stated that, like other convergence diagnos- 
tics, their method may fail when some regions of the sample 
space are much slower-mixing than others. 

Clearly, Yu and Mykland's approach is not a stand-alone 
diagnostic, because another method is required for deter- 
mining burn-in. It may be useful in identifying samplers 
that are so slow-mixing that an alternative algorithm or 
parameterization should be sought if the entire parameter 
space is to be traversed in a reasonable number of itera- 
tions. Because it assess dependence between iterations, it 
indirectly addresses variance as well as bias in estimation. 

Table 4. Means and Standard Errors Estimated from Gibbs Samples: Trivariate Normals, High Correlations, Iterations 501-1,000 

Pooled sample of five chains, n = 2,500 

Batch means method 

25 batches, size 100 10 batches, size 250 

Naive Standard Lag 1 Standard Lag 1 
Mean standard error error autocorrelation error autocorrelation 

-.925 .092 .546 .493 .533 .100 

Individual chains, n = 500 

25 batches, size 20 10 batches, size 50 

Naive Standard Lag 1 Standard Lag 1 Time series 
Chain Mean standard error error autocorrelation error autocorrelation NSE 

1 1.744 .238 .968 .511 1.113 .159 .579 
2 -.891 .156 .507 .045 .491 -.007 .339 
3 -.818 .231 .927 .550 1.281 -.028 .574 
4 -1.603 .163 .547 .221 .557 -.229 .389 
5 -3.056 .166 .539 .301 .677 .227 .402 
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Figure 7. Plots for Bimodal Mixture of Trivariate Normals. (a) G& R = 6.09, 10.4 7; (b) G =-24, H& W= - --, lag 1 autocorrelation .94; (c) G 
=-2.92, H& W= - --, lag 1 autocorrelation .93; (d) G=-3.9, H& W= - --, lag 1 correlation .97; (e) G = 2, H& W= 600, lag 1 autocorrelation 

.92; (f) G = 9.2 1, H& W= - --, lag 1 autocorrelation .9. 

The straightforward computer code required to produce 
cusum path plots could be written once and applied to any 
problem. 

Table 1 summarizes the following features of the conver- 
gence diagnostics: 

* Quantitative/Graphical: Is the measure of convergence 
quantitative or graphical? 

* Single or Multiple Chains: Does the method require a 
single MCMC chain or multiple parallel chains? 

* Theoretical Basis: What is the theoretical basis for the 
method? 

* Univariate/Full Joint Distribution: Does the method 
apply to univariate quantities or to the full joint poste- 
rior distribution? 

* Bias/Variance: Is the method intended to address bias 
(i.e., the distance of the estimates of quantities of inter- 
est obtained at a particular iteration from the true val- 
ues under the target distribution) or variance (i.e., the 
quality of those estimates)? We caution that a method's 
intent and its actual result may differ; see Sections 3.2 
and 4.2 for illustrations. 

* Applicability: Can the method be applied to the output 
of any MCMC algorithm, or is it applicable only to 
the Gibbs sampler? An entry of "some" in this column 
indicates that although the method is applicable to at 

least some MCMC algorithms in addition to the Gibbs 
sampler, there are restrictions as to type of either target 
distribution or generating algorithm with which it may 
be used. 

- Ease of Use: How easy to use the method is, on the 
following scale: 

a. Generic computer code is available to implement it. 
b. Generic code may be written once and applied to the 

MCMC output for any problem. 
c. Problem-specific code must be written. 
d. Analytical work, as well as problem-specific code, is 

needed. 

3. NUMERICAL ILLUSTRATION: TRIVARIATE 
NORMAL WITH HIGH CORRELATIONS 

3.1 Simulation Details 

We first tested 10 of the 13 convergence diagnostics on 
a trivariate normal with high correlations of .90, .90, and 
.98; specifically, 

l0 ~ 1.0 4.5 9.0 
N 0( 1 4.5 25.0 49.0 

< 0 9.0 49.0 100.0 

To test whether the various methods could detect conver- 
gence failure or ambiguity, we ran the samplers for rela- 
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Figure 8. Plots for Bimodal Mixture of Trivariate Normals, Alternate Starting Values. (a) G&R =1. 08, 1.23; (b) G =-.42, H& W=-, lag 1 
autocorrelation .87; (c) G = 1.37, H& W= 1,000; lag 1 autocorrelation .92; (d) G =-77, H&W= - --, lag 1 autocorrelation .9 1; (e) G =-19, 
H& W = 600, lag 1 autocorrelation.9. 

tively few iterations. Because their implementation is too 
complex for general use in applied work, the methods of 
Garren and Smith (1993), Mykland et al. (1995), and Yu 
(1994) were not tested. 

For the parameter X2, Figure 1 shows the traces of five 
parallel chains run for 500 iterations and the associated Gel- 
man and Rubin shrink factors, Geweke convergence diag- 
nostics, and results of Heidelberger and Welch's method. 
Results for the other two parameters were similar. The high 
correlations among the parameters cause the traces of dif- 
ferent parameters in the same chain to be virtually identi- 
cal in shape, though different in scale. Gelman and Rubin's 
shrink factor suggests that the chains have not completely 
mixed and that running additional iterations would appre- 
ciably improve the sharpness of estimation. Despite the fact 
that the visual impression given by the trace is that stabi- 
lization has not occurred, Geweke's diagnostic for the third 

chain suggests satisfactory convergence; however, for the 
other chains, the values of the Geweke diagnostic for all 
three parameters are well outside the range of .95 probabil- 
ity for standard normal variates. As a check, we extended 
the same 5 chains to a total of 1,000 iterations. Here Gel- 
man and Rubin's shrink factors suggest improved conver- 
gence. Geweke's diagnostic applied to iterations 501-1,000 
suggests satisfactory convergence of all parameters in all 
chains except chain 1. 

We performed Heidelberger and Welch's process on each 
individual chain, using the 500 iterates already run as both 
the initial stopping point ji and the maximum run length 
jmax We used the time series functions in S-Plus to com- 
pute S(O) and numerical integration to compute the value 
of the Cramer-von Mises statistic; we considered the sta- 
tionarity test to have been passed if the result was less than 
.46, the .95 quantile for the Cramer-von Mises statistic. 

Table 5. Raftery and Lewis's Method Applied to Bimodal Mixture 

q= .025 q= .25 q= .50 

Chain k nburn nprec k nburn nprec k nburn nprec 

1 1 15 1,788 3 45 42,111 1 37 42,762 
2 1 30 3,218 1 35 28,833 1 34 39,744 
3 1 18 2,012 1 59 47,828 2 54 63,652 
4 1 21 2,299 4 64 58,896 3 57 71,833 
5 1 30 3,218 1 47 37,657 4 64 80,180 
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Figure 9. Histograms of Log Gibbs Stopper Statistics, Bimodal Mixture. 

The number labeled "H&W=" associated with graph for 
each individual chain in Figure 1 is the number of iterates 
that remained when the stationarity test was passed. "H&W 
= -" indicates that a stationary portion of length at least 
half the total run length was not found. For each parameter 
in chain 2, Heidelberger and Welch's procedure determined 
that after discarding the initial 200 iterations, the remain- 
ing 300 iterates formed a stationary sequence. The graphs 
of the individual chains in Figure 1 are also annotated with 
the lag 1 autocorrelations within the respective chains, all 
of which are quite large. 

Table 2 presents the results of running an S-Plus im- 
plementation of Raftery and Lewis's method on these five 
chains for the parameter X2 (Best et al. 1995). The three 
sets of columns correspond to values of q equal to .025, .25, 
and .50. In all cases, r = .01, s = .90, and 6 = .001. The 
fact that k is usually larger than 1 and that "nprec" is much 
larger than the minimum sample size that would be required 
if the observations were independent, suggests high auto- 
correlations within the chains. Indeed, when there are high 
correlations among parameters, the fact that the Gibbs sam- 
pler algorithm is based on full conditionals results in high 
autocorrelations within chains, as had been noted in Fig- 
ure 1. There is no apparent relationship between the values 
of Geweke's convergence diagnostic, which indicates good 
convergence of chain 3, and Raftery and Lewis's results. 

In calculating Gibbs Stopper weights, Cui et al. (1992) ad- 
vocated using small batch sizes (perhaps 50-100) for early 
iterations in a chain and moving to progressively larger 
batch sizes for later iterations. The first column of Figure 2 
shows histograms as well as means and standard deviations 
of the Gibbs Stopper statistic for batches of size 100 for the 
first 500 iterations of the first chain. Although the weights 
are clustered around 1.0 in all histograms, the dispersion is 
much greater than that observed for uncorrelated samples, 
and the trend toward tighter clustering in later batches is not 
monotonic. The second column of the figure shows similar 
plots for batches of size 500 covering 1,000 iterations of 
the same chain. The means of these larger batches are much 
closer to the true normalization constant, 1.0. Clearly, the 
choice of batch size affects the interpretation of diagnostic. 

Roberts's (1992) method was applied to the trivariate nor- 
mal problem with high correlations by running 1,000 iter- 
ations of the reversible sampler for 10 replications of each 
of 3 starting points. The values of the resulting statistics are 
shown in Figure 3, a-c. For the chains started two standard 
deviations away from the mean, the visual impression is of 
rapid convergence in roughly 50 iterations, but from there 
on there are frequent excursions away from the value of 1.0. 
For the chains started at the mean, the statistic starts much 
nearer to 1.0 than in the other chains (2.2 versus 15-20), but 
the values do not move closer to 1.0 with successive itera- 
tions. Figure 3d shows Roberts's new (1994) diagnostic cal- 
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culated from 11 chains started from dispersed initial values 
arranged symmetrically around the mean. The plotted lines 
are "lowess" smooths (Cleveland 1979) of log-transformed 
In and Dn values. The fact that both sequences appear to 
stabilize and become equal after about 50 iterations sug- 
gests very rapid convergence. 

Table 3 shows Zellner and Min's (1995) Gibbs sampler 
difference convergence criterion calculated for each chain 
at four sets of parameter values. All table entries have been 
multiplied by 104. The values in the last column are very 
small because the last combination of parameter values has 
very low probability given the mean structure and high cor- 
relations in this example; thus p(ac13) and p(/3 ca) are almost 
zero. Thus judicious choices for the values of ae and 3 at 
which to evaluate this convergence diagnostic, as well as 
the use of credible sets rather than some predetermined 
criterion for "small," clearly are essential. It is not clear 
what conclusions should be drawn regarding convergence 
of chains 1 and 3-5, for each of which some of the pa- 
rameter values produced 95% credible sets containing zero 
and others did not. Perhaps a larger posterior sample would 
clarify matters, because this would increase the criterion's 
power to detect differences from zero, but the proper size 
for such a sample is not clear. 

Results of applying Liu et al.'s (1992) method to the 
trivariate normal with high correlations are presented in 
Figure 4. The traces of the values from four independent 
chains do not indicate "mixing" or "settling down," and 
Gelman and Rubin's diagnostic applied to them suggests 
a need for additional iterations. The plots of the empiri- 
cal cdf, here taken every 100th iteration, likewise do not 
indicate convergence toward a consistent pattern. 

Figure 5 shows traces of five chains run from dispersed 
starting values but using the same random number seed for 
every chain as required for Johnson's (1994) method. The 
five chains converge to a single sample path within 150 
iterations. 

Yu and Mykland's (1994) diagnostic for X2 in all five 
chains is shown in Figure 6. The solid lines are the cusum 
path plots for the Gibbs iterates, and the dotted lines are 
the benchmark plots. The smoothness and large excursions 
away from zero in the Gibbs sampler plots are indicative 
of slow mixing. 

Table 4 shows the means and standard errors estimated 
from Gibbs sampler output for X2 from iterations 501- 
1,000. The distances of the estimates of means for the three 
parameters from their true values of zero make clear that 
these iterates have not converged to a sample from the true 
target distribution and that there is substantial bias in esti- 
mation based on them. Due to the autocorrelations within 
chains, the standard errors produced by the three methods 
are quite different. The naive standard errors approximate 
the target standard deviations over the square root of n, and 
are too small. We were unable to find a batch size that con- 
sistently kept autocorrelations within batches lower than 
.05, although using 10 batches came close. But the stan- 
dard error estimates based on only 10 batches are likely to 
be inaccurate. The time series numeric standard errors may 

provide a good compromise, but more likely are too small. 
Many of the estimated means are not within two standard 
errors of the truth, even using the most conservative esti- 
mates of standard error. 

3.2 Comparative Remarks 

Raftery and Lewis's (1992) method indicates that 1,000- 
4,000 iterations are needed for the various chains and pa- 
rameters to estimate the .025 quantile to the specified ac- 
curacy. Estimates of this quantile based on iterations 501- 
1,000 fell into the correct interval 9 out of the possible 
15 times. In this example, Geweke's diagnostic appears to 
be premature in diagnosing convergence in four of the five 
chains (not shown for 1,000 iterations). That Gelman and 
Rubin's (1992) shrink factors are as near 1 as they are may 
be consistent with the fact that, for the pooled sample, all 
means are within two batch means method standard errors 
of the truth; however, if the starting points had not been cho- 
sen with prior knowledge of the true joint posterior, then the 
pooled sample might well have done no better than the indi- 
vidual chains. The results of some of the other diagnostics 
are difficult to interpret. Values of Roberts's (1992) diag- 
nostic and the Gibbs Stopper are extremely variable and do 
not show a monotonic trend, whereas Roberts's (1994) diag- 
nostic indicates very rapid convergence. Zellner and Min's 
(1995) diagnostic gives different results depending on the 
point at which it is evaluated. Liu et al.'s (1992) diagnostic, 
after log transformation, does appear to give clear evidence 
of convergence failure, whereas Johnson's (1994) method 
provides equally clear evidence of convergence at 150 it- 
erations. Yu and Mykland's (1994) cusum path plots reveal 
"stickiness" of the chains. 

The disagreements among the various methods may be 
explained in part by different connotations of the word 
"convergence." Once a single draw from the target distri- 
bution has been obtained, the sampler has "converged" in 
the sense that all subsequent iterates are also drawn from 
the target distribution. In the trivariate normal example, this 
probably occurs after fairly few iterations, as indicated by 
the methods of Roberts and Johnson. On the other hand, 
particularly in the presence of high correlations among the 
parameters as in this example, many more iterations may be 
required to obtain "convergence" (or "mixing") in the sense 
that the Markov chain has traversed the entire distribution, 
so that the resulting samples yield good estimates of the 
quantities of interest. 

We compared run times of the various diagnostics. To 
compare the ordinary Gibbs sampler with the reversible 
sampler needed for Roberts' method, we timed the run- 
ning of the nine parallel chains of the ordinary algorithm 
that were used for Liu et al.'s method and the running of 
three replicates from each of three starting points for the 
reversible sampler. All simulations were coded in the C 
language and run n a Sun SPARC station 10. The run 
times were .68 second for 1,000 iterations of the ordinary 
Gibbs sampler and 5.509 seconds for 2,000 iterations of the 
reversible sampler (needed to assess convergence at 1,000 
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Figure 10. Roberts (1992, 1994) Convergence Diagnostics forBimodal Mixture. (a) Log Roberts (1992) convergence diagnostic, all chains started 
at upper mode; (b) log Roberts (1992) convergence diagnostic, all chains started halfway between modes; (c) log Roberts (1992) convergence 
diagnostic, all chains started 6 standard deviations below lower mode; (d) smoothed Roberts (1994) convergence diagnostic, chains started 
symmetrically around both nodes: solid line, log Dn; dotted line, log In; (e) smoothed Roberts (1994) convergence diagnostic, chains started 
symmetrically around single mode: solid line, log Dn; dotted line, log In. 

iterations), which included computation of the Roberts di- 
agnostic for each iteration. A C program to read in the 
Gibbs samples from files and to compute the Gibbs Stop- 
per weights based on all 9000 ordinary Gibbs sampler it- 
erates took 64.55 seconds. Similar programs to apply Zell- 
ner and Min's and Liu et al.'s methods took 4 seconds and 
12 seconds. S-Plus programs took 30 seconds to read-in 
the files of Gibbs iterates, compute Gelman and Rubin's 
and Geweke's diagnostics, apply Heidelberger and Welch's 
method, and display the graphs and diagnostics. Raftery 
and Lewis's program took less than 1 second to perform its 
computations on each given chain; however, a more conve- 
nient user interface would make it more efficient to use for 
multiple parameters in the same problem. The S-Plus pro- 
gram for Raftery and Lewis's diagnostic took 1 minute for 
calculations for 3 quantiles of each of 3 parameters based 
on 500 iterations and 5 chains. Finally, S-Plus code pro- 
duced 5 cusum path plots based on 1,000 iterations in 23 
seconds. 

4. NUMERICAL ILLUSTRATION: BIMODAL MIXTURE 
OF TRIVARIATE NORMALS 

4.1 Simulation Details 

We next tested nine convergence diagnostics on a bi- 
modal target density consisting of a mixture of two trivari- 
ate normals with equal probability. They shared a common 
covariance matrix producing high correlations, 

1.0 1.3 1.5 
1.3 2.0 2.0 
1.5 2.0 4.0 J 

and their mean vectors-(0.0, 0.0,0.0) and (-6.0, -8.49, 
-12.0)-were sufficiently separated so that the marginal 
densities, as well as the joint, were bimodal but not so 
far separated that the state space would be effectively dis- 
connected. We used this example to illustrate nonconju- 
gate full conditionals as well as bimodality. A random-walk 
Metropolis algorithm (Tierney 1994) was used to generate 
from each unnormalized full conditional. 
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Table 6. Gibbs Sampler Difference Convergence Criterion Applied 
to Bimodal Mixture of Trivariate Normals 

Parameter 
values chain (0.0, 0.0, 0.0) (-6.0, -8.5, -12.0) (-3.0, -4.2, -6.0) (-1.0, -1.4, -2.0) 

1 12.20 (+3.03) 0 (+0) 0 (?0) -4.32 (+1.74) 
2 5.49 (+3.11) 0 (+O) 0 (?O) -2.85 (+1.54) 

3 0 (+0) 355.5 (+16.6) .12 (+.16) 0 (+0) 

4 0 (+0) 328.5 (?14.2) 1.11 (+.88) 0 (+0) 

5 0 (+0) 415.9 (?15.9) .003 (+.0009) 0 (+0) 

NOTE: All table entries have been multiplied by 103. An asterisk indicates that the 95% credible set includes zero; a double asterisk 
indicates that the estimated variance of the test statistic was zero to eight significant digits, so a credible set could not be calculated. 

Nine parallel chains were run with starting values chosen 
at equal intervals from above the upper mode to below the 
lower mode. Plots for every other one of those chains for 
X2 are shown in Figure 7. Obviously none of the chains tra- 
verses the entire state space; each remains in the vicinity of 
one of the modes. Gelman and Rubin's diagnostic clearly in- 
dicates convergence failure, but Geweke's and Heidelberger 
and Welch's diagnostics suggest -satisfactory convergence in 
one case each. Figure 8 shows similar plots for a different 
subset of the nine chains, this time the ones started with 
the four highest initial values. All four of these chains "got 
stuck" at the same mode. Gelman and Rubin's method fails 
to detect the problem, Heidelberger and Welch's diagnos- 

tics imply good convergence in half the cases, and Geweke's 
diagnostics imply good convergence in all cases. 

Raftery and Lewis's method, for which the results are 
given in Table 5, does not appear to find convergence in this 
bimodal example appreciably worse than that in the highly 
correlated trivariate normal problem reported in Table 2. 
Values for k and "nburn" are very similar in the two tables, 
although values for "nprec" are generally somewhat larger 
in the bimodal example. 

The first column of Figure 9 shows histograms and means 
and standard deviations of log-transformed Gibbs Stopper 
weights for the first 500 iterations of the second chain from 
Figure 7. Even with the variance-reducing log transforma- 
tion (recommended by Ritter and Tanner when the untrans- 
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Figure 11. Johnson Plots for Bimodal Mixture. (a) X2, starting values symmetric around both modes; (b) X2, starting values symmetric around 
lower mode. 
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formed weights are extremely variable, as in this case), 
there is no apparent closer clustering around any particular 
value in successive batches, which might be interpreted as 
correctly diagnosing convergence failure. But, as shown in 
the second column of this figure, the mean and standard 
deviation are very similar in two batches of size 500 from 
the same chain, which might appear to imply convergence. 
Gibbs Stopper results are difficult to interpret, particularly 
because they depend on choices of batch sizes and whether 
or not to log-transform the weights. 

Log-transformed Roberts (1992) convergence diagnostics 
for three sets of three reversible chains are shown in Figure 
10, a-c. Because this diagnostic is intended to assess con- 
vergence of the full joint distribution, it is disappointing 
that it too can fail when the chains are started at one of the 
modes. In Figure lOd, lowess smooths of Roberts's (1994) 
log-transformed diagnostic are shown as calculated from 
11 chains with initial values chosen symmetrically around 
both modes. Here convergence failure is indicated by the 
fact that the values of log Dn fail to stabilize and remain 
generally larger than those of log 1,. In contrast, Figure iOe 
shows lowess smooths of Roberts' (1994) diagnostic with 
log transformation as calculated from 11 chains with ini- 
tial values chosen around the upper mode, so that all chains 
remain in the vicinity of the same mode. When the initial 
values are insufficiently dispersed in this manner, even this 
method fails to detect the failure to sample from the full 
target distribution. 

Table 6 shows Zellner and Min's Gibbs sampler differ- 
ence convergence criterion calculated for iterations 501- 
1,000 of each chain at four sets of parameter values. When 
evaluated at points at or near a mode, the diagnostic clearly 
identifies convergence failure in a chain that has gotten 
stuck at that mode. But marginal probabilities estimated 
from a chain stuck at the other mode are so small that all 
estimates of the convergence diagnostic are identically zero. 
Results are less predictable at points that are of low prob- 
ability under either distribution in the bimodal mixture. 

Cusum path plots for the bimodal example were very 
similar in appearance to those shown in Figure 6 for the 
unimodal example, again illustrating slow mixing of the 
sampler. 

Because Johnson's method cannot be applied when 
random-walk Metropolis steps are used within a Gibbs sam- 
pler, we ran a new set of chains using independence-chain 
Metropolis steps to generate from each nonconjugate full 
conditional; we used the same sequences of candidate val- 
ues and uniforms used in the acceptance/rejectance step for 
all chains. Figure 1 la shows the results for five chains with 
initial values chosen symmetrically around both modes. As 
in the Gelman and Rubin plots, three of the chains co- 
alesce around one mode and the other two around the other 
mode. Convergence failure is obvious. Figure 1 lb is a sim- 
ilar plot of five chains with initial values chosen around 
the lower mode. From approximately iteration 100 on, all 
chains are traversing the same sample path. Thus with in- 
adequate dispersion of initial values, Johnson's method also 
can incorrectly indicate convergence. 

4.2 Comparative Remarks 

This example also demonstrates the effect of nonconju- 
gate full conditionals on computer run times of the various 
methods. Run time for the ordinary Gibbs sampler using the 
Metropolis algorithm (with either random walk or indepen- 
dence kernel) with one transition per iterate was 11 sec- 
onds for nine chains of 1,000 iterations each. Run times for 
Gelman and Rubin's, Geweke's, Raftery and Lewis's, and 
Yu and Mykland's methods were unchanged from those re- 
ported for the trivariate normal. But the requirement of the 
Gibbs Stopper and Roberts' method to estimate the normal- 
izing constants for the full conditionals both complicated 
coding and radically increased execution time, which was 
1 hour and 40 minutes for the Gibbs Stopper and 5 min- 
utes for Roberts's method for 500 and 2,000 iterations. The 
same would have been true for Zellner and Min's method 
had we not in fact used the known normalizing constants 
for the required conditional distributions. 

5. SUMMARY, DISCUSSION, 
AND RECOMMENDATIONS 

Our summary in Section 2 shows that many of the 
MCMC diagnostics proposed in the statistical literature to 
date are fairly difficult to use, requiring problem-specific 
coding and perhaps analytical work. In addition, our em- 
pirical results in Sections 3 and 4 indicate that although 
many of the diagnostics often succeed at detecting the sort 
of convergence failure they were designed to identify, they 
can also fail in this role-even in low-dimensional ideal- 
ized problems far simpler than those typically encountered 
in statistical practice. Taken together, our results call for 
caution when using these diagnostics and for continued 
research into both the theoretical and applied aspects of 
MCMC algorithms. 

Concerning generic use of MCMC methods, we advocate 
a variety of diagnostic tools rather than any single plot or 
statistic. In our own work, we generally run a few (three- 
five) parallel chains, with starting points drawn (perhaps 
systematically, rather than at random) from what we believe 
is a distribution overdispersed with respect to the stationary 
distribution. We visually inspect these chains by overlaying 
their sampled values on a common graph for each param- 
eter or, for very high-dimensional models, a representative 
subset of the parameters. We annotate each graph with the 
Gelman and Rubin statistic and lag 1 autocorrelations, be- 
cause they are easily calculated and the latter helps to in- 
terpret the former. (Large Gelman and Rubin statistics may 
arise from either slow mixing or multimodality.) We also 
investigate crosscorrelations among parameters suspected 
of being nearly confounded, as high crosscorrelations may 
indicate a need for reparameterization. 

A clever alternative to running parallel chains is to inter- 
sperse Metropolis-Hastings steps into a single Gibbs sam- 
pler chain at intervals, using a proposal density that gener- 
ates candidate values from an overdispersed distribution in- 
dependently of the current state of the Gibbs sampler chain 
(see Mykland et al. 1994). When such candidates are ac- 
cepted and produce regenerations in the chain, diagnostics 
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requiring multiple independent chains may be applied to 
the tours. At the same time, such a hybrid sampler forms 
a single long sample path that gets closer to the stationary 
distribution than would many independent shorter chains. 

We recommend learning as much as possible about the 
target density before applying an MCMC algorithm, per- 
haps by using mode-finding techniques or noniterative ap- 
proximation methods, as well as considering multiple mod- 
els for a given data set. By steadily increasing the com- 
plexity of the model under consideration, we will be more 
likely to detect convergence failures while at the same time 
gaining a deeper understanding of the data. Multiple algo- 
rithms may also be helpful, because each will have its own 
convergence properties and may reveal different features of 
the likelihood or posterior surface. 

Clearly, our recommendations imply that automated con- 
vergence monitoring (as by a machine) is unsafe and should 
be avoided. This is something of a blow to many applied 
Bayesians (ourselves included) who at one time looked for- 
ward to a fully automated Bayesian data analysis package, 
similar to the large currently available commercial pack- 
ages for likelihood analysis. Instead, we now find ourselves 
recommending a two-stage process, wherein model speci- 
fication and associated sampling are separated from con- 
vergence diagnosis and subsequent output analysis. In fact, 
one of us has co-developed a collection of S-Plus routines 
called CODA (Best et al. 1995) for the second stage of this 
process, with the first stage being accomplished by BUGS, 
the recently-developed software package for Bayesian anal- 
ysis using Gibbs sampling (Spiegelhalter, Thomas, and Best 
1994, 1995; Thomas, Spiegelhalter, and Best 1992). Both of 
these programs and their manuals are freely available from 
the MRC Biostatistics Unit at the University of Cambridge 
(e-mail address: bugs@mrc-bsu.cam.ac.uk). 

Another emerging approach to MCMC analysis is to con- 
centrate on convergence acceleration, rather than on the 
less soluble problem of convergence diagnosis. Clever repa- 
rameterization can often substantially improve correlation 
structure within a model, and hence speed convergence (see 
Hills and Smith 1992 for a general discussion and Gelfand 
et al. 1995a,b for treatments specific to hierarchical random 
effects models). More sophisticated MCMC algorithms can 
also offer impressive reductions in time to convergence. 
Promising ideas in this regard include the use of auxil- 
iary variables (Besag and Green 1993; Swendsen and Wang 
1987), resampling and adaptive switching of the transition 
kernel (Gelfand and Sahu 1994), and multichain annealing 
or "tempering" (Geyer and Thompson 1995). 

In summary, a consensus appears to be emerging that the 
proper approach to MCMC monitoring lies somewhere be- 
tween the two extremes recently advocated by Geyer (one 
long chain, perhaps plotted versus iteration) and Gelman 
and Rubin (a single multichain diagnostic). Although it is 
never possible to say with certainty that a finite sample 
from an MCMC algorithm is representative of an underly- 
ing stationary distribution, convergence diagnostics (along 
with sample correlations and plots of the samples them- 
selves) may offer a worthwhile check on the algorithm's 

progress. Combined with the emerging work in determining 
theoretical convergence bounds and a more robust approach 
to algorithm and model selection, MCMC algorithms will 
no doubt enjoy continued popularity as computational tools 
for a wide array of statistical problems. 

[Received September 1994. Revised September 1995.] 
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