
ar
X

iv
:1

80
9.

10
82

5v
1 

 [
m

at
h.

A
G

] 
 2

8 
Se

p 
20

18

ON SYSTEMS OF POLYNOMIALS WITH AT LEAST ONE

POSITIVE REAL ZERO

JIE WANG

Abstract. In this paper, we prove several theorems on systems of polynomial
equations with at least (exactly) one positive real zero, which can be viewed
as some kind of multivariate Descartes’ rule. Moreover, we give a class of
polynomials attaining minimums, which is useful in polynomial optimization.

1. Introduction

An interesting problem in real algebraic geometry is bounding the numbers of
real zeros and positive real zeros of polynomials or polynomial systems. In the
univariate case, the well-known Descartes’ rule accomplishes this task.

Descartes rule Given a univariate real polynomial f(x) such that the terms
of f(x) are ordered by descending variable exponent, the number of positive real
roots of f (counted with multiplicity) is bounded from above by the number of sign
variations between consecutive nonzero coefficients. Additionally, the difference
between these two numbers (the number of positive real roots and the number of
sign variations) is even.

However, no complete multivariate generalization of Descartes’ rule is known,
except for a conjecture proposed by Itenberg and Roy in 1996 ([5]) and subse-
quently disproven by T.Y. Li in 1998 ([8]). In [6], a special case for polynomial
systems with at most one positive real zero was considered through the theory of
oriented matroids. Based on this method, a partially multivariate generalization of
Descartes’ rule for polynomial systems supported on circuits can be found in [2, 3].

In this paper, by virtue of the connection with nonnegative polynomials, we prove
several theorems on systems of polynomial equations with at least (exactly) one
positive real zero, which can be viewed as some kind of multivariate Descartes’ rule.
In polynomial optimization, the existence of minimizers of objective polynomials is
often formulated as an assumption for some of the algorithmic approaches ([1, 11,
9]). We give a class of polynomials attaining minimums as a byproduct.

2. Preliminaries

2.1. Nonnegative polynomials. Let R[x] = R[x1, . . . , xn] be the ring of real n-
variate polynomial, and N∗ = N\{0}. Let R+ be the set of positive real numbers.
For a finite set A ⊂ Nn, we denote by conv(A ) the convex hull of A , and by V (A )
the vertices of the convex hull of A . Also we denote by V (P ) the vertex set of
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2 JIE WANG

a polytope P . For a polynomial f ∈ R[x] of the form f(x) =
∑

α∈A
cαx

α with
cα ∈ R,xα = xα1

1 · · ·xαn

n , the support of f is supp(f) := {α ∈ A | cα 6= 0} and
the Newton polytope of f is defined as New(f) = conv(supp(f)). For a polytope
P , we use P ◦ to denote the interior of P .

A polynomial f ∈ R[x] which is nonnegative over Rn is called a nonnegative
polynomial. A nonnegative polynomial must satisfy the following necessary condi-
tions.

Proposition 2.1. ([10, Theorem 3.6]) Let A ⊂ Nn and f =
∑

α∈A
cαx

α ∈ R[x]
with supp(f) = A . Then f is nonnegative only if the followings hold:

(1) V (A ) ⊂ (2N)n;
(2) If α ∈ V (A ), then the corresponding coefficient cα is positive.

2.2. Coercive polynomials. A polynomial f ∈ R[x] is called a coercive polyno-
mial, if f(x) → +∞ holds whenever ‖x‖ → +∞, where ‖·‖ denotes some norm
on Rn. Obviously the coercivity of f implies the existence of minimizers of f over
Rn. Necessary conditions ([1, Theorem 2.8]) and sufficient conditions ([1, Theorem
3.4]) for a polynomial to be coercive were given in [1].

Theorem 2.2. ([1, Theorem 2.8]) Let f =
∑

α∈A
cαx

α ∈ R[x] with supp(f) = A

be a coercive polynomial and c0 > 0. Then the following three conditions hold:

(1) V (A ) ⊆ (2N)n;
(2) If α ∈ V (A ), then the corresponding coefficient cα is positive;
(3) For every i, 1 ≤ i ≤ n, there exists a vector 2kiei ∈ V (A ) with ki ∈ N∗, where

ei is the standard basis vector.

2.3. Circuit polynomials. A subset A ⊆ (2N)n is called a trellis if A comprises
the vertices of a simplex.

Definition 2.3. Let A be a trellis and f ∈ R[x]. Then f is called a circuit
polynomial if it is of the form

(2.1) f(x) =
∑

α∈A

cαx
α − dxβ ,

with cα > 0 and β ∈ conv(A )◦. Assume

(2.2) β =
∑

α∈A

λαα with λα > 0 and
∑

α∈A

λα = 1.

For every circuit polynomial f , we define the corresponding circuit number as Θf :=
∏

α∈A
(cα/λα)

λα .

The nonnegativity of a circuit polynomial f is decided by its circuit number
alone.

Theorem 2.4. ([4, Theorem 3.8]) Let f =
∑

α∈A
cαx

α − dxβ ∈ R[x] be a circuit
polynomial and Θf its circuit number. Then f is nonnegative if and only if β /∈
(2N)n and |d| ≤ Θf , or β ∈ (2N)n and d ≤ Θf .

3. Polynomials attaining minimums

In this section, we prove a theorem on polynomials with global minimizers in
Rn

+.
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Let g(x) =
∑

α cαx
α ∈ R[x±]. For an invertible matrix T ∈ GLn(Q), the

polynomial obtained by applying T to the exponent vectors of g is denoted by
gT =

∑

α cαx
Tα ∈ R[x±].

Let ∆ be a polytope of dimension d. For a vertex α of ∆, if α is the intersection
of precisely d edges, then we say ∆ is simple at α. Obviously, a polygon is simple
at every vertex.

Lemma 3.1. Suppose f = c0 +
∑

α∈A
cαx

α −
∑

β∈B
dβx

β ∈ R[x±] such that

dim(New(f)) = n, B ⊆ New(f)◦, 0 ∈ V (New(f)) and New(f) is simple at 0.
Then there exists A0 = {α1, . . . ,αn} ⊆ V (New(f)) and T ∈ GLn(Q) such that

fT = c0 +
∑n

i=1 cαi
x2ki

i +
∑

α∈A \A0
cαx

Tα −
∑

β∈B
dβx

Tβ, where ki ∈ N∗, Tα ∈

(2N)n for each α ∈ A \A0 and Tβ ∈ New(fT )◦ ∩ Nn for each β ∈ B.

Proof. Since New(f) is simple at 0, 0 is the intersection of precisely n edges. Let
A0 = {α1, . . . ,αn} ⊆ V (New(f)) be the other extreme points of these n edges. Let
T ′ ∈ GLn(Q) such that T ′(α1, . . . ,αn) = diag(k′1, . . . , k

′
n), where k

′
i ∈ N∗. Suppose

µ ∈ N∗ is the least common multiple of the denominators of the coordinates of
Tα and Tβ, for α ∈ A \A0 and β ∈ B. Let T = 2µT ′. Then Tα ∈ (2Z)n for
each α ∈ A \A0 and Tβ ∈ Zn for each β ∈ B. Moreover, since T keeps convex
combinations, we have Tα ∈ (2N)n and Tβ ∈ New(fT )◦ ∩ Nn. �

Consider the bijective componentwise exponential function

(3.1) exp : Rn → Rn
+, x = (x1, . . . , xn) 7→ ex = (ex1 , . . . , exn).

The image of g(x) =
∑

α cαx
α under the map exp is g(ex) =

∑

α cαe
〈α,x〉, where

〈α,x〉 = αTx is the inner product of α and x. Obviously, the range of g(x) over
Rn

+ is same as the range of g(ex) over Rn.

Lemma 3.2. Let g(x) =
∑

α cαx
α ∈ R[x±] and T ∈ GLn(Q). Then the infimums

of g(x) and gT (x) over Rn
+ are the same. The minimizers (or the zeros) of g(x)

and gT (x) over Rn
+ are in a one-to-one correspondence.

Proof. We only need to show that the same conclusions hold for g(ex) and gT (ex)

overRn, which follow from the equalities g(ex) =
∑

α cαe
〈α,x〉 =

∑

α cαe
〈Tα,T∗

x〉 =

gT (eT
∗
x) and gT (ex) =

∑

α cαe
〈Tα,x〉 =

∑

α cαe
〈α,TT

x〉 = g(eT
T
x), where T ∗ =

(T−1)T = (TT)−1. �

Lemma 3.3. Suppose f = c0+
∑

α∈A
cαx

α−
∑

β∈B
dβx

β ∈ R[x±], c0, cα, dβ > 0

such that dim(New(f)) = n, B ⊆ New(f)◦, 0 ∈ V (New(f)) and New(f) is simple
at 0. Assume

∑

α∈A
cαx

α−
∑

β∈B
dβx

β is not nonnegative over Rn
+. Then f has

a minimizer over Rn
+.

Proof. By Lemma 3.1, there exists A0 = {α1, . . . ,αn} ⊆ V (New(f)) and T ∈

GLn(Q) such that fT = c0 +
∑n

i=1 cαi
x2ki

i +
∑

α∈A \A0
cαx

Tα −
∑

β∈B
dβx

Tβ ∈

R[x]. By Theorem 3.4 in [1], fT is a coercive polynomial, and hence has a global
minimizer over Rn. Note that fT (|x|) = c0+

∑n
i=1 cαi

|xi|
2ki +

∑

α∈A \A0
cα|x|

Tα−
∑

β∈B
dβ|x|

Tβ ≤ fT (x), where |x| = (|x1|, . . . , |xn|). So we can assume the global

minimizer of fT is in Rn
≥0. Since f − c0 is not nonnegative over Rn

+, by Lemma 3.2,

fT − c0 is not nonnegative over Rn
+. It follows that the minimum of fT is lower

than c0 and the global minimizer of fT can not lie in the coordinate axes. Thus
fT has a minimizer over Rn

+ and so does f by Lemma 3.2. �
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Theorem 3.4. Suppose f =
∑

α∈A
cαx

α −
∑

β∈B
dβx

β ∈ R[x], cα, dβ > 0 such

that dim(New(f)) = n, A ⊆ (2N)n, B ⊆ New(f)◦. Assume that conv(A ∪ {0}) is
simple at 0. If 0 is not a global minimizer of f , then f has a global minimizer in
Rn

+.

Proof. Since f(|x|) =
∑

α∈A
cα|x|

α−
∑

β∈B
dβ|x|

β ≤ f(x), we only need to search
the global minimizer of f in Rn

≥0, or equivalently in 0 ∪ Rn
+. If 0 ∈ A and f − c0

is nonnegative, then 0 is a global minimizer of f . If 0 ∈ A and f − c0 is not
nonnegative, then by Lemma 3.3, f has a minimizer over Rn

+, which is also a global
minimizer. If 0 /∈ A and f is nonnegative, then 0 is a global minimizer of f . If
0 /∈ A and f is not nonnegative, consider the polynomial f + c, c > 0. By Lemma
3.3, f + c has a minimizer over Rn

+. It follows f has a minimizer over Rn
+, which is

also a global minimizer. �

4. systems of polynomial equations with positive real zeros

A positive real zero of a polynomial or a system of polynomial equations is a
zero with positive coordinates. Note that the positive real zeros of the polynomials
f(x1, . . . , xn) and f(x2

1, . . . , x
2
n) are in a one-to-one correspondence. Since we only

consider positive real zeros in this paper, we can apply the map xi 7→ x2
i to every

polynomial and assume that supports of polynomials appearing in this paper are
in (2N)n.

Theorem 4.1. Let F be the following system of polynomial equations

(4.1)
∑

α∈A

cα(α− γ)xα −
∑

β∈B

dβ(β − γ)xβ = 0,

where cα, dβ > 0 and γ ∈ V (A ∪ {γ}), B ⊆ conv(A ∪ {γ})◦. Let ∆ = conv(A ∪
{γ}). Assume that dim(∆) = n, ∆ is simple at γ and

∑

α∈A
cαx

α −
∑

β∈B
dβx

β

is not nonnegative over Rn
+. Then F has at least one positive real zero.

Proof. Consider the polynomial f = cγx
γ +

∑

α∈A
cαx

α −
∑

β∈B
dβx

β. Let f ′ =

f/xγ = cγ +
∑

α∈A
cαx

α−γ −
∑

β∈B
dβx

β−γ . Then by Lemma 3.3, f ′ has a

minimizer over Rn
+. Assume the minimum of f ′ over Rn

+ is ξ. Then f ′(x) − ξ
is nonnegative over Rn

+ and has a positive real zero. It follows that f − ξxγ =

(cγ − ξ)xγ +
∑

α∈A
cαx

α−
∑

β∈B
dβx

β is nonnegative over Rn
+ and has a positive

real zero, which implies that the system of f − ξxγ = 0 and ∇(f − ξxγ) = 0 has a
positive real zero. Multiplying f − ξxγ = 0 by γ gives

(4.2) (cγ − ξ)γxγ +
∑

α∈A

cαγx
α −

∑

β∈B

dβγx
β = 0.

Multiplying the i-th equation of ∇(f − ξxγ) = 0 by xi gives

(4.3) (cγ − ξ)γxγ +
∑

α∈A

cααxα −
∑

β∈B

dββx
β = 0.

By (4.3)−(4.2), we obtain

(4.4)
∑

α∈A

cα(α− γ)xα −
∑

β∈B

dβ(β − γ)xβ = 0,

which is F . Thus F has a positive real zero. �
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Example 4.2. The following system of polynomial equations satisfies the conditions
of Theorem 4.1 with γ = (8, 8), and hence has a positive real zero.

{

−8y8 − 4x4y4 − 8 + 18x2y + 5x3y2 = 0

−8x8 − 4x4y4 − 8 + 21x2y + 6x3y2 = 0

Lemma 4.3. Suppose fd =
∑

α∈A
cαx

α + dxγ −
∑

β∈B
dβx

β ∈ R[x], cα, dβ > 0

such that B ⊆ conv(A )◦ and γ ∈ conv(A ). Assume that New(fd) is simple at
α0 ∈ V (A ) and

∑

α∈A
cαx

α −
∑

β∈B
dβx

β is not nonnegative over Rn
+. Let

d∗ = inf{d | fd is nonnegative over Rn
+}. Then fd∗ has a positive real zero.

Proof. Let |B| = l. For each β ∈ B, since β ⊆ conv(A )◦, then there must
exist a subset Aβ of A such that Aβ ∪ {γ} comprises the vertices of a simplex
∆β containing β as an interior point. For each α ∈ ∪β∈BAβ, count how many
simplices contain α and evenly distribute cα. Then we can write

(4.5) fd =
∑

β∈B

(
∑

α∈Aβ

cβαx
α +

d

l
xγ − dβx

β) +
∑

α/∈∪β∈BAβ

cαx
α

as a sum of circuit polynomials. If d is large enough, then every circuit polynomial
in (4.5) is nonnegative and hence f is nonnegative. So d∗ exists.

Let f ′
d = fd/x

α0 = cα0
+

∑

α∈A \{α0}
cαx

α−α0 + dxγ−α0 −
∑

β∈B
dβx

β−α0 .

By Lemma 3.1, there exists A0 = {α1, . . . ,αn} ⊆ V (A )\{α0} and T ∈ GLn(Q)

such that f ′T
d = cα0

+
∑n

i=1 cαi
x2ki

i +
∑

α∈A \(A0∪{α0})
cα xT (α−α0)+dxT (γ−α0)−

∑

β∈B
dβx

T (β−α0) ∈ R[x]. By Lemma 3.2, the nonnegativity of f ′T
d over Rn

+ is the

same as the nonnegativity of f ′
d over R

n
+, and hence is the same as the nonnegativity

of fd over Rn
+. Let d < d∗ and by the definition of d∗, f ′T

d is not nonnegative over

Rn
+. That is to say, there exists xd ∈ Rn

+ such that f ′T
d (xd) < 0. On the other hand,

by Theorem 3.4 in [1], f ′T
d is a coercive polynomial. Hence there exists Nd > 0

such that for ‖x‖∞ > Nd, f
′T
d (x) > 0. It follows ‖xd‖∞ ≤ Nd. Let d′ > d. Since

f ′T
d′ (x)−f ′T

d (x) = (d′−d)xT (γ−α0) > 0 over Rn
+, we have f

′T
d′ (x) > f ′T

d (x) over Rn
+.

Thus for ‖x‖∞ > Nd and x ∈ Rn
+, f

′T
d′ (x) > 0. It follows ‖xd′‖∞ ≤ Nd. Let d → d∗.

Then we have f ′T
d (xd) − f ′T

d∗ (xd) = (d − d∗)x
T (γ−α0)
d → 0. Since f ′T

d∗ (xd) ≥ 0, we
must have f ′T

d∗ (xd) → 0. Thus the infimum of f ′
d∗ over Rn

+ is 0. It follows that

f ′T
d∗ − cα0

is not nonnegative over Rn
+. So by Lemma 3.3, f ′T

d∗ has a minimizer over
Rn

+, which is a positive real zero. As a consequence, fd∗ has a positive real zero by
Lemma 3.2. �

Theorem 4.4. Let F be the following system of polynomial equations

(4.6)
∑

α∈A

cα(α− γ)xα −
∑

β∈B

dβ(β − γ)xβ = 0,

where cα, dβ > 0 and B ⊆ conv(A )◦, γ ∈ conv(A ). Let ∆ = conv(A ). Assume
that dim(∆) = n, ∆ is simple at α0 ∈ V (A ) and

∑

α∈A
cαx

α −
∑

β∈B
dβx

β is
not nonnegative over Rn

+. Then F has at least one positive real zero.

Proof. Consider the polynomial fd =
∑

α∈A
cαx

α + dxγ −
∑

β∈B
dβx

β. Define d∗

as in Lemma 4.3. Then by Lemma 4.3, fd∗ has a positive real zero as a minimizer,
which implies that the system of fd∗ = 0 and ∇(fd∗) = 0 has a positive real zero.
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Multiplying fd∗ = 0 by γ gives

(4.7)
∑

α∈A

cαγx
α + d∗γxγ −

∑

β∈B

dβγx
β = 0.

Multiplying the i-th equation of ∇(fd∗) = 0 by xi gives

(4.8)
∑

α∈A

cααxα + d∗γxγ −
∑

β∈B

dββx
β = 0.

By (4.8)−(4.7), we obtain

(4.9)
∑

α∈A

cα(α− γ)xα −
∑

β∈B

dβ(β − γ)xβ = 0,

which is F . Thus F has a positive real zero. �

Example 4.5. The following system of polynomial equations satisfies the conditions
of Theorem 4.4 with γ = (4, 4), and hence has a positive real zero.

{

4x8y8 + 4x8 − 4y8 − 4 + 6x2y + x3y2 = 0

4x8y8 − 4x8 + 4y8 − 4 + 9x2y + 2x3y2 = 0

Lemma 4.6. Suppose fd =
∑

α∈A
cαx

α −
∑

β∈B
dβx

β − dxγ ∈ R[x], cα, dβ >

0 such that B ∪ {γ} ⊆ conv(A )◦. Assume that New(fd) is simple at α0 ∈
V (A ) and

∑

α∈A
cαx

α −
∑

β∈B
dβx

β is nonnegative over Rn
+. Let d∗ = sup{d |

fd is nonnegative over Rn
+}. Then fd∗ has a positive real zero.

Proof. Obviously, d∗ exists. Let f ′
d = fd/x

α0 = cα0
+

∑

α∈A \{α0}
cαx

α−α0 −
∑

β∈B
dβx

β−α0 − dxγ−α0 . By Lemma 3.1, there exists A0 = {α1, . . . ,αn} ⊆

V (A )\{α0} and T ∈ GLn(Q) s.t. f ′T
d = cα0

+
∑n

i=1 cαi
x2ki

i +
∑

α∈A \(A0∪{α0})
cα

xT (α−α0) −
∑

β∈B
dβx

T (β−α0) − dxT (γ−α0) ∈ R[x]. By Lemma 3.2, the nonneg-

ativity of f ′T
d over Rn

+ is the same as the nonnegativity of f ′
d over Rn

+, and hence
is the same as the nonnegativity of fd over Rn

+. Let d > d∗ and by the definition

of d∗, f ′T
d is not nonnegative over Rn

+. That is to say, there exists xd ∈ Rn
+ such

that f ′T
d (xd) < 0. On the other hand, by Theorem 3.4 in [1], f ′T

d is a coercive
polynomial. Hence there exists Nd > 0 such that for ‖x‖∞ > Nd, f

′T
d (x) > 0. It

follows ‖xd‖∞ ≤ Nd. Let d′ < d. Since f ′T
d′ (x) − f ′T

d (x) = (d − d′)xT (γ−α0) > 0
over Rn

+, we have f ′T
d′ (x) > f ′T

d (x) over Rn
+. Thus for ‖x‖∞ > Nd and x ∈ Rn

+,

f ′T
d′ (x) > 0. It follows ‖xd′‖∞ ≤ Nd. Let d → d∗. Then we have f ′T

d (xd)−f ′T
d∗ (xd) =

(d∗ − d)x
T (γ−α0)
d → 0. Since f ′T

d∗ (xd) ≥ 0, we must have f ′T
d∗ (xd) → 0. Thus the

infimum of f ′
d∗ over Rn

+ is 0. It follows that f ′T
d∗ − cα0

is not nonnegative over Rn
+.

So by Lemma 3.3, f ′T
d∗ has a minimizer over Rn

+, which is a positive real zero. As a
consequence, fd∗ has a positive real zero by Lemma 3.2. �

Theorem 4.7. Let F be the following system of polynomial equations

(4.10)
∑

α∈A

cα(α− γ)xα −
∑

β∈B

dβ(β − γ)xβ = 0,

where cα, dβ > 0 and B ∪ {γ} ⊆ conv(A )◦. Let ∆ = conv(A ). Assume that
dim(∆) = n, conv(∆) is simple at α0 ∈ V (A ) and

∑

α∈A
cαx

α −
∑

β∈B
dβx

β is
nonnegative over Rn

+ and has no zeros in Rn
+. Then F has at least one positive real
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zero. Moreover, assume that all β’s and γ lie in the same side of every hyperplane
determined by points among A . Then F has exactly one positive real zero.

Proof. Consider the polynomial fd =
∑

α∈A
cαx

α −
∑

β∈B
dβx

β − dxγ . Define d∗

as in Lemma 4.6. Then d∗ > 0 and by Lemma 4.6, fd∗ has a positive real zero as a
minimizer, which implies that the system of fd∗ = 0 and ∇(fd∗) = 0 has a positive
real zero. Multiplying fd∗ = 0 by γ gives

(4.11)
∑

α∈A

cαγx
α −

∑

β∈B

dβγx
β − d∗γxγ = 0.

Multiplying the i-th equation of ∇(fd∗) = 0 by xi gives

(4.12)
∑

α∈A

cααxα −
∑

β∈B

dββx
β − d∗γxγ = 0.

By (4.12)−(4.11), we obtain

(4.13)
∑

α∈A

cα(α− γ)xα −
∑

β∈B

dβ(β − γ)xβ = 0,

which is F . Thus F has a positive real zero.
If all β’s and γ lie in the same side of every hyperplane determined by points

among A , then by Corollary 4.4 in [12], fd∗ is a sum of nonnegative circuit poly-
nomials and has exactly one positive real zero. Suppose x∗ is a positive real zero
of F . Then x∗ is also a positive real zero of fd∗ . Thus x∗ is unique. �

Example 4.8. The following system of polynomial equations satisfies the conditions
of Theorem 4.7 with γ = (2, 1), and hence has exactly one positive real zero.

{

6x8y8 + 6x8 − 2y8 + 2x4y4 − 2− x3y2 = 0

6x8y8 − x8 + 7y8 + 3x4y4 − 1− x3y2 = 0

Finally, the remaining case that
∑

α∈A
cαx

α −
∑

β∈B
dβx

β is nonnegative and
has a zero in Rn

+ is easy.

Theorem 4.9. Let F be the following system of polynomial equations

(4.14)
∑

α∈A

cααxα −
∑

β∈B

dββx
β = 0,

where cα, dβ > 0 and B ⊆ conv(A )◦. Assume
∑

α∈A
cαx

α −
∑

β∈B
dβx

β is
nonnegative over Rn

+ and has a zero in Rn
+. Then F has at least one positive real

zero.

Proof. Consider the polynomial f =
∑

α∈A
cαx

α −
∑

β∈B
dβx

β. Since f is non-

negative and has a zero in Rn
+, ∇(f) = 0 has a positive real zero. Multiplying the

i-th equation of ∇(f) = 0 by xi gives

(4.15)
∑

α∈A

cααxα −
∑

β∈B

dββx
β = 0,

which is F . Thus F has a positive real zero. �

Remark 4.10. Birch’s theorem ([6]) states that the following system of polynomial
equations

(4.16)
∑

α∈A

cα(α− γ)xα = 0,
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where cα > 0 for α ∈ A , γ ∈ conv(A )◦, dim(conv(A )) = n, has exactly one
positive real zero. Our theorems hence can be viewed as a generalization of Birch’s
theorem.
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