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Spine decomposition for branching Markov processes

and its applications

Yan-Xia Ren∗ and Renming Song†

Abstract

In the literature, the spine decomposition of branching Markov processes
was constructed under the assumption that each individual has at least one
child. In this paper, we give a detailed construction of the spine decompo-
sition of general branching Markov processes allowing the possibility of no
offspring when a particle dies. Then we give some applications of the spine
decomposition.
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1 Introduction

The spine decomposition theorem is a very useful tool in studying the asymptotic behav-

iors of various branching models. This method was first introduced in [20] for Galton-

Watson processes to give probabilistic proofs of the Kesten-Stigum L logL theorem in

supercritical case and results on the rate of decay of the survival probability in the critical

and subcritical cases. Since then, this method has been generalized to various other models

with the branching property, see [1, 4, 5, 6, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 23, 24, 27],

for instance.

The spine decomposition theorems for Galton-Watson processes and superprocesses

are pretty satisfactory. However, the spine decomposition theorem for branching Markov

processes was only proved under the assumption that each individual has at least one
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child, see [10, 18]. In [21, 26], the spine decomposition theorem for branching Markov

processes without the assumption above about the offspring distribution was used, but no

detailed construction of the spine decomposition was given. The purpose of this paper is

to give a detailed construction of the spine decomposition for branching Markov processes

without assuming that each individual has at least one child. We also do not assume that

the branching Markov process is supercritical, so our spine decomposition works also in

the critical and subcritical case. We also give some applications of the spine decomposition

theorem.

We now introduce the setup of this paper. We always assume that E is a locally

compact separable metric space and m is a σ-finite Borel measure on E with full support.

We will use E∆ := E ∪ {∆} to denote the one-point compactification of E. We will

use B(E) and B(E∆) to denote the Borel σ-fields on E and E∆ respectively. Bb(E)

(respectively, B+(E)) will denote the set of all bounded (respectively, non-negative) B(E)-

measurable functions on E. All functions f on E will be automatically extended to E∆ by

setting f(∆) = 0. Let Mp(E) be the space of finite point measures on E, that is, measures

of the form µ =
∑n

i=1 δxi
where n = 0, 1, 2, . . . and xi ∈ E, i = 1, . . . , n. (When n = 0, µ

is the trivial zero measure.) For any function f on E and any measure µ ∈ Mp(E), we

use 〈f, µ〉 or µ(f) to denote the integral of f with respect to µ.

We will always assume that Y = {Yt,Πx, ζ} is a Hunt process on E with reference

measure m, where ζ = inf{t > 0 : Yt = ∆} is the lifetime of Y . Let {Pt, t ≥ 0} be the

transition semigroup of Y :

Ptf(x) = Πx[f(Yt)] for f ∈ B+(E).

{Pt, t ≥ 0} can be extended to a strongly continuous semigroup on L2(E,m).

Consider a branching system determined by the following three parameters:

(a) a Hunt process Y = {Yt,Πx, ζ} with state space E;

(b) a nonnegative bounded Borel function β on E;

(c) offspring distributions {(pn(x))
∞
n=0; x ∈ E}, such that, for each n ≥ 0, the function

pn(x) is Borel.

Put

ψ(x, z) =

∞∑

n=0

pn(x)z
n, z ≥ 0. (1.1)

ψ(x, ·) is the generating function of the distribution (pn(x))
∞
n=0.

The branching Hunt process is characterized by the following properties:

(i) Each particle has a random birth and a random death time.
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(ii) Given that a particle is born at x ∈ E, the conditional distribution of its path after

birth is determined by Πx.

(iii) Given the path Y of a particle and given that the particle is alive at time t, its

probability of dying in the interval [t, t+ dt) is β(Yt)dt + o(dt).

(iv) When a particle dies at x ∈ E, it splits into n particles at x with probability pn(x).

(v) The point ∆ is a cemetery. When a particle reaches ∆, it stays at ∆ forever and

there is no branching at ∆.

In this paper, to avoid triviality, we always assume that m({x ∈ E, β(x) > 0}) > 0.

We assume that A(x) := ψ′(x, 1) =
∑∞

n=0 npn(x) is bounded.

For any c ∈ Bb(E), we define

ec(t) = exp

(
−

∫ t

0

c(Ys)ds

)
.

Let Xt(B) be the number of particles which are alive and located in B ∈ B(E) at time t.

A particle which dies at time t is not counted in Xt(B) even if the death location is in B.

{Xt, t ≥ 0} is a Markov process in Mp(E). This process is called a (Y, β, ψ)-branching

Hunt process. For any µ ∈ Mp(E), let Pµ be the law of {Xt, t ≥ 0} when X0 = µ. Then

we have

Pµ exp〈−f,Xt〉 = exp〈log ut(·), µ〉, (1.2)

where ut(x) satisfies the equation

ut(x) = Πx

[
eβ(t) exp(−f(Yt)) +

∫ t

0

eβ(s)β(Ys)ψ(Ys, ut−s(Ys))ds

]
for t ≥ 0. (1.3)

The formula (1.3) deals with a process started at time 0 with one particle located at

x, and it has a clear heuristic meaning: the first term in the brackets corresponds to the

case when the particle is still alive at time t; the second term corresponds to the case

when it dies before t. The formula (1.3) implies that

ut(x) = Πx

∫ t

0

[ψ(Ys, ut−s(Ys))− ut−s(Ys)] β(Ys)ds+Πx exp(−f(Yt)) for t ≥ 0 (1.4)

(see [8, Section 2.3]). For any µ ∈ Mp(E), f ∈ B+
b (E) and t ≥ 0, we have

Pµ [〈f,Xt〉] = Πµ

[
e(1−A)β(t)f(Yt)

]
. (1.5)

Let {P
(1−A)β
t , t ≥ 0} be the Feynman-Kac semigroup defined by

P
(1−A)β
t f(x) := Πx

[
e(1−A)β(t)f(Yt)

]
, f ∈ B(E).

Throughout this paper we assume that
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Assumption 1.1 There exist a strictly positive Borel function φ and a constant λ1 ∈

(−∞,∞) such that

φ(x) = e−λ1tP
(1−A)β
t φ(x), x ∈ E. (1.6)

Let Et = σ(Ys; s ≤ t). Note that

φ(Yt)

φ(x)
e−λ1te(1−A)β(t), t ≥ 0,

is a martingale under Πx, and so we can define a martingale change of measure by

dΠφ
x

dΠx

∣∣∣
Et
=
φ(Yt)

φ(x)
e−λ1te(1−A)β(t). (1.7)

For any nonzero measure µ ∈ Mp(E), we define

Mt(φ) := e−λ1t
〈φ,Xt〉

〈φ, µ〉
t ≥ 0.

Lemma 1.2 For any nonzero measure µ ∈ Mp(E), {Mt(φ), t ≥ 0} is a non-negative

martingale under Pµ, and therefore there exists a limit M∞(φ) ∈ [0,∞), Pµ-a.s.

Proof. By the Markov property of X , (1.5) and (1.6),

Pµ

[
Mt+s(φ)

∣∣F t

]
=

1

〈φ, µ〉
e−λ1tPXt

[
e−λ1s〈φ,Xs〉

]

=
1

〈φ, µ〉
e−λ1t

〈
e−λ1sΠ·

[
e(1−A)β(s)φ(Ys)

]
, Xt

〉

=
1

〈φ, µ〉
e−λ1t〈φ, Xt〉 =Mt(φ).

This proves that {Mt(φ), t ≥ 0} is a non-negative Pµ-martingale and so it has an almost

sure limit M∞(φ) ∈ [0,∞) as t→ ∞. ✷

It follows from the branching property that when µ ∈ Mp(E) is given by µ =∑n
i=1 δxi

, n = 1, 2, . . . , {xi; i = 1, · · · , n} ⊂ E, we have

Mt(φ) =

n∑

i=1

e−λ1t
〈φt, X i

t〉

φ(xi)
·
φ(xi)

〈φ, µ〉
,

where, for each i = 1, . . . , n, {X i
t , t ≥ 0} is a branching Hunt process starting from δxi

. If

a certain assertion holds under Pδx for all x ∈ E, then it also holds for general µ. So in the

remainder of this paper, we assume that the initial measure is of the form µ = δx, x ∈ E,

and Pδx will be denoted as Px.
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2 Spine decomposition

Let N = {1, 2, . . . }. We will use

Γ :=
∞⋃

n=0

N
n

(where N
0 = {∅}) to describe the genealogical structure of our branching Hunt process.

The length (or generation) |u| of each u ∈ N
n is defined to be n. When n ≥ 1 and

u = (u1, . . . , un), we denote (u1, . . . , un−1) by u − 1 and call it the parent of u. For each

i ∈ N and u = (u1, . . . , un), we write ui = (u1, . . . , un, i) for the i-th child of u. More

generally, for u = (u1, . . . , un), v = (v1, . . . , vm) ∈ Γ, we will use uv to stand for the

concatenation (u1, . . . , un, v1, . . . , vm) of u and v. We will use the notation v < u to mean

that v is an ancestor of u. The set of all ancestors of u is given by {v ∈ Γ : v < u} =

{v ∈ Γ : ∃ w ∈ Γ \ {∅} such that vw = u}. The notation v ≤ u has the obvious meaning

that either v < u or v = u.

A subset τ ⊂ Γ is called a Galton-Watson tree if a) ∅ ∈ τ ; b) if u, v ∈ Γ, then uv ∈ τ

implies u ∈ τ ; c) for all u ∈ τ, there exists ru ∈ N ∪ {0} such that when j ∈ N, uj ∈ τ if

and only if 1 ≤ j ≤ ru. We will denote the collection of Galton-Watson trees by T. Each

u ∈ τ is called a node of τ or an individual in τ or just a particle.

To fully describe the branching Hunt process X , we need to introduce the concept

of marked Galton-Watson trees. We suppose that each individual u ∈ τ has a mark

(Y u, σu, ru) where:

(i) σu is the lifetime of u, which, along with the lifetimes of its ancestors, determines

the fission time or the death time of the particle u as ζu =
∑

v≤u σ
v (ζ∅ = σ∅), and

the birth time of u as bu =
∑

v<u σ
v (b∅ = 0);

(ii) Y u : [bu, ζu] → E∆ gives the location of u and Y u
bu = Y u−1

ζu−1.

(iii) ru gives the number of the offspring of u when it dies. ru depends on Y u
ζu

in general.

We will use (τ, Y, σ, r) (or simply (τ,M)) to denote a marked Galton-Watson tree.

We denote the set of all marked Galton-Watson trees by T = {(τ,M) : τ ∈ T}.

Define

F t := σ {[u, ru, σu, (Y u
s , s ∈ [bu, ζu]) : u ∈ τ ∈ T with ζu ≤ t] and

[u, (Y u
s , s ∈ [bu, t]) : u ∈ τ ∈ T with t ∈ [bu, ζu)]} .

Set F =
⋃

t≥0 F t. Let {Px : x ∈ E} be probability measures on (T ,F) such that

(T ,F , (F t)t≥0, (Px)x∈E) is the canonical model for X , the branching Hunt process in E.

For each x ∈ E, Px stands for the law of the branching Hunt process starting from one

particle located at x. For detailed constructions of the probability measures {Px : x ∈ E},
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we refer our readers to [2, 3, 22]. Under Px, the evolution of our branching Hunt process

can be described as follows.

(i) The root moves according Πx.

(ii) Given the path Y u
· of a particle u and given that u is alive at time t, its probability

of dying in the interval [t, t + dt) is β(Y u
t )dt + o(dt).

(iii) When a particle u dies, it is replaced by ru number of offspring. The distribution

of ru is given by P (Y u
ζu
) = (pk(Y

u
ζu
))k∈N. The offspring of u move independently

according to ΠY u
ζu
. More precisely, (Y u

s , s ∈ [bu, ζu]) is the restriction to [bu, ζu] of

a copy of the Hunt process starting from Y u−1
ζu−1 at time bu.

For a marked tree (τ, Y, σ, r), we let Lt = {u ∈ τ : bu ≤ t < ζu} be the set of particles

alive at time t. Then

Xt =
∑

u∈Lt

δY u
t
.

{Mt(φ), t ≥ 0} is a Px-martingale for each x ∈ E, and so we can use {Mt(φ), t ≥ 0} to

define a martingale change of measure of Px. We are interested in an interpretation of the

new measure, i.e., we want to know how the process X evolves under the new measure. To

this end, we need to define a new sample space T̃ , which is the space of marked trees with

distinguished spines. For a marked tree (τ, Y, σ, r), we let Dt = {u ∈ τ : ζu ≤ t, ru = 0}

be the set of particles that died, before or at time t, with no offspring. Let † be a fictitious

node not in τ . A spine ξ on a marked tree (τ, Y, σ, r) is a subset of τ ∪ {†} such that

• ∅ ∈ ξ and |ξ ∩ (Lt ∪ {†})| = 1 for all t ≥ 0.

• If v ∈ ξ and u < v, then u ∈ ξ.

• If v ∈ ξ and rv > 0, then there exists a unique j = 1, . . . , rv with vj ∈ ξ. If v ∈ ξ

and rv = 0, then ξ ∩Lt is empty for all t ≥ ζv. In this case, we will write v = †− 1.

Note that the spine only contains information about the nodes along the spine, does not

know the fission times or the number of offspring at these fission times. The fictitious

particle (or node) † might move in space, but its movement will be of no concern to us.

Thus we call ζ†−1 the “lifetime” of the spine. † lives on forever.

We write

T̃ = {(τ, Y, σ, r, ξ) : (τ, Y, σ, r) ∈ T and ξ is a spine on (τ, Y, σ, r)}

for the space of marked trees with distinguished spines.

Given (τ, Y, σ, r, ξ) ∈ T̃ and t ≥ 0, we let ξt := v be the unique element v ∈ ξ ∩

(Lt ∪ {†}). We will use Ỹ = (Ỹt)t≥0 to denote the spatial path followed by the spine and

6



n = (nt : t ≥ 0) to denote the counting process of fission times along the spine. More

precisely, Ỹt = Y u
t and nt = |u|, if u ∈ Lt ∩ ξ. If ξt = †, we set Ỹt = Y

†
t and write u < † if

u ∈ Ls and u = ξs for some s < t.

If v ∈ ξ ∩ Lt and rv > 0, then at the fission time ζv, exactly one of its offspring

continues the spine. Let Ov be the set of offspring of v except the one belonging to the

spine, then for any j = 1, . . . , rv such that vj ∈ Ov, we will use (τ, M)vj to denote the

marked subtree rooted at vj.

Now we introduce two filtrations {F̃ t}t≥0 and {Gt}t≥0 on T̃ by

F̃ t := σ(F t, ξs, s ≤ t), Gt := σ(Ỹs : s ∈ [0, t]), t ≥ 0.

F̃ t knows everything about the marked tree up to time t and the nodes on the spine up

to time t (and thus everything about the spine up to t∧ζ†−1, including which nodes make

up the spine, when they were born, when they died, and their family sizes). Gt contains

all information about the path of the spine up to time t.

Set F̃ :=
⋃

t≥0 F̃ t, G := σ(Ỹs : s ≥ 0), Ĝ := σ((Ỹs, ξs : s ≥ 0), (ζu : u < †)) and

G̃ := σ(G, (ξs : s ≥ 0), (ζu, u < †), (ru : u < †)). The σ-field G knows everything about

the path of the spine, the σ-field Ĝ knows everything about the path of the spine and the

fission times along the spine, and the σ-field G̃ knows everything about the path of the

spine, the fission times along the spine and the number of offspring born at these fission

times.

As noted by Hardy and Harris [10], it is convenient to consider {Px, x ∈ E} as measures

on the enlarged space (T̃ ,F), rather than on (T ,F).

We need to extend the probability measures Px to probability measures P̃x on (T̃ , F̃)

so that the spine is a single genealogical line of descent chosen from the underlying tree.

We will assume that at each fission time along the spine we make a uniform choice among

the offspring, if there is at least one offspring, to decide which line of descent continues

the spine ξ. If at some fission time of the spine, there is no offspring produced, we assume

the spine continues with the fictitious particle †. Then for u ∈ τ we have

Prob(u ∈ ξ) =
∏

v<u

1

rv
.

It is easy to see that ∑

u∈Lt

∏

v<u

1

rv
+
∑

u∈Dt

∏

v<u

1

rv
= 1.

We first give the following representation, which is an extension of the one given in

[19] for the case that p0 = 0.

Theorem 2.1 Every f ∈ F̃t can be written as

f =
∑

u∈Lt

fu(τ,M)1{ξt=u} +
∑

u∈Dt

fu(τ,M)1{†−1=u}, (2.1)
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where fu ∈ Ft.

Proof. Suppose f(τ,M, ξ) ∈ F̃t. For every t > 0, there is a unique u ∈ Lt ∪ {†} such

that ξt = u, and if ξt = †, then there is one unique u ∈ Dt such that † − 1 = u. Thus we

have
∑

u∈Lt
1{ξt=u} +

∑
t∈Dt

1{†−1=u} = 1, and hence

f =
∑

u∈Lt

f(τ,M, ξt)1{ξt=u} +
∑

u∈Dt

f(τ,M, † − 1)1{†−1=u}

=
∑

u∈Lt

f(τ,M, u)1{ξt=u} +
∑

u∈Dt

f(τ,M, u)1{†−1=u}.

Since f ∈ F̃t, for each fixed u ∈ Lt ∪ Dt, we have fu := f(τ,M, u) ∈ Ft. Thus (2.1) is

valid. ✷

We define the measure P̃x on F̃ t by

dP̃x(τ,M, ξ)
∣∣∣˜F t

=1{ξt∈τ}dΠx(Ỹ )dL
β(Ỹ )(n)

∏

v<ξt

prv(Ỹζv)
∏

v<ξt

1

rv

∏

j: vj∈Ov

dPt−ζv

Ỹζv
((τ,M)vj )

+ 1{ξt=†}dΠx(Ỹ )dL
β(Ỹ )(n)

∏

v<†−1

prv(Ỹζv)
∏

v<†−1

1

rv

∏

j: vj∈Ov

dPt−ζv

Ỹζv
((τ,M)vj ), (2.2)

where Πx(Ỹ ) is the law of the Hunt process Ỹ starting from x ∈ E, Lβ(Ỹ )(n) is the law of

a Poisson random measure n = {{σi : i = 1, · · · , nt} : t ≥ 0} with intensity β(Ỹt)dt along

the path of Ỹ which gives the fission times along the spine, prv(y) =
∑

k≥0 pk(y)1(rv=k) is

the probability that the individual v, on the spine and located at y ∈ E, has rv offspring,

and Pt−s
x ((τ,M)vj )) stands for the law of a branching Hunt process on the marked tree

(τ,M)vj , with initial particle located at x time shifted by s.

It follows from Theorem 2.1 that for any bounded f ∈ F̃ t,

P̃x(f |F t) =P̃x

(
∑

u∈Lt

fu(τ,M)1{ξt=u} +
∑

u∈Dt

fu(τ,M)1{†−1=u}

∣∣∣∣∣F t

)

=
∑

u∈Lt

fu(τ,M)
∏

v<u

1

rv
+
∑

u∈Dt

fu(τ,M)
∏

v<u

1

rv
.

Thus we have for any t ≥ 0 and bounded f ∈ F̃ t,

P̃x(f) = Px

(
∑

u∈Lt

fu(τ,M)
∏

v<u

1

rv
+
∑

u∈Dt

fu(τ,M)
∏

v<u

1

rv

)
. (2.3)
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In particular,

P̃x(T̃ ) = Px

(
∑

u∈Lt

∏

v<u

1

rv
+
∑

u∈Dt

∏

v<u

1

rv

)
= Px(1) = 1,

which implies P̃x is a probability measure. P̃x is an extension of Px onto (T̃ , F̃) and for

any bounded f ∈ F̃ t we have

∫

˜T
f dP̃x =

∫

˜T

(
∑

u∈Lt

fu
∏

v<u

1

rv
+
∑

u∈Dt

fu
∏

v<u

1

rv

)
dPx. (2.4)

The decomposition (2.2) of P̃x suggests the following intuitive construction of the

system under P̃x:

(i) the root of τ is at x at time 0, and the spine process Ỹt moves according to Πx;

(ii) given the trajectory Ỹ· of the spine, the fission times along the spine are distributed

according to Lβ(Ỹ ), where Lβ(Ỹ ) is the law of a Poisson random measure with inten-

sity β(Ỹt)dt;

(iii) at the fission time of a node v on the spine, the single spine particle is replaced

by a random number rv of offspring with rv being distributed according to the law

P (Ỹζv) = (pk(Ỹζv))k≥1;

(vi) if rv > 0, the spine is chosen uniformly from the rv offspring of v at the fission time

of v; if rv = 0, the spine continues as †.

(v) if rv ≥ 2, the remaining rv − 1 particles vj ∈ Ov give rise to independent sub-

trees (τ,M)vj , which evolve as independent subtrees determined by the probability

measure P
Ỹζv

shifted to the time of creation.

Definition 2.2 Suppose that (Ω,H, P ) is a probability space, {Ht, t ≥ 0} is a filtration on

(Ω,H) and that K is a sub-σ-field of H. A real-valued process {Ut, t ≥ 0} on (Ω,F , P ) is

called a P (·| K)-martingale with respect to {Ht, t ≥ 0} if (i) it is adapted to {Ht∨K, t ≥ 0};

(ii) for any t ≥ 0, E(|Ut|) <∞ and (iii) for any t > s,

E(Ut

∣∣Hs ∨ K) = Us, a.s.

We also say that {Ut, t ≥ 0} is a martingale with respect to {Ht, t ≥ 0}, given K.

The following result is [18, Lemma 2.3].
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Lemma 2.3 Suppose that (Ω,H, P ) is a probability space, {Ht, t ≥ 0} is a filtration

on (Ω,H) and that K1,K2 are two sub-σ-fields of H such that K1 ⊂ K2. Assume that

{U1
t , t ≥ 0} is a P (·| K1)-martingale with respect to {Ht, t ≥ 0}, {U2

t , t ≥ 0} is a P (·|K2)-

martingale with respect to {Ht, t ≥ 0}. If U1
t ∈ K2, U

2
t ∈ Ht, and E (|U1

t U
2
t |) <∞ for any

t ≥ 0, then the product {U1
t U

2
t , t ≥ 0} is a P (·| K1)-martingale with respect to {Ht, t ≥ 0}.

Lemma 2.4 Suppose that, given the path of Ỹ , n = {{ζi : i = 1, · · · , nt} : t ≥ 0} is a

Poisson random measure with intensity β(Ỹt)dt along the path of Ỹ . Then

η
(1)
t :=

∏

i≤nt

A(Ỹζi) · exp

(
−

∫ t

0

((A− 1)β)(Ỹs)ds

)
, t ≥ 0,

is an Lβ(Ỹ )-martingale with respect to the natural filtration {Lt, t ≥ 0} of n.

Proof. First note that

Lβ(Ỹ )

[
∏

i≤nt

A(Ỹζi)

]
= exp

(∫ t

0

((A− 1)β)(Ỹs)ds

)
, (2.5)

which implies that Lβ(Ỹ )(η
(1)
t ) = 1. It is easy to check that {η

(1)
t , t ≥ 0} is a martingale

under Lβ(Ỹ ) by using the Markov property of n. We omit the details. ✷

It follows from the lemma above that we can define a measure L(Aβ)(Ỹ ) by

dL(Aβ)(Ỹ )

dLβ(Ỹ )

∣∣∣∣∣
Lt

=
∏

i≤nt

A(Ỹζi) · exp

(
−

∫ t

0

((A− 1)β)(Ỹs)ds

)
.

Lemma 2.5 For any x ∈ E and t ≥ 0, we have

P̃x

[
∏

v<ξt

rv

A(Ỹζv)

∣∣∣∣∣ Ĝ
]
= 1. (2.6)

Proof. It follows from (2.2) that, given Ĝ, for each v < ξt,

P̃x(r
v|Ĝ) = A(Ỹζv).

Since, given Ĝ, {rv, v < ξnt
} are independent, we have

P̃x

(
∏

v<ξt

rv

A(Ỹζv)

∣∣∣∣∣ Ĝ
)

= 1.

✷
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Lemma 2.6 (1) The process

η̃
(1)
t :=

∏

v<ξt

A(Ỹζv) · exp

(
−

∫ t∧ζ†−1

0

((A− 1)β)(Ỹs)ds

)
, t ≥ 0,

is a P̃x(·| G ∨ σ(ζ†−1))-martingale with respect to {F̃ t, t ≥ 0}.

(2) The process

η̃
(2)
t :=

∏

v<ξt

rv

A(Ỹζv)
= 1{ξt∈Lt}

∏

v<ξt

rv

A(Ỹζv)
, t ≥ 0,

is a P̃x(·|Ĝ)-martingale with respect to {F̃ t, t ≥ 0}, where the last equality holds because

if ξt = †, then rv = 0 for v = † − 1.

Proof. (1) First note that if ξt ∈ Lt then ζ
†−1 > t, and if ξt = † then ζ†−1 ≤ t. For

s, t ≥ 0, by the Markov property, we have

P̃x

[
η̃
(1)
t+s

∣∣∣ F̃ t ∨ G ∨ σ(ζ†−1)
]

=P̃x


 ∏

v<ξt+s

A(Ỹζv) · exp

(
−

∫ (t+s)∧ζ†−1

0

((A− 1)β)(Ỹr)dr

)∣∣∣∣∣∣
F̃ t ∨ G ∨ σ(ζ†−1)




=1{ξt∈Lt}

∏

v<ξt

A(Ỹζv) · exp

(
−

∫ t∧ζ†−1

0

((A− 1)β)(Ỹr)dr

)

· P̃x


 ∏

ξt≤v<ξt+s

A(Ỹζv) · exp

(
−

∫ s∧ζ†−1

0

((A− 1)β)(Ỹr+t)dr

)∣∣∣∣∣∣
F̃ t ∨ G ∨ σ(ζ†−1)




+ 1{ξt=†}

∏

v<ξt

A(Ỹζv) · exp

(
−

∫ t∧ζ†−1

0

((A− 1)β)(Ỹr)dr

)

=1{ξt∈Lt}η̃
(1)
t exp

(
−

∫ s∧ζ†−1

0

((A− 1)β)(Ỹr+t)dr

)
P̃x


 ∏

ξt≤v<ξt+s

A(Ỹζv)

∣∣∣∣∣∣
G ∨ σ(ζ†−1)




+ 1{ξt=†}η̃
(1)
t .

For fixed t > 0, given the path of Ỹ , the collection of fission times {{ζv : ξt ≤ v < ξt+s} :

s ≥ 0} is a Poisson random measure with intensity β(Ỹt+s)ds, and has law Lβ(Ỹt+·). It

follows from (2.5) that

P̃x


 ∏

ξnt≤v<ξt+s

A(Ỹζv)

∣∣∣∣∣∣
G ∨ σ(ζ†−1)


 = exp

(∫ s∧ζ†−1

0

((A− 1)β)(Ỹr+t)dr

)
.
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Thus

P̃x

[
η̃
(1)
t+s

∣∣∣ F̂ t ∨ G ∨ σ(ζ†−1)
]
= η̃

(1)
t .

(2) For s, t ≥ 0, by the Markov property, we have

P̃x

[
η̃
(2)
t+s

∣∣∣ F̃ t ∨ Ĝ
]
= P̃x


 ∏

v<ξt+s

rv

A(Ỹζv)

∣∣∣∣∣∣
F̃ t ∨ Ĝ




= 1{ξt∈Lt}

∏

v<ξt

rv

A(Ỹζv)
· P̃x


 ∏

ξt≤v<ξs+t

rv

A(Ỹζv)

∣∣∣∣∣∣
Ĝ




= η̃
(2)
t ,

where in the last equality we used (2.6). Thus we have

P̃x

[
η̃
(2)
t+s

∣∣∣ F̃ t ∨ Ĝ
]
= η̃

(2)
t .

✷

The effect of a change of measure using the martingale {η̃
(1)
t , t ≥ 0} will change the

fission rate along the spine from β(Ỹt) to (Aβ)(Ỹt). The effect of a change of measure

using the martingale {η̃
(2)
t , t ≥ 0} will change the offspring distribution from P (Ỹζi) =

(pk(Ỹζi))k≥1 to the size-biased distribution Ṗ (Ỹζi) = (ṗk(Yζi))k≥1, where ṗk(y) is defined

by

ṗk(y) =
kpk(y)

A(y)
, k ≥ 1, y ∈ E.

Define

η̃
(3)
t (φ) :=

φ(Ỹt∧ζ†−1)

φ(x)
exp

(
−

∫ t∧ζ†−1

0

(λ1 − (A− 1)β)(Ỹs)ds

)
, t ≥ 0.

{η̃
(3)
t (φ), t ≥ 0} is a P̃x-martingale with respect to {Gt ∨ σ(ζ

†−1), t ≥ 0}, and it is also a

P̃x-martingale with respect to {F̃ t, t ≥ 0}, since η̃
(3)
t (φ) can be expressed as

η̃
(3)
t (φ) =

∑

u∈Lt

φ(x)−1φ(Ỹ u
t ) exp

(
−

∫ t

0

(λ1 − (A− 1)β)(Ỹs)ds

)
1{ξt=u}

+
∑

u∈Dt

φ(x)−1φ(Ỹ u
ζu) exp

(
−

∫ ζu

0

(λ1 − (A− 1)β)(Ỹs)ds1{†−1=u}

)
. (2.7)

Define

ηt(φ) := η̃
(1)
t η̃

(2)
t η̃

(3)
t (φ), t ≥ 0.

It is easy to check, by the definition of η̃
(1)
t , η̃

(2)
t , and η̃

(3)
t (φ), that

η̃t(φ) = 1{ξt∈Lt}

∏

v<ξt

rv
φ(Ỹt)

φ(x)
e−λ1t. (2.8)
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Lemma 2.7 {η̃t(φ), t ≥ 0} is a P̃x-martingale with respect to {F̃ t, t ≥ 0}.

Proof. {η̃
(1)
t , t ≥ 0} is a P̃x(·| G ∨ σ(ζ†−1))-martingale with respect to {F̃ t, t ≥

0}, and {η̃
(2)
t , t ≥ 0} is a P̃x(·|Ĝ)-martingale with respect to {F̃ t, t ≥ 0}. Note that

G ∨ σ(ζ†−1) ⊂ Ĝ, and η̃
(1)
t ∈ Ĝ, η̃

(2)
t ∈ F̃ t for any t ≥ 0. Using Lemma 2.3, {η̃

(1)
t η̃

(2)
t , t ≥

0} is a P̃x(·|G ∨ σ(ζ†−1))-martingale with respect to {F̃ t, t ≥ 0}. Note that η̃
(3)
t (φ) ∈

G ∨ σ(ζ†−1) and η̃
(1)
t η̃

(2)
t ∈ F̃ t for any t ≥ 0. Using Lemma 2.3 again, we see that

{η̃t(φ) = η̃
(1)
t η̃

(2)
t η̃

(3)
t (φ), t ≥ 0} is a P̃x-martingale with respect to {F̃ t, t ≥ 0}. ✷

Lemma 2.8 Mt(φ) is the projection of η̃t(φ) onto F t, i.e.,

Mt(φ) = P̃x(η̃t(φ)|F t).

Proof. By (2.8),

η̃t(φ) =
∑

u∈Lt

∏

v<u

rve−λ1tφ(x)−1φ(Y u
t )1{ξt=u}.

Thus

P̃x(η̃t(φ)|F t) =
∑

u∈Lt

e−λ1tφ(x)−1φ(Y u
t )
∏

v<u

rv P̃x(1{ξt=u}|F t)

=
∑

u∈Lt

e−λ1tφ(x)−1φ(Y u
t ) =Mt(φ),

where in the second equality we used the fact that

P̃x(1Lt
(u)1{ξt=u}|F t) = 1Lt

(u)1{ξt=u}

∏

v<u

1

rv
.

✷

Now we define a probability measure Q̃x on (T̃ , F̃) by

dQ̃x

dP̃x

∣∣∣˜F t

= η̃t(φ), t ≥ 0, (2.9)

which, by (2.8), says that on F̃ t,

dQ̃x = η̃t(φ)dP̃x = 1{ξt∈Lt}

∏

v<ξt

rv
φ(Ỹt)

φ(x)
e−λ1tdP̃x.
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Hence we have Q̃x(ξt ∈ Lt) = 1 for any t ≥ 0, which implies that Q̃x(ξt ∈ Lt, ∀t ≥ 0) = 1.

dQ̃x = 1{ξt∈Lt}
φ(Ỹt)

φ(x)
exp

(
−

∫ t

0

(λ1 − (A− 1)β)(Ỹs)ds

)
dΠx(Ỹ )

× exp

(
−

∫ t

0

((A− 1)β)(Ỹs)ds

)
dLβ(Ỹ )

∏

v<ξt

prv(Ỹζv)
∏

j: vj∈Ov

dPt−ζv

Ỹζv
((τ,M)vj )

= 1{ξt∈Lt}dΠ
φ
x(Ỹ )dLAβ(Ỹ )(n)

∏

v<ξt

prv(Ỹζv)

A(Ỹζv)

∏

j: vj∈Ov

dPt−ζv

Ỹζv
((τ,M)vj )

= 1{ξt∈Lt}dΠ
φ
x(Ỹ )dLAβ(Ỹ )(n)

∏

v<ξt

ṗrv(Ỹζv)
∏

v<ξt

1

rv

∏

j: vj∈Ov

dPt−ζv

Ỹζv
((τ,M)vj )

= dΠφ
x(Ỹ )dL

Aβ(Ỹ )(n)
∏

v<ξt

ṗrv(Ỹζv)
∏

v<ξt

1

rv

∏

j: vj∈Ov

dPt−ζv

Ỹζv
((τ,M)vj ).

Thus the change of measure from P̃x to Q̃x has three effects: the spine will be changed

to a Hunt process with law Πφ
x, its fission times will be changed and the distribution of

its family sizes will be sized-biased. More precisely, under Q̃x:

(i) the root of τ is at x at time 0, and the spine process Ỹt moves according to Πφ
x;

(ii) given the trajectory Ỹ· of the spine, the fission times along the spine are distributed

according to L(Aβ)(Ỹ ), where L(Aβ)(Ỹ ) is the law of a Poisson random measure with

intensity (Aβ)(Ỹt)dt;

(iii) at the fission time of node v on the spine, the single spine particle is replaced by

a random number rv of offspring with rv being distributed according to the law

Ṗ (Ỹζv) := (ṗk(Ỹζv))k≥1;

(vi) the spine is chosen uniformly from the rv offspring of v at the fission time of v;

(v) the remaining rv − 1 particles vj ∈ Ov give rise to independent subtrees (τ,M)vj ,

which evolve as independent subtrees determined by the probability measure PỸζv

shifted to the time of creation.

We define a measure Qx on (T̃ ,F) by

Qx := Q̃x|F .

Theorem 2.9 (Spine decomposition) Qx is a martingale change of measure by the

martingale {Mt(φ), t > 0}: for any t > 0,

dQx

dPx

∣∣∣∣
Ft

=Mt(φ).
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Proof. The result actually follow from a more general observation that if µ̃1 and µ̃2

are two measures defined on a measure space (Ω, S̃) with Radon-Nikodym derivative

dµ̃2

dµ̃1

= f,

and if S is a sub--algebra of S̃, then the two measures µ1 := µ̃1|S and µ2 := µ̃2|S on (Ω,S)

are related by the conditional expectation operation:

dµ2

dµ1
= µ̃1(f |S).

For each fixed t > 0, applying this general result with (Ω, S̃) = (T̃ , F̃t), S = Ft, µ̃2 = Q̃x,

and µ̃1 = P̃x, and using Lemma 2.8 yield the desired result. ✷

We still use Xt(B) to denote the number of particles located in B ∈ B(E) at time t

in the marked tree with distinguished spine. Note that

Xt(B) = 1B(Ỹt) +
∑

u∈Lt,u 6=ξt

1B(Y
u
t ).

The individuals {u ∈ Lt, u 6= ξt} can be partitioned into subtrees created from fissions

along the spines, and regarded as immigrants. We may use the language of immigration

to describe the system as follows: under Qx, (i) the spine process Ỹ· starts at x at tome

0, and moves according to Πφ
x and thus has infinite lifetime; (ii) given the trajectory

Ỹ· of the spine, the fission times along the spine are distributed according to L(Aβ)(Ỹ );

(iii) at the fission time of node v on the spine, rv − 1 particles are immigrated to the

system at Ỹζv , the position of the spine, with rv being distributed according to the law

Ṗ (Ỹζv) := (ṗk(Ỹζv))k≥1; (vi) the immigrated particles give rise to the independent subtrees,

which evolve as independent subtrees determined by the probability measure PỸζv
shifted

to the time of creation. The above Theorem 2.9 says that Qx is the measure change of

Px by the martingale {Mt(φ), t ≥ 0}.

Theorem 2.10 We have the following decomposition for the martingale {Mt(φ), t ≥ 0}:

Q̃x

[
φ(x)Mt(φ)

∣∣∣G̃
]
= φ(Ỹt)e

−λ1t +
∑

u<ξt

(ru − 1)φ(Ỹζu)e
−λ1ζ

u

. (2.10)

Proof. We first decompose the martingale {φ(x)Mt(φ), t ≥ 0} as

φ(x)Mt(φ) = e−λ1tφ(Ỹt) + e−λ1t
∑

u∈Lt,u 6=ξt

φ(Y u
t ).

The individuals {u ∈ Lt, u 6= ξt} can be partitioned into subtrees created from fissions

along the spines. That is, each node u < ξt in the spine ξ has given birth at time ζu to ru
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offspring among which one has been chosen as a node of the spine while the other ru − 1

individuals go off independently to make the subtree (τ,M)uj . Put

X
j
t =

∑

v∈Lt,v∈(τ,M)uj

δY v
t
(·), t ≥ ζu.

{Xj
t , t ≥ ζu} is a (Y, β, ψ)-branching Hunt process with birth time ζu and starting point

Ỹζu. Then

φ(x)Mt(φ) = e−λ1tφ(Ỹt) +
∑

u<ξt

∑

j: uj∈Ou

M
u,j
t (φ)φ(Ỹζu)e

−λ1ζ
u

, (2.11)

where

M
u,j
t (φ) := e−λ1(t−ζu)

〈φ,Xj
t−ζu〉

φ(Ỹζu)
.

By definition (2.9), conditional on G̃, uj ∈ Ov evolve as independent subtrees determined

by the probability measure PỸζu
shifted to ζu, the time of creation. Therefore, conditional

on G̃, {Mu,j
t (φ), t ≥ 0} is a Q̃x-martingale on the subtree (τ,M)uj , and therefore

Q̃x(M
u,j
t (φ)|G̃) = 1.

Thus taking Q̃x conditional expectation of (2.11) gives

Q̃x

[
φ(x)Mt(φ)

∣∣∣G̃
]
= φ(Ỹt)e

−λ1t +
∑

u<ξt

(ru − 1)φ(Ỹζu)e
−λ1ζ

u

,

which completes the proof. ✷

Theorem 2.11 For any u ∈ Γ, it holds that

Q̃x(ξt = u|Ft) = 1{u∈Lt}
φ(Y u

t )

〈φ,Xt〉
.

Proof. It suffice to show that, for any B ∈ Ft,
∫

B

1{ξt=u}dQ̃x =

∫

B

1{u∈Lt}
φ(Y u

t )

〈φ,Xt〉
dQ̃x.

By definition (2.9),

∫

B

1{ξt=u}dQ̃x =

∫

B

1{ξt=u}1{ξt∈Lt}

∏

v<ξt

rv
φ(Ỹt)

φ(x)
e−λ1tdP̃x

=

∫

B

1{ξt=u}1{u∈Lt}

∏

v<u

rv
φ(Y u

t )

φ(x)
e−λ1tdP̃x.
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By (2.3), ∫

B

1{ξt=u}dQ̃x =

∫

B

1{u∈Lt}
φ(Y u

t )

φ(x)
e−λ1tdPx.

It follows from Theorem 2.9 that for any A ∈ Ft,

Px(A ∩ (Mt(φ) > 0)) = Px

(
Mt(φ)

Mt(φ)
, A ∩ (Mt(φ) > 0)

)
= Qx

(
1

Mt(φ)
, A

)
.

Since {u ∈ Lt} ⊂ (Mt(φ) > 0), we have

∫

B

1{ξt=u}dQ̃x =

∫

B

1{u∈Lt}
φ(Y u

t )

〈φ,Xt〉
dQx.

The proof is complete.

As consequences of the result above, we have the following

Corollary 2.12 If

f =
∑

u∈Lt

fu(τ,M)1{ξt=u}

with fu ∈ Ft, then

Q̃x(f |Ft) =
∑

u∈Lt

fu
φ(Y u

t )

〈φ,Xt〉
on Lt 6= ∅.

Corollary 2.13 If g is a Borel function on E then

〈gφ,Xt〉 = Q̃x(g(Ỹt)|Ft)〈φ,Xt〉.

Proof. Writing g(Ỹt) =
∑

u∈Lt
g(Y u

t )1{ξt=u} and applying Corollary 2.12, we immedi-

ately get the desired conclusion.

3 Applications

3.1 L logL criterion for supercritical branching Hunt processes

In this subsection, we will use the spine decomposition to prove the L logL theorem for

branching Hunt processes without assuming that each individual has at least one child.

Let {P̂t, t ≥ 0} be the dual semigroup of {Pt, t ≥ 0} on L2(E,m), that is
∫

E

f(x)Ptg(x)m(dx) =

∫

E

g(x)P̂tf(x)m(dx), f, g ∈ L2(E,m).

We will use A and Â to denote the generators of the semigroups {Pt} and {P̂t} on

L2(E,m) respectively. In this subsection, we will assume the following
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Assumption 3.1 (i) There exists a family of continuous strictly positive functions {p(t, ·, ·); t >

0} on E × E such that for any (t, x) ∈ (0,∞)× E and f ∈ B+(E), we have

Ptf(x) =

∫

E

p(t, x, y)f(y)m(dy), P̂tf(x) =

∫

E

p(t, y, x)f(y)m(dy).

(ii) The semigroups {Pt} and {P̂t} are ultracontractive, that is, for any t > 0, there exists

a constant ct > 0 such that

p(t, x, y) ≤ ct for any (x, y) ∈ E × E.

Let {P̂
(1−A)β
t , t ≥ 0} be the dual semigroup of {P

(1−A)β
t , t ≥ 0} on L2(E,m). Under

Assumption 3.1, we can easily show that the semigroups {P (1−A)β
t } and {P̂ (1−A)β

t } are

strongly continuous on L2(E,m). Moreover, there exists a family of continuous strictly

positive functions {p(1−A)β(t, ·, ·); t > 0} on E × E such that for any (t, x) ∈ (0,∞)× E

and f ∈ B+(E), we have

P
(1−A)β
t f(x) =

∫

E

p(1−A)β(t, x, y)f(y)m(dy), P̂
(1−A)β
t f(x) =

∫

E

p(1−A)β(t, y, x)f(y)m(dy).

The generators of {P
(1−A)β
t } and {P̂

(1−A)β
t } can be formally written as A+ (A− 1)β and

Â+ (A− 1)β respectively.

Let σ(A+(A−1)β) and σ(Â+(A−1)β) denote the spectra of the operatorsA+(A−1)β

and Â+(A−1)β, respectively. It follows from Jentzch’s Theorem (Theorem V.6.6 on page

333 of [25] ) and the strong continuity of {P
(1−A)β
t } and {P̂

(1−A)β
t } that the common value

λ1 := supRe(σ(A+(A−1)β)) = supRe(σ(Â+(A−1)β)) is an eigenvalue of multiplicity

1 for both A+ (A− 1)β and Â+ (A− 1)β, and that an eigenfunction φ of A+ (A− 1)β

associated with λ1 can be chosen to be strictly positive a.e. on E and an eigenfunction φ̂

of Â + (A − 1)β associated with λ1 can be chosen to be strictly positive a.e. on E. By

[12, Proposition 2.3] we know that φ and φ̂ are strictly positive and continuous on E. We

choose φ and φ̂ so that
∫
E
φ2(x)m(dx) =

∫
E
φ(x)φ̂(x)m(dx) = 1. Then

φ(x) = e−λ1tP
(1−A)β
t φ(x), φ̂(x) = e−λ1tP̂

(1−A)β
t φ̂(x), x ∈ E. (3.1)

Therefore Assumption 3.1 implies Assumption 1.1. We can define Πφ
x, x ∈ E, by a

martingale change of measure, see (1.7). Then {Y, Πφ
x} is a conservative Markov process,

and φφ̂ is the unique invariant probability density for the semigroup P
(1−A)β
t , that is, for

any f ∈ B+(E) and t ≥ 0,
∫

E

φ(x)φ̂(x)P
(1−A)β
t f(x)m(dx) =

∫

E

f(x)φ(x)φ̂(x)m(dx).

Let pφ(t, x, y) be the transition density of Y in E under Πφ
x. Then

pφ(t, x, y) =
e−λ1t

φ(x)
p(1−A)β(t, x, y)φ(y).

In this subsection, we also assume the following
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Assumption 3.2 The semigroups {P
(1−A)β
t } and {P̂

(1−A)β
t } are intrinsic ultracontrac-

tive, that is, for any t > 0 there exists a constant ct such that

p(1−A)β(t, x, y) ≤ ctφ(x)φ̂(y), x, y ∈ E.

It follows from [12, Theorem 2.8] that
∣∣∣∣∣
e−λ1tp(1−A)β(t, x, y)

φ(x)φ̂(y)
− 1

∣∣∣∣∣ ≤ c e−νt, x ∈ E, (3.2)

for some positive constants c and ν, which is equivalent to

sup
x∈E

∣∣∣∣∣
pφ(t, x, y)

φ(y)φ̂(y)
− 1

∣∣∣∣∣ ≤ c e−νt. (3.3)

Thus for any f ∈ B+
b (E) we have

sup
x∈E

∣∣∣∣
∫

E

pφ(t, x, y)f(y)m(dy)−

∫

E

φ(y)φ̂(y)f(y)m(dy)

∣∣∣∣ ≤ c e−νt

∫

E

φ(y)φ̂(y)f(y)m(dy).

Consequently we have

lim
t→∞

∫
E
pφ(t, x, y)f(y)m(dy)

∫
E
φ(y)φ̂(y)f(y)m(dy)

= 1, uniformly for f ∈ B+
b (E) and x ∈ E. (3.4)

We also assume that

Assumption 3.3 λ1 > 0.

The above assumption says that the branching Hunt process is supercritical. There

are many examples of Hunt processes satisfying Assumptions 3.1 and 3.2, see [18, Remark

1.4].

The purpose of this subsection is to extend the probabilistic proof of the Kesten-Stigum

L logL theorem to branching Hunt processes without assuming that each individual has

at least one child. Let

l(x) =

∞∑

k=2

kφ(x) log+(kφ(x)) pk(x), x ∈ E. (3.5)

The main result of this subsection can be stated as follows.

Theorem 3.4 Suppose that {Xt; t ≥ 0} is a (Y, β, ψ)-branching Hunt process and that

Assumptions 3.1, 3.2 and 3.3 are satisfied. Then M∞(φ) is non-degenerate under Pµ for

any nonzero measure µ ∈ Mp(E) if and only if
∫

E

φ̂(x)β(x)l(x)m(dx) <∞, (3.6)

where l is defined in (3.5).
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First, we give two lemmas. The first lemma is basically [7, Theorem 4.3.3].

Lemma 3.5 Suppose that P and Q are two probability measures on a measurable space

(Ω,F∞) with filtration (Ft)t≥0, such that for some nonnegative martingale {Zt, t ≥ 0},

dQ

dP

∣∣∣
Ft

= Zt.

The limit Z∞ := lim supt→∞ Zt therefore exists and is finite almost surely under P. Fur-

thermore, for any F ∈ F∞

Q(F ) =

∫

F

Z∞dP+Q(F ∩ {Z∞ = ∞}),

and consequently,

(a) P(Z∞ = 0) = 1 ⇐⇒ Q(Z∞ = ∞) = 1

(b)

∫
Z∞dP =

∫
Z0dP ⇐⇒ Q(Z∞ <∞) = 1.

Now we are going to give a lemma which is the key to the proof of Theorem 3.4. To

state this lemma, we need some more notation. Note that

Q̃x(ξt 6= †, ∀t > 0) = 1

and thus the lifetime the spine is ∞. We can select a line of descendants ξ = {ξ0 =

∅, ξ1, ξ2, · · · }, where ξn+1 ∈ τ is an offspring of ξn ∈ τ, n = 0, 1, · · · , such that ξt =

ξnt
, t ≥ 0. Under Q̃x, given G̃, Nt := {{(ζξi, rξi) : i = 0, 1, 2, · · · , nt − 1} : t ≥ 0} is a

Poisson point process with intensity measure (Aβ)(Ỹt)dtdṖ (Ỹt), where for each y ∈ E,

Ṗ (y) is the size-biased distribution of P (y). To simplify notation, ζξi and rξi will be

denoted as ζi and ri, respectively.

Lemma 3.6 (1) If
∫
E
φ̂(y)β(y)l(y)m(dy) <∞, then

∞∑

i=0

e−λ1ζiriφ(Ỹζi) <∞, Q̃x-a.s.

(2) If
∫
E
φ̂(y)β(y)l(y)m(dy) = ∞, then

lim sup
i→∞

e−λ1ζiriφ(Ỹζi) = ∞, Q̃x-a.s.

The proof of the above result goes along the same line as the proof of [18, Lemma 3.2].

We omit the details here.

Proof of Theorem 3.4. The proof heavily depends on the decomposition (2.10).
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When
∫
E
φ̂(x)β(x)l(x)m(dx) <∞, the first conclusion of Lemma 3.6 says that

sup
t>0

Q̃x

[
φ(x)Mt(φ)

∣∣∣G̃
]
≤
∑

u∈ξ

ruφ(Ỹζu)e
−λ1ζ

u

+ ‖φ‖∞ <∞.

Fatou’s lemma for conditional probability implies that lim inft→∞Mt(φ) < ∞, Q̃x-a.s.

The Radon-Nikodym derivative tells us that {Mt(φ)
−1, t ≥ 0} is a nonnegative super-

martingale underQx and therefore has a finite limitQx-a.s. So limt→∞Mt(φ) =M∞ <∞,

Qx-a.s. Lemma 3.5 implies that in this case,

Px[M∞(φ)] = lim
t→∞

Px[Mt(φ)] = 1.

When
∫
E
φ̂(x)β(x)l(x)m(dx) = ∞, using the second conclusion in Lemma 3.6, we can

get under Q̃x,

lim sup
t→∞

φ(x)Mt(φ) ≥ lim sup
t→∞

φ(Ỹζnt
)(rnt

− 1)e−λ1ζnt = ∞.

This yields that M∞(φ) = ∞, Qx-a.s. Using Lemma 3.5 again, we get M∞(φ) = 0, Px-

a.s. The proof is finished. ✷

Theorem 3.7 Suppose that {Xt; t ≥ 0} is a (Y, β, ψ)-branching Hunt process and that

Assumptions 3.1, 3.2 and 3.3 are satisfied. Suppose (3.6) holds, then there exists Ω0 ⊂ Ω

with full probability (that is, Px(Ω0) = 1 for every x ∈ E) such that, for every ω ∈ Ω0 and

for every bounded Borel function f on E with compact support whose set of discontinuous

points has zero m-measure, we have

lim
t→∞

e−λ1t〈f,Xt〉 =M∞(φ)

∫

E

φ̂(x)f(x)m(dx).

With our spine decomposition theorem and Theorem 3.4, the proof of [26] goes

through. We omit the details.

3.2 Kolmogorov type theorem for critical branching Hunt pro-

cess

In this subsection, we use our spine decomposition to give a proof of a Kolmogorov type

theorem for critical branching Hunt processes, see Theorem 3.10 below. The key to prove

this result is Lemma 3.11 below, which says that studying the limit of tPx(〈φ,Xt〉>0)
φ(x)

as

t → ∞ is equivalent to studying the limit of
∫
E
tPx(〈φ,Xt〉 > 0)φ̂(x)m(dx) as t → ∞.

The proof of Lemma 3.11 uses our spine decomposition.
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Throughout this subsection, we assume that Assumptions 3.1 and 3.2 hold. Let λ1, φ

and φ̂ be defined as in Subsection 3.1. Put

V (x) := ψ′′(x, 1) =

∞∑

k=2

k(k − 1)pk(x), x ∈ E (3.7)

and

σ2 :=

∫

E

β(y)V (y)φ2(y)φ̂(y)m(dy). (3.8)

Let Ψ be the operator on B+
E defined by

(Ψf)(x) := ψ(x, f(x)), f ∈ B+(E), x ∈ E.

Recall that f is automatically extended to E∆ by setting f(∆) = 0. For f ∈ B+(E), put

Vt(e
−f)(x) := Px(exp〈−f,Xt〉), t ≥ 0, x ∈ E.

Then (1.4) can be written as

Vt(e
−f)(x) = Pt(e

−f1E)(x) + Πx(t ≥ ζ) +

∫ t

0

Pr

[(
Ψ(Vt−r(e

−f ))− Vt−r(e
−f )
)
β
]
(x)ds,

where we used the fact that β(∆) = 0. Note that

1 = Πx(t < ζ) + Πx(t ≥ ζ) = Pt1E(x) + Πx(t ≥ ζ).

Thus we have

1− Vt(e
−f )(x) = Pt((1− e−f )1E)(x) +

∫ t

0

Pr

[(
−Ψ(Vt−r(e

−f)) + Vt−r(e
−f )
)
β
]
(x)ds,

which can be written as

1− Vt(e
−f)(x) = Pt((1− e−f )1E)(x)

+

∫ t

0

Pr

[(
AVt−r(e

−f) + 1− A−Ψ(Vt−r(e
−f )) + (A− 1)(1− Vt−r(e

−f ))
)
β
]
(x)ds,

which in turn is equivalent to

1− Vt(e
−f )(x) =P

(1−A)β
t ((1− e−f)1E)(x)

+

∫ t

0

P (1−A)β
r [(AVt−r(e

−f ) + 1− A−Ψ(Vt−r(e
−f ))β]ds. (3.9)

We first consider the asymptotic behavior of

vt(x) := Px(Xt(E) = 0), t > 0, x ∈ E.
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By monotone convergence, we have

vt(x) = lim
θ→∞

Vt(e
−θ1E)(x), t > 0, x ∈ E.

By the Markov property of X , we have

Vtvs(x) = Px[e
〈Xt,log limθ→∞ Vs(e−θ1E )〉] = lim

θ→∞
Px[e

〈Xt,logVs(e−θ1E )〉]

= lim
θ→∞

VtVs(e
−θ1E)(x) = vt+s(x), s, t > 0, x ∈ E.

(3.10)

Using (3.9), (3.10) and f = − log vs, we get

1− vt+s(x) =P
(1−A)β
t ((1− vs)1E)(x)

+

∫ t

0

P (1−A)β
r [(Avt−r+s + 1−A−Ψ(vt−r+s)) β](x)ds. (3.11)

Define

v∞(x) =: lim
t→∞

vt(x) = Px(∃t > 0 such that Xt(E) = 0).

Recall the quantities V and σ2 defined in (3.7) and (3.8). Throughout this subsection

we assume that

Assumption 3.8 (i) The branching Hunt process X is critical, i.e., λ1 = 0;

(ii) σ2 > 0;

(iii) the function φV : x→ φ(x)V (x) is bounded on E.

Lemma 3.9 Suppose that Assumptions 3.1, 3.2 and 3.8 (i-ii) hold. Then for any x ∈ E,

lim
t→∞

sup
x∈E

Px(Xt(E) > 0)

φ(x)
= 0. (3.12)

Proof. For any f, g ∈ B+(E), we use 〈f, g〉m to denote
∫
E
f(x)g(x)m(dx). Under

Assumption 3.2, 〈1, φ̂〉m <∞. In fact, according to (3.2), for t > 0 large enough, there is

a c′t > 0 such that

φ̂(y) ≤ q(t, x, y)(c′t)
−1φ−1(x),

and clearly, as a function of y, the right hand above is integrable with respect to m.

Integrating (3.9) with respect to φ̂(x)m(dx), we get that

〈1− vt+s, φ̂〉m = 〈1− vs, φ̂〉m +

∫ t

0

〈(Avt−r+s + 1− A−Ψ(vt−r+s))β, φ̂〉mds. (3.13)

Letting s→ ∞, we get

〈1− v∞, φ̂〉m = 〈1− v∞, φ̂〉m + t〈(Av∞ + 1−A−Ψ(v∞))β, φ̂〉m.
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Thus we have

〈Av∞ + 1− A−Ψ(v∞), βφ̂〉m = 0.

It is easy to check that for any x ∈ E, Az+1−A−ψ(x, z) ≤ 0, ∀z ∈ [0, 1]. Since φ̂(x) > 0

on E, we must have

Av∞ + 1− A−Ψ(v∞) = 0, m-a.e. on {x ∈ E, β(x) > 0}. (3.14)

Letting s→ ∞ in (3.11), we get

1− v∞(x) = P
(1−A)β
t ((1− v∞)1E)(x) +

∫ t

0

P (1−A)β
s [(Av∞ + 1− A− ψ(v∞))β](x)ds,

and thus 1− v∞(x) = P
(1−A)β
t ((1− v∞)1E)(x), which says that 1− v∞ is an eigenfunction

of A + (A − 1)β corresponding to the eigenvalue λ1 = 0. Since the eigenvalue λ1 = 0

is simple, 1 − v∞ = cφ on E for some constant c. Note that, for each fixed x ∈ E, the

function ψ0(x, z) := ψ(x, z) − A(x)z + A(x) − 1 is strictly decreasing for z ∈ (0, 1) with

ψ0(x, 1) = 0 and ψ0(x, 0) =
∑∞

k=2(k − 1)pk(x) ≥ 0. Assumption 3.8 (ii) implies that

m({x ∈ E; β(x) > 0, ψ0(x, 0) > 0}) > 0. Since v∞ satisfies (3.14), we must have c = 0, or

equivalently v∞ ≡ 1. Thus

lim
t→∞

Px(Xt(E) > 0) = 1− v∞(x) = 0, x ∈ E.

By (3.11) and (3.2), we have

1− vt+s(x) ≤ P
(1−A)β
t ((1− vs)1E)(x) ≤ (1 + ce−νt)φ(x)

∫

E

φ̂(y)(1− vs)(y)m(dy),

which implies
1− vt+s(x)

φ(x)
≤ (1 + ce−νt)

∫

E

φ̂(y)(1− vs)(y)m(dy).

Using the monotonicity of vt in t, we get (3.12). ✷

The following Kolmogorov type theorem is the main result of this subsection.

Theorem 3.10 Suppose that Assumptions 3.1, 3.2 and 3.8 hold. Then

lim
t→∞

tPx(〈φ,Xt〉 > 0)

φ(x)
=

2

σ2
(3.15)

uniformly for x ∈ E.

We prove the above result by proving two lemmas first. Define

b(t) :=

∫

E

(1− vt(x))φ̂(x)m(dx) =

∫

E

Px(Xt(E) > 0)φ̂(x)m(dx). (3.16)
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Lemma 3.11 Under Assumptions 3.1, 3.2 and 3.8, we have

sup
x∈E

∣∣∣1− vt(x)

b(t)φ(x)
− 1
∣∣∣ −−−→

t→∞
0,

where b(t) is defined in (3.16).

Proof. First note that

1− vt(x)

φ(x)
=

Px(Xt(E) > 0)

φ(x)
= Qx

(
1(Xt(E)>0)

〈φ,Xt〉

)
= Qx

(
Xt(φ)

−1
)
.

For 0 < t0 < t <∞, define

I
(0,t0]
t =

∑

u∈Lt0 ,u 6=ξt0

δY u
t

and I
(t0,t]
t =

∑

u∈Lt\Lt0

δY u
t
.

Then we have

Xt = I
(0,t0]
t + I

(t0,t]
t . (3.17)

Define

Q
φφ̂m

(·) :=

∫

E

Qx(·)φ(x)φ̂(x)m(dx).

Under Q
φφ̂m

, X0 = δZ with Z being an E-valued random variable with distribution φφ̂m.

It is easy to see, from the construction of Qx and the Markov property of the immigration

that for any 0 < t0 < t <∞,

Qx[(I
(t0,t]
t (φ))−1|Gt0 ] = QỸt0

[(Xt−t0(φ))
−1] = (φ−1(1− vt−t0))(Ỹt0).

Therefore, we have

Q
φφ̂m

[(I
(t0,t]
t (φ))−1] = Q

φφ̂m
[(φ−1(1− vt−t0))(Ỹt0)] = 〈1− vt−t0 , φ̂〉m

and

Qx[(I
(t0,t]
t (φ))−1] =Qx[(φ

−1(1− vt−t0))(Ỹt0)]

=

∫

E

pφ(t0, x, y)(φ
−1(1− vt−t0))(y)m(dy).

(3.18)

By the decomposition (3.17), we have

φ−1(1− vt(x)) = Qx[(Xt(φ))
−1]

= Q
φφ̂m

[(I
(t0,t]
t (φ))−1] +

(
Qx[(I

(t0,t]
t (φ))−1]−Q

φφ̂m
[(I

(t0,t]
t (φ))−1]

)

+
(
Qx[(Xt(φ))

−1 − (I
(t0,t]
t (φ))−1]

)

=: 〈1− vt−t0 , φ̂〉m + ǫ1x(t0, t) + ǫ2x(t0, t).

(3.19)
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Suppose that t0 > 1, and let c, ν > 0 be the constants in (3.3). Using (3.18), we have

|ǫ1x(t0, t)| =
∣∣Qx[(I

(t0,t]
t (φ))−1]−Q

φφ̂m
[(I

(t0,t]
t (φ))−1]

∣∣

=
∣∣
∫

E

pφ(t0, x, y)(φ
−1(1− vt−t0))(y)m(dy)− 〈1− vt−t0 , φ̃〉m

∣∣

≤

∫

y∈E

∣∣pφ(t0, x, y)− (φφ̂)(y)
∣∣(φ−1(1− vt−t0))(y)m(dy)

≤ ce−νt0〈1− vt−t0 , φ̂〉m.

(3.20)

We also have

|ǫ2x(t0, t)| =
∣∣Qx[(Xt(φ))

−1 − (I
(t0,t]
t (φ))−1]

∣∣

= Qx[I
(0,t0]
t (φ) · (Xt(φ))

−1 · (I
(t0,t]
t (φ))−1]

≤ Qx[1I
(0,t0]
t (φ)>0

· (I
(t0,t]
t (φ))−1]

= Qx

(
Qx[1I

(0,t0]
t (φ)>0

|Gt0 ] ·Qx[(I
(t0,t]
t (φ))−1|Gt0 ]

)
.

(3.21)

Recall that ζi and ri are the shorthand notation for ζξi and rξi respectively. Note that

Qx[1I
(0,t0]
t (φ)=0

|Gt0 ] =Qx

[
∏

ζi≤t0

(P
Ỹ (ζi)

(Xt−ζi(E) = 0))ri−1|Gt0

]

≥Qx

[
∏

ζi≤t0

(P
Ỹ (ζi)

(Xt−t0(E) = 0))ri−1|Gt0

]

and that

Qx[1I
(0,t0]
t (φ)>0

|Gt0 ] ≤Qx

[
∏

ζi≤t0

(ri − 1)P
Ỹ (ζi)

(Xt−t0(E) > 0)|Gt0

]

≤Qx

[
∑

ζi≤t0

(ri − 1)(1− vt−t0)(Ỹ (ζi))

]

=

∫ t0

0

β(Ỹs)(k − 1)kpk(Ỹs)(1− vt−t0)(Ỹs)ds

≤t0‖βV φ‖∞‖φ−1(1− vt−t0)‖∞.

(3.22)

Thus by (3.21) and (3.22), we have

|ǫ2x(t0, t)| ≤t0‖βV φ‖∞‖φ−1(1− vt−t0)‖∞Qx

(
Qx[(I

(t0,t]
t (φ))−1|Gt0 ]

])

=t0‖βV φ‖∞‖φ−1(1− vt−t0)‖∞

∫

E

pφ(t0, x, y)(φ
−1(1− vt−t0))(y)m(dy)

≤t0‖βV φ‖∞‖φ−1(1− vt−t0)‖∞(1 + ce−νt)〈1− vt−t0 , φ̂〉m.

(3.23)
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Combining (3.19), (3.20) and (3.23), we have that

∣∣∣φ
−1(1− vt(x))

〈1− vt−t0 , φ̂〉m
− 1
∣∣∣ ≤ |ǫ1x(t0, t)|

〈1− vt−t0 , φ̂〉m
+

|ǫ2x(t0, t)|

〈1− vt−t0 , φ̂〉m

≤ ce−γt0 + t0‖βV φ‖∞‖φ−1(1− vt−t0)‖∞(1 + ce−νt0).

(3.24)

Since we know from Lemma 3.9 that ‖φ−1(1 − vt)‖∞ → 0 as t → ∞, there exists a map

t 7→ t0(t) such that,

t0(t) −−−→
t→∞

∞; t0(t)‖φ
−1(1− vt−t0(t))‖∞ −−−→

t→∞
0.

Plugging this choice of t0(t) back into (3.24), we have that

sup
x∈E

∣∣∣ φ
−1(1− vt(x))

〈1− vt−t0(t), φ̂〉m
− 1
∣∣∣ −−−→

t→∞
0. (3.25)

Now notice that

∣∣∣ 〈1− vt, φ̂〉m

〈1− vt−t0(t), φ̂〉m
− 1
∣∣∣ ≤

∫ ∣∣∣φ
−1(1− vt(x))

〈1− vt−t0(t), φ̂〉
− 1
∣∣∣φφ̂(x)m(dx)

≤ sup
x∈E

∣∣∣ φ
−1(1− vt(x))

〈1− vt−t0(t), φ̂〉m
− 1
∣∣∣ −−−→

t→∞
0.

(3.26)

Finally, by (3.25), (3.26) and property of uniform convergence, we have

sup
x∈E

∣∣∣φ
−1(1− vt(x))

〈1− vt, φ̂〉m
− 1
∣∣∣ −−−→

t→∞
0

as desired. ✷

Lemma 3.12 Under Assumptions 3.1, 3.2 and 3.8, we have

1

tb(t)
−−−→
t→∞

1

2
〈βV φ, φφ̂〉m,

where b(t) = 〈1− vt, φ̂〉m.

Proof. For z ∈ [0, 1], define

ψ0(x, z) := ψ(x, z)− 1−A(x)(z − 1))

and

R(x, z) := ψ0(x, z)−
1

2
V (x)(z − 1)2.
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Note that ψ′(x, θ) ≤ 0 and ψ′′(x, θ) ≥ 0 for θ ∈ (z, 1]. By the mean value theorem,

ψ0(x, z) =
1
2
ψ′′(x, θ)(z − 1)2 ≤ 1

2
V (x)(z − 1)2 with θ ∈ (z, 1]. Thus

R(x, z) = e(x, z)(z − 1)2, ∀z ∈ [0, 1],

where e(x, z) satisfies |e(x, z)| ≤ V (x), ∀z ∈ [0, 1] and that

e(x, z) −−→
z→1

0, x ∈ E. (3.27)

Let Ψ0 be the operator on B+(E) defined by

(Ψ0f)(x) := ψ0(x, f(x)), f ∈ B+(E), x ∈ E.

Writing lt(x) := (1− vt(x))− b(t)φ(x), Lemma 3.11 says that

sup
x∈E

∣∣∣ lt(x)

b(t)φ(x)

∣∣∣ −−−→
t→∞

0. (3.28)

Using (3.13), we see that t 7→ b(t) is differentiable on the set

C = {t > s0 : the function t 7→ 〈Ψ0(vt), βφ̂〉m is continuous at t}

and that

d

dt
b(t) = −〈Ψ0(vt), φ̂〉m = −

〈1
2
V · (1− vt)

2 +R(·, vt(·)), βφ̂
〉
m

= −
〈1
2
V ·
(
b(t)φ + lt

)2
+R(·, vt(·)), βφ̂

〉
m

= −b(t)2
[1
2
〈βV φ, φφ̂〉m + g(t)

]
, t ∈ C,

(3.29)

where

g(t) =
〈 lt

b(t)φ
, βV φ2φ̂

〉
m
+

1

2

〈( lt

b(t)φ

)2
, βV φ2φ̂

〉
m
+
〈R(·, vt(·))

b(t)2φ2
, φ2φ̂

〉
m

It follows from (3.29) that

d

dt

( 1

b(t)

)
= −

db(t)

b(t)2dt
=

1

2
〈βV φ, φφ̂〉m + g(t), t ∈ C.

Since the function t 7→ 〈Ψ0(vt), βφ̂〉m is non-increasing, (s0,∞)\C has at most countably

many points. Using (3.27) and (3.28), and repeating the argument in the proof of [23,

Lemma 5.4], we obtain that g(t) → 0 as t→ ∞, and thus

1

b(t)t
−−−→
t→∞

1

2
〈βV φ, φφ̂〉m

as desired. ✷

Combining Lemmas 3.11 and 3.12, we immediately get Theorem 3.10.
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3.3 Branching Brownian motion and traveling wave solution

We consider a branching Brownian motion on R, i.e., the spatial motion Y = {Yt,Πx} is

a Brownian motion on R. Suppose the branching rate β > 0 is a constant, the offspring

distribution {(pn)
∞
n=0} does not depend on the spatial position and A :=

∑∞
n=0 npn <∞.

It is known that, for any λ ∈ R, Πxe
λYt = e

1
2
λ2t. Put φ(x) = e−λx. Then

φ(x) = e−[ 1
2
λ2+(A−1)β]tP

(1−A)β
t φ(x), x ∈ R.

Therefore,

Wt(λ) := e−[ 1
2
λ2+(A−1)β]t〈φ,Xt〉 = e−[ 1

2
λ2+(A−1)β]t

∑

u∈Lt

e−λYu(t), t ≥ 0, (3.30)

is a non-negative Px-martingale with respect to {Ft, t ≥ 0}. Thus, for any x ∈ R, the

limit W∞(λ) := limt→∞Wt(λ) exists Px-almost surely.

Under the assumption p0 = 0, Kyprianou [14] used spine decomposition techniques

to give necessary and sufficient conditions for the L1-convergence of the martingales

{Wt(λ), t ≥ 0}:

Theorem 3.13 Suppose p0 = 0. Let λ :=
√
2β(A− 1).

(1) if |λ| ≥ λ, W∞(λ) = 0 Px-almost surely;

(2) if |λ| < λ and
∑∞

n=1 pnn logn = ∞, then W∞(λ) = 0 Px-almost surely;

(3) if |λ| < λ and
∑∞

n=1 pnn logn < ∞, then Wt(λ) → W∞(λ) Px-almost surely and

in L1(Px).

Using spine techniques, Hardy and Harris [10] proved that in many cases where

the martingale has a non-trivial limit, the convergence can be strengthen as Lp(Px)-

convergence with some p ∈ (1, 2].

Theorem 3.14 Suppose p0 = 0. For any x ∈ R, and for each p ∈ (1, 2] we have

(1) As t → ∞, Wt(λ) → W∞(λ) Px-almost surely and in Lp(Px) if pλ
2 < 2(A− 1)β

and
∑∞

n=1 pnn
p <∞;

(2) limt→∞ Px(Wt(λ)) = ∞ if pλ2 > 2(A− 1)β or
∑∞

n=1 pnn
p = ∞.

Now using our spine decomposition in Section 2, the above Theorems 3.13 and 3.14 also

hold for the case that p0 > 0.

It is known that

∂Wt(λ) := e−[ 1
2
λ2+(A−1)β]t

∑

u∈Lt

(Yu(t) + λt)e−λYu(t)e−λYu(t), t ≥ 0,

is a Px-martingale with respect to {Ft, t ≥ 0}, which is also referred to as the derivative

martingale.
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The martingale {∂Wt(λ), t ≥ 0} is not non-negative. To establish the convergence of

∂Wt(λ) as t→ ∞, we usually consider the following related non-negative martingale.

Let L̃t denote the set of particles in Lt that, along with their ancestors, have not met

by time t the space-time barrier y +
√

(A− 1)βt = −x. Define

V x
t (λ) = e−[ 1

2
λ2+(A−1)β]t

∑

u∈L̃t

x+ Yu(t) + λt

x
e−λYu(t), t ≥ 0.. (3.31)

Under the condition that p0 = 0, Kyprianou [14] proved that {V x
t (λ), t ≥ 0} is a mean

1 Px-martingale, and that when λ ≥
√

2(A− 1)β, ∂W (λ) := limt→+∞ ∂Wt(λ) Px-a.s.

exists and is equal to limt→+∞ xV x
t (λ).

The importance of the limit ∂W (λ) lies in that when ∂W (λ) is non-degenerate, its

rescaled Laplace transform provides a traveling wave solution to the KPP equation

∂u

∂t
=

1

2

∂2u

∂x2
+ β(f(u)− u),

where f(u) :=
∑∞

n=0 pnu
n is the generating function of the distribution {pn, n ≥ 0}. By a

traveling wave solution we mean a solution of the form u(t, x) = w(x− ct), where w is a

monotone function connecting 0 at −∞ to 1 at +∞ and c is called the speed of the wave.

The following result of Yang and Ren [27] gives a necessary and sufficient condition for

∂W (λ) being non-degenerate.

Theorem 3.15 Suppose p0 = 0 and λ = λ. For any x ∈ R, we have

(1) ∂W (λ) > 0 Px-almost surely if
∑∞

n=1 pnn(log n)
2 <∞;

(2) ∂W (λ) = 0 Px-almost surely if
∑∞

n=1 pnn(log n)
2 = ∞.

Corollary 3.16 When c = λ =
√

2ββ(A− 1) and
∑∞

n=1 pnn(log n)
2 < ∞, there is a

unique traveling wave with speed c given by Φc(x) = Ex exp(−eλx∂W (λ)).

Now using our spine decomposition in Section 2, the above Theorem 3.15 and Corollary

3.16 also hold for the case that p0 > 0.

3.4 Typed branching Brownian motion and traveling wave so-
lution

Hardy and Harris [10] considered a typed branching diffusion in which the Hunt process,

that is, the spatial motion, is described by (Yt, ηt)t≥0, where the type ηt evolves as a

Markov chain on I := {1, · · · , n} with Q-matrix θQ, where θ > 0 is a constant, and the

spatial location, St, moves as a driftless Brownian motion on R with diffusion coefficient

a(i) > 0 whenever ηt is in state i. Any particle currently of type i will undergo fission at

rate β(i) to be replaced by a random number of offspring with law {pn(i), n ≥ 0}. At birth,
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offspring inherit the parent’s spatial and type positions and then move off independently,

repeating stochastically the parent’s behaviour, and so on. Let A(i) :=
∑∞

n=0 npn(i) <∞

be the mean of the distribution of offspring given by a type i particle.

As usual, let the configuration of the whole branching diffusion at time t be given by

the R× I-valued point process Xt =
∑

u∈Lt
δ(y,i), where Lt is the set of particles alive at

time t. Let the probabilities for this process be given by {P(y,i), (y, i) ∈ R× I} defined on

the natural filtration, (Ft, t ≥ 0}, where P(y,i) is the law of the typed branching Brownian

motion starting with one initial particle of type i at spatial position y.

For this finite-type branching diffusion, a fundamental positive martingale is defined

for this model:

Wλ(t) :=
∑

u∈Lt

vλ(ηu(t))e
λYu(t)−Eλt, t ≥ 0,

where vλ and Eλ satisfy

(
1

2
λ2Σ + θQ+ (A− 1)R

)
vλ = Eλvλ,

where Σ := diag(a(i) : i ∈ I), A := diag(A(i), i ∈ I) and R := diag(β(i) : i ∈ I). That is,

vλ is the (Perron-Frobenius) eigenvector of the matrix 1
2
λ2A + θQ + R, with eigenvalue

Eλ. This martingale should be compared with the corresponding martingale (3.30) for

branching Brownian motion.

Since {Wt(λ), t ≥ 0} is a strictly-positive martingale it is immediate that W∞(λ) :=

limt→∞Wt(λ) exists and is finite almost-surely under P(y,i). Under the condition that

p0(i) = 0, i ∈ I, Hardy and Harris [10, Theorem 10.4] give a necessary and sufficient

conditions for L1-convergence of the martingale {Wt(λ), t ≥ 0}. Using our general spine

decomposition, the condition that p0(i) = 0, i ∈ I can be dropped now. Once again, in

many cases where the martingale has a non-trivial limit, the convergence will be much

stronger than merely in L1(P(y,i), that is L
p(P(y,i)(p ∈ (1, 2])-convergence, using the spine

decomposition, see [10, Theorem 10.5].

In Harris and Williams [11], a continuous-typed branching diffusion, where the Hunt

process, that is, the movement of the particles, is described by (Yt, Vt)t≥0, where the spatial

motion (Yt)t≥0 is a driftless Brownian motion with instantaneous variance ay2 with a ≥ 0

being a fixed constant, and the type moves on the real line as an Orstein-Uhlenbeck

process. A particle of type v dies at rate rv2 + ρ with r, ρ ≥ 0 being fixed constant, and

then produce two particles at the same space-type location as the parent. This model

is similar in flavour to the finite-type model. There is also a strictly-positive martingale

{Wt(λ), t ≥ 0}. Hardy and Harris [10, Theorem 11.1], using the spine technique, give

a necessary condition and sufficient condition for Lp-convergence with p ∈ (1, 2]. We

remark here that, their results also hold for general offspring distribution, that is when

a particle of type v ∈ R dies, it gives birth a random number of particles according to
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law {pn(v), n ≥ 0} at the same space-type location as the parent. Under some moment

condition on {pn(v), n ≥ 0}, v ∈ R, allowing p0(v) = 0, v ∈ R, results similar to [10,

Theorem 11.1] remain true. We will not go to the details here.

Acknowledgment: We thank the referees for helpful comments.
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