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Large deviations and almost sure convergence for the
extremes of branching Lévy processes

Runjia Luo* Yan-Xia Ren’ Renming Song! Rui Zhang*®

Abstract

In this paper, we investigate the asymptotic behavior of supercritical branching
Markov processes {X;,t > 0} whose spatial motions are Lévy processes with regularly
varying tails. Recently, Ren et al. [Appl. Probab. 61 (2024)] studied the weak
convergence of the extremes of {X;,¢t > 0}. In this paper, we establish the large
deviation of {X;, ¢ > 0} as well as some almost sure convergence results of the maximum
of Xt.

Keywords and Phrases: Branching Lévy processes, regularly varying tail, large deviation,
almost surely convergence.

1 Introdution

1.1 Model and notation

A branching Lévy process on R is a continuous-time particle system which can be described
as follows. The system begins at time ¢ = 0 with a single particle located at = which
moves according to a branching Lévy process {&, P,} with Lévy exponent ¢(6). After an
independent exponential time with parameter 3, the initial particle dies and gives birth to
k new particles with probability px, k£ > 0. Each new particle moves according to the Lévy
process & starting from the position of its parent’s death, and branches independently with
the same branching rate 5 and offspring distribution {py, k& > 0}. All particles, once born,
evolve independently of one another. The expectation with respect to P, will be denoted
by E,. We write P := Py and E := E,.

We label each particle using the classical Ulam-Harris labeling system. We denote by T
the set of all particles in the tree and use o represent the root of the tree. For any v € T,
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let N* be the number of the offspring of v and 7,, denote the lifetime of w. Then {r,,u € T}
are i.i.d. exponential random variables of parameter .

We will use the notation u < v to mean that u is an ancestor of v, and u < v that either
u<voru=v. Foranyu € T,let I:={veT:v<u}and I, :={veT:v<u} Letb,
and o, be the birth time and death time of u respectively. It is clear that

bu:ZTv, Oy = by + 7.

veld

Let L£; be the set of all particles alive at time t. Then u € £; means b, < t < o0,. For
u € T with b, < ¢, define 7,4 = 0, ANt —b,. For any u € L, let &' be the position of u at
time ¢. The branching Lévy process {X; : t > 0} is the measure-valued process defined by

Xt = Z (55#

uELy

We use P, to denote the law of the branching Lévy process when the initial particle starts
at position . The expectation with respect to P, will be denoted by E,. We write P := P,
and E := E,. Let {F;} be the natural filtration of X and

Fli=c({N":u €T with 0, <t} U {1, : u € T with b, < t}).

In this paper, we study supercritical branching Lévy processes, that is to say, we always
assume that p:= )", kp, > 1. Let S be survival event. Then P,(S) > 0 does not depend on
the location z of the initial particle. The extinction probability ¢ := P(S¢) is the unique root
in the interval [0,1) of the equation f(s) = s, where f(s) := Y, prs®. For more details, see
[5, Section III. 4]. For any x € R, we define P%(-) := P,(-|S) and denote the corresponding
expectation by E>. We write P* := Pj and E* := K.

Recently, many people studied the extreme of branching Lévy processes defined by

R, = {Lrgg(ﬁ, t>0.

Here we use the convention that max () = —oco. Among these, branching Brownian motions
garnered the most attention. For branching Brownian motions, Bramson [12] (see also [13])
proved that, under some moment conditions on the offspring distribution, P(R, — m(t) <
r) = 1 —w(r) ast — oo for all z € R, where m(t) = v/2t — % logt and w(x) is a traveling
wave solution. For the large deviation of R;, Chauvin and Rouault [I4, [I5] studied the
asymptotic behavior of P(R; > v/26t) for § > 1. Derrida and Shi [I7, 18] studied the lower
large deviation of Ry, i.e, the asymptotic behavior of %log P(R; < V/26t) for § < 1, and
found that the rate function has a phase transition at 1 — /2. Subsequently, Chen, He and
Mallein [I6] studied the asymptotic behavior of P(R; < v/26t) for § < 1. Recently, [2, 3, 4]
studied the extremal processes of branching Brownian motions.

In this paper we study the case when the spatial motion is a Lévy process with regularly
varying Lévy exponent. We now state our assumptions.

Let Z; be the total number of the particles alive at time ¢. It is well known that {Z; :
t > 0} is a continuous time Galton-Watson process. The following two quantities will play

2



important roles in this paper:
Ai=p(p—-1), 0J:= / e MP(Z, > 0)dr. (1.1)
0

By the Markov property and the branching property, the process {e *Z;,t > 0} is a non-
negative martingale with respect to {FF}. Thus it has an almost sure limit

lim e MZ, = W.

t—o00

It is well known that W is non-degenerate if and only if the following L log L criterien holds:
Assumption 1. Y (klogkpy) < oo.
k=1

Moreover, under Assumption [I] P(W > 0) = P(S) > 0. For more details, see [5, Section
I11.7].

We will always assume that the spatial motion satisfies:

Assumption 2. There ezxist o € (0,2), a complex constant ¢, with Re(c,) > 0 and a function
L(z) : Ry — Ry slowly varying at oo such that ¥(0) ~ —c,0“L(071) as 6 — 0.

Strictly a-stable processes satisfy Assumption 2] By using the tables of complete Bern-
stein functions in [32], we can come up a lot of subordinate Brownian motions satisfying
Assumption 2 Further discussions of Assumption 2] can be found in the Appendix.

In the Appendix, we will show that, under Assumption , the function e=*?1" 9 € R,
is the characteristic function of an a-stable random variable with Lévy measure v,, where

1

Vo (dz) = g1z "L (g 00y (2)dT + go]@| T YL (Lo 0y (2)d, (1.2)

with ¢; and ¢ being nonnegative numbers, uniquely determined by the following equation:
ifa#1 ' ‘
C, = aF(l o Oé) (qle—wra/2 + qzema/2) ’
and if a =1
@ = q2 = R(c.) /.
It has been proved in [33, Remark 2.1] that for any s > 0,

P >x)~ ﬂsx_o‘L(aj), P < —z)~ @sx_aL(x), T — 00, (1.3)

- « o

that is, & has regularly varying tails. To ensure the right tail of &, is regularly varying, we
always assume that

Assumption 3. ¢; > 0.

In this paper, we always assume that Assumptions[1}{3| hold, and that « € (0, 2), ¢, and
L are as specified in Assumption 2]



The following variant of ¥ will also play a role later in this paper:

g =2 / e P(Z, > 0)dr = Ly. (1.4)
a Jy o

Put Ry = [—00,00] \ {0} with the topology generated by the set
{(a,b), (=b,—a), (a,0],[—00,—a) : 0 < a < b < co}.

Let CF(Ry) be the family of all non-negative continuous functions g on Ry with ¢ = 0 on
(—=0,0) U (0,0) for some 6 > 0. Denote by M(Ry) the space of all Radon measures on Ry
endowed with the topology of vague convergence (denoted by —>), generated by the maps
v — ffdz/ for all f € CHRy). For any g € B (Ry), v € M(Ry), we write v(g) =
fR . A sequence of random elements v, in M(]Ro) converges weakly to v, denoted

as v, 5 v, 1f and only if for all g € CH(Ry), v,(g) converges weakly to v(g). Let B;(R) be
the set of all the Borel functions ¢ : R — [0, 1] with ¢ =1 on [—d, ] for some § > 0.
For any x # 0 and a measure v, we denote by v/x the measure defined by

/o) = [ slufoidy)

It is well known that there exists a continuous function L : R, — R, slowly varying at co
such that lim, LE g 1, L(0+) € (0,00) and z~*L(z) is strictly decreasing on (0,00). In
this paper, we always assume that L satisfies this property. Note that lim, o2 *L(x) = 0o

and lim, o, z7*L(x) = 0. Let H(y) : (0,00) — (0,00) be the inverse function of z=*L(x).
Then
H(y)“L(H(y)) =y, y>0. (1.5)

It is well known (see, [I1, Theorem 1.5.12] for instance) that
H(y) =y "*Ly™),

with L being slowly varying at co. From now on, L always stands for the function above.
In [33], we studied the weak convergence of extremes of X. Let h(t) := H(e ), that is,

h(t)L(h(t)) = e, (1.6)
Note that h is strictly increasing. Define

./\/;5 . Xt/h/ Z(Sh 151&

vELy

In [33, Theorem 1.1}, we proved that N; converges weakly to a random measure N,. More
precisely, for any g € C.F(Ry),

lim E(G_M(g)) = E(G_N""(g)) =K (exp {—C’(e‘g)W}) ,

t—o00



where
Cp) := /000 e_’\”/R E(1 — p(2)? v (dz)dr < 0o, Ve € Bi(R). (1.7)

Moreover, N, = > y 16, where given W, - i dc; 18 a Poisson random measure with inten-
sity 9Ww,(dx), {T;,7 > 1} are i.i.d. copies of a random variable 7" with

P(T =k) = 19—1/ e NP(Z, = k)dr, k>1, (1.8)
0

where v, (dz) is given by (1.2), ¢ is defined in (L.1), and }_,d; and {7}, j > 1} are inde-
R

pendent. As a consequence, we proved in [33, Corollary 1.2] that under P*, 0]

weakly. More precisely,

s p—0 Wae :
limP*<£<x):{E<e )’ z>0; (1.9)

t—00 h(t) — 0, x <0.

converges

Therefore, X;, normalized by h(t), converges to a random measure. In particular, the
largest position R; is of order h(t) as t — oo. In this paper, we consider a function A()

A(t
which grows faster than the function h(t) in the sense that tlim % = 00, or slower than
—00
A(t
h(t) in the sense that tlim % = 0. When A(t) grows faster than h(t), we find the rate
—00

that P(R; > A(t)) converges to 0 an t — oo, and describe the limit of X;/A(t), conditioned
on {R; > A(t)}, at t — oco. When A(t) grows slower than h(t), we find the rate that
P(R; < A(t)) converges to 0 and describe the limit of X;/A(¢) conditioned on {R; < A(t)}.
In this paper, we also study the almost sure asymptotic behavior of R;.

1.2 Main results

In this subsection, we state our main results. Let H(R) denote the family of uniformly
continuous functions ¢ : R — [0,1] with ¢ = 1 in some neighborhood of 0. Let Hy(R)
denote the family of all the functions ¢ € H(R) with ¢ = 0 on (¢, 00) for some ¢ > 0. Note
that if g € CF(Ry) then e79 € H(R).

At
Theorem 1.1. If A : [0,00) — (0,00) satisfies tlim _h((t)) = 00, then for any ¢ € H(R),
—00

lim e MA@ L(A®) ! (1 -5(]1 so(éf//\(t))> = C(y),

uely

where C(p) is defined in . In particular,
lim e MA(t)*L(A(t)) 'P(R, > A(t)) = ¥,

t—o00

where 9% is defined in (1.4)).



In [35], Shiozawa studied the upper deviation of the maximal displacement of a branching
symmetric stable process with spatially inhomogeneous branching structure, and proved
some weak convergence results.

A(t)

Corollary 1.2. If A : [0,00) — (0,00) satisfies lgglo ) = o0, then conditioned on {R; >
A@)},

(1) R:/A(t) converges weakly to a random variable R* with density ozxflfal(l,oo)(x).

(2) Xi/A(t) converges weakly to T, where the law of T is given in (L.8), and T and R*

are independent.

Recall that f(s) =Y, prs® and ¢ = P(S8°). Note that f'(¢) € [0,1). Put

p=B(1— f'(q)). (1.10)
For any 6 > 0, define
P(0) = E(e™™™). (1.11)
Theorem 1.3. Let A : [0,00) — (0,00) be a non-decreasing function. Assume that
S o Alt) _
ZnA(n) L(A(n)) < oo and tliglom =0,

and if pr = 0 for all k > 3, we further assume that A(t) > €' with some v > 0 for t
sufficiently large. Then for any ¢ € Ho(R),

fim =8 ( T] o(e8/A®)) = ———A[B(C(e)]

tmreo u€eLl 1- q
where r(t) is defined by h(r(t)) = A(t), C(p) is defined in (1.7)), and A(s) is defined in (3.1)
below. In particular,
1

}g& eP(t=r (1)) p (Rt < A(t )) 1—_qA [o(0%)] .

Corollary 1.4. Let A : [0,00) — (0,00) be a non-decreasing function. If

inA(n)aL( (n)) < oo and tliglo% =0,

then under P*, conditioned on {R; < A(t)}, X;/A(t) converges weakly to some random

— K 7k
measure 2 = SN N® where

(i) {ND k> 1} are ii.d. with the same law as P(Na € |(Noo(R) # 0, N ((1, 00)) = 0):
(ii) K is a positive integer valued random variable with generating function

oy Al((0*) —q)s+q)
SRS e T T




(iii) {NL k> 1} and K are independent.

Remark 1.5. (1) It is interesting that, by Theorem and Corollary conditioned on
{Ry > A(t)}, the limits of Ry/A(t) and X;/A(t) do not depend on the function A(t): for
t
any A(t) satisfying 1tlim _h(t) = 00, the limits are the same. The limit of the point process
— 00

Xi/A(t), conditioned on {R; > A(t)}, is a point measure supported on one point R*.

(2) By Theorem and and Corollary the limit of X;/A(t), conditioned on the

A(t
event {Ry < A(t)}, does not depend on A(t): for any A(t) satisfying tlim % =0 and
—00

Yoo nA(n)"*L(A(n)) < oo, the limit = does not depends on A. Comparing = with N
(the limit of X;/h(t)), we see that = is a random sum of independent copies of N with
common law equal to that of N condition on {Nx(R) # 0, No((1,00)) = 0}.

(3) In the special case that L = 1, we have h(t) = ea'. Consider A(t) = e“a® for some
constant ¢ > 0. If ¢ > 1, by Theorem 1.1

lim e UNP(R, > A(t)) = 9"

t—o00

If0 < ¢ <1, then r(t) = ct. By Theorem

lim (1P (R, < A(t)) = A (¢ (97)).

t—o00

We now state some almost sure convergence results of R;.

Theorem 1.6. It holds that

liminf —— — (#W)E,  Pras.

t—oo  H(e *Mlogt)

Theorem 1.7. Suppose that G : [0,00) — (0,00) is a non-decreasing function satisfying
limy o0 % =

(1) If 5. eG(n)~*L(G(n)) < oo, then

Ry
li —— =0 P*-a.s.
G T F

(2) If 5. e"G(n)"*L(G(n)) = oo, then

lims H 00 P*-a.s
imsup —— = oo, -a.s.
el G(2)
This implies that, for a non-decreasing function G satisfying lim; % = o0, either
R R
lim sup L =0 P*as., or lim sup —' — 50 P*-a.s.. Similar result holds for a subordina-

tor. If £ is a subordinator with infinite mean, then for any G : [0,00) — (0, 00) being an



increasing function such that 0 increases, then lim SUP, o, ~% = 0 or oo almost surely,

¢ (o)
see [0, Theorem 13].

Now we give some intuitive idea for one of the main techniques of this paper. Let
Y, =& —&—1,7 > 1. Then {Y;} are i.i.d. It is easy to see from (|1.3)) that

P&, > x) ~nP(& > x) ~ P(m<aXYj >x), T — 0.
m=sn
Thus the maximum max; <<, Y; plays a dominating role in the asymptotic behavior of &,.
Fort >0, u € T, we set Xy =&, s — &une- Lhen we have

= Y de = Y e

ueLy ueLly

We will see in Lemma [2.4] that the asymptotic behavior of X; is governed by Y;:

Yt = Z Z 5X11,t'

u€eLy vely,

Thus, to prove Theorems [I.1] and [I.7, we first establish the corresponding results for
Y;. This technique has been employed in [33] for branching Lévy processes and in [9, [10} 20]
for branching random walks with heavy tails. However this technique (Lemma [2.4)) does
not work for the proof of lower deviation result in Theorem [I.3] We establish lower large
deviation results of X; and Y, separately, and it turns out that the results are identical,
which is somewhat surprising.

For branching random walks, several authors have studied the convergence of the ex-
tremes under an exponential moment assumption on the displacements of the offspring from
the parent, see Aidékon [I], Hu and Shi [29], and Madaule [31]. Recently, many researchers
studied related topics for branching random walks with heavy-tailed displacements. Assume
that the displacements of the offspring from the parents are i.i.d. with

P(X > z) ~ae t@" g o0,

where a > 0, L is slowly varying at co and r € [0,1). When r € (0,1), the maximum
M, grows polynomially. For example, if L is a constant, then M, /n'/" converges to a
positive constant almost surely. See, [22], 23| 24], 26] for more related results. When r = 0,
logt/L(t) — 0 (or L(t) = o(logt)) as t — oo, the extremes have been investigated in [§].
When r = 0 and L(z) = alogz — log L(x) where L is slowly varying at oo, Durrett [20]
proved that a;'M, converges weakly, where a, = m™“Lo(m™) and Ly is slowly varying at
0o. Recently, the extremal processes of the branching random walks with regularly varying
steps were studied by Bhattacharya et al. [9] [10]. It was proved in [9, [10] that the point
random measures Z‘U‘:n 04-15,, Where S, is the position of v, converges weakly to a Cox
cluster process, which are quite different from the case with exponential moments. Recently,
Bhattacharya [7] studied the large deviations of extremes in branching random walk with
regularly varying displacements, corresponding to our results for A(¢) growing fast than h(t).



2 Upper deviation of X; and Y,
It is well known (see [I1, Theorem 1.5.6] for instance) that, for any € > 0, there exists a, > 0
(2.1)

y)

i

< 2max{(y/x), (y/x)"}

such that for any =,y > a.,
L —€
W) < 9 max{(y/a)", (y/)~),

AP
L(x) —
Let CY(R) be the space of all bounded continuous functions vanishing in a neighborhood

of 0. Recall the definition of v, in ([1.2)). In the following lemma, we present a generalization
of [33, Lemma 2.1]. Since the proof follows a similar line of reasoning, we omit it.

()

gl

Lemma 2.1. [f Assumption [2| holds, then for any g € CP(R) and s > 0,
lim 2*L(z) 'E (g <§>) = 5/ g(x)ve(dx).
T—00 T Ro

In [33] Lemma 2.2], we have proved that, under Assumption 2, there exist ¢y > 0 and
(2.2)

xp > 0 such that for any s > 0 and x > x,
P(|&] > ) < cpsz™*L(x).

Using (2.1) with e = 1, we see that, for any ¢ € (0,1) and y > 0 sufficiently small so that
(2.3)

cH(y) > a; + x, it holds that
P([&[ > cH(y)) <cosc™"H(y) " L(cH(y))
<2cosc T H(y) *L(H(y)) = 2coc* tsy,

where in the last equality we used ((1.5]). It was shown in [36] that, for any ¢ > 0,
lim 7*L(z)"'P (sup £ > a:) = lim 2°L(z) 'P(&§ > ) = 4 (2.4)
T—00 0<s<t T—00 (8%
3 (2.5)

) = ILm 7L(z) 'P(§ < —x) =

and
< inf & < —x

lim 2*L(z) " 'P Jnf

T—r00
We now recall a special many-to-one formula. For more general many-to-one formulas,
see [28, Theorem 8.5]. For any u € T, let n* be the number of particles in I, \ {o}.

Lemma 2.2 (Many-to-one formula). Let {n;} be a Poisson process with parameter [ on
some probability space (2, G, P). Then for any g € B, (R),

E (Z g(n“>) — ME (g(n)).

veELt



2.1 A key lemma on “one big jump”

t
In the remainder of the paper, we use g;(t) < g2(t) to denote that g;(¢) < go(t) for sufficiently
large ¢. For any nonnegative function g and measure v =Y ,_, d,,, define

n

Z(g,v) == [ [ g(x).

k=1

Here we use the convention that [[)_, g(x) = 1. It is clear that Z(g,v) = e*1°89),
Recall that, for t > 0 and v € T,

__cu U
Xu,t— out gbu/\t‘

Let Dy :={ueT:b, <t Z" > 0}, where Z}" is the number of offspring of particle u alive
at time ¢. Define

M, = maxmax X, ; = max X, , (2.6)
veELy u€ly, ’ u€Dy ’

Recall that

Y, = Z Z 5Xu,t = Z ZZL(;XW-

veEL u€ly, uEDy

Let 0 < s < t. The particles in D; can be divided into two groups: those born before time
t — s and those born after t —s. We define

Ms,t = max ’Xu,t‘

UET:b <t—s

and

Yo=Y Zlx,,= Y. Z'x,,.

UEDy:t—s<by, <t u€T:t—s<b, <t

Using the tree structure, we can categorize all particles born after ¢ — s according to the
branches formed by particles that were alive at time t — s. More precisely,

Yo=Y > Zox,, = Y Y. (2.7)

VELt_ s wv<u,by <t vELt

By the branching property and the Markov property, conditioned on F;_y, {Y3,, v € £;_,}
are i.i.d. with a common law equal to that of

¥i= Y Zib, 29

ucDj
where D, := D; \ {o}. We will also use the following notation later:

M} = max X, . (2.9)

u€D,

10



Lemma 2.3. If a(t) is a positive function with tlim a(t) = oo, then
—00

lim limsup e *a(t)*L(a(t)) 'P(M,; > a(t)) = 0.

S§—00 t 300

Proof: When a(t) = h(t), it has been proven in [33] (2.14)]) that

e P — e~

P(M,, > a(t)) < coe™a(t)L(a(t)) (e + (2.10)

For the general case, (2.10]) also holds. The proof follows almost the same argument, so we
omit the details. Then the desired result follows immediately.
O
The following key lemma says that X; and Y; have similar asymptotic behaviors. In the
proof of Lemma [2.4] we show that with high probability, for all v € L;, there exists at most
one particle u € I, that experiences a “large jump”.

Lemma 2.4. If a(t) is a positive function such that a(t) S et for some € € (0,1), then for
any ¢ € H(R),

lim e~ *a(t)*L(a(t))'E (|Z(¢, X /a(t)) — Z(p, Yi/a(t))]) = 0.

t—o00

Proof: We divide the proof into three steps.
Step 1 For any t > 0 and 6 € (0, 1], define

A0) == {Z L X |>0a(t)/ loga(t)} < 1}-
veLls u€l,

We claim that for any p € (0, 2),
tlim e Ma(t)P*P(A,(0)°) = 0. (2.11)
—00

Note that

P(A(0)°|F) < Z P ({Z 1§ 1x0 . |>0a(t)/10ga(t)} = 2} IET> . (2.12)

vEL u€el,

By we have that
P (| Xusl > Oa(t)/loga(t)|F) = P(|&] > Oa(t)/ log a(t))]s=r.

% (cot - a(t) *[loga(t)]*L(fa(t)/loga(t))) A1 =: p,. (2.13)

Recall that, for any v € T, n” is the number of particles in I, \ {o}. Thus |I,| = n" + 1.
Since, conditioned on F[ | {X,,u € I,} are independent, we have

nv+1 v + 1
(3 tinemiann 2257 ) <3 (" o

uel,

nv—1

n'—1

Spfzn”(n”+1)( . )p’t"
m=0

:p?n”(n” +1)(1 —I—pt)"tl.

11



Thus by and the many-to-one formula, we have
P(A(0)°) < e’\tpr(nt(nt +D)(1+p)" ) = e/\tp?@ +(1+ pt)ﬁt)@teﬁtpt
~ (Bt)%eMp?, t — oo. (2.14)
Here we used the fact tp;, — 0 as t — oo. Now - follows from and -

immediately.
Step 2 In the remainder of this proof, we fix a constant ¢ > 2a + €?3/e. Define B; :=

ﬂ {n” < cloga(t)}. Using the many-to-one formula, we get
vELt

P(Bf) =P (U {n" > clog a(t)}> <E (Z 1{nv>cloga<t>}>

veLy veLy
=eMP(n, > cloga(t)) < e in?J e~relogal®) p(erme)
r>

_ 6)\te—(log log a(t)+log c—logBt—1)clog a(t)—ﬂt. (2‘ 15)

t
Since a(t) > e“, we have
logloga(t) + log ¢ > log(cet) > log(5t) + 2
Thus by (2.15)) , we have
P(Btc) 2 e)\tefclog a(t)ef,Bt — e)\ta(t)fcefﬂt'
Since ¢ > 2a, we get

lim e *Ma(t)*P(Bf) = 0. (2.16)

t—o00

Step 3 Let v’ € I, be such that | X, 4| = mz}x{|Xu7t|}. We note that, on the event A;(0),
uecly

| Xl < Oa(t)/loga(t) for any u € I, \ {v'}. Since & = > ., Xy, on the event A;(0) N By,
we have that

n'Oa(t)
v X, = Xl < < cOa(t). 2.17
=Xl =| 32 X € o < ) 217

For ¢ € H(R), we have ¢ = 1 on [0, ] for some § > 0. Since ¢ is uniformly continuous,
for any v > 0, there exists > 0 such that |p(z1) — ¢(x2)| < whenever |z; — xo| < 7. We
now fix an arbitrary v > 0 and the corresponding 7.

Recall ¢ > 2a + e?3/e. Choose 6 small enough so that cf < n A (§/2). We assume that
t is sufficiently large so that loga(t) > 20/6. We note that, on the event A;(6), [ X, <
Ba(t)/loga(t) < a(t)o/2 for any u € I, \ {v'}, and thus ¢(X,+/a(t)) = 1. It follows that on
the event A.(6) N By,

HSOgt/a HHSO Xug/a(t) HSpft/a HSO Xoi/a(t)

VELY vEL uEl, VELY vELy
<) le(&/a(t) = e(Xue/at)].  (2.18)
vELy
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By (2.17)), on A;(0) N By, we have

& — Xoel /a(t) < cf < n A (3/2).
Thus if | X, 4| < da(t)/2, then |£/|/a(t) < §, which implies that ¢(&} /a(t))—@(Xy ¢/a(t)) = 0.
Hence by (2.18)), on A,(0) N B,

IZ(p. X /a(t)) — Z(e. Ye/a(t)| <7 Y Lqx, >avs/2)

vELy

<Y Y Lxasamorzy =7 Y Zig(Xua),

veEL u€ly u€Dy
where g:(y) = 1jy|>a@)s/2- Therefore, for any fixed s € (0,t), on A,(0)NB,N{M,; < a(t)d/2},
we have
Z(p. Xe/a(t)) = Z(o, YefaO) < v D Zioi(Xua) = 7Yo(90)-
wit—s<by <t
Since ¢ takes values in [0, 1], we have

E[Z(p.Xi/a(t) — Z(e, Yi/a(b))]
<P(A,(6)°) + P(BY) + P(My, > a(t)5/2) + 1E(Y,(q1))- (2.19)

By (2.7) and (2.2]), we have that

E(Y,4(9:) =E(Zi-)E(Y}(9,)) = SIE | Y ZUP(1Xo| > a(t)d/2|F))

u€D

<eo(5/2)a(t) " L(Sa(t) /2 IE | 3 Zt7,.,

u€D,

<co(6/2)“a(t)"*L(da(t)/2)es,

where in the last inequality we used the following inequality:

E Z Z:Tu,s S E ( Z Z:Tu,s) S Se/\sa

u€D, uby, <s

which follows from the display below (2.19) in the proof of [33, Proposition 2.1]. Thus

combining (2.19)), (2.11)) and (2.16]), we have
limsup e™*a(t)*L(a(t)) 'E|Z(¢,Xi/a(t)) — Z(g, Ye/a(t))]

t—o00

<limsupe Ma(t)*L(a(t)) 'P(My; > a(t)§/2) + co(6/2) 5.

t—o00

Letting v — 0 first, and then letting s — oo and applying Lemma [2.3] we arrive at the
desired result.
O
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2.2 Proof of Theorem [1.1]
We emphasize here that the definition of M, in [33, Section 2.3] coincides with Y’ /h(t).

Lemma 2.5. For any s > 0 and ¢ € H(R),

i 0 L) L= B (@ V)] = [ (@07 =) [ B (1 o)) valdy)
Proof: It has been proven in [33, (2.17) and the first display on page 636] that for ¢(z) =
e9@) with g € Cf (Ry),

lim 7(t)*L(h(t)) " [1 = E(Z(p, Y;/h(1)))]

t—00
= /O (eXemr) — =Bl /RE (1 —(y)?) va(dy) dr.

By examining the proof of the above limit, we observe that it holds for any ¢ € H(R). The

desired result now follows.
O

Suppose ¢ € Bi(R). If {¢,,n > 1} C Bi(R) are such that ¢ and ¢, are identically
1 on [—4,6] for some § > 0, and that ¢, — ¢ almost everywhere, then by the dominated
convergence theorem,

Clen) = Cle).
Hence C(yp) is continuous in ¢. Recall M; is defined in (2.6]).

Proposition 2.6. If A(t) is a positive function with hm % oo, then for any ¢ € H(R),
lim e A LIA()) ™ (1 - E(Z(e, Yo /A1) = C (). (2.20)
—00
where C(y) is defined in (L.7). Furthermore,
lim e MA()*L(A(t) " '"P(M, > A(t)) = ¥, (2.21)

t—o0
where 9* is defined in ((1.4)).

Proof : For ¢ € H(R), we have ¢ = 1 on [—6, 6] for some § > 0. It is easy to see that for
any 0 < s < t, on the event {M,; < JA(t)}, it holds that Z(p, Y;/A(t)) = Z(p, Y. /A(2)).
Thus, for any 0 < s < t,

[E(Z(p, Yi/A(2)) — E(Z(g, Ysu /AQR)))| < P(Msy > GA(2)). (2.22)

Using the Markov property and ([2.7]), we have that

1= E(Z(p, Yo /AO)Fs) = 1= [[ E(Z(e, Y2 /AD)IF )

vELt s

=1 — [E(Z(, Yo /A@))] " (2.23)
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It follows from Lemma [2.5] that, as t — oo,
1= E(Z(p, Y /A1) ~ CoA(t) " L(A(R)),
where C; = [ (eX57") — A=) [LE (1 — ¢(y)?") va(dy) dr. Thus
—log E (Z(p, Y, /A1) ~ 1 = E(Z(p, Y, /A(t))) ~ CoA(t) "L(A(?))
and consequently

~Zi-s1og E(Z(p, Y, /A(1)) ~ NI CAM () LA(R)) - W,

A
which tends to 0 as t — oo since lthm % co. Combining this with (2.23)), we get that,
—00
as t — oo,
lim AW L) ™ (L~ E (Z(p, Yo /A()|Fims))
—00
= lim e™YA(t)* L(A(t)) " Zi—s(— log E (Z(g, Yi/A(1))))
— 00
:e_AS/ (e)‘(s_r) - e_ﬁ(s_r)) E (1—¢(y)?) va(dy) dr - W. (2.24)
0 R
Moreover,

e MAM)LIA®) ™ (1 — E(Z(p, Yo /A))| Fizs))
<eMZ JABLAW) (1 = E(Z(p, Y, /A(1))))

%QG_AS /S (e’\(s_r) — e_ﬁ(s_”)) / E (1 — o(y)? ") va(dy) dr - e” At=s) 7, .. (2.25)
0 R
In the first inequality we used the inequality 1 — 2™ < n(1 —z),z € (0,1). Note that
e M=z W as., and E (e_’\(t_S)Zt_s) —EW =1, t— oco. (2.26)
Combining , and , and using the dominated convergence theorem we get
lim e A LIA() ™ (1 - E(Z(p, Yor /A(1))))
—e /s (eXemr) — =Bl /RIE (1= (y)?) va(dy) dr. (2.27)
0
Using , Lemma and , we get that
lim e MAM)L(A®) ™ (1 — E(Z(p, Yi/A(2))))
= lim e /S (eXemr) — el /RIE (1 —¢(y)7) va(dy) dr
Ua

s§—00 )
(dy) dr = C(¢p).

e fEeaw
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We now prove (2.21)). For any € € (0,1), define I, I. € H(R) by

1, y <1,
I.(y):= ¢ linear, 1<y<1+¢,
0, y>1+e
and
1, y<l-—eg,
I(y) :== < linear, 1—ec<y<1,
0, y > 1.

It is clear that I.(y) < 1—oo1)(y) < I-(y). Applying (2.20) to I. and I., and by the continuity
of C(p), we can get ([2.20)) still holds for ¢(y) = 1(_ao1)(y), that is,

lim e A()*LA®)) ' P(M; > A()) = (L)

/ / P(Z, > 0)va(dy)dr = %19.

The proof is now complete.

Proof of Theorem Applying Lemma [2.4] and Proposition [2.6] we have that -
lim e MA@)LA®) " (1 - EZ(p, X/AD) = C(p), ¢ € HEB).  (228)

By the continuity of C(¢), we can get still holds for ¢(y) = 1(_x1](y), that is,
lim e MAM)LIA®)) 'P(Ry > A1) = C(L(—oo)) = V™. (2.29)
O

Proof of Corollary [1.2} By (2.29)), we have for z > 1,
tlim P(R, > xA(t)|R; > A(t)) =2 % = P(R" > x).
—00

For any g € CF(Ry) and 6 > 0, applying Theorem with p(y) = e %®1_, 3(y) and
o(y) = e we have that

lim e’”A(t)aL(A(t))*lE( 369 R, > A(t ))

t—o0
— lim e A1) LA(E) ™ |1 —E(e—%@%m <A) - (1-E("5H9))]
/ / [e=09W) % 7 > 0)vg(dy)dr. (2.30)
By (2.29)) and ([2.30)), we have
hmE< Aty 1DIR, > A(t / / [e=09WZr: 7 0]ug(dy)dr
{—00 Q119
fGTg(R*
The proof is now complete. O
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3 Lower deviation of X; and Y,

We first give some results about the continuous time branching processes {Z; : t > 0}. Recall
that the extinction probability ¢ € [0,1). For any s € [0,1] and ¢ > 0, define

F(s,t) :=E (s™).

Recall the constant p defined in ([1.10)). It is well known (see, [5], Section IIL.8], for instance)
that

lim e”[F(s,t) — q] =: A(s) (3.1)

t—o00

exists for 0 < s < 1. Moreover, the convergence is uniform in s € [0,a] for any 0 < a < 1.
The function A(s) is the unique solution of

A(F(s,t)) = e " A(s) (3.2)
with A(q) =0, A’(q) = 1. Since A(s) is the limit of power series, it is itself a power series
A(s) = Z a;s’.
=0

It is clear that ay <0 and a; > 0,5 > 1. Forany 0 < ¢ <1—g¢and s € [0,1],

oo [e.o] oo

Ales+9) = Ales+0) - A = Y ailles + 9 — ] = 3 [Sa, (i) 7] ks

j=1 k=1 j=k

Thus ’Z((c;iqq)), s € [0, 1], is a probability generating function.

Lemma 3.1. For any s € [0,1),

A(s)=s—q+ /OO BeP'V (F(s,r))dr,
0
where

0<V(s):=f(s) = fl(a)s —a(l = f'(@) < f"(sVa)(s — q)". (33)
Proof: By the Markov property and the branching property, we have that
t
F(s,t) =se P + / Be P f(F(s,t —r))dr

0

t t
=se "t + / Be P f(F(s,t —r))dr — / e P Bf (q)F(s,t —r)dr
0 0

t t
=se "' + / pe "V (F(s,t —r))dr + qp/ e dr
0 0

=e " (3 —q+ /t pe’"V(F(s,r)) dr) +q.
0

17



By (3.1]), we have
t

A(s) = lim e”(F(s,t) —q) = s —q+ tlim e’V (F(s,r))dr
—00 0

t—o0
=s5—q+ / pef"V(F (s,r))dr.
0

Since ¢ = f(q), we have V(s) = f(s) — f(q) — f'(q)(s — q). Now (3.3)) follows immediately
from Taylor’s formula. a.

Recall that ¢(0) = E(e="W).

Lemma 3.2. For any 6 > 0,

A0(®) = [ 5 [ (6)] ds.
Proof: By the branching property and the Markov property, we have

Ziys = E t+s

u€Ls
Given Z,, {Z} ,,u € L;} are i.i.d. with the same law as Z;. It follows that
A ~ At -
W= lime™ ) Mzt =y W,
u€Ls u€Ls

where {W*" u € L} are i.i.d. with the same law as W. Thus we have

¢(0e™) =E (6(0)%) = F(6(0),s). (3.4)
Hence by Lemma and (3.4]), we have for any = > 0

/ BepSV gb(@e’\s)] ds =e~ '”/ ﬁe”SV gb(@e’\se x] ds

e / BePV [F(p(6e), 5)] ds = e [A (9(6¢)) — d(0e ™) + g
7”)@)) e P (p(0e) — q)
IA(¢(9)) — e P (p(0e) — q),

where the fourth equality follows from (3.2]). Letting  — oo, the desired result follows
immediately. |

Lemma 3.3. [t holds that A > p. Moreover, A = p if and only if pr = 0 for all k > 3.

Proof: Note that A — p = B(f'(1) + f'(¢) — 2).
We first consider the case when py = 0. Then ¢ = 0 and f'(¢) = f’(0) = p;. Hence we
have

fQ)+f(0)—2= <Z kpk +p1 — QZpk) = (k=2)p > 0.
k=1 k=1 k=2
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Furthermore, the left hand side is equal to 0 if and only if p, = f*)(0) =0, k > 3.
If pg > 0, then g > 0. Define

f((1=q)s+q) —q

fio) = L=

, for0<s<1.

It is well known (see [5, Chapter 1, Section 12]) that f is a probability generating function

with f(0) = 0. Note that f'(1) = f’(1) and f'(0) = f'(¢). Applying the previous paragraph

to f, we get that R R
FO+f@=2=r1)+f0)-2=0.

Moreover, the left hand side is equal to 0 if and only if f®)(0) = (1—¢)* 1 f®)(q) =0,k > 3.

It is easy to see that f®(q) = >0, k(k — 1)(k — 2)prg" 2 = 0 if and only if py = 0, k > 3.
The proof is now complete.

O

Note that the skeleton {Z,,n = 0,1,---} is a Galton-Watson process with offspring
generating function f(s) := F(s,1). It is clear that f'(1) = E(Z;) = ¢* > 1 and P(Z; =
1) > P(r, > 1) > 0. By [25, Theorem 4], we have that, for any nonnegative sequence a,,
with a,, — oo and a,, = o(e™), there exists a constant ¢ > 0 such that

P(0 < Z, < a,) < cP(0 < W < e *a,), n > 1. (3.5)
Furthermore, it was proven in [19] that there exist ¢, co > 0 such that for any x € (0, 1),
!t <P(0 < W < x) < coz?/?. (3.6)

By (3.5) and ({3.6]), there exists C' > 0 such that

P(0 < Z, < a,) < Cal*e ™, n>1. (3.7)

3.1 Lower deviation of X,

We have proved in [33, Proposition 2.1] that Y;/h(t) converges weakly to N, that is for
any ¢ = e 9 with g € CF(Ry),

lim E(Z(p, Y, /A(t))) = B((Z(p, Noo)) = E (exp {=C(p)W}) . (3.8)

In fact, by examining the proofs in [33], (3.8) is valid for any ¢ € H(R). By Lemma we
have for any ¢ € H(R),

lim E(Z(p, X;/h(t))) = E((Z(¢, Nx)) = E (exp{=C(p)W}) .

t—00

For any function g and = € R, we define the function m,g(-) by the relation m,g(y) = g(y/x).
By the definition of C(p) in (1.7)), it is easy to see that

C(mgp) =27 °C(p), ¢ € Bi(R).
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Lemma 3.4. If a(t),b(t) are positive functions with 3= —> a>0 and ;= 0, then for any
p € H(R),

lim By (Z(p, Xy /a(t)) = E(exp{—a""C(p)W}).

Proof: Note that

Buo (Z(¢. Xi/al) = E (H ’ (“(—73@)) .

ueLy

Since ¢ € H(R), we have ¢ = 1 on [0, J] for some § > 0. Moreover for any ¢ > 0, there
exists n = n(e) > 0 such that |p(z) — ¢(y)| < € whenever |x — y| < n. It follows from the
assumption that for any ¢ > 0, there exists ¢ such that for all ¢ > ¢/, (1 — €')a(t) < ah(t) <
(1+ €)a(t) and |b(t)| < €a(t).

We now fix an arbitrary € > 0 and 0 < € <

5 < /2, then for

5+2
t>t,

y + b(t) (14 €)y| d \ o )

< | 0
‘ a0 | an) € t52)a 52 Y

y(|t) — 1, then for t > t/,
y+olt) y oyl
— < <
‘ o0 an| = T an© =

Thus for any t > t/,

y+b(t)> ( || )
— < . ] .
M a(t) P\an)| = Fs<aty=s v T a0

Hence we have that

e (10 (55%) = (10 (i
1A Z 1 g1 >GW€,_1)}] . (3.9)

b(
g (5280 (5]
L u€Ly
=k ( Z 1{f&)> 5/2}) R0

Since X;/h(t) converges weakly to N, we have, as t — oo,

+E

d
Z Lot sy = € Nool{y € Ri[y| > ad/2})

h(t)

and

1 ey

. r
{h(t)>a(77/6—1)} — NOO({y eR; |y| > a(n/e 1)}
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Thus letting t — oo first and then ¢ — 0, and finally € — 0 in (3.9)), applying the dominated
convergence theorem, we get

B (H ’ (“T?(t))) K (H“O (ff;t)))

uely

— E (exp {~Cm,)W}) = Elexp{—a "C(e)IWV}).

Lemma 3.5. Ifa:[0,00) — (0,00) is a non-decreasing positive function with

Zna ) “L(a(n)) < oo,

then

Proof: For any positive integer n,

sup & < &+ sup & — &l
te[n,n+1] te[n,n+1]

Since § is a Lévy process, {Y, = sup;ep i) & — al,m > 1} are id.d. By (2.4)), and (2.5)),
we have that as x — oo,

PY,>z)<P (sup & > SL’) +P (sup (=&) > x) ~ P(|&]| > x).

te[0,1] te[0,1]

By (2.2), we have that for any ¢ > 0 and n large enough,

P (te[supﬂ] & | > ca(n)) <P(|¢,| > ca(n)/2) + P(Y,, > ca(n)/2)
<co(c/2)"%(n + 1)a(n) “L(ca(n)/2)
~co(e/2)"na(n) " “L(a(n)), n — oo,

which implies that
ZP sup |&| > ca(n) | < .
te[n,n+1]
Thus by the Borel-Cantelli lemma, we have

1; Supte[n,n-‘,—l} |§t|
1m
n—00 a(n)

=0,

Since a(t) is non-decreasing, we have, for ¢t € [n,n + 1],

I&:] SUPiefnnt) [s1

a(t) — a(n)
21
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The proof is now complete.

For any ¢ € Bi(R), we define

Uy (t,z) = E,(Z(¢, X)) = E, (H ﬂgg‘)) , t>0,zeR. (3.10)

ueLy

By the Markov property and the branching property, we have

Ult,2) = P By (p(&) + Es /0 Be P (Ut — 5.€,))ds.

which implies that
Up(t, ) = ?T OB, (p(&)) + By /0 BT (U1 - 5,6.)) ds
—E, /Ot eﬁ(f’(q)—l)%f/(q)(]@(t —5,&) ds
= e "E.(p(&)) + E, /Ot Be PV (Uy(t — 5,&)) ds + q(1 —e™),

where p is defined in ([1.10) and V is defined in (3.3). Thus

t
U(t,2) — g = e ™ (B(p(& + 7)) — q) + E/ Be P V(U (t— 0+ €,))ds. (3.11)
0
For any t > 0 and x € R, we define

u(t,z) == U (t,z) =P, (R <0) =P(R; < —x). (3.12)

(—00,0]

Lemma 3.6. Let ¢ > 0. For any € € (0,1), there exist C = C(¢) > 0 and te > 0 such that
foranyr >t s>t >0,

Bl(u(r + 5, ~¢h(r) + &) — 4)"] € c{e)st [ 4 (1 4 g)em e M@ 0-01]
Proof: Define u(t,z) := P(—oco < Ry < —z) = u(t,z) — P(Z; = 0). Then for any s > 0,

E[(u(r + s, —ch(r) + &) — 0)*) < 2B[(a(r + s, —ch(r) + &))*] + 2(q = P(Z4s = 0))*

< 2E[(a(r + s, —ch(r) + &)*] +2(¢ — P(Z, = 0))*. (3.13)
By with s = 0, we have
Sli_)rglo e”(q—P(Zs =0)) = —A(0) € [0, 0). (3.14)

For t > 0, define
T, :=inf{s > 0: Z, > t*}.
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Here we use the convention that inf () = co. Let K > 3 be an integer. For any r > 0, s > 1
and z € R, we have

(s +r,—ch(r)+x) =P(—o0 < Ry < ch(r) —x)

K-1
S, Z(K-1)s/K > 0>

<p(r.>

= (k—1)s ks
+EP(T <T < 52 Rowr §ch(r)—$). (3.15)

By (3.7) with a, = (2K)3n? , there exists a constant Cx > 0 such that
P(0 < Z, < (2K)%n®) < Cx(2Kn)* e, n > 1.
It follows that, for s > K and k=1,2,--- , K — 1,

k k
P (TS > =8 Zugpic > o> <P (o <7, < 53) <P <0 < Zygy < 2K)|2s J3)
< Cx (2K )" erbier) < O 2K)Per - s¥Perics. (3.16)

Choose b > 1 such that e=**/ < 1/c. Note that lim;_,., h?t(—&-)b) e /e < 1/c. By (L9),

we have lim;_,o P(R; < h(t)) = E(e7?"") < 1. Thus there exist ¢; € (0,1), ¢ € (0,1/c) and
t1 > 0 such that for all ¢ > ¢;, and ¢’ > b,

P(R; < h(t)) <c1, and h(t) < coh(t +b) < coh(t + ).

Note that
Ry = max (&y/x + Ry,

UELks/ K
where, given F" sk K> {RY,,, ue £ks/K} are i.i.d. with the same law as R,,_js/x. Moreover,
given }"kS/K, {fks/K,u € Lis i} have the same law as &g i, and {fks/K,u € Lis/k} and

{RY,,,u € Lis i} are independent. Applying [27, Lemma 5.1] (in the first inequality below)
we get that, for k=1,2,--- /K —1,r >1t; and s > bK,

P(Rsy, < ch(r) — x| F, S/K) < P(psyx + max Ry, < ch(r)— x|fES/K)

uEﬁks/
<P(x + &y < ch(r) —h(s+1 —ks/K)) + [P(Rsyr—ks/x < h(s+1 — ks/K))]st/K
<P (2 4 &psyx < —(1 —cco)h(s + 1 — ks/K)) + clkS/K
Thus we have that for k=1,2,--- K — 1, r > t; and s > DK,

(k—1)s ks
w2 < 2 < _
IP’( 7 <T$_K,RS+T_ch(7‘) x

kE—1
<P(x + &rsyx < —(1 —cea)h(s +r — ks/K))P (Ts > %,Z(kl)sﬂg > 0)
z (k—1)s ks
E e/l A2 T < 2 ) 1
v (s BT e < B2 (3.17)
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Note that

Zsx (k—1)s ks
E(Clk/Ké K <T3§E>

k—1)s ks
SCiz+P(%<T <K st/K<S)

<& +PEE>0: 2, <[220 = |5°)])

83
< + Gszbqw—m < (ST = o). (3.18)

Combining (3.15)), (3.16]), (3.17) and (3.18), we get that there exist C} and t2 > 0 such that
for any r > t9, 8 > t5 and x € R,

[P(—o0 < Reyr < h(r) —2))* < Ok [Sﬁp//\e—%K;?ls
K-1
+ Y ST EDIEP (5 4 g < — (1= cer)h(s +r — ks/K))|. (3.19)
k=1

By the Markov property of £ and (2.3)), we get that there exists t3 > t5 such that for r > t3,

EP(z + &y < —(1 —ceo)h(s + 1 — ks/K))|z=e,]
:P(gl—o—ks/K < —(1 — CCQ)h(S +7r— kS/K))
SQCO(l_CCQ) a— l(l—i-S) A(r+s— ks/K)

It follows from (3.19) that for any s > t3, r > t3 and [ > 0,
E[i(s +r,—h(r) + &))?
K—1
SO}/( |:86p/)\€ +SGp/z\ l—|—S Ze p(k—1)s/K —)\(r+s ks/K):|
k=1

K—1
K 5]7

where C7. = C(1 + 2¢o(1 — cc) ™) and in the last inequality we used

SC}/{ |:86p/)\6—2p%s + KSGp/A(l + S)e—)\re—()\/\(Qp))

2k — 1)+ MK — k) > AA20)(K —1), k=1, K.

For any € > 0, we choose K such that 1/K < e, we get that there exists c(e) > 0 such
that

2E[(a(r + s, —ch(r) + &)%) < C(E)SGP/A[ —2p(1=¢) + (I + s)e —re=(MN2p))(1=€)s
Combining this with (3.13)) and (3.14]), we immediately get the desired result. The proof is

now complete.
O
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Proof of Theorem Since ¢ € Ho(R), there exists ¢ > 0 such that ¢(y) = 0 for all
y > c. For any t > 0, define r = r(t) by h(r(t)) = A(t), that is,

e MO = A(t)*L(A(t)).

Since limy_, oo % = 0 and A(t) — oo, we have t — r(t) — oo and r(t) — oo as t — oo.

Thus for any 7" > 0, there exists ¢y > 0 such that t — r(t) > T and r(t) > T for all t > t,.
In the remainder of this proof, we assume t > t;. Note that

(1-qE (Hsf)&t//\ )

uely

=E (H w(&f/A(t))) ~q+q-E (H s@(&é‘/A(t));SC) . (3.20)

ueLly ueLy

By (3.1) with s =0, we have

wm—E(waww»8ﬁ<q B(Z; = 0) ~ —A(0)e ™. (3.21)

u€ELy

By (3.11)), we have that

E (H so(éf//\(t))> —q=e"(E(p(&/A1) —q) + (1),

u€eLy

where

t—r(t)—T t—r(t)+T t
ﬂw=<A *K;@4~+Z;@H>5e”mv( (t—5,6))]ds

=J1(t,T)+ Jo(t,T) + J5(t,T),
©i(y) = @(y/A(t)) and U, is defined in (3.10). It is easy to see that
e " (B(p(&/A))) —q) = o(e 7T D)).
We now deal with the three components of J(t) separately. We will show that

lim limsup e”*"®) (¢, T) = lim limsup e”"~"®) J3(¢, T) = 0.

T—00 t500 T—=00 {500

(1) Since 0 < V(s) < f(s) < 1, we have

ep(tfr(t))Jg(t,T) < ep(tr(t))/ Be PP ds = ;/epr. (3.22)
t—r(t)+T 1-— f (Q)

Hence limy_,o, limsup,_, ., e”~"®) J5(¢, T) = 0.
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(2) Note that
T
") gy, T) = / BePBY (Up, (s +7(t)), &—r(t)-s) ds. (3.23)
-

Since A(t) = h(r(t)), we have

Up (s +7(), &—rit)—s) = Be,_ . H (Eeiry/N(r(2)))

’LLGﬁS_;,_T(t)
By Lemma and the fact that A is non-decreasing, we have that for any s € [T, T1,

. |§tfr(t)fs| . |£t7r(t)fs| . _A |£t7r(t)fs|
1 — " =] = 7 7 <] oS
oo hi(s + (1)) iom e/aA(E) = itk A(t—r(t) — 5)

Note that h(r(t))/h(s + r(t)) — e~a*. By Lemma , we have that for s € [T, T,
litm Uy (s +7(0), §ri) = Elexp{—e"C(AW}) = 6(e*C())

Since V(s) is bounded and continuous, by (83.23)) and the dominated convergence theorem
we have

=0.

lim e?¢" ) 1y (¢, T) = /T Be”V [¢(eMC(p))] ds. (3.24)
-

t—o00

(3) We now deal with J;(¢, 7). Recall u is defined in (3.12)). Note that

t—r(t)

/O g (4T = / BeP BV (Uy, (s +7(t), &—rry—s)) ds

T

t—r(t)
< / BePBV (u(s +r(t), —ch(r(t)) + &—r@)—s))]ds, (3.25)

T

where in the last inequality we used the fact that
Up, (s +7(t),2) < Pr(Reprry < ch(r(t))) = u(s +r(t), —ch(r(t)) + x).
By Taylor’s formula and the fact that f’(s) is increasing, we have
0<V(s)=f(s) = fla) = f'(@)(s —q) < |f'(s) = f(D)lls —al < f'(Q)|s —ql. (3.26)

(a) We first consider the case A > p. For any € € (0,(A — p) A (p/2) A (A/2p)), let t. be
the constant in Lemma . Let T > t. be large enough so that h(7) > z,. By Holder’s
inequality and (3.26)), we have for ¢ >ty and s € (T,t — r(t)),

Ii(t,s) == EV(u(s +7(t), —ch(r(t)) + &—r@)—s)i |&—rt)—s| > (s +7(1)))
<f'(ME(Ju(s 4 r(t), —ch(r(t)) + &—rw)—s) — al; [&—r@)—s| > h(s +7(1)))

Sf'(l)\/E(W(S +7(t), —ch(r(t) + &—rwy-s) — AP )P(|&—rty—s| > h(s +7(1)))
Sf/(]_)\/COC(G)SGp/)\[e—Qp(l—E)s + te= (e oA (1=s] fe—A+1(0)

<f'(1) COC(E)tef)\r(t)S?’P/)\ [, /1 + te= M) e PU=e=A/2 o \fre=Ar(t) o= A1=€/2)s |
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where in the third inequality we used Lemma and (2.2)), and in the fourth inequality we
used the inequality va + b < \/a++vb, a,b > 0. Since 3, nA(n)"*L(A(n)) =3 ne > <

oo and A is non-decreasing, we know that te *"® — 0 as t — co. It follows that

t—r(t)
/ Be” I, (t,s) ds < f'(1)1/coc(e)te=2®

T
[ee] o0
« {1 /1 + te—>r(®) / 533p/ke—(/\/2—p6)5 ds + Vte—>r(®) / 533/)//\6—(/\—/)—6/2)8 ds
T T

—0, t— o0. (3.27)

By (1.9), we have P(R; < 2h(t)) — E(e=?"2"W) € (¢,1). Thus there exists a € (g,1)
such that when T is large enough,

P(R; < 2h(t)) <a, t>T.
If |&ry—s| < h(s+r(t)), then for any ¢t > ¢, and s € (T,t —r(t)),

u(r(t) + s, =h(r(t)) + &-r)-s) < P(Repriy < h(r(t)) + h(s +7(1)))
<P(Ryirpy < 2h(s+7(1))) < a.

Thus by (3.3]), we have
V(u(r(t) + s, —h(r(t)) + &rp-s)) < (@) (u(r(t) + s, —h(r(t)) + &—re-s) — 0)".
By Lemma we have for any ¢ > ¢y and s € (T,t — r(t)),

Vi(u(s +7(t), =ch(r(t)) + &ry—s)); [€—r(ty—s| < hls +7(1)))
< f"(a@)E(u(s +r(t), —ch(r(t)) + &—rw—-s) — 9)°
SGp//\ [672[)(176)8 + tef)\r(t)ef(Qp/\/\)(lfe)s]

)
a)e €>86p/)\[(1 + tef)\r(t))672p(lfe)s + te*/\r(t)ef)\(lfe)s].

It follows that

t—r(t)
/ e’ Iy(t, s) ds

T
<f"(a)c(e) {(1 + te_’\T(t)) /OO §8P/Ae=(P=20)s Jg 4 o= A(D) /00 §8P/Ae=(A=p=)s ¢
T T

—f"(a)c(e) /00 8P/ e= (0298 s+ — o0, (3.28)

T
By and , we have
liin sup e” ") gy (1, T) < £ (a)c(e) /OO s/ A= (p=29s g, (3.29)

—00 T
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(b) We now assume A\ = p. Since A(t) = e, we have

t
O = (1) LA() < A1) < e,

t
which implies that r(t) > 5it. Let € € (0, 5] A %), and let T" > t..
By Lemma 3.3, pr, =0 for k > 3. Thus f”(1) < co. By (3.3)), we have, for any ¢t > ¢, and

s € (T,t—r(t)),

V(u(r(t) + s, =h(r(t)) + &-ry-s)) < f"(D)(u(r(t) + s, =h(r(t) + &—riy-s) — 0)*.
Applying Lemma [3.6] we have for any ¢ > o and s € (T',t — r(t)),

E(V(u(s +r(t), —=ch(r) + &py-s))) < f/(D)e(e)s™ A e 2179 4 e 0emr1=97],

By (3.25)), it follows that
oo t—r(t)
OV, T) < f"(D)e(e) / 0P/ (P=298 (g 4 te™ (t)/ 8P/ epes s
T T

Sf//(l)c(e) |:/Oo Sﬁp/ke_(p—Qe)s ds + (pe)—1t1+6p/)\e—oz'yt/2€>\et:|
T

—>f”(1)c((—:)/ 0P/ re=(P=29s s+ — o0, (3.30)
T

Combining (3.22)),(3.24)),(3.29) and (3.30), and letting 7" — oo, we obtain that

lim et~ / Be”V [9(C()e™)] ds = AB(C(9))). (3.31)

t—o00

Thus by (3.20), (3.21)) and (3.31)), we have that

iim e (] pe/AM)) = 72— A[(C()].

t—o0
u€eLy
Since C(y) is continuous in ¢, the above limit also valid for ¢(y) = 1(_,1)(y), that is,

lim e OE (R, < A(1)) = ——A(d{ad/a))

t—o0 ]_—q

The proof is now complete.
O

Proof of Corollary For any g € CF(Ry) and 6 > 0, applying Theorem with
p(y) = e W1 (y) we get

' eP(t=r(®)E* <e Aty (9 Rt<A( )) A(d(C(p)))
Jim E* (750017, < A1) = Jim P (R, <A(L)  A(07)
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By the definition of =, we have

oo ) j *) _ e~ 0N (9)
=3 Pk = gy [e ] - AW Aq(f(é*)) )49 (3.59)
Note that {Ny,(R) > 0} = {W > 0}. Thus
B(emNe@)) = Bem™M=@|N(R) > 0,No0(1,00) = 0)
| B(em"N=0; Ny (R) > 0, Noo(1,00) = 0)
PN (R) > 0, N(1,00) = 0)
_ B(e ™= Nio(1,00) = 0) — P(Noo(R) = 0)
P(Ns(1,00) = 0) = P(No(R) = 0)
E(exp{-C(p)W}) —P(W =0) _ ¢(C(e¢ )) q
Plexp{—*W}) — P(W = 0) o) —q
By (3.32), we have that
E(G—GE(Q)) _ A<¢(C( ))
A(p(9)
The proof is complete. O

3.2 Lower deviation of Y,

For the proof of Theorem we first established the upper deviation for Y;, and then used
it to get the corresponding result for X;. However we can not get the lower deviation of X,
from that of Y,. In Section [3.1] we proved Theorem the lower large deviation result of
X;. In this subsection, we establish the lower deviation result of Y,. Recall that ¢ is defined

by (1),

Proposition 3.7. If A : [0,00) — (0,00) satisfies A(t) — oo and
A “L(A()) — 0, A(t)/h(t) = 0
as t — 0o, then for any ¢ € H(R),
lim e”*""OE*(Z(p, Yo /A(t))) = A((C (),

t—00

where r = r(t) is defined by A(t) = h(r(t)). In particular,

lim ePt—®)p* (Mt < A(t)) — Alo(0")].

t—o00

Proof: Since ¢ € H(R), there exists 6 > 0 such that ¢ =1 on [0, §]. Note that
(1= Q)E*(Z(p, Yo /A1) = E(Z(p, Yo/ A1) — g+ g — E(Z(p, Yi/A(1)); ).
On the event {Z;, = 0}, we have Z(p, Y, /A(t)) = 1, thus
0 <q—E(Z(p, Y1 /A(1); 8) < g —P(Z = 0) ~ —A(0)e " = o(e ?77),
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By the definition of Y, ; given by (2.7, we have

E(Z(p, Yo/ A1) < E(Z(p, Yo/ A1) = E ((BZ(p, Yy /R(r(1))“ ), (3.33)

where Y} is defined in (2.8). If Z,) = 0, then Z(p, Y, /h(r(t))) = Z(p, Y ;) /h(r(t))) = 1;
if Zr(t) > ( then

Tl Yt /() =T, Vi [ ()) - (Ko H(r(6))
>I(p, Yiiy /(1 (1)) - L1, |<6n0r(1))}-
By and we have
P(| X0 > 6h(r(£))) < cor()(Sh(r(t)))*LGh(r (1)) < 2¢06~ - ()0 = 0.
Thus by we have
lim E(Z(g, Yo /A(r(1))) = lim E(T(p, Yoo /hr(t)) = 6(Clg)) < 1. (3.30)

Thus, by (3.1), we have that

lim e (B ([EZ(, Yy /()] “) = a) = A(6(C()))

t—o00

Hence by (3.33)) we have

lim sup e”* "N (E(Z(p, Y /A1) — q) < A(6(C ().

t—00

On the other hand,

E(Z(, Yo /A))|F,)
>P(max [ Xyl < Sh(r(t)IF)EI (@, Yoo/ h(r()))F). (3.35)

- UEDy:by <t—r(t)

Note that {u € Dy : b, <t —1(t)} C Di_pwy. Thus by (2.3) we have that

< T < T
Muept:ri}?;r(t) |Xu’t| - 5h( ( m]: ezH P ‘Xut| 5h( ( )))“’T:t )
ucly_r(t)

é(l _ 2005_0‘_12‘:6_A7‘(t))‘/th'r(t)"
By (3.35)), we have that

t
E(Z(i, Yo/ A1) 2 E (1 — 2¢00*te )Pl - T(p, Y, ), /A(1))
—E (1 — 2600~ te )Pl - [EZ (i, ¥ /A (1))
SE (1~ 2008 te ™ O) O 0[BT (9, Yy A)] 0 [ D] < - (¢ = r(t) Zumr)
>E (C(t)%0) — B(Doeriy] > ¢ (t — (1) Zurt).
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where C'(t) = (1 — 2005_"‘1%6_)‘7"('5))c'(t_r(t))EI(go,Y;(t)/A(t)) and ¢ > 0 is a constant.

2= = 2A(t)"*L(A(t)) — 0, by (3.34)), we have

lim C(1) = lim EZ(¢. Y,/A(®) = 6 (C(¢)) < 1.

t—o00

By , we have that
lim e ONE (C(t)%—0) — q) = A (¢ (C(y))).

t—o00

Note that [Di_p| < Y |7,|. Thus by the many-to-one formula,

uELy (1)

P(|Di—rw)| > ¢ (t = 7(t) Zi—r(ry) <P Z [Lu| >c- (t=7()Zi—rt)

uELy (1)

<P| > Lgnpseerop 21 SE[ D Lgnsea-roy
uEEt,T(ﬂ ue['tfr(t)

< NP4 np iy > - (E—7(1)))

< AT e (1) B M) = ¢ . MEr(B) et (1) e~ 1B(=r(0)

o (e A—(e=1)B)(t—r ()

Now we choose ¢ such that ¢ > A+ (e — 1) — p. Then

lim ep(t_r(t))P(|Dt_7‘(t)| > C(t — T(t))Zt—T(t)) =0.

t—00

Hence we have

lim inf """ N(E(Z(p, Y, /A1) — q) = A6 (C(p))) -

t—o00

The proof is complete now.

4 Almost sure convergence results

Since

In this section we will give the proofs of Theorems and [1.7. We first prove the corre-

sponding results for Y. Note that for any a > 0,

{Rt < CL} = I(]-(—oo,a]axt)7 {Mt < CL} = I(]-(—oo,a]aYt)'

By the continuity of C'(¢), the results established in the previous sections for H(RR) are also

valid for 1(_o 4.

31



4.1 Almost sure convergence results for M,

G@) _

Lemma 4.1. Suppose that G : [0,00) — (0, 00) satisfies lim;_,oo o = oo

(1) If >, e G(n)"“L(G(n)) < oo, then

M,
limsup —~ <0, P-a.s.
e’ G(n) =

(2) If 5. eG(n)"“L(G(n)) = oo, then

M,
lim su " = o0, P*-a.s.
e’ G(n)

Proof: (1) Assume that > e*G(n) " *L(G(n)) < co. By Proposition we have for any
c> 0,
lim e MG(t)*L(G(t)) 'P(M, > cG(t)) = ¢V,

t—00
where ¥* is given in (1.4). Combining this with Y. e*G(n)™*L(G(n)) < oo, we get that
for any ¢ > 0,

f:IP)(Mn > cG(n)) < oc.

By the Borel-Cantelli lemma, we get that

limsup —— < ¢, P-a.s.

Nn—00 (TL)

Letting ¢ — 0, we get the desired result.
(2) Assume that Y e*G(n)"*L(G(n)) = oo. For 0 < s < ¢, define

2
MP =  max X,
’ UEDt—s5<b, <t

For any ¢ > 0, we have that

P(M, > cG(1n)|Fnor) > B(MP) > cG(n)|For). (4.1)
By with s =1, t =n, A(t) = cG(t) and ¢ = 1(_ 1], We get that, as n — oo,

e G () LY (G (n)P(M2) > cG(n)|Fny)

1
_)CaﬂeA/ (e” — e*&") P(Zy,_.>0)dr-W as.. (4.2)
o 0

Combining (4.1)) and (4.2)), we obtain that, for any ¢ > 0, on the event {IW > 0},

Z}P’(Mn > cG(n)|Fn1) =00, P-as.

n=1

Applying the conditional Borel-Cantelli lemma, we get that for any ¢ > 0,
P*(M,, > c¢G(n),i.0.) = 1.

Since c is arbitrary, desired result follows immediately.
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Lemma 4.2. It holds that

M, 1
lim inf - < (W), P*-a.s.

t—oo  H(e " logn)

Proof: For any € € (0,1), choose € > 0 small enough such that (14 ¢)(1+¢/2)"* < 1. Let
ng = |k'*], k > 1, where |z] is the integer part of x. It is easy to see nj < ngy; for any

k>1. Let
o log ny
Uy, :=H (19*an16)‘(”’€_”’€—1)) .

Since H(y) =y~ Y*L(y™"'), we have
Uk

. _ 7 * e _ * 1/a *_
DL He oy ARl = TR, Fras s (4)
Note that U, € F,,_,. Thus we have
P (M, < (1+ € )UklFry_y) 2 Liat  <re/2)ui) Ji (4.4)

where
Jp =P (VU S Enkanv,nk - Xv,nk71 < EUk/27 M:“:k < (1 + E/Q)Uk|f”k*1)

and Mtv = MaXyeD;v<u Xu,t-
We first show that, on the survival event S, {M,,, , > (1+¢/2)U;} can occur only finitely
many times. By (3.7]), we have for p > \/p,

Z]P’(O <eMZ,<nP)< C’Zn’p”/’\ < 00. (4.5)

n=1 n=1

Note that
P (M,, , > (14 ¢/2)Us,S)

<P(e M1 Z, <P, 8) + P (M, > (14¢€/2)Uy, e ™ Z,, , >n,F))
_ _ log ny,
< Ang_1 p -
<P (e Ly <7, S) + P (Mnk_l > (1+4¢/2)H (ﬁ*nkflem» :
By (4.5]), we have
Z]P’ (e 17, , <n?.8) < Z]P’ (0<e ™27, , <ngly) < ooc. (4.6)
k=1 k=1
Observe that ng — ng_; ~ (1 + €)k¢. Thus
I lo_g g log ny, —1/e
V0, L eAnk V*n, P e
lim = lim | —— =00
k—so0 h(nk—l) k—so0 e~ ANk-1
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Hence by Proposition [2.6] we have that as £ — oo,

log ny,

_ log ny, - log ny,
~ e 1(1 4 €/2)°H | ————— LIH|———
( 6/ ) (ﬁ*nkfle)\nk ) < <ﬁ*nkfle>mk ) )

p
o M1 log ny,

Pl
where in the last equality we used (L.5). Since ny = |k'*<], we have 3, nf{i—o%?])ﬁ
e N —Nk—

Combining (4.6) and (4.7)), we get that

> P({M,_, > (1+€¢/2U}NS) < oc.

k=1
Using the Borel-Cantelli lemma, we get that

Z l{Mnk_1>(1+€/2)Uk} < 00, P-a.s. on S. (48)

k=1

Now we consider Ji. Recall that M/ is defined in (2.9). By the Markov property and the
branching property, we have that

Z”k—l
Je =P (Xomem s Se@/2,M), L, < (14 ¢/2)2) |7 |y

_ log]P’(Xo,nk_nkilgex/Q,M’ §(1+e/2)x>

ne.—mig_
k-1 |x:Uk

26zn,c_1 1og(1—1P>(Xo,n,fn,€_l>ez/2)—1P’(M7Qk_nk_1>(1+e/2)w)) - (4.9)
Note that, on the survival event S, Uy, — oo. Then by ([2.3)), we have for k large enough,
P (Xomk_nk_1 > ex/2) o=t <2¢0(€/2)"* (g, — np_1)Ug “L(Uy)
log ny,

— —a—1 —
_260(6/2) (nk nk—l) ﬁ*an_leA(nk_nk_l)

—0, P-as.onS (4.10)

as k — oco. By Proposition [2.6] we have

P (M, > (1+€/22) Lo, <P (Mo, > (L +€/2)2) oy

Nk—Nk—1
~ 9N (1 e /2) U L(Uy)

logn
— (1+¢/2) 020

—0, P-as.onS (4.11)

NE—1
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as k — oo. Since ny, = |k'*|, using (#.10) and (4.11]), we obtain that

) 1
lliris;}p —@anﬂ log <1 —P(Xopnpony , > €x/2) — P (M,’Lk,,%1 > (1+ 6/2)x)>m:Uk
1
—timsup = Zn, , (P (Xomyn, , > €w/2) + P (M] > (1+¢/2)z))
lirl—foli‘p log k: k—1 ( Ik k—1 E':E/ ) + MNp—Nk_—1 ( + E/ )'CE CC:Uk
<(1+€)(1+¢€/2)7* <1, P-as. onS. (4.12)
Combining (4.9) and (4.12]), we get that,
Z Jy =00, P-as. onS. (4.13)
k=1
Combining (4.4),(4.8) and (4.13]), we get that
ZIP’ (Mnk < (1+ E)Uk|fnk71) =00, P-a.s. onS.
k
Applying the Borel-Cantelli lemma and then letting ¢ — 0, we obtain that
M,
liminf —% <1 P*a.s.
k—o00 k
Hence the desired result follows from (4.3]) immediately.
O

We now modify the definition of D; and L; slightly. For any § > 0, and ¢ > 0, define
Lt’g = {U c 'Ct . Ztqu(S > 0},

Dis:={ueT:b, <t Z5 >0} =Uucr,; u,

Ris := max &', M,;s:= max X,;, and Mf:(; = max X,
uely s u€Dy 5 u€D; 5\{o}

Using argument similar to that in the proof of Lemma [2.5| with ¢ = 1(_ 1], we get the
following result. We omit the proof.

Lemma 4.3. For any 6 > 0, it holds that

lim 2*L(z) 'P(M.; > z) = ﬂ/ (M — e PYP(Zsis5-r > 0)dr =: c(s,0).
Tr—00 ’ 07 0
Lemma 4.4. For any 6 > 0, it holds that

M,
lim inf 0,9

1
> (YsW)« P*-a.s.
n—oo H(e " logn) z (9 W) a5

where V5 = & fooo e NP(Z,s > 0)dr.
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logn
Z(n,m)gc(m(s, 5)

Proof: For 1 <m < n,let U,,, = H (
when Z,_m); = 0. Note that

) when Z(,_,)5 > 0 and U, ,, = 0

M,ss > max max X, s,
’ UEE(n_m)g UG'DZ(;}(;

where Dys = {v € Dys. : v > u}. By the Markov property and the branching property, we
have that, conditioned on F;—m)s, {1rnau><:fuepzé<S Xomss U € Ln_mys} are i.id. with the same

law as M, 55 Let Gps(x) = P(Mrlms,é > z). Note that U, € Fpn_m). Thus for any
e € (0,1), we have

P (M55 < (1= )Unm|Fin-mys) < (1= Gg(1 = €)Unm)) 7o
SeiZ(nfm)éGmﬁ((176)Un,'m) .

Note that on the survival event S, limy, o Upm = 0o. Thus by Lemma 4.3, we have that,
on the survival event S, as n — oo,

Z(n_m)(;Gm,(;((l — E)Umm) ~ Z(n_m)56<m(5, 5)(1 — 6)7QUTZ%L(Un’m) = (1 — 6)70[ logn, P-a.s.

where in the last equality we used (1.5). Since (1 —¢€)~® > 1, we have that, on the survival
event S, for any m > 1,

Z P (Myss < (1= €)Upm| Finoms) < Z e Zn=misCms((1=Unm) o Pgg..

n=m-1 n=m+1
By the second Borel-Cantelli lemma, we have that, on the survival event S,
o0
Z L5 5<1-0Unmy < 00, P-as.
n=m+1

Thus, by the definition of H, we obtain that under P*, for any € € (0,1) and integer m > 1,

logn ~1/a
o Mps s . (1 —=€6)Unm , Zn—mysc(md, d)
1 f ’ >1 f —— =(1—¢) 1
oo H(e=*logn) — prat H(e 9 logn) (1—¢) no0 e~ logn
= (1—¢) (We™¢(ms, 6))*, Pras. (4.14)

Note that lim,, o e *™c(md,d) = 5. Letting m — oo and € — 0 in (4.14)), we get the
desired result. The proof is now complete.
]
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4.2 Proofs of Theorems 1.6/ and 1.7

Lemma 4.5. If {a, : n > 1} is a sequence of positive numbers satisfying > e "a,P* < 0o
for some p € (0,2), then for any § > 0,

Rn - Mn
lim sup L 0, P*-a.s. (4.15)
n—oo an
and
. My — Ry s
limsup ——= <0, P*-a.s. (4.16)

Proof: Let a(t) be a positive function satisfying a(t) é et for some € € (0,1). Let ¢ >
2 + €23/€? be a constant. We choose 6 € (0,1) so that fc < 1. We define the events A;(6)
and By as in the proof of Lemma [2.4. We claim that for n sufficiently large, on the event
A(0) N BN {Z > 1},

{Rtﬁ - Mt75 > a(t)} U {Mt,§ - RZ_& > a(t)} == @
In fact, by (2.17), we have that on the event A;(0) N B, N {Z; > 1},

Ris = max & < max X, ; + a(t) < M;s + a(t), (4.17)

v€£t75 UGLtyg

and

M, s = max max X, ; = <max XU/¢> \% ( max y }Xu,t)
I, \{v’

Ue»ct,é u€ly Ueﬁt,é UEEt,g,UG
< (mgx &+ a(t)) V (a(t)/loga(t)) < RS5 + a(t), (4.18)
veLys ’

for ¢ large enough so that loga(t) > 6. Hence, by (4.17) and (4.18)), the claim is true.
Combining (2.11)), (2.16)), we get that for any p € (0, 2),

linlsup e Ma(t)P (({Res — Mys > a(t)} U{Mys — Rfs > a(t)}) N{Z, > 1})
< lim sup e Ma(t)P*{P(A,(0)°) + P(B¢)} = 0.

t—o0

Thus we have

lim e™a(t)"P ({Ris — My > a(t)} U{M,s — Bf; > a(t)}) N {Z, > 1}) = 0.

t—o00

Since Y e Ma,P* < oo, we have a,, > e . Tt follows that for any € € (0,1) and p € (0,2),

P* (Rus — My s > ea,) < P(Rns — Mps > €an, Z, > 1) = o(ema;pa).

1
P(S)
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So we have that

> P (Rys — My > cay) < o0.
n=1

Applying the Borel-Cantelli lemma and then letting € — 0, we get (4.15]). Similarly, we can
get (4.16]) as well.

O
Proof of Theorem [1.6: Note that
H(e M 1ogn) = eM/*(logn)~Y*L(eM /logn).

Applying Lemma [4.5| with 6 = 0 and 6 > 0, we have

R, — M, M55 — Ry
li EL———)] li ’ 190 <) P*-a.s.
lgl_igp H(e=*logn) = lgl_igp H(e=*dlogn) — a5
By Lemma |4.2| we have
R(t) M, R, — M,

< (W)Y, Pras.

liminf ———— <liminf —— + i —_—
s H(e Mlogt) — gty H(e *logn) * ey H(e *"logn)

We now consider the lower bound of lim inf,_ %. By Lemma we have that
for any 6 > 0,

Riss Mps s Myss — Ryis

lim inf o > lim inf e — i : 0> (9sWHYe, Pras,
ey H(e=*logn) — gty H(e=*logn) lin_igp H(e = logn) = (9 W), s
(4.19)

For any n > 1, let Q5 = inf,5<i<(nt1)s B. We claim that for any e € (0,1) and 6 > 0,

Y (Qn,a < (1= H(e™ log n) (0sWos)* — H(n‘2)|fm;) <o, Pras. (4.20)
n=1

Let B, = {R,55 < (1 —€)H(e " logn) (ﬁang)é}. Note that

P (Qus < (1= H (e logn) (95Was)* — H(n )| Fs)

Q=

<P(B,|Fps) + P (B;, Ons < (1— ) H (e log n) (95 Wes)# — H(n*2)|fn5) . (4.21)

By (4.19) and the Borel-Cantelli lemma, we know that on S,
> P(B.|Fus) <o,  P-as. (4.22)
n=1

Now we consider the second term of the right hand side of ([@21). Take Zo = v = Y1, 04,
with a; > a9 > -+ > ax. We use Ztm to denote the number of descendants at time ¢ of
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the j-th particle, and E%j ) the set of all the descendants of J alive at time ¢. For any x,y we
have that

PV(RQ(S >, QO,§ <T-— y)

]P(Z(gj):(];lg]Sk_17Z(§k)>07ak>x7Q076<x_y)

[
]~

i
I

P(Zy" =0,1<j<k—-12" > 070%9255225’;(& ai) < —y)

]~

i
L

W

_ k-1 . _
P(Zs =0)"""P(Zs > O,Ogtl;S R, < —y)

b
Il
—

1

< —r— i —). .
_P(Zg>O)P(Zé>O’01§I§£6Rt< Y) (4.23)

By the many-to-one formula, we have

]P(Z5 > O’Oigrtl£6 Ry < _y) <E (Z 1{inf0§t§5 §r<—y} > 1) <E (Z 1{inf0gzgé E?<—y}>

ucLls ueLs

= VP ( inf & < —y) ~ e”%éy*aL(y), y — 00,

0<t<s

where the last limit follows from ([2.5). Combining the Markov property and (4.23) with
v=X,s and y = H(n™?), we get

P (BZ, Qns < (1 - e)H(e’)‘"‘S logn) (f}(;I/I/'m;)é — H(n’2)]}"m;>
_ 1 20eM %n_z,
_]P’(Z(; > O) ]P)(Z(; > O) o

where the last inequality holds for n large enough. Combining (4.21)), (4.22) and (4.24]), we

arrive at (4.20]).
Using the Borel-Cantelli lemma and (4.20]), we have that for any § > 0,

lim inf Cns
n—oo  H(e ™ logn)

. . -2)) «
P(Zs > O,O££6 R, <—H(n™=)) < (4.24)

(195VV)é P*-a.s.

v

Since H (e *logt) is increasing in ¢ for ¢ large, for any § > 0, we have

. Rt V0 .. Qn sV 0 H(e—/\n5 IOg Tl) —\d L
1 LA f : > le (YW )@
I e og ) = il e Tog n) H(e X Do log(n + )3y = ¢ (W)™

P*-a.s. Letting 6 — 0, we get the desired result. The proof is now complete.
O

It follows from Lemma that Lemma [4.1] also holds with M, replaced by R,,. To get
the limit of R; as £ — oo, we need to deal with supg.,; Rs. If po = 0, then supyc,;, Ry =
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MaXyer, SUPg< <y §o- Thus by the many-to-one formula, we have that

P ( sup Ry > 9”) =E (Z 1{SUP0§s§t5gZI}> _Mp ( sup & > x) :

0<s<t veLly 0<s<t

In the following lemma, we show that this assertion is still valid when py > 0.

Lemma 4.6. For any x > 0 and t > 0, it holds that

P(sup Rszx) ge’\tP(sup §32x).

0<s<t 0<s<t

Proof For r > 0 and z € R, let P,, denote the law of X starting with an individual at
position z at time r, and P, , stands for the law of £ condition on {¢, = x}. We still use o,
to denote the death time of the initial particle. Fix ¢t > 0. For any 0 <r <t and = < 0, we
have that

w(r,z) =P, (Sup R, < 0) =P, (Sup R, <0,0,> t) +P, (sup R, <0,r <o, < t)

r<s<t r<s<t r<s<t

= Il + [2.

We first consider I;. Let Ty := inf{u > r : &, > 0}. Since g, — r ~ £() under P, ., we
have

L=P,, (Sup & < O) P, (0, > t)
r<s<t

=P, (Tp > t)e " =P, (To > e 5ds> :

By the branching property and the strong Markov property, we have

[2 = Er,m (Pr,x < sup RS < 0770 <0, < t‘f00>)

r<s<t

t 00 &
=E,, (/ Lery>uy Zpk (Pu,su ( sup R, < ())) Be—ﬂ(u—r)du>
T k=0 u<s<t
tATo
=B ([ st g i)

where f(s) =Y oo, prs. Consequently, w(r, z) satisfies the equation

ToAt tATo
w(r,z) =P, (To >t e J:° WS) +E,, (/ f(w(u,ﬁu))ﬁeﬁ(“r)du) )

Then, 1 — w(r, x) satisfies the following equation

Ty At tATo
l—w(r,z)=P,, (To <t e )’ ’Bds) +E, . (/ (1-— f(w(u,fu)))ﬂeﬁ(“’”)du) .
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Using [21], Lemma 1.5], we get that g(r,z) := 1 —w(r, z) also satisfies the following equation
ToAt tATo
g(r, l’) = PT,HC (TO <t, efr Ads) + Er,x (/ (1 o f(CU(U, fu)))ﬂe)‘(“_r)du)
tATy "
— B (/ Mﬁg(ufu)eA(“T)dU) . 0<r<taz<O.
Note that 1 — f(1 — ¢g) — ug < 0. So we have that for 0 <r < ¢, and x <0,

9(7’7 ZL’) S Pr,m (TO S t, efrTO/\t Ads) S eAtPr,x(TO S t)

Using the time-homogeneity and space-homogeneity of branching Lévy processes and Lévy
processes, we get that for any ¢ > 0 and x > 0,

]P’(sup R52x> zl—P(sup Rs<x) = ¢g(0, —x)

0<s<t 0<s<t

< NPTy < 1) =P (sup €2 0)

0<s<t

The proof is now complete. O

t
Proof of Theorem [1.7; Since lim;_, % = 00, we have that G(t) > edat. By Lemma
with 3/2 < p < 2, we get that

R,— M M, — R
limsup ———= <0, i " <0, P*as. 4.25
el Gn) ol G(n) (4.25)

(1) Assume that > e*G(n)"*L(G(n)) < co. By Theorem , we have P*(3T > 0,Vt >
T, Ry > 0) = 1, which implies that
+

lim sup e = lim sup L >0, Pras..

tooo G(t) oo G(E)

Let Vi, := sup,,<i<(n41) R, > 0. Since G is non-decreasing, by Lemma [4.1] and (4.25), we
have, under P*,

lim su i<limsu Vi < limsu bJrlimsu qulimsu L
el G() = el G(n) = ol Gy LAY TGy NP G
<limsu —Vn_Rn
= TG

By the Borel-Cantelli lemma, to get the desired result, it suffices to prove that, for any ¢ > 0,

iP*(Vn — R, > c¢G(n)) < 0. (4.26)

n=1
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Observe that on {Z,, > 0}, R, € R and

V, =max(§, +V,') < R, + max V",

uELy uELn

where
VE— swp max (& — €Y.

" n<t<n+1vE€Lt,uY
It is clear that, conditioned on F,, {V.*,u € L,} are i.i.d. with the same law as (Vy,P).
Thus
(1—-qP*(V,, — R, > cG(n)) <P(V, — R, >cG(n), Z, >0) < ]P’(mz}:x V' > cG(n), Z, > 0)
ucln

< E(Z,)P(Vy > ¢G(n)) = e P(Vy > c¢G(n))

< eMe*P(sup & > ¢G(n)),
0<t<1

where the last inequality follows from Lemma . By (2.4), we have that

P ( sup & > cG(n)) ~ c‘aﬁe’\”G(n)_o‘L(G(n)).

0<t<1 (0%

Thus (4.26) follows immediately.
(2) Assume that Y e*G(n)"*L(G(n)) = oco. By Lemma [4.1) and (4.25), we have

R Rf M, M, — R}

lim sup —— > limsu “— > limsu —limsup ——— = o0 P*as,,
el G(1) = Ak Gn) T ikl Gn) e G(n)
which implies that lim sup,_, % = 0.
The proof is now complete. n

As a consequence of Theorem [I.7] and Theorem [I.6], we have the following result.
Corollary 4.7. (1)

log R —log H(t te™™) 1
lim sup og Ry —log H{t” e™7) = -, P*-a.s.. (4.27)
o0 log log t «Q
0 -
lim 08 1, = i, P*-a.s.
t—o0 t (0%
Proof: (1) For any € > 0, by Theorem [1.7| (1) with G(¢) = H(t ‘e *)(logt)(1+)/
lim sup il =0, P*as..

oo H(t—le—)\t)(log t)(1+e)/a

R+

which implies that for any ¢ > 0, H(t*le*)‘t)(tlogt)(l“)/o‘

< 0 when t is large enough. Thus for ¢
large enough,

1+e¢
o

log R —log H(t 'e™™) < log§ + loglogt, P*-a.s..
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Therefore
log R —log H(t 'e™) L1t

lim sup < , P*as..
t—00 loglogt «
Letting € — 0, we get
log R —log H(t e 1
lim sup 08 og H(t"'e ™) < —, Pras.
t—00 log logt o

For any € € (0,1), by Theorem [1.7] (2) with G(t) = H(t 'e=*)(logt)(!=9/®  we have for any

R . . .
fAt)(tbgt)(lfd/a > ¢, which implies that

0 >0, limsup,_, T Te

1 T —log H(t e log § 1— 1—
lim sup 08 fiy og H(t™ e )Zlimsup o8 + - ‘.

00 loglogt t—0o loglogt o o

Therefore letting € — 0, we get

_ log R — log H(t e )
lim sup

t—00 loglogt
Hence we have (4.27)).
(2) Note that

1
> —, Pras..
!

A 1 - A
log H(t'e ™) = “t + —logt + log L(te™) ~ ~t.
a o« o'

By (7). we have
_ log R\ .
lim sup = —, P*-a.s.
t—o00 t 07

On the other hand, by Theorem [1.6{ we have
log R log H(e *logt)

litrgglf ; ; =0, P*-a.s.
Note that
log H(e *logt) = gt - élog logt + log L(eM/logt) ~ gt.
The proof is now complete. ]
Remark 4.8. Since H(y) =y~ "/*L(y™"), we have

. logH(y)

Assume that L(z) = (logz)", where r € R. By (4.28)), we have that
H(y) =y "*(log H(y))"/* ~ o™y~ (log(y 1)),y — 0.

Hence we have

A1
log H(t e ™) — 2t — o
a a

logt — Zlog()\/a), t — o0,
«

and
H(e Mlogt) ~ (\/a)/et"/*(logt)~ et — 0.
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5 Appendix

In this section, we give some further discussion of Assumption 2 We first recall Karamata’s
theorem ([11, Theorem 1.5.11]).

Lemma 5.1. (1) If L is slowly varying at oo and locally bounded in [a,+00) for some
a >0, then forr > —1,

* 1
/a t"L(t)dt ~ 7’+—1$T+1L($)’ T — 400.
(2) If L is slowly varying at infinity, then forr > 1,

400 1
/ t"L(t)dt ~ —1x1_TL(x), x — +o0.

r —

Example 5.2. (Strictly Stable process.) Let & be a strictly a-stable process, a € (0,2),
on R with Lévy measure

n(dy) = clx_(lm)l(om) (r)dz + CQ|$|_(1+Q)1(_OO,0) (z)dz,

where ci,c0 >0, ¢c1 +¢co >0, and if o« =1, ¢; = ¢cg = ¢. The Lévy exponent of £ is given by,
for 8 >0,

r /(ei‘)y — 1 —ity)n(dy), ae(1,2);
v = ?(ewy — 1)n(dy), ae(0,1);
L /E(ewy — 1 =iyl <i)n(dy) +ial, a=1

_Ro‘r(l — a)(cre” ™2 4 e ™),

Q€
=< —al(1 — a)(cre™™2 4 c,e™/2)0%, o €
—cr + 1ad, o=

where a € R is a constant. It is clear that ¥ satisfies Assumption 2. For more details on
stable processes, we refer the readers to [34), Section 14].

Note that for a # 1, e~ 0 € R, is the characteristic function of a strictly a-stable
random variable if and only if | tan(wa/2)|R(c) > |S(c)|.

Let {(&)i>0} be a Lévy process with the generating triplet (a, b, n), that is,
() = log B(e"™)
1 )
= iaf — —b*6* —|—/ (ezay ol i9y1{|y|<1})n(dy),
2 R/{0}

wherea € R, b > 0, and fR/{O}(l/\yQ)n(dy) < 00. Let r(z) : R — R be a bounded measurable
function, satisfying

O(L), o] = oo (5.1)

|z

() = {1 +o(z), x| —0;
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Then 1) can be rewritten as

1 .
$(6) = ia,6 — 2126° + / (% — 1 — ifyr(y))n(dy),
2 R/{0}

where a, = a + fR/{O} y(r(y) — Lqy<1y)n(dy). The triplet of £ is written as (a,, b, n),.
For any ¢t > 0, we define a measure n;(dy) as follows: for any positive function g,

/ g(y)ni(dy) = / gyt )n(dy).
®/{0} R/{0}

Lemma 5.3. If there exist q¢1,qo > 0 such that

lim L) 'n(t, +00) = L, and lim t°L(t)"'n(—oo, —t) = 2, (5.2)

t——4o00 0% t——+o0

then as 0 — 07,
Q_OCL(Q_l) /(eioy —1- i9y1{|9y|<1})n(dy) — /(eiy —1- iy1{|y‘<1})l/oé(dy),
R R

where vo(dz) = 1z "1 (0 100) (2)dx + ga|z| 7L (L o0 0) (@) d.
Furthermore, if 0 < a < 1, then as 8§ — 07,

O~ *L(O~) /R(eiey — 1 —i0yLyy<y)n(dy) = —al'(1 — @) (qe” ™2 + ge™/?);  (5.3)
if 1 <a <2, then as — 0T,
0L~ /(ewy — 1 —ify)n(dy) — —al(1 — a)(qe 2 + ge™/?). (5.4)
R
Proof: For any ¢ > 0, let 7,(dy) := t*L(t)"'n;(dy). By (5.2), we have that for any = > 0,

fiy(z,00) = t*L(t) 'n(tx, 00) — B pma Vo(, 00)

o
and
fio(—00, —) = t*L(t) " 'n(—o0, —tz) — L= = vy (—o0, —a).
«
Thus, for any g € CP(R),
/ 9(y)i(dy) — / 9(y)va(dy). (5:5)
0 0
We claim that

lim lim sup/ y*ny(dy) = 0. (5.6)
S0 t=too Jo<ly|<e
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In fact, by Fubini’s theorem, we have that

/0<y<€ v (dy) = t*L(t) ™ /y ny(dy) = t*L(t)~ / (/y 2xdx) ny(dy)
=t L(t / 2ad / ny(dy) < t*L(t)~ / 2, (x, 00)dx
0N /0 2an(z, o0)da.

Note that

1
(2L ()! / 2an(x, 00)dz = t*2L(t)"! / (1A )n(dy) — 0, - oc.
0
By (5.2) and Karamata’s theorem, we have, as t — oo,

(1) Lt)
2—«

te ¢
/ xn(z, 00)dr ~ —
1 a

Thus we have

15
lim sup/ y2 iy (dy) < @<
t—+o00 Jo a2—a

Similarly, we have

0 % 6 —a
lim sup/ vy (dy) < =
t—+oo J_¢ a2—a

Letting € — 0, we get (5.6)).

By (5.5) and (5.6), and applying [34, Theroem 8.7], we obtain that, for any bounded
continuous function r satisfying (5.1),

t—+400 R

lim | (e — 1 —ifyr(y))n(dy) = /R(eiey — 1 —0yr(y))va(dy). (5.7)

Since v, ({y}) = 0 for all y € R, thus (5.7)) holds for r(y) = 1y <1}. Thus we have that

lim L) [ (€7 = 1= it L) = [ (€ < 1= i gL va(dy) 5:3)
R R

t—+00

(1) Now we assume that 0 < o < 1. Note that for ¢ > 1,

[ mtan = [ ([ ) ntan = [t [ wta)+ [ [ it

=n(1,t) + /tn(x,t)da:

=n(l,t) + /tn(x, +oo)dzr — (t — 1)n(t, +00).
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By Lemma we have that flt n(z, +oo)dr ~ —L—~t'=*L(t). Thus we have

a(l—a)
lim $L(t)" 4! t n(dy) = —— 9D o (dy) (5.9)
i ynldy) = g2 == | yvaldy). :
Similarly, we have
-1 1 q q 0
lim t“L(¢t)"'¢ dy) = 3—2:/ W(dy). 5.10
Jim L) [ty = =2 =% = [ ) (5.10)

By (5.8), (5.9) and (5.10)), we obtain that (5.3 holds.

(2) Now we consider the case when a € (1,2). By Fubini’s theorem and lemma we
have that

/t " yntay) = /t h (/oy dx) n(dy) = /Dt o /t o)+ /t o /;OO e

= tn(t,+o00) + / n(x, +00)dx
t

a1 ,6-1 q1 a—1 q1 a—1
~ —=t*L(t ——— {7 L(t) = ——t*"L(¢).
" ()+a(a_1) (t)=—-"+ (2)
Thus
+o0 +o0
lim taL(t)l/ t~tyn(dy) —/ yve(dy). (5.11)
t—+o00 t 1
Similarly, we have
—t -1
lim tO‘L(t)_l/ tyn(dy) = / Yo (dy). (5.12)
t—+o00 o oo
Thus by (5.8), (5.11)) and (5.12)), we obtain that (5.4) holds.
The proof is now complete. O]

Theorem 5.4. There exist a constant c., a € (0,2) and a function L slowly varying at co
such that

V(0) ~ —c,0°L(O71), 0 — 0T, (5.13)
if and only if the following two conditions hold:

(1) there exists nonnegative numbers qi,qa such that

lim t*L(t) " 'n(t, +o0) = ﬂ, and lim t*L(t)'n(—o0, —t) = =;

t——+o0 o t——4o00

(2) ifa € (172)7 a—+ f{|y‘>1} yn<dy) = 0; ifa = 17 q1 = g2 and

lim L(t)~" (a —|—/ yn(dy)) =: ¢y
t—o0 1<|y|<t

exists.
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Moreover, the relationship between c. and (qi,qz, co) is as follows: if a # 1,
c, = aF(l . Oé) <q —ira/2 + ¢ ewra/Z)
and if a =1, ¢g = =S(ci) and ¢1 = g2 = R(c,) /.

Proof: First, we prove the sufficiency. Assume the two conditions hold. If o € (0,1), then
by Lemma we have that as 0 — 0T,

H*QL(6*1)71w<9) N —C(F(l _ C() (q —ima/2 + ¢ ema/Q) )

If « € (1,2), then as § — 07,
W(f) = —362«92 + /<€i6’y — 1 —ify)n(dy) ~ —al'(1 — a) (qe™* + g™ /?) 6°L(671).
R

If « =1, then as 6 — 0T,

. 1 i
'Lb(9> =1 (CL —|—/ yn(dy)> 9 — —§b292 + /( 0y _ 1-— z@yl{‘y|<9 1}) (dy)
1<|y|<6—1 R
~ (icg — qum)OL(O7 ).
Now we assume that ([5.13)) holds. It is clear that ([5.13)) is equivalent

lim et L® o) _ 61?(9)
t——+o0

, 0>0, (5.14)

where () = —c,6°.

Note that the left side of is the characteristic function of an inﬁnitely divisible
random variable Y; with Lévy measure 7;(dy). By [34, Theorem 8.7 (1)], if (5.14) holds,
then ¥ is the characteristic function of an infinitely divisible random variable. By the
expression of 1;(9), e?® must be the characteristic function of a strictly a-stable random
variable Y. Thus if o # 1, then | tan(ra/2)|R(c.) > [S(cx)|. Consequntely, the Lévy measure
of Y is given by

Vald) = (2L ) (0) + @21 (1),
where ¢; > 0 and ¢» > 0 satisfy the following equation: if o # 1,
e =al'(1 —a) (qle_im/2 + q26i”a/2) ,
and if o =1, g1 = o = R(ci) /7.

By [34, Theorem 8.7 (1)], we get that for any g € CP(R),

t——+o0

lim ¢*L(t)™" / g(t™ y)n(dy) = 9(y)va(dy). (5.15)
R/{0} R/{0}
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Because v, ({z}) = 0,Vz € R ,then (5.15)) holds for g(z) = 1(1,.)(z) and g(z) = 1 (e —1)(),

ie.,
. o —1 _ — 2
tggloot L(t)"'n(t,+00) = v4(1,+00) = L
: « —1 - o — - . — @
t£+moot L(t)""n(—o0, —t) = vs(—00, —1) o
Now using Lemma [5.3] we can get the second condition holds.
The proof is now complete. n

Remark 5.5. For a = 1, we can assume that Lévy measure n is symmetric and a = 0.
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