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Abstract

In this paper, we investigate the asymptotic behavior of supercritical branching
Markov processes {Xt, t ≥ 0} whose spatial motions are Lévy processes with regularly
varying tails. Recently, Ren et al. [Appl. Probab. 61 (2024)] studied the weak
convergence of the extremes of {Xt, t ≥ 0}. In this paper, we establish the large
deviation of {Xt, t ≥ 0} as well as some almost sure convergence results of the maximum
of Xt.
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1 Introdution

1.1 Model and notation

A branching Lévy process on R is a continuous-time particle system which can be described
as follows. The system begins at time t = 0 with a single particle located at x which
moves according to a branching Lévy process {ξt,Px} with Lévy exponent ψ(θ). After an
independent exponential time with parameter β, the initial particle dies and gives birth to
k new particles with probability pk, k ≥ 0. Each new particle moves according to the Lévy
process ξ starting from the position of its parent’s death, and branches independently with
the same branching rate β and offspring distribution {pk, k ≥ 0}. All particles, once born,
evolve independently of one another. The expectation with respect to Px will be denoted
by Ex. We write P := P0 and E := E0.

We label each particle using the classical Ulam-Harris labeling system. We denote by T
the set of all particles in the tree and use o represent the root of the tree. For any u ∈ T,
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let Nu be the number of the offspring of u and τu denote the lifetime of u. Then {τu, u ∈ T}
are i.i.d. exponential random variables of parameter β.

We will use the notation u < v to mean that u is an ancestor of v, and u ≤ v that either
u < v or u = v. For any u ∈ T, let I0u := {v ∈ T : v < u} and Iu := {v ∈ T : v ≤ u}. Let bu
and σu be the birth time and death time of u respectively. It is clear that

bu =
∑
v∈I0u

τv, σu = bu + τu.

Let Lt be the set of all particles alive at time t. Then u ∈ Lt means bu ≤ t < σu. For
u ∈ T with bu ≤ t, define τu,t = σu ∧ t − bu. For any u ∈ Lt, let ξut be the position of u at
time t. The branching Lévy process {Xt : t ≥ 0} is the measure-valued process defined by

Xt :=
∑
u∈Lt

δξut .

We use Px to denote the law of the branching Lévy process when the initial particle starts
at position x. The expectation with respect to Px will be denoted by Ex. We write P := P0

and E := E0. Let {Ft} be the natural filtration of X and

FT
t := σ({Nu : u ∈ T with σu ≤ t} ∪ {τu,t : u ∈ T with bu ≤ t}).

In this paper, we study supercritical branching Lévy processes, that is to say, we always
assume that µ :=

∑
k kpk > 1. Let S be survival event. Then Px(S) > 0 does not depend on

the location x of the initial particle. The extinction probability q := P(Sc) is the unique root
in the interval [0, 1) of the equation f(s) = s, where f(s) :=

∑
k pks

k. For more details, see
[5, Section III. 4]. For any x ∈ R, we define P∗

x(·) := Px(·|S) and denote the corresponding
expectation by E∗

x. We write P∗ := P∗
0 and E∗ := E∗

0.
Recently, many people studied the extreme of branching Lévy processes defined by

Rt := max
u∈Lt

ξut , t > 0.

Here we use the convention that max ∅ = −∞. Among these, branching Brownian motions
garnered the most attention. For branching Brownian motions, Bramson [12] (see also [13])
proved that, under some moment conditions on the offspring distribution, P(Rt − m(t) ≤
x) → 1−w(x) as t→ ∞ for all x ∈ R, where m(t) =

√
2t− 3

2
√
2
log t and w(x) is a traveling

wave solution. For the large deviation of Rt, Chauvin and Rouault [14, 15] studied the
asymptotic behavior of P (Rt >

√
2δt) for δ ≥ 1. Derrida and Shi [17, 18] studied the lower

large deviation of Rt, i.e, the asymptotic behavior of 1
t
logP (Rt ≤

√
2δt) for δ < 1, and

found that the rate function has a phase transition at 1−
√
2. Subsequently, Chen, He and

Mallein [16] studied the asymptotic behavior of P (Rt ≤
√
2δt) for δ < 1. Recently, [2, 3, 4]

studied the extremal processes of branching Brownian motions.
In this paper we study the case when the spatial motion is a Lévy process with regularly

varying Lévy exponent. We now state our assumptions.
Let Zt be the total number of the particles alive at time t. It is well known that {Zt :

t ≥ 0} is a continuous time Galton-Watson process. The following two quantities will play
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important roles in this paper:

λ := β(µ− 1), ϑ :=

∫ ∞

0

e−λrP(Zr > 0)dr. (1.1)

By the Markov property and the branching property, the process {e−λtZt, t ≥ 0} is a non-
negative martingale with respect to {FT

t }. Thus it has an almost sure limit

lim
t→∞

e−λtZt =: W.

It is well known that W is non-degenerate if and only if the following L logL criterien holds:

Assumption 1.
∞∑
k=1

(k log kpk) <∞.

Moreover, under Assumption 1, P(W > 0) = P(S) > 0. For more details, see [5, Section
III.7].

We will always assume that the spatial motion satisfies:

Assumption 2. There exist α ∈ (0, 2), a complex constant c∗ with Re(c∗) > 0 and a function
L(x) : R+ → R+ slowly varying at ∞ such that ψ(θ) ∼ −c∗θαL(θ−1) as θ → 0+.

Strictly α-stable processes satisfy Assumption 2. By using the tables of complete Bern-
stein functions in [32], we can come up a lot of subordinate Brownian motions satisfying
Assumption 2. Further discussions of Assumption 2 can be found in the Appendix.

In the Appendix, we will show that, under Assumption 2, the function e−c∗|θ|
α
, θ ∈ R,

is the characteristic function of an α-stable random variable with Lévy measure vα, where

vα(dx) = q1x
−1−α1(0,∞)(x)dx+ q2|x|−1−α1(−∞,0)(x)dx, (1.2)

with q1 and q2 being nonnegative numbers, uniquely determined by the following equation:
if α ̸= 1

c∗ = αΓ(1− α)
(
q1e

−iπα/2 + q2e
iπα/2

)
,

and if α = 1
q1 = q2 = ℜ(c∗)/π.

It has been proved in [33, Remark 2.1] that for any s > 0,

P(ξs ≥ x) ∼ q1
α
sx−αL(x), P(ξs ≤ −x) ∼ q2

α
sx−αL(x), x→ ∞, (1.3)

that is, ξs has regularly varying tails. To ensure the right tail of ξs is regularly varying, we
always assume that

Assumption 3. q1 > 0.

In this paper, we always assume that Assumptions 1-3 hold, and that α ∈ (0, 2), c∗ and
L are as specified in Assumption 2.
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The following variant of ϑ will also play a role later in this paper:

ϑ∗ :=
q1
α

∫ ∞

0

e−λrP(Zr > 0)dr =
q1
α
ϑ. (1.4)

Put R0 = [−∞,∞] \ {0} with the topology generated by the set

{(a, b), (−b,−a), (a,∞], [−∞,−a) : 0 < a < b ≤ ∞}.

Let C+
c (R0) be the family of all non-negative continuous functions g on R0 with g ≡ 0 on

(−δ, 0) ∪ (0, δ) for some δ > 0. Denote by M(R0) the space of all Radon measures on R0

endowed with the topology of vague convergence (denoted by
v→), generated by the maps

ν →
∫
fdν for all f ∈ C+

c (R0). For any g ∈ B+
b (R0), ν ∈ M(R0), we write ν(g) :=∫

R0
g(x)ν(dx). A sequence of random elements νn in M(R0) converges weakly to ν, denoted

as νn
d→ ν, if and only if for all g ∈ C+

c (R0), νn(g) converges weakly to ν(g). Let B1(R) be
the set of all the Borel functions φ : R → [0, 1] with φ ≡ 1 on [−δ, δ] for some δ > 0.

For any x ̸= 0 and a measure ν, we denote by ν/x the measure defined by

(ν/x)(g) =

∫
g(y/x)ν(dy).

It is well known that there exists a continuous function L̃ : R+ → R+ slowly varying at ∞
such that limx→∞

L̃(x)
L(x)

= 1, L̃(0+) ∈ (0,∞) and x−αL̃(x) is strictly decreasing on (0,∞). In

this paper, we always assume that L satisfies this property. Note that limx→0 x
−αL(x) = ∞

and limx→∞ x−αL(x) = 0. Let H(y) : (0,∞) → (0,∞) be the inverse function of x−αL(x).
Then

H(y)−αL(H(y)) = y, y > 0. (1.5)

It is well known (see, [11, Theorem 1.5.12] for instance) that

H(y) = y−1/αL̄(y−1),

with L̄ being slowly varying at ∞. From now on, L̄ always stands for the function above.
In [33], we studied the weak convergence of extremes of X. Let h(t) := H(e−λt), that is,

h(t)−αL(h(t)) = e−λt. (1.6)

Note that h is strictly increasing. Define

Nt := Xt/h(t) =
∑
v∈Lt

δh(t)−1ξvt
.

In [33, Theorem 1.1], we proved that Nt converges weakly to a random measure N∞. More
precisely, for any g ∈ C+

c (R0),

lim
t→∞

E(e−Nt(g)) = E(e−N∞(g)) = E
(
exp

{
−C(e−g)W

})
,
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where

C(φ) :=

∫ ∞

0

e−λr
∫
R0

E(1− φ(x)Zr)vα(dx)dr <∞, ∀φ ∈ B1(R). (1.7)

Moreover, N∞ =
∑

j Tjδej , where given W ,
∑

j δej is a Poisson random measure with inten-
sity ϑWvα(dx), {Tj, j ≥ 1} are i.i.d. copies of a random variable T with

P (T = k) = ϑ−1

∫ ∞

0

e−λrP(Zr = k)dr, k ≥ 1, (1.8)

where vα(dx) is given by (1.2), ϑ is defined in (1.1), and
∑

j δej and {Tj, j ≥ 1} are inde-

pendent. As a consequence, we proved in [33, Corollary 1.2] that under P∗, Rt

h(t)
converges

weakly. More precisely,

lim
t→∞

P∗
(
Rt

h(t)
≤ x

)
=

{
E∗
(
e−ϑ

∗Wx−α
)
, x > 0;

0, x ≤ 0.
(1.9)

Therefore, Xt, normalized by h(t), converges to a random measure. In particular, the
largest position Rt is of order h(t) as t → ∞. In this paper, we consider a function Λ(t)

which grows faster than the function h(t) in the sense that lim
t→∞

Λ(t)

h(t)
= ∞, or slower than

h(t) in the sense that lim
t→∞

Λ(t)

h(t)
= 0. When Λ(t) grows faster than h(t), we find the rate

that P(Rt > Λ(t)) converges to 0 an t → ∞, and describe the limit of Xt/Λ(t), conditioned
on {Rt > Λ(t)}, at t → ∞. When Λ(t) grows slower than h(t), we find the rate that
P(Rt ≤ Λ(t)) converges to 0 and describe the limit of Xt/Λ(t) conditioned on {Rt ≤ Λ(t)}.
In this paper, we also study the almost sure asymptotic behavior of Rt.

1.2 Main results

In this subsection, we state our main results. Let H(R) denote the family of uniformly
continuous functions φ : R → [0, 1] with φ ≡ 1 in some neighborhood of 0. Let H0(R)
denote the family of all the functions φ ∈ H(R) with φ ≡ 0 on (c,∞) for some c > 0. Note
that if g ∈ C+

c (R̄0) then e
−g ∈ H(R).

Theorem 1.1. If Λ : [0,∞) → (0,∞) satisfies lim
t→∞

Λ(t)

h(t)
= ∞, then for any φ ∈ H(R),

lim
t→∞

e−λtΛ(t)αL(Λ(t))−1

(
1− E

( ∏
u∈Lt

φ(ξut /Λ(t)
))

= C(φ),

where C(φ) is defined in (1.7). In particular,

lim
t→∞

e−λtΛ(t)αL(Λ(t))−1P(Rt > Λ(t)) = ϑ∗,

where ϑ∗ is defined in (1.4).

5



In [35], Shiozawa studied the upper deviation of the maximal displacement of a branching
symmetric stable process with spatially inhomogeneous branching structure, and proved
some weak convergence results.

Corollary 1.2. If Λ : [0,∞) → (0,∞) satisfies lim
t→∞

Λ(t)

h(t)
= ∞, then conditioned on {Rt >

Λ(t)},

(1) Rt/Λ(t) converges weakly to a random variable R∗ with density αx−1−α1(1,∞)(x).

(2) Xt/Λ(t) converges weakly to TδR∗, where the law of T is given in (1.8), and T and R∗

are independent.

Recall that f(s) =
∑

k pks
k and q = P(Sc). Note that f ′(q) ∈ [0, 1). Put

ρ := β(1− f ′(q)). (1.10)

For any θ ≥ 0, define
ϕ(θ) = E(e−θW ). (1.11)

Theorem 1.3. Let Λ : [0,∞) → (0,∞) be a non-decreasing function. Assume that

∞∑
n=1

nΛ(n)−αL(Λ(n)) <∞ and lim
t→∞

Λ(t)

h(t)
= 0,

and if pk = 0 for all k ≥ 3, we further assume that Λ(t) > eγt with some γ > 0 for t
sufficiently large. Then for any φ ∈ H0(R),

lim
t→∞

eρ(t−r(t))E∗
( ∏
u∈Lt

φ(ξut /Λ(t))
)
=

1

1− q
A [ϕ(C(φ))] ,

where r(t) is defined by h(r(t)) = Λ(t), C(φ) is defined in (1.7), and A(s) is defined in (3.1)
below. In particular,

lim
t→∞

eρ(t−r(t))P∗
(
Rt ≤ Λ(t)

)
=

1

1− q
A [ϕ(ϑ∗)] .

Corollary 1.4. Let Λ : [0,∞) → (0,∞) be a non-decreasing function. If

∞∑
n=1

nΛ(n)−αL(Λ(n)) <∞ and lim
t→∞

Λ(t)

h(t)
= 0,

then under P∗, conditioned on {Rt ≤ Λ(t)}, Xt/Λ(t) converges weakly to some random

measure Ξ =
∑K

k=1 N̄
(k)
∞ , where

(i) {N̄ (k)
∞ , k ≥ 1} are i.i.d. with the same law as P (N∞ ∈ ·|N∞(R) ̸= 0,N∞((1,∞)) = 0);

(ii) K is a positive integer valued random variable with generating function

E
(
sK
)
=
A((ϕ(ϑ∗)− q)s+ q)

A(ϕ(ϑ∗))
;

6



(iii) {N̄ (k)
∞ , k ≥ 1} and K are independent.

Remark 1.5. (1) It is interesting that, by Theorem 1.1 and Corollary 1.2, conditioned on
{Rt > Λ(t)}, the limits of Rt/Λ(t) and Xt/Λ(t) do not depend on the function Λ(t): for

any Λ(t) satisfying lim
t→∞

Λ(t)

h(t)
= ∞, the limits are the same. The limit of the point process

Xt/Λ(t), conditioned on {Rt > Λ(t)}, is a point measure supported on one point R∗.
(2) By Theorem 1.3 and and Corollary 1.4, the limit of Xt/Λ(t), conditioned on the

event {Rt ≤ Λ(t)}, does not depend on Λ(t): for any Λ(t) satisfying lim
t→∞

Λ(t)

h(t)
= 0 and∑∞

n=1 nΛ(n)
−αL(Λ(n)) < ∞, the limit Ξ does not depends on Λ. Comparing Ξ with N∞

(the limit of Xt/h(t)), we see that Ξ is a random sum of independent copies of N̄ (k)
∞ , with

common law equal to that of N∞ condition on {N∞(R) ̸= 0,N∞((1,∞)) = 0}.
(3) In the special case that L ≡ 1, we have h(t) = e

λ
α
t. Consider Λ(t) = ec

λ
α
t for some

constant c > 0. If c > 1, by Theorem 1.1,

lim
t→∞

e(c−1)λtP(Rt > Λ(t)) = ϑ∗.

If 0 < c < 1, then r(t) = ct. By Theorem 1.3,

lim
t→∞

e((1−c)ρtP∗(Rt ≤ Λ(t)) = A (ϕ (ϑ∗)) .

We now state some almost sure convergence results of Rt.

Theorem 1.6. It holds that

lim inf
t→∞

Rt

H(e−λt log t)
= (ϑ∗W )

1
α , P∗-a.s.

Theorem 1.7. Suppose that G : [0,∞) → (0,∞) is a non-decreasing function satisfying

limt→∞
G(t)
h(t)

= ∞.

(1) If
∑

n e
λnG(n)−αL(G(n)) <∞, then

lim sup
t→∞

Rt

G(t)
= 0, P∗-a.s.

(2) If
∑

n e
λnG(n)−αL(G(n)) = ∞, then

lim sup
t→∞

Rt

G(t)
= ∞, P∗-a.s.

This implies that, for a non-decreasing function G satisfying limt→∞
G(t)
h(t)

= ∞, either

lim sup
t→∞

Rt

G(t)
= 0 P∗-a.s., or lim sup

t→∞

Rt

G(t)
= ∞ P∗-a.s.. Similar result holds for a subordina-

tor. If ξ is a subordinator with infinite mean, then for any G : [0,∞) → (0,∞) being an
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increasing function such that G(t)
t

increases, then lim supt→∞
ξt
G(t)

= 0 or ∞ almost surely,

see [6, Theorem 13].

Now we give some intuitive idea for one of the main techniques of this paper. Let
Yj := ξj − ξj−1, j ≥ 1. Then {Yj} are i.i.d. It is easy to see from (1.3) that

P(ξn > x) ∼ nP(ξ1 > x) ∼ P(max
j≤n

Yj > x), x→ ∞.

Thus the maximum max1≤j≤n Yj plays a dominating role in the asymptotic behavior of ξn.
For t ≥ 0, u ∈ T, we set Xu,t := ξuσu∧t − ξubu∧t. Then we have

Xt =
∑
u∈Lt

δξut =
∑
u∈Lt

δ∑
v∈Iu

Xv,t .

We will see in Lemma 2.4 that the asymptotic behavior of Xt is governed by Yt:

Yt :=
∑
u∈Lt

∑
v∈Iu

δXv,t .

Thus, to prove Theorems 1.1, 1.6 and 1.7, we first establish the corresponding results for
Yt. This technique has been employed in [33] for branching Lévy processes and in [9, 10, 20]
for branching random walks with heavy tails. However this technique (Lemma 2.4)) does
not work for the proof of lower deviation result in Theorem 1.3. We establish lower large
deviation results of Xt and Yt separately, and it turns out that the results are identical,
which is somewhat surprising.

For branching random walks, several authors have studied the convergence of the ex-
tremes under an exponential moment assumption on the displacements of the offspring from
the parent, see Aı̈dékon [1], Hu and Shi [29], and Madaule [31]. Recently, many researchers
studied related topics for branching random walks with heavy-tailed displacements. Assume
that the displacements of the offspring from the parents are i.i.d. with

P (X > x) ∼ ae−L(x)x
r

, x→ ∞,

where a > 0, L is slowly varying at ∞ and r ∈ [0, 1). When r ∈ (0, 1), the maximum
Mn grows polynomially. For example, if L is a constant, then Mn/n

1/r converges to a
positive constant almost surely. See, [22, 23, 24, 26] for more related results. When r = 0,
log t/L(t) → 0 (or L(t) = o(log t)) as t → ∞, the extremes have been investigated in [8].
When r = 0 and L(x) = α log x − log L̃(x) where L̃ is slowly varying at ∞, Durrett [20]
proved that a−1

n Mn converges weakly, where an = mn/αL0(m
n) and L0 is slowly varying at

∞. Recently, the extremal processes of the branching random walks with regularly varying
steps were studied by Bhattacharya et al. [9, 10]. It was proved in [9, 10] that the point
random measures

∑
|v|=n δa−1

n Sv
, where Sv is the position of v, converges weakly to a Cox

cluster process, which are quite different from the case with exponential moments. Recently,
Bhattacharya [7] studied the large deviations of extremes in branching random walk with
regularly varying displacements, corresponding to our results for Λ(t) growing fast than h(t).
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2 Upper deviation of Xt and Yt

It is well known (see [11, Theorem 1.5.6] for instance) that, for any ϵ > 0, there exists aϵ > 0
such that for any x, y > aϵ,

L(y)

L(x)
≤ 2max{(y/x)ϵ, (y/x)−ϵ}, L̄(y)

L̄(x)
≤ 2max{(y/x)ϵ, (y/x)−ϵ}. (2.1)

Let C0
b (R) be the space of all bounded continuous functions vanishing in a neighborhood

of 0. Recall the definition of vα in (1.2). In the following lemma, we present a generalization
of [33, Lemma 2.1]. Since the proof follows a similar line of reasoning, we omit it.

Lemma 2.1. If Assumption 2 holds, then for any g ∈ C0
b (R) and s > 0,

lim
x→∞

xαL(x)−1E

(
g

(
ξs
x

))
= s

∫
R0

g(x)vα(dx).

In [33, Lemma 2.2], we have proved that, under Assumption 2, there exist c0 > 0 and
x0 > 0 such that for any s > 0 and x > x0,

P(|ξs| > x) ≤ c0sx
−αL(x). (2.2)

Using (2.1) with ϵ = 1, we see that, for any c ∈ (0, 1) and y > 0 sufficiently small so that
cH(y) > a1 + x0, it holds that

P(|ξs| > cH(y)) ≤c0sc−αH(y)−αL(cH(y))

≤2c0sc
−α−1H(y)−αL(H(y)) = 2c0c

−α−1sy, (2.3)

where in the last equality we used (1.5). It was shown in [36] that, for any t > 0,

lim
x→∞

xαL(x)−1P

(
sup
0≤s≤t

ξs > x

)
= lim

x→∞
xαL(x)−1P(ξt > x) =

q1
α

(2.4)

and

lim
x→∞

xαL(x)−1P

(
inf

0≤s≤t
ξs < −x

)
= lim

x→∞
xαL(x)−1P(ξt < −x) = q2

α
. (2.5)

We now recall a special many-to-one formula. For more general many-to-one formulas,
see [28, Theorem 8.5]. For any u ∈ T, let nu be the number of particles in Iu \ {o}.

Lemma 2.2 (Many-to-one formula). Let {nt} be a Poisson process with parameter β on
some probability space (Ω,G, P ). Then for any g ∈ B+

b (R),

E

(∑
v∈Lt

g(nv)

)
= eλtE (g(nt)) .

9



2.1 A key lemma on “one big jump”

In the remainder of the paper, we use g1(t)
t

≤ g2(t) to denote that g1(t) ≤ g2(t) for sufficiently
large t. For any nonnegative function g and measure ν =

∑n
k=1 δxk , define

I(g, ν) :=
n∏
k=1

g(xk).

Here we use the convention that
∏0

k=1 g(xk) = 1. It is clear that I(g, ν) = eν(log g).
Recall that, for t ≥ 0 and u ∈ T,

Xu,t = ξuσu∧t − ξubu∧t.

Let Dt := {u ∈ T : bu ≤ t, Zu
t > 0}, where Zu

t is the number of offspring of particle u alive
at time t. Define

Mt := max
v∈Lt

max
u∈Iv

Xu,t = max
u∈Dt

Xu,t (2.6)

Recall that

Yt =
∑
v∈Lt

∑
u∈Iv

δXu,t =
∑
u∈Dt

Zu
t δXu,t .

Let 0 < s < t. The particles in Dt can be divided into two groups: those born before time
t− s and those born after t− s. We define

Ms,t := max
u∈T:bu≤t−s

|Xu,t|

and

Ys,t :=
∑

u∈Dt:t−s<bu≤t

Zu
t δXu,t =

∑
u∈T:t−s<bu≤t

Zu
t δXu,t .

Using the tree structure, we can categorize all particles born after t − s according to the
branches formed by particles that were alive at time t− s. More precisely,

Ys,t =
∑

v∈Lt−s

∑
u:v<u,bu≤t

Zu
t δXu,t =:

∑
v∈Lt−s

Yv
s,t. (2.7)

By the branching property and the Markov property, conditioned on Ft−s, {Yv
s,t, v ∈ Lt−s}

are i.i.d. with a common law equal to that of

Y′
s :=

∑
u∈D′

s

Zu
s δXu,s , (2.8)

where D′
s := Ds \ {o}. We will also use the following notation later:

M ′
t := max

u∈D′
t

Xu,t. (2.9)
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Lemma 2.3. If a(t) is a positive function with lim
t→∞

a(t) = ∞, then

lim
s→∞

lim sup
t→∞

e−λta(t)αL(a(t))−1P(Ms,t > a(t)) = 0.

Proof: When a(t) = h(t), it has been proven in [33, (2.14)]) that

P(Ms,t > a(t))
t

≤ c0e
λta(t)−αL(a(t))

(
λ−1e−λs +

e−βs − e−λs

λ− β

)
. (2.10)

For the general case, (2.10) also holds. The proof follows almost the same argument, so we
omit the details. Then the desired result follows immediately.

2

The following key lemma says that Xt and Yt have similar asymptotic behaviors. In the
proof of Lemma 2.4, we show that with high probability, for all v ∈ Lt, there exists at most
one particle u ∈ Iv that experiences a “large jump”.

Lemma 2.4. If a(t) is a positive function such that a(t)
t
> eϵt for some ϵ ∈ (0, 1), then for

any φ ∈ H(R),

lim
t→∞

e−λta(t)αL(a(t))−1E (|I(φ,Xt/a(t))− I(φ,Yt/a(t))|) = 0.

Proof: We divide the proof into three steps.
Step 1 For any t > 0 and θ ∈ (0, 1], define

At(θ) :=
⋂
v∈Lt

{∑
u∈Iv

1{|Xu,t|>θa(t)/ log a(t)} ≤ 1

}
.

We claim that for any p ∈ (0, 2),

lim
t→∞

e−λta(t)pαP(At(θ)c) = 0. (2.11)

Note that

P(At(θ)c|FT
t ) ≤

∑
v∈Lt

P

({∑
u∈Iv

1{|Xu,t|>θa(t)/ log a(t)} ≥ 2

}
|FT

t

)
. (2.12)

By (2.2) we have that

P
(
|Xu,t| > θa(t)/ log a(t)|FT

t

)
= P(|ξs| > θa(t)/ log a(t))|s=τu,t

t

≤
(
c0θ

−αt · a(t)−α[log a(t)]αL(θa(t)/ log a(t))
)
∧ 1 =: pt. (2.13)

Recall that, for any v ∈ T, nv is the number of particles in Iv \ {o}. Thus |Iv| = nv + 1.
Since, conditioned on FT

t , {Xu,t, u ∈ Iv} are independent, we have

P

(∑
u∈Iv

1{|Xu,t|>θa(t)/ log a(t)} ≥ 2|FT
t

)
≤

nv+1∑
m=2

(
nv + 1

m

)
pmt

≤p2t
nv−1∑
m=0

nv(nv + 1)

(
nv − 1

m

)
pmt

=p2tn
v(nv + 1)(1 + pt)

nv−1.

11



Thus by (2.12) and the many-to-one formula, we have

P(At(θ)c) ≤ eλtp2tE(nt(nt + 1)(1 + pt)
nt−1) = eλtp2t (2 + (1 + pt)βt)βte

βtpt

∼ (βt)2eλtp2t , t→ ∞. (2.14)

Here we used the fact tpt → 0 as t → ∞. Now (2.11) follows from (2.13) and (2.14)
immediately.

Step 2 In the remainder of this proof, we fix a constant c > 2α + e2β/ϵ. Define Bt :=⋂
v∈Lt

{nv ≤ c log a(t)}. Using the many-to-one formula, we get

P(Bc
t ) = P

(⋃
v∈Lt

{nv > c log a(t)}

)
≤ E

(∑
v∈Lt

1{nv>c log a(t)}

)
= eλtP (nt > c log a(t)) ≤ eλt inf

r>0
e−rc log a(t)E(ernt)

= eλte−(log log a(t)+log c−logβt−1)c log a(t)−βt. (2.15)

Since a(t)
t
> eϵt, we have

log log a(t) + log c
t
> log(cϵt) ≥ log(βt) + 2.

Thus by (2.15) , we have

P(Bc
t )

t
< eλte−c log a(t)e−βt = eλta(t)−ce−βt.

Since c > 2α, we get

lim
t→∞

e−λta(t)2αP(Bc
t ) = 0. (2.16)

Step 3 Let v′ ∈ Iv be such that |Xv′,t| = max
u∈Iv

{|Xu,t|}. We note that, on the event At(θ),

|Xu,t| ≤ θa(t)/ log a(t) for any u ∈ Iv \ {v′}. Since ξvt =
∑

u∈Iv Xu,t, on the event At(θ)∩Bt,
we have that

|ξvt −Xv′,t| =

∣∣∣∣∣∣
∑

u∈Iv\{v′}

Xu,t

∣∣∣∣∣∣ ≤ nvθa(t)

log a(t)
≤ cθa(t). (2.17)

For φ ∈ H(R), we have φ ≡ 1 on [−δ, δ] for some δ > 0. Since φ is uniformly continuous,
for any γ > 0, there exists η > 0 such that |φ(x1)− φ(x2)| ≤ γ whenever |x1 − x2| < η. We
now fix an arbitrary γ > 0 and the corresponding η.

Recall c > 2α + e2β/ϵ. Choose θ small enough so that cθ < η ∧ (δ/2). We assume that
t is sufficiently large so that log a(t) > 2θ/δ. We note that, on the event At(θ), |Xu,t| ≤
θa(t)/ log a(t) ≤ a(t)δ/2 for any u ∈ Iv \ {v′}, and thus φ(Xu,t/a(t)) = 1. It follows that on
the event At(θ) ∩Bt,∣∣∣∣∣∏

v∈Lt

φ(ξvt /a(t))−
∏
v∈Lt

∏
u∈Iv

φ(Xu,t/a(t))

∣∣∣∣∣ =
∣∣∣∣∣∏
v∈Lt

φ(ξvt /a(t))−
∏
v∈Lt

φ(Xv′,t/a(t))

∣∣∣∣∣
≤
∑
v∈Lt

|φ(ξvt /a(t))− φ(Xv′,t/a(t))|. (2.18)

12



By (2.17), on At(θ) ∩Bt, we have

|ξvt −Xv′,t| /a(t) ≤ cθ ≤ η ∧ (δ/2).

Thus if |Xv′,t| ≤ δa(t)/2, then |ξvt |/a(t) < δ, which implies that φ(ξvt /a(t))−φ(Xv′,t/a(t)) = 0.
Hence by (2.18), on At(θ) ∩Bt,

|I(φ,Xt/a(t))− I(φ,Yt/a(t))| ≤ γ
∑
v∈Lt

1{|Xv′,t|>a(t)δ/2}

≤γ
∑
v∈Lt

∑
u∈Iv

1{|Xu,t|>a(t)δ/2} = γ
∑
u∈Dt

Zu
t gt(Xu,t),

where gt(y) = 1|y|>a(t)δ/2. Therefore, for any fixed s ∈ (0, t), on At(θ)∩Bt∩{Ms,t ≤ a(t)δ/2},
we have

|I(φ,Xt/a(t))− I(φ,Yt/a(t))| ≤ γ
∑

u:t−s<bu≤t

Zu
t gt(Xu,t) = γYs,t(gt).

Since φ takes values in [0, 1], we have

E |I(φ,Xt/a(t))− I(φ,Yt/a(t))|
≤P(At(θ)c) + P(Bc

t ) + P(Ms,t > a(t)δ/2) + γE(Ys,t(gt)). (2.19)

By (2.7) and (2.2), we have that

E(Ys,t(gt)) =E(Zt−s)E(Y′
s(gt)) = eλ(t−s)E

∑
u∈D′

s

Zu
s P(|Xu,s| > a(t)δ/2|FT

s )


t

≤c0(δ/2)−αa(t)−αL(δa(t)/2)eλ(t−s)E

∑
u∈D′

s

Zu
s τu,s


≤c0(δ/2)−αa(t)−αL(δa(t)/2)eλts,

where in the last inequality we used the following inequality:

E

∑
u∈D′

s

Zu
s τu,s

 ≤ E

( ∑
u:bu≤s

Zu
s τu,s

)
≤ seλs,

which follows from the display below (2.19) in the proof of [33, Proposition 2.1]. Thus
combining (2.19), (2.11) and (2.16), we have

lim sup
t→∞

e−λta(t)αL(a(t))−1E |I(φ,Xt/a(t))− I(φ,Yt/a(t))|

≤ lim sup
t→∞

e−λta(t)αL(a(t))−1P(Ms,t > a(t)δ/2) + c0(δ/2)
−αsγ.

Letting γ → 0 first, and then letting s → ∞ and applying Lemma 2.3, we arrive at the
desired result.

2
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2.2 Proof of Theorem 1.1

We emphasize here that the definition of Ms,t in [33, Section 2.3] coincides with Y′
s/h(t).

Lemma 2.5. For any s > 0 and φ ∈ H(R),

lim
x→∞

xαL(x)−1 [1− E (I(φ,Y′
s/x))] =

∫ s

0

(
eλ(s−r) − e−β(s−r)

) ∫
R
E
(
1− φ(y)Zr

)
vα(dy) dr.

Proof: It has been proven in [33, (2.17) and the first display on page 636] that for φ(x) =
e−g(x) with g ∈ C+

0 (R̄0),

lim
t→∞

h(t)αL(h(t))−1 [1− E (I(φ,Y′
s/h(t)))]

=

∫ s

0

(
eλ(s−r) − e−β(s−r)

) ∫
R
E
(
1− φ(y)Zr

)
vα(dy) dr.

By examining the proof of the above limit, we observe that it holds for any φ ∈ H(R). The
desired result now follows.

2

Suppose φ ∈ B1(R). If {φn, n ≥ 1} ⊂ B1(R) are such that φ and φn are identically
1 on [−δ, δ] for some δ > 0, and that φn → φ almost everywhere, then by the dominated
convergence theorem,

C(φn) → C(φ).

Hence C(φ) is continuous in φ. Recall Mt is defined in (2.6).

Proposition 2.6. If Λ(t) is a positive function with lim
t→∞

Λ(t)

h(t)
= ∞, then for any φ ∈ H(R),

lim
t→∞

e−λtΛ(t)αL(Λ(t))−1 (1− E (I(φ,Yt/Λ(t)))) = C(φ), (2.20)

where C(φ) is defined in (1.7). Furthermore,

lim
t→∞

e−λtΛ(t)αL(Λ(t))−1P(Mt > Λ(t)) = ϑ∗, (2.21)

where ϑ∗ is defined in (1.4).

Proof : For φ ∈ H(R), we have φ ≡ 1 on [−δ, δ] for some δ > 0. It is easy to see that for
any 0 < s < t, on the event {Ms,t ≤ δΛ(t)}, it holds that I(φ,Yt/Λ(t)) = I(φ,Ys,t/Λ(t)).
Thus, for any 0 < s < t,

|E (I(φ,Yt/Λ(t)))− E (I(φ,Ys,t/Λ(t)))| ≤ P(Ms,t > δΛ(t)). (2.22)

Using the Markov property and (2.7), we have that

1− E (I(φ,Ys,t/Λ(t))|Ft−s) = 1−
∏

v∈Lt−s

E
(
I(φ,Yv

s,t/Λ(t))|Ft−s
)

=1− [E (I(φ,Y′
s/Λ(t)))]

Zt−s . (2.23)
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It follows from Lemma 2.5 that, as t→ ∞,

1− E (I(φ,Y′
s/Λ(t))) ∼ CsΛ(t)

−αL(Λ(t)),

where Cs =
∫ s
0

(
eλ(s−r) − e−β(s−r)

) ∫
R E
(
1− φ(y)Zr

)
vα(dy) dr. Thus

− logE (I(φ,Y′
s/Λ(t))) ∼ 1− E (I(φ,Y′

s/Λ(t))) ∼ CsΛ(t)
−αL(Λ(t))

and consequently

−Zt−s logE (I(φ,Y′
s/Λ(t))) ∼ eλ(t−s)CsΛ(t)

−αL(Λ(t)) ·W,

which tends to 0 as t → ∞ since lim
t→∞

Λ(t)

h(t)
= ∞. Combining this with (2.23), we get that,

as t→ ∞,

lim
t→∞

e−λtΛ(t)αL(Λ(t))−1 (1− E (I(φ,Ys,t/Λ(t))|Ft−s))

= lim
t→∞

e−λtΛ(t)αL(Λ(t))−1Zt−s(− logE (I(φ,Y′
s/Λ(t))))

=e−λs
∫ s

0

(
eλ(s−r) − e−β(s−r)

) ∫
R
E
(
1− φ(y)Zr

)
vα(dy) dr ·W. (2.24)

Moreover,

e−λtΛ(t)αL(Λ(t))−1 (1− E (I(φ,Ys,t/Λ(t))|Ft−s))

≤e−λtZt−sΛ(t)αL(Λ(t))−1 (1− E (I(φ,Y′
s/Λ(t))))

t

≤2e−λs
∫ s

0

(
eλ(s−r) − e−β(s−r)

) ∫
R
E
(
1− φ(y)Zr

)
vα(dy) dr · e−λ(t−s)Zt−s. (2.25)

In the first inequality we used the inequality 1− xn ≤ n(1− x), x ∈ (0, 1). Note that

e−λ(t−s)Zt−s → W a.s., and E
(
e−λ(t−s)Zt−s

)
→ EW = 1, t→ ∞. (2.26)

Combining (2.24), (2.25) and (2.26), and using the dominated convergence theorem we get

lim
t→∞

e−λtΛ(t)αL(Λ(t))−1 (1− E (I(φ,Ys,t/Λ(t))))

=e−λs
∫ s

0

(
eλ(s−r) − e−β(s−r)

) ∫
R
E
(
1− φ(y)Zr

)
vα(dy) dr. (2.27)

Using (2.22), Lemma 2.3 and (2.27), we get that

lim
t→∞

e−λtΛ(t)αL(Λ(t))−1 (1− E (I(φ,Yt/Λ(t))))

= lim
s→∞

e−λs
∫ s

0

(
eλ(s−r) − e−β(s−r)

) ∫
R
E
(
1− φ(y)Zr

)
vα(dy) dr

=

∫ ∞

0

e−λr
∫
R
E
(
1− φ(y)Zr

)
vα(dy) dr = C(φ).
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We now prove (2.21). For any ϵ ∈ (0, 1), define Ĩε, Iε ∈ H(R) by

Iε(y) :=


1, y < 1,

linear, 1 ≤ y ≤ 1 + ε,
0, y > 1 + ε

and

Ĩε(y) :=


1, y < 1− ε,

linear, 1− ε ≤ y ≤ 1,
0, y > 1.

It is clear that Ĩε(y) ≤ 1(−∞,1](y) ≤ Iε(y). Applying (2.20) to Ĩε and Iε, and by the continuity
of C(φ), we can get (2.20) still holds for φ(y) = 1(−∞,1](y), that is,

lim
t→∞

e−λtΛ(t)αL(Λ(t))−1P(Mt > Λ(t)) = C(1(−∞,1])

=

∫ ∞

0

e−λr
∫ ∞

1

P(Zr > 0)vα(dy)dr =
q1
α
ϑ.

The proof is now complete.

Proof of Theorem 1.1 Applying Lemma 2.4 and Proposition 2.6, we have that

lim
t→∞

e−λtΛ(t)αL(Λ(t))−1 (1− EI(φ,Xt/Λ(t))) = C(φ), φ ∈ H(R). (2.28)

By the continuity of C(φ), we can get (2.28) still holds for φ(y) = 1(−∞,1](y), that is,

lim
t→∞

e−λtΛ(t)αL(Λ(t))−1P(Rt > Λ(t)) = C(1(−∞,1]) = ϑ∗. (2.29)

2

Proof of Corollary 1.2: By (2.29), we have for x > 1,

lim
t→∞

P(Rt > xΛ(t)|Rt > Λ(t)) = x−α = P (R∗ > x).

For any g ∈ C+
c (R0) and θ > 0, applying Theorem 1.1 with φ(y) = e−θg(y)1(−∞,1](y) and

φ(y) = e−θg(y), we have that

lim
t→∞

e−λtΛ(t)αL(Λ(t))−1E
(
e−θ

Xt
Λ(t)

(g), Rt > Λ(t)
)

= lim
t→∞

e−λtΛ(t)αL(Λ(t))−1
[
1− E

(
e−θ

Xt
Λ(t)

(g), Rt ≤ Λ(t)
)
−
(
1− E

(
e−θ

Xt
Λ(t)

(g)
))]

=

∫ ∞

0

e−λr
∫ ∞

1

E[e−θg(y)Zr ;Zr > 0]vα(dy)dr. (2.30)

By (2.29) and (2.30), we have

lim
t→∞

E
(
e−θ

Xt
Λ(t)

(g)|Rt > Λ(t)
)
=

α

q1ϑ

∫ ∞

0

e−λr
∫ ∞

1

E[e−θg(y)Zr ;Zr > 0]vα(dy)dr

= E
(
e−θT ·g(R

∗)
)
.

The proof is now complete. 2
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3 Lower deviation of Xt and Yt

We first give some results about the continuous time branching processes {Zt : t ≥ 0}. Recall
that the extinction probability q ∈ [0, 1). For any s ∈ [0, 1] and t ≥ 0, define

F (s, t) := E
(
sZt
)
.

Recall the constant ρ defined in (1.10). It is well known (see, [5, Section III.8], for instance)
that

lim
t→∞

eρt[F (s, t)− q] =: A(s) (3.1)

exists for 0 ≤ s < 1. Moreover, the convergence is uniform in s ∈ [0, a] for any 0 < a < 1.
The function A(s) is the unique solution of

A(F (s, t)) = e−ρtA(s) (3.2)

with A(q) = 0, A′(q) = 1. Since A(s) is the limit of power series, it is itself a power series

A(s) =
∞∑
j=0

ajs
j.

It is clear that a0 ≤ 0 and aj ≥ 0, j ≥ 1. For any 0 < c < 1− q and s ∈ [0, 1],

A(cs+ q) = A(cs+ q)− A(q) =
∞∑
j=1

aj[(cs+ q)j − qj] =
∞∑
k=1

[ ∞∑
j=k

aj

(
j

k

)
qj−k

]
cksk.

Thus A(cs+q)
A(c+q)

, s ∈ [0, 1], is a probability generating function.

Lemma 3.1. For any s ∈ [0, 1),

A(s) = s− q +

∫ ∞

0

βeρtV (F (s, r)) dr,

where

0 ≤ V (s) := f(s)− f ′(q)s− q(1− f ′(q)) ≤ f ′′(s ∨ q)(s− q)2. (3.3)

Proof: By the Markov property and the branching property, we have that

F (s, t) =se−βt +

∫ t

0

βe−βrf(F (s, t− r))dr

=se−ρt +

∫ t

0

βe−ρrf(F (s, t− r))dr −
∫ t

0

e−ρrβf ′(q)F (s, t− r)dr

=se−ρt +

∫ t

0

βe−ρrV (F (s, t− r))dr + qρ

∫ t

0

e−ρrdr

=e−ρt
(
s− q +

∫ t

0

βeρrV (F (s, r)) dr

)
+ q.

17



By (3.1), we have

A(s) = lim
t→∞

eρt(F (s, t)− q) = s− q + lim
t→∞

∫ t

0

βeρrV (F (s, r)) dr

= s− q +

∫ ∞

0

βeρrV (F (s, r)) dr.

Since q = f(q), we have V (s) = f(s) − f(q) − f ′(q)(s − q). Now (3.3) follows immediately
from Taylor’s formula. 2.

Recall that ϕ(θ) = E(e−θW ).

Lemma 3.2. For any θ > 0,

A (ϕ(θ)) =

∫ ∞

−∞
βeρsV

[
ϕ
(
θeλs

)]
ds.

Proof: By the branching property and the Markov property, we have

Zt+s =
∑
u∈Ls

Zu
t+s.

Given Zs, {Zu
t+s, u ∈ Ls} are i.i.d. with the same law as Zt. It follows that

W = lim
t→∞

e−λs
∑
u∈Ls

e−λtZu
t+s = e−λs

∑
u∈Ls

W u,

where {W u, u ∈ Ls} are i.i.d. with the same law as W . Thus we have

ϕ(θeλs) = E
(
ϕ(θ)Zs

)
= F (ϕ(θ), s). (3.4)

Hence by Lemma 3.1 and (3.4), we have for any x > 0∫ ∞

−x
βeρsV

[
ϕ
(
θeλs

)]
ds = e−ρx

∫ ∞

0

βeρsV
[
(ϕ(θeλse−λx

]
ds

=e−ρx
∫ ∞

0

βeρsV
[
F (ϕ(θe−λx), s)

]
ds = e−ρx[A

(
ϕ(θe−λx)

)
− ϕ(θe−λx) + q]

=A(F (ϕ(θe−λx), x))− e−ρx(ϕ(θe−λx)− q)

=A(ϕ(θ))− e−ρx(ϕ(θe−λx)− q),

where the fourth equality follows from (3.2). Letting x → ∞, the desired result follows
immediately. 2

Lemma 3.3. It holds that λ ≥ ρ. Moreover, λ = ρ if and only if pk = 0 for all k ≥ 3.

Proof: Note that λ− ρ = β(f ′(1) + f ′(q)− 2).
We first consider the case when p0 = 0. Then q = 0 and f ′(q) = f ′(0) = p1. Hence we

have

f ′(1) + f ′(0)− 2 =

(
∞∑
k=1

kpk + p1 − 2
∞∑
k=1

pk

)
=

∞∑
k=2

(k − 2)pk ≥ 0.
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Furthermore, the left hand side is equal to 0 if and only if pk = f (k)(0) = 0, k ≥ 3.
If p0 > 0, then q > 0. Define

f̂(s) :=
f((1− q)s+ q)− q

1− q
, for 0 ≤ s ≤ 1.

It is well known (see [5, Chapter 1, Section 12]) that f̂ is a probability generating function
with f̂(0) = 0. Note that f̂ ′(1) = f ′(1) and f̂ ′(0) = f ′(q). Applying the previous paragraph
to f̂ , we get that

f ′(1) + f ′(q)− 2 = f̂ ′(1) + f̂ ′(0)− 2 ≥ 0.

Moreover, the left hand side is equal to 0 if and only if f̂ (k)(0) = (1−q)k−1f (k)(q) = 0, k ≥ 3.
It is easy to see that f (3)(q) =

∑∞
k=3 k(k − 1)(k − 2)pkq

k−3 = 0 if and only if pk = 0, k ≥ 3.
The proof is now complete.

2

Note that the skeleton {Zn, n = 0, 1, · · · } is a Galton-Watson process with offspring
generating function f̃(s) := F (s, 1). It is clear that f̃ ′(1) = E(Z1) = eλ > 1 and P(Z1 =
1) ≥ P(τo > 1) > 0 . By [25, Theorem 4], we have that, for any nonnegative sequence an
with an → ∞ and an = o(eλn), there exists a constant c > 0 such that

P(0 < Zn < an) ≤ cP(0 < W < e−λnan), n ≥ 1. (3.5)

Furthermore, it was proven in [19] that there exist c1, c2 > 0 such that for any x ∈ (0, 1),

c1x
ρ/λ < P(0 < W < x) < c2x

ρ/λ. (3.6)

By (3.5) and (3.6), there exists C > 0 such that

P(0 < Zn < an) ≤ Caρ/λn e−ρn, n ≥ 1. (3.7)

3.1 Lower deviation of Xt

We have proved in [33, Proposition 2.1] that Yt/h(t) converges weakly to N∞, that is for
any φ = e−g with g ∈ C+

c (R0),

lim
t→∞

E(I(φ,Yt/h(t))) = E((I(φ,N∞)) = E (exp {−C(φ)W}) . (3.8)

In fact, by examining the proofs in [33], (3.8) is valid for any φ ∈ H(R). By Lemma 2.4 we
have for any φ ∈ H(R),

lim
t→∞

E(I(φ,Xt/h(t))) = E((I(φ,N∞)) = E (exp {−C(φ)W}) .

For any function g and x ∈ R, we define the function mxg(·) by the relation mxg(y) = g(y/x).
By the definition of C(φ) in (1.7), it is easy to see that

C(mxφ) = x−αC(φ), φ ∈ B1(R).
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Lemma 3.4. If a(t), b(t) are positive functions with a(t)
h(t)

→ a > 0 and b(t)
a(t)

→ 0, then for any

φ ∈ H(R),

lim
t→∞

Eb(t)(I(φ,Xt/a(t))) = E(exp{−a−αC(φ)W}).

Proof: Note that

Eb(t)(I(φ,Xt/a(t))) = E

(∏
u∈Lt

φ

(
ξut + b(t)

a(t)

))
.

Since φ ∈ H(R), we have φ ≡ 1 on [−δ, δ] for some δ > 0. Moreover for any ϵ > 0, there
exists η = η(ϵ) > 0 such that |φ(x) − φ(y)| < ϵ whenever |x − y| ≤ η. It follows from the
assumption that for any ϵ′ > 0, there exists t′ such that for all t > t′, (1− ϵ′)a(t) ≤ ah(t) ≤
(1 + ϵ′)a(t) and |b(t)| ≤ ϵ′a(t).

We now fix an arbitrary ϵ > 0 and 0 < ϵ′ < δ
δ+2

∧ η. Note that if |y|
ah(t)

≤ δ/2, then for

t > t′, ∣∣∣∣y + b(t)

a(t)

∣∣∣∣ ≤ (1 + ϵ′)|y|
ah(t)

+ ϵ′ ≤
(
1 +

δ

δ + 2

)
δ

2
+

δ

δ + 2
= δ,

and that if |y|
ah(t)

≤ η
ϵ′
− 1, then for t > t′,∣∣∣∣y + b(t)

a(t)
− y

ah(t)

∣∣∣∣ ≤ ϵ′ +
|y|
ah(t)

ϵ′ ≤ η.

Thus for any t > t′,∣∣∣∣φ(y + b(t)

a(t)

)
− φ

( |y|
ah(t)

)∣∣∣∣ ≤ ϵ1{ δ
2
<

|y|
ah(t)

≤ η
ϵ′−1} + 1{ |y|

ah(t)
> η

ϵ′−1}.

Hence we have that∣∣∣∣∣E
(∏
u∈Lt

φ

(
ξut + b(t)

a(t)

))
− E

(∏
u∈Lt

φ

(
ξut
ah(t)

))∣∣∣∣∣
≤E

[
1 ∧

∑
u∈Lt

∣∣∣∣φ(ξut + b(t)

a(t)

)
− φ

(
ξut
ah(t)

)∣∣∣∣
]

≤E

[
1 ∧

(
ϵ
∑
u∈Lt

1
{ |ξut |
h(t)

>aδ/2}

)]
+ E

[
1 ∧

∑
u∈Lt

1
{ |ξut |
h(t)

>a(η/ϵ′−1)}

]
. (3.9)

Since Xt/h(t) converges weakly to N∞, we have, as t→ ∞,

ϵ
∑
u∈Lt

1
{ |ξut |
h(t)

>aδ/2}
d→ ϵ · N∞({y ∈ R; |y| > aδ/2})

and ∑
u∈Lt

1
{ |ξut |
h(t)

>a(η/ϵ−1)}
d→ N∞({y ∈ R; |y| > a(η/ϵ′ − 1)}.
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Thus letting t→ ∞ first and then ϵ′ → 0, and finally ϵ→ 0 in (3.9), applying the dominated
convergence theorem, we get

lim
t→∞

E

(∏
u∈Lt

φ

(
ξut + b(t)

a(t)

))
= lim

t→∞
E

(∏
u∈Lt

φ

(
ξut
ah(t)

))
= E (exp {−C(maφ)W}) = E(exp{−a−αC(φ)W}).

2

Lemma 3.5. If a : [0,∞) → (0,∞) is a non-decreasing positive function with

∞∑
n=1

na(n)−αL(a(n)) <∞,

then

lim
t→∞

ξt
a(t)

= 0.

Proof: For any positive integer n,

sup
t∈[n,n+1]

|ξt| ≤ |ξn|+ sup
t∈[n,n+1]

|ξt − ξn|.

Since ξ is a Lévy process, {Yn := supt∈[n,n+1] |ξt − ξn|, n ≥ 1} are i.i.d. By (2.4), and (2.5),
we have that as x→ ∞,

P(Y1 > x) ≤ P

(
sup
t∈[0,1]

ξt > x

)
+P

(
sup
t∈[0,1]

(−ξt) > x

)
∼ P(|ξ1| > x).

By (2.2), we have that for any c > 0 and n large enough,

P

(
sup

t∈[n,n+1]

|ξt| > ca(n)

)
≤P(|ξn| > ca(n)/2) +P(Yn > ca(n)/2)

≤c0(c/2)−α(n+ 1)a(n)−αL(ca(n)/2)

∼c0(c/2)−αna(n)−αL(a(n)), n→ ∞,

which implies that ∑
n

P

(
sup

t∈[n,n+1]

|ξt| > ca(n)

)
<∞.

Thus by the Borel-Cantelli lemma, we have

lim
n→∞

supt∈[n,n+1] |ξt|
a(n)

= 0, a.s.

Since a(t) is non-decreasing, we have, for t ∈ [n, n+ 1],

|ξt|
a(t)

≤
supt∈[n,n+1] |ξt|

a(n)
→ 0.
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The proof is now complete.
2

For any φ ∈ B1(R), we define

Uφ(t, x) := Ex(I(φ,Xt)) = Ex

(∏
u∈Lt

φ(ξut )

)
, t ≥ 0, x ∈ R. (3.10)

By the Markov property and the branching property, we have

Uφ(t, x) = e−βtEx(φ(ξt)) + Ex

∫ t

0

βe−βsf(Uφ(t− s, ξs))ds,

which implies that

Uφ(t, x) = eβ(f
′(q)−1)tEx(φ(ξt)) + Ex

∫ t

0

βeβ(f
′(q)−1)sf(Uφ(t− s, ξs)) ds

− Ex

∫ t

0

eβ(f
′(q)−1)sβf ′(q)Uφ(t− s, ξs) ds

= e−ρtEx(φ(ξt)) + Ex

∫ t

0

βe−ρsV (Uφ(t− s, ξs)) ds+ q(1− e−ρt),

where ρ is defined in (1.10) and V is defined in (3.3). Thus

Uφ(t, x)− q = e−ρt(E(φ(ξt + x))− q) + E

∫ t

0

βe−ρsV (Uφ(t− s, x+ ξs)) ds. (3.11)

For any t > 0 and x ∈ R, we define

u(t, x) := U1(−∞,0]
(t, x) = Px(Rt ≤ 0) = P(Rt ≤ −x). (3.12)

Lemma 3.6. Let c > 0. For any ϵ ∈ (0, 1), there exist C = C(ϵ) > 0 and tϵ > 0 such that
for any r > tϵ, s > tϵ, l > 0,

E[(u(r + s,−c h(r) + ξl)− q)2] ≤ c(ϵ)s6ρ/λ
[
e−2ρ(1−ϵ)s + (l + s)e−λre−(λ∧(2ρ))(1−ϵ)s

]
.

Proof: Define ũ(t, x) := P(−∞ < Rt ≤ −x) = u(t, x)− P(Zt = 0). Then for any s > 0,

E[(u(r + s,−c h(r) + ξl)− q)2] ≤ 2E[(ũ(r + s,−c h(r) + ξl))
2] + 2(q − P(Zr+s = 0))2

≤ 2E[(ũ(r + s,−c h(r) + ξl)
2] + 2(q − P(Zs = 0))2. (3.13)

By (3.1) with s = 0, we have

lim
s→∞

eρs(q − P(Zs = 0)) = −A(0) ∈ [0,∞). (3.14)

For t > 0, define
Tt := inf{s > 0 : Zs > t3}.
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Here we use the convention that inf ∅ = ∞. Let K > 3 be an integer. For any r > 0, s > 1
and x ∈ R, we have

ũ(s+ r,−c h(r) + x) = P(−∞ < Rs+r ≤ c h(r)− x)

≤ P
(
Ts >

K − 1

K
s,Z(K−1)s/K > 0

)

+
K−1∑
k=1

P
(
(k − 1)s

K
< Ts ≤

ks

K
,Rs+r ≤ c h(r)− x

)
. (3.15)

By (3.7) with an = (2K)3n3 , there exists a constant CK > 0 such that

P(0 < Zn ≤ (2K)3n3) ≤ CK(2Kn)
3ρ/λe−ρn, n ≥ 1.

It follows that, for s > K and k = 1, 2, · · · , K − 1,

P
(
Ts >

k

K
s, Zks/K > 0

)
≤ P

(
0 < Z⌊ k

K
s⌋ ≤ s3

)
≤ P

(
0 < Z⌊ k

K
s⌋ ≤ (2K)3⌊ k

K
s⌋3
)

≤ CK (2Ks)3ρ/λ e−ρ⌊
k
K
s⌋ ≤ CK(2K)3ρ/λeρ · s3ρ/λe−ρ

k
K
s. (3.16)

Choose b > 1 such that e−λb/α < 1/c. Note that limt→∞
h(t)
h(t+b)

= e−λb/α < 1/c. By (1.9),

we have limt→∞ P(Rt ≤ h(t)) = E(e−ϑ∗W ) < 1. Thus there exist c1 ∈ (0, 1), c2 ∈ (0, 1/c) and
t1 > 0 such that for all t > t1, and t

′ > b,

P(Rt ≤ h(t)) ≤ c1, and h(t) ≤ c2h(t+ b) ≤ c2h(t+ t′).

Note that
Rs+r = max

u∈Lks/K

(ξuks/K +Ru
s+r),

where, given FT
sk/K , {Ru

s+r, u ∈ Lks/K} are i.i.d. with the same law as Rs+r−ks/K . Moreover,

given FT
ks/K , {ξuks/K , u ∈ Lks/K} have the same law as ξks/K , and {ξuks/K , u ∈ Lks/K} and

{Ru
s+r, u ∈ Lks/K} are independent. Applying [27, Lemma 5.1] (in the first inequality below)

we get that, for k = 1, 2, · · · , K − 1, r > t1 and s > bK,

P(Rs+r ≤ c h(r)− x|FT
ks/K) ≤ P(ξks/K + max

u∈Lks/K

Ru
s+r ≤ c h(r)− x|FT

ks/K)

≤P(x+ ξks/K ≤ c h(r)− h(s+ r − ks/K)) + [P(Rs+r−ks/K ≤ h(s+ r − ks/K))]Zks/K

≤P(x+ ξks/K ≤ −(1− cc2)h(s+ r − ks/K)) + c
Zks/K

1 .

Thus we have that for k = 1, 2, · · · , K − 1, r > t1 and s > bK,

P
(
(k − 1)s

K
< Ts ≤

ks

K
,Rs+r ≤ c h(r)− x

)
≤P(x+ ξks/K ≤ −(1− cc2)h(s+ r − ks/K))P

(
Ts >

(k − 1)s

K
,Z(k−1)s/K > 0

)
+ E

(
c
Zks/K

1 ;
(k − 1)s

K
< Ts ≤

ks

K

)
. (3.17)
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Note that

E
(
c
Zks/K

1 ;
(k − 1)s

K
< Ts ≤

ks

K

)
≤cs21 + P

(
(k − 1)s

K
< Ts ≤

ks

K
,Zks/K < s2

)
≤cs21 + P(∃t ≥ 0 : Zt ≤ ⌊s2⌋|Z0 = ⌊s3⌋)

≤cs21 +

(
⌊s3⌋
⌊s2⌋

)
q⌊s

3⌋−⌊s2⌋ ≤ cs
2

1 + (s3 + 1)s
2+1qs

3−s2−2 = o(e−ρs). (3.18)

Combining (3.15), (3.16), (3.17) and (3.18), we get that there exist C ′
k and t2 > 0 such that

for any r > t2, s > t2 and x ∈ R,

[P(−∞ < Rs+r ≤ h(r)− x)]2 ≤ C ′
K

[
s6ρ/λe−2ρK−1

K
s

+
K−1∑
k=1

s6ρ/λe−2ρ(k−1)s/KP(x+ ξks/K ≤ −(1− cc2)h(s+ r − ks/K))
]
. (3.19)

By the Markov property of ξ and (2.3), we get that there exists t3 > t2 such that for r > t3,

E[P(x+ ξks/K ≤ −(1− cc2)h(s+ r − ks/K))|x=ξl ]
=P(ξl+ks/K ≤ −(1− cc2)h(s+ r − ks/K))

≤2c0(1− cc2)
−α−1(l + s)e−λ(r+s−ks/K).

It follows from (3.19) that for any s > t3, r > t3 and l > 0,

E[ũ(s+ r,−h(r) + ξl)]
2

≤C ′′
K

[
s6ρ/λe−2ρK−1

K
s + s6ρ/λ(l + s)

K−1∑
k=1

e−2ρ(k−1)s/Ke−λ(r+s−ks/K)
]

≤C ′′
K

[
s6ρ/λe−2ρK−1

K
s +Ks6ρ/λ(l + s)e−λre−(λ∧(2ρ))K−1

K
s
]
,

where C ′′
K = C ′

k(1 + 2c0(1− cc2)
−α−1) and in the last inequality we used

2ρ(k − 1) + λ(K − k) ≥ (λ ∧ 2ρ)(K − 1), k = 1, · · · , K.

For any ϵ > 0, we choose K such that 1/K < ϵ, we get that there exists c(ϵ) > 0 such
that

2E[(ũ(r + s,−c h(r) + ξl)
2] ≤ c(ϵ)s6ρ/λ

[
e−2ρ(1−ϵ)s + (l + s)e−λre−(λ∧(2ρ))(1−ϵ)s

]
.

Combining this with (3.13) and (3.14), we immediately get the desired result. The proof is
now complete.

2
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Proof of Theorem 1.3: Since φ ∈ H0(R), there exists c > 0 such that φ(y) = 0 for all
y > c. For any t > 0, define r = r(t) by h(r(t)) = Λ(t), that is,

e−λr(t) = Λ(t)−αL(Λ(t)).

Since limt→∞
Λ(t)
h(t)

= 0 and Λ(t) → ∞, we have t − r(t) → ∞ and r(t) → ∞ as t → ∞.

Thus for any T > 0, there exists t0 > 0 such that t − r(t) > T and r(t) > T for all t ≥ t0.
In the remainder of this proof, we assume t ≥ t0. Note that

(1− q)E∗

(∏
u∈Lt

φ(ξut /Λ(t))

)

=E

(∏
u∈Lt

φ(ξut /Λ(t))

)
− q + q − E

(∏
u∈Lt

φ(ξut /Λ(t));Sc
)
. (3.20)

By (3.1) with s = 0, we have

0 ≤ q − E

(∏
u∈Lt

φ(ξut /Λ(t));Sc
)

≤ q − P(Zt = 0) ∼ −A(0)e−ρt. (3.21)

By (3.11), we have that

E

(∏
u∈Lt

φ(ξut /Λ(t))

)
− q = e−ρt(E(φ(ξt/Λ(t)))− q) + J(t),

where

J(t) =

(∫ t−r(t)−T

0

+

∫ t−r(t)+T

t−r(t)−T
+

∫ t

t−r(t)+T

)
βe−ρsE[V (Uφt(t− s, ξs))]ds

=:J1(t, T ) + J2(t, T ) + J3(t, T ),

φt(y) = φ(y/Λ(t)) and Uφ is defined in (3.10). It is easy to see that

e−ρt(E(φ(ξt/Λ(t)))− q) = o(e−ρ(t−r(t))).

We now deal with the three components of J(t) separately. We will show that

lim
T→∞

lim sup
t→∞

eρ(t−r(t))J1(t, T ) = lim
T→∞

lim sup
t→∞

eρ(t−r(t))J3(t, T ) = 0.

(1) Since 0 ≤ V (s) ≤ f(s) ≤ 1, we have

eρ(t−r(t))J3(t, T ) ≤ eρ(t−r(t))
∫ ∞

t−r(t)+T
βe−ρs ds =

1

1− f ′(q)
e−ρT . (3.22)

Hence limT→∞ lim supt→∞ eρ(t−r(t))J3(t, T ) = 0.
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(2) Note that

eρ(t−r(t))J2(t, T ) =

∫ T

−T
βeρsEV (Uφt(s+ r(t)), ξt−r(t)−s) ds. (3.23)

Since Λ(t) = h(r(t)), we have

Uφt(s+ r(t), ξt−r(t)−s) = Eξt−r(t)−s

 ∏
u∈Ls+r(t)

φ(ξus+r(t)/h(r(t)))

 .

By Lemma 3.5 and the fact that Λ is non-decreasing, we have that for any s ∈ [−T, T ],

lim
t→∞

|ξt−r(t)−s|
h(s+ r(t))

= lim
t→∞

|ξt−r(t)−s|
eλs/αΛ(t)

≤ lim
t→∞

e−
λ
α
s |ξt−r(t)−s|
Λ(t− r(t)− s)

= 0.

Note that h(r(t))/h(s+ r(t)) → e−
λ
α
s. By Lemma 3.4, we have that for s ∈ [−T, T ],

lim
t→∞

Uφt(s+ r(t), ξt−r(t)−s) = E(exp{−eλsC(φ)W}) = ϕ(eλsC(φ)).

Since V (s) is bounded and continuous, by (3.23) and the dominated convergence theorem
we have

lim
t→∞

eρ(t−r(t))J2(t, T ) =

∫ T

−T
βeρsV

[
ϕ(eλsC(φ))

]
ds. (3.24)

(3) We now deal with J1(t, T ). Recall u is defined in (3.12). Note that

eρ(t−r(t))J1(t, T ) =

∫ t−r(t)

T

βeρsEV (Uφt(s+ r(t), ξt−r(t)−s)) ds

≤
∫ t−r(t)

T

βeρsE[V (u(s+ r(t),−c h(r(t)) + ξt−r(t)−s))]ds, (3.25)

where in the last inequality we used the fact that

Uφt(s+ r(t), x) ≤ Px(Rs+r(t) ≤ c h(r(t))) = u(s+ r(t),−c h(r(t)) + x).

By Taylor’s formula and the fact that f ′(s) is increasing, we have

0 ≤ V (s) = f(s)− f(q)− f ′(q)(s− q) ≤ |f ′(s)− f ′(q)||s− q| ≤ f ′(1)|s− q|. (3.26)

(a) We first consider the case λ > ρ. For any ϵ ∈ (0, (λ − ρ) ∧ (ρ/2) ∧ (λ/2ρ)), let tϵ be
the constant in Lemma 3.6. Let T > tϵ be large enough so that h(T ) > x0. By Hölder’s
inequality and (3.26), we have for t ≥ t0 and s ∈ (T, t− r(t)),

I1(t, s) := EV (u(s+ r(t),−c h(r(t)) + ξt−r(t)−s); |ξt−r(t)−s| > h(s+ r(t)))

≤f ′(1)E(|u(s+ r(t),−ch(r(t)) + ξt−r(t)−s)− q|; |ξt−r(t)−s| > h(s+ r(t)))

≤f ′(1)
√

E(|u(s+ r(t),−c h(r(t)) + ξt−r(t)−s)− q|2)P(|ξt−r(t)−s| > h(s+ r(t)))

≤f ′(1)
√
c0c(ϵ)s6ρ/λ[e−2ρ(1−ϵ)s + te−λr(t)e−(2ρ∧λ)(1−ϵ)s]te−λ(s+r(t))

≤f ′(1)
√
c0c(ϵ)te−λr(t)s

3ρ/λ
[√

1 + te−λr(t)e−ρ(1−ϵ)se−λs/2 +
√
te−λr(t)e−λ(1−ϵ/2)s

]
,
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where in the third inequality we used Lemma 3.6 and (2.2), and in the fourth inequality we
used the inequality

√
a+ b ≤

√
a+

√
b, a, b ≥ 0. Since

∑
n nΛ(n)

−αL(Λ(n)) =
∑

n ne
−λr(n) <

∞ and Λ is non-decreasing, we know that te−λr(t) → 0 as t→ ∞. It follows that∫ t−r(t)

T

βeρsI1(t, s) ds ≤ f ′(1)
√
c0c(ϵ)te−λr(t)

×
[√

1 + te−λr(t)
∫ ∞

T

βs3ρ/λe−(λ/2−ρϵ)s ds+
√
te−λr(t)

∫ ∞

T

βs3ρ/λe−(λ−ρ−ϵ/2)s ds

]
→ 0, t→ ∞. (3.27)

By (1.9), we have P(Rt ≤ 2h(t)) → E(e−ϑ∗2−αW ) ∈ (q, 1). Thus there exists a ∈ (q, 1)
such that when T is large enough,

P(Rt ≤ 2h(t)) ≤ a, t ≥ T.

If |ξt−r(t)−s| ≤ h(s+ r(t)), then for any t > t0 and s ∈ (T, t− r(t)),

u(r(t) + s,−h(r(t)) + ξt−r(t)−s) ≤ P(Rs+r(t) ≤ h(r(t)) + h(s+ r(t)))

≤ P(Rs+r(t) ≤ 2h(s+ r(t))) ≤ a.

Thus by (3.3), we have

V (u(r(t) + s,−h(r(t)) + ξt−r(t)−s)) ≤ f ′′(a)(u(r(t) + s,−h(r(t)) + ξt−r(t)−s)− q)2.

By Lemma 3.6, we have for any t > t0 and s ∈ (T, t− r(t)),

I2(t, s) := E(V (u(s+ r(t),−c h(r(t)) + ξt−r(t)−s)); |ξt−r(t)−s| ≤ h(s+ r(t)))

≤ f ′′(a)E(u(s+ r(t),−c h(r(t)) + ξt−r(t)−s)− q)2

≤ f ′′(a)c(ϵ)s6ρ/λ[e−2ρ(1−ϵ)s + te−λr(t)e−(2ρ∧λ)(1−ϵ)s]

≤ f ′′(a)c(ϵ)s6ρ/λ[(1 + te−λr(t))e−2ρ(1−ϵ)s + te−λr(t)e−λ(1−ϵ)s].

It follows that∫ t−r(t)

T

βeρsI2(t, s) ds

≤f ′′(a)c(ϵ)

[
(1 + te−λr(t))

∫ ∞

T

s6ρ/λe−(ρ−2ϵ)s ds+ te−λr(t)
∫ ∞

T

s6ρ/λe−(λ−ρ−ϵ)s ds

]
→f ′′(a)c(ϵ)

∫ ∞

T

s6ρ/λe−(ρ−2ϵ)s ds, t→ ∞. (3.28)

By (3.27) and (3.28), we have

lim sup
t→∞

eρ(t−r(t))J1(t, T ) ≤ f ′′(a)c(ϵ)

∫ ∞

T

s6ρ/λe−(ρ−2ϵ)s ds. (3.29)
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(b) We now assume λ = ρ. Since Λ(t)
t
> eγt, we have

e−λr(t) = Λ(t)−αL(Λ(t))
t

≤ Λ(t)−α/2 ≤ e−αγt/2,

which implies that r(t)
t

≥ αγ
2λ
t. Let ϵ ∈ (0, αγ

2λ
∧ ρ

2
), and let T > tϵ.

By Lemma 3.3, pk = 0 for k ≥ 3. Thus f ′′(1) <∞. By (3.3), we have, for any t ≥ t0 and
s ∈ (T, t− r(t)),

V (u(r(t) + s,−h(r(t)) + ξt−r(t)−s)) ≤ f ′′(1)(u(r(t) + s,−h(r(t)) + ξt−r(t)−s)− q)2.

Applying Lemma 3.6, we have for any t ≥ t0 and s ∈ (T, t− r(t)),

E(V (u(s+ r(t),−c h(r) + ξt−r(t)−s))) ≤ f ′′(1)c(ϵ)s6ρ/λ[e−2ρ(1−ϵ)s + te−λr(t)e−ρ(1−ϵ)s].

By (3.25), it follows that

eρ(t−r(t))J1(t, T ) ≤ f ′′(1)c(ϵ)

[∫ ∞

T

s6ρ/λe−(ρ−2ϵ)s ds+ te−λr(t)
∫ t−r(t)

T

s6ρ/λeρϵs ds

]

≤f ′′(1)c(ϵ)

[∫ ∞

T

s6ρ/λe−(ρ−2ϵ)s ds+ (ρϵ)−1t1+6ρ/λe−αγt/2eλϵt
]

→f ′′(1)c(ϵ)

∫ ∞

T

s6ρ/λe−(ρ−2ϵ)s ds, t→ ∞. (3.30)

Combining (3.22),(3.24),(3.29) and (3.30), and letting T → ∞, we obtain that

lim
t→∞

eρ(t−r(t))J(t) =

∫ ∞

−∞
βeρsV

[
ϕ(C(φ)eλs)

]
ds = A(ϕ(C(φ))). (3.31)

Thus by (3.20), (3.21) and (3.31), we have that

lim
t→∞

eρ(t−r(t))E∗
( ∏
u∈Lt

φ(ξut /Λ(t))
)
=

1

1− q
A [ϕ(C(φ))] .

Since C(φ) is continuous in φ, the above limit also valid for φ(y) = 1(−∞,1](y), that is,

lim
t→∞

eρ(t−r(t))E∗
(
Rt ≤ Λ(t)

)
=

1

1− q
A(ϕ(q1ϑ/α)).

The proof is now complete.
2

Proof of Corollary 1.4: For any g ∈ C+
c (R0) and θ > 0, applying Theorem 1.3 with

φ(y) = e−θg(y)1(−∞,1](y) we get

lim
t→∞

E∗
(
e−θ

Xt
Λ(t)

(g)|Rt ≤ Λ(t)
)
= lim

t→∞

eρ(t−r(t))E∗
(
e−θ

Xt
Λ(t)

(g);Rt ≤ Λ(t)
)

eρ(t−r(t))P∗(Rt ≤ Λ(t))
=
A(ϕ(C(φ)))

A(ϕ(ϑ∗))
.
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By the definition of Ξ, we have

E(e−θΞ(g)) =
∞∑
j=1

P (K = j)
[
E(e−θN̄∞(g))

]j
=
A
(
(ϕ(ϑ∗)− q)E(e−θN̄∞(g)) + q

)
A(ϕ(ϑ∗))

. (3.32)

Note that {N∞(R) > 0} = {W > 0}. Thus

E(e−θN̄∞(g)) = E(e−θN∞(g)|N∞(R) > 0,N∞(1,∞) = 0)

=
E(e−θN∞(g);N∞(R) > 0,N∞(1,∞) = 0)

P (N∞(R) > 0,N∞(1,∞) = 0)

=
E(e−θN∞(g);N∞(1,∞) = 0)− P (N∞(R) = 0)

P (N∞(1,∞) = 0)− P (N∞(R) = 0)

=
E(exp{−C(φ)W})− P(W = 0)

P(exp{−ϑ∗W})− P(W = 0)
=
ϕ(C(φ))− q

ϕ(ϑ∗)− q
.

By (3.32), we have that

E(e−θΞ(g)) =
A(ϕ(C(φ)))

A(ϕ(ϑ∗))
.

The proof is complete. 2

3.2 Lower deviation of Yt

For the proof of Theorem 1.1, we first established the upper deviation for Yt, and then used
it to get the corresponding result for Xt. However we can not get the lower deviation of Xt

from that of Yt. In Section 3.1, we proved Theorem 1.6, the lower large deviation result of
Xt. In this subsection, we establish the lower deviation result of Yt. Recall that ϕ is defined
by (1.11).

Proposition 3.7. If Λ : [0,∞) → (0,∞) satisfies Λ(t) → ∞ and

t2Λ(t)−αL(Λ(t)) → 0, Λ(t)/h(t) → 0,

as t→ ∞, then for any φ ∈ H(R),

lim
t→∞

eρ(t−r(t)E∗(I(φ,Yt/Λ(t))) = A (ϕ (C(φ))) ,

where r = r(t) is defined by Λ(t) = h(r(t)). In particular,

lim
t→∞

eρ(t−r(t))P∗
(
Mt ≤ Λ(t)

)
= A [ϕ(ϑ∗)] .

Proof: Since φ ∈ H(R), there exists δ > 0 such that φ ≡ 1 on [−δ, δ]. Note that

(1− q)E∗(I(φ,Yt/Λ(t))) = E(I(φ,Yt/Λ(t)))− q + q − E(I(φ,Yt/Λ(t));Sc).

On the event {Zt = 0}, we have I(φ,Yt/Λ(t)) = 1, thus

0 ≤ q − E(I(φ,Yt/Λ(t));Sc) ≤ q − P(Zt = 0) ∼ −A(0)e−ρt = o(e−ρ(t−r(t))).
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By the definition of Yr,t given by (2.7), we have

E(I(φ,Yt/Λ(t))) ≤ E(I(φ,Yr(t),t/Λ(t))) = E
((

EI(φ,Y′
r(t)/h(r(t)))

)Zt−r(t)

)
, (3.33)

where Y′
t is defined in (2.8). If Zr(t) = 0, then I(φ,Yr(t)/h(r(t))) = I(φ,Y′

r(t)/h(r(t))) = 1;
if Zr(t) > 0 then

I(φ,Yr(t)/h(r(t))) =I(φ,Y′
r(t)/h(r(t))) · φ(Xo,r(t)/h(r(t)))

Zr(t)

≥I(φ,Y′
r(t)/h(r(t))) · 1{|Xo,r(t)|≤δh(r(t))}.

By (2.2) and (1.6) we have

P(|Xo,r(t)| > δh(r(t)))
t

≤ c0r(t)(δh(r(t)))
−αL(δh(r(t)))

t

≤ 2c0δ
−α · r(t)e−λr(t) → 0.

Thus by (3.8) we have

lim
t→∞

E(I(φ,Y′
r(t)/h(r(t)))) = lim

t→∞
E(I(φ,Yr(t)/h(r(t)))) = ϕ(C(φ)) < 1. (3.34)

Thus, by (3.1), we have that

lim
t→∞

eρ(t−r(t))
(
E
([

EI(φ,Y′
r(t)/h(r(t)))

]Zt−r(t)

)
− q
)
= A (ϕ(C(φ))) .

Hence by (3.33) we have

lim sup
t→∞

eρ(t−r(t))(E(I(φ,Yt/Λ(t)))− q) ≤ A (ϕ (C(φ))) .

On the other hand,

E(I(φ,Yt/Λ(t))|FT
t )

≥P( max
u∈Dt:bu≤t−r(t)

|Xu,t| ≤ δh(r(t))|FT
t )E(I(φ,Yr(t),t/h(r(t)))|FT

t ). (3.35)

Note that {u ∈ Dt : bu ≤ t− r(t)} ⊂ Dt−r(t). Thus by (2.3) we have that

P( max
u∈Dt:bu≤t−r(t)

|Xu,t| ≤ δh(r(t))|FT
t ) ≥

∏
u∈Dt−r(t)

P(|Xu,t| ≤ δh(r(t)))|FT
t )

t

≥(1− 2c0δ
−α−1te−λr(t))|Dt−r(t)|.

By (3.35), we have that

E(I(φ,Yt/Λ(t)))
t

≥ E
(
(1− 2c0δ

−αte−λr(t))|Dt−r(t)| · I(φ,Yr(t),t/Λ(t))
)

=E
(
(1− 2c0δ

−αte−λr(t))|Dt−r(t)| · [EI(φ,Y′
r(t)/Λ(t))]

Zt−r(t)
)

≥E
(
(1− 2c0δ

−αte−λr(t))c·(t−r(t))Zt−r(t) [EI(φ,Y′
r(t)/Λ(t))]

Zt−r(t) ; |Dt−r(t)| ≤ c · (t− r(t))Zt−r(t)
)

≥E
(
C(t)Zt−r(t)

)
− P(|Dt−r(t)| > c · (t− r(t))Zt−r(t)),
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where C(t) = (1 − 2c0δ
−αte−λr(t))c·(t−r(t))EI(φ,Y′

r(t)/Λ(t)) and c > 0 is a constant. Since

t2e−λr(t) = t2Λ(t)−αL(Λ(t)) → 0, by (3.34), we have

lim
t→∞

C(t) = lim
t→∞

EI(φ,Y′
r/Λ(t)) = ϕ (C(φ)) < 1.

By (3.1), we have that

lim
t→∞

eρ(t−r(t))(E
(
C(t)Zt−r(t)

)
− q) = A (ϕ (C(φ))) .

Note that |Dt−r(t)| ≤
∑

u∈Lt−r(t)
|Iu|. Thus by the many-to-one formula,

P(|Dt−r(t)| > c · (t− r(t))Zt−r(t)) ≤ P

 ∑
u∈Lt−r(t)

|Iu| > c · (t− r(t))Zt−r(t)


≤ P

 ∑
u∈Lt−r(t)

1{|Iu|>c·(t−r(t))} ≥ 1

 ≤ E

 ∑
u∈Lt−r(t)

1{|Iu|>c·(t−r(t))}


≤ eλ(t−r(t))P (1 + nt−r(t) > c · (t− r(t)))

≤ eλ(t−r(t))e−c·(t−r(t))E(e(1+nt−r(t))) = e · eλ(t−r(t))e−c·(t−r(t))e(e−1)β(t−r(t))

= e · e−(c−λ−(e−1)β)(t−r(t)).

Now we choose c such that c > λ+ (e− 1)β − ρ. Then

lim
t→∞

eρ(t−r(t))P(|Dt−r(t)| > c(t− r(t))Zt−r(t)) = 0.

Hence we have

lim inf
t→∞

eρ(t−r(t))(E(I(φ,Yt/Λ(t)))− q) ≥ A (ϕ (C(φ))) .

The proof is complete now.
2

4 Almost sure convergence results

In this section we will give the proofs of Theorems 1.6 and 1.7. We first prove the corre-
sponding results for Y. Note that for any a > 0,

{Rt ≤ a} = I(1(−∞,a],Xt), {Mt ≤ a} = I(1(−∞,a],Yt).

By the continuity of C(φ), the results established in the previous sections for H(R) are also
valid for 1(−∞,a].
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4.1 Almost sure convergence results for Mt

Lemma 4.1. Suppose that G : [0,∞) → (0,∞) satisfies limt→∞
G(t)
h(t)

= ∞.

(1) If
∑

n e
λnG(n)−αL(G(n)) <∞, then

lim sup
t→∞

Mn

G(n)
≤ 0, P-a.s.

(2) If
∑

n e
λnG(n)−αL(G(n)) = ∞, then

lim sup
t→∞

Mn

G(n)
= ∞, P∗-a.s.

Proof: (1) Assume that
∑

n e
λnG(n)−αL(G(n)) < ∞. By Proposition 2.6, we have for any

c > 0,
lim
t→∞

e−λtG(t)αL(G(t))−1P(Mt > cG(t)) = c−αϑ∗,

where ϑ∗ is given in (1.4). Combining this with
∑

n e
λnG(n)−αL(G(n)) < ∞, we get that

for any c > 0,
∞∑
n=1

P(Mn > cG(n)) <∞.

By the Borel-Cantelli lemma, we get that

lim sup
n→∞

Mn

G(n)
≤ c, P-a.s.

Letting c→ 0, we get the desired result.
(2) Assume that

∑
n e

λnG(n)−αL(G(n)) = ∞. For 0 < s < t, define

M
(2)
s,t := max

u∈Dt:t−s<bu≤t
Xu,t.

For any c > 0, we have that

P(Mn > cG(n)|Fn−1) ≥ P(M (2)
1,n > cG(n)|Fn−1). (4.1)

By (2.24) with s = 1, t = n, Λ(t) = cG(t) and φ = 1(−∞,1], we get that, as n→ ∞,

e−λnG(n)αL−1(G(n))P(M (2)
1,n > cG(n)|Fn−1)

→c−α
q1
α
e−λ

∫ 1

0

(
eλr − e−βr

)
P(Z1−r > 0)dr ·W a.s.. (4.2)

Combining (4.1) and (4.2), we obtain that, for any c > 0, on the event {W > 0},
∞∑
n=1

P(Mn > cG(n)|Fn−1) = ∞, P-a.s.

Applying the conditional Borel-Cantelli lemma, we get that for any c > 0,

P∗(Mn > cG(n), i.o.) = 1.

Since c is arbitrary, desired result follows immediately.
2
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Lemma 4.2. It holds that

lim inf
t→∞

Mn

H(e−λn log n)
≤ (ϑ∗W )

1
α , P∗-a.s.

Proof: For any ϵ ∈ (0, 1), choose ϵ′ > 0 small enough such that (1+ ϵ′)(1 + ϵ/2)−α < 1. Let
nk := ⌊k1+ϵ′⌋, k ≥ 1, where ⌊x⌋ is the integer part of x. It is easy to see nk < nk+1 for any
k ≥ 1. Let

Uk := H

(
log nk

ϑ∗Znk−1
eλ(nk−nk−1)

)
.

Since H(y) = y−1/αL̄(y−1), we have

lim
k→∞

Uk
H(e−λnk log nk)

= lim
k→∞

(ϑ∗Wnk−1
)1/α = (ϑ∗W )1/α, P∗-a.s. (4.3)

Note that Uk ∈ Fnk−1
. Thus we have

P
(
Mnk

≤ (1 + ϵ)Uk|Fnk−1

)
≥ 1{Mnk−1

≤(1+ϵ/2)Uk}Jk (4.4)

where

Jk := P
(
∀v ∈ Lnk−1

, Xv,nk
−Xv,nk−1

≤ ϵUk/2,M
v
nk

≤ (1 + ϵ/2)Uk|Fnk−1

)
and M v

t = maxu∈Dt:v<uXu,t.
We first show that, on the survival event S, {Mnk−1

> (1+ϵ/2)Uk} can occur only finitely
many times. By (3.7), we have for p > λ/ρ,

∞∑
n=1

P(0 < e−λnZn < n−p) ≤ C
∞∑
n=1

n−pρ/λ <∞. (4.5)

Note that

P
(
Mnk−1

> (1 + ϵ/2)Uk,S
)

≤ P
(
e−λnk−1Znk−1

< n−p
k−1,S

)
+ P

(
Mnk−1

> (1 + ϵ/2)Uk, e
−λnk−1Znk−1

≥ n−p
k−1

)
≤ P

(
e−λnk−1Znk−1

< n−p
k−1,S

)
+ P

(
Mnk−1

> (1 + ϵ/2)H

(
log nk

ϑ∗n−p
k−1e

λnk

))
.

By (4.5), we have

∞∑
k=1

P
(
e−λnk−1Znk−1

< n−p
k−1,S

)
≤

∞∑
k=1

P
(
0 < e−λnk−1Znk−1

< n−p
k−1

)
<∞. (4.6)

Observe that nk − nk−1 ∼ (1 + ϵ′)kϵ
′
. Thus

lim
k→∞

H

(
log nk

ϑ∗n−p
k−1e

λnk

)
h(nk−1)

= lim
k→∞


log nk

ϑ∗n−p
k−1e

λnk

e−λnk−1


−1/α

= ∞.
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Hence by Proposition 2.6, we have that as k → ∞,

P

(
Mnk−1

> (1 + ϵ/2)H

(
log nk

ϑ∗n−p
k−1e

λnk

))

∼ ϑ∗eλnk−1(1 + ϵ/2)−αH

(
log nk

ϑ∗n−p
k−1e

λnk

)−α

L

(
H

(
log nk

ϑ∗n−p
k−1e

λnk

))

= (1 + ϵ/2)−α
npk−1 log nk

eλ(nk−nk−1)
, (4.7)

where in the last equality we used (1.5). Since nk = ⌊k1+ϵ′⌋, we have
∑

k

npk−1 log nk

eλ(nk−nk−1)
< ∞.

Combining (4.6) and (4.7), we get that

∞∑
k=1

P
(
{Mnk−1

> (1 + ϵ/2)Uk} ∩ S
)
<∞.

Using the Borel-Cantelli lemma, we get that

∞∑
k=1

1{Mnk−1
>(1+ϵ/2)Uk} <∞, P-a.s. on S. (4.8)

Now we consider Jk. Recall that M
′
t is defined in (2.9). By the Markov property and the

branching property, we have that

Jk =
[
P
(
Xo,nk−nk−1

≤ ϵx/2,M ′
nk−nk−1

≤ (1 + ϵ/2)x
)]Znk−1 |x=Uk

=e
Znk−1

log P
(
Xo,nk−nk−1

≤ϵx/2,M ′
nk−nk−1

≤(1+ϵ/2)x
)
|x=Uk

≥eZnk−1
log

(
1−P(Xo,nk−nk−1

>ϵx/2)−P
(
M ′

nk−nk−1
>(1+ϵ/2)x

))
|x=Uk

. (4.9)

Note that, on the survival event S, Uk → ∞. Then by (2.3), we have for k large enough,

P
(
Xo,nk−nk−1

> ϵx/2
)
|x=Uk

≤2c0(ϵ/2)
−α−1(nk − nk−1)U

−α
k L(Uk)

=2c0(ϵ/2)
−α−1(nk − nk−1)

log nk
ϑ∗Znk−1

eλ(nk−nk−1)

→0, P-a.s. on S (4.10)

as k → ∞. By Proposition 2.6 we have

P
(
M ′

nk−nk−1
> (1 + ϵ/2)x

)
|x=Uk

≤ P
(
Mnk−nk−1

> (1 + ϵ/2)x
)
|x=Uk

∼ ϑ∗eλ(nk−nk−1)(1 + ϵ/2)−αU−α
k L(Uk)

= (1 + ϵ/2)−α
log nk
Znk−1

→ 0, P-a.s. on S (4.11)
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as k → ∞. Since nk = ⌊k1+ϵ′⌋, using (4.10) and (4.11), we obtain that

lim sup
k→∞

− 1

log k
Znk−1

log
(
1− P

(
Xo,nk−nk−1

> ϵx/2
)
− P

(
M ′

nk−nk−1
> (1 + ϵ/2)x

))
x=Uk

= lim sup
k→∞

1

log k
Znk−1

(
P
(
Xo,nk−nk−1

> ϵx/2
)
+ P

(
M ′

nk−nk−1
> (1 + ϵ/2)x

))
x=Uk

≤(1 + ϵ′)(1 + ϵ/2)−α < 1, P-a.s. on S. (4.12)

Combining (4.9) and (4.12), we get that,

∞∑
k=1

Jk = ∞, P-a.s. on S. (4.13)

Combining (4.4),(4.8) and (4.13), we get that∑
k

P
(
Mnk

≤ (1 + ϵ)Uk|Fnk−1

)
= ∞, P-a.s. on S.

Applying the Borel-Cantelli lemma and then letting ϵ→ 0, we obtain that

lim inf
k→∞

Mnk

Uk
≤ 1 P∗-a.s.

Hence the desired result follows from (4.3) immediately.
2

We now modify the definition of Dt and Lt slightly. For any δ ≥ 0, and t > 0, define

Lt,δ := {u ∈ Lt : Zu
t+δ > 0},

Dt,δ := {u ∈ T : bu < t, Zu
t+δ > 0} = ∪u∈Lt,δ

Iu,

Rt,δ := max
u∈Lt,δ

ξut , Mt,δ := max
u∈Dt,δ

Xu,t, and M
′
t,δ := max

u∈Dt,δ\{o}
Xu,t.

Using argument similar to that in the proof of Lemma 2.5 with φ = 1(−∞,1], we get the
following result. We omit the proof.

Lemma 4.3. For any δ ≥ 0, it holds that

lim
x→∞

xαL(x)−1P(M ′
s,δ > x) =

q1
α

∫ s

0

(
eλr − e−βr

)
P(Zs+δ−r > 0)dr =: c(s, δ).

Lemma 4.4. For any δ ≥ 0, it holds that

lim inf
n→∞

Mnδ,δ

H(e−λnδ log n)
≥ (ϑδW )

1
α P∗-a.s.,

where ϑδ =
q1
α

∫∞
0
e−λrP(Zr+δ > 0) dr.
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Proof: For 1 ≤ m < n, let Un,m = H

(
log n

Z(n−m)δc(mδ, δ)

)
when Z(n−m)δ > 0 and Un,m = 0

when Z(n−m)δ = 0. Note that

Mnδ,δ ≥ max
u∈L(n−m)δ

max
v∈Du

nδ,δ

Xv,nδ,

where Du
t,δ = {v ∈ Dt,δ: : v > u}. By the Markov property and the branching property, we

have that, conditioned on F(n−m)δ, {maxv∈Du
nδ,δ

Xv,nδ, u ∈ L(n−m)δ} are i.i.d. with the same

law as M ′
mδ,δ. Let Gm,δ(x) := P(M ′

mδ,δ > x). Note that Un,m ∈ F(n−m)δ. Thus for any
ϵ ∈ (0, 1), we have

P
(
Mnδ,δ < (1− ϵ)Un,m|F(n−m)δ

)
≤ (1−Gm,δ((1− ϵ)Un,m))

Z(n−m)δ

≤e−Z(n−m)δGm,δ((1−ϵ)Un,m).

Note that on the survival event S, limn→∞ Un,m = ∞. Thus by Lemma 4.3, we have that,
on the survival event S, as n→ ∞,

Z(n−m)δGm,δ((1− ϵ)Un,m) ∼ Z(n−m)δc(mδ, δ)(1− ϵ)−αU−α
n,mL(Un,m) = (1− ϵ)−α log n, P-a.s.

where in the last equality we used (1.5). Since (1− ϵ)−α > 1, we have that, on the survival
event S, for any m ≥ 1,

∞∑
n=m+1

P
(
Mnδ,δ < (1− ϵ)Un,m|F(n−m)δ

)
≤

∞∑
n=m+1

e−Z(n−m)δGm,δ((1−ϵ)Un,m) <∞, P-a.s..

By the second Borel-Cantelli lemma, we have that, on the survival event S,
∞∑

n=m+1

1{Mnδ,δ<(1−ϵ)Un,m} <∞, P-a.s.

Thus, by the definition of H, we obtain that under P∗, for any ϵ ∈ (0, 1) and integer m ≥ 1,

lim inf
n→∞

Mnδ,δ

H(e−λnδ log n)
≥ lim inf

n→∞

(1− ϵ)Un,m
H(e−λnδ log n)

= (1− ϵ) lim
n→∞


log n

Z(n−m)δc(mδ, δ)

e−λnδ log n


−1/α

= (1− ϵ)
(
We−λmδc(mδ, δ)

)1/α
, P∗-a.s. (4.14)

Note that limm→∞ e−λmδc(mδ, δ) = ϑδ. Letting m → ∞ and ϵ → 0 in (4.14), we get the
desired result. The proof is now complete.

2
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4.2 Proofs of Theorems 1.6 and 1.7

Lemma 4.5. If {an : n ≥ 1} is a sequence of positive numbers satisfying
∑

n e
λna−pαn < ∞

for some p ∈ (0, 2), then for any δ ≥ 0,

lim sup
n→∞

Rn,δ −Mn,δ

an
≤ 0, P∗-a.s. (4.15)

and

lim sup
n→∞

Mn,δ −R+
n,δ

an
≤ 0, P∗-a.s. (4.16)

Proof: Let a(t) be a positive function satisfying a(t)
t

≥ eϵt for some ϵ ∈ (0, 1). Let c >
2α + e2β/ϵ2 be a constant. We choose θ ∈ (0, 1) so that θc < 1. We define the events At(θ)
and Bt as in the proof of Lemma 2.4. We claim that for n sufficiently large, on the event
At(θ) ∩Bt ∩ {Zt ≥ 1},

{Rt,δ −Mt,δ > a(t)} ∪ {Mt,δ −R+
t,δ > a(t)} = ∅.

In fact, by (2.17), we have that on the event At(θ) ∩Bt ∩ {Zt ≥ 1},

Rt,δ = max
v∈Lt,δ

ξvt ≤ max
v∈Lt,δ

Xv′,t + a(t) ≤Mt,δ + a(t), (4.17)

and

Mt,δ = max
v∈Lt,δ

max
u∈Iv

Xu,t =

(
max
v∈Lt,δ

Xv′,t

)
∨
(

max
v∈Lt,δ,u∈Iv\{v′}

Xu,t

)
≤
(
max
v∈Lt,δ

ξvt + a(t)

)
∨ (θa(t)/ log a(t)) ≤ R+

t,δ + a(t), (4.18)

for t large enough so that log a(t) > θ. Hence, by (4.17) and (4.18), the claim is true.
Combining (2.11), (2.16), we get that for any p ∈ (0, 2),

lim sup
t→∞

e−λta(t)pαP
((
{Rt,δ −Mt,δ > a(t)} ∪ {Mt,δ −R+

t,δ > a(t)}
)
∩ {Zt ≥ 1}

)
≤ lim sup

t→∞
e−λta(t)pα{P(At(θ)c) + P(Bc

t )} = 0.

Thus we have

lim
t→∞

e−λta(t)pαP
({
Rt,δ −Mt,δ > a(t)} ∪ {Mt,δ −R+

t,δ > a(t)}
)
∩ {Zt ≥ 1}

)
= 0.

Since
∑

n e
λna−pαn <∞, we have an

n

≥ e
λn
pα . It follows that for any ϵ ∈ (0, 1) and p ∈ (0, 2),

P∗ (Rn,δ −Mn,δ > ϵan) ≤
1

P(S)
P (Rn,δ −Mn,δ > ϵan, Zn ≥ 1) = o(eλna−pαn ).

37



So we have that
∞∑
n=1

P∗ (Rn,δ −Mn,δ > ϵan) <∞.

Applying the Borel-Cantelli lemma and then letting ϵ→ 0, we get (4.15). Similarly, we can
get (4.16) as well.

2

Proof of Theorem 1.6: Note that

H(e−λnδ log n) = eλnδ/α(log n)−1/αL̄(eλnδ/ log n).

Applying Lemma 4.5 with δ = 0 and δ ≥ 0, we have

lim sup
n→∞

Rn −Mn

H(e−λn log n)
≤ 0, lim sup

n→∞

Mnδ,δ −R+
nδ,δ

H(e−λnδ log n)
≤ 0, P∗-a.s.

By Lemma 4.2 we have

lim inf
t→∞

R(t)

H(e−λt log t)
≤ lim inf

t→∞

Mn

H(e−λn log n)
+ lim sup

n→∞

Rn −Mn

H(e−λn log n)
≤ (ϑ∗W )1/α, P∗-a.s.

We now consider the lower bound of lim inft→∞
R(t)

H(e−λt log t)
. By Lemma 4.4 we have that

for any δ > 0,

lim inf
n→∞

R+
nδ,δ

H(e−λnδ log n)
≥ lim inf

n→∞

Mnδ,δ

H(e−λnδ log n)
− lim sup

n→∞

Mnδ,δ −R+
nδ,δ

H(e−λnδ log n)
≥ (ϑδW )1/α, P∗-a.s.

(4.19)

For any n ≥ 1, let Qn,δ = infnδ≤t≤(n+1)δ Rt. We claim that for any ϵ ∈ (0, 1) and δ > 0,

∞∑
n=1

P
(
Qn,δ < (1− ϵ)H(e−λnδ log n) (ϑδWnδ)

1
α −H(n−2)|Fnδ

)
<∞, P∗-a.s. (4.20)

Let Bn := {Rnδ,δ < (1− ϵ)H(e−λδn log n) (ϑδWnδ)
1
α}. Note that

P
(
Qn,δ < (1− ϵ)H(e−λnδ log n) (ϑδWnδ)

1
α −H(n−2)|Fnδ

)
≤P(Bn|Fnδ) + P

(
Bc
n, Qn,δ < (1− ϵ)H(e−λnδ log n) (ϑδWnδ)

1
α −H(n−2)|Fnδ

)
. (4.21)

By (4.19) and the Borel-Cantelli lemma, we know that on S,
∞∑
n=1

P(Bn|Fnδ) <∞, P-a.s. (4.22)

Now we consider the second term of the right hand side of (4.21). Take Z0 = ν =
∑K

k=1 δak
with a1 ≥ a2 ≥ · · · ≥ aK . We use Z

(j)
t to denote the number of descendants at time t of
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the j-th particle, and L(j)
t the set of all the descendants of j alive at time t. For any x, y we

have that

Pν(R0,δ > x,Q0,δ < x− y)

=
K∑
k=1

P(Z(j)
δ = 0, 1 ≤ j ≤ k − 1, Z

(k)
δ > 0, ak > x,Q0,δ < x− y)

≤
K∑
k=1

P(Z(j)
δ = 0, 1 ≤ j ≤ k − 1, Z

(k)
δ > 0, inf

0≤t≤δ
max
u∈L(k)

t

(ξut − ak) < −y)

=
K∑
k=1

P(Zδ = 0)k−1P(Zδ > 0, inf
0≤t≤δ

Rt < −y)

≤ 1

P(Zδ > 0)
P(Zδ > 0, inf

0≤t≤δ
Rt < −y). (4.23)

By the many-to-one formula, we have

P(Zδ > 0, inf
0≤t≤δ

Rt < −y) ≤ E

(∑
u∈Lδ

1{inf0≤t≤δ ξ
u
t <−y} ≥ 1

)
≤ E

(∑
u∈Lδ

1{inf0≤t≤δ ξ
u
t <−y}

)

= eλδP

(
inf

0≤t≤δ
ξt < −y

)
∼ eλδ

q2
α
δy−αL(y), y → ∞,

where the last limit follows from (2.5). Combining the Markov property and (4.23) with
ν = Xnδ and y = H(n−2), we get

P
(
Bc
n, Qn,δ < (1− ϵ)H(e−λnδ log n) (ϑδWnδ)

1
α −H(n−2)|Fnδ

)
≤ 1

P(Zδ > 0)
P(Zδ > 0, inf

0≤t≤δ
Rt < −H(n−2)) ≤ 2δeλδ

P(Zδ > 0)

q2
α
n−2, (4.24)

where the last inequality holds for n large enough. Combining (4.21), (4.22) and (4.24), we
arrive at (4.20).

Using the Borel-Cantelli lemma and (4.20), we have that for any δ > 0,

lim inf
n→∞

Qn,δ

H(e−λnδ log n)
≥ (ϑδW )

1
α P∗-a.s.

Since H(e−λt log t) is increasing in t for t large, for any δ > 0, we have

lim inf
t→∞

Rt ∨ 0

H(e−λt log t)
≥ lim inf

n→∞

Qn,δ ∨ 0

H(e−λnδ log n)

H(e−λnδ log n)

H(e−λ(n+1)δ log(n+ 1)δ)
≥ e−λδ/α (ϑδW )

1
α ,

P∗-a.s. Letting δ → 0, we get the desired result. The proof is now complete.
2.

It follows from Lemma 4.5 that Lemma 4.1 also holds with Mn replaced by Rn. To get
the limit of Rt as t → ∞, we need to deal with sup0≤s≤tRs. If p0 = 0, then sup0≤s≤tRs =
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maxv∈Lt sup0≤s≤t ξ
v
s . Thus by the many-to-one formula, we have that

P
(

sup
0≤s≤t

Rs ≥ x

)
≤ E

(∑
v∈Lt

1{sup0≤s≤t ξ
v
s≥x}

)
= eλtP

(
sup
0≤s≤t

ξs ≥ x

)
.

In the following lemma, we show that this assertion is still valid when p0 > 0.

Lemma 4.6. For any x > 0 and t > 0, it holds that

P
(

sup
0≤s≤t

Rs ≥ x

)
≤ eλtP

(
sup
0≤s≤t

ξs ≥ x

)
.

Proof For r ≥ 0 and x ∈ R, let Pr,x denote the law of X starting with an individual at
position x at time r, and Pr,x stands for the law of ξ condition on {ξr = x}. We still use σo
to denote the death time of the initial particle. Fix t > 0. For any 0 ≤ r < t and x < 0, we
have that

ω(r, x) := Pr,x
(

sup
r≤s≤t

Rs < 0

)
= Pr,x

(
sup
r≤s≤t

Rs < 0, σo > t

)
+ Pr,x

(
sup
r≤s≤t

Rs < 0, r ≤ σo ≤ t

)
=: I1 + I2.

We first consider I1. Let T0 := inf{u ≥ r : ξu ≥ 0}. Since σo − r ∼ E(β) under Pr,x, we
have

I1 = Pr,x

(
sup
r≤s≤t

ξs < 0

)
Pr,x(σo > t)

= Pr,x(T0 > t)e−β(t−r) = Pr,x

(
T0 ≥ t, e−

∫ T0∧t
r βds

)
.

By the branching property and the strong Markov property, we have

I2 = Er,x
(
Pr,x

(
sup
r≤s≤t

Rs < 0, r ≤ σo ≤ t|Fσo

))
= Er,x

(∫ t

r

1{T0>u}

∞∑
k=0

pk

(
Pu,ξu

(
sup
u≤s≤t

Rs < 0

))k
βe−β(u−r)du

)

= Er,x

(∫ t∧T0

r

f(ω(u, ξu))βe
−β(u−r)du

)
,

where f(s) =
∑∞

k=0 pks
k. Consequently, ω(r, x) satisfies the equation

ω(r, x) = Pr,x

(
T0 > t, e−

∫ T0∧t
r βds

)
+ Er,x

(∫ t∧T0

r

f(ω(u, ξu))βe
−β(u−r)du

)
.

Then, 1− ω(r, x) satisfies the following equation

1− ω(r, x) = Pr,x

(
T0 ≤ t, e−

∫ T0∧t
r βds

)
+ Er,x

(∫ t∧T0

r

(1− f(ω(u, ξu)))βe
−β(u−r)du

)
.
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Using [21, Lemma 1.5], we get that g(r, x) := 1−ω(r, x) also satisfies the following equation

g(r, x) = Pr,x

(
T0 ≤ t, e

∫ T0∧t
r λds

)
+ Er,x

(∫ t∧T0

r

(1− f(ω(u, ξu)))βe
λ(u−r)du

)
− Er,x

(∫ t∧T0

r

µβg(u, ξu)e
λ(u−r)du

)
, 0 ≤ r < t, x < 0.

Note that 1− f(1− g)− µg ≤ 0. So we have that for 0 ≤ r < t, and x < 0,

g(r, x) ≤ Pr,x

(
T0 ≤ t, e

∫ T0∧t
r λds

)
≤ eλtPr,x(T0 ≤ t).

Using the time-homogeneity and space-homogeneity of branching Lévy processes and Lévy
processes, we get that for any t > 0 and x > 0,

P
(

sup
0≤s≤t

Rs ≥ x

)
= 1− P

(
sup
0≤s≤t

Rs < x

)
= g(0,−x)

≤ eλtP0,−x(T0 ≤ t) = eλtP

(
sup
0≤s≤t

ξs ≥ x

)
.

The proof is now complete. 2

Proof of Theorem 1.7: Since limt→∞
G(t)
h(t)

= ∞, we have that G(t)
t

≥ e
2λ
3α
t. By Lemma 4.5

with 3/2 < p < 2, we get that

lim sup
t→∞

Rn −Mn

G(n)
≤ 0, lim sup

t→∞

Mn −R+
n

G(n)
≤ 0, P∗-a.s. (4.25)

(1) Assume that
∑

n e
λnG(n)−αL(G(n)) <∞. By Theorem 1.6, we have P∗(∃T > 0, ∀t >

T,Rt > 0) = 1, which implies that

lim sup
t→∞

Rt

G(t)
= lim sup

t→∞

R+
t

G(t)
≥ 0, P∗-a.s..

Let Vn := supn≤t≤(n+1)Rt, n ≥ 0. Since G is non-decreasing, by Lemma 4.1 and (4.25), we
have, under P∗,

lim sup
t→∞

Rt

G(t)
≤ lim sup

n→∞

Vn
G(n)

≤ lim sup
n→∞

Vn −Rn

G(n)
+ lim sup

n→∞

Rn −Mn

G(n)
+ lim sup

n→∞

Mn

G(n)

≤ lim sup
n→∞

Vn −Rn

G(n)
.

By the Borel-Cantelli lemma, to get the desired result, it suffices to prove that, for any c > 0,

∞∑
n=1

P∗(Vn −Rn > cG(n)) <∞. (4.26)
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Observe that on {Zn > 0}, Rn ∈ R and

Vn = max
u∈Ln

(ξun + V u
n ) ≤ Rn +max

u∈Ln

V u
n ,

where
V u
n = sup

n≤t≤n+1
max

v∈Lt,u≤v
(ξvt − ξun).

It is clear that, conditioned on Fn, {V u
n , u ∈ Ln} are i.i.d. with the same law as (V0,P).

Thus

(1− q)P∗(Vn −Rn > cG(n)) ≤ P(Vn −Rn > cG(n), Zn > 0) ≤ P(max
u∈Ln

V u
n > cG(n), Zn > 0)

≤ E(Zn)P(V0 > cG(n)) = eλnP(V0 > cG(n))

≤ eλneλP( sup
0≤t≤1

ξt > cG(n)),

where the last inequality follows from Lemma 4.6. By (2.4), we have that

eλnP

(
sup
0≤t≤1

ξt ≥ cG(n)

)
∼ c−α

q1
α
eλnG(n)−αL(G(n)).

Thus (4.26) follows immediately.
(2) Assume that

∑
n e

λnG(n)−αL(G(n)) = ∞. By Lemma 4.1 and (4.25), we have

lim sup
t→∞

R+
t

G(t)
≥ lim sup

n→∞

R+
n

G(n)
≥ lim sup

n→∞

Mn

G(n)
− lim sup

n→∞

Mn −R+
n

G(n)
= ∞ P∗-a.s.,

which implies that lim supt→∞
Rt

G(t)
= ∞.

The proof is now complete.
As a consequence of Theorem 1.7 and Theorem 1.6, we have the following result.

Corollary 4.7. (1)

lim sup
t→∞

logR+
t − logH(t−1e−λt)

log log t
=

1

α
, P∗-a.s.. (4.27)

(2)

lim
t→∞

logR+
t

t
=
λ

α
, P∗-a.s.

Proof: (1) For any ϵ > 0, by Theorem 1.7 (1) with G(t) = H(t−1e−λt)(log t)(1+ϵ)/α,

lim sup
t→∞

Rt

H(t−1e−λt)(log t)(1+ϵ)/α
= 0, P∗-a.s..

which implies that for any δ > 0,
R+

t

H(t−1e−λt)(log t)(1+ϵ)/α ≤ δ when t is large enough. Thus for t

large enough,

logR+
t − logH(t−1e−λt) ≤ log δ +

1 + ϵ

α
log log t, P∗-a.s..
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Therefore

lim sup
t→∞

logR+
t − logH(t−1e−λt)

log log t
≤ 1 + ϵ

α
, P∗-a.s..

Letting ϵ→ 0, we get

lim sup
t→∞

logR+
t − logH(t−1e−λt)

log log t
≤ 1

α
, P∗-a.s..

For any ϵ ∈ (0, 1), by Theorem 1.7 (2) with G(t) = H(t−1e−λt)(log t)(1−ϵ)/α, we have for any

δ > 0, lim supt→∞
R+

t

H(t−1e−λt)(log t)(1−ϵ)/α ≥ δ, which implies that

lim sup
t→∞

logR+
t − logH(t−1e−λt)

log log t
≥ lim sup

t→∞

log δ

log log t
+

1− ϵ

α
=

1− ϵ

α
.

Therefore letting ϵ→ 0, we get

lim sup
t→∞

logR+
t − logH(t−1e−λt)

log log t
≥ 1

α
, P∗-a.s..

Hence we have (4.27).
(2) Note that

logH(t−1e−λt) =
λ

α
t+

1

α
log t+ log L̄(teλt) ∼ λ

α
t.

By (4.27), we have

lim sup
t→∞

logR+
t

t
=
λ

α
, P∗-a.s.

On the other hand, by Theorem 1.6, we have

lim inf
t→∞

logR+
t

t
− logH(e−λt log t)

t
= 0, P∗-a.s.

Note that

logH(e−λt log t) =
λ

α
t− 1

α
log log t+ log L̄(eλt/ log t) ∼ λ

α
t.

The proof is now complete. 2

Remark 4.8. Since H(y) = y−1/αL̄(y−1), we have

lim
y→0

logH(y)

log y−1
= 1/α. (4.28)

Assume that L(x) = (log x)r, where r ∈ R. By (4.28), we have that

H(y) = y−1/α(logH(y))r/α ∼ α−r/αy−1/α(log(y−1))r/α, y → 0.

Hence we have

logH(t−1e−λt)− λ

α
t− 1 + r

α
log t→ r

α
log(λ/α), t→ ∞,

and
H(e−λt log t) ∼ (λ/α)r/αtr/α(log t)−1/αeλt/α, t→ ∞.
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5 Appendix

In this section, we give some further discussion of Assumption 2 We first recall Karamata’s
theorem ([11, Theorem 1.5.11]).

Lemma 5.1. (1) If L is slowly varying at ∞ and locally bounded in [a,+∞) for some
a > 0, then for r > −1,∫ x

a

trL(t)dt ∼ 1

r + 1
xr+1L(x), x→ +∞.

(2) If L is slowly varying at infinity, then for r > 1,∫ +∞

x

t−rL(t)dt ∼ 1

r − 1
x1−rL(x), x→ +∞.

Example 5.2. (Strictly Stable process.) Let ξ be a strictly α-stable process, α ∈ (0, 2),
on R with Lévy measure

n(dy) = c1x
−(1+α)1(0,∞)(x)dx+ c2|x|−(1+α)1(−∞,0)(x)dx,

where c1, c2 ≥ 0, c1 + c2 ≥ 0, and if α = 1, c1 = c2 = c. The Lévy exponent of ξ is given by,
for θ > 0,

ψ(θ) =



∫
R
(eiθy − 1− iθy)n(dy), α ∈ (1, 2);∫

R
(eiθy − 1)n(dy), α ∈ (0, 1);∫

R
(eiθy − 1− iθy1|y|≤1)n(dy) + iaθ, α = 1

=


−αΓ(1− α)(c1e

−iπα/2 + c2e
iπα/2)θα, α ∈ (1, 2);

−αΓ(1− α)(c1e
−iπα/2 + c2e

iπα/2)θα, α ∈ (0, 1);
−cπθ + iaθ, α = 1,

where a ∈ R is a constant. It is clear that ψ satisfies Assumption 2. For more details on
stable processes, we refer the readers to [34, Section 14].

Note that for α ̸= 1, e−c|θ|
α
, θ ∈ R, is the characteristic function of a strictly α-stable

random variable if and only if | tan(πα/2)|ℜ(c) ≥ |ℑ(c)|.

Let {(ξt)t≥0} be a Lévy process with the generating triplet (a, b, n), that is,

ψ(θ) = logE(eiθξ1)

= iaθ − 1

2
b2θ2 +

∫
R/{0}

(eiθy − 1− iθy1{|y|<1})n(dy),

where a ∈ R, b ≥ 0, and
∫
R/{0}(1∧y

2)n(dy) <∞. Let r(x) : R → R be a bounded measurable

function, satisfying

r(x) =

{
1 + o(x), |x| → 0;

O( 1
|x|), |x| → ∞.

(5.1)
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Then ψ can be rewritten as

ψ(θ) = iarθ −
1

2
b2θ2 +

∫
R/{0}

(eiθy − 1− iθyr(y))n(dy),

where ar = a+
∫
R/{0} y(r(y)− 1{|y|<1})n(dy). The triplet of ξ is written as (ar, b, n)r.

For any t > 0, we define a measure nt(dy) as follows: for any positive function g,∫
R/{0}

g(y)nt(dy) =

∫
R/{0}

g(yt−1)n(dy).

Lemma 5.3. If there exist q1, q2 ≥ 0 such that

lim
t→+∞

tαL(t)−1n(t,+∞) =
q1
α
, and lim

t→+∞
tαL(t)−1n(−∞,−t) = q2

α
, (5.2)

then as θ → 0+,

θ−αL(θ−1)

∫
R
(eiθy − 1− iθy1{|θy|<1})n(dy) →

∫
R
(eiy − 1− iy1{|y|<1})να(dy),

where να(dx) := q1x
−1−α1(0,+∞)(x)dx+ q2|x|−1−α1(−∞,0)(x)dx.

Furthermore, if 0 < α < 1, then as θ → 0+,

θ−αL(θ−1)

∫
R
(eiθy − 1− iθy1{|y|<1})n(dy) → −αΓ(1− α)(q1e

−iπα/2 + q2e
iπα/2); (5.3)

if 1 < α < 2, then as θ → 0+,

θ−αL(θ−1)

∫
R
(eiθy − 1− iθy)n(dy) → −αΓ(1− α)(q1e

−iπα/2 + q2e
iπα/2). (5.4)

Proof: For any t > 0, let ñt(dy) := tαL(t)−1nt(dy). By (5.2), we have that for any x > 0,

ñt(x,∞) = tαL(t)−1n(tx,∞) → q1
α
x−α = να(x,∞)

and
ñt(−∞,−x) = tαL(t)−1n(−∞,−tx) → q2

α
x−α = να(−∞,−x).

Thus, for any g ∈ C0
b (R), ∫ ∞

0

g(y)ñt(dy) →
∫ ∞

0

g(y)να(dy). (5.5)

We claim that

lim
ε↓0

lim sup
t→+∞

∫
0<|y|<ε

y2ñt(dy) = 0. (5.6)
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In fact, by Fubini’s theorem, we have that∫
0<y<ε

y2ñt(dy) = tαL(t)−1

∫ ϵ

0

y2nt(dy) = tαL(t)−1

∫ ϵ

0

(∫ y

0

2xdx

)
nt(dy)

= tαL(t)−1

∫ ε

0

2xdx

∫ ε

x

nt(dy) ≤ tαL(t)−1

∫ ε

0

2xnt(x,∞)dx

= tα−2L(t)−1

∫ tε

0

2xn(x,∞)dx.

Note that

tα−2L(t)−1

∫ 1

0

2xn(x,∞)dx = tα−2L(t)−1

∫
(1 ∧ y2)n(dy) → 0, t→ ∞.

By (5.2) and Karamata’s theorem, we have, as t→ ∞,∫ tϵ

1

xn(x,∞)dx ∼ q1
α

(tϵ)2−αL(t)

2− α
.

Thus we have

lim sup
t→+∞

∫ ε

0

y2ñt(dy) ≤
q1
α

ε2−α

2− α
.

Similarly, we have

lim sup
t→+∞

∫ 0

−ε
y2ñt(dy) ≤

q2
α

ε2−α

2− α
.

Letting ϵ→ 0, we get (5.6).
By (5.5) and (5.6), and applying [34, Theroem 8.7], we obtain that, for any bounded

continuous function r satisfying (5.1),

lim
t→+∞

∫
R
(eiθy − 1− iθyr(y))ñt(dy) =

∫
R
(eiθy − 1− iθyr(y))να(dy). (5.7)

Since vα({y}) = 0 for all y ∈ R, thus (5.7) holds for r(y) = 1{|y|≤1}. Thus we have that

lim
t→+∞

tαL(t)−1

∫
R
(eit

−1y − 1− it−1y1{|y|<t})n(dy) =

∫
R
(eiy − 1− i y1{|y|<1})να(dy).(5.8)

(1) Now we assume that 0 < α < 1. Note that for t > 1,∫ t

1

yn(dy) =

∫ t

1

(∫ y

0

dx

)
n(dy) =

∫ 1

0

dx

∫ t

1

n(dy) +

∫ t

1

dx

∫ t

x

n(dy)

= n(1, t) +

∫ t

1

n(x, t)dx

= n(1, t) +

∫ t

1

n(x,+∞)dx− (t− 1)n(t,+∞).
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By Lemma 5.1, we have that
∫ t
1
n(x,+∞)dx ∼ q1

α(1−α)t
1−αL(t). Thus we have

lim
t→+∞

tαL(t)−1t−1

∫ t

1

yn(dy) =
1

1− α

q1
α

− q1
α

=

∫ 1

0

yνα(dy). (5.9)

Similarly, we have

lim
t→+∞

tαL(t)−1t−1

∫ −1

−t
yn(dy) =

1

1− α

q2
α

− q2
α

=

∫ 0

−1

yνα(dy). (5.10)

By (5.8), (5.9) and (5.10), we obtain that (5.3) holds.
(2) Now we consider the case when α ∈ (1, 2). By Fubini’s theorem and lemma 5.1, we

have that∫ +∞

t

yn(dy) =

∫ +∞

t

(∫ y

0

dx

)
n(dy) =

∫ t

0

dx

∫ ∞

t

n(dy) +

∫ +∞

t

dx

∫ +∞

x

n(dy)

= tn(t,+∞) +

∫ +∞

t

n(x,+∞)dx

∼ q1
α
tα−1L(t) +

q1
α(α− 1)

tα−1L(t) =
q1

α− 1
tα−1L(t).

Thus

lim
t→+∞

tαL(t)−1

∫ +∞

t

t−1yn(dy) =

∫ +∞

1

yνα(dy). (5.11)

Similarly, we have

lim
t→+∞

tαL(t)−1

∫ −t

−∞
t−1yn(dy) =

∫ −1

−∞
yνα(dy). (5.12)

Thus by (5.8), (5.11) and (5.12), we obtain that (5.4) holds.
The proof is now complete.

Theorem 5.4. There exist a constant c∗, α ∈ (0, 2) and a function L slowly varying at ∞
such that

ψ(θ) ∼ −c∗θαL(θ−1), θ → 0+, (5.13)

if and only if the following two conditions hold:

(1) there exists nonnegative numbers q1, q2 such that

lim
t→+∞

tαL(t)−1n(t,+∞) =
q1
α
, and lim

t→+∞
tαL(t)−1n(−∞,−t) = q2

α
;

(2) if α ∈ (1, 2), a+
∫
{|y|>1} yn(dy) = 0; if α = 1, q1 = q2 and

lim
t→∞

L(t)−1

(
a+

∫
1<|y|<t

yn(dy)

)
=: c0

exists.
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Moreover, the relationship between c∗ and (q1, q2, c0) is as follows: if α ̸= 1,

c∗ = αΓ(1− α)
(
q1e

−iπα/2 + q2e
iπα/2

)
,

and if α = 1, c0 = −ℑ(c∗) and q1 = q2 = ℜ(c∗)/π.

Proof: First, we prove the sufficiency. Assume the two conditions hold. If α ∈ (0, 1), then
by Lemma 5.3, we have that as θ → 0+,

θ−αL(θ−1)−1ψ(θ) → −αΓ(1− α)
(
q1e

−iπα/2 + q2e
iπα/2

)
.

If α ∈ (1, 2), then as θ → 0+,

ψ(θ) = −1

2
b2θ2 +

∫
R
(eiθy − 1− iθy)n(dy) ∼ −αΓ(1− α)

(
q1e

−iπα/2 + q2e
iπα/2

)
θαL(θ−1).

If α = 1, then as θ → 0+,

ψ(θ) = i

(
a+

∫
1<|y|<θ−1

yn(dy)

)
θ −−1

2
b2θ2 +

∫
R
(eiθy − 1− iθy1{|y|≤θ−1})n(dy)

∼ (ic0 − q1π)θL(θ
−1).

Now we assume that (5.13) holds. It is clear that (5.13) is equivalent

lim
t→+∞

et
αL(t)−1ψ(θt−1) = eψ̃(θ), θ > 0, (5.14)

where ψ̃(θ) = −c∗θα.
Note that the left side of (5.14) is the characteristic function of an infinitely divisible

random variable Yt with Lévy measure ñt(dy). By [34, Theorem 8.7 (1)], if (5.14) holds,

then eψ̃(θ) is the characteristic function of an infinitely divisible random variable. By the

expression of ψ̃(θ), eψ̃(θ) must be the characteristic function of a strictly α-stable random
variable Y . Thus if α ̸= 1, then | tan(πα/2)|ℜ(c∗) ≥ |ℑ(c∗)|. Consequntely, the Lévy measure
of Y is given by

να(dx) := q1x
−1−α1(0,+∞)(x)dx+ q2|x|−1−α1(−∞,0)(x)dx,

where q1 ≥ 0 and q2 ≥ 0 satisfy the following equation: if α ̸= 1,

c∗ = αΓ(1− α)
(
q1e

−iπα/2 + q2e
iπα/2

)
,

and if α = 1, q1 = q2 = ℜ(c∗)/π.
By [34, Theorem 8.7 (1)], we get that for any g ∈ C0

b (R),

lim
t→+∞

tαL(t)−1

∫
R/{0}

g(t−1y)n(dy) =

∫
R/{0}

g(y)να(dy). (5.15)
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Because να({x}) = 0, ∀x ∈ R ,then (5.15) holds for g(x) = 1(1,∞)(x) and g(x) = 1(−∞,−1)(x),
i.e.,

lim
t→+∞

tαL(t)−1n(t,+∞) = να(1,+∞) =
q1
α
;

lim
t→+∞

tαL(t)−1n(−∞,−t) = να(−∞,−1) =
q2
α
.

Now using Lemma 5.3, we can get the second condition holds.
The proof is now complete.

Remark 5.5. For α = 1, we can assume that Lévy measure n is symmetric and a = 0.
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