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Law of iterated logarithm for supercritical symmetric branching
Markov process

Haojie Hou* Yan-Xia Ren’ Renming Song!

Abstract

Let {(X¢)i>0, Pz, x € E} be a supercritical symmetric branching Markov process on a locally
compact metric measure space (FE,u) with spatially dependent local branching mechanism.
Under some assumptions on the semigroup of the spatial motion, we first prove law of iterated
logarithm type results for (f, X;) under the second moment condition, where f is a linear
combination of eigenfunctions of the mean semigroup {7;,t > 0} of X. Then we prove law
of iterated logarithm type results for (f, X;) under the fourth moment condition, where f €
T.(L*(E, u)) for some r > 0.
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1 Introduction

Let {Z,, : n € N} be a supercritical Galton-Watson process with Zy = 1 and E(Z;) = m € (1,00). It
is well-known that, under the assumption E(Z?) < oo, the process W,, := Z,,/m™ is a non-negative
L? bounded martingale and thus converges almost surely and in L?(P) to a non-negative limit We.
Heyde [I3, [15] found the rate at which W, — W, converges to 0: m™?(W,, — W) converges in
distribution to v/WaN(0,02), where N(0,02) is a normal random variable, independent of W,
with variance o2 := mgl_m (E(Z?) — m?). The fluctuation in the almost sure sense of W,, — Wy,
was established by Heyde [14]. Under the assumption E(Z3) < oo, Heyde [14] proved that, on the
event {Wy, > 0}, it holds almost surely that

n/2( ) n/2( )
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Later, Heyde and Leslie [17] removed the assumption E(Z3}) < co and proved (I.1]) under the second
moment condition only. Since % = 1 almost surely on {W,, > 0}, it follows from (I.1)) that
almost surely on {W, > 0},
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Therefore, results like are called “laws of iterated logarithm” (LIL) in the literature. See [I8),
Remark 1.3] and [19, Remark 2.4].

For supercritical (finite) multitype Galton-Watson processes {Z,, : n € N}, Kesten and Stigum
[20, 21] established central limit theorems by using the Jordan canonical form of the expectation
matrix M. Asmussen [2] extended to Z, - a, where a is a vector satisfying certain conditions.
In the continuous time setting, central limit type theorems were proved by Athreya [4} (5] [6] and an
analog of was given in [2, Theorem 2].

There are also some LIL type theorems for more general branching processes. For branching
random walks, Tksanov and Kabluchko [I8] proved an LIL type theorem for Biggins’ martingale.
For general Crump-Mode-Jagers branching processes, Iksanov et al [19] proved an LIL type theorem
for Nerman’s martingale. All known LIL type results for branching processes, including branching
random walks and Crump-Mode-Jagers branching processes, are LIL for L? bounded martingales.
For some related results for L? bounded martingale in the general case, see [16] 29].

In this paper, we are interested in supercritical branching Markov processes with spatially
dependent (local) branching mechanism. We always assume that E' is a locally compact separable
metric space and that p is a o-finite Borel measure on E with full support. We assume that 0 is a
point not in E and put Ey := E U {9}. Any function f on E is automatically extended to Ey by
defining f(0) = 0. We assume that £ = {&,P,,x € E} is a p-symmetric Hunt process on E and
that ¢ := inf{t > 0: & = 0} is the lifetime of £. The semigroup of ¢ is denoted by {F; : t > 0}.
Our assumption on ¢ is as follow:

(H1) (a) There exists a family of continuous strictly positive symmetric functions {p:(x,y) : ¢t > 0}
on I¥ x E such that

Puf(x) = /E P, y) () (dy).

(b) For any t > 0, we have

/ pe(z, x)p(der) < co.
E

(c) For any t > 0, z — p;(x, z) belongs to L?(E, j1).

A branching Markov process can be described as follows: initially there is a particle located
at © € E and it moves according to {£,P,}. When the particle is at site y, the branching rate is
given by S(y), where (3 is a non-negative Borel function, that is, each individual dies in [t, ¢ + dt)
with probability 3(&)dt + o(dt). When an individual dies at y € F, it splits into k particles with
probability pi(y). Once an individual reaches 0, it disappears from the system. All the individuals,
once born, evolve independently.

Our assumption on the branching particle system is as follow:

(H2) (a) B(x) is a non-negative bounded Borel function on E.
(b) {pr(x): k=0,1,...} satisfies

o0
sup Z k2pp(x) < oco.
zeF

Let M,(E) be the space of finite atomic measures on F and By(E) the set of bounded Borel
functions on E. For t > 0 and B € B(E), let X;(B) denote the number of particles alive at time ¢
and located in B. Then X = {X; : t > 0} is an M, (E)- valued Markov process. For any x € F,



we denote by P, the law of X with initial value X¢ = 0. For any function f in E and v € M,(E),

define (f,v) := [ f(y)v(dy) and | fll2 := 1/ [ 2 (y)u(dy). Let
w(t,z) = E, (e_<f’Xt>> ,

then it is well-known that w(¢, x) is the unique positive solution to the equation

~ B ([ (et —s60)a5) + B, (+/60).

here ¢(z,2) = B(z) (i opr(2)zF —2) if v € E,z € [0,1], and ¥(d,z) = 0,z € [0,1]. For

k=1,2,..., define
k

A®) () = %w(aj,z)‘zzl. (1.2)

In particular,

Al (kak ) AP)(2) = Ble) S k(k - Dpi(a)

k=0

For any f € By(F) and (¢, 00) X E, define

Tf() 1= By [ef AV f(g,)]

then it is well-known that for any ¢ > 0 and x € E, T} f(z) = E, ({f, X¢)).
Under the assumption (H1) and (H2), there exists a family of continuous strictly positive
symmetric functions {¢;(z,y) : t > 0} on E x E such that

T,f(z) = [E ae(z, ) f (0l dy).

As summarized in [24], for any t > 0, q(z,7) € L*(E,u) N L?(E,u). Moreover, (T;);>0 is a
strongly continuous semigroup and, for any ¢ > 0, 7} is a Hilbert-Schmidt operator. Let £ denote
the infinitesimal generator of {T; : ¢+ > 0} in L*(E,u). It is well known that the spectrum of £
is discrete. We list the eigenvalues —\; > —As > ... in decreasing order. The first eigenvalue
—A1 is simple and the corresponding eigenfunction ¢;(z) can be chosen to be strictly positive
everywhere and continuous. Without loss of generality, assume that ||¢1]l2 = 1. For k& > 1, let

{¢§~k),j =1,...,np < 0o} be an orthonormal basis of the eigenspace associated with —\;. We know
that {¢§k),j =1,2,...,n5;k =1,2,...} forms a complete orthonormal basis of L?(E, 1) and all the

are continuous, here (;551) := ¢1. Furthermore, all the eigenfunctions gZ)S-k) belong to L*(E, ).
For any =,y € E and t > 0, we have the following expansion for ¢:

oo
-SSP 13
k=1 7j=1
We assume that the branching Markov process is supercritical, that is
(H3) A1 <0.

We will also assume that



(H4) (a) {T; : t > 0} is intrinsically ultracontractive, that is, for any ¢ > 0, there exists ¢; > 0 such

that for all x € F,
Va(z, ) < cpdr(x).
(b) ¢1 is bounded on E.

The assumption (H4) is stronger than (H1)(c). This stronger assumption will be used to control
the fluctuation of the branching Markov process in small time. Indeed, in the proof of Lemma
we first need to give a suitable upper bound for the martingale difference in the small time
interval ¢t € [nd, (n + 1)J) (see below), and then we need to control the variance of the
martingale in small time. For Ztk 7 defined in , although one can apply the inequality below

(2.11) in [24] to show that e()‘l_Q)‘k)th’j < e)‘1t<T(n+1)5_t ((¢§k))2) , Xt), we do not know how to

show sup;~ e’\1t<T(n+1)5_t ((¢§k))2) , X¢) < oo without (H4).

For a list of spatial processes satisfying (H1) and (H4), see [25] Section 1.4]. Although branch-
ing OU processes do not satisfy these assumptions, parts of our argument still work for branching
OU processes, see Remark [2.7] below.

For a brief introduction to intrinsically ultracontractive semigroups, one can refer to [8, Section
3]. For k> 1 and 1 < j < ng, define

Wi = e/\kt<¢§-k)a Xt).

According to [24, Lemma 3.1], when A; > 2\, o limy oo Wtk’j exists P,-a.s and in L?. For
simplicity, we set W; := th’l and W, := Wk Define £ := {Ws = 0}.

Some spatial central limit theorems were established in a framework a little more general than
our framework, generalizing the corresponding results for branching OU process [1]. To state the
main results of [24], we first introduce some notations. Denote by (-, -) the inner product in L?(E, ).
Every f € L?(E, 1) admits the following L? expansion

0o Nk N
F=32>ao, (1.4)
k=1 j=1
where af = (f, qﬁg-k)). Define
v(f) := inf{k > 1 : there exists j with 1 < j < nj such that a? # 0},

here we use the usual convention inf ) = co. Define

fu@) = Y S adbeP(@), fal@):= S Y dielV (), (1.5)

20 <A1 j=1 22, =\ j=1

fsm(x) = f(.CC) - fla(x) - fcr(x)v (16)
Ny (f)

A@) =Y a DD @), fla) = f(z) - ful2). (1.7)
j=1

Now for f € L2(E,p) N LY(E, p), we define o2,,(f),02.(f) and o2,(f) by

oo (f) = /OooeWA@’-<Tsf>2,¢1>ds+<f2,¢1>, o2 (f) = (AP . f ¢1), (1.8)
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oA (f) = /0 e (a0 (3 Aksza% ) 01 )ds — (fu) 00). (19)

2A k<M1
The spatial central limit theorems, [24, Theorems 1.8-1.12], can be stated as follows.

Theorem 1.1 (i) Small branching rate: If f € L*(E,u) N L*(E,pu) with A1 < 2X\,(p), then
02, (f) € (0,00) and as t — oo, under P, (-|E°),

sm

eAlt/2<fv Xt> £> Gsm VW,

where W* has the same law as Wy conditioned on E¢, Gy ~ N(O,Ugm(f)) and W* is
independent of Ggp,.

(ii) Critical branching rate: If f € L*(E,pu) N LY(E, p) with A = 2\, then o2.(f) € (0,00)
and as t — oo, under P,(-|€°),

12N (f X)) b G/ W

where W* has the same law as Wy conditioned on ¢, Ger ~ N (0,02.(f)) and W* is
independent of Gep.

(iii) Large branching rate (I): If f € L*(E,u) N LY(E, p) with Ay > 2Xy(p) and for = 0, then
02, (fsm) + 02, (f) € (0,00) and as t — oo, under Py (-|E°),

ny
eMit/2 (f, X1) — Z e_)‘ktZa?Wféj E)Glml\/ﬁ.

275 <A1 j=1

where W* has the same law as W, conditioned on £¢, Giq1 ~ N( 02 (fom) + O'la(f)) and
W* is independent of Giqg1-

(iv) Large branching rate (I1): If f € L*(E,u) N L*(E, p) with Ay > 2My(p) and fer # 0, then as
t — oo, under Py(-|€°),

ng
t=1/2eMt/2 (f, X1) — Z e_’\ktZaﬁWf&j i)Gla’Q\/W.

20 <A1 7j=1

where W* has the same law as Wy, conditioned on £¢, Giaa ~ N(0,0'gr(fcr)) and W* is
independent of Gig.2.

In this paper, we will complement the CLT type results above for (f, X;) with law of iterated
logarithm type results for (f, X¢).

2 Main results

Our first four results are LIL type results in the special case when f(z) = 375", D77, J ( ) for

some m € N and a? € R. In the next four theorems, we assume (H1)—-(H4) hold and f is of the
form above. Recall that & = {W,, = 0}.



Theorem 2.1 Small branching rate case: If \1 < 2\, (), then Py (-|E)-almost surely,

)\1t/2 A1t/2
lim sup S Xe) =2, ([ MW, ligninf e X =—\02, ([ IW.
—

t—00 v2logt o0 V2logt

Remark 2.2 Note that Theorem is equivalent to that Py (-|E€)-almost surely,

)\175/2 X
lim sup — XD /o2 T
t—00 \/210glog<¢1,Xt>

)\115/2 X
lim inf —— (f Xo) = -2, ([ )Wx.
t—o0 \/210glog<¢1,Xt>

Thus, the result above is a law of iterated logarithm in some sense. In this paper, we will call results
like Theorem “law of iterated logarithm” following the convention of [18, [19].

Theorem 2.3 Critical branching rate case: If A1 = 2\, (y), then Py (:|€¢)-almost surely,

MRS X MRS X

. € t . . € t

limsup ————= = \/02.(f)Weo, liminf ——=" = —\/02.(f)Wr.

t_mop V2tloglogt o (f)Woo t—oo +/2tloglogt & (f)Woo

Remark 2.4 For the special case where X is a (finite) multitype branching process and the mean
matriz M is symmetric, our results are consistent with [2, Theorem 2]. More precisely, let p; >
pa > -+ > pg be the eigenvalues of M and, for j=1,..., K, let {vf :1 <k < nj} be a basis of the

eigenspace corresponding to pj. One can choose the eigenvectors v;? so that {v;?, 1<j<K1<k<

n;} forms an orthonomal basis. For any vector a, define y(a) := inf {j :dk < nj; such that a- vf % O}
and X(a) := —10g py(q), where a - b stands for the inner product. Asmussen [2, Theorem 2] proved
that, if 2X\(a) > A1 and E(|Z1|?) < oo, then there exists a deterministic function Cy = Cy(a) and a
non-negative random variable W such that, almost surely on the event {W > 0},

X - X -

lim sup L vW, and liminf L —VvW.
t—o0 Ct t—o0 Ct

Moreover, when 2\(a) > A1, C; = a(a)e~ "2 logt, and when 2\(a) = \;, Cy = o(a)e /2 loglog t.

Here o(a) is a positive constant and is given by (1.9).

The following two theorems give laws of iterated logarithm for (f, X;) for the case that A\ >
2M,(p)- As far as we know, there is no counterpart to these two results for multitype branching
processes.

Theorem 2.5 Large branching rate case (1): If \1 > 2\y(p) and for = 0, then Py (-|€)-almost
surely,

etit/? ((f, Xi) = Pongen, € W 0E akW@)
i P =) — 2 (fom) + 02 () Wao 2.1
I?i)igp \/W \/(Usm(f ) + Ula(f)) ) ( )

and

eAt/2 <<f Xt> _ ZZA e~ Akt Zﬂk aka’j)
L. ) <A1 j=1%j "0 _ 9 9
lin inf T = (02 (Fe) + 02 () Wee (2.2)




Asin Remark we can replace log ¢t by the asymptotically equivalent expression log log(¢1, Xy),
thereby justifying the use of the term “law of the iterated logarithm”.

Theorem 2.6 Large branching rate case (I): If A1 > 2\, ;) and fo # 0, then Py (-|€°)-almost
surely,

_ k,
eAlt/Z <<f7Xt> ZQAk<)\1 Akt Z] 1 ?W J)

li 2 cr Woo
I?Ligp V2tloglogt ar(fer)
and
N2 (£, X1) = oo, € S abWEY)
lim inf =02 (fer)W.

t—00 v2tloglogt

Remark 2.7 In the case of branching OU process, (H4) is not satisfied and (H1)(c) should be
replaced by “There exists to > 0 such that py(z,x) € L2(E, i) for any t > to”. We mention here
that for a branching OU process, there exists t = t(to) > 0 such that the proofs in the discrete-time
setting {nd} in Section still work for any 6 > t. Thus for branching OU processes, one can get

similar laws of iterated logarithm for f ="', Z] 1 ] ( ) in discrete time {né} for 6 >t.

If f(z) = )( for some k € N and j < ny, then eM!(f, X;) is a martingale. Therefore,
Theorems [2.]] -, - and 2.5| can be regarded as LIL for martingales. In this case, the scenario
dealt with in Theorem [2.6| does not occur. In the proofs, we use the fact that e’\kt( f,Xy) is a
martingale to go from dlscrete time to continuous-time. It is natural to ask whether the results of
Theorems [2.1] H ., . and remain valid for more general f € L?(E, )N L*(E, i1). However, for
general f =3 7, Z * J (f, X:) is not well-approximated by martingales. The arguments
in the proofs of Theorems . 2.5 and [2.6] no longer work. We need the following stronger
assumption and a different argument.

(H5) sup,cp Y peg kpr(z) < oo

We will show that, if (H5) also holds, then the conclusions of Theorems and
hold for functions in the following class:

T(E) := {f : there exists r > 0 and g € L*(E, u) such that f = Tv9} .
Here is our law of iterated logarithm theorem for general f € T(E).

Theorem 2.8 If (H1)-(H5) hold, then the conclusions of Theorems and [2.6 hold
for any f € T(E).

The proof of Theorem is different from that of Theorems and One of the
key differences is that we choose a different discretization scheme.

We end this section with a brief description of the strategy and organization of this paper. In
Section [3], we gather some useful results and give a general law of iterated logarithm for sequence of
random variables. In Section [d] we prove Theorems and In Subsection [4.1] we give
some general results and we prove Theorems and [2.6]in Subsections respectively.
We first prove a law of iterated logarithm in the discrete-time {nd,n € N} for any given § > 0.
Then we prove our laws of iterated logarithm for continuous time ¢ for linear combinations of the
eigenfunctions under optimal second moment condition. The argument for discrete-time is inspired
by [1§] and the argument for continuous time is inspired by [3, Section 12] (for example, see the
proof of [3, Theorem 12.4, p.340]) and [19, p.20-p.22].



In Section [5] we prove Theorem 2.8 In Subsection we first give an upper bound, see Propo-
sition n for the limsup of an expression involving (f, Xt> for any f € T(E) with A, > 0, and
then use this proposition to prove Theorem 2.8 The rest of the subsection is devoted to the proof of
Proposmon To prove this proposition, first write f as the sum of S](c ") and Fgc ), see , with

Sj(cn) being linear combinations of eigenfunctions (the number of eigenfunctions involved increases
asn — 00). For f € T(E), we can compare the small-time behavior of (T}, , tS](cn), X;) and (f, Xy)

for t € [ty,tnt1). The contribution of I‘( ") i negligible. Thus we get that (T}, ., —+f, X¢) = (f, X¢)
for any t € [t,, t,+1) when n is large enough The precise argument can be found in Lemmasn7 -
and Corollary 5.4 Lemma [5.5]is a rough bound for the conditioned variance of (T, f, X¢,) where
either s, = 0 or s, = tp41 — tn. Under the fourth moment condition, we give an upper bound for
E. ((f, Xt>4), see Lemma (whose proof is postponed to Subsection , for any f € T(E) with
Ay(r) > 0. Using Lemma we give an upper bound for the limit superior of the discrete-time
version of the quantity in Proposition see Lemma Finally, we treat the continuous-time
setting using an idea roughly similar to that used in Lemma [£.4]

We believe that the general idea of this paper can be adapted to other branching Markov pro-
cesses such as non-symmetric case [27], non-local branching Markov process [9] and superprocesses
12l 22 26l B0]. We do not pursue this in this paper.

3 Preliminary

Throughout this paper, we always assume that (H1)-(H4) hold. We use F'(z) S, 7. G(z), 2 € E

to denote that there exists some constant C = C(r, f, K, ...) such that F(z) < CG(x) for all z € E.
Any function f € L?(E,p) admits the expansion . We always use this expansion when

dealing with f € L?(E, u). It follows from [24, (2.1)] that for any f € L?(E,u), t >0 and x € E,

Tf@) =Ea((f, X)) = > e ™S ako® (). (3.1)
k=y(f) =

By [24, (2.11)], we also have for any f € L*(E,u) N LY(E, ), t > 0 and = € E that

t
E, ((f,X0)%) = /0 T, [A® - (T )| (@)ds + (/) (@). (3.2)

Define
Var, (Y|F) := E, [V2|F] - (B, [Y|F])*.

Here and throughout the paper we use the notation Var,(Y) =E, (Y?) — (E.(Y))?.
Lemma 3.1 If f € L?(E, 1), then for any to > 0, we have
MO f (@) + DT (2)] St | fll2dr (), ¢ > to, 2 € B,
where f is defined in . Consequently, Tyf € L*(E, p)NLA(E, p) for anyt > 0 and f € L*(E, p).

Proof: The upper bound for MW Ty f(2)| follows from [24, (2.10)] and (H4). With f replaced
by f, we see that

DT (@) Sto Ifllor(x), > to,x € E.
Now the upper bound for |7} f(x)| follows from the fact that || f|j2 < ||f||2- O



Lemma 3.2 Assume f € L?(E, )N LY(E, ). Recall that 2,,(f),0%.(f) and o (f) are defined in

(.39

(1) If A < 2Xy(5), then for any x € E,
lim M2, ((f, X)) =0, lim M'E, ((f, X0)?) = 02,(£é(2).

Moreover, for any ty > 0,

ME, ((f, X0)%) Sto (IF13 +11F117) 61(2), ¢ > to,z € E. (3.3)
(2) If M1 = 2\ (5), then for any fized to > 0, it holds that
]t*leht\farx ((f, X)) — o?r(f)m(a:)‘ Stos t01(2), t>to,x € E.

3) If \y > 2X\(p), then for any x € E,
v(f)

lim *MO'E, ((f, X0)?) = 0} () 12/ DT [A(Q) : Jﬂ (z)ds.

— 00 0
Moreover, for any tg > 0,
62/\7(f)tE:17 (<f7 Xt>2) gto,f ¢1($)7 t> th re k.

Proof: All the assertions, except (3.3)), follow from [24, Lemma 2.3] and (H4). The proof of (3.3))
is just a refinement of the proof of [24, (3.13)]. Combining (3.2) and Lemma we get that for
any t > tgand z € F,

ME, ({f,X0)?) = e /0 T A (f 2] (0)ds + ML () @)
At ! fo/2 2 2
<y e (/to/2+ /0 )E—s[(Tsf)](w)dSHf a1 ()

t
<o M1 /

to/?
e PO T[] (x)ds + eMt/ Ti—s [(Ts)?] ()ds + [ f2]|2¢1(x)-
t0/2 0

Let kg € N be such that 2XA;,—1 < A1 < 2)g,. Then )‘v(f) > A,- Therefore, combining the
boundedness of ¢; in (H4), Lemmaand the fact that (Tsf)? <y, Ts(f?) for (s,2) € (0,t0/2) x E,
we get

ekltEx (<f, Xt>2)

stz [T o s ae [T 2 2
St € ||f||2/t/2€ R Ty s [p1] (z)ds + e™ /0 Tis [To(f*)] (x)ds + || fllio1(2)

2 ! (M—2Xp,)s 80 At (42 2
=SB [ e s @) + ST + 1T
Sto (IIF13 + 11 £117) ¢1.(2),
which implies . O

Lemma 3.3 Suppose that f € L*(E, p)NL*(E, u) with Ay > 2M(y) and recall f is defined in (11.7)).
Then there exists c(f) > 0 such that for any t > 1,

EMWDIR, {(f, Xt>2} g e e,

9



( fy — )‘v(f)) if

Proof: See the proof of [24, Theorem 1.6]. Moreover, one can choose c¢(f) =
if 2\ ~(F ) > A1 > 2 ~(f)

Al > 2)\7(15) and C(f) = ()\'y(f)_)W(f)) if A1 =2\ ~(f ) and C(f) = ()\1—2)\7(]0))
O

As an application of Lemma we have the following strong law of large numbers type result.

Lemma 3.4 For any f € L*(E, ) N LY(E, 1) and § > 0, we have

lim 6)‘1"5<f, Xns) = ([, 01)Woo, Pyp-a.s.

n—oo

Proof: By Lemma we have for any n € N,
62)\1n6Ex |:<]E’ Xn6>2] S/f e—c(f)nd‘

Thus, for any € > 0, by Markov’s inequality,

ZP <‘ A . Xné)‘ ) < 6izzje—c(f)ms < o0,

n>0 n>0

which implies that eM™(f, X,;5) converges to 0 Py-a.s. Since eM™(f X,s5) = eM™(f X, 5) —
(f, 1) Wy and (f, ¢1)W,,s converges to (f, ¢1)Weoo almost surely, the assertion of the lemma follows
immediately. O

Lemma 3.5 Let X1, Xa, ... be independent random variables with EX; = 0 and E|X;|* < oo0,i =
1,2,.... If ZZ-Zl IEXZ-2 < 00, then there exists an absolute constant C1 such that

1 Xi 1 ELX; 2
ap[B| =2 g < ¢y izt P -
€R S 2
! 2221 EX; (2121 EX?)
Proof: See [I8, Lemma A.2.]. O

Lemma 3.6 For any 6 > 0 and any random variable Y such that E[Y?] < oo, it holds that

S MR Y P Ly o osaniey | +Z e IV (1 s e-ninsray | S5 EIY?)
n>0

Proof: Define n, := inf{n € N : e7*"9/2 > ¢} Combining the inequalities E[Y Plyi<ry] <
3fK 2P(]Y] > y)dy and > n>0 e M1/2R [|Y|1{|Y|>6_Mn5/z}} <E[[Y]Y>nY, e*’\ln‘s/Q], we have

DR (V1 pcemnnarny] D R (VL i |

n>0 n>0
7>\1n6/2 ny

< 3Ze>‘1"5/2/ y’P(|Y] > y)dy +E ||Y] Ze—mfm]

n=>0 n=0

°° 1
=3 [CRQYI> iy 3 N e iy (e )|
n>ny
1

<332 [T RR(y] > e Ry - [yl ],

n>0
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Since e=M%/2y > e=M™0/2 > 4 and E[Y?] = Jo" 2yP([Y] > y)dy, we conclude that

> mPE [!Yl31{|y|ge—w/2}] + 3 B[V Ly ranar |

n>0 n>0

And/2 e Mo 2

1n
n=
A1d

_ 1t Mn8/2 4 2
= 3;) n - )\15/2 — E(Y?),

n

which implies the desired result. O

Lemma 3.7 Let {G, : n = 0,1,...} be an increasing sequence of o-fields and B be an event with
positive probability. Let {T,, :n =0,1,...} be a sequence of random variables such that

1p Zsup IP[T, <y|Gn] — P(y)| < oo P-a.s.,
nZOyER

where ®(y) = (1/v2x) [V e~**/2dz,y € R. Then
l. n
s 2logn

If, furthermore, there exists a constant k > 1 such that T}, is Gy y-measurable for each n = 0,1, ...
then

<1 P(-|B)-a.s

o n
lim sup

n—oo 2 IOg n

Proof: From [3, p. 430, 1.5], for any sequence B,, of events and any filtration G,

{B,, i.0.} C {ZP(Bn | Gn) = oo}
n=1

and the two events above are P-a.s. equal if there exists a constant £ > 1 such that B,, € G, for
all n. Thus,

=1 P(:|B)-a.s

Bn{B,, io.} ={B,NB, io.}
CcBn {iP(Bn | Gn) = oo} = {13%1[”(3,1 | Gn) = oo}
n=1 n=1
Applying this fact to B, = {T,, > (1 +n)y/2logn} and noting that for any n > 0,
i (1 —o((1+ n)\/@)) < o0,
n=1

we conclude that P (B N{By,, i.0.}) = 0, which implies the first result. For the second result, let
B, ={T, > (1 — n)v/2logn}, then according to the fact that B, € G, 1, we have

(BN B,, i0} = {1B§:}P’(Bn | Gn) :oo}.

n=1

11



Noticing that » >, (1 —®((1 —n)v2log n)) = oo for any 1 > 0, we conclude that

= {1B§:IP(B” | Gn) = oo} ={BNB,, io.},
n=1

which implies the desired result. o

4 Proof of Theorems [2.1], 2.3], 2.5 and

In this section, we always assume that (H1)—(H4) hold.

4.1 General theory
Suppose that f € L2(E, u) N LA(E, u). For any t > 0, define

T—tf Zze)\kt k’¢ k)

k=1 j=1

if the right hand side is well-defined in L?. Define S by

S:= {f € L2(E, p) N LA(E, p) ] T .f € LX(E, p) N LB, p) for all t > o}.

Obviously, for any m € N and a eR, YL, Z] 1 ] ( ) € S. One can also easily check that, for

any €9 > 0, 352, >0 e "\k|1+60 qb(k € S. Note that W R — )‘k5<¢)§k),X ) = <T_S¢(k X).
Recall the definitions of fg,, fcr and fj, in and ([1.6)). By the branching property, for any
fes, se(0,00] and r € (0,00),

ng
<fsm + fcry Xt> + <T—rfla7 Xt+r> - Z e_)\kt Z a;thﬁljs - <T—'r(fsm + fcr)a Xt—l—r)
2A, <A1 7j=1

M; ng
= Z (fsm + fcr) (Xt(z)) + <T77'flaa Xylf> - Z Za;?W5k7j7i - <T7T(fsm + fcr)ax;é) (41)

i=1 2A, <A1 =1

Here M; is the number of particles alive at time ¢. For i = 1,..., My, X;(i) is the position of the
i-th particle, and (Xf;, Wkt Wsk’“) has the same distribution as (XT, Wk, ij) under Py, ;.

Furthermore, by the branching property, the random variables Wf I

on Fp = {Xs:s <t}
For f € S, s € (0,00] and 7 € (0,00), we define for i = 1,..., M,

are independent conditioned

V4 (501) = (Fan+ Fr) C50) (T i X = 50 S WS (1 (s + ). X,

2Ap <A1 j=1
Zif’l(sy T’) = }/;:f’l((g, T)l{nftf’i(s,?“)‘ge_)‘lt/Q}7
Mt . .
Ul (s,r) = Z (th’z(s,r) —E, [Zf’z(s,r)‘}"tD ) (4.2)
=1

12



Note that, fori =1,--- , M, Y;f’i(s, ), th’i(s, r) and Utf(s, r) contain information about the branch-
ing Markov process after time ¢ and therefore are not in F;. Note also that E, [th ’i(s, r)|]—}} =0.
For f €S, ,s€ (0,00] and r € (0,00), we define

Yf(s 1) = (fsm + fer) () + (T f1a, Xor) — Z Za?Wf’j — (T (fsm + fer), Xr),

2 <A1 j=1
VI () = Var, (Y/(s,1)) =B, (V7 (5,7))?). (4.3)
It follows from Lemma [3.2] that, for any f € S, s € (0,00] and r € (0, 00,
V], € L*(E, p) N LY(E, ). (4.4)

Note that for two random variables Y; and Y5,

|Var (Y] + Ys) — Var(Y1)| < Var(Ys) 4+ 24/ Var(Y;)Var(Ys). (4.5)
Therefore, by the definition of st r, we have

lim Vf VOJ;T, Vr € (0,00),x € E. (4.6)

§—00

Lemma 4.1 If f € S, then for any s € (0,00], r € (0,00) and § > 0,

n—oo

lim eM™Var, [Ugd(s,r)mé} = (VS 1) Wao, Py-aus. (4.7)

Proof: We first prove that

Mys
lim €™ Var, Z Yf’ (5,7)| Fns| = (V. 01)Weo, Py-as. (4.8)
n—r00 =1 ’

Note that, conditioned on Fs, Ynf (gi(s, r) are independent. Thus,

Mn6 .
S v i)

=1

Combining Lemma (3.4 m and ( ., we get .
Define Y7 = ), "5Yn5 '(s,r) and Y = U s(s,r) = > ’L‘SYJ(S’ (s,7). By ([.5), to get (4.7), it
suffices to prove that

e)‘lnéVarx

Mays
-Fn‘S] = Z Vs{r (Xns(i)) = 6A1n6<‘/sfrv Xns)-
=1

Mys
3 A 0 f7' f —
nh_}rlgoe "Var, z; Y (s,r) = Uls(s,r) fmg] =0 P;-as. (4.9)
1=
Note that
My )
MM Var, ZYJSZ(S,T) Uf s(s,m)|F, ] = Mo ZVarz { ol )1{|Y7{éi(svr)|>e—/\1n6/2} fn6:|
i=1
A1”‘5<fo”5 Xns), (4.10)

13



where for A > 0,
f.A f 2 f
VIA (@) =K, (Y (s,r)) Lyt sy medi sy | < V().

For any fixed A > 0, if n > A/d, then we have st < VS{;«A. Applying Lemmam to Vg{,’nA, we get
that e)‘1”5<%{;~A, Xns) converges to <Vs{,LA, ¢$1)Wso Pz-a.s. Hence,

lim sup MV, X5) < limsup M (VA Xog) = (VIA, 61)Weo,  Pr-as.

s,T 7
n—oo n—oo

Letting A — o0, together with (4.10)), we get (4.9) and this completes the proof of the lemma. O

Lemma 4.2 Let f € S,s € (0,00] and r € (0,00). For any § > 0, define

U/ls(s,
Aflé(s,r) :=sup | P, us(5:7)

yeR \/Varm |:UTJ;5(S, r)‘fms]

ZAM $,7) (4.11)

n>1

Sy‘fms —a(y).

Then P-almost surely,

Proof: Step 1: The goal in this step is to prove that

Ze?’)‘m‘s/QZE DZ’C’ sr‘ ’fms] < oo, Pg-as. (4.12)

n>1

It suffices to show that

ZeSAlm/ZZE [ZT]:;; s,T) ’ ‘]—"m;] < 0. (4.13)
n>1
Define 5
ol7(x) = E, (]w‘<s,r>) 1{Yf<5,r>|<ew/2}). (4.14)
Then

M,
o o ) - (£
n>1 i=1

Zf;; (s, 7 ’ ‘.7-",4)
n>1

_ Zesxlna/zEx <ng,n(5 ) Z€3A1n6/2 (T 5gf,n6) (z). (4.15)

n>1 n>1

Fix a typ € (0,min{d, s,r}). Note that (gg’fé) > 2. By Lemma we have

’ <Tnég£ " 5) (z)

<, e )\Qné}lgf,néH ¢1(z) n>1lzeE. (4.16)

~lo
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Using the definition of ¢/, it is easy to see that
2
) < g, [y ) = v o)

Plugging the inequality above into (4.16]) and applying (4.4)), we get that

(T2 ) @)] Sty €2 N2V o).
Therefore,
Z 3And/2 < s gf7;15> ($) <t0 ¢1($)Z€3A1n5/2€—(/\2+>\1/2)n6
n>1 n>1
= ¢1(x) Z et o (4.17)
n>1

We claim that

Z 3A1n/2

S e (T (of0 —ofi”) )

In fact, combining Lemma 3.6{ (with Y = Y/ (s, 7)) and the definition of g/™ in (#.14)), we get that
> Mgl () <5 Vi (@),

n>1

Since str(:v) and ¢ () both belong to L2(E, i), we have <Vs{r, ¢1) < 0o. Now ([4.18) follows from
Fubini’s theorem. Combining (4.15)), (4.17)) and (4.18)), we get (4.13).

Step 2: In this step, we prove the conclusion of the lemma. It is trivial that Af; s(s,r) < 2.
Since {M,s > 0} € Fs, by Lemma under P,, on the event {M,5 > 0},

S By [

=Y MGl pr)én () < oo (4.18)

n>1

Zgg'(s,r) —E, [Zﬁg(s, 7‘)}}}5} ‘3 ‘]:m;]

¢ (Ve [U23(s,1)|Fos])”

Zf’i(s ?")‘3 ‘}_ ]
nd (2 no

Afbé(sa T) 5

Y B, [

\/(Varx [UT{(;(S,T‘)‘]:MDB |

where in the second inequality, we used the inequality E|Y — EY|?> < 8E|Y|? for any Y such that
E|Y|? < co. Since £¢ C {M,,5 > 0}, holds on the event £¢ under P,. Now suppose that € is
an event with P (£) = 1 such that, for any w € €y, the assertion of Lemma and
hold. Then for each w € QN EC, there exists a large integer N = N(w) such that for n > N,
—A1nd

5

< (4.19)

(&

Var, [U S, ‘an] w) > Vg{r,¢1>Woo(w) > 0.

Therefore, on 2y N EC, by (4.19)),

M,
ZA $,7) S(1+N)+ 8 - Z 63)\1n6/2Z6E:c [‘Zgg(S,r)‘3‘fn5] )
n>1 \/[<stm ¢1>Wooi| n>N i=1

Then applying (4.12)), we get that (4.11) holds P -almost surely. O
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Lemma 4.3 If f € S, then for any s € (0,00], r € (0,00) and § > 0,

. e)\1n5/2 (le\iyig Ynféi(sg T)) -
lim sup =/ (Vir, 01)We, Py (-|E°)-aus. (4.20)
n—+00 2log(nd)

and

2 (S y s ) -
lim inf =—\/(Vir,01)Ws, Py (-|E°)-a.s. (4.21)

n—00 21og(nd)

Proof: Step 1. In this step, we prove that for any s € (0, 00] and r € (0, c0),

Mys
lim eMnd/2 (Z ny}’(s,r)) — e)‘ln‘s/QU?{d(s,r) =0, P,(-[€° as. (4.22)
i=1
Note that
My .
o2 (Z y,j;@,r)) — MU (s.7)
i=1

Mpys

_ ,A1nd/2 Iy I

= e in / (Z Ynéz(s’T)1{|Y7{(§i(s,r)\>e—)‘1”5/2} +El’ |:Y7L5Z(87’r)1{|Y7{éi(8,7‘)|>6_>‘1n6/2} fn :|> .
=1

Using the inequality [E[Y|F]| < E[|Y||F], we get that

Mpys My
& )i & é )i
B, et/ (Z YJJ(M)) = MU (s, 1)| < 26M0RE, | S Y (s, )| 1{|Ynf§<syr>>e—m«s/2}] '
i=1 =1

Therefore, to prove (4.22)), we only need to show that P,-almost surely,

Mn5
6 )
S i, | yg(s,r))1{|Y7{éi(svr)|>e_kln5/2}] < 0. (4.23)
n>1 =1

Define
lg:;“s(x) = E:p (’Yf(s,’l")’ 1{|Yf(s,7‘)|>e_)‘1"5/2}) 5

then li’fé(m) < eAlné/QY/'s{T(fn) for any n € N and z € E. Combining Lemma and the fact that
A <l§7’?6) > 2, we get that

‘ <Tn6l£’:}6)

Z 6)\1116/2

n>1

ot1(z), n>1,xek.

() S e M2V,

<Tn5l£;:?‘5>

Thus,

() S5 IVE,|

2y () Y eM1TA2Ind < o0, (4.24)

n>1
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Since <Tm; <l£’776 — lgjfd)) (z) = e M9 (110 61V (), by Lemma (with Y = Y/(s,7)), we
get that

Zehm/%—mélg‘;ﬁa <s Vsj,cr(x) < 0. (4.25)
n>1

Combining (4.24) and (4.25)), we obtain that

My
> MR, |3 Vs 1{|Y7{;<s,r>|>ew/2}] = > M (Tl ()
n>1 i=1 n>1
55 ‘|‘/;1er2¢1($) Z e()\l_AQ)ms + ‘/s],cr(x) < 00,
n>1
which implies (4.22]).

Step 2: In this step, we prove the assertion of lemma for s € (0,00). Combining Lemma
(with B = £°) and Lemma [4.2] we get that, for s € (0,00),

U/s(s,
lim sup 5(5:7) =1, P,(-|&)-as.

e \/2 log nVar, [Uga(s,r)‘fn(s}

Since log(nd)/logn — 1 as n — oo, by Lemma we have

)\17L5/2Uf
timsup © s T) s By (€% -as (4.26)
2log(nod)

n—oo

Since Lemma also holds with U r{ s(s,7) replaced by —U, TJ: s(s,7), we have similarly,

Ané/2prf

lim inf ¢ 2s(57)
n—o0 2log(nd)

Now combining (4.22)), (4.26)) and (4.27]), we get the desired result for s € (0, c0).

Step 3: In this step, we prove the assertion of the lemma for s = co. Combining Lemma [3.7
and Lemma we get

/\1n(5/2Uf
lim sup ¢ 25(%0:7) < <Vo£,r>¢1>Woo, Py (-|€°) -a.s.
2log(nd)

n—oo

- - <Vvs],c7’u ¢1>Wooa IPI (’50) -a.s. (427)

Together with (4.22)), we get that

/2 (21 (oo, ))
lim sup

< \/ <Vo]:3,r7 ¢1>WOO7 Pz (’gc) -a.s. (4'28)

Similarly using the same argument with Uf: 5(00, 1) replaced to —UZ s(00, 1), we also see that

>V o) We, Bo(1€)-as.  (429)
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Note that for s = 6 + r,£ € N, it holds that

/2 (M v (oo, m))

2log(nd)
oM1n6/2 (Zf‘ff Y50 4, ) Ly o Zk: rine/2 y~Mortos (er,j,i _ Wféjﬁi)
— a;
2log(nd) 22 <A1 2log(nd)
Mg ot M, i) i
eAnd/2 (Zi:lé YR 4w ) . Z s i ehind/2 3 T e Y(nﬂM;(S(OO, r)
p— a ’
2108(n0) e 2log(nd)

Using the inequality

n—o00 n—o00 P n—o0

P P
lim sup (Z x%) > limsup ( ) + lim inf ( )
i=1

k)

(
and applying (4.20]) to Ynfé (6 + r,r) and ([£.29) to Y ) ( ,7), we conclude that

eMnd/2 (Ez—n(; Yf’ (00, 7“))

lim sup
—(A\1/2-Ap)t8 6" c
2 \/Vv%-i-rrvqbl Z Z‘ ‘ ' * <V007”’¢1> Py (|5 )—as
2A <A1 j=1
It follows from ) that V&S () converges to Voévr(x). Letting £ — oo in the above inequality,
we get that
Mys v fi
e (S v o) -
lim sup >\ (Voo 1) Weo, Py (-|E°)-aus

Combing the above with (4.28)), we get that (4.20) holds for s = co. The same argument shows
that (4.21)) also holds for s = co. The proof is complete. O
Now we are ready to treat the continuous-time case.

Lemma 4.4 If f =371, >0k al¢ (k)(az) for some m € N, then for any r € (0, 00),

M/ (LM Y (o))

li VL 0 We, Py (|9 -as. 4.30
im sup JaTost (Vo ¢1) (11€9) -a.s (4.30)
and
M2 (M v (o0,m)) -
lim inf ==\ Vaors 01)Woo, Py (-|E°) -aus. (4.31)

t—00 Vv2logt

. . eMt/2 (vaitl th’i(oo,r))
Proof : By Lemma 4.3| to prove (4.30), it suffices to show that lim sup,_, N TR <

V (VL 1) W
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Step 1. In this step, we treat the special case where f = ¢§-k) for some k € Nand 1 < j < ng.
Our goal is to show that for any § > 0,

o1 —2X)n8/2 ‘W:(,Sj B Wtk,j)

lim sup sup
n—oo  tené,(n+1)s) 2log(nd)

(k)
< \/<eIA1—2AkI6Vj;j6 1) Woeo, Py (1|E°) -a.s. (4.32)
By (4.1) and Lemma (with f = ¢§k) and s = 2§,r = 0), we get that if 2\ > Ay,

o(A1—2X)nd /2 (ngj _ W(]iiina) v
lim sup =\ (Vosls »01)Woo, P (+|E°)-aus
n—r00 2 log(n5) ’

and if 2\ < A1, it holds that

()\1 201 )nd /2 1%%4 k,j ﬂszj (k)
no n j
( ( +1)6> - \/<6(A12W”2§75 ,01)Weo, Py (|€°) -aus.

lim sup
n—o0 2log(nd)

In both cases, we have

(M=2X\p)né/2 (yrkd _ ki
‘ (07— Wistas) < \/<dA1_2A”6V§§?7¢H>Wﬂm7 P, (-|€%) -as. (4.33)

lim sup

For p > 0, define

%@quumﬁWMmmmMMmew¢om, (4.34)

then by the second Borel-Cantalli lemma (see e.g. [10, Theorem 5.3.2]) and the definition of Wtk’j ,
) = +oo} .

m;) < +00. (4.35)

{W”"féj B W(Iil+1)5 > en(k,J,9), Lo } {ZP ( - (n+1)5 > en(k, j,0)

Combining this with (4.33)), we get that on £¢, P,- almost surely,

Z]P) < (n+1)6 > 5n(kaja 6)

For any t € [nd, (n + 1)d), define

ZF = x[(W@ " s — Wi ’J) ’]-'t], B¥ = sup [ng—wf’j—\mzﬁj},

te[nd,(n+1)9)
Tk .= inf {s € [nd, (n+1)J) : W:{gj — Wk — 2280 > ¢, (k, ], 5)} A ((n+1)6).
We have

Po (Wi = WLy > enlh, )| Fus) = o (Wi — W

(n+1)0 > €n(l€ ]76)7T71:J < (TL+ 1)6‘fn5)
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> P, <W£’Lj - W(’j;g) 5> —1/ QZ;;g’j,T,]f’j < (n+ 1)5\fn5)
k.j k,j k,j
=E, (Pz (WTTISJJ - W(nil)zS Z QZTg,j\fo:’J') I{Tf’j<(n+1)6}‘fn5) ' (4.36)

By Markov’s inequality and the strong Markov property, it is easy to see that
-

k,j k,j [o ki k,j k,j o 7k.]

) N2
(WkJ _ Wk»] >
(n+1)6 k. 1
>1-E - ki| = <. (4.37)
xT k:, Tn J
275, 2
Therefore,
P, (Wm;] - W(nil)é > gn(kajvé)‘fms) > §P$ (Tf] < (TL + 1)6‘Fn5)
1 ,
=3P (B,’jﬂ > en(k, 4, 5)|]—'m;> : (4.38)

Together with (4.35)) and (4.38)) we obtain that on £¢, P,-almost surely,
0 .
> P. (BET > en(k,5,6)| Fus) < +o0.
n=1

Since {By, > en(k,j,6)} € Fny1)s, using the second Borel-Cantelli lemma again, we get that for
any p > 0 and 6 > 0,

‘ o(M1—2Xx)nd/2 (Wj(;j _ Wtk,j)
lim sup sup

n—o0o  te[ns,(n+1)s) 21og(nd)

¢(k) \/28(/\1—2/\k)n62tk7j
< (1+p)\/ (eM=2%0V, 70 §1)Woo + limsup  sup

(4.39)
n—00  te[né,(n+1)8) 2log(nd)

By working with ¢§k) replaced by —gbg-k) in (4.39), we also have the following inequality for liminf:

(M1 —=2X,)nd /2 (Wféj B Wtk,j>

lim inf inf

n—00 te[nd,(n+1)3) 2log(nd)

> — (14 p)\/ (eM=2M0V, I 1) Woo — limsup  sup . (4.40)
’ n—00  tend,(n+1)s) 2log(nd)

Now combining (4.39) and (4.40)), we conclude that

A1—2X,)nd/2 kj _ yka
6( Wn(5 Wt

lim sup sup
n—00  te[nd,(n+1)s) 21og(nd)

< (14 p)\/ (M =20V, I 1) Woo + limsup  sup

(4.41)
n—00  te[nd,(n+1)4) 2 log(né)
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By the definition of Zf 7 we have
(MmN ZET — M (Var (WL s ) L Xa). (4.42)

Taking t = 1,2 = y in (1.3]), then (H4)(a) implies that, for £k € N and 1 < y < ny, there exists a
constant c(k,j) > 0 such that for all z € E,

[0 (@) < ek, f)én (). (4.43)
Combining (H4), (3.2) and (4.43)), we get that for § € (0,1) and t € [nd, (n + 1)J),
Vary (W(]~C F1)5— t) < (-0, <<¢§'k)>X(n+1)5—t>2>

(n+1)5—t 2 i
_ /0 N [ YCNES) ](x)ds+e”’f“”+”‘5‘” <T<n+1>6—t> (¢”) >(x)

1
GUWNWMWMWA M35 (1) 4 (k) (14 €2%) €M1 (2) =5 Ok, )én (@),
Therefore, we have

lim sup (eﬂl—”k)tzf’j) < O(k, j) limsup M by, Xp) = Ok, ))Weo, Py (-|€)-as. (4.44)
t—o0

t—o00

Combining (4.41)) and (4.44)), we obtain that for any p,d > 0,

e()\l—2)\k)n6/2 ‘Wké] _ Wtk’,j
n

lim sup sup
n—0o  te[né,(n+1)s) 2log(nd)

(k)
< (1 + P) \/<6)\1_2)\k|5‘/2q;{5 7¢1>WOO7 ]P)w (’56) -a.8

Letting p | 0, we arrive at ( -
Step 2:. In this step, we consider the general case f = Zk 1 ZJ 1 J ( )(x) for some m € N.

We fix a 6 = r/{ for £ € N. By the definition of Y;f’ (0o, r) in ([4.1]), we have for any t € [nd, (n+1)d),
My
PIRACIY
i=1
Nk ] Nk . Tk X
= (fsm + fcra Xt) + Z e_kkt Z acht’ijr - Z e_Akt Z G§W§éJ - Z e_Akt Z a;thlji
j=1

22X <A1 j=1 2A, <A1 j=1 2 >

Nk

_ _>\k:t k,j — Mgt k k,j k.j

= > Z ( - W ) e aj (W = Wil
22X <A1 2A, > A1 j=1
ny

Z — it k kj  1ik,g —Ak,tE: k k.j k.j

€ Zaj (WnJ—H" WOO + Z € a; Wn5 Wn§+r

20 <A1 j=1 20>\ j=1
m Nk Nk

+ g e g ‘aj‘ ’WHT Wn5+r g e Z a; | |W,s — W,
k=1 =1 =M i=1

< |Il| + Iy + I,
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where

I = Z _’\’“”62 ( n5+r_Wk’]) Z e_Ak”‘SZ ( mSJrT) Zer} (0o, T1)

2 <A1 2> A1

L= Y e wdlewi_ 1’2’ oW, - W
20 <A1

e 3 el S k- wi | = S - S| e
2Ak>A1 k=1
I3 - _)\kt Z ‘ ‘ ‘Wt n(H—T Z _)\kt Z ) ‘ ‘Wn(gj Wt J) :
k: 1

Applying Lemma with f for I, and with f = ¢§k) for I, we see that P, (-|€¢)-almost surely,

N2 (S Vi (oorm) N2 (S Vi (oorm)

lim sup = lim sup sup
t—00 v2logt n—oo  te[nd,(nt1)6) v2logt
' (3)\1”6/2‘]1’ ] 6)\1716/2]2 ) e)qt/QIS
< limsup

—————— + limsup ———— + limsu su
n—oo vV 2 log t n—)oop 2 IOg t 'n,—)oop te[n&(nli,l)(;) vV 2 logt
/ b ¢(k>
= < OOT‘7¢1W +§ ‘716 1‘5 ‘ ’ OOT7(Z)1>

eA1t/213 ( )
+ lim sup sup . 4.45
n—oo  te[ns,(nt1)s) V21ogt

Now we treat Is. Recall that r = 6¢. By (4.32)), we have

e)qt/?[g
lim sup sup
n—co  tens,(n+1)8) V21ogt
m Nk ()\1 2>\k)t/2 )W Wk,] ‘
4 0)8
< Z Z limsup  sup [ (n+£)
k=1 j=1 n—00  t€[nd,(n+1)d) V2logt
m ng (A1 —2X)t/2 ’Wkéj B Wtk,j’
T
+ ‘|imsup  sup
kzl ]Z; n—00  te[nd,(n+1)0) 2logt
eA1—2X)t/2 ’Wf’j B Wk(,sj
_ (A1—2X1)84/2 + 1) lim sup sup n
;le ’ ‘ < n—00  t€[nd,(n+1)J) 2logt

<Zz’ ’( (Ai— zAk)ae/2+1) \/< IA1— 2)\k|6{/66 o)W, (4.46)

Plugging (4.46) into (4.45]), we conclude that P, (-|£¢)-almost surely,

eMt/2 (Zif\itl Y;Z(oo, 7“))
L
1?18:3[) v2logt
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<AV o)Wa + Y ‘e—w - 1‘ S \aﬂ VD, 61 W
k=1 j=1
m g

2.2 Ja

k=1 j=1

‘( (Ai— zxk)ae/ngl) \/<€,\1 2)\k|6v s ¢1>

*) , k) A
Since Vyy = Var, (Wi} if 2 < A1 and Vyg, = Var, (W}) if 20 > Ay, it follows from (32)
(k)
that limg_,q V;; 5 = 0 Now letting 6 — 0 in the display above yields (4.30)).
The proof of is similar and we omit the details. O

As a consequence of Lemma [.4] we have the following useful collory:

Corollary 4.5 If 2\ > A1, then for each 1 < j < ng, it holds that

A
ezt

k
lim sup

t—00 logt

<oo. P, (:|€°-as

Proof: Fix an arbitrary L € N. By (4.35]) (with 6 replaced by §/L in the definition of (%, j,0)
in (4.34)), when n is large enough, it holds almost surely that

nL—1 nL—1
k.j kg _ k, k, )
Wi = Wai = > (W&;;L W(@il)&/L) < > ek, 4, 6/L).
f=n l=n

Since sup, Wy < oo, by the definition of /(k, j,d/L), we see that for all p € (0,1),

nL—1 nL—1
Z Eg(k,j, 5/L) = Z (1 + p) \/QC(QAk_)\l)w/L 10g(€5/L)<€|A1 2>\k‘5/LV 26/L,6/L° ¢1>W25/L
{=n l=n
nL—1 200,
Sk, v/ 1og(nd) Z 7 /L
{=n

22, =X

Sk € 2 tnd log(né),

~

where in the first inequality we also used the fact that log(¢6/L) < log(nd) uniformly for all
n < { < nlL —1 for any fixed L. Therefore, we have almost surely,

)\k A .
e~ nd (W Joo_ W:;;J)

. néd/L
lim sup
n—00 log(nd)
o n k) aend(L— k
F10 ({011, Xs) — e MV X, 1))
= —liminf < o0. (4.47)
n—00 log(nod)

Using (4.43)), the assumption 2\, > A; and taking L > 22(1‘2:2), we get that

LS
e?né

e—Akné(L—l)/L<¢(k) sz&/L)‘ < 6)‘2—1n5€—>\kn6(L—1)/L )gb(k)

Xnﬁ/L>

<k e 2 Lné —)\kné(L 1)/L<¢ < €7n5 —Agnd(L— 1)/L —Aind/L

~

15 n5/L>
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—¢ "—L((Q)\/rc AM)L—2(Ap—A1)) nﬂf 0. (448)

Combining (4.47) and (4.48)), we finally conclude that almost surely,

e%n6<¢(1f)7 Xn5> e,%mSWk:j
lim inf J = liminf > —00
n—00 log(nd) n—00 log(nd)

Now it follows from (4.32)) that

671 <¢(k) X;)

liminf ——— > —o0.
t—oo log
Using a similar argument to —gi)g-k) , we get
A k
et Xy
limsup ————
t—o0 logt

4.2 Small branching rate case: \; <2\,

Proof of Theorem We first deal with the special case f = —¢§-k) (x) with 2\, > A1. In this
case, we have th’i(oo,r) = e’\”<¢§k),Xﬁ> - qb(k) (X¢(7)) and

_g®) ) B
Vaod (z) = Var, <—(T_T¢§k),Xr)) = 2T Var, <<¢§.’“),XT>) VL ().

By Lemma (1), we know that

(k)
lim (M2 (1) = 02, (6% é1()- (4.49)
By Lemma we have P, (-|£¢)-almost surely,
Mli4n)/2 <<¢§'k)7Xt+r> - 67}‘“<¢;~k)7Xt>> \/ =220y
I — 1=2A)7TY/ JT 4.50
lﬁilolp ATog t (e 1) W. ( )
Define
e)qt/2<¢(k) X,) >\1t/2<¢( ) X,)
li L A li 'f—37::D_ P, (-|€°)-
msup —— s + liminf ——rres : (+[€9) -a.s

By Corollary we have |D4|,|D_| < co. Using the inequality

lim sup z; + hm mf yp < limsup(z; + ) < limsup x¢ + lim sup y, (4.51)
t—o00 t—o00 t—00 t—o00

we get from (4.50) that P, (-|€¢)-almost surely,

(k)
(1 _ e(>\1/2—/\k)7“) D, < \/< (AM1—2)p) TV e 1) Weo < Dy —eWi/2=M)rp (4.52)
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Letting » — oo in the first inequality in (4.52)) and applying (4.49)), we get

Dy < \/ o2 (¢>§’“’) Weo, P, (-|€°)-as. (4.53)

By a similar argument, we have D_ > —\/ o2, ((;55“) Weo. Thus,

(%)

\/ (eCi=2ry 2 VW < Dy — fM2ATD < D g a2 \/ag <¢(k>> W

)

Letting r — oo, we deduce that

k c
Dy > \/agm (¢§ >) Weo, P, (-|€°)-as. (4.54)
Therefore, combining (4.53)) and (4.54]), we see that P, (-|£¢) -almost surely,
eAlt/2<¢(.k) X,)
lin sup \/ o2 <¢] ) Wi (4.55)

Now we deal the general small branching case f(z) = D100, 50 2ot afgf)gk) (). In this
case, for any r € (0, 00), we have

Y 00, m) = T f (X(0) = (£, X0), VL (@) = B (£, X0))7 = (T £ (2)).
Note that Lemma 4.4 is equivalent to

6>\1t/2 (<f, Xt+r> - <T7‘f’ Xt>)

lim su = vt , 01)Weo.
t—>oop oo i log 7 < 00,r ¢1> 00
Multiplying both sides of the equality above by e*"/2 we get

oy E2 (X0 — (T f, X))
1m sup
t—00 v2logt

It follows from Lemma (1) that eM"Vari (z) — 02, (f)¢1(z) as 7 — oo. Now combining ([.51))
and (4.55)), we deduce that

OB ()T = lim /(MrVEL 1)

= (M VEL o)W,

)\1t/2<f X > N
. e ) At . /2= |k 2 (k)
> limsup ————+ — lim Z Ze( ! k aj‘\/asm <¢j )Woo
tmoo  V2logt T hmi g S Ay =1
MR (X
. € ) t
=1 —_— 4.56
Tiigp v2logt ( )
Similarly, we also have that
A1t/2
. T, . € <f7 Xt>
O () Weo = Tlggo \/<€>‘1TVoo7rf7 P1)Woo < hﬂsogp ~/Zlogt
> i /2= | k] J2 (o) AP Xi) (4.57)
+ lim eN/Em Ak aj‘ \/O'sm (gf)j ) Woo = limsup ——==—".  (4.57
r—00 e W W t—00 v2logt

Combining (4.56]) and (4.57)), we get the desired limsup result. The proof of the liminf is similar
with f replaced by —f. O
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4.3 Critical branching rate case: \; = 2\
Proof of Theorem Since f — f. belongs to the small branching case, by Theorem

lim sup e)\lt/Q |<f - fCT7 Xt>|
t—o0 V2tloglogt

Therefore, we only need to prove the assertion of the theorem for f = f... Combining (3.2) and
the fact that E, ((fer, X;)) = e*)‘w(fﬂqfcr(:r) = e*/\”’/zfc,«(x), we get

Vo]:f;(x) = M"Var, (fer, Xi)) = NE, (<fcra XT>2) - (fm“(m))Q
= [N AR (1)?] (@ds + T (1) (@) = (for o).

=0, Pg(-|€9-as

Since T, is self-adjoint, we have

(Vidsy ) = /0 T [AD - (f)?]  dr)ds + ML (For)?  01) = {(for)? s 61)
= 7'0' (fcr) = TU2 (f)

We will apply [28, Theorem 3|, so we first check the conditions of this theorem. In our case,

Woo may take the value 0 with positive probability, so we introduce an independent random walk
ST .= >, Yy, where under P, Y; are iid random variables with P,(T; = ¢) = P, (Y; = —¢) = %
for some small positive constant . Define sf " by

(8£CT> Zvar |: )\1 {— 1 5/2U{cr ) (0075) + Sg|f(271)67T17 ...,Tzfl

= Ze’\l(z_l)‘sVarx [U(J;‘il)é(oo, 5)‘]—"@_1)5} + ne?.
(=1

Combining Lemma [4.T) and the fact that Ay = 2\, sy, we know that

2
(81{“) Jn = (VI 1) Woo + €% = 802, (f)Woo + %, Py (9 -aus. (4.58)

Let s, := Si, up 1= \/2 log log ( f”) , K2 :=nu2/(s2logn) in [28, Theorem 3]. By the definition

of U(];Cil)é(oo,é) in (4.2)), we see that conditioned on F(;_)s, eAk(Z_l)éU(J;C:I)é(oo,é) is the sum of

finitely many independent centered random variables. For independent random variables Y7, ..., Y,
with E[Y;] =0, = 1,2, ...,n, we have
4 2
n n n

SV| =SB+ 6 EIEN < SB[V +6 (S EV
j=1

=1 i j=1 =1

Therefore,

4
E, |:<e>\k(€—1)5U(J;C:1)5(OO, 5)) ‘.7'—([_1)5:|

M—_1)s 4
<1600 5 8, |2t 00)] 7]
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M—_1)s 2

1 ge2M (=18 Z szw 0075)‘2’}"(5—1)5} 7 (4.59)

where in the inequality we also used the inequalities E[Y — E[Y]]* < 16E[Y*] and E[Y — E[Y]]?
E[Y?] for Y = chi’lz)d(oo, §). Using the trivial upper bound

(¢
Z 1 fCT7 fC'I'7 fCT7 2
‘Zz 1)5(00 0) ‘ ‘Z(é 16 (00, 0) ‘ ‘Y 5(00,9)]
we conclude from (4.59) that
4
E, [( Au (6= 1)6U(f£cr1)5(0075>> ‘F(Z—l)é]
M—1)s 9
< 16N (-1 Z E, Uy(gfcq 00,5)‘ ]f(ma]
M—1ys 2
+662)\1(£*1)5 Z E |:’qu“7 OO 5 ’ “FZ 1 :|
2
= 16e™M (- 1)5<VOJ;”5, (- 1)5>+6< A 1)6<Vf” Xo— 1)5)) ; (4.60)

where the last equality follows from the Markov property and the definition of VOJ;,“ given as in
(4.3). Therefore, combining Lemma and (4.60), we conclude that P,-almost surely,

4
supE, ek (E=1)dpyfer 00, d Fo— ] < 00. 4.61
ups, | ( s 0)) ' [Fiun (4.61)

Using the fact |T;| = ¢, and the independence of {Yy, ¢ € N} and {Ugfgr(oo, 0),0 € N}, we conclude
from (4.61)) that P,-almost surely,

4
?Elg E, |:<e>\k(€—1)5U(J;CT1)5(OO, 5) + T@) ’}—(8—1)67 Ty, ..., Tg1:| < 00,

which implies that

lo K _ 4
Z{ ?2 x [(eh(ﬂ 1)6/2U(J;c:1)6(oo,5) + Te) ‘f(g_l)(;,Tl, ...,Tg_1:|} < o0.
=1

Combining the above with the trivial inequality ME[|Y [1{jy s < E[Y2], we get that P,- almost
surely,

— [ log¢ M(0=1)5/27 1 fer 2
;{zE[( DR g0, + T

- 1{( M- 1>6/2Ufcr1>5(00,5)+'f5>2>€/logé}‘Jr(e1)5’ Rt -~-7T51H < . (4.62)
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Note that K,, — 0 as n — co. Combining [28, Theorem 3], and ( -, we get

S;{ + ZEL e (- 1)5/2Ufcr (00
; (t—1)5
: =\ 0oZ.(f)W. 2 P,as. 4.63
lrrisogp 2nloglogn \/ Ucr(f) 0o T €7, 2-a.S ( )
It is well-known that almost surely,
ST
lim sup % = . (4.64)

nooo V2nloglogn
Combining (4.63) and (4.64)), and letting € | 0, we get that

Z 6 Z 15/2Ufcr (
= — /002 ([\Weo, Pu-as. (4.65)

lim sup ¢

n—oo v?2nlog logn
We have proved in (4.23)) that

My
> E, [N (Z ngrﬂ(oo,5)> — MRy (00, 5)

n>0 =1
Mpys .
<9 Z€A1n5/2Ez Z yé;r,z(oo, 5)‘ 1{|Y7{§T,i(oo,5)|>eAlnm}] < 00. (4.66)
n>0 =1

Combining the definition of Ygg“i(oo, §), (4.65)), (4.66) and recalling that A1 = 2),(y), we conclude
that P,-almost surely,

- M i
. for() = A2 X)L Yo <6A145/2 (Ziz’zf Y (oo, 5)»
1m su = limsu _
n—>oop 2n log lOg n n—)oop n log log n

Noticing that P;(€°) > 0, the above limit implies that

Alné/
lim inf ers Xns) /s (F)Weos, Py (|E°)-as. (4.67)

n— /2(nd)loglog(nd) -

50(2:r(f)WOO

The same argument for U/¢ { (00, 9) replaced by —U. Jor (00, d) implies that

o— 1)5 (e-1)8
/\177,6/2 X
lim sup ¢ (Fer, Xno) =Vl ()W, Py(-|E°)-as

n—oo /2(nd)loglog(nd)

Let ko be the unique integer such that Ay = 2\, then we see that f. = Z?iol afoqbg-ko). Recall
that by (4.32), we have for any ¢ > 0,

. ko i
’W:EJ _ W 05

limsup  sup =0, P.(-|&9-a.s. 4.68
n—o0  tend,(n+1)6 \/2 7’L5 log log(nd) ( ’ ) ( )
Therefore, combining (4.67) and (4.68)), we conclude that

€>‘1t/2<fcr,Xt> Z;Lkl ;CoWkOJ

liminf & e Xe) g e inf
fath V2tloglogt fes tE[nz;gH»l)é) V2tloglogt
n ki ko,j
— liminf Z]kl ]OWn5
n—c /2(nd) loglog(né)
which implies the desired liminf result.
The proof of the limsup is similar with f replaced by —f. The proof is complete. O

Ugr(f)woo P, (-|E°) -a.s
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4.4 Large branching rate case

Proof of Theorem Suppose A1 > 2A\, () and fer = 0. Let f = 3700, D70, ]¢(k (x). For
any r € (0,00), deﬁne

Z ieiAkraﬁqu»k) — Z zk: eiAkrUz?(ZSgk) = Trfla - Trfsm-

2D <A1 g=1 2, >A1 j=1

Then by direct calculation, we get

M ng

(r) 4 r _ r k,
STV o) = (FGL X+ DD e MY e ek
i=1 j=1

2)\k<)\1
Nk
- Z )\ktz —AgT kwk,] 4 Z )\ktzef)\kra‘l;wt]jgn
2 <A1 20>\ 7j=1
“Ai(t ktirk,j - k k
= (fs Xopr) = Y e +T)Za’jWooj - Z kel X))
2/\k</\1 J=1 2A > 7=1
M Y S, X)) (169
22 >A1 j=1

Applying Lemma [4.4] to th " "(00,7), we get that P, (-|€¢) -almost surely,

_ k
eMt/2 (MtJrr _ Z2Ak>)\1 ?21 e /\kra;§<¢§ )7Xt>)
lim sup = <

t—00 v2logt
By Corollary we have

£

sou > P1) W, (4.70)

A1t/2 ng —AgT
€ / <Z2)\k>)\1 Z]:l e

i )

/2
Jim e h?if;lp J2logt
M2 (0, )|
lim /2727 lim sup ’ =0, P,(-|&-as. (4.71)
IS ves W= A it t=ro0 v2logt '
Combining (4.69)), (4.70) and (4.71f), we conclude that
MR (X~ Do, M GWE ) oy,
imsu = limsup ————
t_mop v2logt t_wop 2logt
Ay |EC) -
rlgglo\/ (€M™ Vo, o1)W. Py (-|€°) -a.s.
Thus, to prove (2.1)), it suffices to show that
(r)
Tim M7V (2) = (03, (fom) + 01 () d1(2). (4.72)

Recall that

Nk Uz 2
V@ = (= X Y el x0 - 3 ey

2A > j=1 2 <A1 j=1
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2
Define H, := D oA 2t JWOC;j and Q(x) :=E, (f(a:) - Hgo) . Then we have that

Nk N 2 M, ‘ 2
(o 5 o) Eren )

20 <A1 j=1 i=1

=E, (i ( (x0)) - HQ’Y) B [ D (£ 06 - HE) (£ (40) - HE)

i=1 i£j

=E, (< Zfsm ’I’ fsm( 7’( ))

i#£]
= EI (<Q7XT>) + EJE (<f$7TLvXT>2) - EI (<fs2m7XT>) .
Since Q(z) = f2,,(z) + Vary (H&) = f2.(z) + o}, (f)$1(z), we conclude that

2

lim eM"E, (f, X)) — Z Ze”‘”afogj = (Uza(f) + O'sm(fsm)) ¢1(x).

r—00 -
2A <A1 j=1

2
Since llmr_>oo6 r ( Zg,\k>A1 an _’\”a?gﬁgk)(x)) = 0, we get (4.72)) and this completes the

proof of (2.1). The proof of is similar.

a

Proof of Theorem [2 Suppose A1 > 2\ (5) and fer # 0. Applying Theorem [2.5 . to f— fer

and Theorem 2.3 to f.., we 1mmed1ately get the desn"ed result.

5 Proof of Theorem 2.8

In this section, we always assume that (H1)—(H4) hold.
For any r > 0 and g = ) ,_, Z;‘il b;?qﬁg.k) € L*(E, ), we have

=T.g= Z Zak¢(k
k=vy(g) 5=

with af = e*)‘k’”bf. Combining (|1.3) and (H4), we get

2

S (69)" < @2,

k=1 j=1

which implies that
00 nk
Sewice
k=1 j=1
Noticing that ]bﬂ < /llgll2 and using (5.2), we get that, for any n > m,

n ng n ng
S 3ot < e [uhel )
k=m j=1 k=m 1

j=
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N

n n ny
< Z e kT Z 1 Z e AT Z ‘bé?qﬁg-k) (x)’ llgll2cr 1 (x Z e AT Z 1, (54)
k=m j=1 k=m

j=1

which implies that the series in (5.1)) also converges pointwisely.
From (5.2)) with r replaced by r/4, we see that for any » > 0 and k > 0,

sup k)‘ ST e)ka/4¢1 S (—;’)\kT/4. (55)

1<j<n;

5.1 Proof of Theorem [2.8

In this section, we will first use the following proposition to prove Theorem [2.8 and then present
the proof of the proposition.

Proposition 5.1 Suppose in addition that (H5) holds. If f € T(E) satisfies \y5) > 0, then
M2 |(f, Xy
I LA 18 /02 ([ )Wy Py (E)-
mswp e S oom(f) (+[€9)-a.s

Note that A,y) > 0 implies that A; < 2A,(y), which is the small branching rate case.
Proof of Theorem We only give the proof of the small branching case here, the proofs
for the critical and the large branching cases are similar. By Lemma (1), we have

oo (1) S (FI3+HIFIZ) S (2 + 1 11)*

Therefore, by Proposition for any f € T(E) with A\, s) > 0, there exists a constant C indepen-
dent of f such that

tmsup S X o A s+ 1710, P (1) -aus (5.6)
t*}oop \/W _— o0 2 4 b T e -

For any f € T(F) with A\; < 2Xy(f), we write f = figin + frest, where

N ng oo Mk
Jmain = Z Z ai(ﬁ;k)a Jrest = Z Z a§¢§k)

k=~(f) =1 k=N j=1

and N is a large integer such that Ay > 0. Applying Theorem t0 fiain and (5.6) to frest, we
see that P, (-|€¢) almost surely,

lim sup M < lim sup eAlt/2<fmain7 Xt> + lim sup eMt/2 |<f7’est7 Xt>|
twoo  V2logt T iseo V2logt P V2Togl
< \/O'sm fmam 0o T C\/i Hfrest”Q + ||frest||4) (57)

and
lim sup M > lim sup e/\lt/2<fmain7 Xt> _ lim sup 6>‘1t/2 |<f7‘est7 Xt>‘
tooo V2logt T i V2logt PRI, J2logt
= \/Ugm(fmam)woo - C\/@(Hfrest”Q + ”frestHAL) . (58)
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Combining the dominated convergence theorem and (j5.4)), we get that

Us(fmain) — Us(f)a Hfrest”2 + ”frestHzL — 0.
Therefore, letting N — oo in and (| ., we get

) Alt/2 f Xt
\/7 7 | E°) -
11£ri>sogp Jalogt Weo, Py (-|€°)-as
The proof for the liminf is similar. The proof is complete. O
Now we are going to prove Proposition In the remainder of this section, we always assume
that f € T(FE) is given by for some r > 0. Note that for f € T(FE) given by , we have
7(9) =(f) and Ayg) = Ay(p)-
We will use a different discretization scheme. Let kg € N be the unique integer such that
Akg > 0> Ag,—1. For any n € N, define

tn =010 k(n):=sup {k: >0: A, < n1/5}, N, := inf {n >0:n'/10% > —4)\1} (5.9)

and
W X (n) = ok, (k)
an = Z _AkTZbkgb an = Z e_’\”Zb?qZ)j . (5.10)
k=Fo i=1 h=r(m) +1 i=1

Then f =S¢ + 1.

Lemma 5.2 Let f € T(E) be given by (5.1) for some r > 0 such that Ay4) > 0. Then under
P(-|E), almost surely,

lim  sup M2 (’(F;”),Xt)‘ ’(Tml tr}),)@‘):o.

N0 ¢, <t<tpni1

Proof: Recall the definitions of x(n) and N, in (5.9), then A\yr/4 > n'/%r/4 > —\it,, for all
k > k(n) + 1. Therefore, using ]b§| < V/|lgll2, we conclude that

o Nk
VTR DRl OF
k=k(n)+1 j=1
[e.9]
||g||2€>\1t”¢1 Z —>\k7’/221 <C ”g|2€ 1n¢1’
k=k(n)+1

where in the first inequality we used (5.5)) and in the last inequality we used (/5.3)). Since t, 11 —t, <
1, we conclude that for any n > N, and t € [t,, tnt1),

‘<F§‘n)’Xt>’ + ‘<Tt”+17tr‘§”n)’Xt>’ Srg € (61, Xi) S W
Since A1 < 0, the desired assertion follows immediately. O

Lemma 5.3 Let f € T(E) be given by (5.1) for some r > 0 such that Ay4) > 0. Then under
P(-|E), almost surely,

lim sup M2 ‘(Ttnﬂ—tsj(c) s X =0.

b
N=00 ¢, <t<tny1 !
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Proof: Since |bf\ < V/|lgll2, we have for any ¢ € [tp,tn+1),
k(n)

sup <Ttn+1—tsj(vn) _ S( n) Xt)‘ — sup Z e AT ( —Ai(tny1—t) )Zbk k) Xt
tn <t<tn41 tn<t<tn+41 k=ko
K(n) g
oz Y- e (1= e D) S0 sup (6, X))
h—ro iT1 tn<t<tni1
K(n) ng
loll2 > Aeltar =0 sup [0, X))

k=ko j=1 tn <t<tn+1

Since tpi1 — tn <919 and that A, < Ai(n) < nl/5 for all k < k(n), we get that 1 < e M(tnt1=1)
for all t € [t,, t,y1) and k < k(n). Therefore, using the inequality eM?/? < eMtnt1/2 we get that

sup eMt/2 ‘(Tthrl_tS](cn) — S](cn),Xt>‘

tn <t<tn4+1
lgllan™ 7/10 Z e >\M§:€/\1tn+1/2 sup e —Ak(tng1— t)‘ Xt>}
k= kO tn§t<tn+1
_ _ k
lgllan =770 Z WZ Mel2 - sup (3,00, )|
e k‘o tn <t<tn41
k
70 3 S s (Gl
k= ko tnSt<tn+1
Define h(r) := /llglla 2252y, € e /2 >3k, 1, which is finite by (5.3] (5-3). Then for any e > 0 and

n > N,

P, ( sup eMt/? ‘(Ttn+1—t5}n) - Sj(cn),Xt>‘ > h(r)5>

tn<t<tni1

(T 20, X0)| > h(r)e

o0 Nk
<Py ||g||2n_7/10 Z €_>"“T/2 Z e_AkT’/QeMtnﬂ/? sup

kao ]:1 tn§t<tn+l

tn <t<tni1

<P, (EI k > ko, 1 <j < nyg such that n 70— Akr/2 A tn11/2 sup <Ttn+1_t¢§k),Xt>’ > 5)

<En+1—t¢§‘k)vXt>‘ > 5) .

o N
S Z Z]P)x <n7/106)\k'r/26)\1tn+1/2 sup

k=ko k=1 tnSt<tnir

Since {‘(T b +1,t¢>§k), Xt)‘ it € [tn, tn+1)} is a submartingale, we get from the L? maximal inequality
that
Py ( sup  eM/? ‘<Ttn+1—t5](cn) - S](fn)vXt>‘ > h(r)a)

tn <t<tn+1

4n—7/ Z(i )\krze)\ltn+1]E ( ()7th+1>2)

k=ko
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NT

€Q@ZeWﬂZM¢M+WW)

k=ko

where in the last inequality we used ({3.3). Combining Hgbg-k)Hg =1, (5.3) and (5.5)), we get

IP’;,;( sup e>‘1t/2‘( tns1— tS(n) S}n),Xt>’>h(r)s>

tn <t<tni1
,7/5 o) Nk
mzewﬂ2@¢m+wme) b Y e AN
k=ko k=ko k=1
—7/5
b1
Since n~7/% is summable, we get the desired result by the Borel-Cantelli lemma. O

Combining Lemmas and we immediately get the following corollary.

Corollary 5.4 Let f € T(E) be given by (5.1)) for some r > 0 such that \y4) > 0. Then under
P(-|€), almost surely,

lim sup M2 ‘(Ttnﬂ—tf - f, Xt)‘ =0.

"0ty <<t
In the small branching case, we have the following decomposition analogous to (4.1)):

My, /2

(Tt X o) = X0) = 3 [Tjaf (Xo o) =, XE )]
i=1

Define
A =T @) - %0, Bl = (7)), (5.11)
By Lemma [3.2(1), we have
Jim MR (@) = 03, (Ne1(@), sup R (@) 55 o1(a). (5.12)

For any s > 0, combining JtT sf— E, (th o\ S‘]—}), Jensen’s inequality and (5.12)), we see that
2
sup e/\ltR;FSf(x) < sup eM'E, ((Jt]jrs) > Spe Mgy (5.13)
>1 t>1

The following lemma is a modification of Lemma [4.1]

Lemma 5.5 Let f € T(E) be given by (5.1) for some r > 0 such that A4 > 0. Assume either
Sp =0 or s =tpt1 —tn for alln € N. Then it holds that

lim inf e**" Var,, |:<Tsn [ X))

n—o0

ftn/z] > (%, ¢1)Weo,  Po-a.s. (5.14)
and

lim sup eM** Var, [<Tsn [ Xe,)

n—oo

Ftnm] S Ugm(f)Wooa Pw—a.s.

34



Proof: Using conditional independence, we get
My, /2

eMinVar, [(Tsn LX) | F /2} =M N R (X, 0(0) = MR X ). (5.15)
=1

By (3.2), we have

t
Rt = /0 T, [A® - (T g0, 2] ds + (T, %) = (T /)2 2 T(To, 1) = (Tis, £)2.(5.16)

—_—

Since v((Ts, f)?) > 2 and s, € [0,1], combining Lemma and the fact that |f| <, ¢ for all
f e T(F), we get that for any ¢ > 1,

e)\Qt

T3 (10, 1)2)] S 1T %26 Sr 61 (5.17)

Therefore, by (5.16|) and (5.17)), applying Lemma for Ty4s, f and noticing that ¢, is bounded,
we get that there exists a constant C(f) > 0 such that for any ¢t > 1 and =z € E,

ekltR?snf > eAltTiﬁ((Tsnf)Z) _ eklt(Tﬂ_snf)Q
> (T3, )% 60)on — [T (1 )2)] = (T, )2

> (<(Tsnf)27 ¢1> - C(f)e()‘li)q)t — C(f)e_(2>‘v(f)_)‘1)(t+5n)) ¢1’

which together with (5.15)) implies that

M Var, [(Tsnf , Xt,)

Ft,, /2}

> (T, )% 1) = C(£)eM /2 (e =)o 2y,

Letting n — oo in the inequality above yields (5.14)).
For the upper bound, combining (3.2) and (5.13]), we get

MRy (2) < MRL (1) < B, ((f X))

t+sn
= eklt/ Tits,—s [A(2) : (Tsf)Q} (x)ds + M Ty, (£7)(2).
0

Using the fact s, € [0,1] and the spectral decomposition similar to ((5.17]), we get that there exists
a constant C'(f) such that

M s, (F) (@) < e M5 (2, d1) o1 () + C(f)e” P2 Mg (2). (5.18)

Thus for any N < t/2,

t+sn
eklt/ n+snfs [A(Q) ) (Tsf)2:| ($)d8
N

t+sn o0
< eAlt/ B_QAV(f)STtJrsnfsQﬁl(l’)dS < €—>\15n/ e_(2)‘7(f>_>‘1)8d8¢1(33‘). (5.19)
N N
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By Lemma there exists a constant C' > 0 such that

N
eAlt/ Tt+5n—5 [A(Q) ’ (Tsf>2] (x)ds
0

N N
< et / e M) (AR (T, )2, ¢1)dse (x) + CeM? / e 2= AR (T, )2 o dsh1 ()

0 0

N N
_ d)l(*x) <6—)\18n/ 6)\1s<A(2) . (Tsf)2,¢1>d8 + Ce—)\zsne()\l—)\z)t/ 6)\28||A(2) . (Tsf)2||2d5> )
0 0
(5.20)

Therefore, combining (5.18)), (5.19) and (5.20)), there exists a constant C’(f) > 0 such that for all
t>1l,zekl,
o

&M#Jg<fmwﬂwﬁ+duwﬂrmu4wﬂ/ e~ (A =Asgs
N

N N
peen [T (TR on)ds 4 O[T A (3 R )
0 0
which implies that P, (-|£¢)-almost surely,

n—o0

lim sup e Var, [(Tsn [ Xt,)

Ftn /2}

0 N
< Wi <C’<f> /N e” P TMsds 4 (f2, 61) + /0 M (AP (Tsf)2,¢1>ds)

M 62 (F)Weo.

The proof is complete. O
Under the Assumption (H5), we have the following useful lemma whose proof is postponed to
Section

Lemma 5.6 Suppose in addition that (H5) holds. If f € T(E) is given by (5.1)) for some r > 0

such that Ay > 0, then

PME, ((F, X)) Sy d1, t>02€E.
Recall the definition of th in (5.11). Combining Lemma (5.12) and inequalities 23 < 22+ 2%
(for e)‘lt/2|th|) and E(|X — EX|*) S E (X*) (for X = (f, Xy)), it is easy to get that, for any ¢ > 1
and x € F,

2R, (1)) = Ea (120, ) S MR @) + M Es (1]1) S5 61(@).

By Jensen’s inequality, we get from the inequality above that

N, ( sup u,?sf\s) < sup MR, (L) 55 drla). (5.21)
s€[0,1] s€[0,1]

The following result is a modification of Lemmas [4.2] and
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Lemma 5.7 Suppose in addition that (H5) holds. If f € T(E) is given by (5.1) for some r >0

such that Ay > 0, then
Atn/2 X))+ (Tt f X
lilrnsup6 (I8, Xao ) + [Tt X)) <82, (W, Py (|E°)-as.
n—o0 QIOg@n)

Proof: In the following s, = 0 or s, = t,41 — t, for all n € N. Define

(Ts,. f, Xt,) — (Tt 216, Fr Xt 2)

Aot = sup [P, <y|F.2| — @)

YyER \/Varx (T, [, Xe,) | Fe,. 2]
We claim that, P;-almost surely,
lee Y ATnT < o0, (5.22)
n>0

Combining the branching property and (5.21)), we get that, almost surely,

My, /2

. 3
Z€3A1tn/2 Z EZ, |:‘Ttn/2+snf (th/Q(Z)) — <T5nf, thn/2>‘ ‘ftn/2:|
n>1 i=1
Ty, f|3

- ZeSAlt"/2<E- < Jtn/Qf ) , X, /2)

n>1
S_, Z63)\1tn/2€—3)\1tn/4<¢1’th/2> S Ze)\ltn/4 — 26A1n1/10/4 < o0, (523)

n>1 n>1 n>1

where in the second inequality we also used the fact that sup;., W; < oc.
Tt is trivial that A2/ < 2. Since {My, ;o > 0} € F, /2, by Lemma there exists a constant

C1 such that under P, on the event {M; ,, > 0},

. 3
Sy Es [!Ttnmsnf (X, 2(D)) = (Ts £, X7, )] \ftn/z}

V (Var, [(To, £, X0,)| B o))

Since £¢ C {M,, /2 > 0}, we see that (5.24) holds on the event £°. Now suppose {)g is an event
with P, (£9) = 1 such that, for any w € Qp, the conclusion of Lemma (5.23)) and ((5.24]) hold.
Then for w € Qp N EC, there exists a large N = N(w) such that for n > N,

AL < ¢y (5.24)

e—)\ltn
Va'rw [<T57Lf7 th> ftn/2j| (UJ) 2 2 <f27 ¢1>Woo(w) > O
Together with (5.24]), we have that on QN E°,
D ALl <2(14N)
n>0
My, 2
C1V/8 . ; 3
+ ! Z eBAitn/2 Z E. “Ttn/2+snf (th/2(1)) — (T, f, th/2>‘ )ftn/2:| .
[(f2, 1) Wee]® n=N i=1

Combining (5.23)) with the inequality above, we arrive at ([5.22]).
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Combining Lemma (with B = &£°) and ((5.22]), we get

. (Ts,. f, Xt,) — (Tt 216, > X 2)
im sup
nree 2log nVar, [<T8n f, th> ‘ftn/Q]

<1, P,(|&-as.

Noticing that t, = n'/19, it follows from Lemma and /10 < 4 that

Attn/2 TS 7X —(T; s 7X
im sp & (Lo t"2>1 é?m X)) T B (1)
n—00 oglin

Since Ay(y) > 0, by Lemma we have that, P, (-|£¢)-almost surely,
MUT, s [o Xy, p2)| Sp €M P n2Eem) (6 X, o) = e UnZHeny, o 0,

which implies that

: e/\ltn/2<TS f7 Xt >
lim sup - =

< 44/02 Weo, Pi(-|E°)-a.s.
mawp el S < 4 /2, () (1€%)

Repeating the argument above with f replaced by —f, we get

Atn/2 -T X
lim sup (T fy X <402 (IWeo, Py (-|E°)-aus.
n—00 210g(tn>

Combining the two displays above, we arrive at the desired assertion. O

Lemma 5.8 Suppose in addition that (H5) holds. If f € T(E) is given by (5.1)) for some r > 0

such that Ay > 0, then

. e)\ltn/z }<T;‘/n+17tf> Xt>|
limsup sup

N—00  tE€[ty,tnt1) vV 2 log tn

Proof: From Lemma we see that

<1802, () Woo, Py (-€°)-aus.

Aitn/2 T B X o X
timsup & i 2{ (;"; Xl g oW, B (le)-as. (525)
n—00 oglin

Define

en(f) 1= 10y/202,, (et log () W, .

Set G, = Fy, and By, := {(Ty, . —t,. [+ Xt,.) — (f, Xt 11) > en(f)}, then B, € Gyyq for all n. From
the second Borel-Cantalli lemma, we get that

{(Toir—tn fr X)) — {f, Xt ) > en(f), i0. }

= {pr (<T¥n+1—tnf7 th> - <fa th+1> > 5n(f)|ftn> = OO} :
n=1
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By (5.25), on &£¢, P -almost surely,
oo
Z Pm (<Ttn+1*tnf’ th> - <f7 th+1> > En(f)‘ftn) < 0. (526)
n=1

Define
Zt(f) = Em |:(<f7 th+1> - <Ttn+1*tf7 Xt>)2 )]:t] 5 te [tnatn+1)>

Bu(f)i=  sw [{(Th1of Xe) = Do f. X0) = V2Z(P))

tE[tn tnt+1)

To(f) o= inf {5 € [tnstsn) t (Dot s X2, = (Thiamofs Xe) = V225(F) > alf) }
Similar to (4.36)) and (4.37)), by the strong Markov property and Markov’s inequality, we have
Py ((Thir—tn fs Xt) = {fs Xtnin) > €n(f)|Fe)
Z ]P)x (<1—‘tn+1*tnf’ th) - <f’ th+l> > €n(f)’ Tn(f) < tn‘i’l‘ftn)

> P, <<Ttn+1—Tn(f)fv X1, 0) = s Xtoin) > —1/2Z1, (), Tn(f) < tn+1\}}n)

1 1

> §Pm (Tn(f) < tn+1‘]:tn) = QPx (Bn(f) > 5n(f)’]:tn) ’ (5'27)

where the second inequality follows by the argument of (4.36]), and the last inequality follows by
the argument of (4.37). Combining (5.26]) and (5.27)), we get that P,-almost surely on £¢,

o0

S TP, (Bulf) > ealf)|Fi) < +oc.
n=1

Applying again the second Borel-Cantelli lemma, we get that P, (-|£¢)-almost surely,

eAitn/2 (<Ttn+l_tnf, Xin) = D=t f Xt>)

limsup sup

n—oo tG[tn,thrl) 2 log(tn)
>\1th
<limsup sup Ve Zi(f) +10v/02,,(f)Weo. (5.28)

n—o00 tE[tmthrl) 2 10g<tn)
By the display below [24, (2.11)] and the fact that |f| < ¢1 (see (5.4])), we have

sup eMZ,(f) < sup eM!(E. ((f, thﬂ_t)z) L Xy) <supeMtpr, X;) < oo. (5.29)
>0 >0 >0

Combining Lemma (5.28]) and (5.29)), we conclude that

—liminf inf AT of Xi) <18v/02,(/)Woo, Py (|E°)-as.
n—00 t€[ty tni1) V2logt, - sm

Using a similar argument with f replaced by — f, we complete the proof of the lemma. O
Proof of Proposition [5.1t Proposition follows from Corollary and Lemma 5.8, O
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5.2 Proof of Lemma [5.6]

Proof of Lemma Define Tt(k)f = E, ((f, Xt)k) . Then Tt(l)f = T.f is given by (3.1]), and

Tt(2)f =E, ((f, Xt>2) is given by (3.2). Recall that for any 6 > 0, wy(t,z) := E, (e_9<f’Xf>) solves
the equation

wy(t, ) = Eg /Ot P (Eswalt — s,65)) ds + E, (e*f’f@t)) :

Wo+ A0 (t,I)*UJg (t,:l?)
Af

Since [¢(z, 2z + Az) — ¥(x, 2)| S |Az| by (H2) (b) and that <SE, ((f, Xt>e_g<f’Xt>>
forallt > 0,2 € E and 0 < |Af| < /2, by the dominated convergence theorem, we can change the
order of differentiation and integration and see that Jywy solves the equation

Agwo(t, x) / D21 (&, wa(t — 5,&5)) Ogwo(t — 5,&5)ds — <f(£t)€_0f(§t)> '

Repeating the above procedure and taking derivative with respect to 6 in the above equation, we
see that agwg solves the equation

SReso(t, ) / 02 (Evr it — 5.4)) (Dpuop(t — 5.€,))%
+E, /O 0.1 (Esonlt = 5,6.)) Ffwn(t — 5,6.)ds + B (f(fo?e-"f“f)) .
Again, taking derivative with respect to 6 in the above equation, we obtain that
BReon(t, ) / O (Ens it — 5,5)) (Dpeon(t — 5,6,))° d
+ 3E, /O 024 (&5 walt — 5,&5)) Bjwa(t — 5, &5)pwa(t — 5, )ds
+E, /0 0.0 (Gnlt — 5,€0) Bhn(t — 5,E)ds — B, (£lgete), (5.:30)
and similarly, for 9dwy, we also have
oot ) / O (Esyn(t — 5,65)) (Dpw(t — 5,,))*d
+ 6B, /0 O3 (s, wat — ,£.)) (Do (t — 5,£4))° Buwa(t — 5, €:)ds
+4E, /Ot 024 (€4, wplt — 5,64)) Buwn(t — 5,£4)Dpwa(t — 5, €5)ds
# 35, [ 920 €nlt — ,60) (Benlt —5.)" s
+E, /0 0.0 (Gnlt — 5,€) Bfn(t — 5,E)ds + B, (£leyte?re). (5:31)
Taking 6 | 0 in and ([5.31)), we get that
19 f(a) = E, /0 0 (60, 1) (Tr—uf(€2))° ds + 3E, /O 02 (6 1) T F(E)T o f(£)ds
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t
+E, /0 0.0 (€, 1) T, F(€)ds + Bq (£(6)°) (5.32)

and that
T f () / 9 (€0,1) (Ti_s f(E,))" ds + 6E, / D) (€0 1) (Trea f(€2))2 T F(E)ds
+4E, / 020 (€, DTS EIT - (Eas + 38, [ 026 (61) (121716)) as
0 0
t
LB, /0 0. (€, 1) T, F(€0)ds + Bq (f(6)). (5.33)

Recalling that A% (z) = 0Fy(x,1) defined in (1.2), we get that (5.32) and (5.33)) are respectively

equivalent to

) /Ot T (A9 (Tf)%) ds + 3/; Ty (A (TO ) Tf) ds + Tu( %)

and
O / T (A(4) (T, f)4) ds+6 / ‘T, (A<3> (Tuf)? T f) ds
0 0
4 / ‘T (A<2> 1) fT, f) ds+3 / T, <A<2> : (TS(Q) f)2> ds+T,(fY.  (5.34)
0 0

Using the fact that A,p) > 0,[f| < ¢1 and the fact that A®) is bounded for all 1 < k < 4 under
(H5), we see that for any ¢ > 1 and x € F,

191 5 [ (ngP)as+ [ G ((00) ) as 4o, 6

We claim that the following inequalities hold.
ITof| Spe 03y, TOF<pe ™%y, s> 0,2 € E. (5.36)
We treat T f first. For s < 1, using the fact that [f| Sy @1, we have \T fISp Tsgr Sy e My,

follows from Lemma : for s < 1, using the fact that W is an L? bounded martingale, we also

have that T f <f Ts” g1 < ¢2 < e M5¢;. Therefore, (5.36) holds.
Combining ([5.35)), (5.36)) and the fact that ¢; is bounded, we get that for all t > 0,2 € E.

For s > 1, then |Tsf| < # M3y follows from Lemmam For T\ f , similarly, for s> 1, (5.36)
)

t t
)Tf’)f] <t / e M T, ((¢1)%) ds + / e M5 eMET,_ (¢7) ds + Th(1)
0 0
t t
5 </ 6_3>\'Y(f)56_/\1(t_5)d8+/ €_>\7(f)56_)\18€_>\1(t_8)d8+€_>\lt> d)l
0 0
oo o
e My <1+ / e BhnTA)sds 4 / e—wmds) Spe Moy, (5.37)
0 0
Now we bound Tt(4) from above. Similarly to Tt(g) f, combining ((5.34)), (5.36|) and and (5.37)),

704 < [ 1 (@) as+ [ 1 (@prr) as
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. t 2
+/ Tt_S(Ts() )ds-i—/ T, . <<T€,(2)f) >ds+Tt(f4)
0 0
‘ t
Si / e MO Ty g (¢1) ds + / e~ (PR, (g1)ds
0

¢ t
—I—/ ~(Mtin)sT,_ () ds+/ e PNy (¢1) ds + Ty(¢1)
0 0

[e§) o) o0 t
S pre M </ ~(Bn=M)sgs —|—/ e MNsds +/ e MN3ds —l—/ e~ M3ds + 1)
0 0 0 0

S ¢1€_2)\1t7

which completes the proof of the lemma. O
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