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ASYMPTOTIC BEHAVIORS OF SUBCRITICAL BRANCHING
KILLED SPECTRALLY NEGATIVE LEVY PROCESS

YAN-XIA REN, RENMING SONG, AND YAPING ZHU*

ABSTRACT. In this paper, we investigate the asymptotic behaviors of the survival prob-
ability and maximal displacement of a subcritical branching killed spectrally negative
Lévy process X in R. Let ¢ denote the extinction time, M; be the maximal position
of all the particles alive at time ¢, and M := sup,~, M; be the all-time maximum. Un-
der the assumption that the offspring distribution satisfies the Llog L condition and
some conditions on the spatial motion, we find the decay rate of the survival probability
P,(¢ > t) and the tail behavior of M; as t — c0. As a consequence, we establish a
Yaglom-type theorem. We also find the asymptotic behavior of P, (M > y) as y — co.

1. INTRODUCTION

1.1. Background and motivation. A branching Lévy process on R is defined as fol-
lows: at time 0, there is a particle at z € R and it moves according to a Lévy process
(&, P,) on R. After an exponential time with parameter 8 > 0, independent of the spatial
motion, this particle dies and is replaced by k offspring with probability py, & > 0. The
offspring move independently according to the same Lévy process from their birthplace
and obey the same branching mechanism as their parent. This procedure goes on. Let
N; be the set of particles alive at time ¢ and for each u € Ny, we denote by X,(t) the
position of u at time ¢. Also, for any u € N; and s < t, we use X,(s) to denote the
position of u or its ancestor at time s. Then the point process Z = (Z;):>o defined by

Zt = Z 5Xu(t)

uE N

is called a branching Lévy process. We shall denote by P, the law of this process when
the initial particle starts from x and use [E, to denote the corresponding expectation. Let

(= inf{t > 0: Z;(R) = 0}

2020 Mathematics Subject Classification. Primary: 60J80; Secondary: 60J65.

Key words and phrases. Branching killed Lévy process, subcritical branching process, survival prob-
ability, maximal displacement, Yaglom limit, spectrally negative Lévy process, Feynman-Kac represen-
tation .

The research of Yan-Xia Ren is supported by NSFC (Grant No 12231002) and the Fundamental
Research Funds for the Central Universities, Peking University LMEQF.

Research supported in part by a grant from the Simons Foundation (#960480, Renming Song).

The research of Yaping Zhu is supported by the China Postdoctoral Science Foundation (No.
2024M760056).

*Yaping Zhu is the cooresponding author.


http://arxiv.org/abs/2503.03580v1

2 Y.-X. REN, R. SONG, AND Y. ZHU

be the extinction time of Z. Note that Eis equal in law to that of the extinction time
of a continuous-time Galton-Waston process with the same branching mechanism as the
branching Lévy process. Let m := > 7 kpy be the mean number of offspring. It is
well-known that Z will become extinct in finite time with probability 1 if and only if
m < 1 (subcritical) or m = 1 and p; # 1 (critical). Moreover, the process Z survives
with positive probability when m > 1 (supercritical).

In the critical case, i.e. m = 1 and p; # 1, Sawyer and Fleischman [15] investigated
the tail behavior of the all time maximal position of branching Brownian motion under
the assumption that the offspring distribution has finite third moment. For a critical
branching random walk with spatial motion having finite (4 4+ ¢)th moment, the tail
behavior of the all time maximum was obtained by Lalley and Shao [12]. Hou et al.
[8] studied the asymptotic behavior of the all time maximum of critical branching Lévy
processes with offspring distribution belonging to the domain of attraction of an a-stable
distribution with «a € (1, 2], under some assumptions on the spatial motion.

In the subcritical case, Profeta [14] gave the asymptotic behavior of the all time maxi-
mal position under the assumption that the offspring distribution has finite third moment.
For related results about subcritical branching random walks, we refer the reader to [13].

The focus of this paper is on the asymptotic behaviors of a branching killed Lévy
process, in which particles are killed upon entering the negative half-line. The point
process Z° = (Z?);>¢ defined by

Zt0 = Z 1{infSStXu(s)>0}5Xu(t)

uEN

is called a branching killed Lévy process. For any t > 0, let
M, = sup X, (t)

ueNt,infSSt Xu(S)>O

be the maximal position of all the particles alive at time ¢ in the process Z°. We define
the all-time maximum position and the extinction time of Z" by
M :=supM,,  (:=inf{t>0:2)((0,00)) = 0}.
>0

In the critical case, i.e., when m = 1 and p; # 1, the asymptotic behaviors of the tails
of the extinction time and the maximal displacement of Z° were established in [9] under
the assumption that the offspring distribution belongs to the domain of attraction of an
a-stable distribution, o € (1, 2], and some moment assumptions on the spatial motion.
They also proved that the scaling limit under Pz (-[¢ > t) can be represented in terms
of a super killed Brownian motion. In the subcritical case, i.e., m € (0, 1), under the
assumption » - k(logk)py < oo, the asymptotic behaviors of the survival probability
and the all time maximal position of branching killed Brownian motion with drift were
established in [I0] recently.

The purpose of this paper is to extend the results of [10] to subcritical branching killed
spectrally negative Lévy processes. This extension is quite challenging since properties
of Brownian motion were used crucially in [10]. Fluctuation theory of spectrally negative
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Lévy processes will play an important role in this paper. Another important tool is the
conditioned limit theorem in Theorem below.

1.2. Main results. Before we state our main results, we introduce some notation and
some basic results on spectrally negative Lévy processes. We always assume that the
offspring distribution is subcritical, i.e., m € (0,1). Let a := $(1 —m) and let f be the
generating function of the offspring distribution, i.e. f(s) =Y ,—,prs*, s € [0,1]. Define

(1.1) O(u) = (f(1 —u) = (1 —u) = (a+ew)u, wuel01],
where ¢(u) = W for u € (0,1] and ¢(0) = ®'(0+) —a = 0. According to [10, Lemma

2.7], ¢(+) is increasing on [0, 1] and under the condition

(1.2) Zk(log k)pr < 00,

k=1
it holds that

(1.3) /OO ¢ (e7)dt < oo, for any ¢ > 0.
0

Moreover, it is well-known (see Theorem 2.4 in [2], p.121]) that

(1.4) lim e“Py(C > t) = Clp € (0, 00)

holds if and only if (L2) holds. For any ¢ > 0, define

g(t) =Po(C > 1).
It is well-known that g(t) satisfies the equation

%9@) = —®(g(t)) = — (a + @(g(1)) g(t),

thus
(15) eyt = exp { - t a(s)as |

It follows from (L4]) that

(1.6) Cos=esp{~ [~ etateas}

Therefore, (L2) is equivalent to

/ " (g(s))ds < .

In this paper, we always assume that £ = ((£:)t>0, (P1)zer) is @ Lévy process on R and
we will use E, to denote expectation with respect to P,. For any z € R, define

rhi=imf{t>0:&>2} and 7, :=inf{t>0:¢& <z}

z
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It follows from [0, Lemma 2.8] that, if Eo(¢1) = 0 and Eo(&£7) € (0,00), then Ey[¢ - | < oo
and the function

(1.7) R(z) ==z — E, <570,> ~ _E, (gg) . x>0,

satisfies the following:
(1) R(xz) > z and R(z) is non-decreasing in z;
(2) there exists a constant ¢ > 0 such that R(z) < ¢(1 + x) and

@:1_hm%:1.

Y

lim
r—o00 I T—00 x

(3) (R<§s)1{7—0_>3})520 is a P,-martingale for any x > 0.

In the case £ is a Brownian motion with drift, it is obvious that
(1.8) R(z) =z, x>0.

Now we introduce some basics on spectrally negative Lévy processes. Let & be a
spectrally negative Lévy process on R. For any A € C with Re(\) > 0, the Laplace
exponent of £ is given by

2 0
U(A) =InE [eM'] =ar+ %v - / (eM — 1 — Aalyy<1y) H(da),

—00

where a € R, n > 0 and the Lévy measure II satisfies fi]oo (1 A2*)TI(dz) < 4oo. It is
well known that

Eq[&] =9'(0+) =a +/ zII(dz) € [—o0,0).

(700771}
In some results, we will assume that £ satisfies one or both of the following conditions:
(H1) There exists § € (0, 1) such that E, (|&[**) < oc.

(H2) The law of &; is non-lattice.
For ¢ > 0, let

Y(q) :=sup{A > 0: V() = ¢}

be the right inverse of W. By Kyprianou [I1, Theorem 8.1], for any ¢ > 0, there exists a
scale function W@ : R — [0, 00) such that W@ (x) = 0 for # < 0 and W@ is a strictly
increasing and continuous function on [0, o) with Laplace transform

h e WD (2)de = ———,
/ TR

In the case when ¢ is a standard Brownian motion with drift —b, by using tables of
Laplace transforms, one can easily get that

for r > ¢(q).

2 bx
(1.9) W@ (z) = ———sinh(y/b? + 2qx), x>0, ¢ >0.
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For any ¢ > 0 and = € R, since {e®&—®~¥) : ¢ > 0} is a P,-martingale, we can define
the change of measure
dP¢
dP, |7

where F; = o{&:s<t}, t > 0. According to [II, Theorem 3.9], ((&)i>0, (PS)zer)
is also a spectrally negative Lévy process and its Laplace exponent W.(\) is given by
U (A) == V(A +c¢)— Y(c). We will use ES to denote expectation with respect to PS. Let
Wi be the scale function of ((£)is0, (P%)sck)-

According to [II, Theorem 3.9], the Lévy measure of ((&:)i>0, (PS)zer) is given by
L(—oo,0)eII(dz). Thus, for any p > 1, if ((&)¢>0, (P2)zer) has finite p-th moment, then
((&1)e>0, (PS)zer) also has finite p-th moment. In case ¢ > 0, ((&)i>0, (PS)zer) will have
finite exponential moment. It is also easy to see that ((&)i>0, (PS)zer) is non-lattice
if and only if ((&:)i>0, (P2)zer) is non-lattice. In particular, if ((&)i>0, (Px)zer) satisfies
(H1) (or (H2)), then ((&:)t>0, (PS)zer) also satisfies (H1) (or (H2)). It follows from [11]
Theorem 3.9] that, if ((&):>0, (Pz)zer) is @ Brownian motion with drift, ((&)i>0, (PS)zer)
is also a Brownian motion with drift.

When ¥/ (0+) < 0, we have 1(0) > 0. In this case, ¥ is strictly convex and admits a
unique minimum at a A, > 0 and U(\,) < 0, U'(\.) = 0 and U”(\,) > 0. Consequently,
the function v is well-defined on [—g¢.,+00), where —¢, = ¥(\,). Taking ¢ = \,, we
define the change of measure,

(1.10) — eelea) v

AP | (e w) w0

(1.11) Bl = .
Then ((&)r>0, (P)*)zer) is a spectrally negative Lévy process and its Laplace exponent
is given by W), (A) := U(A+ A,) — U(A,). It is easy to see that W) (04) = W'(\,) = 0.
Let E2* be the expectation with respect to P)*.

Suppose that ((&)i>0, (Pz)zer) has finite second moment, then ((&;)s>0, (P)*)zer) also
has finite second moment. Since Ej*(¢&;) = W) (0+) = 0, by [9, Lemma 2.8], we have
| D §~| < oo. Define

(1.12) R*(z) =z — E (gTO_), x> 0.
Define the dual process of £ by:

§ ==&, 520,
For any z € R, we define 7, :=inf{s > 0: £ < z} and
(1.13) R(z) =z —E (é()-) , x>0.

Denote Ry = [0,00). Our first main result is on the large-time asymptotics of the
survival probability.

Theorem 1.1. Assume that (L2)) holds and that ((&)i>0, (Px)zer) is a spectrally negative
Lévy process satisfying (H1). Let x > 0.
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(1) IfEq[&] = 0, then
QCsubR<SL’)

Voro?

where Cyyp is defined in (L) and R(z) in (L1).
(2) [on [51] > 0, then

lim P, (¢ > t) = CoupEo [61] WO ().

t—o0

(3) Assume further that ((&)i>0, (P2)zer) satisfies (H2). If Eqy [&1] < 0, then

* AsT
lim £3/2e@=YOP (¢ > ¢) = 2C)R*(x)e
t—00 20 ()3

lim Ve P, (¢ > t) =
t—o00

9

where Cy = limpy_, o €@ FADN fR+ P.(¢ > N)e ™*R*(2)dz € (0,00), R* is de-
fined in (LI2) and R* in (C13).

Remark 1. Combining the result above with (L8)) and (L9), we immediately recover
the first two conclusions of [10, Theorem 1.1] as a corollary. Furthermore, when £ is a
standard Brownian motion with drift —p, we have W(\) = —pA + %)\2 and A\, = p. When
p > 0, a straightforward calculation yields that

px
lim tg/ze(a+§)tpx(c ) = 2Cyze

t—o00 \/ﬂ

This result is consistent with [10, Theorem 1.1, (iii)], where Cy(p) = Cp.
Our second main result is on the asymptotic behavior of the tail probability of M;.

Theorem 1.2. Assume that (L2) holds and that ((&)i>0, (P2)zer) is a spectrally negative
Lévy process satisfying (H1). Let x > 0.
(1) If Eqg [&1] = 0, then for any y > 0, we have
205w R(x) _ 22
lim Vte“P, (Mt > \/Zy) = bi(x)e 202 .
t—00 2mo?

(2) If Eqg [&1] > 0, then for any y € R, we have

CouBo [&2] WO () / Tt
V& Y

(3) Assume further that ((&)i>0, (Px)zer) satisfies (H2). If Eq[&1] < 0, then for any
y > 0, we have

lim e™P, (Mt > Vity + Bq €] t) =

t—o00

* Ax
lim t3/2e(a7\11()\*))t]P)x (Mt > y) _ 20 (y)R (x)e
t—oo 20 ()3

Y

where C1(y) := limpy o e @ YAV fR+ P.(My > y)e ™ R*(2)dz € (0, 00).
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Noticing that P,(My > 0) = P,(¢ > N) for z > 0, Cy in Theorem [T and C(0)
in Theorem are the same. Combining the result above with (L.8) and (L9]), we
immediately recover [10, Theorem 1.3] as a corollary.

Combining Theorems [T and [.2] we immediately get the following Yaglom-type con-
ditional limit theorem.

Corollary 1.3. Assume that (L2)) holds and that ((&;)i>0, (Ps)zer) is a spectrally negative
Lévy process satisfying (H1). Let x > 0.

(1) If Eq [&1] = 0, then we have

Px(%e-‘g>t) L R,

where R is the Rayleigh distribution with density p(z) = ze_ZQ/zl{Do}.
(2) If Eq [&1] > 0, then we have

p (Mt —Eq[&]t
' Vi
where N(0,02) is normal distribution with mean 0 and variance o>,

(3) Assume further that ((&)i>0, (Py)zer) satisfies (H2). If Eg[&1] < 0, then there
exists a random variable (X,P) whose law is independent of x such that

P, (M € -‘g >t) L P(Xe).

€ -‘g > t) =L N(0,07),

Our third main result is on the asymptotic behavior of the all-time maximum M. Note
that we do not need any assumption on the spectrally Lévy process in the following result.

Theorem 1.4. Assume that (L2) holds and that ((&)i>0, (P2)zer) is a spectrally negative
Lévy process. There exits a constant Cy(a) € (0, 1] such that for any x > 0,
lim e?CVP (M > y) = Cy(a) W@ ()W (1h(a)),

Yy—00

where W @) s the scale function of ((&:)i0, (Py)zer)-

Combining the result above with (L9), we immediately recover [10, Theorem 1.2] as a
corollary.

Organization of the paper: The rest of the paper is organized as follows. In Section
2, we give some results on spectrally negative Lévy processes which will be used in the
proofs of our main results. We establish the conditioned limit theorem for Lévy process
in Section [3l The proofs of Theorems [T and are given in Section M and the proof of
Theorem [1.4] is given in Section

In this paper, we use ¢(+) to denote the standard normal density, i.e., ¢(t) = _L_e—t*/2

\/ﬂ )
use p(-) to denote the Rayleigh density, i.e., p(z) = xe*mQ/zl{Do}, and use R(x) to denote
the Rayleigh distribution function, i.e., R(z) = (1 — e */*)1,50. For v > 0, we define
bo(z) = ﬁe’ﬁ/@”) and p,(z) = (x/v)e /@1, 0. We use F(x) ~ G(z) as 2 — oo
to denote lim, . F(z)/G(x) = 1. In this paper, capital letters C; and T;, i = 1,2, ...,
are used to denote constants in the statements of results and their value remain the same
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throughout the paper. Lower case letters ¢;, i = 1,2, ..., are used for constants used in
the proofs and their labeling starts anew in each proof. ¢;(¢) and C;(€) mean that the
constants ¢; and C; depend on e.

2. PRELIMINARIES

In this section, we always assume that & = ((& )0, (P2)zer) is a spectrally negative
Lévy process with Laplace exponent W. Recall that ¢(q) := sup{A > 0 : ¥U(\) = ¢} is
the right inverse of W. It is well known, see [I1} Section 8], that for any ¢ > 0,

E, (e—qTJ 1{T;<OO}> — V@)
Moreover, since £ is spectrally negative, we have
Eo(€,+ = alr] <o0) = 1.
The following result on exit probabilities is contained in [I1, Theorem 8.1].
Theorem 2.1. (1) For any x > 0, if ¥'(0+) > 0,
P.(1y <o0)=1—V(04+)WO(x),

and if U'(0+) <0, P,(r, <o0)=1.
(2) For any 0 < x <y and q > 0,

—qry _
e (e ” 1{70—>Ty+}) - Wa(y)

The following result, which can be found in [I1, Lemma 8.4] and [I6, Proposition

1], gives the relationship between W9 for different values of q, ¢, and the asymptotic
behavior of W@ (z) as z — oo.

Lemma 2.2. For any x > 0, the function q — W9 (z) may be analytically extended to
q € C. Furthermore, for any q € C and ¢ € R with ¥(c) < oo, we have

WD () = e WD (3), x>0,

where Wi is the scale function of ((£)is0, (P%)scr). Furthermore,

e¥(@)z

T ((g)

The following lemma gives the joint asymptotic behavior of the tail of 7;” and the Lévy
process & when Eq [£] > 0.

(2.1) W@ () as x — oo.

Lemma 2.3. Assume that Ey(&;) > 0 and 02 := E¢(£?) < oo, then for any x > 0,
(2.2) tlim P.(1y >t) =P,(1; =00) =V (0+)WO(z).
—00

Moreover, for any y € R, we have

tliglo P. (7‘6 >t,& — Eo[&]t > \/Ey) =P,(1y = o0) /:O o(z)dz.
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Proof. Note that (2.2)) follows immediately from Theorem 211 (1). Fix ¢t > 0, for m €
(0,t), by the Markov property,

P, (Tg St 6 —Bola]t > ﬂy) <P, <Tg > m, & — By [6]t > \/Ey)
=E, |:]-{7—0_>m}me (&—m —Eo [&1] 1 > \/Eyﬂ .

By the central limit theorem, for any z, as t — oo, we get

(2.3) P (6o — Bofer]t > Viy) / 60 (2)d2
y
Letting ¢ — oo first, then m — oo, we get that
(24)  limsup P, <Tg > 16— Eola]t > Vi y> <P, / o2 (2
t—o00

On the other hand, we have

P, (7‘0_ >m, & — Eo[&]t > \/Ey) <P, (7‘0_ >t,& — Eo [&]t > \/Ey) +P, (15 € (m,t]).
It follows from (2.3]) that

lim lim P, (7‘0_ >m, & — Eg &)t > ﬂy) =P, (15 =) /OO by (2)dz
y

m—o0 t—00
this combined with

lim lim P, (75 € (m,t]) = lim P, (75 € (m,0)) =0

m—00 t—00 m—00

yields that

lim inf P, (rg >t,6 —Eo[&]t > \/_y> > P, / ho2 (2
—00
Combining this with (2.4]), we get the the desired result. O

The following lemma is an important tool for proving Theorem [L.4l

Lemma 2.4. For any a > 0, 0 < x <y and nonnegative Borel function h, we have
+
— h(€s)ds | a)(x— a Y h(&s)ds
E, [1@«0—}6 J77 e } _ @) gY@ [1{ e — I3V (e } '

Proof. By [3, Theorem 6], {r,f < 7o} N{7] <t} = {7 At <7 }n{r] At <t} is
]:quAt-measurable. For a > 0, since e~ Li# —oy=0, using (LI0) with ¢ = ¢ (a), we have

o+
(2'5) E, |:1{Ty+<7'o}6_aﬁr;r_f0y h(§S)dS:| = lim E, |:]'{Ty+<7'0 Ty+<t}6_(”y " h(gs)d5:|

t—o00

-+
_ lim EY® {ewm)(stmateanffoy n&)

dsq, 4
t—o00 {mf <r5 o <t}
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B [e—w(axst—xmt

t—00 {ry <70 7y

o+
= lim Ef(a) [G_QTJ_foy h(&s)ds + + qujAtH .

Note that (e~¥@&—2)+aty _ ig g PY“ is a martingale with respect to F,. Using the
optional stopping theorem and the absence of positive jumps, we get that, on {73L < t},

Fos

Ty Nt

Eﬁ(a) [efw(a)(gtfm)“rat i| — 7w(a)(£TJAtim)+a(ﬁj’/\t> — e—qﬁ(a)(y—m){»ar&"

Combining this with (2.5) and using the fact that Pf(a)(TyJr < 00) =1, we get
+ +
—arF =Y h s)ds | a)(x— a —[Y s)ds
E, [1{7;«0—}6 v —Jo" h(&) ] = @y @ PP Jo? (&)
This gives the desired result. U

3. CONDITIONED LIMIT THEOREMS FOR LEVY PROCESSES

The purpose of this section is to prove Theorem [3.5 a conditioned limit theorem for
spectrally negative Lévy processes. Theorem B.5will play an important role in this paper.
We make some preparations first. The following result follows from [0, Lemmas 2.12 and
4.1].

Lemma 3.1. Assume that ((&)i>0, (Pz)zer) is a Lévy process satisfying Eo(&1) = 0 and
(H1). Then for any x > 0 and a € (0, 00|, it holds that

) _ B 2R(x) %
tliglo \/EPJB (ét S CL\/I_f, To > t) - \/W 0 p(Z)dZ,

where 0% := Ey(£2). Furthermore, for any x > 0 and any bounded continuous function h
on (0,00), it holds that

lim V7E, {h <0_5—\t/%) 1 {TO—»}} _ \2/% Ow o(2)h(2)dz.

Recall that 0 is the constant in (H1). The following result is [9, Lemma 2.11].

Lemma 3.2. Assume that ((&)i>0, (P2)zer) s a Lévy process satisfying Eq(&1) =0 and
(H1). Then there exists a Brownian motion W with diffusion coefficient o* starting from
the origin such that for any k € (0, 52— ), there exists a constant C3(k) > 1 such that

2(249)
forallt > 1,

5€[0,1] = 3R+ -1

P, < sup |&s —x — Wig| > t%_"‘> < Cs(r)

The following result is a conditioned limit theorem for Lévy processes with explicit
rate of convergence. See [7, Theorem 2.7] for an analogous result for random walks.

Lemma 3.3. Assume that ((&)i>0, (Ps)zer) @5 a Lévy process satisfying Eo(&) = 0,

Eo(&3) = o? and (H1). Then one can find a constant gy € (0, 4(26—+5)) with the property
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that for any € € (0,e0) there exist positive constants Ty(e) and Cy(e) such that for any
xz,y >0 and t > To(e),

P, ( ft/i YTy > t) - jR(QfT)tR(y)) < —C4<t1)/<21+:r %),

Proof. Let W be the Brownian motion in Lemma B2l For any r» > 0 and € € (0,6/(2(5+
29))), define

A, = { sup |€sr — & — Wer| > r%’%}.

s€[0,1]
Let (Sp)n>0 be the random walk defined by S,, := &,, n € N. For any b € R, define
>t =inf{j € N,|S,| > b}.

By the Markov property, we have the following decomposition:

4
P, < s >t) => "I,
o k=1

where

. ft S,+ 1—e
_[1 I Pl‘ (U\/'E S y7 TO > t) Ttl/Q € [t ] ?

']

I, _ZE (ng(ft\/k_<y,7'o >t—k, A k) To >k:,7't1/2€:k:),

tl e]

[#1=]
14_213 <P§k<€t\/k_<y,7-o >t —k,AS k) 5 > k& < t179/2) tme—k)

We now deal with I;, 1 = 1,2, 3,4, separately.
(i) Upper bound of I;. Set K := [t¢ — 1] and [ := [t'7%]. Since Kl < [t'7¢], we have

1—e 1/2—e¢
(3.1) I, <P, ( T > [t ]) <P (1gz§1§l|x+5j| < ¢/ )
<P, ( max |z + Sj;| < tl/Q_E) ., x>0.
1<j<K
By the Markov property, we have

K
(3:2) Po ( max |z + Syl < /% ) < (sup Py (lz+ S < tl/“)) .

1<j< :L‘ER+
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According to the display below [9, (4.6)], there exist positive constants ¢; € (0,1) and
t1(€) such that for ¢ > t;(e),

Py (\:L’ + 5| < t1/276) <ca zeR;.
Plugging this into (3.2)), taking co = —In¢y, and combining with (3.]), we get that for
t > tl(E),

—colte— Co
(3.3) h<ef =0 <o

(ii) Upper bound of I. By part (ii) of the proof of [9, Lemma 4.1], for any € €

(0,0/(2(5+ 20))), we have
Cs3(2¢)x C3(2¢)x

I < $1+6/2—(5+20)e < fate/a
where C5(2¢) is the constant in Lemma

(iii) Upper bound of I3. Repeating the argument in part (iii) of the proof of [9, Lemma
4.1] leading to [9, (4.8)] and using [0, Lemma 7.7], we can find ¢; > 0 with the property
that for any € € (0,3 A 0/(2(5 4 26))) there exists a positive constant cz(€) such that

[t ]

1
(3.5) I; < NG > E, (Sk;TOS’* > kS >t oS k)
k=1

(3.4)

cs(e)(l+ax) _ es(e)(1+ )
< .
= {14+6/2—e(1+e+5/2) — ate/4

(iv) Upper bound of I,. For k < [t'7¢] and 2’ > 0, define

-k _ )
Kk, o) =P, <y st—k A, ).
(ko) =P (S <y .
Set
/ )32 9
ot =2 aal Gl and y* = yVt + .
o Vi—k  o(t—k)%*
It follows from [9, (4.13)] that
2 ' t%_Qe v _zx*
3.6 Kk o)< —m————— | — + / 2)evi—kdz.
39 (k) zm_k)(g 0>0p<>

We claim that there exist positive constants t5(€) and c4(€) such that for ¢ > t5(e),

61 K)o (10 %) (RO 4 S ) ()

To prove this claim, note that for any k& < [t17¢] and 2’ < t179/2  there exist positive
constants t3(€), ¢5(€) and cg(€) such that for t > t3(€), the following holds:

* t(lfe)/2 tler
’ < cs(e RN co(e)t™</2.

t—k Vit -
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For y € [0,t] with p > 2 being a positive constant, and z < y*, there exist positive
constants t4(€) and c;(€) such that for ¢ > t4(e),

z < yﬂ + 2 <
“Vt—k  o(t—k)* —
and thus there exists a positive constant cg(€) such that for ¢ > t3(€) V t4(e€),

cs(e)

te/2—eP’

This implies that when y € [0,¢], for ¢ > t3(€) V t4(¢), it holds that

y* zx* y*
/o p(z)evi-Fdz < (1 + ;52(—62’7)/0 p(z)dz.

Moreover, by the definition of y*, there exist positive constants t5(e) and cg(€) such that
for t > t;5(e),

c7(e)t5p,

t76/2tep

eVt < eeo(©er(o) <14

for z < y*.

* co(€)
by -v= te/2

Thus using the fact that p(z) < 1 forall z > 0, we get that for any € € (0,e;A/(2(5+29)))
and t > max{t;(¢) : 3 <i < 5},

*

35) [ oredias < (14 5% ) RG) 4 -)

< (1 + tffz(fzp) (R(y) + Cff/i)) -

For y > t, using [6, (7.31)] we get that there exist positive constants ts(€) and cio(€)
such that for ¢ > tg(e),

v zz® 010(6) Y —er0(e)t”
(3.9) / p(z)eviFdz < | 1+ e / p(z)dz + cio(e)e
0 0

(29 (a0 229)

Combining ([3.6), (B.8) and (3.9), we get that there exists a positive constant ¢1;(€) such
that for any y > 0 and ¢ > max{t;(¢) : 3 <7 < 6}, we have

(3.10) K(k,2') < 7% <1 + tcl/lz(_e)) (R(y) + C?—/(j)) .

Since k < [t17¢], there exists a constant ¢7(¢) > 0 such that when ¢ > t;(e),

and

(3.11) AN (1+Cl3(6)) (x’ﬂé—?f),
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for some positive constants ci2(€) and ci3(e). Taking to(€) := max{t;(e) : 3 < i < T},

then the claim (B:Z]) follows from (B.10) and (BIT).

Note that on {7 t1/2 . = k}, we have & = S, > tY/27¢. Thus, t'/272¢ < 7%, on
{5 tl/Q . = k}. Also note that, by using that (R(£S)1{Tg>s})szo is a P -martingale for any
x > 0 and the optional stopping theorem,

t1/2—¢

(3.12) R(z) = ( (5 S+ ) T, > Tjge) , x>0,1t>0.

Hence, by (3.7), for t > t5(e),

=5 227rt (1 " tc;lZ‘(—E)> <R(y) " C;—(/Z))

G

x 3 E, (§k+t% e > k& < 172 S :k:>
k=1

_ [t~
2(1 +1 E) C4(€) C4(€)
< ——“ (1 R
T o2t ( * fe/2—er (v) + te/? ;
E, (fk; o >k, & <1792 20t~ k:)

) T4l/2—€

2(1+t7°) ca(e) cale) s 8

m (]- + t6/276p R(y) + t6/2 g 5;/‘2 . 7—0 > Ttl/—g €3 Ttl/—; . S [tl ]
2(1 + t_E) C4(€) C4(€) s,

S 0'7 (1 + t6/27€p R<y) + te/2 Ex £T5’+ TO > 7-t1/<2F €

IN

ot -
SRy, 500 (g 19).

where in the last equality we used (3.12)). Thus, there exist positive constants ts(€), c14(€)
and c;5(€) such that for ¢ > tg(e),

c14(€) ci4(e)
2R(x) <1 + te/Q—eP) <R(y) + 2 ) - 2R(x)R(y) = cis(e)(1+ )
27t  oV2mt tate/d

(v) Lower bound of I,. Repeating the proof of [6 (7.40)], we get that there exist positive
constants tg(€), ci6(€) and c17(€) such that for ¢ > tg(e),

2R(z) c16(€) 1 ci(€)(1 + x)

(3.14) I, > o <1 ~ e ) \RW) = 5 | — wepaarasn
S 2R@)R(y)  crle)(l + )
- oV2mt gate/t

Set €y := min{d/(2(5 + 20)),€e1}, € 1= €/4, ¢ := €o/4 and Ty(e) := max
1,2,8,9}. Using the fact that there exists ¢35 > 0 such that R(x) S 18(

(3.13) I <

{ti(€)
1+ z), and
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combining (33), 34), 35), BI3) and (B.14]), we arrive at the conclusion of the lemma.
U

The duality relations in the following lemma, especially (3.13]), are well known in prob-
abilistic potential theory. We give an elementary proof here for the reader’s convenience.

Lemma 3.4. For anyt > 0 and any bounded Borel functions g, h: R +— R, we have

(3.15) | H@E. (o601 0] do = [ o)y [1E)15 ) o

R4
and

(3.16) [ B a1y g | e = [ 9B, [1E1 <o) av

Proof. For x > 0, by the change of variables x + & =y, we get
| b [l gan] do = [ H@E oo+ @01 1) do
R, Ry

- [ #oE {g<x+§t>,inffs -
Ry s<t

dz = / h(z)E [g(:c +&),inf & > —x} dz
Ry s<t
= /R 9(y)E {h(y = &), inf(6—s — &) > —y} dy

— [ o [+ EingE > o] ay= [ o, (0@ 5]
Ry S> Ry
which completes the proof of (8.15)). Using the same argument, we can also get

(3.17) / h()Ea(g(&))dr = / h(o)E(g(a + &))dx = / g E(h(y — &))dy

o~

:/RQ(Q)E(h@+gg))dy:/g(y)Eym(&))dy.

R
Note that for x < 0, P,(7y > t) = P,(7, > t) = 0. Therefore, (3.15) is equivalent to

/h@)Ez |:g<£t)1{q—(;>t}] dz = /g(y)Ey [h(ft)l{?(;>t}] dy.
R R
Combining this with (B.17), we get (3.10). O

Before stating Theorem [3.5] we first introduce some necessary notation and definitions.
Let hi, hy : R — R, be Borel functions and € > 0. We say that h; e-dominates hy and
write hy <, hy if

ha(u) < hi(u+v), YueR, Vove]|—e¢c¢l.

For any a > 0 and Borel function h : R — R, we define I, = [ka, (k + 1)a] for k € Z
and

ha(u) := Z 1y, ,(u) sup f(u'), h,(u):= Z 1y, ,(u) inf f(u'), ueR.

i u' el
keZ wWelka keZ k,a
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The function h is called directly Riemann integrable if fR u)du < oo for any a > 0
small enough and

lim [ (he(u) — h,(uw)) du = 0.

a—0 R
Define

(3.18) hae(u) = sup ho(v), h,_.(u):= inf h.(v), u€eR,

[u—e,u+e] vE[u—e,u+te]
then it holds that
h —e SE ha S h’ S ;_la Sg }_La,s on R

a,

For more details about directly Riemann integrability, see [5, Section XI.1].
The following theorem will play an important role in this paper. We refer the reader
to [7, Theorem 1.9] for an analogous result for random walks.

Theorem 3.5. Assume that ((&;)i>0, (P2)zer) s a spectrally negative Lévy process sat-
isfying (H1), (H2) and Eq[§1] < 0. Let f : R +— Ry be a Borel function, which is not
0 almost everywhere on R, such that f(x)e *(1 + |x|) is directly Riemann integrable.
Then for any x > 0, it holds that

2R*(x)er

\/ 277-\:[/”()\*)3 R+

lim 1226 YONE, (f(6), 7 > t) =

t—o00

f(2)e™*R*(2)dz,

where W is the Laplace exponent of €.

Remark 2. Recall that, when Eq [&1] < 0, ()0, (P2*)zer) is a spectrally negative Lévy
process with Laplace exponent ¥y, (X) = W(A+A) =Y () and that ¥\ (0+) = ¥'(\,) = 0.
Using (LIT)), we get that

(3.19) E, (f(&), 75 >t) = eV T AL (f(ft)e*’\*&, T, > t).

Therefore, to get the assertion of Theorem[3A, we only need to consider the asymptotic
behavior of

E) (f(&)e M, 15 >1t), t— oo

(
Theorem 3.6. Assume that ((£;)i>0
isfying (H1), (H2) and Eq[&] <
0 almost everywhere on R, such
for any x > 0, it holds that

>0, (P2)zer) is a spectrally negative Lévy process sat-
0. Let h : R — Ry be a Borel function, which is not
that h(x)(1+ |z|) is directly Riemann integrable. Then

‘ 2R*(x) ~
3/2 A« B — - *
tlgilot E; (h(ft)l{TO >t}) T e, h(z)R*(z)dz,
where W is the Laplace exponent of €.

Remark 3. Taking h(x) = f(z)e ™% in Theorem [3.8 and using (B19), we immediately
get the conclusion of Theorem [3.].
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In the next four lemmas, we provide some upper and lower bounds for E)* (h(gt)l {Tg>t}) .

In the remainder of this section, o will be the constant in Lemma 3.3l Recall that p(-)
stands for the Rayleigh density.

Lemma 3.7. Assume that ((&)i>0, (P2)zer) @s a spectrally negative Lévy process satisfy-
ing (H1), (H2) and Eq [£1] < 0. Then one can find a constant Cs > 0 with the property
that for any € € (0,e0) there exist positive constants Ty(e) and Cg(e) such that for any
x> 0,t>Ti(e) and any integrable functions h, H : R — R satisfying h <. H,

A 2(1 +C5 R*(x w
E; (h(ft)l{%—»}) = (\/%\I,;:())\*)i )/]R+ H(w)p (W) e

2C5\/eR*(x) [ w
HEETIONT / H(w)¢< \I/”(A*)t> v

1 1
+ o+ DH el (7 + 77357 )

where W is the Laplace exponent of €.

Proof. Fix ¢ € (0,g9) and let h, H : R — R, be integrable functions satisfying h <. H.
Fix ¢t > 1 and set m = [et]. By the Markov property,

(3.20) EM (h(&)l {To_>t}) - /R B (h(gmn {To_>m})P§* (b € dy, 7 >t —m).

Define a random walk (S, )n>0 by S, = &,, n € N. Since hlj ) <. H1|_. o, it follows
from [7, Theorem 2.7] that there exist constants ¢; (independent of ) and ¢ (g) such that
for any n > 1,

1 + 018 coT
Ax
(321)  E} (h(Sn)ls,>0y) — STIRY H iz <W> .

02()

Thus, for any y > 0,

E;‘* (h(gm)l{rg>m}> < EZ)J\* (h(Sm)l{smzo})

1+cle Z—y co(€)
(A Nz2-0)9 <W) A=t WHHl[ eco)llr-

Plugging this into GS:QD]) yields that

. —
(3.22) EM (h(gt)l{fo—n}) < / \/JL 2> —oy9 (ﬁ) dz]

x Py (&om € dy, 7y >t —m)
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c2(E) [ H[—c.00)ll1
+/R+ 702 (St m€dy, 7y >t — )

=: Ay(z) + As(x).

By the definition of 7;", we have

_ . . 1+
(3.23) P} (ry >s) =P} (}Islg & > 0) <P (jlél[g] S; > O) < c3—= NG

for some positive constant c3 (independent of ), where in the last inequality we used [1

(2.7)]. Therefore, by (8.23) and the definition of m, there exists a positive constant c,(e)
such that

EH ool . (- ca(e)(1+ )
m(1+8)/2 P (7_0 >t—m) < 7||H1[—6700)”1-

(3.24) Ay(z) = T

Now, by a change of variables, we get

B 1+ cie z z— /U () ([t —m)u z
A1($) = /IR+ 7\/W/RH( )1{z2—5}¢ < ‘I’”()\*)m ) d ]
x P (\/@//(}\;)(t — edu,my >t— m)

gtm
:/ o (u) &m edu,1y >t—m
Ry NAZIeN m) o ’

where the function ¢, is defined by

. 1+ cls z— /U ()t —m)u
o) = s €}¢< O )m )dz

:(1—|—018)Ht_7m/RH(\/\II”<)\*)(t— ) ) {\/mw> 8}¢<\/7u> dw.

Using integration by parts, we get that for any = € R,

/ p ftfm — —m U
(3.25) Ai(x) < /R+ o (u)Py, <\/\II”()\*)(t =y > u, 1y >t ) du.

It follows from Lemma 33| that for ¢ —m > Tg(e),

}PA* <\/\1ﬂ/ - my T >t_m> /27 ( t2]—%*< )xp" ™) /:Op(z)dz‘

L Ge WT”“")
(t —m)zte

9
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which together with (B:25]) implies that there exists a constant ¢5(¢) such that for t —m >
T (8)7
2R*(x)

(3:20) il = V2t —m \y//)\)/RSOK)2dU< 1+$/|t )|du.

By the definition of ¢; and a change of variables, we get that

/ et

t—m ’
S(HC@/M/R — H(y/ 0" (A)(t —m)w RN T wrmrm
= (14 ¢¢) /[R+/RH(\/\II”()\*)mu)1{\/mu2€}|¢'(u—y)|dudy
= (1 i9) | BT sy [ 160 )iy

Since there exists a constant c¢g > 0 such that fR+ |¢'(u—y)|dy < cg, a change of variables
yields that

(3.27) /R o (w)|du < co(1 + ere)

()

||H1[,€7OO)||1
U7 (A )m
Using integration by parts, we get

/R Shy)e 5 dy = / oe()p(y)dy
%)dwp(y)dy

= (1+ cls)/R /R t_TmH(\/‘I’”()\*)(t - m>w)1{\/mw2—e}¢ (

= (1+ c1e) /R+/R\/%H(\/mu)l{\/mu2_a}¢ (u—\/_?z> dup (\/t _tmz> \/t _tmdz.

According to [6, Lemma 3.3], for any v € (0, 3] and s > 0, it holds that
s2
(3.28) V1—vp(s) < ¢y * p1_o(s) < V1 —wvp(s) + Ve 2.

Letting v = 2, we get

y)e= 5 dy = / m e
/]R+ pr(y)e” 7 dy = (1+616)/RH( VAL s —ey 3 * Pizm (u)du

_ (Atae [~ P S
= o ) e e 5"( \D”(Aot)dw

< (tas) H(w) t_mp < +,/@e_m dw.
WAt S e t ()t t
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Combining this with (3.22), 3.24), 3.28) (3:27), and using the fact that p(z) = 0forz <0

and noticing that m = [et], we get that there exist positive constants ¢; (independent of
e) and t1(¢), cs(e) such that for t > ¢, (e),

A 2(1 + ¢y R*(x w
B (M1 < 2 [ (g ( W) "

2R* () [ w 1 1
+ 07\/_\11”( ) /_; H(w)¢ (m) dw + Cg<€)<1 + x)HHl[—a,oo)Hl (tl: + tl+—6/2> .
The proof is complete. U

Lemma 3.8. Assume that ((&)i>0, (Pz)zer) is a spectrally negative Lévy process sat-
isfying (H1), (H2) and Eq[¢1] < 0. Then one can find a constant C; > 0 with the
property that for any € € (0,¢eq) there exist positive constants Tx(e) and Cs(e) such that
for cmy x > O t > Ty(e) and any Borel functions h, H : R — R satisfying h <. H and
Jo, H(z—¢) 1+z)dz<oo,

( (€t>1{ >t}> ( +C7t V2 +C \/_) \I”/()\*)3t3/2
Cs(e)R*(x)

BN oW e /R et
Cs(e)(1+x 1 1
N (s)\(/; ) (tm N t1+6/2> /R+ H(z—&)(1+ 2)dz.

Proof. Fix e € (0,¢9) and let h, H : R — R, satisfying h <. H. For any z € R, we define

2R*(x)

/R ) H(z —)R*(2)dz

(3.29) H,(z) = Eé\* (H(Sm + z)l{ik?m}) = Ei\ (H(fm)1{7:5>m}> )
Fix t > 2 and set m = [t/2]. For any y > 0, we have

. )\*
(330)  Inly) = B (A&l o)

S E?i\* (H(fm + U)l{r__v_g>m}> - Hm(y + U), ‘U| S e

Consequently, I,, <. H,,. By the Markov property,
E) (he) o) = /R B} (M) sy my) PY (6m € dy, 75 > £ —m)
+

= / Ln(y)P) (§m € dy, 7 >t —m) = E) (Ln(§—m), 79 >t—m).
Ry
Now applying Lemma 37 with h = I,,,, we get that for t — m > Tj(e),
(3.31) E> (h(ft)1{75>t}) < T+ o+ s,



SUBCRITICAL BRANCHING KILLED LEVY PROCESS 21
where

_ 201+ Cse)R(x) w w w
= V20 () (t —m) /R+ Hnlw)e <\/\I!”()\*)(t - m)> .

= Oy | (=)

1 1
J3 == Ci(e) ((t — m)lte T (t — m)1+6/2) (L4 2) [ Hinl o)1

We will deal with the upper bounds of J; separately. We first deal with J;. Note that

214 CGORE) [ o w
\/%\I/"(A*)(t _ m) /R+ E, (H<£m>1{7:g>m}) P <\/\I/"()\*)(t _ m)) dw

L OORE) [ (e w .
o \/%\I’"()\*)(t _ m) /REere (H(gm >1{70‘>m}> 1{w+520}p <\/‘I/”()\*)(t — m)>d

_ 2(1+Cse)R¥ (o) A . w—e w
- V2rU () (t —m) /R+ E, (H(fm )1{70_>m}> p <\/\Iﬂ/()\*)(t — m)) d

201+ Cse)R7(x) R En — ¢ .
- \/%\Iﬂl<)\*)(t - m) R4 H( g)Ew (p (\/\I/”(A*)(t — m)) 1{?0_>m}> d ’

where in the last equality we used (B.I5]). Using integration by parts, we get for any
zeRy,

Ae gm — ¢
(332) B (n( @(A*)@_m) 1{%>m}>

— / Ax g\m — & ~
_/R+ p'(u)P? ( T > u, T, > m) du

g [ w /RN m e
_/RJ)( P (a/w(x*)m T gm0 )d '

1:

Set

uy/ () (- m) +5.

e T(\)m

Applying Lemma B3 to &, we get that for m > To(e),

)P?* (7&” — > tne Ty > m) SO ) p(y)dy) < Q0L

T7(\) V2rmV () S T omtE
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Substituting this into ([3.32)) and using the fact that fR u)du < ¢; for some ¢; > 0, we
get that

A Em— ¢ QR*( ) P 6_%775 u
(3.33) )E (p <\/\If”()\*)(t—m)> 1{%—>m}> /2rmb(\,) v (u) d
< GO [ o <o 0L

ml/2+e ml/2+e

Using integration by parts again and the boundedness of p/, we get that there exists a
positive constant ¢y (independent of €) such that

(3.34) / (w)e= 55 du = F/ Pt o) du
F/ () o+

where in the last inequality we used the mean value theorem. By a change of variables,
we see that

e ) )

R+ \/ t - t
Y 27Tm(t — m)
o 243/2 )

Combining this with ([3:33]), (3:34) and (B.35]), we get that there exist positive constants
¢4 (independent of €) and ¢5(¢) such that

(3.36) n< (1+et?) %gg /R (e ) (2)dz
\/%Iflﬂtgw / H(z — e)(1+ 2)dz.

Next, we deal with J5. Note that

= i | (e ) ()
B e g

. 205\/ER*(ZL‘) s . w—e€ w
=T o, B (6 = M) (ﬂmxt - m>> !
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_ 205\/eR(x) . Em —
T WO —m) H(w —e)E} ( (\/w )) 1{?0>m}> duw,

where in the last equality we used ([B.I5]). Now repeating the argument leading to (3.30)),
we get that there exist positive constants ¢g (independent of €) and ¢7(g) such that

R (2 N
2" (A, )3t3/2/ H(z—¢)R*(2)dz

(337) JQ S (1 + C@Eft_%> C@\/g

1+ z)dz.

AR (@
v U

Finally, we deal with J3. By the definition of H,, and (3:23]), we have
(338) ool = [ B (HED ) Ty
/ Ez//\ie (H(fm - 5)1{Tg>m}) Liy>—cydy
_ /]R + E (H(gm o)1 {T0_>m}) dy

1+2
= H(z—¢)P. (75 >m)dz <cg H(z—¢)
g - (7 >m) . =
where in the last equality we used ([3.15]) and cg is a positive constant independent of e.
Since m = [t/2], there exists a positive constant co(e) such that

(3.39) Jgg’:g(g)(”‘”)( L )/R (14 2)H(z — )d=.

\/% tl+e $1+6/2
Combining ([3.31]), (B.36), (3.37) and (3.39)), we complete the proof. O

Lemma 3.9. Assume that ((&)i>0, (Px)zer) 5 a spectrally negative Lévy process satis-
fying (H1), (H2) and Eq(&1) < 0. Then one can find positive constants Co and q with
the property that for any € € (0,e0) there exist positive constants Ts(e) and Cyo(e) such
that for any x > 0, t > T3(e) and any integrable functions h, H, g : R — Ry satisfying
g<:h<.H,

dz,

. _2R'(z) w _ oo — ) qw
E; (h(&)lw>t}> Z\/%\D"()\*)t /R+ [9(w) 1wz — Coeh( ﬂp( q///(,\*)t>d

2R* o
ez 2@ / Hw)o | —— ) dw
Nor TN ()t
1 1 1
- 010(8>(1 =+ x)HHl[*&OO)Hl tl+e + t1+5/2 + tl+aq ’

where W is the Laplace exponent of €.
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Proof. Fix ¢ € (0,&¢) and let h, H,g : R — R, be integrable functions satisfying g <.
h <. H. Then gl o) <c hljg ) <c Hl_. ). Fixt > 1 and set m = [¢t]. By the Markov
property,

E (h(gt)l {To_>t}) - /R + E) (h(gmn {To_m}) P (& € dy, 7y >t —m)

= / E;\* (W& Ligs0r) PY (&om € dy, 79 >t —m)

R4

o / E?i\* <h<§m)1{5m20}1{7(;§m}) P;* (ftfm S dy, 7'6 >t — m)
R4

— (1) - L(t) = L(t) — I)(t) — I3(2),

where

Il(t) = / Ez\* (h(gm)l{fmZO}) P;* (gt—m € dy, 7'0_ >t — m) s
R4

51/6\/@
L(t) = / Eg);\ (h(fm)l{émZO}l{ngm}> P;:\* (ftfm cdy,my >t— m) )
0

I2(t) == o EA*(hml 1. )PA* Ccdyr > t—m).
5(t) /51/6\/m y &m) L0 o<y ) P (& Y, m)

The proof of the lemma is divided into the following three steps.
Step 1. In this step, we give a lower bound for I;(¢). By [7, Theorem 2.7], there exist
positive constants ¢; (independent of €) and ¢y(¢) such that for any m > 1,

N o B —ech(s S N I
E)" (h(&m)lignz0}) = \/W/R [9(2) 12y — c1eh(2)12z0y] ¢< \I/”()\*)m> d
CQ(&)

- WHM[OW)HL

Note that ||hljee)|[1 < [[H1jgeo)|li- Following the analysis of A;(z) in Lemma [3.7] and
using the lower bound in (3.28]), we see that there exist positive constants ¢;(¢) and c3(¢)
such that for ¢ > ¢,(¢),

«/\IJ”E)\*)m /]R+ [/Rg (29 < ;"zi)m> o
. 2R'() / g<w>1{w2€}p< w )dw—C3(€)<”j§l’lm”’°""'1-

Pi* (St_m edy, 7y >t— m)

T N2mU (Nt W ()t
and using the upper bound in ([B:28)), we have

c1€ Z—y
SV Ow)m /R+ [/R M) ez00 ( \If”()\*)m> a

P (§t,m cdy, 7y >t— m)
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2c4e R*(x) w 2c4\/eR* () w
= Varbn /R+h(w)p< ﬁf’/(A*)t)dw LONT /R+h(w)¢< \If’/(&)t)dw

c3(e) (1 + 2)[[H1jo,00) H1
tl+e

where ¢, is a positive constant independent of €. Thus there exists a positive constant
cs(e) such that for t > t1(e),

2R*(x) w
(3.40) 1 (1) Zm /R+ [9(w)Lguzey — cach(w)] p (W) dw

B 2R*(z) w w w
4\/_\11//( )/R+h( )¢< \I/”()\*)t>d

1 1
—cs(e)(1 + @) |[Hjp0) [ (tl? + 151*—5/2) .

Step 2. Next, we give an upper bound for I3 (¢). Combining ([B.21)) and (3:23)), we get
that there exist positive constants ¢g (independent of ) and ¢7(g) such that

1/6\/_
1) < / Y (h(6n)Lie20)) P2 (£ € dy, 757 > £ —m)

/o il
1+ cqe z—y A B
\/\11”7 {z> e}(b( —> d.Z];)$ (é‘tfm € dy, To >t — m)

U7 (A )m
( e)(1+ 2) [ H1co0)ll
m+0/2 f —m

For any v € R, define
J(u) //\/m —
u) =
0 VI )m \ VP (A)m

Then by Fubini’s theorem, we have

/I/G\F;/H(m o0 | L | AP (G € dy, 7y >t —m)
0 SV Owm Je =T T 0wm @ \Smm = TR
:/H(u)l{uze}J(u)du.

R

For any u € R, define

P;\* (St_m edy, 7y, >t— m) )

o 1 uU— Yy
FU(y) T \/\I/”( (\/\If” ) '
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Using the definition of J(u) and integration by parts, we get
I = [ R@PY (6em € dy i <V >t - m)

0

< [ EWPY (60n>v.6em e OVl >t —m) dy
0

61/6\/@

= / F(y)Py (&_m € (y, e/t 7y >t — m) dy.

0

Since m = [et], using Lemma B.3] it holds that for t —m > Tj(e),

’Pi* (ft_m e (y,eVt)], 7y >t — m)

1/6\/[7
2R* () VIO N ‘ )(1+ﬂf)
CV2r(t—m) v : T (t—m)re

VIO (t—m)
Now, using the fact

1/6 cs(e)
(5/\/W)_Fu(0)§ \/E’

for some cg(e) > 0, we get that there exists a positive constant cg(e) such that for
t—m > T0(€),

J(u) <

co(e)(1+2) 1 2R () AT
(t )1/2+e\[Jr \/277 t—m \If”()\)/o Fu(y)

[ (i) = (o) »
V) (E = m) VI ) (E = m)

Using integration by parts and the fact F,(0) > 0 (see [7, (3.33)]), we get that there
exists a constant c¢jo (independent of ¢) such that

/51/6\/m F,(y) » c1/6 [t] o y ay
0 ’ VU A= m) VU (At —m)

. C1061/12 ; u |
vi—m U7\t
It follows that there exist positive constants c¢1; (independent of €), and t5(¢), ¢12(e) such
that for ¢ > t5(e),

1 c 5”12& - U S U
(3.41) [2<t) <cu 277.\1,//()\*)75 /_; H< )(b( \I/”()\*)t> 4

1 1
+ c12(e) (1 + ) [[HL[—c 001 (751? + t1+5/2) :
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Step 3. Finally, we study the upper bound for IZ(¢). By the definition of I3(t), we
have

Bt) = [ P (6m € dyry > 0= m)
R
where J,,(y) := E; (h<£m)1{§m20}1{7—0_§m}> 1{y>61/6\/m}' For any z € R, define

M (2) = Bz (H <£m)1{5m2*5}1{iém}) 1{z+€>av6\/ﬁ}'

Consequently, J,, <. M,,. Applying Lemma B.7] with h and H instead of J,, and M,,,
we get that for ¢ —m > Tj(e),

+ 205\/5}% (x) / Mm(w)efmdw
V20 (A (E—m) J-

T CoE)(1 4+ 2) [ Mol (

€

1 1
(t — m)Lte T (t— m)1+5/z) :
Now we bound the three terms on the right-hand side of (3.42) from above. Using (3.17]),

(3:43)  |[Min1| < o0l = / B <H (ﬁm)l{smz—e}l{T;Sm}> L
R
A
< /]REZ (H(gm)l{fmz—é}) 1{Z+€>€1/6\/m}1{22—6}d2
= / H(2)1ps P (Em +e> V5[, Em > —5) dz
R
g/ H(z)dz < [[Hlj—co0)|l1-

Moreover, using the definition of M, and (B.10), we get that
w
M ( dw

7 (\/ WA~ )>

- EA*<Hm1 ol )1 1 d
/]R+ w (f ) Em>—et Hro<m} | Hwtese /5\/_}p <\/\I/” )) v

N w+ e

/Ew-i-e( (gm)l{émZﬁi}l{TESm}) 1{w+25>51/6\/_}p <\/\I/” t— )) dw

B N w—+ e
= /]REw (H<£m+€)1{§m+52—6}1{70_§m}> 1{w+25>51/6\/_}p <\/\I/” )) dw
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- N En + ¢
B /RH(M * ez <p (wwu,k)(t - m>> Mo ils SM) .
= J1<t) + J2<t>7

where

T (8) — 51/4\/@[_] E)\* Em +E 1 d
1( ) = . ('UJ + 5) w | P \/\I]”<)\*>(t — m) {gm+2€>51/6\/m7?0_§m} w,

- 00 A é\m +ée R
Jo(t) = /51/4\/E H(w+¢)E;; (p <\/\Il”()\*)(t = m)) 1{5m+2s>51/6\/ﬂ,?0§m}> dw.

Next, we consider the upper bounds of J;(t) and Jy(t) separately. We claim that there
exist positive constants ¢;3 and ¢ (both independent of €), and ¢14(¢) such that

51/4\/@
(344) Jl (t) < 01381/6 / H(U) + e)dw,

—2¢

and

3.45) J(t) <c 51/12/00 H(w+e¢ < dw+cl4(€) Hl ¢ oo)l1-
( ) Ja(t) < cas 51/4\/ﬂ ( )¢ T 1a | [, )||1

Using (8.44)), (3.45) and the fact that ¢ is bounded, we immediately get there exists a
positive constant ¢;5 (independent of ¢) such that

/]R+ M, (w)p <\/\If”()\*)(t = m)) dw

cee2 [T W) g Gy gy .
= /_ze <w+€)¢( o) T T 1100l

Similarly, there exist constants 14 (independent of €) and ¢;7(¢) such that

o0 2

—seo 2 [ w c17(e)
Mm(w)e 70t dw < c16€ H(w + €)¢ ( \I[//<)\*)t> dw + ||H]_[,€7OO)||1

—€ —2¢ 14

Combining the last two displays with (3.42)) and (B:43), we get that there exist positive
constants cig (independent of ¢), t3(¢) and c¢jg(¢) such that for ¢ > t5(e),

2 as ' (x) 1/12 - w w w
(3.46) (1) < O | Hw g)¢(7w@*)t)d

1 1 1
el )1+ D ool (7 + oo+ s )
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Combining (3:41) and (3.46]), and using the fact that there exists cop > 0 such that
R*(z) < coo(1l + x), we get that there exist positive constants ce; (independent of ¢),
co2(e) and t4(e), such that for t > t4(¢),

conel/12 2R (z) OO w u w
Bl = s ) / H( )¢< \If”()\*)t>d

1 1 1
@)1+ ool (552 + 77 + 705 )

Combining this with (3.40]) gives the desired result.
Now we prove the claims (8.44)) and (8.453]). Using the boundedness of p and the fact

that there exists a positive constant ¢5 independent of € such that

(3.47) eV /It] — eVA/Tt] — 26 > = 1/6\/7 t>t5.

Therefore, we get that there exists a positive constant co3 such that for ¢ > t5,

1/4 ¢
(3.48) Ji(t) < 023/ \/_]H(w + )P (Em + 2¢ > 51/6\/@ dw

—2¢

cl/4
S 023P(>]\* <§m > 51/6\/7) / \/_H(w + e)dw

Using [7, Lemma 3.4] with u = v = 16, /[¢], since m = [et], we get that there exist
positive constants coy and co5 both independent of € such that

Py (Em > %gl/ﬁ [t]) < 2exp { (1 - f;fm) } o+ mPy (|§1| > %g%m)

4E) (&)

1/6
81/3[t] S Ca5€ 9

< 0™ + [et]

where in the second inequality we used Chebyshev’s inequality and (H1). Combining
this with (3.48]), we complete the proof of (B.44).

Next we prove ([8.45). Using (B.47) and Holder’s inequality, we get that for all ¢t > t5
and w > 0, we have

(3.49) p (Em +2e > VM7 < m)
1/2 1o
<Py (max (61> 20VE) PY (G <m)
s€0
/2
=P (Inax €] > —51/6\/ t) P) (72, < m)1/2.
s€(0

By Lemma B2 there exists a Brownian motion W with diffusion coefficient ¥”(\,),
starting from the origin, such that for any ¢ > 1 and x > 0,

~ C3(2¢)
Ax 3
Po () < e
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where A; is defined by

~ o~ o~ .

A = { sup |&s — Wis| > tTQe}.

s€[0,1]
Therefore, there exists positive constant ¢ (independent of €) and co6(¢) such that
03(25) < 026(5) .

m(3-20)(6+2)-1 —  ¢2q

(3.50) P (r: <m,A )
Moreover, for w > e'/4,/[t], we have there exists a positive constant cy; such that

(3.51) Py (72, <m, AS) =Py ( inf & < —w Ac)

s€[0,m]
1 2 & s

<Py ( inf W, < mz"% —w) = —/ . e 0Imds

s€[0,m] 27‘('\1///()\*)7” w—m2 2%

& 52 2c WA )m w2
§627 eiﬁdsg 27 ( *) e S\I’”()\*)m’

. w w

S

52 a2
where in the last inequality we used the fact that f Fe Tds < ie‘T for any a > 0.

Combining ([B.51)) and B.50), for w > /4, /[t], since £ < 1, it holds that

P)‘* ( < m) 1/2 < Cosd ( \Iﬂ,w()\ )t> i 629t5<€)7

for some positive constants cog and cog(e). Similarly, we can get that

P (max 1€, > 51/6\/ ) < c3 51/6+ﬁ

€lo t2a

for some positive constants czp and c3;(g). Combining this with (3:49), we get there exist
positive constants czp and cz3(e) such that

P (Em +2 >V /[t], 7 < m) < 306129 ( \I!Z)\ )t) + 03;;55)7 w > e/t

This completes the proof of (3.45]). O

Lemma 3.10. Assume that ((&)i>0, (Px)zer) is a spectrally negative Lévy process sat-
isfying (H1), (H2) and Eg[&] < 0. Then one can find positive constants C1; and q
with the property that for any € € (0,e0) there exist positive constants Ty(e) and Cia(e)
such that for any x > 0, t > Ty(e) and any Borel functions h, H, g : R — R, satisfying
g<:.h<.H and fR+ H(z—¢)(1+ 2)dz < o0,

2R*(x)
271.\1,//()\*>3t3/2

( (€)1 >t}) (1= Cit ™% = Cha(e)t™) /R g(z + &) R*(2)dz
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2R*(x)

V2w ()33 /]R+ Hlz-e)R(z)dz

012(8)(1 -+ .T) 1 1 1
B Vi lte + 11+6/2 + +1+q /]R+ H(z —¢)(1+ z)d.

Proof. Recall that the functions H,, and I,,, are defined in (8.29) and (8.30). Fixe € (0, &¢)
and let h, H, g : R — R, be Borel functions satisfying g <. h <. H and fR+ H(z—¢)(1+

z)dz < co. For any y € R, define
Ny (y) = Ey’ <9(5m)1{5mzs}1{75>m}> :

Then for any y > 0 and |v| < ¢,

Non(y) < By (h(ﬁm + v)l{smze}l{gm}) <Ey (h(ﬁm + v)l{ivm}) = Ln(y +v).

Therefore, N,, <. I,, <. H,,. Applying Lemma [B.9 with h = I,,, we get that for
t—m > T3(€),

E:i\* (h<§t)1{rg>t}) = E;* ([m@tfm)v 7-(; >t — m)

— Chale) (14 Cnet ™2 +179)

2R*(z) s z B
2 T o, Yo (W'(w - m>> ’
_ QCQER*(ZL‘) - z .
O ) o, (ﬂﬂ'w)(t - m>> ’

L GEPR@) p .
VR () (i — m) / Hn(2)0 <¢\11~<A*><t = m)) !

1 1 1
— Cro(e)(1 4 2)[[ Himnj—c,00) 11 <(t — m)1+6/2 + (t—m)i+e - (t— m)l-l—q) - ZK“
where ¢ is the constant in Lemma B.9. By (B.13]), we have

M= T o= m) /R+Ez (9(6m 6020 oy ) Lz (\/ ()t — m>) -

— QR*(I‘) . As é\m +e .
V20 (A (E—m) /ue+g< teir. (p (\/\If”()\*)(t—m)> 1{?0’””}) az

Repeating the argument leading to (3.36]), we get that there exist positive constants c;
(independent of ) and c(e) such that

(3.52) Ky > (1= et ™'7?) \/%tw /R g(z + &) R*(2)dz

2c9(e)R*(x)

_ r—Qﬂ_\I,//()\*)3t3/2+€

/R g(z+¢e)(1+ 2)d=.
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Using an argument similar to that leading to (B.36]), we get that there exist positive
constants ¢z independent of & and ¢4(g) such that

2R*(x)
QW\I/'/()\*)3t3/2

/ H(z—¢)(1+ z)dz,

(3.53) Ky > —cse(1 + cget™V?) / H(z — &)R*(2)dz
R4

2R*(z)

RN

and
2R*(x)

/27.(.\1;// t3/2
/ H(z—¢)(1+ 2)d=.

(354) K3 Z —0381/12(]_ + CgEt_1/2

/ H(z —¢)R*(z)dz
2R*(x)
O omwr e

Moreover, by ([B:38), we get that
1 1 1 1
(355) K> o1+ ( + + ) / (1+ 2)H(z — £)dz,
R4

\/E tlte $1+6/2 t1+a

for some positive constant ¢s(¢). Combining (3.52), (3.53), (8.54]) and ([B.53]), we get the

desired result. O

Proof of Theorem [B.6: Since h: R +— R, is a Borel function and z — h(z)(1 + |z|)
is directly Riemann integrable, by [7, Lemma 2.3], there exists a € (0,1) such that
Jg ha:(1 +]2])dz < oo, for any € € (0,a), where h,. is defined in (BI8). Applying
Lemma 3.8 to h, we have for ¢ > Ty(e),

_2R(x)

N Wil

ha,, c(z —&)(1 + 2)dz

PPN (h(E) ) < (14 Ot 4 CrvE) o [ g, oz = R (2)d

V2 (N )3t IRy
1 1 -

+Cs(e)1+2) | = +—= / ha,, :(z —€)(1 + 2)dz,
te $6/2 R,

+

where a,, = 27™a, m > 0. On the other hand, by Lemma .10, we have for ¢ > Ty(¢),
2R*( )

{3/2EN (h(gtn{m_%}) > (1= Oyt ™2 = Crp(e)t™®) —— N TewilA h,, (24 )R (2)dz
+
C2R'x) ) . -

- 0118 (1 + 011€t71/2 + ¢ ) am’e(z — €)R*(2)d2

V2T (N
1 1 1 -
—012(5)(]_+IL') t_5+t67+t_q . (1+Z)ham75(2—€)d2.
+



SUBCRITICAL BRANCHING KILLED LEVY PROCESS 33

Since h is not almost everywhere 0 on (0, c0), we have
/ h(z)R*(2)dz > R*(0) / h(z)dz > 0.
Ry Ry

Thus,

2y (h<§t)1{7-—>t}>
(3.56) lim sup —EE < (1+ C7v/e) limsup I (g, m),
t—o00 fR+ dZ t—o0

/27“1,// )3

and

2R (h(&)l{f-ﬁ})
—EE > liminf [J(e,m) — Cy1el(e,m)],
z fR+ dZ t—00

NC=TOwE

where

Je, N, (2 — €)R*(2)dz Jo, o, (2 ) (1 + 2)dz

I(e,m) = — . J(e,m) = =
Jo, M) R*(2)dz S, M(2) R (2)dz

Repeating the argument for I(y,e,m) on [T, pp. 40-41], we get

lim limsup I (e, m) = 1.
€700 {00

This combined with (3.56]) yields that
2R*(x)
V2" (A3 Jr

The lower bound can be obtained in a similar way and this gives the desired result. [

lim sup t3/? B <h(§t)1{7(;>t}> < h(z)l/%\*(z)dz

t—o00

4. PROOF OF THEOREM [I.1] AND THEOREM

In this section, we give the proofs of Theorems [[.T] and For any x,¢ > 0 and y > 0,
define

u(z, t) =P (¢ > 1),

and

Qy(x, 1) = Po (M > ).

It is easy to see that

Qo(x,t) =P (M; > 0) =P,(¢ >t) = u(x,t).

The following result is [9, Lemma 2.1] which is true for any branching killed Lévy process.



34 Y.-X. REN, R. SONG, AND Y. ZHU
Lemma 4.1. For any h € B} (R,), the function

up(z,t) = E, [ei Jry h(y)Xt(dy)] , t>0, x>0,

/0 (Zpkuh(fsmoat —s)kF - Uh(ﬁsATJ,t — s)) ds] )
k=0

Consequently, vp(z,t) = 1 — up(z,t) satisfies

w@ﬁ:&h—e%wﬂqgvkw@wﬁ—mﬂ.
0

The next result is also valid for any branching killed Lévy process.

solves the equation

uh(x,t) _E, |:67h(§t/\ro—):| + BE,

Lemma 4.2. For any x,t > 0 and y > 0, it holds that
— — [t s,t—s))ds
QﬁﬁwzzetExPhF%&Mﬁ J3 2@y (st »}.
Proof. For any x,t > 0 and y > 0, by the dominated convergence we have

1 —Qyz,t) =P, (M, <y) = ]P:B<Zto(y7 ) =0) = eh—glo E, (e—GZQ(y,oo)>

(2, 1).

= lim B, (¢ e o OO i gy,

60— 00 6—00 (

Now applying Lemma [A.1] we get

Qo) = Jim B [1 - "] B, | [ 0@t o]

60— 00
=P, (ftm‘ > y) [/ (Qy(fsm U S)>d5} .
This combined with the Feynman-Kac formula gives the desired result. O

The next lemma will be used to prove the lower bounds in Theorems [I.1l and [L.2]

Lemma 4.3. Assume that (L2) holds and that ((§t)i>0, (Px)zer) is a spectrally negative
Lévy process satisfying (H1). Let x > 0.

(1) If Eg [&1] = 0, then for any y > 0, we have
lim inf Ve Q g, (z,1) > 2CsuR(x)d02 (y).
(2) If Eqg [&1] > 0, we have
lim inf e®u(x, t) > CoupEo [&] WO (2).

t—o00

Moreover, for any y € R, we have

lim inf e Q\/y+EO[§1]t($ t) > CouBo [&1] W / o(z

t—o00
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(8) Assume further that (H2) holds. If Eq[&1] < 0, then for any y > 0, we have

2 * s oo

t—00 /27“1,//()\*)3

Proof. For any y > 0, by the definition of @), we have

Qy(x,t) SP,(¢ > 1) SP(C>t) = g(t).
It follows from Lemma that

(41) Qy(l‘ t) = e_atE$ |:]‘{T0_>t §t>y}e fO Qy fs t— S))ds]

> e 0te P DEP (1 5t 6 > y) > Cane P, (15 > 1,6 > y).

e R*(2)dz.

Applying Lemma Bl we immediately get the assertion of (1). Using the fact that
u(x,t) = Qo(x,t) and applying Theorem 21, we get the first result of (2). Applying
Lemma 2.3 with y replaced by vty + Eq [£1] ¢, we get the second result of (2). Applying
Theorem B.5 with f(x) = 1(, o) (x), we get the assertion of (3). O

In the following three lemmas, we prove the upper bounds in Theorems [[.T] and [.2

Lemma 4.4. Assume that (L2) holds and that ((§t)i>0, (Px)zer) s a spectrally negative
Lévy process satisfying (H1). If Eqg [&1] = 0, then for any x > 0 and y > 0, we have

lim sup ﬂeatQﬁy(x, t) < 2C5uR(x)do2(y).

t—o0

Proof. Fix an N > 0. For t > N, by Lemma [£2], we have

-t —s))ds
Quiy(@,t) < ¢ Eq [1{rg>t,£t>\/¥y}e e @m0 }

< R, [1 ey B 9@z, infree— vy &,s»ds} .
- 0 St

Take a v € (0, 1) and define

72

)

._ @ £, .
Jl(t) =B [1{7'0_>t75t>\/zy,infre[t—N,t] & >Viy+t1}€ —Jo ¢ iy (i0frefe—n, &r.5))ds }

N .
L — Q inf,.crp_ &rys))d
Jg(t) = Ew |:1{TJ>t7£t>\/zyvinfr€[t7N,t] £r<\/2y+t”/}6 fo o( \/Ey( €[t—N,t] s)) s:| )

Then Q , (z,t) < e ' (Ji(t) + Jo(t)). Since Q 4, (7, 1) is increasing in x, we have
(4.2) Ti(t) < e~ o #Qua,(Vivttrs)dsp (Tg >16 > ﬂy) .
By (41) and (L3]), we have
Quiy(,t) = 9(t)P. (75 > 1,6 > Viy)
Thus,

N
fo 0(Q 7, ( (Vty+t7,s))ds < exp{ _/ ) <g($)P\/Ey+t”/ <TO_ > 5,55 > ﬂy)) }
0
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Plugging this into (£2) and applying the dominated convergence theorem, we get

Ji(t
lim sup lim sup 1®) < limsupe™ Jo" elg(s)ds Coup-
Nooo t—oo Py (7'0_ >t,& > \/fy) N—oo

Therefore, by Lemma B.1], we have
lim sup lim sup Vt.J; (t) < 2CsuR(x) 2 ().

N—oo t—00

Now we show that
(4.3) lim Vids(t) =0
—00

For any € > 0 and ¢ > N, it holds that
Jo(t) <P, (7’0_ > 1,6 > \/i_fy, mf Er < \/_y +ty)
<P, (7‘0_ > t,\/fy <& < \/E(y+e))
+P, (TO > 1,6 > Vi(y + 6>’reﬁ?§m & < Vty + t”) .

By Lemma [3.1] we have

yte

2 < €
tlim ViP, (7’0_ > tVty < & < Vi(y + e)) = h(z) p(2)dz =%0.

V2mo?
For any ¢t > 0 and x € (0, 2(2+5 ), define
(4.4) A= { sup [&s — &g — Wis| > t%_“} ,
s€[0,1]

where W is the Brownian motion in Lemma Then by the Markov property of &, for
k<t—N,

Px<fo‘>t,§t>\/¥(y+e) inf €r<\fy+ty)

re[t—N

_ - _ : v
=E, (1{7—0>k}P§k (7’0 >t—k &y > Vily + 6)’r6[t—llcr—l€\f,t—k] & < Vty+t ))
<H(t) + Hy(t),
where

Hi(t) i= By (15 5P (75 > t— k.Gt > Vil + ), 4y ) ).

Hy(t) = E, (ng (ftk > Vi(y +e), inf & < Vity + tV,Af_k)) .

reft—k—N,t—k|
To prove (4.3]), we only need to prove
(4.5) limsup VtH,(t) =0, and limsup vtH,(t) = 0.

t—o00 t—o0
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Using (3.23) and Lemma B2 we get that for any k < ¢,

CN. (k) 1+
(t _ k,)(%—n)(é—i—Z)—l \/E ’
where C' > 0 is a constant. Taking k = %, we get that

(4.6) lim sup v/tH, (t) = 0.

t—o0

Hi(t) <

For any z > 0, we have

P (6e> Vily+e. | nl 6 < Vig+ 047

reft—k—N,t—k]

<Q. (VVt—k > Vily +€) — t%—“, inf W, < ity +t7 +t%—ﬁ) ,

ret—k—N,t—k]

where (W, Q.) is a mean 0 Brownian motion with diffusion coefficient 0%, starting from
z. Therefore, for any z > 0, using the reflection principle for Brownian motion, we get

}i}m \/%PZ (é‘tk > \/Z<y + 6)7 inf g?‘ < \/gy + t77 Agk)

re[t—k—N,t—k]

Stlim ViQo ( mf W < —eVt+1U + 2t"“)
—00
= hm V1iQo (maX]W > eVt —t — 2t"“) =0,

re(0,N

which implies that

(4.7) lim ViH(t) = 0.
Then (&3] follows from (4.6) and (4.7]), and we complete the proof. O

Lemma 4.5. Assume that (L2) holds and that ((&)i>0, (Pz)zer) s a spectrally negative
Lévy process satisfying (H1). If Eq [&1] > 0, then for any x > 0, we have

lim sup e u(x,t) < CopEo [€1] WO ().

t—o00

Moreover, for any y € R, we have

limsup e Q. /g, 4 moje)e (,1) < ConEo [H1] W / P(z

t—ro0
Proof. Take v € (0,1) and fix an N > 0. For ¢t > N, we have

—a —Jie Q. &s,t—s))ds
Quiysmofe(2:1) < e E, [1{T5>t,st>ﬁy+msﬂt}e Jn #(Q iy iy (E5:t=5)) ]

—at
<e “E, |:1{70_>t,§t>\/fy+Eo[§1}t}e
=: eiat(ch(t) + J2(t))v

fg ny+EO[§l] (Hlfre[t N,t] &r,s))ds ]
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where

Jl(t) = E, |:1{T(;>t7§t>\/Zy‘f'EO[gl]tvinfre[t—N,t] ErZﬁy+Eo[§1]t+t7}6

9

- foN ‘P(Q\/zy+EO[§l]t(infre[t—N,t] §T,s))ds]

Jo(t) == E, [1 Jo" Qe (0T et @’S))ds] :

{5 >t,&>VEy+Eolé1]t,inf e v, & <VEy+Eo[e1]t+67} €

Since Qg1 (¥: ) 18 increasing in x, we have
N
(4.8) Ji(t) < e Jo SO(Q\/zy+EO[gl]t(\/fy+Eo[51}t+t7,s))dsP$ (7_0_ > 16 > Viy + B €] t) .

By @) and (L3),
Quiyimuie (0:1) = 9O (5 > 1,6 > Viy + By 6] )
Thus,

67 f()N ‘P(Q Viy+Eqgléq ]t (\/Z?J+E0 [gl}t‘Hw 73))d3

< exp{ B /ON ¥ (9<5)P\/iy+Eo[£1]t+ﬂ (Ta > 8.6 > Viy+ Eol)] t)) }

Plugging this into (4.8) and applying the dominated convergence theorem, we get

Ji(t)
4.9) lim sup lim su < limsupe = Jo elols)ds = (|
( ) N%oop t—)oop P, (7'0_ > t,ft > \/l_f’y + Eqg [61] t) N~>oop o

Therefore, by Lemma 2.3 we have

lim sup lim sup J; (£) < CeupEo [&1] WO / (2

N—oo t—o00

Next, we show that lim; ., J2(t) = 0. For € > 0, it holds that
To(t) <P, (To‘ > 16 > Viy+Eola]t, inf & < Viy+Bo[at + t”)
re|t—IN,
SP:B (T(; > t, \/Zy + Eo [él]t < Et < \/E(]J + 6) + E(] [fl] t)

P, (6> Vily+ 9+ Balele, i & < Viy+Balilt+ ).
By Lemma 23] we have
(4.10) lim P, (7 > ¢, Viy+Bo[61]t < & < Vily + ) + Bo [6]¢)

+e€

_ By [6] WO () /
B V2 u
Recall the event A; defined in (4.4]). Then we have

2
_zZ 0
e 2dy &5 0.

P, (gt > Vi(y+ €) + Eg 6], [mf & < Vity+Eq [gl]t+ﬂ>

rt—
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P, (4)+P, (é} > Vi(y+€) + By [&]t, éx_lf & <Vty+Eg&)t+1 Ac)

By Lemma B.2] we have lim;_,, P, (4;) = 0. Furthermore, using the reflection principle
for Brownian motion, we get that, as t — oo,

P$(§t>ﬂ<y+e>+Eo[&J &< Viy +Bol€) 1+ AC)

€ft-N

<Q, (Wt > Vily+e€)+ Eo 6]t — t%‘“, inf W, < Vty+E[&]t+17 +t%—“)

re[t—N,t]

<Qo ( inf W, < —eVt+1t' + Qté“) Qo (max W, > eVt —t — 2t2“) — 0,

r€[0,N] N]

where (W;, Q) is a mean 0 Brownian motion with diffusion coefficient o2, starting from
x. This combined with (£9) and ([@I0) gives the desired result. O

Lemma 4.6. Fiz an N > 0. Assume that (L2) holds and that ((&:)i>0, (Pz)zer) is @
spectrally negative Lévy process satisfying (H1) and (H2). If Eq [&1] < 0, then we have

] - I s,t—S ds
lim E, |:]'{T_>t§t>y}6 SN #(Qy(Esit—s)) ]

t—00

2R*(x)e" 5
—elam PN ( Je My > y)e ™ R*(2)dz.

V21U (N ]R+
Proof. By the Markov Property,

- I} s,t—s))ds
E, |:1{T()_>t,§t>y}€ Jin #(Qu(Eot=)) }

— [y s,N—s))ds
= o [1{Ta>t—N}E&w [1{T5>N,5N>y}e Jor Q) H

= Ew |:]_{T07>t,N}f]Z<[(§t—N)i| )
where for any z > 0, f% is defined by

F4(2) = B [1pangymge B AQ@EN-D0]

By Lemma [£.2]
(4.11) fir(z) = N Qy (2, N),

which implies that f¥(z) is bounded and increasing with respect to z. Then f3 is a.e.
continuous. Applying Theorem to fx, we get that

lim t?’/ze_q’(/\*)tEw [1

t—o00

>\*$
I 7\Ij()\* 7)\*2 *
—e R dz,
27r\If" / I )

which gives the desired result together with (£IT]). O

—rt s,t—s))ds
PEPY: SN 0(Qy(Esit—s)) ]
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Proofs of Theorems [I.T and 1.2t Combining Lemmas 3], .4 and [L.5], we get parts
(1) and (2) of both Theorem [[.T] and Theorem [[.2] immediately. Next, we prove part (3)
of both theorems. For Eg[¢;] < 0, fix N > 0 and y > 0. By Lemma 2] we have for
t> N,

(412) Qy(gj, f;) < efatEI [1{Tg>t,£t>y}6_ Jin <P(Qy(§s,t—s))ds] .
Combining this with Lemma (4.6 we get that
(4.13) li?lsup t3/2e(°‘*\1’()‘*))to(x, t)

< 2R*(x)er

—liminfe(o‘_q’(/\*))N/ P.(My > e 2R (2)dz.
T /21U ()3 N—oo Ry My >) =)

Moreover, using the fact that Q,(x,t) < ¢(¢t) and Lemma .2 we get

Q,(z,t) > e 'E, [1 ff;,MQy(gs,t,s))ds} o= JiY elglt—s))ds

{7'0_>t7§t>y}e
Using Lemma [£.6] again, we have
(4.14) llmlnft?’/2 YO, (2,1)
2R* ~
thmsupe(a ‘I’(’\*))N/ P.(My > y)e ™ R*(2)dz.
27T\I],/<)\ )3 N—oo R+
Combining ([4.I3) and ([@I4]), we obtain that
lim t3/2e(a7\11()\*))t@y<x’ t)
t—o00
2 R* Axx N 2R* A
:—R (z)e lim e(o‘q’()‘*))N/ P.(My > y)e ™ R*(2)dz = 2@)er (z)e
2" (\,)3 N—oo Ry 2 (A, )3

where O, := limy_q, e(@7 VAN fR+ P.(My > y)e*)‘*z_ﬁ*(z)dz. Next, we show that C, €
(0, 00). First, applying Lemma (3), we get

Yo

c, > Csub/ e_A*Zﬁ*(z)dz > 0.
y

Using (4.12)) and taking f(x) = 1(y00)(2) in Theorem B.5] we get
lim sup ¢3/2e(@= YD1 Qy(z,t) < tlim 32"V P (7'(; >t,& > y)
—00

t—o0
2R (m)eMm [
\2mU" (N3 Jy
Therefore, C, < foo *)‘*Zﬁ*( )dz < co. This completes the proof. O

Proof of Corollary : We only prove (3). Combining Theorem [[T] and [[.2] for
any 0 < a < b, we get that

e R*(2)dz.

Qu(x,t) — Qolx,t) [P e R (2)dz
u(z,t) a I e 2R (z)dz

lim P, (M, € (a,b]|¢ > 1) = lim
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Therefore, there exists a random variable (X,P) such that P,(M; € -|¢ > t) vaguely
converge to P(X € -). Moreover, by (1), we have
Qy(x t)

e P, (15 > 1,6 > y) 1
Csubefath (7’0_ > t) n Csub

P, (&> ylmg >1).

Thus by Theorem 3.5 the tightness of M; under P,(-|¢ > t) follows from the tightness of
& under P, (:|7, > t). This gives the desired result. O

5. PROOF OF THEOREM [1.4]

For any 0 < x < y, define
v(z,y) =P, (M > y).
The following result is valid for any branching killed Lévy processes.

Lemma 5.1. For any 0 < xz <y, it holds that
U(x7 y) = E:B |:1{TJ<TO}6 QT fO QO(U fs y))d5:| ’

where ¢ is defined by (LI)). Consequently, for 0 < x < z < y, by the strong Markov
property, we have

U(:L’, y) = E |:1{T+<T }U<§TZ+7 y) —ard fo @(v(&s,y))ds :|

Proof. For 0 < x < y, comparing the first branching time with 7'; , we have

v(x,y) /ﬁeﬁsP(T <75,7, < s)ds

/ 66 BSE <<1 - Zpk gsa )) ) 1{Ty+/\7'0>s}>
0 k=0

By [4, Lemma 4.1], the above equation is equivalent to

',L, y + /8/ §S7 1{TJATJ>S}> dS

=P, (T; < T(;) + BA E. ((1 - Zpk (1 o U(gsvy))k> {rb Aty >s}) dS’
k=0
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which is also equivalent to

v(z,y) =P, (7';r <75 )—E, (/Ory 7o q)(v(gs,y))d8> ;

where @ is defined in (I1)). Using the Feynman-Kac formula, we get that

vl y) = E, (1{7;«0-}@ i 7 olot s )
This gives the desired result. -

Lemma 5.2. Assume that ((§)i>0, (Px)zer) is a spectrally negative Lévy process. For
any 0 < x <y, we have
Wy ()
(5.1) v(z,y) < f(ga < ela—u)i(a),
ey¥(a W ( )

Proof. Since the function ¢ is non-negative, Comblning Lemma [5.T] and Theorem 2] (2),
we get

_W9(z)
<
U(.T,y) <E;|e Kl 1{7’ <7y } W(a (y) T <y.
This combined with Lemma yields that
xw a)W(O T
ey “ W¢(a)(y)
This gives the desired result. O

Proof of Theorem [I.4: By Lemmas [5.1] and M we have
U(‘T’ y) =E, |:1{Ty+<ro_}6 o fO ©(v(&s,y))ds :|

_ e @) [1 e Sy ))ds} _

{m

Fix a v € (0,1), by the Markov property of (&, Pf(a)), we have

(5.2) wv(x,y) = e(x—y)w(a)Ef(a)

e
Ty—y <75 }

~+
L — o' ¢(v<ss,y)>ds]

y—y7

where

Al(l‘a y) = Ef(a) T;__yq<7'0_}

o+
L e o' <P(v(§s,y))dS] ’
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1) = B [1 gy e

We first consider the asymptotic behavior of A;(x,y) as y — oo. We claim that
(5.3) lim [PY(rF < 75) — Ai(z,y)] =0.

Yy—00
Indeed, using the inequality 1 — e~ 1*l < ||, we get
(5.4) 0 < P (rF Ty < T ) — Ai(z,y)

= Ef(a) 1{T+ 7<TJ} <]- — € ny vl SO(U €ss y)) )
Y-y

+

Ty—y
<SEY s o /0 PvlEs y))ds

< Ef(a)

/O v w(v(és,y))dSI :

Set y.(x) := inf{t >y —y7,t — x € N}. By (E1]), we have

7'+_ 5 Tt(z)
Ef(a) /y ! o(v(&,y))ds SE;D(&) /y (p(e(ﬁsfy)w(a))ds
0 0
Yy« (z)—2z—1 -
rz+k+1
= Z EV(® / o (& vV @) ds]
k=0 T;r+k
y«(z)—2—1
SN BN (s ) ()
k=0

<
*

—
8

N

— BV (7)Y (e V@ oy @ )y

b
Il
—

By the definition of y,(x), we have that for y large enough,
y—r—1l-y@2y-—or-1-(y—y' +1)=y -z -2
Therefore, when ¥ is sufficient large so that y? — z — 2 > /2, by (L3), we have

T:*y"/
/ so(v(ss,y))ds]
0
< BV (1 Z o ( ~(a) yv/2+k>> <E{ (n) / Ty (e*W“XW 2+Z>> dz
0

= Egp(a (11) / B Y (e_¢(a Z) dz =% 0.
yW

This combined with (5.4]) yields (5.3). Using Lemma [2.4] and Theorem 2.1)(2), we get
hm Al(x y) = hm PUO(Th < 1)

Ef(“)
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= Jim (0 OE, [ ] = gim s W @)

y—r00 v {Tyfy'y <79 } y—>00 W(e) (y - yV)

Using (2.1]), we get that
P(a)(y—y™)
e
WOy —y7) ~ G
V'(yp(a))
Therefore,

(5.5) lim Ay (z,y) = e Y% (¢(a)) W (z).

Yy—00

Next, we consider the asymptotic behavior of As(y) as y — oco. Recall that

y—y7

Aa(9) =B [1175 g ot

o
_EY©) { 7 ol ))ds} V@) {1{7;270}6”“ sa(v@s,y))ds}.

We claim that

&
(5.6) lim B |:ef0 ea(v(ss,y»ds} = C.(a) € (0,1],
Yy—00
and
&
57) ylirlgo Elyp(y'Y {I{TJZTO_}G_ Jo ¢(U(§S’y))d5:| =0.
Then we get

Y—00

Combining (5.2)), (5.5) and (5.8)) gives that
lim " @o(z,y) = C.(a)¥' (¥ (a))W(2),

Yy—>00
which gives the desired result. Now we are left to prove (5.0) and (5.7). By Lemma 2.4]
and Theorem 2.1l we have

y—y7 y—y7 y—y7

— T;L v S « — (% _
B, [1{717270‘}6 ol eteee } <P (r >m) =1-P) () <7)
(@) (2) — oY
— 1 _ o¥%(a) —ary 1 w(a)W (v—19")
=1 Ry [e "<y }] == W@ (y)

which tends to 0 as y — oo by (2)). Thus (5.7) is valid. To prove (5.6]), for any y > 0,
define

Gy) = V) [ I iy ))ds},
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For any z > y, by the translation invariance and the strong Markov property of &, we
have

o+
G(z) = EV©@), [e— IS so(v(fsw»ds] — E/© [e—fo” so(v(£s+z—ztz)>ds]

+
_ BV [ o7 et s

9

+
E¢(a) |:6_ Jo#7 go(v(fs+z—z”,z))ds:|

z'Y—y"/

where the first term of the above display is dominated by 1 from above and the second

+
term is equal to Egb(a) [e‘ S ¢(v(£s+z—yﬂz))d8} . It follows that

(5.9) G(z) < Ey©™

-+
e Jo v so(v(és+z—y+y—zﬂ,z—y+y))d8] )

Note that for any w > 0, it holds that
vz +w,y+w) =P,y (EI t>0,u € Ny s.t. m<1£1Xu(s) >0, X, (t) >y+ w)
> P (EI t>0,ue N s.t. m<1£1Xu(s) > w, Xyu(t) >y + w) = v(z,y).

This combined with (B.9) gives that for z > v,

+

G(2) <EY |e Jo ew(eaty—yrw)ds | _ Gly).

Thus, the limit C,(«) := lim, ,o G(y) exists. It is obvious that C\(a) < 1. Next, we
only need to show C,(«) > 0. We assume without loss of generality that y is an integer.
By the strong Markov property and Jensen’s inequality,

o+
Eéﬂ(a) [e‘ Jo? so(v(és,y))dS}

o+
Gly) = > EV@ {e I @(v(gs,y))ds:|

T
Egb(a) [e— Jor " w(v(f&y))dS}

y
> exp {— Z Eg(a)
n=1
By (L3)) and (E1I), we get

+

/:n o(v(&,y))ds < (1.7 — 77 Dpv(n,y)) < (F =77 ) (e(n—yw(a)) _

n—1

+

/. so(v(gs,y))ds”.

n—1
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Note that under P, {7+ — 7+ } are i.i.d. random variables with finite first moment.
Therefore,

Gy) 2 exp | = 3 (e MO BY [(rf — 1t )]
n=1 . .
= B S o () | o B Do () |
which implies that - i
C.(a) > exp{ —EX (1) i o (e
n=0

According to (L3), we have

Z © (e‘"w(o‘)) < (1) +/ © (e‘zw(o‘)) dz < oo,
n=0 0

which implies that C,(«) > 0. This gives the desired result. O
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