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Abstract

The logarithmic correction for the order of the maximum of a two-type reducible branching
Brownian motion on the real line exhibits a double jump when the parameters (the ratio of the
diffusion coefficients of the two types of particles, and the ratio of the branching rates the two
types of particles) cross the boundary of the anomalous spreading region identified by Biggins.

In this paper, we further examine this double jump phenomenon by studying a two-type
reducible branching Brownian motion on the real line with its parameters depend on the time
horizon . We show that when the parameters approach the boundaries of the anomalous spreading
region in an appropriate way, the order of the maximum can interpolate smoothly between different
surrounding regimes. We also determine the asymptotic law of the maximum and characterize
the extremal process.
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ing process; phase transition.

1 Introduction and main results

Branching Brownian motion (BBM) is a probabilistic model that describes the evolution of a pop-
ulation of individuals. This model has been intensively studied and continues to be the sub-
ject of many recent researches. A large literature focused on the link between BBM and the
F-KPP reaction-diffusion equation, introduced in [2I] and [25]. For results in this direction, see
[10, 18, 19, 22, 26, 381, B2] and the references therein. Understanding the spatial spread of such a
population, particularly the propagation of the front, is a fundamental question and has attracted
significant interest, see e.g. [Il, B, 5 1], 14} 17, 20, 27]. The insights and methods used in studying
the extreme values of BBM are applicable to a large class of probabilistic models, including the two-
dimensional discrete Gaussian free field, epsilon-cover time of the two-dimensional torus by Brownian
motion, and characteristic polynomials of random matrices. For further details, we refer our reader
to the lecture notes [24] [36] and the reviews [2] [6].

Multitype branching Brownian motion is a natural extension of BBM that can be used to describe
the evolution a population composed of different types or species. In the irreducible case (where each
type of individual can have descendants of all types), it behaves in some sense like an effective single-
type BBM, see e.g. [23, [34]. This paper focuses on a two-type reducible case (where individuals
of type 2 cannot have descendants of type 1), which is the simplest setting in which the maximum
exhibits a phase transition not observed in the case of single-type BBM.

*The research of this project is supported by the National Key R&D Program of China (No. 2020YFA0712900).
TThe research of this author is supported by NSFC (Grant Nos. 12071011 and 12231002) and the Fundamental
Research Funds for Central Universities, Peking University LMEQF.



Biggins [12), [13] gave a comprehensive description of the leading order of the maximum of the
two-type reducible BBM. There are three cases %7, %rr and %7rr for the maximum. In %7, the
maximum is equal to the speed of individuals of type 1; in €77, the maximum is equal to the speed
of individuals of type 2; and in %75, the spreading speed of the two-type process is strictly larger
than the speeds of a single-type BBM of particles of type 1 or type 2. %7 and %;; are referred
to as normal spreading regions, while %7rs is referred to as the anomalous spreading region. The
regime to which the process belongs depends on the ratio 8 of the branching rates and the ratio o2
of the diffusion coefficients for individuals of types 1 and 2. Belloum and Mallein [§] obtained the
logarithmic correction of the maximum and the limiting extremal process when (3,0?) are interior
points of €7, 671, €r11. Further studies on the boundary case by Belloum in [7] and by the authors in
[28] completed the phase diagram for the maximum (see Figure . Notably, a double jump occurs
in the logarithmic correction for the order of the maximum when the parameters (3,02) cross the
boundary of the anomalous spreading region é7y;.

A further interesting question is to make the logarithmic correction smoothly interpolates between
normal spreading cases and anomalous spreading case. Similar problems for variable speed BBM were
investigated in [I5] and [35]: The logarithmic correction for the order of the maximum for two-speed
BBM changes discontinuously when approaching slopes a% = 0'% = 1, which corresponds to standard
BBM. Bovier and Huang [I5] further studied this transition by choosing 0 = 14+t~ and 03 = 1Ft~%,
and showed that the logarithmic correction for the order of the maximum smoothly interpolates
between the correction in the i.i.d. case 2%/5 logt, standard BBM case % logt, and % logt when
a € (0,1/2). Inspired by these two papers, we study in this paper a two-type reducible BMM with
parameters depending on the time horizon t. We assume that the parameters (3;,0?) approach the
boundary of €7r; appropriately. We show that the logarithmic correction for the maximum smoothly
interpolates between the normal spreading cases and anomalous spreading case. Moreover, we find the
asymptotic law of the maximum and characterize the extremal process, which turns out to coincide
(up to a constant) with that of a two-type reducible BBM with parameters (tliglo B, tlgglo a?).

1.1 Branching Brownian motions

A BBM on the real line can be described as follows: Initially, there is a particle which moves as a
Brownian motion with diffusion coefficient o starting from the origin. At rate /3, the initial particle
splits into two particles. The offspring particles start moving from their place of birth independently,
with same diffusion coefficient and obeying the same branching rule. We denote this process by

{(xﬁ"’Q (t),u € N¢)i>0,P}, where N; is the set of all particles alive at time ¢ and X (t) is the
position of an individual u € Ny. If 8 = 02 = 1, we call {Xi'(¢)} the standard BBM and write
{Xu(t)} for short. The scaling property of Brownian motion implies that

(Xﬁ"’z(t) Lue Nt) faw (\;%Xu(,é’t) te Nﬁt> .

Let Mf’gQ = max,en, x5:o? (t) be the maximum of BBM at time t. It is well-known that the

centered maximum Mt’B o2 converges in distribution to a randomly shifted Gumbel random variable
(see [17, 18, 27]). More precisely, if

v=1/2802 and 0=+/28/c2,

then
lim P <|\/|t5702 — ot + % logt < x> —E [exp {_02&026—033}}

t—o00

for some constant C' depending on 3,02, where ch’,UQ is the almost sure limit of the derivative
2 2 2 2
martingale (Zf’g )i>0 defined by Ztﬁ’a = ) uen, [Vt — X5 ()] exp{GXE’U (t) — 2pt}. The name



“derivative martingale” comes from the fact that Z/ S —Z Y ’02(/\), where W/ o2 (\) =

> ueN, exp{AX5’02 (t)— (B+ #)t} are the additive martingales for BBM.
The construction of the limiting extremal process for BBM, obtained independently in [I] and
[5], gives a deeper understanding of the extreme value statistics for BBM. Precisely,

tllglo Z Ox., (t)— Vit logt = DPPP (\[C Zoce V2% dg ”Df> in law, (1.1)
S\

where DPPP (u,®) stands for a decorated Poisson point process with intensity measure p and
decoration law ©. Given a (random) measure 1 on R and a point process ® on R, let ), d,, be

a Poisson point process with intensity p and let (E , (Sdi D> 0) be an independent family of i.i.d.

point processes with common law ®, then Z 0y +di is a decorated Poisson point process with

intensity measure p and decoration law ®. The decoration law DV2 in . belongs to a family of
“gap processes” (D¢, 0 > v/2) (see [9, [16]), defined as

D0(-) = lm P [ Y dx,9-m, € [ My >0t | . (1.2)

t—o0
ue Nt

1.2 Two-type reducible branching Brownian motions

In this paper, we study the following two-type reducible branching Brownian motion: Type 1 particles
move according to a Brownian motion with diffusion coefficient o2, branch at rate /3 into two children
of type 1 and give birth to particles of type 2 at rate 1; type 2 particles move as a standard Brownian
motion and branch at rate 1 into 2 children of type 2, but cannot give birth to offspring of type
1. For t > 0, we use N; to denote the total number of particles alive at time t. We can further
categorize these particles into type 1 and 2, represented by N} and N7 respectively. The position
of an individual v € Ny is denoted by X, (¢). The maximum position at time ¢ is represented by
M; = maxyen, Xu(t). Finally, the law that the two-type BBM starts with a type 1 particle at the
origin is denoted by PB.o?,

The extremal value statistics of the two-type system behaves like that of the single-type BBM. The
centered maximum (M, —mP” (t), PP) converges in law to a random shifted Gumbel distribution,
with a proper centering mbo’ (t) of the form I(3,02)t — s(B,0?) logt. Additionally, the extremal
process (D ,cn, 0 X (£)—mBo? (1)’ ]P’B"’Q) converges in law to a certain decorated Poisson point process.

However, an intriguing phase transition occurs in the centering mb’ (t) of the maximum of the
two-type BBM (see Table [1| and Figure , but not in single type BBMs, due to the significant
contribution of the added type 2 particles to the maximum in some situations.

Divide the parameter space (ﬁ , 02) € Ri into three regions (see Figure j

Gy = {(6,02) 1o” < ;1{%1} +(2- 5>1{6>1}} :

(B, ):02+5>2and02< Qﬁﬁ—l};

and define %, ; = 0%;N0€;\{(1,1)} for i # j and i,j € {I,II,I1I}. If (3,0%) € %7, the order of the
maximum of the two-type process is the same as that of particles of type 1 alone, and the asymptotic
behavior of the extremal process is dominated by the long-time behavior of particles of type 1. If



(B,0%) € €11URB 1,11 the asymptotic behavior of particles of type 2 dominates the extremal process. If
(8,02%) € €111, the so-called anomalous spreading region, the speed of the two-type process is strictly
larger than the speeds of both single type particle systems. Extreme values can only be achieved
by descendants of first-generation type 2 particles born during a certain time interval and within a
certain space interval.

To present the known results in a clear and accessible manner, we summarize the different regimes
of the maximum and extremal process of the two-type BBM in a table. For cases 67, %71, €111, We
refer to [8]. The case (1,1) was discussed in [7], and cases By 11, Br.111, Bir.111 were covered in [28].
Recall that the family of decoration laws (D : p > 1/2) are defined in .

Regime Correct centering mPe’ (t) | Limiting extremal process

¢ V2802t — 3 logt DPPP(CZ% e~ da,® 1 f
CirU Brn V2t — 3= logt DPPP(CZ&”}*‘/% dz, @ﬁ)
Crir vit = #@_ﬂ)t DPPP(CW27 (6%)e=0"* dz, 7")
B 1 V2t - Sl logt DPPP(CWE" (v2)e~ V2 dz, DV?)
B V{1, 1)} | 2B0% — L logt DPPP(CZ27" e~ dz, ®7)

Table 1: Five regimes of limiting behavior of (}_, . O, (£)—mBo? (1) pA.o?).

To better visualize these results, we draw the phase diagrams for the maximum and the limiting
extremal process in Figure One can see that the leading coefficient (3, 02) is a continuous function
of (B,02). However the subleading coefficient s(j3, o) exhibits discontinuity. Notably, a double jump
in the maximum is observed when (3,02) crosses the boundary of the anomalous spreading region
Cri1-

€1
24 3
\/ 2802t 72\/Wlogt

6
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Figure 1: Phase diagram for the maximum and extremal process of two type reducible BBEM

Inspired by papers [15] and [35], we further study the apparent discontinuities in the maximum
that occur when the parameters (3,02) cross the boundary of %7;;. For this, we assume that the
parameters (3¢, 07) depend on the time horizon ¢ in an explicit way and approach the boundary of
%7111 appropriately. Then we show that the logarithmic correction for the maximum now smoothly
interpolates between the normal spreading case (€7 or ¢js), the boundary case (%r rrr, {(1,1)} or
Ar.r11) and the anomalous spreading case €7y.

!The decoration process D ;) was obtained implicitly in [8, Theorem 1.1]
2The random variable 2&02 is a composition of derivative martingale and additive martingale, see [8, Lemma 5.3]



Before presenting our results, we provide a very simple example to illustrate the idea as follows.
Consider the function fi(z) = ' for z > 0, t > 0. Clearly for fixed x, as t — oo, it holds that
filx) > 0if x < 1, fi(x) = 1 if x = 1 and fy(x) — oo if x > 1. Hence f has a double jump
at £ = 1. To get a continuous phase transition we let x depend on t and approach the critical
point 1 appropriately. We define x;; = 1 — , where h stands for the proximity of z;; and 1.
Then limy_o0 fi(zen) = e~ which continuously interpolates between 1 and 0 as h runs over (0, co].
Similarly by letting x; = 1+ %, limy o0 f(x) interpolates continuously between 1 and co. Our main
results bear similarities to this example, but achieving the same goal in our problem is nontrivial and
poses greater challenges.

1.3 Main results

As suggested by the previous simple example, we fix a time horizon ¢ > 0 and run a two-type reducible
BBM {X,(s) : u € Ng,s <t} up to time ¢t under the law PPof | That is, during time s € [0, ¢], type 1
particles have branching rate 3; and diffusion coefficient o, while type 2 particles are standard. We
need to find parameters (3, 07) that properly approximate a given point (3,c?) on the boundary of
the anomalous spreading region ©rrr- To do this we introduce our choice for approximations.

Given parameters ((3,02) € By 111 = {B =2,8> 1} and h € (0, 00], we say (B¢, 07)t=0 is an
h-admissible approximation for (3,c?) from CK[H, denoted by (B¢, 02)i>0 € ;zf(ﬁ 52)) if
1 1 1
(B, 02) € €11 B + =2+ m for large t and (B;,02) — (8,0°) as t — oc. (1.3)
t (g

(Here h = oo we use the notation - = 0). Similarly, we say (8;,07)¢>0 is an h-admissible approxi-

mation for (8,02) from %7, denoted by (B, 02)i~0 € ﬂf(ﬁ 02} if
2 1 1 1 2 2
(B, 01) € 61, B +—5=2- m for large ¢t and (8¢, 07) — (B,0°) as t — 0. (1.4)
t (9

Throughout this paper, for given (8, 02), we set

2
O0r = \/2Bi/0F, v =1/2B0} and v} = \/2(5@ 1)(21 s
t — Ut

Theorem 1.1. Let (3,0?) € Brrrr, h > 0. Define
Inin{h, 1/2} logt . 1 3

3 —4min{h,1/2} log ¢

1,3 .
mh+(t) =t — 0, s omy,” (t) = vt — 20,
Then for (B, 02)i>0 € ;zf(h , defined in and (1.4)), we have
tli}rn (Z 5Xu ) Pﬁt’(’t> = DPPP (C’hiGZgg)”Qe_@m dx,@a) mn law,
UEN

for some constants Cy, 1+ depending only on h and (B,0?).

Remark 1.2. Recall Table For (B,0%) € By 11 and (B, 07) € efzf(}g,i 2); Theorem [1.1| shows that,
for h > 1 , the perturbation is so small that the limiting behavior of the extreme values of BBM under
pBeo? and pBo? (i.e., no perturbation) are the same! For (3;,07) € ,527( ho+ 2); @5 h changes from 3 5 to
0, the coefficient for the log correction for the maximum changes smoothly from 1 (corresponding
to the regime %y rr1) to 0 (corresponding to the regime ¢7rr). For (Bi,07) € 427( »2)r 85 h changes

from % to 0, the coefficient changes smoothly from 1 (corresponding to the regime ;) and 3

(corresponding to the regime 7).



Given (8,02%) € Bir1i1 = {B+0*=2,8> 1} and h € (0, ], we say (B¢, 07 )>0 is an h-admissible
approximation for (3,02) from %7, denoted by (5B, 02)i>0 € JZ{(B 02); if

1
Bi+o2 =2+ o (B, 02) € €11 for large t and (B, 02) — (B,02) as t — oo. (1.5)
We say (B¢, 02)¢>0 is an h-admissible approximation for (3,02) from %77, denoted by (B;,02)i>0 €
h— .
F 6,02y 1
1
Bi+o2=2— o (B, 02) € €y for large t and (B;, 02) — (8,0°) as t — oo. (1.6)

Theorem 1.3. Let (8,0°%) € Bir.111 and h € (0,]. Define

min{h, 1/2} 2.3 3 —4min{h,1/2}
— T Yogt s mt (t) == V2 — logt
\/i g h,—() 2\/§

Then for (B¢, 02)i>0 € ”Q{(ﬁ 02)) defined in and ., we have

my’, (t) o= vjt —

lim (Z Syt IP’ﬁt"’t) — DPPP (Ch,i\/iwfgﬂ(\/i)e—m dx,@ﬁ) in law,

t—o00
u€ Ny
for some constants Cy, 1 depending only on h and (0, a?).

Theorem [I.3] has a similar explanation as in Remark
Finally, we introduce the h-admissible approximation for (1,1) from %7, %, and ;s as follows
respectively.

e Let ﬁf(}{}) be the collection of all (8, 07)¢~0 such that é + 0%2 =2—t7" B = o} for large t.

o Let szf(}ll ?) be the collection of all (3;,07)s~0 such that 8 + o2 =2 —t~", B; = o for large t.

o Let sz(lf f) be the collection of all (8, 02)¢~0 such that 8; + o2 = é + % =2+ t" for large t.

Our next theorem shows that the threshold for negligible perturbation is A = 1, which is twice
as much as that in Theorem [[.T] and [I.3] Then as h changes from 1 to 0, the coefficient for the log
correction changes smoothly from 1 (corresponding to the regime (1,1)) to the target regime.

Theorem 1.4. Let h € (0,00]. Define

3 —2minih, 1 3 — 2min{h, 1
mg,il)(t) = vt — ;n\l/%{ bio gt Ezl’l)(t) = V2t - ;n:/%{ ) logt, and
1,1 .. min{h,1}
2, )(t) =t — Wlogt.

Fori=1,2,3 and (B;,02)t>0 € sz(fll’il), we have

t—o00

lim (Z Bt mf 0y Pﬁtvat> — DPPP (cmi\/ﬁzooe—ﬁfc dx,@ﬂ) in law,

uE N

for some constants Cy,; depending only on h.



Outline. The rest of the article is organized as follows. We discuss our results in the next sub-
section, offering some heuristics of our proof and giving relation to coupled F-KPP equations. In
Section 2, we introduce several results on branching Brownian motions that will be needed in our
proofs, in particular some estimates for the Laplace functional of the point process associated to
BBM and central limit theorems for the Gibbs measures associated to BBM. In Sections 3, 4 and 5
we give the proofs of our theorems In section 3 we prove the case 42/(%’;2) in Theorem [1.1| and the

hl . . ht -
case txzi(l,l) in Theorem In section 4 we prove the case Jaf( 5.02) 10 Theorem and the case

szf(??l’) in Theorem In section 5 we prove the case mf(%’;g) in Theorem and the case ﬂf(}f?) in
Theorem [1.4l

Notation convention. Throughout this article C' (also Cp 4,C} —,---) are positive constants
whose value may change from line to line. Let 7 be the set of functions ¢ € C; (R) such that
inf supp(¢) > —oo and for some a € R, () = some positive constant for all z > a. T will serve as
test functions in the Laplace functional (see [9, Lemma 4.4]). For two quantities f and g, we write
f~giflimf/g=1. We write f < g if there exists a constant C' > 0 such that f < Cg. We write
f <. g to stress that the constant C' depends on parameter \. We use the standard notation O(f) to
denote a non-negative quantity such that there exists constant c1, co > 0 such that ¢1 f < O(f) < caof.
When this is no ambiguity, we use P and E to denote PAoi and EPo7 , respectively. We always use
the front mathsf to denote the probability or quantities related to single-type branching Brownian
motion, like P,E, X,,W,Z etc. The probability and expectation related to Brownian motion are
denoted as P and E.

1.4 Discussion of our results
1.4.1 Heuristics for localization of paths of extremal particles

For each type 2 particle u € NZ, we define T,, as the time at which the oldest ancestor of type 2 of u
was born. In other words, T, is the “type transformation time” of u. For convenience, we set T, =t
for u € N}

We restate here the optimization problem introduced in [8] Section 2.1] (see also Biggins [12]). For
p € [0,1], let N}, 45(t) be the expected number of particles at time ¢ that have speed a before time T;, ~
pt and speed b after time pt (under the law PP "’2). Note that these particles are at level [pa+(1—p)blt.
By first moment computations, N, , 4(t) = exp {[(ﬁ - %)p +(1- %)(1 —p)]t+ o(t)}. So the speed
of the two-type BBM should be the maximum of pa + (1 — p)b among all the parameter p, a, b such
that (6 — %) p >0 and N, ,(t) > 1. That is,

* a2 a2 b2
v :max{pa—i-(l—p)b:pe [0,1],< —M>p20,< —w>p+ (1—2) (1—p)20}.
(1.7)
Denote by (p*,a*,b*) the maximizer of this optimization problem. If (,8,02) € €7, then p* =1,

a* = v, and v* = v; if (5,02) € %1, then p* = 0,b* = v/2 and v* = V/2; if (,8,0’2) € 6rr11, then
K o’ +p-2 b = /2 B-1 * — o2b* and v* = B—o?
P = ai=e?)(B-1)’ 1-2) @ =00, andu 2(1—02)(B—1)

Inspired by the heuristics above, we are going to do some refined computations that provide more
precise predictions for localization of extremal particles, under the law P29 To avoid duplication,
we only do this under the setting of Theorem ie., (8,0%) € PBrrrr and (Bi,02)¢>0 € eﬁzf(%’;).
Under the setting of Theorem [I.3] [[.4] one can use a similar argument. ’



The case (8;,02)i>0 € 427(%;2) According to the optimization problem (1.7), M; ~ vt and each

individual u € N2 near the maximum should satisfy T, ~ t. The expected number of type 1

particles that are at level v;s — §(t) (where (¢) will be determined later) at time s = t — o(t) is
0:5(0)— 29~ +O(log 1) N . .

roughly e 2ogs . The probability that a typical particle of type 2 has a descendant at

2 2
)= +uud(t)+ F5 | +Olog )

level v¢(t — s) 4+ 0(t) at time t — s is e_{ . Hence there are around

2 2 2
vi 6(t) 6(t)
—==1) (- 0y —v)d(t) + O(logt 1.8
o {= | (F=1) =51+ 5og + g s | + = 00300+ O1om) (19
particles of type 2 at level vt at time ¢. In order for the limit of the the quantity in (1.8) to be
non-zero as t — 0o, using the prior knowledge s ~ ¢, we first have to ensure that §(¢) has the same
2 2
order as t — s or 2" So we get 6(t) = O(t — s). We also need to ensure that SO — O(1), which

t—s 20?5

implies 0(¢) = O(V/t). Letting 0(t) = A(t — s), we can rewrite (1.8) as
1 6, — 2 2
exp { {—2[)\ — (0 —v))? + “;t) - <U2t - >] (t—s)+ O(logt)} .
As + + % =2 —t7" we have (6; — v;)% — (v} —2) = 2&(% —-2)+2= —Qt—%. Then (1.8) becomes

Bt
exp { [—;[A (O - w2+ f,j] (t—s) + O(logt)} .

To guarantee |—3[A — (0 — v;)]? + 'f—,f} (t—s) >0, we need A = (f; —v¢) and t — s = O(t"). In other

words, the extremal particle u € N? should satisfy

t—T, = O(th/\%) and X, (T,) =~ vTy, — (0 — v)(t — To,).

The case (B;,02)i>0 € utzf(%;) According to the optimization problem (1.7)), M; ~ vjt and each

individual u € Nf near the maximum should satisty T, ~ pjt. The expected number of type 1

[a} s—5(1)]2
. . . — 7 ——+B:s+0(logt)
particles that are at level afs — §(t) at time s = pit — o(t) is roughly e ~ 27%* ° . The

probability that a typical particle of type 2 has a descendant at level v/t — ays+ d(t) at time ¢t — s is
_ oft—afs+8(t))

e 30=s) +(t—s)+O0(logt)

. Hence there are around

ois =S |, ) leit —ais 4 )

207s 2(t — s)

exp {ﬁts - + O(log t)} (1.9)

particles of type 2 at level v;t at time t. Let s = pjt—e(t). We have vjt—afs = bf (1 —p})t+afe(t) =
by (t — s) — (aj — bf)e(t). Hence

Vit —ars 2 12 e ,
(vit 2(;%;)5(25)) _ (b;) (t—s) + bi6(t) — bi(aF — b)e(t) + [6(¢) 2((; s(;)t>€(t)] |

Applying the facts that [, — %]pf +[1- (bé)Q](l —p}) =0 and a} = o?b}, we get
t

ay)? af 5(t)? vit —afs + 6(t)]?
(5= ) 250 — S (¢ =) - L
a* 2 *\ 2 0_2 o —(a* = b* 2
R I CR R Y EURE TR
D)~ (e — B 02
2(t — s) 20723



Hence ([1.9)) equals to exp{—[(S(t)_(;(%;:g)‘E(t)}2 - gfgz + O(logt)}. Thus we need |§(t)| = O(y/t) and
t

16(t) — (a; — b})e(t)| = O(V/t — s). Hence |e(t)] = O(v/t). In other words,

pit — Ty = O(Vt) and X, (T,) =~ a;T, — (af — b})(t — T,).

1.4.2 Application in F-KPP equations

A multitype BBM, like standard BBM, is associated to an F-KPP reaction diffusion equation. For
more details, we refer to [8, Section 2.3]. Specifically, let ¢ > 0, and f,g : R — [0, 1] be measurable
functions. We define for all z € R and s < ¢ :

u(s,z) = B [ T F(Xu®) +2) J] 9(Xult) +2) |,

ueN} ueNZ

v(s,z) =E H g (Xu(t) + ) | , where (X, (t),u € N¢, P) is a standard BBM.
uEN,
Then (u,v) is a solution of the following coupled F-KPP equation

2
85u:%Au—ﬂtu(1—u)—u(1—v)7 0<s <t

Osv = %AU —v(l—wv), s>0,
v(0,2) = g(z) , w(0,2) = f(z).

Our main results give the the existence of a function m; such that (with good initial functions
fig,eg, f=g=1on (—oo,—A] and f =g =0on [4,00)) for all z € R,

(1.10)

tllglo (u(t,x —my),v(t,z —my)) = (wi(x),ws(x)),

where (w1, ws) is a solution of the the coupled ordinary differential equations (ODEs):

2
o
?w'{ —cw) — fwi(1 —wy) —wi (1 —ws) =0,
(1.11)
1 1 / —
5 W2 — Cwy — wa(1 — we) =0,

with (8,0%) = limy 00 (53, atz) and ¢ = lim;_,o, my/t. In fact, m; is defined as follows:

o if (6,02) € ABr 11, (Bt’ag)wo € &z{(}g;%, then m; = \/2B02t — 3-dmin{h,1/2} logt; if (B8,0?%) =

24/2B¢/o?

3—2min{h,1} log t;

24/2B:/0?
o if (,8,0-2) S %}]»[}[ and (,Bt,O'tQ)t>0 S JZ{(];”;Q), then m; = \/it — 3_4%\/{;71/2} Iogt; if (/3’0.2) =

h,2 B 3—2min{h,1} .
(1,1) and (ﬁt’gg)wo € LQf(Ll) then m; = v/2t — % log t;

(la 1) and (/Btva—?)t>0 € %ﬁb%) then m; = 26tUt2t -

o if (ﬁ,o‘Q) € DY € Brrrr and (ﬁt,dg)t>0 = «52{(%;2)7 then m; = vft — %bgt; if
min{h,1}

h,3 _ *
(B,0%) = (1,1) and (Bt,atz)bo € ”Q{(Ll) then m; = v/t — NG

logt.



Now we show that (w1, ws) is a solution of (1.11)). By Theorems and given (B, 0?), for

all h-admissible approximation (3, 0¢)¢~0 with h € (0, 00], the limit (w1 (x), wa(x)) are the same (up
to a translation depending on h). So it suffices to consider the case h = oo, i.e., (8, 07) = (8,0?).
Applying the branching property, we have

u(t,z —my) = EP’ H u(t —s,Xu(s) +x—my) H v (t— s, Xyu(s) + 2 —my)
u€eN} u€N?2

Letting ¢ — oo, since my = ¢s + my—s + o(1), we get

wi(@+cs) =B | T wi (Xu(s) +2) [ we(Xu(s) +2) |, s>0;
ueN} ueN?2

and similarly w(z + cs) = E ([T,en, w2 (Xu(s) +2)). Then, as the derivation of (L.10)), using again
the argument in [8, Section 2.3], (wi(x + ct), wa(x + ct)) solves the coupled F-KPP equation:

o2
Oyu = ?Au — Bu(l —u) —u(l —v),

1
O = §Av —v(l —v).

That is, (wy,ws) is a traveling wave solution of this coupled PDE; and (1.11)) follows.

2 Preliminary results

2.1 Brownian motion estimates

The following lemma gives an upper bound for the probability that a Brownian bridge below a
straight line.

Lemma 2.1 ([I7, Lemma 2]). Let (Cs[o’t])se[o,t] be a Brownian bridge from 0 to 0. Let x1,x9 > 0,

then

t—s
t

2z xg 2x1x
—— S 142

S
Pl < -
(C_tl’ri- .

x2,Vs € [O,t]) =1-e

2.2 Branching Brownian motion estimates

Recall that {(Xﬁ’gQ (t),u € Ni)i>0,P} is a BBM with branching rate 8 and diffusion coefficient .
Let v = /28302 and 6 = ,/3—@. Then for some constant C' > 0 there holds

P(Eis>0,u€ N :Xg"’z(s) zvs—i—K) < Ce K, (2.1)

In fact, this probability is comparable with respect to this upper bound, see [30, Lemma 3.4]. We
state some fundamental results for the standard BBM (i.e., 8 = 02 = 1) that will be used later. The
first one is the tail probability of the maximum of BBM. Applying the first moment method, we get
a trivial upper bound: for every y > 1 and ¢ > 0,

P <mz?\|qu(t) > y> <eP(By>y) < ——e "2, (2.2)
ue Ny

10



A much better estimate, especially when y nears /2t — 2—\3/5 logt, was given in [4, Corollary 10| as

follows. For every x > 1 and t > 0,

3
P max X, (t) > V2t — ——1lo
<2%N>f (t) = W g(

We shall use a slight modification of this inequality as follows.

z? 3 zlog(t+1)
+1)+ < — . )
t+1) a:) Czexp < V2z of + NG ; >

Lemma 2.2. There exists some constant C > 0 such that for every x > 1 and t > 0,

2
P <g&>§xu(t> > V2t — 2\3@log(t +1)+ x> < Cxexp (—\@x - % [m - 2\3/§log(t + 1)} ) .

Note that >i{1tf . [z — % log(t + 1)) — ﬁ—i > —oo. By enlarging the constant C, we also have,
x>1,t>

for x > 1 and t > 0,

P (max Xu(t) > V2t —

3 z?
2 Tz < — -—. .
max e log(t + 1) x) Cxexp ( V2z 3t> (2.3)

Secondly, we need some estimates about the Laplace functional of the following point processes
associated with BBM:

Z Oy (t)—ptt >0, forall p > V2.
u€Ny

When looking at the long-time behavior of the Laplace functionals of these point processes, there are
two distinct regimes: p = v/2 and p > /2.

Lemma 2.3 ([7, Corollary 2.9],[8, Lemma 3.7]). Let o € T, ¢ > 0 and p > /2. Define
Dyt ) = 1 — E (o7 Zuen el (2.4)

(i) If p = /2, for x € [—t'7¢, —t€] uniformly

® 5(1,2) = (1 o)) eV st oo,

where %/5(%0) = \/EC*/e_ﬁZ (1 —E (e_<©ﬁ"p('+z)>>> dz.

(i) If p > /2, for |x| < t'=¢ uniformly

6(1—P2/2)t 22
By(t.2) = (1 o{0)y ) e st o,

where 'Yp(‘P) — ?/;Q/epz (1 _ E(€*<®P,w(.+z)>)> dz.

In fact part (i) and part (ii) were proved for the case x = —O(v/t) in [7, Corollary 2.9] and for
the case |z| = O(v/t) in [8, Lemma 3.7] respectively. However their proofs still work in our setting.
We omit the repetitive proofs here.

Thirdly, we introduce several central limit theorems about the Gibbs measures associated with
standard BBM {(X,(t) : w € N;),P}. Conditioned on BBM at time ¢, we assign each particle u € N,

with probability
A (1)

AXo(t)°
ZueNt € ®

11



Hence the additive martingale W;(\) = >~ cy, eAX”(t)f(TH)t can be regarded as a normalized
partition function of the Gibbs measure. The following law of large numbers is well-known: for
0 < A < V2, and bounded continuous function f,

Xu(t (22
lim Y f <“t()> O340\ \F(A) i probability,

t—o00
u€ENy

where W, () is the limit of the non-negative martingale W;. (See [28, Proposition 2.5] for a proof).
Furthermore, a central limit theorem holds (see [33} (1.14)]): for A € (0,v/2) and bounded continuous
function f,

i 31 (R ) s [t

u€Ny

in probability.

In the following lemma, we generalize this central limit theorem to the case that the parameter A
and test function f both depend on ¢ in a certain way. We postpone its proof to Appendix [A]
Lemma 2.4. Let G be a non-negative bounded measurable function with compact support. Suppose
Fi(z) = G (%) with r¢y and hy satisfying that for some € > 0 and large t, |ry] < 7 < oo and
|h¢| < h < 0. Let Ay = v/2(1 — %), where oy > 1 and \/t/ay — oo. Define

«

— 2
WtFt(At) = Z F; <W> eAtXu(t)* %Jrl)t'

UENt
22 . 00 _ 22
Set Gan(dz) = \/%677 dz. Write (Fy, pgau) = \/% fo Fi(z)e” 2 dz.
(i) If oy — > 1, and hence N, — v/2(1 — L) = X, we have

Fy
lim Wi T(A) (\e)
t—o0 <Ft7 ,UGau>
(ii) If iy — oo and hence Ay — /2, we have
1 W)
lim
t—o00 <Ft7 /~LGau> \/> )\t

The results in Lemma do not include the case that \; = v/2, where the limiting distribution
is no longer Gaussian. According to [29, Theorem 1.2], we know that for every bounded continuous
function f,

tll)rgo\/i Z f (W) V2(V2=Xu(t \/7 / f(z)ze™ l dz in probability.

u€eENy

=Wy (A)  in probability,

=27, in probability.

The following lemma is a generalization of this central limit theorem.

Lemma 2.5 ([28, Proposition 2.6]). Let G be a non-negative bounded measurable function with

Z—Tt

compact support. Suppose Fy(z) = G ( i ) with r¢ and hy satisfying that for some € > 0 and large
t, it < <F < 00, and ry + yhy = O (ry) uniformly for y € supp(G). Define

WFt Z Ft (ft \/z ( )> e_ﬂ(\/it—xu(t))‘

uEN

Z2 22
Put piyjea(dz) = ze™ 2 lisoydz. Write (Fy, iMea) = fooo Fy(z)ze~ 2 dz. Then we have

t 2
lim \[> Wt (V2) = \/7200 in probability.
T

t—o0 <Ft s UMea

12



2.3 Many-to-one lemmas

Recall that the type transformation time 7T, of some particle u € NE, is the time at which the oldest
ancestor of type 2 of u was born. We write

B=que| )N, T,=by (2.5)
t>0

for the set of particles of type 2 that are born from a particle of type 1. We write v’ = u if v is a
descendant of w.

Lemma 2.6 (Many-to-one lemmas [8, Section 4]). Let f be a non-negative measurable function.

(i) B’ (Z f(Xu(s),s <T, )) /OOO eP'E (f (0B, s < t))dt.

ueB
(i1) EB-? (exp( Zf ,s < T, ))) EB-o? exp / Z 1 — o~ F(Xu(s),5<) gy
ueB uEN}

The many-to-one lemma is a fundamental tool to compute the first moment or the Laplacian
transform of the functionals of our two type BBM. In the rest of this paper, to simplify notation,
when there is no ambiguity, we use IP and E to denote PAeoi and EPtot , respectively.

Corollary 2.7. Let m(t) be a function on Ry. For each R >0, t > 0, take QF C [0,t] x R.

(i) For A>0,0<r <t andx € R define
Fe(r,z) = Fe(r,z;m(-)) :=P ( + maNXX w(r) > m(t) — A) ,
ue ™
and for K > 0, define

t
I(t, R) = I(t, R; A, K) = /0 eBtSE [Ft (t — 8, O'tBS) 1{UtBr§vtt+UtK,VT‘§8}1{(s,atBs)¢Qf}:| ds

(2.6)
If for each fized A, K, we have P}im limsup I(t, R) = 0, then for each A > 0,
—0  {—o0
lim limsupP (3u € N7 : Xy(t) > m(t) — A, (Ty, Xu(T)) ¢ Qf’) =0. (2.7)

R—o0  t—c0

(ii) Let & = >_uen? 0x,(t)—m(t) and Ef = > uen? L1 X (1) e} X (i) —m(r)- For any p > V2
and p € T,

E(e< >> E |exp / > Xuls) + p(t = 5) = m(0)) Lo x,(peapy s | | -

ueN}

where ®, is defined by (2.4). Moreover if (2.7) holds, then

lim limsup ’E ( & ’9">> E (e_@’@)‘ =0, forallpeT.

R—0o0  t—oo
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Proof. (i). Fix A, K > 0. For R,t > 0, define

Y(R) i/t(R A K Z 1{Xu )<vzr+gtKVr<Tu} {(Tu,Xu(Tu )¢QR}1{Mu>m(t) A}
uehB
where M/* is the position of the rightmost descendant of the individual w at time ¢. Then the
probability in ([2.7)) is less than
P(3s < t,u € Ng: Xy (s) > s+ K) +P(Yi(R) > 1).

Applying the Markov inequality, P(Y;(R) > 1) is bounded above by E [Y;(R)]. The branching property
implies that

Z Ft TU7X ))1{Xu( )<vtr+0'tK,V7“<Tu}] .
ueB

Applying Lemma (i), we get

t
E [Yt(R)] = /0 eﬁtSE [Ft (t -5 UtBS) 1{UtBr§’Utt+crtK,VTSS}l{(S,UzBs)ggﬁ}} ds.

Then by the assumption, limp_, lim sup,_, o P(Y;(R) > 1) = 0. Now the desired result (2.7]) follows

from ([2.1]). R
(ii). Notice that (£, ) can be rewritten as

Z Z (Xu’ (t) - Xu(Tu) - p(t - Tu) + Xu(Tu) + p(t - Tu) - m(t))
ueB u’'e N2
(T, Xu(Tw))EQF 4, "
First using the branching property, and then applying Lemma (ii), we get
E (e*@’*’@) - E( 11 [1— @, (t — T, Xu(Tw) + p(t — T) — m(t))] )

ueB "
(T, X (1)) €9

= ]E exp / Z ) + p(t — 3) (t))l{(S,Xu(s))Eﬂf} dS

ueN?
as desired. Taking A > 0 such that supp(p) C [—A, 00), we have
‘E ( & ,@) E (e*@:@)‘ <P (Jue N2: Xu(t) > m(t) — A, (T, Xu(T)) ¢ QF).

Then the result assertion follows. O

3 Approximation From %;

3.1 From %; to A1

In this subsection, we are going to prove Theorem for the case (8,0%) € B 111 and (Bt,02)1=0 €
ol
B

( ;2). For simplicity, in this subsection, we set

h' := min{h, 1/2}.
Then m}ll?l (t) = vt — 3551;1/ logt. Define

d(z;s,t) i=x —vs+ (0 —v)(t — s) (3.1)

and

ch = {(s,x) t—se€ [%thl,Rthl], |0(z;s5,t)] < RVt — 3} . (3.2)

14



Lemma 3.1. For any A > 0 and h € (0, 0], we have

lim hmsupP(EIueN L Xu(t) = mp? () — A, (Tu, Xu(Tw) & OF )

R—o0  t—oo

Proof. Applying Corollary with m(t) = mi3 (t) and QFf = Qﬁh defined in (3.2)), it suffices to
show that for each A, K > 0 I(t,R) = I(t,R; A K) deﬁned in vanishes ﬁrst as t — oo and
then R — oo. By conditioning on “Bs = +/20;s — 2”7 in , we have

t )
I(t, R) :/0 ds/_KP (BT < /2B + K, < s|Bs = \/2Bys —g:)

W/2Bs-2)°  dx
- 2s

ePsF, (t — s,vs — o) 1{ (s.0¢5—012) EQF h}e s (3.3)
t )
K—i-l‘ 28 _ﬁ
NK /o ds » W@ o5 Fy (t — 8,08 — atm) 1{(3 I ¢Q }d:):.

In the inequality above we used P (Br < V2Bt + K,Vr < s|Bs = /2065 — x) <k Kj‘”, which holds
by Lemma since (B, — £ By)r<s is a Brownian bridge independent of B,. Put w := 353:‘, logt+ A.

o If v(t —s)+ox—w>1, by (2.2), we have

Fe(t —s,uus —oyx) =P ( max Xy (t —s) > v(t —s) + o —W>

UEN¢_g

Vr—_ V2 orr —w)?
< ! exp {—(5 —1)(t — 8) — vorx + vpw — (t)} : (3.4)

v (t —8) +ox —w 2(t —s)

o If v (t—s)+ox—w < 1, we simply upper bound F; (t — s, v:s — oyz) by 1. Note that, provided
t is large, we can deduce from v(t — s) 4+ oyx —w < 1 that s > ¢t — (logt)? and oy < w+ 1 and
hence 28z < S%W logt + (A + 1)6; . Therefore,

t Ologt) ¢ 4 4 -
d PR — mx_TSl R d
/t(logt) S/_K sz ¢ {vi(t—s)+orz—w<1} AT

t O(logt)
5/ ds/ K +O(log?) eV2Pir qp < (log t)
t—(logt) -K t3/2

T =o(1). (3.5)

Combining (3.4) and (3.5) and letting J = IS( tz A etV we get

3/2 vi(t—s)+otx—w

(ocrz— w)2
t R / dS/ Je V2B (1— Ut) ( —1)(t—s)— Zt(t s) e~ 231{51},53—{-0,51‘ gQR }dl’—f-O(l)

Make a change of variable z = gt;—t”t(t—sﬂ—y = /2B;(0; 2 —1)(t—s)+y. Note that (s, vss+0,x) € th
if and only if (t — s)/t" € I'r := [R~!, R] and |ovy| < Ry/s. Moreover, we compute that

(o — w)?

v}
V26,1 Ut)iﬂ—(?—l)(t—s)—m
=281 = 07)(0; % — 1) — (vf/2 = 1) = 07 By(0; > — 1)?](t — 5)
(ory — w)?

+ V21— of) = (B = v)ouly + (6 — w)w — S —

28y —1 B (oy — w)?
- [ oZth aft%} (=) (0 =)W = 50—
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Hence we get

® —[BBl o)) (ew=w)? 42
I(t,R) / ds/ r—v)w g o7 th o~ 20—y 6_251{ (t—s)t ¢TR }dy+0(1),
or |owy|>R\/t—s

Now make change of variables again t — s = &/, y = NVt — s. Denote J =t \/t — s ] We
have

rwrs |

Notice that for fixed £ > 0 and 1 > 0,

tlh

o(1) _ Log—vpeth +fftn\/ gth’)?

25t 1+O 1 th —h 1 ot /
g [ e et o)’ R Hsgrmor A ell)
IG’tT]‘>R

. (0 — vp) €t + o(t" th _an! 0—v

lim J = lim ¢ 0= 0§+ ot7) L UAN— L

t—00 t—00 (t — &th')3/2 0. Eth + o(th') 0
Letting t — oo, applying the dominated convergence theorem twice, we finally get

00 2/3 1 02,2 _ (0-0)? 27
limsup I(¢,R) Sk / df/ fe S R £¢TR or dn R2gey,
fmroo 0 -K lon|>R

This completes the proof. ]

Now we are ready to show Theorem for the case that (S, Uf)t>0 € 327(%’22).

Proof of Theorem |1.1| for (B, 02)i>0 € 427(};3’;2) . Take ¢ € T. Applying Corollary(ii) with m(t) =
m,ll3 (t), p =0, and Qf‘h defined in , it suffices to study the asymptotic behavior of

. 3 — Al
E (ei<gtR790>> = <eXp{ / Z (I)9t< S, Xu(8)7 S,t) + T 10gt> 1{(5 Xu(s ))GQR }dS})

ueN}

where we used the fact that X, (s) + 0,(t — s) — ,113 (t) = 6(Xu(s);s,t) + 35&” logt with 0 defined
in (3.1)). Since 6; — 6 > /2, applying Lemma we have, uniformly for (s, X, (s)) € Qt .

—4p’
Py, (t — 5,0(Xy(s);8,1) + > 59 log t)
t
_ e(e) ef(ﬁf )(t—5) GB1l X ()01 (=) —vnt]+ 32" log ¢~ 5755 0(Xu(s)is.)°

Vt—s
t3/2
N’Y@(‘P)we

(s)=2Bts o~ 2(t 5y 9(Xu(s); St)z

2
where we used the fact that —(% —1)(t —s) + 07 (t — 5) — Oyt = — ;52 — 2Bys. Thus substituting
this asymptotic equality into the integral, we get

3 —4n
/ > <1>9t< s, 0(Xu(s); s, 1) + 20, 10gt>1{(s,xu(s))esz§h}d5
u€eN}
t—fth Yo(ip )t3/2 1 5
8)—26ts ,— 57757 0 (Xu(s);8:1)
=[1+o0( / o t2h’ _8)1/26 ()20 L. Xu(snear,y s
B wont3? ) =2fus ,— SXulhn?
= [1-+ o] (v) / LR D Hoxuenenp,) A (36)
R ueN}
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where in the last equality we made change of variables t — s = r and r = A" . Let G(z) = Gg(z) =
x2
6771{\w|§R}5 and define

WO(s,rit) i= 3 e filtnss Xu<s>1G< s — Xu(s) — (0 — vt)r>
ueN} \/77

for s > 0,7 > 0.

Then the integral in (3.6)) can be rewritten as ff‘ AeBat" " (%)3/2 W (t —r,r;t)d\. Hence
R

E (e*@w) - <exp {_[1 + o(1)]e () / " e <i)3/2 WE(t —r,rt) dA}) .37

R

By the scaling property of Brownian motion, {X

cu€e N} = faw {\(/’%Xu(s’) Tu € NS/}, where
s’ = B¢s. So WE(s,r;t) has the same distribution as
V28’ —Xu(s') \/57(0 r
— Ja o \Ut T Ut) 7
S T t Z e‘[X“ —2s’ G Vs t Vs
VBt VT
u€N ot /s

Here we remind that W is for single type BBM and W is for two-type BBM. For each fixed A > 0

¢ romind that vpe BEM and W™ i for M B fixed A
and r = A\t", applying Lemma with ry = - (0r — vy) o and hy = - A (noticing
that r; = p

O(t"~2) and hy < r;, which implies the conditions in Lemma are satisfied), we have

¢ 3/2 o ¢ 3/2 o
L‘&() W= (e~ r,rt) = lim () WE(By(t = r),75t)

— 00

9 + 3/2 1 00 - \{E(Qt - Ut) a —
=7 \/7 lim Beltr) dz
o T t—oo \ T \/ﬁtt 0 VBt VT
Tt Bi(t—r)
2 (0 —v) _(0-v)?

2
= 78° e 252 )\21{h>1/2}\/;/GR(y)dy in law,

where in the last equality we used the fact that Z., faw @Zg’f?. Letting t — oo in (3.7)) and applying
the dominated convergence theorem, we finally get

lim E

Jim ( ~(& "p>> =E (eXp {—Ch,R’Ye(SO)ZgéUZ}) 7

R 2
_ 0 —uv)\ _0=v)° 2 2
Ch,R:/l e BAl{hguz}( 03) e 202 N linz1/2) d/\\/;/GR(y) dy
R

R—s00 2(0 — v 2 (0 — )\ <0 v) 2
i> Ch = (/62 - )1{h<1/2} 4 Tl{h>l/2} + 2/ u —BA— A
(0 —wv) 0

3 dALfh=1/2y-
Then by part (ii) of Corollary letting R — oo we get

() =& o {227}

Recalling the definition of v(¢) in Lemma the right hand side is the Laplace functional of
DPPP (C’h7_Z'ngGe*9‘” dz, ©9> with Cp, _ := C(;*LL\/;??). By [0, Lemma 4.4], we complete the proof. [
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3.2 From C; to (1,1)

In this subsection, we are going to prove Theorem for the case (B;,02)i>0 € ﬁf(lﬁ) We set, in
this subsection,
h' := min{h, 1}.

Then mg’ll)(t) = vt — "logt. Define

\[

ch _ {{(S,x) t—s€ [%th,Rth], Vs —x € [%\/t —s, RVt —s]}  for h e (0,1); (3.8)

{(s,2) : t —s € [ft,(1 = F)t], vis —x € [FVE, RVE]}  for h € [1,00].
Lemma 3.2. For each A > 0,

lim limsupP (Elu € N2 : Xu(t) > mg,’ll)(t) — A (Ty, Xu(Ty)) ¢ th) =

R—00  t—o0

Proof. Applying Corollaryvvlth m(t) = mglll)( t) and th defined in , it suffices to show that
for each A, K >0, I(t,R) =I(t, R; A, K) defined in vanishes as ﬁrst t — oo and then R — oo.

As in (3.3) we have

I < ' TE A JJ 2/3t1’—ﬁ F
(t,R) <k i ds » =75 ¢ = Fy (t — 8,018 — op) 1{ (s;v05—01) EOF, }dm (3.9)

Now we need an finer upper bound for F;, which are given below. Let Ls; := v/2(0? — 1)(t — s) —
2\flog(t S+1) + flogt—A

o If L,y + oy > 1, noticing that (Bi,02) >0 € @7(’;}) implies that 6; = /2 and v; = /207, we

have
—on!
Fi(t — s,uus —opx) = P <uI€nN&:xS Xu(t —8) > vt — s) + opx — eV logt — A>
=P ( max X, (t —s) > V2(t — s) — 310g(t—3+1)+L5t+ata:>
UENL_g 2\/5 '
+3/2 (o42+Ls,1)>

2 —t St/
SA (Ut:U + Ls,t) —V20,2-2(0} _1)(t—5)e B(i—s)

(t — s+ 1)3/2¢V
where in that last inequality we used ({2.3)).

o If Ly; + orx < 1, we simply upper bound F.(t — s, vps — O‘t:E) by 1. Note that Ls; + oz <1

implies that when ¢ is large, s > t/2 and oy < 1—Lg; < 2\[ log(=c7 erl) \% logt+1. Moreover

as By = O-t27
(ogt) f¢ 4 o O(logt)? [1/? 1
oV2Pix < Y08  dqu=
//2 ds/ s3/2 Hewcowsny 475 = /0 (u+ 1)%2 du=otl)
Therefore we have
t oo fo +3/2 22 (opatLgy)?
I(t,R) S / o L s+ 1)3/2%,6*2(”? =T a0 drdsto(1). (3.10)
0 J-K S - S

For the case h € (0,1), make change of variables t — s = &t" and x = 9/t —s . Note that
(s,vs +oux) € th if and only if ¢ € T := [R™}, R] and oyn € T'g. Use £¢; to denote L(t — &t",¢).
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Noting that [l¢ ;| < v2(0? — 1)th¢ + 375 log(ﬁth) 34l 1ogt + A = O(¢) + O(logt), applying the

2v2
dominated convergence theorem we have
I(t,R)
ti—h 00 3/2 h et
K +ny/E&t t —2(0 —D)the—L(om+ )2
5/ df/ X« 1 5¢FR or ( é_th _’\_/;/2 O'tT]\/ ét +€£t gth \/ft;h d77+0(1)
0 Ve {omﬂR}

2
ti?/ df/ 4T n 77 20~ % dn Ri)f 0.

or nm

For the case h > 1, make change of variables s = &t and 2 = 74/t to the integral in (3.10). Now
(s,ves + o) € QF if and only if € € [R™,1 — R™!] and oyn € T'g. Similarly letting ¢, := L(&t, )
and noting that ]Q ¢t| = ©(&) + O(logt), applying the dominated convergence theorem

! o0 K+t B2 _nd_(otte,/VD?
I(t,R) < / e / 1 ey o IV ] — Y TR S0 dy + o(1)
S bl ICORE e

t%oo/ df/ 1 1 _g%d R%OOO
&3 R 1R 3/2 (1 _ \3/2° —dn = U,
{ettn w1 Ao

2

L1 1 o o —B—
where we used the fact that [, B d¢ [T nPe 26 3078 dn < oo. We now complete the
proof. O
Proof of Theoremfor (Bt,02)i>0 € JZ{(}H) . Take o € T. Applying Corollary with m(t) =
mglll)( t), p=+/2, and th defined in ({3.8)), it suffices to study the asymptotic behavior of

E () = E<exp{ ~ / > Bt =5 Xuls) + V20— 5) = my i (0) 1o xu(spear, ) ds}).

ueN}

Rewrite v/2(t —s) — mgll)( t) as —vgs—y, where y := (v; —v/2)(t —s) — f “logt. For (s, X,(s)) €
th, we have t —s = O(t"), vys — Xy (s) = ©(vt — 5) and y = O(logt). Then part (i) of Lemma
yields that as ¢ — co uniformly in (s, X, (s)) € Qt .

P 5t — s, Xu(s) —vs —y)

s — Xyu(s) + —or8) /B — g2 (Xul@)—vs—y)?
:[1+0(1)]'7\/§(90) L (tsg 32 Y \[(Xu() £5)—V2(ve—V2)(¢ 1+ e 3(i=s)

3/2 (Xu(s)=v2By5)>
=[1+ o(l)mg(«p)me—%m—l)(t—s)[ﬁ,@ﬁ — X (s)]eV2 Xl m " ams
— S

where we used that v; = V20 as f; = o2. Thus

/ > B 5(t— s Xuls) + V2t —5) - mgzl,il)(t))1{(8,Xu(s))€§25h} ds = [1+ o(1)]y,5(#)
ueN]

(Xu(s)=V2B45)?

13/2=2(Bt—1)(t—s) i B
X /0 (&= s 3 VX2 opys — Xy (s)]e 200 Lis xu(s))caR,} ds-
ueN}

(3.11)
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Case 1: h € (0,1). By the Brownian scaling (X,(s):u € N}) = faw (%Xu(s’) Tu € Ns/) where

22
s’ = Bys. Let G(z) = Gr(z) = we™ 7 1gzer,y (Recall that T'g := [R™1, R]). Hence for (t—s)/th €Tg

we have

o—28,s V2B1s — Xy(s) — (Kuls)-vasie)®
Z eV2Xu(s)=2ps V2P0 — Aul) 309 {5 Xu(9)€0R, )

ueN} t=s
~ Z 6\/§Xu(5)_25t5 \/gﬁts - X’u(s) e~ <Xué?35:;3tf2§t5)2 1

= VI Bs { X (o) 2 EFR}
_ Z eV2Xu(s)=25' M = WE(s' 1).

ueN,/ t—s

Making a change of variable s = t — A\t", we get

E (e‘<§tR’@>> - E(exp{ ~ 1+ o) 5(p) / * 2a-m ’ft/z WE (By(t — Ath), ¢ )dA}).

R

Let hy = %tﬁj where s’ = ;s = B4(t — At"). Applying Lemma we have

WE (t — A\Byth 3/2 D) R >
lim vt (t — ABit™, 1) \/> Zoo = lim PUOWC = A8t ) = |2 2o | e dy.
™ ™

2 h
t=roo fo (2/ht)ze” 2 dz o0 At ®

Letting t — oo then R — oo, applying the dominated convergence theorem and part (ii) of Corollary
we have

B (7 0) = o B (1)
:ngnooE<exp{ Vv3(P)Zoo 1 _Ad)‘\/»/ }> _E<6Xp{ vl oo})

which is the Laplace functional of DPPP (ﬂC*ZOOe*‘/% dz, ©ﬁ> ( by the definition of v 5(¢) in

Lemma [2.3). By [9, Lemma 4.4], we complete the proof for the case h € (0,1).
Case 2: h € [1,00]. Making change of variable s = At, the integral in (3.11)) equals

=7 e=2(Be=1)(1-N)t (Xu(s)=V3Bys)?
Xu S — T o(i—=s)
/1 TR Zl VPXIR DB — Xu(s)leT 0 Ly (ertvirva N
ueN]

A
Let Gy(z) = xe_i’(l—Mle{ﬁzerR}. For A € [%, (1- %)], s’ := fBys = Bi\t, we have

T V2K C2ps V215 — Xu(s) - Xul) i

| \/ﬁ s) 1{vtstu(S)€[%\/z’R\/ﬂ}
ueN
. (X (s) V2, 9)2
~ Z €ﬂXu(S)_2Bt5Me_l)\ %1 V2Bys—Xu(s) cr1 Vi pv/E
wEN! VBis v bRyl
;o ’
_ Z eV 2Xu(s")—2s' Gy M =: WGA(SI;t)'
ueN \/?
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Therefore we have

E (e—@*@) = E(exp{ — [1+ o(1)]yy5(9) /11_ MMWGA AByt, t) d)\})

Applying Lemma we get

R
2 VX _ 22
lim )\,315 WGA()\Btt t =7 \/7/ G)\ ze 2 dz_ \/7/\FA 226 2(1=3) dz
t—o0 s 71-?,\15\

in probability. Let Cp1 = 1gs1y + (1 — 6_1)1{h:1}. Letting ¢ — oo then R — oo and by the
dominated convergence theorem and Corollary we have

lim E (e_<§t"ﬁ>> = lim lim E (e_<§tR7‘P>>

t—o00 R—o0 t—00
=% = Alpn=1y 2 o5 E
— 1 _ “ 2 . "50 N _ —Ch175(90) Zoo
—&gﬁ(exp{ '7\/5(90)200/}12 - )\)3/2d \/;/lfze N dz _E<e n1Tya )
RV

which is the Laplace functional of DPPP (Ch’l\/ﬁC*Zooe*‘/ix da:,@‘/i) By [9, Lemma 4.4], we
complete the proof for the case h € [1, 00]. O

4 Approximation From %,

We first introduce several important constants introduced in [8]. For (B, 02) € G111, We set

* L B_l * L * L 02+B_2 .
b (/8702) T 2ﬁ7 a (/8702) T Uzb(ﬁ,0'2), p (/8702) T 2(/@_ 1) (1 _0_2)7 (4 1)
* 2\ . k% * ¥ 6_0-2 '
v*(B,0%) ==a"p" + 0" (1 -p*) = N CEDET)
Moreover we have
*\2 b*)2
(B — (;U)Q )p* + <1 - (2)) (1—p") =0; (4.2)
bt — B — ”2(5*)2 = 0. (4.3)

For the sake of simplicity, we will write

bt - b*(BtaaE)v ag = a*(ﬁhatz)a Pt :p*(/gho—tz)v U: = U*(Btao—?)' (44)
Lemma 4.1. Let s = pit +u € (0,t), y := (V2 — a;)s + (vi —/2) and
a2 y?
L =B — —L)s—Voy— —2—.
(8) = (Bt = )5 =V~ 35—
(i) For (5,02) € PBrr,rr and (ﬁt,of)bo € sz(%’;). We have

L(fﬁ, t) = _(1 - 02)252 - R(f, t)a

where for each fized &, R(€,t) — 0 ast — oo; and there is some ¢ > 0 such that L(£v/t,t) < —c&?
for all & satisfying that pit + &Vt € (0,1).
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(ii) For (B;,02)¢>0 € 427(1 1 and fixed h € (0,1),

LEES 1) = (V2 + 1)€% = R(E, 1),

where for each fized £, R(&,t) — 0 as t — oo; and there is some ¢ > 0 such that L(ft#,t) <
—c€? for all & satisfying that pst + £/t € (0,t).

The proof of Lemma is postponed to Appendix [B]

4.1 FI'OIH CKIH to %{[ II7

Assume that (3,0%) € Bry.111, and (B, 02)i=0 € szf( 2)- Combining with (4.1)) we have

1 by 1 by 2
~—o—— — —]l~——"——— and — =1 . 4.6
P oa o2 2 21 — o2)th ™ v = V2t (ﬁ > (46)
_ o2 1 1 _ 1 by 1 _
I fact, as & =00, b = 56 0 (1=a?) = qp-n(-a)E "~ WD 2o Vi LT
Bi—1 _ [1—o24t—h 1 1 w« _ _ Be=l+l-of 1 b V2y
-2 1= 1t—at2 — 1~ 2(1—o2)th "~ 2(1—a?)t" and vy = 2(@-1)(1-23) - 72(ﬁ b)) =
2
V2+ 4 ( ~1
Let mh:+(t) =t — \% logt, where b/ = min{h, 1/2}, Define
OR _ {(s,2) : |s — pet| < RV/1, \x—ats|<R\f}1fh€(0,%) (@)
Y U(si) s € [FVERVAL o — ais| < Rys} it h € [3,00].

Lemma 4.2. For all A >0,

lim hmsupIP’(ﬂuGN2 X (t)>mii(t) A, (Ty, Xu(Ty)) §§Q )

R—o0 tooo

Proof. Applying Corollary [2. Wlth m(t) = mii( ), and th defined in ([4.7), it suffices to show that
for each A, K >0, I(t,R) =1(t,R; A, K) deﬁned in vanishes as ﬁrst t — oo and then R — oo.
Conditioned on the Brownian motion By in equals ors+x, we have

¢ vE—ag
I(t,R):/ ds/ '
0 —00
(%S/%-HC)Z dz

PR (t — 5,048 — 04) 1{ (s,005—01) £OF Rye NoET (4.8)

s+K a
P(BTS 2,8tr+K,Vr§s|BS:s+x>
Ot

ot t 202 )s_?z_* dx
5/0 ds/_oo Fi(t — s,ais + o) 1{(sats+aw)§m h}e i t 7

Now we aim to get an upper bound for F; (t — s,ass + 03x). Let y := (V2 —ay)s + (vf —v/2)t and
W= \% logt — 2\[ log(t —s+1)+ A. By Lemma provided that y — oyx — w > 1, we have

. 3
Fi(t — s,ais +oyx) =P <u1€nN21>_<s Xu(t —s) > vit — aps — opx — E logt — A)

=P <u1€nNa;xs Xu(t —5) > V2(t — s) — 2\3/5

/

log(t —s+1)+y— o — W> (4.9)

th 1 -
e exp {—\@y+ V201 — m[y — o4x —w}Q} ,

Saly o WG
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where w := W—% log(t—s+1). We claim that for large ¢ we always have y—atx—w > 1for s € (0,t)
and oyz < (v —ag)s + oK. In fact, y — opr — w > (V2 —vy)s — flogt—l— oG log(t —s+1)—0O(1).
By our assumption (B, 07) — (8,0%) € Bir.111, we have V2 —wv; > 8 > 0 for large t. Then for each

ds >2logt,y —ox —w > 2logt—%logt—0(l) > 1; for each ds < 2logt, we have t —s+1 > t/2,

-0(1) > 1.

and hence y — atzv —w> s log( ) "o logt
Substituting (4 1nto , we get

’

< t th a% f y2 4
I(t,R)N/0 s 1% 1/Qexp{(ﬁt—Qg)s— 2y—2(t_s)} s
22

yoy vy _[ogrtw? g
/ |y — 0tT — W’ €xXp {(fat - + _ S)x} et-se 2= 2 1{(s,ats+atw)¢95h} dz
(4.10)

Making a change of variable s = p;t + v/, by ([@.1]), we have y = (b — v/2)(1 — pi)t + (V2 — az)éV/E.
Thanks to Lemma

(B — i)s—\@y—

2
20}

Y — _
sy = VRN = ~(1- 0?2~ RiE.) (4.11)

Moreover, since a;/o; = o4b; (see (4.1))), the coefficient for the term z in (4.10]) is

t—s

Voo - 2ty - oilbe =) . (4.12)
T

Let I = [-R, R] if h € (0,1/2) and T'E = [R™, R] if h € [1/2, oc]. Note that (s ats + o) € th if
and only if &€ 4+ pv/t1 (h>1/2} € I'ft and |oyz| < Ry/s. Combining equalities (4.11)) and (4.12)), we have

(1=pe)Vi th/tl/z 21242
wr)= [ o T f

Ut(bt — at)\/i —Fy _ [f/'tﬂvir‘zv]2 _%
Al{ptm{hmﬁw?}'y‘"tx‘w’exp{t_sfx crre frm v
or |z|>R+/s

Now again making a change of variable z = 1y/s (where s = p;t + £V/t), we get

L=pe )Vt  4h'+1/2
L(t, R) 5/( v Le_(1—02)2£2—1%(§,t) de
i (= 8)%?

O't(bt — at)\/g —wy _M_ﬁ
/R 1{pz\/fl{h21/2}+§¢1"§} ly — onv/'s — wlexp {an et-ve 2= 2 dp.
or [n|>R

For fixed &, by (L6), pp = ©(t™") and b — V2 = O(t™"), and then s = O(t'™") + O(V/t) =
O, vy = (by — V2)(1 — p)t + (V2 — ap)éVEt = O(t*") and w = O(logt) = W. Let &(h) =
Lip>1/2) hmt_mo PVt = ﬁl{hzl s2y- Then the dominated convergence theorem yields that

mswp (e R)S [ 0 g [ ongge ‘QI{gw ) 40

t—o0 —limg Pt\[ or |n|>R

. o W 1
where for fixed £, by (L6), C(h, €) 1= limy ¥=205= — iy, ¥ = A V21 07 iz 2y

Finally, letting R — oo, the desired result follows. O

We now show Theorem for the case that for (8, 02)i0 € 42%( B.02)"

23



Proof of Theoremfor (Bi,02) >0 € ”Q{(,B 2) - Take @ € T. Applying Corollary with m(t) =
mii( ), p=+/2, and th defined in , it suffices to study the asymptotic behavior of

!/

_(ER h
E (8 <€t 750>) = (exp{ / Z (I)\[ (S) — @S —y+ ﬁ 1Ogt)1{(s,Xu(S))€QRh} d8}>

ueN]

where we used the fact that /2(t—s) — mh +( ) = —ais—y+ \f logt and y := (V2 —az)s+ (v —V2)t.

Moreover, by Lemma uniformly for (s, X, (s)) € ch, s =0t"") and | X,(s) — ars| = O(v/5),
we have

P 5 <t—s,Xu(3)—ats+\h[,2logt—y>
:(1+o(1))7ﬁ(¢)ﬁ exp{fX() Vs — /3y _ Xuls) —ars —y - @(1ogt)]}

2(t—s)
W y? s) — ats
= (L+o(1))vz5(p )33/2 exp{\@(Xu( ) —azs) — 2y — STy _Y(Xui_)s )}
(4.13)
Make a change of variable s = pst + £v/t. On the one hand,
y(Xu(s) —ats) (bt — ar)€Vt
MR = b= VD) ) + P )
= (by — \@)(Xu(s) —as) +o(1).
On the other hand, by Lemma we have
y’ a;
Vay - i = (B s - (L= oY+ o), (115)

So combining (4.13)), (4.14) and (4.14)), we have, uniformly for (s, X,(s)) € Qt .

!/

Tlogt—y)

4 bt Xy (s)—brats—
= [1+o(1)]y,5(p );/Z el ﬁ) o—(1-02)%¢2

<I>\/§(t — 5, Xy(s) —ars +

’

th y t 2
=[1+o(1)] \[( )t3/2 et Xu(s)— (5t+ )s o (1-02)%¢ ’

where we used the fact a; = 02b; (see (4.1))). We compute that

h/
/ Z@\[ SX()—ats—y—&—\flogt)l{(sX())GQR}dS
ueN}

2,2
b

y t Au(S)— (Ot %t
=[1+0(1)]w5(<p)/ L 3 X

TR —piv/il {312y T wEN!

—(1-0 2¢2
1% -otbsi<ryspe T de

= 11+ o(1)]1y5(¢) / Y Wit + eVE e 17 g,

EETR—pivtl{p>1/9y

o2p2
where W(s;t) := >, cnn et Xu(s)—(Bi+ =15

u € N} law (%Xu(s’) :u € Ny), where s’ = Bys. Let Ay = biot/+/Br. We have

)81{|Xu(s)fo§bts|§R\/§}- By the Brownian scaling, (X,(s) :

law Z M Xu(s’ —(1+X3/2)s'¢

Xu(s’)—/\ts’ R
ueN, A
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Since Ay — V20 /v/B < v/2, by part(i) of Lemma we have

T Wit + €V, 1) = Wee (”) [ape T mwet e [T
o [_;’;] T oo

VB V2r

251711’ = (h g) M + f(l — 0 )51{h>1/2} Therefore

Also we have tll>m o

2 21242 22 dx
lim E (e () = E<exp{v WE (V2 / C(h,&)e=1=7"1¢ q¢ e T })
t—o00 < ) \/i(cp) ( ) cerf—go(h) ( ) \/%

ol <R

where §o(h) = 1p>1/2) im0 peVt = ml{hzlﬂ}- Applying Corollary we finally get

lim E (ef<§t’@>) = lim lim E (e*aﬁR"P)) = E<8Xp{ Ch +'7f 00})

t—o00 R—oot—00

which is the Laplace functional of DPPP (Ch,Jr\/iC*Zooe_\/ix dzx, ”}Dﬁ), and where

Ch.+ = lim C(h,&)e~1-7°€ q¢
R—o0 FR £O(h)

AP

S oot T a2

L e YR O A

T 2(1-02)2

We now complete the proof. ]

4.2 From C[[] to (1 1)

1,1)

Assume that (5t70t)t>0 e @3 . Let m,(l3 (t) = vjt —

logt where A’ = min{h,1}. By the

(1,1)" 2\/
assumption Sy + at = E + 012, we have ,Btaf =1. So v, =2 and 6; = /2 2/ at. Moreover, we have
t
1 1 1 V2 1 1
=1——F—=4+06(—+ =—,b=— 2—ap ~ V2~ . 4.16
gt oth/2 + (th)a bt 5 0 Ut o, V2 - a N U V2 4/2th ( )

In fact, - follows from the following computations. Firstly, 8;+0? = 07 +0; 2 = 2+t " = (07

2 _ h h o 52 — —h/2 —h __ Betoi-2 t—h 1
1) ot h ~tTh = 02 =1 —t"2 4 ©(t"). Secondly, p; = 2(1—tO't2)t(ﬂt—1) = SETer T peT] %
Thirdly, we have (8; — 1) = B;t". So b, = \f Bt ! \[(&)1/4 = \C{—? Besides v2 — a; =

. * g 1
V2(1 —0ay) ~ W Finally v — /2 = \/(Ut +1 - 2) (\t[ot) 4\/I§th.
Define
QRh_{{(s,x):|s— |<R , |x —ars| < Ry/s} for h e (0,1); (4.17)
th — .

{(s,z):s €Kt (1—%)] V2s —z €[5Vt RVE]}  for h € [1,0q]
(0, 0]

lim limsupP <3u € N2 : X, (t) > mé{él)(t) A, (T, Xu(Ty,)) ¢ QfF h) 0.

R—00  t—o0

Lemma 4.3. For all A >0, and h €



( )( t), and th defined in (4.17)), it suffices to show
t,R) = I(t,R; A, K i

Proof. Applying Corollary with m(t)
) defined in (2.6)) vanishes as first ¢ — oo and then

that for each A, K > 0, I
R — o0.

Case 1: h € (0,1). Conditioned on the Brownian motion Bs in (2.6) equals s + x, we have

V2— at8+K

I(t R) /ds/ V2 —ay)s + o1 K — oy

2
(5t,%)s,ﬂx,g
57 Fe(t — s,ars + ovx) e 20700 ot %
53/

(4.18)
x1 { s,ats+otT ¢Q }dl’

where we use that P(B, < ‘;—?u + K,VYu < s|Bs = i—i +z) < (ﬁfat)sjgthotx by Lemma
We still denote y := (v/2 — a¢)s + (vf — v/2)t. Let w := 2\[ logt — 2\[ log(t —s+ 1)+ A. Asin
(4.9), provided that y — oyx — w > 1, we have

— oy — w)th/2
Foe(t — s,ais +0yx) <a <y(t—ts+1)3/2 exp{ V2y + V20 —

where w (= w —

1 ~12
\flog(

s+ 1). Indeed for large ¢t and for all a;s + oyx < V2s + 0, K we have
y — o —w > (vf —V2)t = O(logt) = ©(t' ") > 1 by (£.16).
Let J = J, 4 = [/2=00)

h
Ss;;gtK—mxl Iy(_tiz:;;;?‘fﬂ . Substituting (4.19) into (4.18)) we get

t a2 2
y
< — _
I(t,R)N/O exp{(ﬂt )s V2y 2(t—s)}d8
— Wy _[o‘ z+v71]2_ﬁ
/Jexp{(\@at——l— yats)x}etse t
R

2(t—s) 2s

1{(5 ats+oix QQ } da.

Making a change of variable s = pst + {tH = 1t + {t by Lemma we have

: 2 1+h
(/Bt U?)S—ﬁy_ﬁ:L(ftTjt):_(\/i_i_ 1)52_R(§,t)7
(\/50} _ _|_ Yoy ) _ Ut(bt —at)gtﬂ
- f— s

Note that (s,a;s + ox) € Qf if and only if || < R and |opz| < Ry/s. Then we have

< —(V2+1)E2—R(&,t)
I(t,R) N/ g e dé

/ 1+hJeXp{O—t(ft_at)§tlJ2rhx— wy (o +W]* 2
R — S

t—s 20-s) 28}1{ |€|>R.or }dﬂf-

lotz|>R\/s
Again making a change of variable x = 74/s, we get

< —(V2H1)E—R(t)
I(LR) < /_ ey de

R — S

n
- —rl dn.
t—s 2(t —s) 2 } {|§|>R’°r} 1

|am\>R
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By (A.16), v2 — th/Q, y ~ (V2 —a;)% and w = O(log t). For fixed &, n we have

lim ft 27— lim t2+h‘(\[_at)5+UtK—Ut77\/§’ ly — oumy/s — wl

t—o00 t—o00 S (t — s+ 1)3/2
. 1 n (\/i - at)i
<1 thi(v2 — L
< tEé‘o“ (V2 —a)+ 2=
Similarly, lim;_,o 2 bt at) NG #*5" = 2. Then the dominated convergence theorem yields that

limsup I (¢, R) // exp{—(V2+ 1)&2 + 2y — 7 }dndéR 0.
R2\[- R, R

t—o00

Case 2: h € [1,00]. Now conditioned on the Brownian motion Bj in (2.6 equals \/20;s — z, we
get

t o)
I(t,R):/ ds/ P(BTS 2ﬁtr+K,Vr§5|BS:\/2ﬁts—x>
0 -K

~(/2Bs—2)*  dx
IBts — — s
Fi (t 5,V/2s Utx) 1{ V2s—o1a) ¢ h}e 2 NoET (4.20)
¢ K+ V2 Bia—
5/0 dS x 3/2 t( 5,\/§S—Utﬂj) {(S \[5 oux ¢Q h}e B 2s dﬂj
Let w:= flogt— flog( +1) + A. ByLemma if oyx — w > 1, we have
Fq (t—s,\/is—o'ﬂ) =P( max Xu(t —5) > V2(t — 5) — %Sﬁlog(t—s%—l)—{—at:v—w)
UENt—s
" o (4.21)
<a (o0t — W) exp d Ay — LT
~A t (t*5+1)3/2 p t Q(t—S) )
where W := w — g\f log(t — s + 1). Note that oyx — w > 2\[ log(t —s+1) — ﬁlogt —0(1). So

if opx —w < 1 it must be s > ¢/2 and —/2Fz < —V2Bw = —v2w + o(1). We upper bound
F; (t — 5,25 — ata:) by 1. Futhermore, there holds

t (logt) K—FIE O(logt)2 t 751/2
d V-5 d / ds = o(1).
/t/2 S/ SN #Hoa—wey 05 172 (t — s+ 1)3/2 s = ot

In summary, we have

|K+a?|t1/2\otx—wl o)z _ﬁ_(dtmt*\f')2
I(t,R) // S Y eV2(WBi—01)T o~ 55~ 20—) 1{(87\55_%%#9&} dzds + o(1).

Make change of variables s = ¢t and x = nvt. Then (s,\/s — oyx) € th if and only if £ €
[R71,1— R and oyn € [R7}, R]. Hence

(Inl + ==)(Inl + ) 2 (on—w/ VD2
I(t, R / di/ 53/2 —£)32 VU VAVB—o)Ving =S~ -0 1{£¢[R*1,1—R*1]} d.
or oyn¢[R™1,R)

By (4.16]), we have lim;_,o0 (v/B: — 0¢)V/t = limg_o0 (O't_l — o)Vt = L{n=1/2)- Applying the dominated

convergence theorem, we get

2

R—o0

h{frisolipl(t R) / d{/ 53/2 e oV2n,7 3 25 = 5)1{§¢[R¢1[,1—1R]1}}d77 0,
or n¢[R™,R
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2 2

Weﬁn_gﬁ -9 on (0,1) x [0, 00]. We now compelte the
proof. O

where we use the integratibility of

Finally we give the proof of Theorem for the case that (8;,02)i>0 € JZ/(}I%

Proof of Theoremfor (Bi,02)¢>0 € 52%(1 1 Take ¢ € T. Applying Corollary with m(t) =
mfll’gl)(t), p =12, and Qﬁh defined in , it suffices to study the asymptotic of

E (e—(e?,@) :E<exp{ —/ GZ]% ® f5(t— s, Xu(s) + V2t —s) - mg3>( 1)) 1o X0 (s ))eﬂgh}ds})

Case 1: h € (0,1). Let y := (v *—\/ﬁ)t—i—(ﬂ—at)s then \f(t—s)—mgél)(t) = —ats—y+%logt.

Making a change of variable s = 2 + ft P , we can rewrite E (e_<gtR"p>) as

(o { -t

By (4.16]), uniformly for (s, X,(s)) € Qi?h, we have y = [1 + 0(1)]%1517%. Then by Lemma

h
/ Z 5 < Xu(s) —ags —y + Qﬁlogt> L1 X0 (s)—ars|<Rv/5} di})-

ueN}

uniformly for (s, X,(s)) € QF 7 Wwe have

h
P 5 (t—s,Xu(s) —ats—y—{—logt)

2v2
h/2 ais — 0
~ 1+ oyl Sy e { VB (6) - aus) — By - Eele) = e v 00O
y? s) — aps)?
:[1+o(1)]7f/(f)exp{( 2+ ) (Xuls) — aus) — V2y - (t_s)(X“;(t)_s) ) }

We now simplify the term inside exponentlal By ([4.16), 6 := 6r¢p = %tH 1+ o(1 )]2\[
Now y = (by — v/2)(t — ) (by —at)t B § can be written as v2+ L = b+ 6¢. Part (ii) of Lemma
yields that —v/2y — t i = — (B — )s — (V2 +1)€2 +o(1). Besides, (8 — )8 +as (b + 0&)s =

o2 o o? w(s)—ats u ats
£€£+7t(bt+(5§) Js— t(52s§2 B+ (bt+(5§) 2s—2¢2+0(1) and _X 2((275) )’ _ —(X (%s K +o(1).
us,

h
P t—s,Xu(s) —as —y+ —=logt
B T )

2 s) — azs)?
= 1+ o022 exp {0+ 890 %,06) = 5+ T o7l - =R 3 per).

As a consequence, we have

E <e_<§tR’”>> - E<exp{ [+ 0(1)]7\/5((,0)/ "2 WG (b, + 5¢)e™ d§}> (4.22)

22
where G(z) = e 2 14, <gy and

u€eN} \/g
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By the Brownian scaling property, (Xu(s) :u € N}) law (&X (s") :u e Ng ), where s’ = f3;s.

vn
Let A\ := \;L(bt+5§) = a;+026¢ (noticing that ;L = 0?). So W& (b;+0¢) has the same distribution
as
Ars’ = Xu(s')
WG )\t e/\txu s")—( t+1)sG 5\/’5
A e

By [@16), V2 — N ~ V2 —a; ~ ﬁ, and limy_,o 026+/5s = 2. Applying part (ii) of Lemma

we have

lim thPWE () = V2Z4 /G z—26)e —% dz

Vor
Letting t — oo in (4.22), we get

R 2
Fe)) = _ ~(Va-1)e? o2 42
tlg};l()E( (& 9")) _E<exp{ *y\/ﬁ(gp)zoo/_Re =18 df/RGR( 2¢) ﬁ})

Then letting R — oo, by Corollary we have

. _(& _\/2¢2 (4 2dédz =/ FVva(0)Zoo
tlg&E(e (€ #/’>) =E<eXp{—\/§’Y\/§(SD)Zoo/R2€ V2¢% =(2=9) m}) = E<e \/7 V2 )7

which is the Laplace functional of DPPP < /i\@C*Zooe*ﬁz dx 9\/5>

Case 2: h € [1,00]. Now v/2(t — 5) — mg; (t) = —/2s +575 logt Making a change of variable

s = £t, we can rewite E <6_<€fR"/’>) as

1_7
om0 Gl e aonard)

ueN}

By Lemma [2.3] uniformly for (s, X,(s)) € QF | we have
th

1
P 5 (t — 5, Xyu(s) — V25 + 2\/Elogt>

1261/2 [0 x (g
=1+ o(l)]ﬁy\/it((i);g/2 V2 \/gXu( ) exp {ﬂ(Xu(s) —V2s) — Q(tl_ 3 (Xu(s) — \@5)2} .

Then we have
E (e—<@%>> = E(exp{ — 1+ o(1)]r,5(#) /11;{ (1_15)3/2\/571/{/55 d§}>. (4.23)

e .
where G¢(z) := ze 20-9 21{xe[R*1,Rl} and

e Xu(s fs fS ()
"X (2,

ueN}

Since (X, (s):u € N}) = faw (\;’%Xu(s’) tu € NS/) (where s’ = f3;s) and Bi0? = 1, W€ has the same

distribution as

Z e Xu \fs’] \f(l o't)[\[s —Xu (s )]Gé‘ Ut\/is’_xu(s’) )
Vs

’U,EN@
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Applying Lemma, ﬁ, we have for s’ = ;5 = Bi€t, as 1 — 02 ~ th%’

2 E __ & 2 2
lim Vs W 0o / eV2ELn=1}27209% 2277 (.
t—00 ™ %
Letting t — oo in (4.22), and then R — oo, by Corollary we have

~ 1 1 00 & 9
: — (& _ 2613112 21-_6)?
th_gloE <e ( ‘P>) = E(exp{ —'yﬁ(gp)zoo/o 7(1 — 57 df/o eV2%Llin=1y2" 300 MBes(dZ)})-

which is the Laplace functional of DPPP (Ch,y,\/iC*ZOOe*‘/ﬁx dz, @ﬁ), where

Chs = lldf\/5 " 2eVELpmyzmie Y 4y
h,3 0 (1_£)3/2 T Jo

1 00 1 0o
:/ dg\/g/ 2oV 1=1y2 522 dzzl{h>1}+/ dg\ﬁ/ 2eVEO7e37 qa1y, ).
0 ™ Jo 0 ™ Jo

We now complete the proof. O

4.3 From Cg][[ to @]7111

Assume that (3,0%) € Br.111, and (B, 07)i=0 € %h’“;z). In this case

(B,
1 v o? v, o,
1_pt’\‘m; 9t—bt’\‘m; Ut—atNmtfha v —vp=0O(""). (4.24)
_ oftf=2 By Ao/ -2 1 b (B2 _
In faCt7 1 — Pt = 1— Q(ﬁtt—l)( ) tIBt )(t 1) ~ 2(072 I)ch’ bt = et(a'tTt—l) / = Gt(l
7,3
W)lﬁ =0y — 2(1— 0.2)th +O(ih). = 2\/ T 5 - o 1) = [l + 2bt(* -1)%.
Recall that ' = min{h, 1/2}, mh+( ) =it — h—logt Define
d(z;8,t) i=x —ars + (by — ar)(pit — ), (4.25)
and

R {(s,2) : |s — pet| < RV, |6(z;8,t)] < Ry/t — s} for h € (0, %)7

{(s,2) : t — s € [5V1, RV, |0(z;5,1)| < Ry/E— s} for h € [£,00].
Lemma 4.4. For all A >0, and h € (0, 0]
lim limsupP (Elu € N2 : X,(t) > m}lli(t) A, (Ty, Xu(Ty)) ¢ QRh) =0.

R—o0  t—co

Proof. Applying Corollary with m(t) = m}z +( ) and Qff = th defined in (4.26)), it suffices to
show that for each A, K > 0 I(t,R) = I(t, R; A K ) deﬁned in vanishes as ﬁrst t — oo and
then R — oco. Conditioned on the Brownian motion By in equals s+, we have

t
I(t,R):/ ds/P<atBr§vt7“+GtK,Vr§s|Bs:ats+x>
0 R

gt
a? a; x2 dx
B TP 2 S
202 oy 25 ) \/27s

(vg— at)s—}—K
(ve —ar)s + K — o
/ds/ c)7t53/2 Fi (t — s,a8 + 0yx)

X eﬁtSFt (t — S, a8 + O't.CU) 1{(S,at8+0w)¢95h} exp {_

1 { (s,at s+atac)¢ﬂfh}

2
Br*)sfﬂ:v*%
X e 7t = de,
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where we used the fact that P (O'tBr < s+ oy K, Vr < s|Bg = Z—is + x) <k W#, which
holds by Lemma

o If vjt —ats — opx —w > 1, where w := Z—; logt + A. By the Markov inequality and Gaussian
tail inequality, we have

Fo(t —s,ars +ox) =P ( max X, (t —s) >vft—ats—ata:—w)

UEN_¢
Vit—s
A

~Y *
Vit — QS — 04 — W

(4.27)

expd (t = 5) = = [ut — ays — oy — w2}
{ 2(t —s) }

o If vt — ars — oyx — w < 1, we simply upper bound F; (t — s,v4s — oyx) by 1. Note that, as
o1 + ars < vps + o K and vf > vy, we have 1 > vft —ays — opx —w > v (t —s) —w — 0 K. So
provided t is large, it must be s > ¢t — (logt)? and —oyx < —vjt+ a;s +w+ 1. Thanks to (4.3)),
we have

t O(logt) v a)s + K — oy (,Bt——)s—itx_L
/ ds/ (vr — at) t at Lvrt—aps—oro—w<1} dz
t—(logt)

—00 O'tS3/2

(4.28)

t O(logt) 0'2 2 !
< ds OUOBY) (a1 ysbini st g < O(logs 1) 57 =2 = o(1).
™~ Ji—(ogt) t3/2 -

—0o0

_ _ (wi—as)s+ K—oa| Vi—s
Let J = Jszy: 5372 oFi—ars—owa—w[ 1" Then we have

(vt—ay) 2 s, 12
t s+ K ay [vft—aps—orz—w] at

ot (/Bt—?)s'i‘(t—s)—w—?x _2?

I(t7 R) 5 /0 dS/ Je ot fe s 1{(s,ats+atz)¢ﬂfh} dz + 0(1)‘

Making a change of variable s = p;t + u, we have
[(bt — at)u — Ot — W]Z
2(t — s) ’

Vit — s — opr — w)? b7
. 2= s 2O ) 4 b — anu— o — by

where we used vyt — ays = by(1 — py)t — agu = by(t — s) + (by — a¢)u. Applying (4.2) and the identity
a; = Jfbt, we have

(B — 2?)s+ (t—s)— [U?t_aga__gx_WP B %x
= (B — ;ftg)s +(1- bj)(t — 5) = b2(1 — o2)u + byw — [(bs — a;)(?i : Z;gc — w]?
= (8= 2a2t2) i+ (1 - 62%)(1 —p)t+ </Bt -1+ o - 1b?> u+ byw — [(b: — atQ)(Z:Z;x —w]?
— b, [(b ag)u — oy — wl?
2(t —s)
Therefore,

(1-pe)t b+ lemapu=opzow]? 2

¢ E—s) o om

I(t,R)S/ du/e Je 2(t=9) e QSl{sats+Ut$)¢Q h}dJ:Jro( ).
—ptt R
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By making a change of variable z = = (= at)u + 2, we get (s,a;s + o) € QY if and only if ([1 —

PVt 170y — A=) € 't < [-R, R], where I'lt = [-R, R] if h € (0,1/2) and 't = [R™!, R] if
h € [1/2,0]. Hence,

—ptt otz
or [ Z=|>R

< [ b S [e]
&R < / du/R Jere o 1{(1—1915)\/%1%21/2}_;2@5} dz+o(1).

Making change of variables u = —£v/t and z = 1/t — s again, we have

peV/t ( a,) w
I(t,R) /t df/J‘/ btwefﬁ bt g — 77\/ *% GtT]Jrﬁ)Q

1Pt

x 1{(1*%)\/51{@1/2}%@?} dnd§ + o(1).
or |otn|>R

As vft — ais — oy = by(t — 8) — oyn/t — s and s = pit — £V/t, for each fixed ¢ and 7, by (4.24), we
have

t—00 B t—o0 g3/2 |be(t — s) — Jm\/t —s|+1
1 th (’Ut — at)t + th (bt — at)|§\\/ . 0'4
t—o0 by t 2(1—

02)1{h§%} +(1 - 5)\§|1{h21/2} =:C(&;h).

Put §o(h) := 1p>1/0) limyseo(1 — PVt = ml{h 12} Applying the dominated convergence
theorem, we get

o (9—1})2 2 0_27]2
limsup I(t,R) < / d/f/C(f;h)e_ 202 &2 ] R_ . dndé&.
S [t )
Letting R — oo, we get lim lim I(¢, R) = 0 as desired. O

R—oot—00

Proof of Theoremfor (Bi,02)¢>0 € sz(h’Jr ) Take ¢ € T. Applying Corollary with m(t) =
m,lli (t), p=b; and QF = th defined in , it suffices to study the asymptotic of E < (& "9>),

which is equal to
t h
E(exp{ - /0 Z Dy, (t — 5,0(Xy(s);8,t) + 9 logt)l{(SX (s)) €0k, } ds}).

where we used the fact that X, (s) + b(t — s) — mh+( ) = 6(Xu(s);s,t) + Z—;logt, which holds by
(@25). By ([#.24), by — 0 > /2. Applying Lemma we have, uniformly for (s, X,(s)) € th,

/

h
9t log t)

!
—1)(t—s) b0 (Xu(8)is:t)+be 5 log t =565 6(Xu(s)is,t)?

Py, (t — 5,6(Xu(s); s,t) +

Yo ()
t—s

= (1+0(1)) o Cf

T

! 522
= (1+ 0(1))70(90)4: e Xu(s) (4803~ oty S (i)
— S

9

32



where we used the computation that b;0(X,(s);s,t) — (E —1)(t—s) = b Xu(s)+ [be(by —ar)py — =+

1]t — (% + 1)s = b Xy (s) — (% + 1)s = b X, (s) — ( ) s. Thus E ( (& "">> equals

5(Xy(s)is,t)?

U?b% _ 0(Xu(s);s,t)”
E<€XP{ (L+oll))mle / Z Vit —s O 1{(S,Xu(s))€th} ds})-

Case 1: h € (0, %) Making a change of variable s = pit — £/t and letting r = Tetr = V', we
have

~ R
B () =5 (- 1+ opute) [ LwOi—evievinagy).  (wa9)

—R -

35‘2
where G(z) = Gr(x) := e~ 2 1{;)<p) and

(5,758) 1= 3 bl o7 sy (Xu(s) — ais + (b — at)7‘> .
ueN} Vi—s

By the Brownian scaling property, (X, (s) : u € N}) o (\%xu(s’) :u € Ny ), where s = ;5. Then,
letting Ay = by -9 \ﬁ, WG(s,r;t) has the same distribution as

Aes'=Xu(s") /Bt . r
(s',7;t) Z AiXu(s)=(F+1)s" o Vs’ & (br at)\/?
ueN s/ O’lt Btl;TSI
Note that v/2 — \; ~ m, ‘g(bt — at)f ~ %5 and U% 5”5,_5/ ~ % =5 Applying part
(ii) of Lemma we have
G \[ \[ \f Z_Tl‘it(bt_at)\;ﬁ 2 dz
W (pit — EVE, EVE L) = (1 + o1 - A / S le 7
(it — EVE,6VE:1) = (1-+ 0(1))2Z00(v2 - X) e =
ot s’
d _0=v?21 [t —
= <1 + 0(1))22w(f_ )\t) (/ G(y) y) (& 202 §27 S_
R 2 g S

As a consequence, using Z., 6 Z”B >, we have

oo VG , B,0? V / dy \ e
tliglot mW (pit — EVE, EVEE) = 75 02 RG(y)m e 2 in law.

Letting t — oo in (4.29), by the dominated convergence theorem we get

hmE( ~(er "P>) =E<eXp{—79(90)Z§g’2 m2 /R NUSLES 5/ —w d

t—o00 1—0

1)

Applying Corollary we finally get

lim E (e_<§t’¢>) = lim lim E (e_<§tR"p>) = E(exp{ - Ch,—&—’Y&(‘P)ZgO’”Z}),

t—o00 R—o00 t—00
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which is the Laplace functional of DPPP (ch + 20 757 et de, @9), and where

Nors
V23 _(0-v)2 V2
Ch4 = lim S ¢ d¢ = T v
’ R—>001—O’2 R 1-0260—v

Case 2: h e [%, o0). Make a change of variable s = t — £/t and let r = Ter = £V/t. As before we
have

E(e@R@)ZE<wp{_u+ﬁu»W@g/R\ﬁiwﬂ@—g¢ua@odg>. (4.30)

Letting A\ = btf V2 — we have ay ~ v2(c72 — 1)t" by - W& (s,7;t) has the same

distribution as

Olt’

X / VBt _
(s',r;t) Z AXu(s") = (Z-+1)s' Avs ES) o (b —ay)r
u€eN s ; 6tt - S
e (25;)32 Z e\/ixu(s’)fzs’eiﬁsl;f“(s V25— Xu(s ) _ (% - @(bt —ayr
ueNy, VBt =5
s’ /Bt
[1+0(1)]() \ﬁbf atf"tz VX ()~ V25 = Xu(s )—a—t—a—j(bt—at)r '
weNy s VBE—5
Note that Ty = [-F\{T:(bt (1)\/— \[(\Q 1)1{h 1/2}+ (Sandh,_ \/51&"«78 \/;
Applying Lemma [2.5[ and using the fact Z*° 4 ﬁzéﬁ;’ , we have
(s")? f be—a
WE (s’ rit) = Lt olD] S+ettes ( > S oo/ 2z.,
\/? hy -
£ (be—at) = ?
_ 1 %\—/%1)]6 t—at) oo /G )dy (rge” 3 )hy \/5200
T
b a 27‘
_ 1 4\—/%1)] horge 207 t—at) /G dy\/»
VEEIR: 20 -v),] _oy?e dy e
=1+ o(1) T e + 2 e [ ew ez

Letting t — oo in , we get
lim E ( (& "p>)

t—o0
f 0 = 0?2 .o 2
—E<eXp{ 6(p)Z5°° /1 {G_@l{h:m}jﬂ(a )g] O dg/ a2

Applying Corollary we finally get

fim E (e 7)) = im_tim B (¢ = E(GXP{ - Ch,+79(90)2§302}),

t—o00 R—oot—00

7))

which is the Laplace functional of DPPP (C hot 5for o®) 75, 7 he=07 dy @9) and where

—
. R /28 200 —v) ] _0-v?e
o= i [ [ty + e ¢ g

_\/?021 _1_#
“Voa -2 VBT gy
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We now complete the proof. O

5 Approximation From %;;

5.1 From (g[[ to %H,HI

Assume that (8,02) € B and (B;,02) € o

(Bo?) Recall that mi (t) = V2
h' = min{h,1/2}. Define

1 /
ch—{(s,x):se[R Rt"], |z — V2025 |<R\f} (5.1)
Lemma 5.1. For any A > 0,

lim limsup P (au € N2: X, (t) > m>> (t) — A, (T, Xu(T)) ¢ Qﬁh) -

R—0oo t—00 ’ )
Proof. Applying part (i) of Corollary W with m(t) = m,213 (t) and QF = QF defined in (5.1), it
suffices to show that for each A, K > 0, I(t,R) = I(t,R; A, K) defined in (2.6) vanishes as first

t — oo and then R — oo. Conditioned on the Brownian motion B, in (2.6) equals v/20ys + z, we
have

t 0'1 S+K
I(t,R) / ds/ F: (t — s, \@atzs + O'ﬂf) 1{(87\@03%0%)@?9&}

1 (V2oys+a)?
P(B, < \/26ir + K,¥r <s| Bs = V20¢s —i—a:)\/teﬁtse* ot dx

27s

t V2(VBi—ot)s+K
SK /0 ds /oo F: (t — 8, \/5035 + mx) 1{(8’\/%?8”%)@&}

K-z 1 —0?)s — ox—ﬁ
[\f?(\/Eat)Jr . ]\/ge(ﬁt Dse=V2er—50 qg.

(5.2)

where in the inequality we used P(B, < /28;r+ K,Vr < s | Bs = \/ﬁats—Hc x V2(VBi — \/ 2) +
K= which holds by Lemma By the definition of F¢(r, z) in Corollary [2.7| with m(t) = (t),
we have

4n’
Ft(t—s,\@afs—katx):P(max Xy (t — )>\ft— logt — A — \fats—at:c>

UAENtfs \/>
=P ( max X,(t—s)>V2(t—s)— ilog(t—s—i—l)—|—Lst—atan ,
u€EN;_g B 2\/§ ’
where Lg; := v/2(1 — 0?)s — F log(=c1 S_H) + V2K logt — A. Applying Lemma provided that
Lsi — owx > 1 we have
t 1 _ (Ls,t—og)
Fult = 5,V207s + 0y) Sa (Lag = oy)e 21700 ()2 gpeViore™ 5. (5.3)

In fact, for large t, Lgy — oyx > 1 holds for all s € [0,t], * < V2(y/B; — 01)s + K. To see this,
note that Ls; — oy > (V2 — vy)s — %log(ﬁ) + v2h'logt — A — 0, K. By our assumption

(Bt,02) — (B,0?) € PBr111r, for large t we have v/2 — v > § > 0. Then for each §s > 2logt,
Lgi — opx > V2K logt — A — 0y K > 1; for each ds < 2logt, t —s +1 > t/2 hence Lg; — opx >
V2h'logt — 4log(2) — A — o1 K > 1.
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Substituting the inequality (5.3) into (5.2]), and by the hypothesis 8; 4+ 07 = 2 — 1/t", we get

1 |Lst — o t 3/9 22 _Est—oen)”
I(t,R) //1{ V202 s+toyx) g{ch}\/ 221 (t_$+1)/e the 2%e 3t—s)  dsdz.

We now make change of variables s = {th/ and 2 = 7y/s in the integral above. Then (s,v/202s + 04)
belongs to Qf, if and only if ¢ € [R™!, R] and |oyn| < R. Applying the dominated convergence
theorem twice we get

(L(&th',t)faw\/s?)Q

I(t,R) </t1h/ L (€th/,t)—fft$\( t )3/2¢¢ gth' —h_ = B(e—eth) ded
Y ~ / / e € - TI
&\imj]z th t— &t +1
2
- / / cein ) V2(1 - o?)geStinsiz e~ e (1 Lz g dy "5 0,
or |o? 77\>R
This completes the proof. ]

Next we will prove Theorem for (B, 07) € szf(% 02

Proof of T heorem for (B, 0?) € fng(];; 2)- Take ¢ € T. Applying part (ii) of Corollary with

m(t) = m,213 (t), p= 2, and Qf = th defined in (j5.1)), it suffices to study the asymptotic of

Rth

E <€_<§t P ) = <exp{ /th/ Z (I)ﬁ(t— Xu(s) — V2s + \/L{h logt)l{(s Xou(s))€QR, } ds}>

ueEN]

Observe that, uniformly for (s, X,(s)) € QF, , we have v/2s — X,,(s) = v2(1 — 6?)s +O(y/s). Lemma
yields that, uniformly for (s, X,(s)) € th, as t — 00,

o (t—sX (s)—\/§s+3_4hllo t)
V2 y Al 2\/5 g

2s — X —4n’ w(s)—v2s)?
= [+ o(1)) (i) V2 ) -y - Ol

2 1 _ s ( 702)282
(14 o)) Y2 T ooy - P 5.0

where in last equality we replaced 2 by B¢ + o7 + 1/t". Let

Wisit) = 3 eV2Xu@-(itot)sy

ueN}

{IXu(s)—V207s|<RV/5}"

By the asymptotic equality (5.4)), we have

SR Rt —02)s _s (-0}
B () =eXp{[1+o<1>m<so> [ o e W(s,nds}

1 4n!
Rt

R f i
— exp {[1 + o)y s5(0)V2(1 - 0?) / ge € M=ot PEET Ty (gt ) da} :
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where in the last equality we made a change variable s = {th/. By the Brownian scaling property,
(Xu(s) : u € N}) has the same distribution as (-ZX,(s") : u € Ny), where s’ = ;5. Put \; =

VBt
V20:/v/Bi. We have

W(s; t) & law Z eAtXu(s/)—(l—&-)\f/Z)s’l{'X
uENS/

u(s')=Aes'|[<RV's' o1}

Since \; — v20/v/B < v/2, by part(i) of Lemma we have

% V20 _22 dr 52 _z2 da .
tll)IgoW(é.t t) WOO( \/B)/[—f,f e 2 \/% _Woo (\/5) /[_575]6 2 \/% in law.

Applying the dominated convergence theorem, we get

im & (=) ) = (o { - 1aleW2 (VDCks} )

t—o00
where
Crr =12 R(l 2)5 —Elyp<y2y—(1-0%)2E2 1> 19) d¢ —é da
R = . —o“)€e < 2 iy e o
R—oo 1 & Lt (1—2)2¢2
= O = V21— 0™ pcryoy + ml{h>1/2} + \/5/0 (1—0)ee U el p_y oy

Letting R — oo and applying Corollary we get
3 - é\t7¢>> — 3 3 ( - §R7LP>> — _ ﬁ70'2
B () = i i (o) = - 00 WV 00

which is the Laplace functional of DPPP (C’h,_ﬂC*W’fgﬁ(\/i)e_ﬁx daz,@\/i) Using [9, Lemma
4.4], we complete the proof. O

5.2 From C;; to (1,1)

Assume that now (3¢, 02)i>0 € ,szf(lﬁ) ie, B =02=1—55. Letm (1 Y (t) = ft— logt where

2th
h' = min{h, 1}. Define

r J{(s,2) s € [Ft" Rt"), V20}s —x € [§/5,R/s]}  for b€ (0,1);
Lh {(s,z):s € [%t, (1- }%)t], V20?s —x € [%\/g, R\/s]} for h € [1,00].

Lemma 5.2. For any A > 0,

(5.5)

lim limsupP (Elu € N2 : X, (t) > m;(lly’;) (t) = A, (Tu, Xu(Tu)) ¢ th) =

R—o0 {0

Proof. As in the proof of Lemma applying Corollary with m(t) = m,(j;)( t), and Qff = Qft,
defined in (5.5)), it suffices to show that for each A, K > 0, I(t,R) = I(t, R; A K), defined in (2.6)),
vanishes as first t — co and then R — co. As in (5.2), noting that 8; = o7 now, we have

K — _a?
(t R NK / dS/ Ft t - [Uts + Utw) 1{(5 \[Uts+0'tx)¢9t h} 53/2 fata: = d$ (5'6)

vanishes as first t — 0o and then R — oo. Let Ls; := v2(1 — 02)s + \% logt — % log(ﬁ) —A.

37



o If Lyt — oyx > 1, by Lemma 2.2

3
Fe(t — s, \@atzs +ox) =P ( max X, (t —s) > \/ﬁ(t —s)— —=log(t—s+1)+ Lss — th>
u€EN_ 2\/5
2
-2 1_0—2 3/2 1 fo_ w
S e e i

o If Ly; — oz < 1, we simply upper bound F(t — s, V2025 + osx) by 1. Moreover, Lyi—oix <1
holds only if h > 1, s > t/2 and —opx <1 — Lg; < —%logt + % log(ﬁ) + A+ 1. Thus

V2o O(logt)? [U/? 1 B
//2 d.s:/o(1 33/2 =5 1{L —arz<1) dz < T . e du = o(1).

Substituting these inequalities into ((5.6]), and using the assumption f; + 02 — 2 = —t7", we get

t K o

K—x _s _ﬁ|Lst—thj| t 3/2 _s,i—og2)
_— h s 2 3(t—s)

/0 /;oo 1{(5,\/§ofs+atx)§é05h} 53/2 e e 2 oy (t R 1) e dsdx + 0(1).

In the case h € (0,1), make change of variables s = £t" and —x = 1+/s. Noting that (s, v207s +
o) € th if and only if ¢ € [R™, R] and oyn € [R™1, R], applying the dominated convergence
theorem twice we get

LR K) <

K +ny/Eth ot h 3/2

d (&t V&t d
g/K/\/sth st ST e TILIE 8+ omve .fth+1 "

/tl h

orame —1R]
t o) e 12 R—o00
. / / s¢[RlRl} Sempdedy T 0.

or n€[R™,R]
If h > 1, make change of variables s = £t and —x = 1y/s. Noting that (s, v207s + o) € QF, if and

only if ¢ € [R™1,1— R™1] and oyn € [R™!, R], applying the dominated convergence theorem twice we
get

1 [e¢] L orxT 2
K / _ (Lgg,p—ot)
Lt B K) S o LedlR1 1R +£"7 L(Et,t) + omy/Et](1 — €)% st dedy
0 =Ta {Or UWE[R*:R]}

1 o0 2 1 2
= / / U ey 1€ ()2 T dgdn 0,
070 {Or T]E[R_lvR}} —¢
2 2
where we used the fact _/‘01(1—2)3/2 d¢ [;° 7726_7’71%5 dn = fol d¢ [° A2 d) < oo. O

Proof of Theoremfor (Bi, 02)is0 € ﬂf(}ﬁ) Take ¢ € T. Applying Corollary [2.7| with m(t) =

mﬁll”;)(t), p =12, and QF = Qf‘h defined in , it suffices to study the asymptotic of E < (& "">)
which equals

E(exp{—/ > Bt — s Xuls) — V2s + \/4; 0g 1)1 x, (s))can, }ds}>

ueEN]
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Note that uniformly for (s, X,(s)) € th, we have v/2s — X, (s) = O(y/5) = @(t%). Then Lemma
yields that

—2h/
P t—s \[ —|- logt
V2s — Xy (s §)_9s,3=20 _ (Xu(s)=v25)?
= [1+0(1)h\/§(<ﬁ)((t_8)3/§))e\/5Xu() 20,400 g

as t — oo uniformly for (s, X, (s)) € th
Case 1: h € (0,1). Since now s = O(t") < t, in fact

— 2K \/iﬁS*Xus (5)—2Bps— =
D 5t — s, Xuls) — fs+ eV logt) = (1+o(1))7ﬁ(¢)tth()eﬂx (5)=2Bes— %
as t — oo uniformly in (s, X,(s)) € Qt ., where we used that 3y = 1— 55. Thus E < —(& 7<P>) equals
Rth _ .
E<6XP { L+ ol ’Y\[ / Z Meﬁxu(ﬂ_ww_?h 1{(57Xu(3))695h} dS}) '
R" ueN}

Making a change of variable s = A\t", and noticing that 3; = 02, {X,(s) : u € N!} has the same law
of {Xu(Bes) : u € Ng,s}, we have

E (e*@R:@)) — E<exp { — [1+ o(1)]y5(p) /1R ZRA\Beth)e ™ d/\}>,
where

UENt

By Lemma for each A > 0, Zf(t) — Zm[fl/RZ e~ T dz in probability. Letting ¢ — oo then
R — oo and applying the dominated convergence theorem and Corollary 2.7} we have

i B () = i i B ()

R 9 R 2
_ 1 Y 9 _zZ
—P}gréoE<exp{ _7\/5(@)200/]1% e d)\\ﬂ/}% z7e 2 dz}) (exp{ 7\[ oo}>

which is the Laplace functional of DPPP (ﬂC*Zooe_‘/ﬁx dz, @ﬁ).

Case 2: h € [1,00]. Notice that for (s, X,(s)) € th, we have s = O(t) and V25— X, (s) = O(V1).
Now Lemma [2.3] yields that

_ oK
D 5t — s, Xu(s) — V2s + logt)
V2 2v2
/2 VEXu(5)~2Br5- o ule)ovans)?
= [1+o(1)]v5(p )( )3/2t[fﬁts Xu(s)]e e B
as t — oo uniformly for (s, X,(s)) € Qt ;> where we used the fact that 5y = 1—5%. Then E ( (& "p>)
equals
(1_%” t3/2 [\/5,8758 - X (S)] V2X s (Xu(s)=V2Bys)?
- u w($)=2Bes =k o= ame
E<6Xp { Lol Ps(e) /gt u%;l Ht—sp2 ¢ e

X (s, xu(s))e0R, ) dS})
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Making a change of variable s = At, we have

E <e‘<§tR’@>) - E(exp{ — [+ o(1)]y 5(¢) /11}% (61 M{; 31/}2 VABIWE (ABit; V2) dA})

A
where G (z) = xe_mmgl{we[RflvR}}’ and

WG,\ (t; \/5) — Z e\/ﬁXu(t)—QtG)\ <\/§t ?/ixu(t)) )

u€ENy

52 2
By Lemma7 for every A > 0, VIWE (t;1/2) — Zoo\/gflljR Gr(2)ze” 2 dz = Zoo\/gflij 2267203 dz.
Letting t — oo first and then R — oo, and applying the dominated convergence theorem and Corol-
lary we have

lim E (6_<§t’“">) = lim lim E (e_<§tR790>)

t—o0 R—o0 t—00

. =% o= Mn=1}
:RIEI;OE<eXp{ —’y\@(go)Zoo/l TSN T2 / 2¢720-%) *> dzd)\}>

_ E(exp{ ol OO}>R

which is the Laplace functional of DPPP ((Ch3v2C,Zwe 2 dz, DV2). Note that Chy = 1if h > 1
and Cpo = (1 — e 1) if h =1, and we complete the proof. O

A Proof of Lemma 2.4
Proof of Lemma[2.4 To prove (ii), we only need to prove

lim 7WF t(\) = 2V2 Z- in probability.
t—00 <Ft7/~LGau> ( t) P Y

The case F; = 1 was proved in [33, Theorem 1.1 (iv)]. That is, a;W;(\¢) converges to 227, in
probability. So it suffices to show that

( WA
(

=
<t ! FtaMGau>

- Wt()\t)> — 0 in probability. (A1)
Note that the above is also sufficient for (i). We are now left to prove (A.1]).

Take k¢, t > 0, such that k; < t/2, ky/a? — oo and k;/t — 0 as t — oo. Sometimes we also
write k(). Such (k;);>0 exists by the hypothesis a; = o(v/#). For each v € Ny, let X7(s) :=
Xu(kt +s) — Xy(kt), u € NY, where NV are descendants of v at time k; + s. The branching property
yields that conditioned on Fj ), {XV :v € N } are independent standard BBMs. We rewrite
Wt (\,) as

WFt >\t Z e)\txv(kt +1)kth F ()\t)

t—k¢
”eNk:(t)

where

2 v

WP _ MX (—k) = (AL 1) (t—ke) 1 [ Atk — Xo(ke) - Ae(t — ky) = XU(t — k)

() := E et 2 F, ( + .
Witk (At el ! Vi Vi

t—k(t)
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By the many-to-one formula,

E (WS () Fgy | = E W 0] 1, st

m/ﬂ y+z)e 20k =Nk dz| v Xv(kt)

22
For y € R, define d;(y) := Vi F(y+ =z 672(;’%)'22 dz Fi(2)e” 72 dz). Then
ik

W () Atk — X (ki)

E
<Ft7 ,uGau>

Step 1. Let

E : At Xo (K +1 k thvt v\t
Wkt()\t € ‘ t) ( ) td <\/£> 9

and py = 1+ 2%% Then, using the von Bahr-Esseen inequality which claims that for any sequence
(Xi),en of independent centered random variables and for any v € [1,2], E[|3>° X;["] < 23 E[|X;["],

’UGNk(t)

we get
bt
Wi ()
~W ()
T pe) ~ | [P
”U Ft Dbt

<9 Z eAtthv(kt)*(ﬁ‘i’l)ptktE t— kt()\t) . (5 )\tkit - Xv(k?t)
= F ) t NG

UENk(t) < ty UG

v, F;

< 9pt+l Z eAtptxv(kt)_(§+l)ptkt E|Wt—kft (At)’pt ’ (Atkt — Xv(kt))pt
- vENL () <Ft7 MG>pt \/E ’

where in the last inequality we used |z + y|P < 2P (|z|P + |y|P).

e Firstly, since F} is bounded, E|W," Tt ()P < G2 EIWi—k, (M) [Pt < [|GII2EWoo (M) [Pt <
|G||%,cs, where cg > 0 is the constant in [33] (4.1)].

e Secondly, suppose supp(G) C [—A, A]. If F;(z) > 0, then |z —7¢| < Ahy, and hence |z| < 7+ Ah.
Then for large ¢

>2

\/{g th( e T a0 kt)(z y)? th dz

Vick  [R()eTde th

2
(a5t a: Pyl 2
< 2f t( ) -4 < 2e (F+AR) |yl -5 < maxQe(T"_Ah)ly‘_% =y < Q0.

th(z)efé dz 4

6t(y) =

Therefore, we have

W) w0 | |Gl%cs 3
E (aft L — Wy, (M) < oPtopetl [ 2= + (co)P* | E Z e tpiXo (ki) = (5 +1)peks
F ¢ =t F, P
( ts IUG> < ty IUG> UENk(t)
|GIZ.cs 2

= abroretl [ + (co)pi} exp {()\tpt + D)kt — (% 1)ptkt} 2% 0,

<Ft7 .LLG>pt
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where for the limit above we used the fact that (@ + Dk — (’\2—3 + D)piky = (A%th —D(pt — Dk =

—@(%) — —o0. As a consequence,

WA
<Ft7MG>

oy — Wy, (A)| = 0 in probability.

Step 2. By [33, Theorem 1.1 (iv)] again, as v/k;/az — oo, we have ayWg, (\)) — 2v/2Z in
probability. To prove (A.1]), it suffices to show that

2
. Ko () = (1) ke Ak — X (
W, (W) = Wi, )] = e, () 3 S e (M) ) o

’UGNk(t)

in probability as t — co. By [33, Corollary 1.3], for any € > 0, there exists K > 0 such that for ¢
large enough, with probability at least 1 — ¢/2 we have

Aol —CE 41k
Wi, (Ar) 1{\/\tkt—xv(kt)|>K\/E} <€

vENK()

Again, by limy_o0 ayWg, (N) = 2v2Z o, there exists K’ > 0 such that with probability at least
1 —€/2, we have |a;Wy, (\)| < K’. Then with probability 1 — ¢,
| Wi, (Ar) — Wi, (A)]
eAtX,U(kt)—(g-i-l)kt
< K’

B UGNk(t) Wkt ()\t)

<K' (sup{]ét(y) 1]yl < KR JE) + (co + 1)6) .

Atk — Xo(kt)
t < Vi = U Lpk—xo (k1< vy F (Co+1)e

o 2
Noticing that §;(y) < 2eTHARIYI=5 and

(z—9)? ky

Vi [FRe TmE 4, [Fk)e ® mmE Y g,
oly) = N 22 = )
o J Fi(2)e” 2 dz [ Fi(2)e” 7 dz
22 k¢ 2
C22 gl B (a4 ) ]
J TRE TS 4z b i

th(z)e_g dz

we have sup{|6;(y) — 1| : |y| < K\/k/t} — 0 as t — oo. Then ay|Wy, (As) — Wi, (A\)| — 0 in
probability as ¢ — oo by the arbitrarily of €, and the desired result follows. O
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B Proof of Lemma 4.1

Proof of Lemmal[{.1. By definition v} = a;p;+bi(1—p;), so we have y = (by—v/2)(1—py)t+(vV2—ay)u.
Consider first

a? y
Ly = (Bt — 20_?)8 —V2y — TR
= G ) VB VB0t VB g YO (/2
= [(ﬁt - ;fg)pt - (\/ibt — 2)(1 —pt) _ (bt _ \/E;Z(l pt)] "

a _at2u2
_%%_tyﬂ@ﬁ_m_@ﬂ@wﬁm*hggwgﬁ

We write Ay = ﬁ — 1. Recalling our definition and (4.1), a little computation yields the

following claims.

. a? b? _
e The coefficient for term ¢ equals (5, — ﬁ)pt +(1—=4)(1—ps) =0 by @.2).

— V2b = B¢ + o} &:o—% V20 = Bt Ut — V2 =

1

e The coefficient for term u equals B; +

; +1—2b =
Thus L1 = A?u — ( (21_‘;1))2 ~. Secondly, letting A; = ((\1/5 ;:L)tt), we have
Ly vy Y _ (b = V2)(1 = pt + (V2 — a)u]?
21 =p)t  2(1 = pe)t —2u 2(1 = pe)t[(1 = pe)t — 4]
b V2 i
- _u (4_1)_1_& 1- % !
V2 (1 —pu)t (L —po)t

_ 2 VD A%y
u (A + Agu) (1+(1—pt)t—u) Afu — r(u,t),

where r(u,t) := (2A; + Agu) Ayu? + %uz. Therefore

— ) u?
L(u,t) = Li(u,t) + La(u,t) = _(;/g—pt))t —r(u,t).

Case (i). By (4.6) we have p; ~ m, A~ m, V2 —a; ~ V2(1 —0?) and A; ~

Y20=0%) " Then, for fixed £,

L(EVE1) = —Mé (VR = —(1— 0?2 as t — oo

Moreover, we claim that for large ¢, r(u;t) > 0 for all u > —pt. In fact, the claim is true if we have
2At + Atu Z QAt — Atptt 2 0. Note that 2At — Atptt = 2At (E/i a;)p = [QAtth %ptth]t_h.

By (4.6)), we have [2A;t" — (Eﬁ aﬁ) pith] — 1_102 ~ 7 11_02) > 0. This proves our claim, and thus

L(&Vt,t) < — 21 ‘;’i) €2 < —c€? for some constant c.
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Case (ii). By (4.16), we have p, = 1/2, Ay ~ ﬁ? V2 —ap ~ ﬁ and A; ~ ‘/Qh. Then

12

Hmy o0 7(EVE, E) = 20 At €2 + 2472 = (V2 + §)€2, and

L(gt 2 1) = —(V2 — a) " — r(&VE,t) & —(V2 + 1)

Finally we prove that for large ¢, r(u;t) > 0 for all u > —1/2t by showing that 2A; + Awu >
20; — %Att > 0. This follows from the fact that lim;_.o th/2[2At — %Att] — 1 - ? > 0. Hence

L(EVET) < —(V2 — a3)?th€% < —c€2 for some constant c. O
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