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1-stable fluctuation of the derivative martingale of branching
random walk *

Haojie Hou Yan-Xia Ren’ and Renming Song?

Abstract

In this paper, we study the functional convergence in law of the fluctuations of the derivative
martingale of branching random walk on the real line. Our main result strengthens the results
of Buraczewski et. al. [Ann. Probab., 2021] and is the branching random walk counterpart of
the main result of Maillard and Pain [Ann. Probab., 2019] for branching Brownian motion.
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1 Introduction

Consider the following branching Brownian motion on R: initially there is a particle at 0, it moves
according to a standard Brownian motion with drift 1. After an exponentially distributed time
with parameter § > 0, it dies and splits into a random number of offspring with law {py : k > 0}.
The offspring repeat the parent’s behavior independently from where they were born. We will use
N (t) to denote the set of particles alive at time ¢t and for v € N(t), we will use X,,(¢) to denote the
position of u. Without loss of generality, assume that

which implies that for any ¢ > 0 (for example, see [10, (1.2) and (1.3)]),

( Z e~ Xult >=1, < > Xl >> =0 and E< > (Xu(t))%—Xu(t)) =t

ueN (¢ ueEN(t) ueN(t)

The derivative martingale of the branching Brownian motion is defined as

= ) Xue ™.

ueEN(t)

It was proved in [§, [13] that Z; converges almost surely to a non-degenerate non-negative limit Z.,
if and only if > 7%, k(log k)?px < co. Maillard and Pain [I0] studied the fluctuation of Zo, — Z;.
They showed that, under the assumption > ¢, k(log k)3py. < oo,

lo d.d.
<\/¥<Z®O — Tt + \/%ZOO> aZI,IP’(-U:f)) fd—d> ((Sa—1/2Zoo)a21,]P) (‘Zoo))
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in probability, where S; is a spectrally positive 1-stable Lévy process independent of Z., and
{FP}i>0 is the filtration of the branching Brownian motion. More precisely, they showed that, for
allm>1,a1,...,a, € [1,00) and bounded continuous f : R™ — R,

logt B
(s (Vo7 =2t i) 1202 |)

— E (f (Sa,jl/QZoo’ 1<k< m) ‘Zoo) ,  in probability. (1.1)

t—o00

Now we turn to branching random walks. A branching random walk on R is defined as follows.
At generation 0, there is a particle at the origin. At generation n = 1, this particle dies and splits
into a finite number of offspring. The law of the offspring (offspring number and positions relative
to their parent) is given by a point process L. The offspring evolve independently and obey the
same rule as their parent. The procedure goes on. We will use T to denote the genealogical tree of
the branching random walk, N'(n) to denote the collection of particles in the nth generation, |z| to
denote the generation of particle x and {V(z),x € N (n)} to denote the positions of the particles in
the nth generation. We will use P to denote the law of the branching random walk above and use
E to denote the expectation with respect to P. If the initial particle is located at = € R instead of
the origin, we will use P, to denote the law of the corresponding branching random walk and use
E, to denote the expectation with respect to P, For n > 0, we denote by JF,, the o-field generated
by the branching random walk up to generation n. We will always assume that

(A1)
E( > e—V@)) =1, ( Z V(z V@) =0
zeN(1) zeN(1
and
o? = E< Z (V(x))? e_V(m)> < 0.
zeN (1)
Under (A1),

W= Y e V), = > V@e V", nx>o,

zeN(n) zeN(n)
are martingales with respect to {F,, : n > 0}. They are called the additive martingale and the
derivative martingale of the branching random walk respectively. Suppose that

(A2)
E (W1 (tog,. W1)*) +E (Wi log, W7 ) < ox,

where log, y := max{0,logy} and

zeN(1)
with (V(z))+ := max{V(x),0}. It was proved in Biggins and Kyprianou [3] and Chen [5] that,
under (A1), D,, converges almost surely to a non-negative limit Do, with P(Ds, > 0) > 0 if and
only if (A2) holds. Aidékon and Shi [2] studied the relationship between W,, and D,,, and showed
that, under the assumptions (A1) and (A2),

lim /nW,, =

n—oo 7T0'2

Under (A1), (A2) and the additional assumption

D, in probability. (1.2)



(A3) The branching random walk is non-arithmetic, i.e., for any 6 > 0,

P(L(R\ 6Z) > 0) > 0,

Buraczewski, Tksanov and Mallein [4] proved that

lim (E (Dool{Doogy}) — log y) = (1.3)

Yy—r—+00
for some real number ¢g if and only if

E (Wf’ (log. W;)?’) +E <W1 <log+ W1)2> n E( Y eV (V)
zeN (1)

+ w
S~
N
8

and

E <W1_ (log+ VVI_)3 1{W1>CO}> < oo for some Cy > 0.

Here, VV;r , W and /V[71 are defined respectively by

Wit = Z eV Ny, Wi = Z ey @)<oy.

zeN (1) zeN(1)
W= Y (1 +V(z) - min, V(ll)) eMven e VIV 0 gy
zeN(1) v

The following sufficient condition for (L3]) was given in [4, Remark 2.3(2)]:
(A4)
N —\2
E <W1 (10g+ W1)3> +E <W1 <log+ W1> > < 0.

[4, Theorem 2.4] says that, under conditions (A1)—(A4), for any bounded continuous function
f:R — R, it holds that

B (f (Vi (D= D+ 25", ) )

where X; is a spectrally positive 1-stable random variable independent of D., with generating
triplet ((co +1—=)V2/ (r02),\/7/ (202), 1), v is the Euler-Mascheroni constant and ¢y is the

constant in (L3]). More precisely, the characteristic function of X; is given by
E (™) = exp {ifeo + 1 = 7)v/2/ (m0?)A = v/a/ a2 A[(1 + isgn(A)(2/7) log |\]) }

e { ¥ T ) . AER (1:5)

where 15, (A) := o|A|(1 +1isgn(A)(2/7)log |A|) — ipA. Combining (L2]) and (I4]), we can easily get
the following fact: Ve > 0,

}"n> 5 E(f(DoX1) | D), n— o0, (1.4)

lim P (]Doo — Dy > n€_1/2> = 0. (1.6)

n—o0

The goal of this paper is to prove the counterpart of (II]) for branching random walks. We assume
the additional assumption



(A5) There exists a constant « € (0, 1] such that

E< Z e—(l—i—a)V(u)) < 0.

ueN (1)

Let {(Sn)n>0,P} be the random walk defined in (1) below and let E denote the corresponding
expectation. Then (A5) says that E(e~*91) < co. This assumption is only used in (3:24]).

2 Main result

We will always assume that (A1)—(A5) hold. Define [y] := min{k € Z : k > y}.

Theorem 2.1 Let (X;),~ be a spectrally positive 1-stable Lévy process with characteristic function
given in (LH), independent of Do,. Then the conditional law of

logn
(\/E<Doo - D[an] + TW[an]>>
a>1

given F, converges weakly in probability (in the sense of finite-dimensional distributions) to the
conditional law of (Xml/zl)c><>)a>1 given Do In other words, for all m > 1,ay,...,a, € [1,00)

”)

and bounded continuous f : R™ — R, we have
1<k< m) ‘Doo> . in probability.

E<f<\/ﬁ<Doo — Dy + b%w[aw]),l <k< m>

—>E(f(X,1

2
n—00 ay Do

Recall that {(S;)n>0, P} is the random walk defined in (3.I]) below. It follows from [2} (2.8)]
that there exists 6* > 0 such that

Jim ﬁP(minSj > 0) =6

Jj<n

Set

5 = (9*)_1\/EP<minSj > 0). (2.1)

jsn

Proposition 2.2 There exists a 0+ > 0 such that

[ 2
lim P(‘\/ﬁwn — —25nDoo‘ > n—5+> = 0.
n—o0 yixea

Consequently, for allm > 1,aq,...,an € [1,00) and bounded continuous f : R™ — R,

)

logn
= (V{2 = o + g ) 1 5]

— K (f (X —12p 1<k< m) | Doo) , in probability.

n—o00 ag

If we want to replace é,, by 1, we will need a slightly stronger condition:



(A6) For some ~y > 0,

E( > [Vw)Pre e—W“)) < oo0.

ueN (1)

The assumption (A6) says that the random walk S,, has finite (2 + 7g)-th moment, which
implies that 0, — 1 = o(n™%°) with some gy > 0 according to [6]. We summarize the result of [6],
Theorem 2.7] as follows:

Lemma 2.3 If (A1)—(AG6) hold, then there exists g > 0 such that
lim n® |6, — 1] = 0.
n—oo
Combining Theorem 2.1], Proposition 2.2land Lemma[2.3] we immediately get the following theorem:

Theorem 2.4 Assume that (A1)—(A6) hold. Then for allm > 1,a1,...,a, € [1,00) and bounded
continuous f : R™ — R, we have

E(f <\/H<Doo — Dy + k’i}a}»,l <k< m> (fn>

2ro?[agn

n—oo

— E (f (Xa—l/QD A <k< m) | Doo> , in probability.
k oo

The main idea of this paper is a modification of that of [10]. To get the fluctuation of Do —Drgp1,

we choose a level v, and define a quantity D,E;m]’y", for m > [an], which roughly takes care of the
contributions to D,, by the paths that stay above the level v, between generations [an]| and m.

We first show that Diﬁ"ﬂ T converges to a limit DCE‘;"M" as m — oo and get a rate of convergence

for D{Zﬂ% as n — oo, see Lemma Il Then we analyze the contribution of DL&"LW to the

limit behavior of Dy, in Proposition [4.3]. For contributions to D, by the collection Llanlm of

an

particles x with [z > [an], V(z) < v, and minjc(gp, |z|-1]nz V (75) = Vn, We separate £lenlm into

two sets ﬁ;‘;ﬁl’% and El[gzlﬂ "’ and look at their respective contributions to the limit behavior of

D, see [@4) in which F ;ggg’% represents the contributions by Egi:ﬂi’% and Fb%l Im represents the

contributions by ﬁl[‘;z]’y". We show in Proposition 4.9 that Fb[;; b i asymptotically negligible.

For the contributions by ﬁ;‘;ﬁl’%, we define a sequence of random variables N ;g;g T (see ([A.26)).
By using the branching property and the tail behavior of D, we show in Proposition E.10] that
Vn(F, ;g:;’y" ~-N g[g:;’y") converges in distribution to ¢*X,-1/2p  with ¢* being the positive constant
defined in (3.4]) below, which leads to the main result.

Although the general approach of this paper is similar to that of [10], adapting it to the case of
branching random walk is pretty challenging. In [I0], the continuity of the sample paths of Brownian
motion makes things a lot easier. For instance, the counterpart of N g[g:;’y" in the branching
Brownian motion case takes care the contributions by the particles that hit a certain level at some
time after at due to the continuity of Brownian motion. The main difficulty in the case of branching
random walks is that a branching random walk can jump across the level and one needs to take care
of the landing positions of the particles after crossing the level. This leads to many complications

and many subtle modifications are needed to actually carry out the program.



3 Preliminaries

We will use f(z) < g(x), @ € E, to denote that there exists a constant C' independent of x € E
such that
f(z) < Cyla), we€E.

We will use f(x) < g(x),z € E to denote f(z) < g(z),z € F and g(x) < f(x),z € E.

3.1 Spine decomposition

Define a random walk {(Sy)n>0, P} such that for any n € N and measurable function g : R" —
[0, 00),

E( Z g(V(:I:l),...,V(:En))>ZE(ES”g(Sl,...,Sn)), (3.1)

z€N(n)

where E stands for expectation with respect to P and for z € AM(n) and j < n, x; denotes
the ancestor of x in the jth generation. (B.I) is also known as the many-to-one formula. See
[11l Theorem 1.1] for more information about the random walk {S,,n > 0}. By taking n = 1,
g(z) = ze™® and g(z) = z%e™® respectively in (B.I)), we get that (A1) and (A2) imply that
ES; = 0,02 = ES? < cc. For any y € R, we use P,, to denote the law of {y + S,,,n > 0} and E,
to denote the expectation with respect to P,. Note that, under P, {y + S,,n > 0} is a random
walk starting from y.
We define a probability Q such that for all n > 0,

dQ
Fi . = W,

Denote by L the law of L under Q. Lyons [9] gave the following description of the law of the
branching random walk under Q: there is a spine process denoted by {wy, }n>0 with wy = () and the
initial position of the spine is V(wg) = 0. At generation n = 1, wp dies and splits into a random
number of offspring with law L. Choose one offspring x from all the offspring of wg with probability
proportional to e~V (®)  and call it w;. w; evolves independently as wy and the other unmarked
offspring evolve independently as in the original branching random walk. By Lyons [9], for any
x € N(n), we have

—V(x)
Wn

e

Moreover, the position process {V(wy)},~ along the spine under Q is equal in the law to {S,},~
defined in (B0). Also, for y € R, we will use Qy to denote the counterpart of Q in the case of
branching random walk with the initial particle located at y.

Let 77 := inf{k > 1: Sy > 0}. Define the renewal function R(y) by

Tt—1

R(y) := E( Z 1{Sj2—y}>v y € R.

=1

Using the facts that ES; = 0 and ES? < oo, one can easily get that (see, for example, [2, Section
2.2]) R(0) =1, R(y) =0 for y < 0 and

Ry)<(1+y), y=0, (3.3)



and the limit

¢ = lim Ely) (3.4)
y—+oo Y
exists in (0, +00). According to [2, (2.4)], we also have
R(y) =Y _P(Hi| <), (3.5)
k=0

where Hy, := SU; with oy := 0 and o), := inf {z >0, 5 < mi]aogjgcrk:1 Sj}. For y > 0, define
H

7, =inf{k >1: Hy < -y} and 7, :=inf{n > 1: 5, < —y}. Then we can rewrite (3.5)) as
oo oo u iy
R(y) = > P(H > -y) = > P (5" > k) =B (")
k=0 k=0

Note that E(H;) € (0,00) (see [4, Lemma A.4.(a)]) and that Hy — kE(H;) is a martingale. Thus,

combining the optional sampling theorem and the fact that H_—.» = S_- , we obtain that
-y )

_7H — _ = — _ — —_ _
(—EH,)E (T_y ) - E( HT:QH) — RE(H|) = —E <5T7y> y—E, <ST0 ) . (3.6)
By [2, the first paragraph in the proof of Lemma 2.1], we have ¢* = E(|H|)~!. Note that, as a
consequence of (A4), we have E ((—51)3) < oco. Thus, by [4, Lemma A.4.(d)], there exists an
a* € (0,00) such that

A (Ry) —c'y) = o, (3.7)
One can easily check that
R(y) = E (R(S1 4+ y)1{s,>-3)» ¥ =0. (3.8)

Hence the sequence of random variables

zeN(n)

is a non-negative P-martingale with respect to {F;, }n,>0 with E <D; y) = R(y) for all n > 0. Define

a new probability measure Q™Y such that for all n > 0,

dQ~¥
dP

DY
Fn o R(y)

Similar to the spine decomposition under @, we can also describe the spine decomposition for the
branching random walk under Q¥ with a spine denoted by {wy?},>¢ and with spatial displacement
following the law of the random walk {S,,} conditioned to stay in [—y, +00): there is a spine process
denoted by {wn?}n>0 with wy? = @ and the initial position of the spine is V(wy¥) = 0. At
generation n = 1, w, ¥ dies and splits into a random number of offspring according to the law of
L under QY. Choose one offspring x from all the offspring of w, " with probability proportional
to R(V(z) + y)e™V @ 1y ()5, and call it wi¥. At generation n = 2, given V(w; "), w;” gives

(3.9)

7



birth to a point process according to (L,Q_(V(“’; y)+y)) and again choose one offspring x from all
the offspring of w;? with probability proportional to R(V (x) + y)e‘v(m)l{v(m)z_y} named w, ?.
The other unmarked offspring evolve independently as in the original branching random walk. The
procedure goes on. According to [2, Fact 3.2] or [5, Section 2.2], for x € N'(n),

R (V(:E) + ZJ) e—V(SL‘) 1{minj§n V(xj)z—y}

QY (wy¥ =a|F,) = DV

(3.10)

and the position process (V(wfl y)) - along the spine is equal in law to {5y },>1 conditioned to
nz

stay in [—y, +00).

3.2 Elementary properties for centered random walk

Lemma 3.1 (i) For alla >0 and n > 1, it holds that

) (1+a)
. <
P"(Iynslgsj = 0) ~oVn

(ii) For all a,u >0, b >0 and n > 1, it holds that

b+1)b+u+1)(a+1)
N :

P, (min$; >0,u <8, <b+u) S
sn

(#ii) For all a,b > 0, it holds that
ZPa<m<inSj > 0,8, < b) <(L+b)(1+(anb)).
n=0 =

Here a A'b := min{a, b}.
(iv) For any X\ > 0, there exists a constant C1(\) > 0 such that

> Ba(e ™ i, 5,20 ) S G, a0,
k=1

Proof: For (i), see [I, (2.7)]; for (ii), see [2, Lemma 2.2]; for (iii) and (iv), see [1, Lemma B.2 (i)
and (iii)]. O

Lemma 3.2 For all a > 0 and n > 1, it holds that
E<S’%1{minj§n SjZ—a}) S (L+a)vn.

Proof: Note that under P, {S2 — 0?n :n > 1} is a mean 0 martingale. Thus, by Lemma B (i),

E(S’%l{miny‘én SJ‘Z—CL}) - UQ”P(I}QS 5i = —a> * E( (S —c’n) 1{mina‘§n 53'2—“}>

S (+a)vn - E( (S —c’n) Lomin, < SJ<—‘1})

= (1 + a)\/E + Z E( (02n B ST2L) 1{minj§g,1 sz_a}1{55<—a}>
=1

8



= (1 + a)\/ﬁ + Z E( (U2€ B Sl?) 1{minj§g,1 sz—a}l{se<_a})

(=1

<(1+a)Vn+ U2Z€P<J_I&i§15j > —a, S < —a).
=1 =
Using Lemma B.1] (i) again, we get

Z€P< mlnS > a,Sg<—a):Zn:€P(]121€1nlS >—a) ZﬁP(mlnS >—a)

=1-(n+1)P <m1nS >—a>—|—ZP<mlnS >—a>

Jj<n Jj<t
(1+a) Z—<1+ 1+ a) / —dx—1+2(1+a)\/ﬁ§(l+a)\/ﬁ.

Combining the two displays above, we get the desired conclusion. O

Lemma 3.3 If X and X are non-negative random variables such that

E(X(log+ ))+E< (log+ )2><oo,
(o (tox, (X4 %)) + ( (log, (% +))") <o,

Proof: By the trivial inequality log, (z +y) <

then

2z) + log, (2y), we only need to show that

g+ (

e ) ) <
For this, it suffices to prove that for any x,x > 0,

 (log, 5)3 < 8z (log,, x)g + 27 (log, 5)2, (3.11)

z (log, a;)2 < 47 (log., 5)2 + 2z (log, ) . (3.12)
We will only prove (B.I1)), the proof of ([BI2) is similar. Assume that 7 > 1. If T < 22, then
z (log %)3 <z (log (332))3 = 8z (log a:)?’. If 7 > 2, then by trivial inequality
logZ <2VZ, T>1,

we have z (logZ)® < v (log )® < 27 (log ¥)?. The proof is complete. O

3.3 Moment estimates for the truncated martingales

For u € N (n),Qu) :={veN(n):v#u:v>u,_1} denotes the set of siblings of u. For k,y > 0
and m € N, define

By i= {xEN(m):Vl <j<m,

S (1 (V) — Vo)) e VOV < eV ore),
u€Q(z;)

Db = Z R(V(z)+vy) e_V(x)l{minjsm V(:cj)z—y}l{l’EBmw}'
zeN(m)



Lemma 3.4 There exists a decreasing function h : Ry — Ry satisfying lim, o h(z) = 0 such
that for all y,k > 0 and m € N,

0 <E (DY - D,%) < h(k).
Proof: The first inequality is trivial, so we only prove the second. For j > 1, set
- —(V(uw)=V(w? V4 w
E](y7 H) = { Z <1 + (V(U) — V( ] yl))+> e ( (u) ( ]*1)) > /{e( ( )+y)/2}
uEQ(w;y)U{w;y}

It follows from (B.I0) that
— — o —V(x
E (Dmy - sz,/ﬁ) - E< Z R (V($) + y) e ( )1{minj§m V(Ij)z—y}l{ngm,n}>

€N (m)
R(y) V(e
- < Z R (V(l’) + y) € Vi )1{minj§m V(mj)z—y}l{m¢3m,n}>

zeN(m)

= R(y)Q Y (w,? ¢ Bmx) < R()D_ Q7Y (E;(y, x)). (3.13)
By the Markov property, for any z > —y,
QY ( ‘V Y= z) = Q_y_z< Z (1 + (V(u))+) eV 5 ﬁe(z+y)/2>

ueN (1)

g ( Zuew BV @ + 2+ 9)e vz oy
- R(Z + y) {ZueN(l)(1+(V(u))+)e*‘/(u)>He(z+y)/2}

<k Y ueny RV () + 2+ y)e™V ™) )
- R(z +y) {Zueno) (V@) Jem VI >rel=t/2} |-

Using ([3.3), we have

R(V(u)+2+y) _ (V(u)), +z+y+1 _, (V(u)),
R(z+v) ~ z4+y+1 N z+y+1

Thus,
Q™Y (EJ yl) = Z)

(V(u)), —V(u)
E < Z4+y+ 1> € 1{ZueN(1)(1+(V(u))+)eV(u)>ne(2+y)/2}>

(>
- << Z4+y+ 1) 1{W1+W1>r~e(z+y>/2}> (3.14)
(W

Since the law of (Wy, W1) is independent of z, we deduce from (3I4) that

T )
V(’wj__yl) +y+1 {W1+W1>ne(v(wj:yl)+y)/2}

QY (B;(y,x)) < (Eg v O F) ((W n

10



21

:E E - 1 - z1+7z
< Q y<<21 + V(wj_—y1) +y+ 1> {V(wjy1)+y<210g<1:1>}>

Here under QY ®P, (Wl, Wl) is independent of V(wj__yl). Next, note that the law of V(wj_y) under
Q7Y is equal to the law of the random walk S; conditioned to stay in [—y, +00). Summing j from
1 to oo, and using ([B.8)) and the fact that R(y) <1+ y, we get

(3.15)

21=W17'51=W1>

00 %
Rlw) ;EQy <<Zl " V(w;*)) +y+ 1) 1{V(w{fl>+y<21°g(@> }>

21
B R+ im0 (314 5477 s vee(222) )

M

0

J

N

<
Il
o

E( (21 (S +y+1)+21) Limin,, ng—y}l{sj+y<2log<#) })

~ o0 ~
< <z1<1+2log+ (Zl +Zl>> +51> supZP(rEnSg > —y,S;j+y<2log, (Zl +Zl>>
K <7 K

yeR =0

o (22) ) (22)

where F(z) := supyep > ;—oPy(min<; S > 0,5; < ). Taking P-expectation in (3.I6), and

combining the result with (313]) and (BI5), we get

E (DY — Dyb) < R(y) Y Q7Y (Ej(y, )
=1

(3 (2, (BT ) 42 g, (V)Y o

It follows from Lemma B (iii) that F(z) < (14 x)? for all z > 0. By Lemma B3] we know that
h(r) is finite for all K > 0 and h is a decreasing function. Since F'(0) = 0, we have for k > 1,

h(x) < E (W (1+2log, (Wi +W1))+ W) F (log, (Wi + W) Ly, i)
<E <(W1 (1 +log, (W7 + Wl)) v W1> (1 +log, (W7 + Wl))2 1{W1+W1>H}> .
The right hand side above tends to 0 as £ — co. The proof is complete. O
Lemma 3.5 For ally >0,k > 1 and m > 0,
E ((Drth)?) S et

Proof: Using (3I0) and the fact that D,T@%’,.€ < D,’, we get

—y\2 _ —V(z
E (D) )=E<Dm%z >, RV@+ye V<>1{mmj§mV(xjp_y}l{xesm,ﬁ})
xeN (m)

= R(y)Eq-v <D;ﬁﬁ Z Q™ (w;my = x|}'m) 1{xeBm,,€}>
zeN (m)

11



< RYEq-s (Dl mvep, ) - (3.17)
By the spine decomposition, we have
DY = R(V (w;?) +y) e V(o' +Z > R(V(2)+y)e V. (3.18)
=1 zEQ(w;y)

Since
Rz+y)<Rai+y) S(I+zy+y) <(1+z:)1+y), y=>0,zeR,

we get, for any 1 < £ < m,
R(V(2)+y) < <1+y+v(wé 1)) (1+<V(z)—v<w;ff1>>+), zeQ(w;y).
Thus, for wp! € By, and 1 < <m,

Y RV(2)+y)e "

zEQ(w;y)

< (1 +y+V (w;_yl)) o~V (wt) Z (1 + <V(z) Vv <w£—_yl))+ )e—(V(z)—V(wﬂl))

<6(u;?)
< ke¥/? <1 +y+V (w;_yl)) eV (wih)/2

Combining this with ([BI8)) and the fact that V(wp?) +y > 0, we get
R(y)Eny (Dm {,w nyeBm })

S R(y)Eq-y <R (V (wp?) +y) eV (wn") 4 i red/? <1 +y+V <w£__y1)) e_V(wal)/2>

=1
< keYR(y ZEQ v <<1 +y+V (wzy)) e_(y+v(w;y))/2) . (3.19)
Since ((1+y)2e /) <1 on [0,00), we have for all £ > 0 and y > 0,
REgy (1w (wp?)) D) =By (RS (1480 €5 i 520))

2 _—S,/2 —S,/4
S Ey ((1 + 5% e L ming <, 5j20}> S Ey (e ! L ming <, 5j20}> ’

where in the equality we used (3.9). Applying Lemma B.1] (iv) with A = %, we get that for all
y=0,m=0,

Y) Em:EQw <(1 +y+V (wé_y)) e_(y""v(wt;y))/?)
=0

5 ZEy <e_Se/41{minjgz SjZO}) < e_y/4 + C1(1/4) S.; L. (320)
=0
Combining BI7)), (319) and (3:20]), we get the desired conclusion. ]
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3.4 Moment estimate for weighted number of particles hitting —y

For y >0, k >0 and n,m € N:= {1,2,--- } with n < m, define
—V(w
[nm : Z Z 1{V )<—y,minj<,_; V(z;)>— y}
l=n zeN(£)

AY = {x eT:vV1<j <]z, Z (1 + (V(u) — V(xj—l))_l_) e~ (VW —V(zj-1)) < He(V(xj1)+y)/2}7
ueQ(x;)

—V(z)
[n m],k Z Z 1{V(m)<—y7 minj<g_1 V(mj)z—y}l{meflﬂ}’

l=n zeN(£)

We will use the notation N[Zi,oo) = lim,, 0o N[yl’m} and Nﬁ

E (Nﬁm)) — 1.

(ii) There exists a decreasing function g : Ry — Ry with lim,_, 1o g(z) = 0 such that

— i Y
oo = o0 Ny g o

Lemma 3.6 (i) For any y > 0,

E (N )= Nl o) 5%, y>0,k> 1.
Proof: (i) By the definition of Q, we have
V(SC)
( [1,00) ) ZEQ< %:( o Wi 1{V )<—y,minj<p_1 V(z;)>— y})
TE
= ( Z Q(wk =z, V(wg) < y, mln V(w]) > y\}"k))
zeN (k)

(e T T

Q(Vwx) < . min V(w)) > —y) =1

B
Il
—

where in the second equality we used (B.2]).
(ii) For any m € N, by the definition of Q and (B.2]), we have

E<N[ylm} 1m] > ZE< Z e 1{V(w< —y,minj<p_; V(z;)>— y} {x@?.Ay}>

=1 zeN (L

[
NER

Q(V(w/z) <~y min V(wy) > ~y,we ¢ AY)

~
Il
—

o

Q(Vwe) < ~y. min V(wy) > —ywe ¢ AL).

~
Il
i

Since

¢
1 w S 1 — u)—V(w w, 1G ’
{weg AL} ; {Zuequ)(1+(V(u)_V(wq,1))+)e (V=vwg-1) 3, (Vwg-1)+y /z} Z p

13



we have

— i . _ Y
;Q(V(we) < y,jlélzlglv(w]) > —y,wp & A,@>

e
M~

1Q(V(we) <~y min V(w;) > —y,Gq>

~
Il
—_

<
Il

Mo
WE

Q(V(wg) < —y, min V(wj) > —y,G > i@(Gq, 1?11n V(w;) > y)

7<b—
z:wwa))

Recalling the definition of F' in (BI6]) and using an argument similar to that of the proof of Lemma
B4 we get
Z:V(wq1)>

TfL1=W1-|—rW71>

Q
Il

—

o~
I
Q

q=1

Eq (1{mmj<q1v(wj)2_y}Q< Z 1+ (V(w),)e V™ > ne(zﬂf)/?)

ueN (1)

e

1

Q
Il

ZEQ (1{minj§q1 V(wj)>—y}Q< Z (1 + (V(U))+) e_V(u) > /ie(2+y)/2>

q=1 ueN (1)

_EQ<ZQ( min V(w;) > —y, V(wg—1) +y < 2log, (%))

Jj<q-1

<SUPZ@< Iirun V(w;) > —y, V(wg—1) +y < 2log. <%))

yeR

m1=W1+W1>

oo (B oo (%2)

It follows from Lemma B.1I(iii) that F(z) < (1 + z)? for z > 0. Note that F(0) = 0, we have

Wy + Wy
y y »
E (N} o0y = Nl ooy < E<W1F<2 log, ( i >> | {W1+W1>H}>

<E(Wy(1+2log @ 21 B log, (W1+W1) _ 9(x)
~ ! * K {W1+W1>n} log/-; . log/{'

The proof is complete. O

Lemma 3.7 Let a be the constant in (A5). Then

14+
E( (Nﬁoo)n) > S ke, y>0,k> 1.
Proof: By Lemma [3.0 (i), we have

E(Nf sopn) < E(N[l o)) = 1. (3.21)

Define 7—, = inf {k > 1: V(wy) < —y}. For m > 1, it holds that

E<<Nﬁ m, ) ) (Z Z 1{v )<—y,minj<p_1 V(z;)>— y} {zcAl} <Nﬁ,m},n)a>

k=1zeN(k

14



B E@(HWSm}l{wT cat) (Nﬁ,w)a)'
-y

Using the trivial inequality
(x+y)* <z*+y* z,y>0ac(01],

we get that

E <<Nﬁ . )Ha) <Eg <1{7ygm}1{wTyeA%} <Nﬁvmlﬂ - e—V(%y))‘l)

—aV w_— )
+Eq <1{Tygm}1{w7 eA%}e v ) = I+ 1II (3.22)
~y

By the spine decomposition, we have

- (w‘r /\'m V(u
Nﬁ’m}ﬁ:e + Z Z N[Z{—Fm(k}) .
k=1 ueQ(wy)

By the branching property, (32I) and using the trivial inequality E(|X|%) < E(]X|)* (since a €
(0,1]), we have

o —V(wT, )
Il/ < EQ <1{7’y<m}1{w _ EA%} (N[Z{,m},n —€ Y )>

= —V(u
< <m} {w - eAy} ;ueg(;ul Eqg < (1, m—f]ﬁ) z:V(u)+y>
SE@<1{WT€A@/ ; %:) >
ue ’we
<Eg <1{w _ eAy} Z oV (we—1) Z (1+ (V(u) = V(we-1)),) e_(V(“)—V(wzl))>

u€Q(wy)

< KEg <1 o ) Ze (V(we—1)—y >/2> < meyE@<Ze_(V we- 1>+y>/2>

(=1
Using Lemma [B.1] (iv) with A = 1/2, we get that

T:y—l

EQ<Z‘3 (we—1)+y /2> < 1+IE@< Z e—(V(wz)+y)/2>
=1
—Sp/2
<1+ ;Ey (75 i,y 5,201 ) S1H+C1(1/2) S1
Then we have

I < k%e™. (3.23)
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Finally, using Lemma 3] (iv) with A = 1 and (A5), we get

—aV(w _ ) —aS _
[ISEQ<€ Ty > :E<e 7—y>

_ —as,
= e Z Ey (e a Zl{mink§e71 Sk20}1{55<0})
(=1

o
—aS,_ —a(Sg—Sp—
< eayZEy(e aSy 11{mink§g,1sk20})Ey(e a(Se—Se 1))
/=1

< C1(1)e™E(e 1) = ayE( Z e~V “> < e, (3.24)

ueN (1)

Hence, combining (3.22)), (3:23])) and (3.24]), we get that

E <<Nﬁ m, > +a> < k%™,

This completes the proof of the Lemma. |

For a sequence (8y,)n>1 of positive numbers, define

NYT V()
N[Z m| Z Z )+ Bnty)e” 1{—y—ﬁn/2§V(1‘)<—yv minj<,_1 V(z;)>-y}’
q= ZmeN( )
YT V(x)
N[Z ml,k Z Z + ﬁ + y) 1{—y—ﬁn/2§V(m)<—y7 minj<g_q V(gcj)z—y}l{mefl%}’
q=t zeN(q)
and let ]/\\7[%’20) = limy, oo N[%’nm] and ]/\\7[%’20) o = lim,,, oo N[%’m] Then we have the following
result similar to that in Lemma and Lemma 3.7 for N, ﬁ 00) and N[y1 Zo) i

Lemma 3.8 (i) Let g be the function in Lemma [3.4 (ii). Then

E(Nﬁ’n)_Nyn > /Bn ( ), y>0’/{>1’n21

[1,00),k

(ii) Let o be the constant in (A5). Then

~ 14+«
E((Nfn).) ) SATRe, y=0n21n>1
Proof: (i) By direct calculation and Lemma [3.6] (ii), we have

E@[y’n)‘NﬁZo)n)

V()
<Z Z + Bn + y) 1{V(w)<—y,minj§q,1 V(xj)z—y}l{xéfl%}>

9=1 zeN(q)
—V(x)
ém(z > « uw_y,mmm1V<mj>2_y}1{m¢,4g})
q=1zeN(q
_ v oY (k)

(ii) Combining Lemma [3.7] and the inequality 0 < Nﬁ" " < ﬁnNﬁ ooy e immediately get
the desired conclusion. O
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4 Proof of Theorem 2.1]

For n > 1, set
1
1= g logn + By, (4.1)

here (8,),,>; is a sequence of positive numbers with

B

nl/16

1
Bn — 3 logn — +00, — 0, asn— oo. (4.2)

We first give the main idea of the proof of Theorem 2.1l Recall that ¢* and a* are the constants
in (34) and (B1). Let {(y) := c*y + a*. Using (L.2), we get

Doo= lim Y £(V(z) =) e V@ (4.3)

m—ro0

zeN(m)

For x € T and m > 0, let T, be the subtree of T with root at = and A (z,m) be the collections of
particles in the m-th generation of T,. Define

Dy (z) := Z (V(u) — V(z))e~V@-V@),
ueN (z,m)

and let Do () be the limit of D,,(x).
For n > 1 and m > [an]|, we define a quantity D#b"ﬂ’% which roughly takes care of the
contributions to D,, by the paths that stay above the level v, between generations [an]| and m.

We show in Lemma 1] (i) that D,E;m“" converges to a limit DLZ’” mas m — 0o.
For any n € N and a > 1, we define

Llonlm .= {:17 eT:|z| > [an],V(z) < v, and min Vi(xj) > yn}.
jE€lan,|z|—1]NZ
We will use Fran,+, to denote the smallest o-field containing all the information about the particles
x € LIl (about 2; and V(z;) for all z € £ and j < |z|). Tt is obvious that Fran] C
Fprand -
To consider contributions to Dy, by particles in Llanlan e separate L1917 into two sets

£lem and £l

clantan . {3: e clonlm . min Vi(xj) > vn, V(x) >y — %},

good n<j<[an]

E{[ZZL% = {3: c clanlm . n<Ijn<iR1n] Vi(z;) < %L}

T NS _ P
U {x el : ngjn%1|2|—1V(x]) > Y, V() <Y 5 }

By (4.3)), the branching property and Lemma (.1 (i) below, we get

¢* Dyo = D]anlom 4 Z e V@ D ()

zellan],m
= plarlom 4 Z e V@D (x) + Z e V@ D (z)
wecfim wedffim

17



—. D(L(ozn]v"/n + FJ?Z;I In + Fb[;i;l—l 7'Yn. (44)

Using this, we get that
logn 1 an |, Yn * * *
Do = Dyan) + =5 Wian] = (Dio 19— (¢*Digmy — (¢ — )W[an]))

C
1 an * * 1 an|,Yn
+— (F( Jn _ (c*Bn — )W(Lm]> + EFb[ad]’y . (4.5)

In Section .1l we prove that plantom ~ ¢*Dign] — (" — @) Wiap1, see Proposition B3] below.

In Section [A2] we analyze the weighted number of particles N JZZJ’V” defined in ([@.27) below, and

prove that Nlanlan (c*Bn — ™) Wigp, see Corollary A8 below. In Section 3] we prove that

good
Fbgg T is negligible, see Proposition

Then, by (£3]), we see that

. logn A An
c <Doo _D&m] +TW[an]) %FJZZJW _Ng{ggclﬁ/ :

In Subsection 4, we prove the convergence of /n(F JZZ}% - N JZZJ’A’”) to ¢*X,-1/2p_ in distri-

bution, see Proposition [4.I0] below. Using these, we can easily get the conclusion of Theorem

21

4.1 Modifications of the martingales with level 7,

For a > 1, n € N and m > [an], define

Dlanln . _ —V(z)
Dm = Z R(V($) 7”)6 1{minjg[an,m]mzV(xj)Z'Yn}’

N (m)
an|,Yn .__ —V(z
Digntam = " (V) — ) e )1{mmje[an,mmvm)zw}'
€N (m)

Lemma 4.1 Let a > 1. Then
(i) DJ;g"]’V" = limy, oo Diﬁ"ﬂ I exists P-almost surely.
(ii) Moreover, under PP,

lim v/n ‘Dg‘om]’“/" _ planlam| _ 0, in probability.

n—00 [an]

Proof: (i) For m > [an], by the branching property,

N (an—| yIn _ _V(x)
E (Dm+1 fm) - e%(: ) 1{minj€[an,m]mz V(m])z,yn}e
z'eN(1) V(@)
—Vie ~lan],yn
N Z L mine e V() 2m } € @R (V(z) —~,) = Denlom,
€N (m)

18



[an],yn nl,vn

Thus <l§,£fn]’%) > an] is a non-negative martingale and hence Dy = limy, 0o IND,Ef
m>[an

P-almost surely. It follows from (3.7)) that sup,~q [R(y) — £(y)| < oo. Therefore,

exists

‘Dy[;lln—l Ino __ 57@3”1 In

<sup|R(y) —Ly)| Y e =sup|R(y) — L(y)| Wi, P-as.
y=0 zeN(m) y=0

Since lim,,, 00 W = 0, we get the desired conclusion.
(ii) For k > 1 and m > [an] + 1, define

Bl o= {a e Am) s Vfan) +1<5 < m,

S (U (Vi) — Vg, ) e VO-Ver) < He(V(xjn—m/z},

Q(z;)
Dlanlyn . _ —V(x)
Dmﬁ "= Z R(V(x) fy")e 1{minje[an,m]nzV(u’f/‘j)Z’Yn}l{meB,Eﬁﬁ]””}'
zeN(m)

Then by the branching property and Lemma [3.4],

E <lf§7[rtlln—|v'yn _ E%ﬁ]vyn ]:(an])
= Y N E (D — Do ) . S Wignih(s),  (4.6)
Yy=v{u)="7n

ueN ([an])
where h is the function in Lemma [3.4l By Lemma B.5] we have

F) £ 3 OR((O ) )],y

ueN ([an])

Sk Z e 2V WV (W= — ke " Wign- (4.7)
ueN (Jan])

Var (E,E‘j’,g n

Combining (&6)-(£71) with E (5#3”1 n

.ﬂa,ﬂ) = EBZ}%, we get that, for any ¢ > 0,

R e e )
< P(EJ;;M an _ Planlan > €

m 2 \/W‘]:]'an])

_|_[p>< ‘5%,% _E <5m%

) = e

1
+ {E(ﬁknw n_plantom

]:"an" ) >e/4/[an] }
< QME <1~)7Egn17vn _ ﬁyf);lr’g;yn
E )

5 (CLTI-‘ W[an] <

(an~|2 nlan],vn
f(“"]) + —62 Var <D7[n7,i]"y
Zh("{) (CLTL—| 6—2’1 logn—ﬁn> )

Flan] )

+ —kK
€ g2

Letting m — oo, we get that for all k > 1 and n > 1,

]P)( ‘DCEZM o E(an] | s 3e

[an] = 7 (CLTI-‘

‘f [anw) S [an]Wian <h(%) + me—(ﬁn—fllog")). (4.8)
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Using (L2), (£2) and (£8), first letting n — oo and then k — 0o, we get

[anlyn _ plenlan| — o in probability. (4.9)

50 [an]

lim /n |D
n—oo
On the other hand, by (3.7) we know that there exists C' > 0 such that |R(y) — ¢(y)| < C for all
y > 0 and that, for any n > 0, there exists K = K(n) > 0 such that |R(y) — {(y)| < n for y > K.
Since minger(m) V(7) — +00 as m — oo, for any § > 0, there exists L > 0 such that

P(mijrrl V(z) < —L) <é. (4.10)
S
Therefore,
Dfad ™ = Dlad™ | <oWiam + € X VO cviyeniny- (4.11)
zeN ([an])

Combining (£10), (A1) and Markov’s inequality, we get that, for any ¢ > 0,

~lan],n o [an],yn €
p(|[Dfz o~ plot| > —\/ﬁ) <5+ P (n/aWign) > £/2)
§ : —V(x
Freve eN ([ 1)6 L0021 019019 iy Vi 1) > 72)

<6+ P (n\/ﬁW(an] > 6/2)
2Cy/n V(2)
+ E IE( Z e
zeN ([an])

20Vt

3

L <v @<+ K3} fmin, < oy V(xj>2_L}>

=)+P (’I’}\/EWM”] > 6/2) +

Yn < Sfan] < + K, in[in] S; > —L). (4.12)
i<[an
Since 7, = o(n'/1%), by Lemma BI(ii) we have

2C
lim sup \/EP(%L < Stan] <+ K, min_S; > —L)

n—00 3 Ji<[an]
< lim 20v/n (L+1)(K +1)(y, + L+ K +1)

n—oo € \/W

Thus, using (I2)) and letting n — oo in (£12), we get

£ 2 e
> \/ﬁ) < 5—|—P<m/7r02a Do > 6/2). (4.13)

Letting 0,7 — 0 in (@I3]), and then combining the resulting fact with ([4.9), we get the desired
conclusion. O

=0.

lim sup ]P’< ‘5 [anlym _ plan]yn

o0 [an] [an]

For m > n, define
T SR
€N (m)

{minjepn,minz V(@) 2m } - (4.14)

Lemma 4.2 (i) For alla > 1,b € R, asn — 00, (yn + b) v/ (Wi —W&g’%) — 0 in probability.
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(ii) For alla > 1,b € R, as n — o0, (7, + b) \/ﬁ(W[an] — ’Wvﬁl;ﬁ) — 0 in probability. Moreover,

if there exists a sequence of random wvariables {J,} such that for alln > 1,
E (1) [Fran ) < O+ ) Vi (Wi~ Wi

then J, — 0 in probability.

Proof: (i) Without loss of generality, we assume b > 0. Fix § > 0 and let L be the constant in
(#10). Using Markov’s inequality and Lemma [B] (ii), we know that for any € > 0,

7 lan], €
]P)(W((Mﬂ W]—mﬂ z (’Yn + b) \/ﬁ)
_yplendom 5 € A
SO0 P<W“”” Wiont ™ 2 0w v 2wt ¥ (49 2 L>
(1 +b) v V(o
<o+ —E( Y e <o minge o Vi) z-L)
zeN ([an])
n n n+1)2(L+1
:5+MPL(SMM <+ L, mln S; >0) SO+ 4l +b)\/ﬁ' (O + DL + )
€ <[an] € /(an'|3

Since v, = o(n1/16), by taking n — oo first and then § — 0 in the display above, we get the
conclusion of (i).
(ii) Similarly we assume that b > 0. It suffices to prove the second result since the first one

holds by taking J, = (vn + ) vV | Wian1 — W . Using the same argument as in (i) gives
[an] [an]

P (|| >a)§5+éE<E< :

('Yn +b) \/ﬁ TN
S0+ e E ((W[‘"‘] = Wian] > L iming < ) mingen(fant) V(l‘j)Z—L}>

<54+ ME< Y v

€ zeN ([an])

> L {min; < fam mingen(fant) V(l‘j)Z—L})

{minjen,fanjnz V(xj)<7n}1{minj5[an1 V(l‘j)>—L}>

=5+MPL( min Sj <+ L, min S;>0). (4.15)
€ j<[an]

n<j<[an]
Let f1,(Sk) := Pg, (min,< <[an]-k Sj > 0). By Lemmal31l (i), we know that f;(Sk) < (14 Sk)([an]—
k)~'/2. By Lemma 3] (ii), we have

[an]

PL<n§I]n§i][aan]5 < vn+ L, m[ln]S >0><ZPL<Sk<7n+L m(m}S >0)

k=n
fan]—[v/] [an]
< Z E; (fk(Sk)1{Sk<'Yn+L}1{minj§k szo}) + Z P; (Sk < Yp + L’EHSIE Sj > O>
k=n k=[an]—[v/n]+1
fan]— (vl )
1 1 m+L)*(1+ L
SAty+l) Y PL(5k<7n+L,m<i£5jzo)+\/ﬁ( A e )
= Vlan] -k i V/ (Fan] - [va] +1)°
2 2
< (I+m+L) fan] - (1 +%+L; (1+1L) +\/ﬁ(1+7n+L) (1+1L) .
V7] Vit V(Tan] = [va] + 1)?
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Using v, — 00 as n — 00, we can easily get n3/4b, / ( ) < 1. Combining this with (£I5]) and the
fact that 7, = o(n'/1%), we get that as n — oo,

ntb "
P (|J,| >E)§5+Mbn§5+ Tn_
c nl/4
Letting n — oo first and then § — 0, we get the desired result. O

Recall that ¢* and o* are the constants in (3.4) and [B.7) and ¢(y) = c*y + o*.
Proposition 4.3 For any a > 1, under P,

lim /n ‘Dig’ﬂ o (c* Digny — (€' — )W[an] ‘ =0 in probability.

n—o0

Proof: Define D}y := > zen(m) L V(@) = 7m) V@ = D, — (¢*yn — ) Wiy, Note that

Vil = Digy | < | it - DI

lanl o S
+Vn ‘D fan]  ~ Dfan]

By Lemma A.T] (ii), limy—00 /72 (D&"M" — Dl = 0in probability with respect to P. On the

[an]

set {min|x|:mn1 V(z) >0}, we have

[an] [an]

\/" planlom _

= \/ﬁ‘ Z ¢ (V(l’) - ’Yn) e_V(x)l{V(ac)<’yn}

zeN ([an])

< (" yn +a) Vvn <W[[m] — W[[j:ﬂ ’Pyn) .

Combining Lemma[.2] (i) with the fact that limy, e P (mingeprim) V(x) > 0) = 1, we immediately
get that lim,_,e0 /7 ‘D[“’” an_ pin

[an] [an]
conclusion follows. O

= 0 in probability with respect to P. Now the desired

4.2 Approximation of the martingales via weighted number of particles

Recall that +, is defined in (£I]). For any n € N and a > 1, we define
[an]vyn Pp—
Ngood i Z Z 1{m1nn<]<k 1V(xj)>~/n,V(m)<“{n}’
k=[an]+1zeN (k

Lemma 4.4 For every a > 1, under P,

lim VB | Njeod ™ = E (Njond ™

=00 good good

]:[an]>‘ =0, in probability.
Proof: Define

Alonln . — {x € Lym ™ +¥[an] +1<j <|al,

good
S (1 V() = Viwg),) e VOV < eV, (416)
u€(z;)
nlanlom . _
Nooody" Z Z {minngjngl V(l‘j)ZVmV(xK%}1{xeAL‘””'”" }

=[an]+1 zeN(£)
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Then for any € > 0, we have
<\/_ B gfﬂ g (NJZ:; n f(mﬂ)‘ > 3e(f[an])
< = (vas, (Nl = NJl) > ef )

+ P (Vi | Voot = B (N2 Fram )| > | Fram ) + 1{

good, K good, Kk VABE (N[an] sm _plenln

good,k

]:[an] ) >E}

< 27 (2 - N )
+ <@> (‘Ng[ggc} ;Zn - <NQ[Z:;,Z” ]:[an]) ‘Ha }—Wﬂ> . (4.17)
Using Lemma (ii) and the Markov property, we get
B (N ™ = Nyoad” m)

Flan] )
Flan] >

_ —V(u) z N ( )
B Z ‘ Lz B <N[17°°) N[l’w)’“) ‘zzv(u)— ~ log k Wian1s (4.18)
weN (an])

( Z Z e 1{m1nn<J<g 1 V(xj)>7n,V( Z)<“/n}1{x¢ALa"]”m}

(= [an]—i—l zeN (L

<E ( Z Z {mm[an] <j<t—1V(2j)>7n,V () <’yn} { §1gA[an] 'm}

L=[an]+1 zeN (£

where ¢ is the function in Lemma (ii). It follows from [12, Theorem 2] that, for any random
variables X7, ..., X, with finite (1 + a)-moment satisfying E(X;41]|X; +--- X;) = 0 for all j =

1,...,m — 1, we have E <|ZZ XZ-|1+°‘) < 2%, E(|Xi|'™). Note that, by the branching property,

N ;Z:;;Zn = D ueN([an)) H(u) with {H(u) : u € N([an])} being independent random variables

conditioned on F,,). More precisely, for u € N'([an]),
-V
Z Z € (x)l{minngjgefl V() >,V (2)<vn } 1{x€ALmﬂ'7" }
{=[an]+1 zeN (£),z>u

Using these two observations, the branching property, the trivial inequality E (|X —EX |1+") <
21F9E(| X|19) and Lemma B.7), we get

1+«
e ([Nt - & (N2l )| [P
1+«
:E< Z (H(U)_E(H(U)‘f]'an])) f]'an])
ueN (fan)

S Y E(1H@ - EH|F) " Fan) S D E(H@ | Fran )

ueN ([an]) ueN (Jan])

S e—(”")V(“)l{V(u)z%}E((N[ m)ﬁ>1+a>
ueN ([an])

2=V (u)—n
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Sk DY e eV ealVin=m) - geememyy, . (4.19)
ueN ([an])

Combining [@I7), @EIS) and @I9), taking x = €’/2 and using the definition of v,, we get
(\/_ﬁn an] n E (N[an] n

good good
Bn /2 1+a,—afn/2
g(™?) | Bitoe
S.; \/ﬁw[an] < - + - clta )

Fran ) ‘ > 36‘}"[(1”])

(4.20)

Letting n — oo, and combining (I.2]), (£.2)) and the fact that lim, ,,, g(z) = 0, we get the desired
conclusion. O

Define

Arlanlom
Ngood = [221 %: {minngjgkfl V(Z5) >V, Yn—Bn /2<V (z)<yn }*
k=[an]+1 z€

(4.21)

Proposition 4.5 For any a > 1, under P, it holds that

lim /nf, N

n—o0

an] n
" = Wian

good =0, n probability.

Proof: By the branching property and Lemma 3.0l (i), we have

[an—l sIn
E (Ngood an]> < Z Z {minngjgk,l V(xj)Z’\/n,V(:c)<-yn} f(an])
=[an]+1zeN (k

- ~V(u)q .

- Z ‘ {minnéjé[an] V(“j)Z’Yn}E(N[l,oo)) ‘sz(u)_ﬁ/
ueN ([an))

= _V(u) 7T

B Z ¢ 1{minn§j§[an] V(“j)Z“{n} W[an] (422)
ueN ([an))

Then we have

| ™ W] V0 [N S |+ v [N (N )|
+ \/_Bn aiﬁl W[an] :

It follows from Lemma 2] (ii) and Lemma [4.74] that the second and third terms on the right hand
side of the above inequality converge to 0 in probability as n — oco. To prove the desired result, we
only need to prove

[an],m _ A7lan]m
N, good — N, good

lim +/nf,

n—oo

Recall that (S, Py) is the random walk defined in ([B.1)) with Sy = y. By the Markov property
and ([B.I]), we have

B (Vs (Nl - K ””) 1fmﬂ)
= \/HB"E< Z Z {mlnn<g<k 1 V(2j)2m,V(2)<yn— 6”/2}‘]:[("”)

k=[an]+1zeN (k

=0, in probability. (4.23)
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<V Y 1w >%}ZP ( min ;> 0,8 < 5n/2)( v (429

ueN( [an]) y=V ()=

For k > 2, Uy := S, — Si_1 is independent to S, ...,Sk_1 and has the same law as S; — Sp. Thus
for all y > 0,

Py( min S; > 0,5, < ﬁn/2 Ey<§:Py< min S; > 0,5, < uk—ﬂn/2)

WE

71<k—1 <k—1
k=1 k=1
o
—E ( P ( S; > 0,81 < —u— 2) )
Y z—:1 Jg}“lnl ko1 < = = Bu/ u=S1—y

By Lemma B.1] (iii), we see that
ZP?J mln S >0,5,1<—u— ﬁn/Z) (1—u-— ﬁn/2)21{_u_5n/2>0}.
k=1

Therefore, using the fact that (S; —y,Py) 4 (S1,P), we obtain

> Py( min 520,85 < =5./2) SE((1= 81— 50/2) s, <p./2)-
k=1

Note that for v < —f,/2 and §,/2 > 1,

(1—u—Bn/2)? <2(u*+ (Bu/2 - 1)%) < 4.

Hence, for all y > 0 and n > 1,
= 1
> Py ( ]glg S; > 0,8 < —B/2) SAE (Silis,« g./21) S 5—E((—51)3 Lis <, /2))-(4.25)
k=1 n

Combining ([@.24]) and ([@.25]), we obtain

(\fﬂn ( gZZ}’”" - NQZ?’”") ‘fmﬂ) S VWi E <(—51)3 1{sl<—/3n/2}) ,

which implies (£23]). The proof is complete. a
Corollary 4.6 Let m > 1,1 < a1 < ... < @ < g1 = 00 and (27), oy € (C™N | here 2" =
(2,25, m) Assume that for all 1 <k<mandn >0, Re(z}) <0 and 2" converges to some
z=(z1,"+,2m) € C™. Then under P,

7)

<L— ! >} in probabilit
r k \/a—k ,—ak+1 ) p Y.

Il
©]
Z
—N
e
)
8
NE
N
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Proof: Using (I.2]) and Proposition [L.5] we have that, for all 1 < a < b < o0,

Slanln  [bnlm [ 2 1 1 _ . -
Vvn <Ngood o Ngood K ) — WD" <75 — 75 =0, in probability.

Noticing that N (‘m} >N VI and Re (21t) <0, using [10, Remark A.3], it suffices to prove that

good good
n>

= 2 1 1
lim E exp{ zp D, < — ) }
n—00 < Z:l k w2 Ok v Ak+1

[ 2 - 1 1 : s
= exp { mDoo Z 2k <\/—a_k — ak+1> }, in probability.

lim
n—oo

k=1
Since D,, € F,, and lim,,_, D,, = Do, the equality above is trivial. O
Define
[an] > logn
Arlan|,ym * =V
Ngood ! T Z Z ce (@) (V( ) )1{m1nn<3<k 1 V(zj) >’Yn} {Vn—Bn/2<V (x)<yn}-

k=[an]+1 zeN (k) ( )
4.26

Lemma 4.7 For any a > 1, under P, it holds that

lim \/_‘N[an]’y" — (" Bn — )N[‘m]’% =0, in probability.

n—00 good good

Proof: Note that
Vi [Nl = (¢ o = o) Njood ™
< Vi Nt B (R [ Frua )|
+ Vi [B (NJord ™| Fram ) = (B — a”) B (N ™
+ (¢ B — o) Vi | (Nl
(B =) VA NI - N
=:Ip+ 11, + 111, +1IV,.

i)

good

Fran] > Nlanlan

It follows from Lemma [£.4] and ([@.23]) that 11, and IV, tend to 0 in probability as n — oc.
We first show that lim, .., I,, = 0 in probability. Define

M- Y% e (Ve - 257)

l=[an]+1 zeN (£

% 1{minn§jgeﬂ V(wj)Z“/n} “"‘B"/KV(QCKV"}1{xeAL“”]’””}’ (4.27)

where A" s defined in (416). Using an argument similar to that in first part of proof of
Lemma 4.4l we get that, for any & > 0,

P (\/—‘meﬂ MR <thm1 n

good good

]:[[m]>‘ > 36‘]:&1”])
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é ZﬁE (N"an‘lvﬁﬁ’b _ j\?"a‘n‘lv'\/n
9

good good,k

Fru) + () (|l (Rl )| e )

By an argument similar to that leading to 20), taking x = e/ and using Lemma B8] we can
get

P <\/ﬁ (NW% _E <Kﬂan1nn

good good

Bn/2 1+a,—afn/2
g(e™2)  Bitoe
sﬁw(an]< - + = lta >
Combining this with (L2]), (42 and the fact lim,_, g(z) = 0, we immediately get lim,, o I, =0
in probability.

Therefore, it remains to prove that lim, .., 1, = 0 in probability. By the branching property,
we have

E (j\}ff"ﬂmn

]:[[m])‘ > 36‘]:“1”])

good

— —V(u)
]:]'an]) =¢ Z € 1{minn§j§[an] V(“J)Z'Yn}
ueN (fan])

—Vi(z

o« —V(u
=_C Z € ( )1{minn§j§|'an] V(Uj)Z’Yn}
ueN ([an])
o ZEv(u)_«m ((Sk + ﬁn) 1{minj§k71 SjZO}l{_B"/2SSk<O}) . (428)
k=1

For y > 0,n > 1, define

An(y) = Z E, <(Sk + Bn) 1{minj§k—1 Sj20}1{5k<—5n/2}> :
k=1
By (4.25)), we have
Anly) < B Y Py (jggr_ll S 2 0,5, < —ﬁn/2> SE((=50" Lisi< g/
k=1 =

On the other hand, we have

—An(y) < ) By ((—Sk) 1{minj§k,1sjzo}l{sk<—6n/2})

gt

o

Ey ((_Sk) 1{minj§k,1 SJZO} 1{Sk71<_Uk_Bn/2}>

B
Il
—

Ey ((_Uk) 1{minj§k,1 SjZO}l{Sk—1<—Uk—Bn/2}> ’

M

e
I
—_

where U, = S, — Si_1, and in the last inequality we used the fact that —S; < —Uj, on the set
{Sk_1 > 0}. By Lemma [31] (iii), we have

Z Ey( (=Uk) 1{minj§k,1 SjZO}l{Sk—1<_Uk_Bn/2})
k=1
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E( Ul 1{ U1>57L/2}ZE ( mln S >0,8.1 < —up — ,Bn/2>

u1:U1)

E((-U) (1 - U - ﬂn/2) L{—t1>6,/2})
((—Ul) L—ti>g/21) = B((=50" 1is,<—5,/21)-
Therefore, for all y > 0,n > 1,

IZANRAN
&=

[An()] S E((=51)° Lis < g,/2))-

Combining this inequality and the definition of A,,, we get

* —V(u
¢ Z eVl )1{minn5j5[an1 V(u;)>7n } ;EV(U)_% <(Sk + 6n) 1{mmjék*1S120}1{3k<_5”/2}) ‘

ueN ([an])

* —V(u
=c Z € ( )1{m1nn<J<ran] V(uy >~/n} ‘A ( ( ) - ’Yn)’
ueN ([an])

SE((—=51) 1si<—pn/21) Wran)- (4.29)
By (@.4), we see that R(y) = c'y — c'E, (ST(;) for y > 0. Thus

* —V(u
¢ Z € ( )1{minn§j§(mﬂ V(uj)zfyn} kz EV(’U‘)_'Yn ( (Sk + ﬂn) 1{minj§k,1 S]ZO}l{Sk<O})
=1

ueN ([an])

— —V(u %

- /Vz: € ( )1{minn§j§|'an'| V(u]‘)Z’yn}c Ev(u)_’Yn (ST(; + Bn)
ueN ([anl)

= N%: ) e~V (it <oy V()2 } (€ Fn € (VW) =70) = R(V(u) =) (430)
ue, an

For any € > 0, let K be large enough such that |R(y) — (¢*y + o*)| < € for y > K. Therefore, when
V(u) — v, > K, we have

[(c*Bn +c* (V(u) —n) = R(V(u) — 7)) — (¢"Bp — ") <e.
Recall that by (4.22]),

( */Bn ) (Ng{;l:d] In

X % —V(u)
ffan]) - (C /Bn « ) Z e 1{minn§j§[(m] V(Uj)Z’yn}’
ueN ([an])

Combining this with ([£28]), (£.29]) and (£.30]), we get
11, = Vi [E (Njord " | Fram ) = (¢80 = 0"V E (NJond ™| Fam )|

good
3 —V(u
ueN (Jan])

+ sup ([R(y) = (Cy+a v Y e VW s i@k (431)
y€[0,K] ueN ([an]) o

Let L and 0 be the constants in (4I0). Then for any 6 > 0,

—V(u
<\/_ Z € ( )1{mir1n§j§[an] V(uj)zﬂ/"}l{v(u)gﬂyn—’—[{} ~ 0>

ueN ([an])
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—V(u
<o+ P<\/ﬁ Z e )1{minj§ran1 Viu)z-L} V@ SR} > 9)
ueN (Jan])

\/ﬁ —V(u
<o+ TE Z eV )1{minj§ranw V(Uj)Z—L}l{V(“)SV”+K}
u€N ([an])

NG
= = > <
o+ 0 P<j§2215]_ L,S(mﬂ_’Yn—FK)
Vi (m+ L+ K)>*(L+1)

0 JTan]? ’

where in the last line we used Lemma B.1] (ii). Letting n — oo first and then 6 — 0 in (£32), we
get that the third term on the right-side hand of (£31]) converges to 0 in probability as n — oo.
Note that the second term on the right-side hand is bounded by E\/ﬁW[m], so letting n — oo first
and then ¢ — 0 in (£31]), by (L2), we get that lim, o I1, = 0 in probability. The proof is now
complete. O

SO+ (4.32)

Corollary 4.8 For any a > 1, under P,

lim /n Nlenlam (c*Bn — ) Wign1| =0, in probability.

n—00 good

Proof: This is a direct consequence of Proposition and Lemma [£7] o

4.3 Limit behaviour of F}%'7",

Proposition 4.9 For any a > 1, under P,

lim \/ﬁFb[;g]’y" =0, 1in probability.

n—oo

Proof: SetY), := \/n (Fbtlg T A 1) > 0. We only need to prove that lim,,_,~, Y,, = 0 in probability.
We claim that (L3) implies that

E (D ANy) < (1 +log y y > 0. (4.33)

Indeed, (L3) implies that E (Doolip, <yy) —log, y S 1,y > 0. (L3) also implies (see [4, Theorem
2.2]) that limy 4o yP (Do > y) = 1, which means yP (Ds >y) S 1,y > 0. Therefore, for all
y =0,

E(DxxANy)=E (Dool{Doogy}) +yP (Do > y) S 14 1log, y.

Since V (x) < 7, for all z € LI*17 we have

Fb[f;}’% ANl < Z eV @) (Doo(:n) A <(c*)_1 ev(m)>>

"EGL"I[ZZ“ sYn

< Z e V(@) (Doo(:n) A <(c*)_1 ey")) .

me[’([ilﬂ In

It follows from (4.33)) that

E (R A Foraman) £ 30 eV OB (D) A (€971 €) [ Friont o)

xeLZEZ;ﬂ n
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S Y, eV (4.34)

xeLIEZ;ﬂ I

By the branching property and the definition of El[gzlﬂ " we have

e V(@) — V()
E < Z ]:[a"] > - Z € 1{minn§j§ [an] V(z; )<'Y7L}

seclomlan €N ([an])

—Vi(z
< Z Z ( )1{minn§j§k—1 V(mj)Z’Yn}l{V(m)<“f”_ﬁ”/2}‘Jr([m]>

k=[an]+1 2N (k)

< (Wi W)+ 2 e s,

ueN ([an])
XE(Z Z e {m1n0<]<k 1 V(zj) >y} {V( )<y—5n/2}>
k=1zeN(k y=V(u)—y
_ 7 Yn —V(u -
- (Wﬂmw - Wfa;:]> + oy, e )1{V(u>z%}ZP<0<gn<lg Sz Y Sk <y- 5n/2> ) :
uEN( [an]) k=1 y—V(u)_'Yn

where Wﬁl’;ﬁ is defined in (@I4]). By (@25]) and (£34]), we have

E (Yn }"an]> < A/ ( fan] — W;m) n %\/HWWL]E <(—51)3 1{Sl<_5n/2}> .

By Lemma [£2] the first term on the right hand side above converges to 0 in probability. Note
that (£2) implies that v, = O(8,). By (2], the second term on the right hand side above also
converges to 0 in probability. Then we have shown E (Yn‘}"[[m]) converges to 0 in probability.
Finally, applying Jensen’s inequality, we have

E(e) =E(E (e | Flan))) 2 E (exp {~E (Yo Fram) }) -
By the bounded convergence theorem, we get that

. Y, A Y, . _ _
1> limsupE (e ) > liminf E (e ) > nh_)r{)loE (exp{ E (Yn‘]:[[m])}) =1

n—o00 n—00

Therefore, for any € > 0,

1
limsupP (Y, > ¢) = limsupP (1 — e ¥ > 11— ) < E(1- e_Y") =0,
n—00 n—00 _e—€
which implies that lim,,_ Y;, = 0 in probability. O

4.4 Convergence in distribution for /n (Fﬂm] T NM"L'Y")

good good

Recall that F, [an]’% and N g[ggg’% are defined in (4.4]) and (A.21)) respectively.

Proposition 4.10 Let (X;),~, be the 1-stable Lévy process with characteristic function given by
([LH). For anym > 1,1 <ay < ... < ap, and X € R™, under P,

lim E(exp {ZZAk\/_ <Fgggf]’% Ng[ggg]’% an>
k=1

m—o0
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(exp{ ZC )\kX 12 }‘Doo>, in probability.

Proof: Let A} := A\; + ... + Ay and a,,41 = 00, by the definitions of Fle kn] " and NT@#mm 4y

good good
([#4) and (426]), we have
Z)‘k\/_< g:)l(fc?] n _Ngs§;1 vn) Z)"f\/_< Z Z o V(@)

k=1 t=[apn]|+1 zeN (L)
* logn
X 1{minn<j<g,1 V(mj)zfyn,yn—ﬁn/2§\/(x)<,yn}C <Doo(£) - V(.Z') + 5 ) >

[akt+1m]

- Z Z Z {mlﬂn<g<l 1 V(25)2m, = Bn/2<v(x)<%t}

k=1t=[apn]+1zeN (£

y c*)\z\/ﬁe_v(x (Docla) ~ V@) + 10?;").

Define ¥p__()\) := E(e*P=), we obtain that

[ak+1m]
(o {i Z)\k\/_(F;ggJ]’”" Rja1or) Y Fens ) = I 10

k=1/¢=[apn]+1
% H <e—ic*)\z\/ﬁe*‘/(x)(V(m)—logn/2)\I,Doo <C*)\Z\/’E€_V(m)>> ’

xE/\/(Z),minnSng,l V(x5)>vn, v —PBn/2<V (2)<n

where Fznom is defined at the beginning of Section [ with @ = 1. By [10, (1.12)] and [10, Lemma
2.3], there exist continuous functions 7, q : R — C with 1(0) = ¢(0) = 0 such that

e—i)\zc*\/ﬁe*V(r)(V(x)—logn/2)\I,Doo <C*>\z\/ﬁe—V(x)>
— e_i)\zc*\/ﬁ67‘/(1)(V(x)_logn/2)w7r/2,co+l—*y (C*)\Z\/ﬁe_v(x)> ec*)\z\/ﬁef‘/(ac)n(c*)\z\/ﬁefvw))
=:exp { — Ve g 1oy (€AR) + ¢ Xpv/ne ™V g (c*)\}z\/ﬁe_v(””)) },

where ¢ is the constant in (L3)). Define

z VI (Nt = NIk ) s ey 14 (AR,

(%H n]

— Z Z Z {mlnn<3<e V(@) 2 0 Yo —Br 2<V (2) < }C )\k\/_e V(x) (c*)\Z\/ﬁe_V(m)) .

k=1/4=[apn]+1zeN(£)

Since F,, C Frnn, by the argument above, we have

<exp{ Z)\k\/_ (Fg(ggﬁ’% Ng(gjg]’% H]:n> =E<exp{Rn—|—Zn} F

We claim that

‘E <exp {R,+ Z,}

]:n) <exp {R.} |F,

) ‘ — 0 in probability. (4.35)
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Indeed, for any € € (0,1) and any complex number z = a + ib with |z| < e, we have |a|, |b| < e,
which implies that . . .
‘ez_ 1‘ < ‘ea"rlb_elb‘ + ‘elb_1| 56.

Thus, we get that, for any € > 0,
‘E (exp {R,, fn> <

Recalling that N 53351 " is defined in ([@2I)) with a = a1, we see that, for any fixed Ay, -+, Ay, we
have

Fo) | SP (120 > €| 7o) 4. (4.36)

[akt+1m]

|Z,| S max max ("N

—V(x)
1{minn§j§271 V(wj)>7n77n ﬁn/2<v <7n}\/ﬁe

< X, e)| VaNTanlm
12%?5“6[6%%(6”)‘ ¢ (X e ™) [ VitNgoog

Applying Corollary with m = 1 and 2" = ia with a € R, we see that <\/_Ng[golg1 T P(- \fn))
converges in distribution. Since lim,_,¢¢(z) = 0, we have lim,,_,o P <\Zn\ > E‘fn> = 0. Letting

n — oo first and then € — 0 in (£30), we get (4.33).
Combining ([435]) and Corollary EL6l, we get

. . “ [axn],Yn Slapn],yn
nh_)n;oE<exp{1Z)\k\/_ (Fgoéc — Nood >}‘fn>
k=1

2 " 1 1
= ex — Dy /9. c041—~r (EN) | —= — , in probability.
p{\/m2 ;w J2,c0+1-~( k)<\/a—k m)} p y

A standard computation yields

<exp{ Zc A X S172p }‘Doo> = HE(exp {ic*AZ(X Sp, T XakuzDoo)}‘DOO)

k=1

1 X\ k
- { 2 <@ Ve >Q/’W2027<00+1—V>W . Ak)}'
This implies the desired result since

2
wW,@Oﬂ_W)WM) = mww/ZCO—i—l—'y()‘)v AeR.

Proof of Theorem 2.1t By (4.4)), we get that

1 % *
Jn <Doo S ognw[an]> \/7 (D(LfolnLVn _ (C*D[an] — (" — @ )W[an]))

L <N[“"] - ("B — ™) W(akrﬂ) \/_Fﬂm] "

ot good bad
VI () Rilan]m
+ ot <Fgood Ngood ) :

It follows from Proposition E3] Corollary B8 and Proposition [£.9] that the first three terms on the
right hand side of the display above converge to 0 in probability as n — co. Now the conclusion of
Theorem [2.1] follows from Proposition E10L a
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5 Proof of Proposition

Recall that o € (0, 1] is the constant in (A5). Fix an r € (0, 1) such that

1 3
;a<g(1—a)+a<(1+r)/\<§>>, (5.1)
which is equivalent to
l-a 1-2«a
r > max , .
140 1—-«

By the definition (4.I4]) of Wﬂ,j%, we have

Winr],oz Z e—V(:c)
zeN(n)

1{minj€[n7‘,n]ﬁZ V(%)ZO} :

Note that min,ecpr(,) V() — +00,P-a.s., so

lim P (W,[""W £ Wn) = 0. (5.2)

n—o0

Proof of Proposition Recall the definition (2.1]) of 6,. Let r € (0,1) satisfy (5.1]). Let
B+ € (0,3((1 —r) Ar)) be sufficient small such that

(1—a)+a(l+7)A @)} (5.3)

r
, =

(5++%>(1+a) <min{(1+7’)/\ <g> 5

If we can show that for any 5 € (0, 84),
. 8 2
lim P( n”|v/nW, —\/ —56,D| >5) =0,
n—o00 xe
then the desired conclusion follows immediately. Note that

P(M VW, — M%&an‘ > 5)
e

< (L0 2 0,) + B (10— 10| R | > 3)

2 — - nr ’0 2

Using (52), (L6]), we know that the first and third on the right hand side above tend to 0 as
n — 00. So it only remains to show that

= [ 2
- B n Lo‘ R D . —
Tim. ]P’<n VAE (W10 Frury ) =\ =500 Djur| > 1) 0, (5.4)
and
: 117n"1,0 17[n77,0 —B-1\ _
JE&P(‘W,[ 1 —E(W,[ 1 (ﬂnq)( > 30" z) —0. (5.5)
We will prove (5.4]) and (5.5) in the following Lemma [5.1] and Lemma [5.2] respectively. Then the
proof of Proposition will be complete. O
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Lemma 5.1 Letr € (0,1) be a fized constant satisfying GI). For any B € ((0,5 (r A (1 —7))), it

holds that
- T 2
E (W10 Frorr ) = 4/ —= 6, Drpr
\/ﬁ <Wn ‘]:m ]> 7TO'25 [nr]

Proof: By the branching property, we have

VAE (W10 Fpry ) - \/%@LDW

= Z e_V(m)l{V(m)ZO} <\/EPV(90) (j<£n—i?¢ﬂ Sj > 0) _
zeN([n"]) -

lim n”® =0, in probability.

n—oo

2
To?

(W(g;)).

It follows from [7, Lemma 2.2] that, for any y > 0 and positive integer n with n — [n"]| > 1,

14y .
“TYR)P >0).
vn Bw) (jg;n_l%ﬂ % 2 0>

Combining Lemma B.1] (i) with the facts that n — [n"] < n and |R(y) — ¢*y| < 1,y > 0, we get that
for all y > 0 and large n,

‘\/ﬁPy( min _S; > 0) — c*y\/ﬁP( min _S; > O>‘

‘Py( min 5j20>—R(y)P< min SjZO)‘S

j<n—[n"] j<n—[n"]

j<n—[n"] j<n—[n"]
(1+y)° . .
< \/ﬁiP( min _S; > O) + \/ﬁP( min _S; > O)
Jn—[nr] \i<n-Tnr] j<n—[n"]
(1+y)?
< 1.

Recall that 7, :=inf {¢ > 0: Sy < 0}. Then by [7, (2.18)],

‘P( min SjZO)—P<minSj20)‘:P< min _S; >0, min Sj<0>

j<n—[n"] Jj<n j<n—[n"] n—[n"]+1<j<n
n ~ n 1 n 1
= Y Pr=0< Y WS/ =l
{=n—[n"]+1 {=n—[n"]+1 n—[n"]

1 1 n"
(i ) S

Combining the two displays above with ([2.1]), we get that for all y > 0 and large n,

: 2 (1+y)? Yy
(x/ﬁPy(ngl_le SjZO) A\ 0| S NG R

which implies that

(ﬁE (W,["Wo‘fwo — ,/%%DW
2

SIS ) VD) 44 —V@ :

zeN([n"]) ( \/ﬁ n! )
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By ([2), we have
2
. o _Viz . e
nh_)n(f)lo VInr] NE([ ])6 @ mDoo in probability. (5.6)
TE n’

Since lim,, oo Dy, = Do almost surely and Do, is non-negative, we have

lim Z V(m)e‘v(x)l{v(x)>0} = Do, almost surely. (5.7)
n—o0 -

zeN([n"])

Since 8 € (0, %((1 — 1) Ar)), using the two displays above, we get that for any € > 0,

“Vi(x V(x
> Oy (1+ nl(_)> > €> =0
=N ([n")

lim P (nﬁ

n—o0

For any 0 > 0, let L satisfy (4I0). Then for any ¢ > 0,

—V(z 1+ V(z))?
]P><nﬁ T e >1{V(x)zo}ﬂ>g>

2eN(In™) v
Vix 1+ V(z))?
< 5“9’("’3 > )1{V($)20}%1{mmj<[nﬂ Viag)>-1} > €
zeN(In™)

1 _1 —Vi(z

<o+ -0 2E< > 0+ V@) eV 500 ming oy Vm)E—L})
2eN(n"])

1 1
_ —B8—3 2
=0+ 2 ZE((l + Spar) 141 204 famin, SjZ—L})

1 B_l

<6+ -n z<(1+L)2+(1+L) W}),

™

where in the last inequality we used Lemma Letting n — oo first, and then § — 0, we get

: Vi (1+V(2))® _
nh_)IngP(nﬁ Z eV MU/CB)ZO}T >¢e | =0.

zeN ([n"])

This completes the proof. O

Lemma 5.2 Let 34 € (0, 3((1 —r) Ar)) satisfy (53). For any 8 € (0,87),
1 N[nr]vo _ N(nr‘|70 _B_l —
Jim P (W10~ (W10 Fp ) | > 307778) <0,

Proof: We only need to prove that
P(|Wm 10 — & (W] 10| Frry ) | > 807774 | Frur ) = 0 in probability. (5.8)
For m < n, define

A:Z’lo = {xGN(n): forallj=m+1,...,n,
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S (U (Vi) — Viago)),) e V0V < evml)/z},
ueQ(x;)

N[n 1, 0 _
Z e 1{minje[nr',n]mz V(z;)>0} 1{me,47fln1ﬂ,o .
€N (n) ’

Recall that o € (0,1] is given in (A5). Then
P(|Wim 10 — & (W10 From ) | > 807073 F)
S 2P AR (W0 - W F)

@0 (|10 g (W17 ) (”“ | Frar)- (5.9)

n,

We estimate the two term on the right hand side of the above display by the following two steps
respectively.

Step 1 By (82) and the branching property, we have

8 (- )

= > 1{v(u>>0}Ey< > eVt Lonin - gur Vi) 20} {oe A0 11}>

ueN([n"]) €N (n—[n"]-1)

n—[n"]—1
< Z e—V(u)l{V(u)ZO} Z Q( min_ V(w;) > —y,

y=V(u)

ueN([n"]) —1 j<n—[n"]-1
Z (1 + (V(U) — V(wg_l))+) e~ (V(w)=V(we)) - e(V(we1)+y)/2> (5'10)
u€Q(wy) Y=V ()

Suppose n is large so that n — [n"] > 1. For any positive integer £ < n — [n"| — 1, conditioned on
Fy, by Lemma [B1] (i), we have

o _min Vi) zon ¥ (1 (V) - Viwe),) e 00 s )

jsn=n71-1 u€eQ(wy)

1
< (1A Eol (1+ V(we) + %) Limin - viw >
< \/n—fn’ﬂ—l—€> Q<( (10e) +0) Lming <0 )20}

x 1

{Zueﬂ(wg)u{wg} (1+(V(u)—V(we1))+)e(V(u)V(wll))>e(V(wel)+y)/2}>

1
. <1/\ — _1_£>EQ(JL;). (5.11)

Conditioned on Fy_1, we get that, given V(wy_1) = 2

Eq(Je|V(we—1) = 2)

= EQ <(1 + V(U)l) +z+ y) 1{V(w1)2—y—2}1{zx6/\/(1)(1+(V(u))+)67v(“)>6(Z+y)/2})

= E< Z (1 + V(ﬂj‘) +z+ y) e_V(x)1{V(I)>—y—z}1{z+y<2log+(W1+W1)}>
zeN (1)
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< (0 1 2, () 00, )
Therefore,

Eq(Jy) < IE< (Wl (1 +2log, (W1 + Wl)) + W1>

><P<m1nS > y,Sgl+y<2log+(m1)> ~>
m1=W1+W1

7j<l—1

::E(WP( min S; > —y, S 1—|—y<2log+(m1)> ~>=
mi1=Wi+W1

7j<t—1

where W = W; (1+2 log . (W1+W1)) +W1. Thus, if ky, is the integer such that 2k, < n—[n"]—1 <
2k, + 1, then by Lemma [3.1] (ii)(iii), we have

"‘§‘1< /o (ni - —ﬁ)EQW

< N fn’“l — 1_knE<W:Z:;P<J%m Sj > —y,Se—1+y < 2log, (m1)> ml:W1+,W1>
T8 o el L L)

. <\/n— [nrlw — Y g:; <M Vin = Wlﬂ —1—e> (€—11)3/2>F(1)’ 12

with F(1) given by

F(1) = IE<<W1(1 +2log, (Wi +W1)) + W) (1+ 2log, (W +W1))2> < o0.

If n is large enough, we have

"_%_1 (1 . 1 ) 1
(=knt1 V=T =1—10/ (¢—1)32
1 ) n—[n"]-2 1 )
~ (n—[n"] —1)3/2 Pt V-] —1—10(— 1)3/2
n— "nr‘l_2 /+1
S l * ! = 2d:E
oAy e Vin=Tw =1 —a)(z —2)¥
n~1(n—[n"1-2)
= l 4 l/ 1 dr < l
e ka4 V(nin—[n] —1) —z)(z — 2n1)3/2 n
This implies that for n large enough,
n—[n"]—-1
1 1 1 ) )
\/n - (nq —1—-k, é:%;—i-l \/n _ (nr‘l —1—7 (g - 1)3/2 n n
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Combining this with (5.10), (5.11]) and (5.12]), we get that for large n,

E (Wi - Wi Fn) s > (i+v(”))e—v<“>1{v(u)zo}. (5.13)
wen gy VM

Step 2 By the branching property,

IE( ‘”wv/(nlﬂ,o _E (Wiﬁq,o‘}_[nr]) ‘l—l-a

n,

‘F[nr"|>
14a
v
< > 1{V(u>>0}Ey<< >, Lming o1 Vg 20} 1 {oe Al 11}> >
ueN([n"]) zeN (n—[n"]-1)

= > LywsoBy (T [y
weN (™)

y=V(u)

Recalling the definition of Q, in beginning of Subsection [B.I], we similarly have

I+ay _
E, (F a) e YEq, <1{m1nj<n (-1 V(wy) >0}l {wGAL . 11}ra).

For u < x, define V(z;u) := V(z) — V(u). Recall that N'(u,m) := {z € N(ju| + m) : z > u}. By
the spine decomposition, we have

B V()
F — Z e 1{min‘7‘§n—]—nr]*1 V(Z‘J)Zo}l{xeAgornr‘l 1}
zeN (n—[n"]-1)
'r‘l 1
Wy —[nT _V v e

< e Vwn—par—1) Z Z “ Z eV )1{minjgnfrnﬂfl*k Viwjiu)z=V ()}

= ueQ(wy) zeN (un—[n"]-1-k)
n—[n"]-1
_. e—V(wnfﬁﬂ"]fl) + Z Z 7

= u€Q(wg)

where H(u) := er/\/(u,n—(nr]—l—k) E_V(x;u)1{minj§n,rnq,1,k V(zj:k)>—V(u)}- Lherefore, using the
inequality E(| X %) < (E(|X]))*, we get
o
EQy (1{m1n1<n nr1—1 V(w;) >O} { G.An - 11}P )

_O‘V( Wp—[nT]—
< Eq, (e frr1-1) {minjgn,(nq,l\/(xj)zo})

n—[n"]-1 «
oV
+ <EQy (1{minj§n[nq1 V(wj)ZO}l{wer,o —_— 1} Z Z (u >>
n=fnm1-1 ueR(wg)
By the branching property and Lemma B.1] (i), we have
n—[n"]—1
E < {min r V(w; >0} —V(u >
jsn—[n"—1 ’ {’LUG.An [nT]—1, 1}

k=1 ueQ(wg)

= EQy (1{m1n]<n [nr]— 1V(w] >0} {wE.AO [nT]— 11}
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n—[n"]-1

<2 X TUR(L min 5> )

= ueQ(wg)

z:V(u)>

S EQy (1{mml<n rar]—1V(wy) >0}1{ E‘AOO [n7]—1 1}

n—[n"]-1

(1+V(u))
X .
z_: ue;ﬂk) < Vvn—[n"] —1—k‘>>

Since
(1+V(u)) (14 (V(w) = V(wg—1)) 4 + V(wg-1))
1/\\/n—[n7’]—1—k§1/\ Vn—[nl—-1-k
<1A (14 (V(u) = V(wg=1))) 1+ V(wg_1))
Vn—[nl—1-k

() - V) (1 L) )

\/n [n"] —1—k

and, on the set {w € A?L’E (-1 1}, it holds that

Z e VW (1 + (V(u) — V(wk_l))+) < e Vwe-1)/2,

u€Q(wg)

We have

E < {minj<,_pr1—1 V(wy) >0} {wGA

n—[n"]-1

I =)

k=1 ueQ(wg)

1—[n"]— 11}

n—[n"]-1
_ 14+ V(wg-1))
< Eg, (1min . Viwor)/2 (1 p |
~ Qy( {min; <, rpry—1 V(w;) >0} kZ:l € \/n — [nr] —-1—-k

Therefore, by the arguments above, we conclude that

14+« - —aSn, nr]—
Ey (F ) S (& yEy (6 [n™] 11{minj§n7|'n7"\71 szo})

n—[n"]—1 @
— ) -5 /2 (1 + Sk_l)
e y< 2 B (Hmmjg"“"“sjm}e - <1 A Vn—[nl—-1-k

k=1
= e V(I + IT%). (5.14)

By Lemma B.1] (ii), for all y > 0 and large n, it holds that

1
I<—+P i S;>0,8, o1 <a ll
=at y<j§n131[g}'1—1 § = D Onfer] -1 = & Ogn)

n
-1 2 2
% n (1+y)(1+a " logn) <1 N (logn)

< — o
~ (n—[n"]—1)32 ~n n3/2

(5.15)
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For I1, we have

—Sn, nr1-1/2 _Snf nri-2/2
Il <E, (e 11/ 1{minj§n,rnr],1sjzo}> + E, (e mr1-2/ 1{minj§n,[m,zsjzo})
7'"| 3

_ 1+ Sk-1)
+ 1 min ; r j € Fr-1/2 (
Z ( { j<n—[nT]-1 SJZO} \/TL _ (nr-‘ —1-k

= IT, + 112 + I (5.16)

Applying Lemma [B1] (ii) with k =n — [n"] — 1 or n — [n"]| — 2, we get

|
1 n (1+y)(1+2logn)? < 1 n y(logn)2
n 1:3/2 n n3/2

Ey <6_Sk/21{minj§k SJ'ZO}) s

Thus
1 (logn)?

For 113, we note that for, k =1,...,n — [n"] — 3,

s 9 (14 Sk1)
Ey <€ k—1/ \/n — (nT"| = kl{minjﬁn*’—nr]*l S; >0}

s (1 + Sk-1) .
=E, <6 k-1/2 \/’I’L— ] —1— kl{minj§k71 SjZO}PSk—l jgngl[lng']—ksj 20

—5py/2 (14 Sk 1)

Recall that &, is the integer such that 2k, <n — [n"] — 1 < 2k, + 1. Combining Lemma [B.1] (iv)
with A = 1 and the fact that sup,-, (e%/2(1 + z)?) < oo,

kn
s g (14 Sk_1)
E:Ey <e k—1/ \/n - kl{minjﬁn*!—nr'\*l S;>0}

1
(Tlr "k, —1 ZE ( 1{m1r1]<kS >0}> S ; (518)
On the other hand, for k, +1 < k <n — [n"] — 3, by Lemma [3.1] (ii), we have
—Spj2 (14 Sp1)?

S, /2 (1+Sk—1)2
E, (e k-1/ o s {mmjgk,lsjzo}l{sk,le[e,ﬂl)})

o

o~
Il

0
< 1
“n—[n"]—-1-

k S e P2+ 0, (jglkigl Sj>0,8-1 €[l 0+ 1))
£=0 -

o0

< 1 (y+1)
~“n—[nrl—-1-— —1)3/2
n—[n"]—1—Fk(k—1)3 e

) (1+vy)
. 5/2(2 +g)2(g+2) N (n—[n]—1—k)(k—1)32

This implies that

n—[n"]1-3 2
—S. 1/2 (1+Sk—1)
> B (I S o e s201)
k=kn+1
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n—]'EnS|—3 1
S (1+y) .
e 1k (k- 1)

n—[n"]-3 dz
§(1+y)/n (n—[n"] —2—2)(z — 1)3/2

_(1+y) <log(n— "] —2—ky) §/"_["T1_2 log (n — [n"] — 2—az)dx)

(kp — 1)3/2 2 Ji, (z — 1)5/2
og(n—[n"|—2—k, ogn)?
< (1+y)l B (kn[_wl)g,/z Fn) N (1+y)(17§7/2)

Combining this with (5.IJ)), we get

1 (logn)?
I[gg ;—i—y n3/2 .

(5.19)

Combining (5.14)), (5.15)),(.16), (5.I7) and (5.19), we get
(=) 1+«
—V(x
Ey << Z € 1{minj§n7[n7"\71 V(%)ZO}l{xeAg’E [n"}l,l}) >

zeN (n—[n"]-1)

_ 1 (log n)2 1 (log n)2 *
< oY - -
Se <<n—i—y 372 + n—i—y 32 .

Thus, when n is large enough,

710 w710 e
E(|Wi —E (W F) | [Frn)
_ 1 (logn)? 1 (logn)?\“
V(u
(s n’

SJ U[nr'] + Wﬁr;‘?Uﬁ’LT']7 (5.20)

with

v (] (log n)?

R Viu

U= D e ()(;+V(“) 3 Vvao-
weN ()

Step 3 Now combining (5.9)), (5.13]) and (5:20]), we get
P(|Wim 10 —E (W10 From ) | > 307774 F)

_1 —V(u 3 @ LU
S nBW[nq + 7’LB 5 Z V(U)e V( )1{‘/(“)20} + 7’L(6+2)(1+ ) <U[nr] + W[lnr] Ul'nr'l) .
ueN([n'])

Using (5.6) and (B.7), we get that for any € € (0, (1+7)A(2)), nU,» — 0 in probability. Therefore,
we have (0.8) and the proof is complete. O
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