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Abstract
In this paper, we study asymptotic behaviors of the tails of extinction time and maximal
displacement of a critical branching killed Lévy process (Z,(O’OO)),Z() in R, in which all

particles (and their descendants) are killed upon exiting (0, 00). Let ¢ 0.2 and M t(O,oo) be the
extinction time and maximal position of all the particles alive at time ¢ of this branching killed
Lévy process and define M%) := sup,. M,(O‘OO). Under the assumption that the offspring
distribution belongs to the domain of attraction of an «-stable distribution, o € (1, 2], and
some moment conditions on the spatial motion, we give the decay rates of the survival
probabilities

Py > 1), P 1)

and the tail probabilities
Py (M) > x), Pyy(MO > x).

We also study the scaling limits of M *°® and the point process Z'*">” under Pz, (12009 >

t)yand Py (-|¢ 0.0 > 1. The scaling limits under PP iy 1¢ 0.20) > fyare represented in terms
of super killed Brownian motion. '
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1 Introduction and Main Results
1.1 Background and Motivation

A branching Lévy process on R is defined as follows: initially there is a particle at position
x € R which moves according to a Lévy process (&, Py) on R. We will use E, to denote
expectation with respect to P,. The lifetime of this particle is an exponentially distributed
random variable with parameter 8 > 0 and when it dies, this particle gives birth to a random
number of offspring with law {py : kK > 0}. The children of this particle independently repeat
their parent’s behavior from their birthplace. The procedure goes on. We use N (¢) to denote
the set of particles alive at time ¢ and for each u € N(¢), we denote by X,,(¢) the position of
u attime t. Also, forany u € N(¢) and s < t, we use X, (s) to denote the position of u or its
ancestor at time s. The point process (Z;);>o defined by

Z, = Z (qu(t)

ueN(t)

is called a branching Lévy process. We will use P, to denote the law of this process and
use E, to denote the corresponding expectation. We will use the convention P := Py and
E:= IE().

Suppose that m := Y 2, kpr € (0, 00). It is well known that the branching Lévy process
(Z:)s=0 will become extinct with probability one if and only if m < 1 (subcritical) orm = 1
and p; # l(critical). In this paper, we will focus on the critical case, that is, we always
assume that m = 1 and p; # 1.

For any 7, let M; := sup, ¢y ) Xu(?) be the maximal position of all the particles alive at
time ¢ and we use the convention that M; = —oo if N(¢) = (). Now we define the maximal
displacement and extinction time respectively by

M =supM, and ¢ :=inf{r >0:N(@)=0}. (1.1)

t>0

Since we always assume m = 1 and p; # 1, we have P(M < o0) =P(¢ < o0) = 1.

Due to the homogeneity of the branching rate 8 and offspring law {py : k > 0}, ¢ is
equal in law to the extinction time of a continuous-time Galton-Waston process with the
same offspring distribution as (Z;);>0, so the decay rate of the survival probability P(¢ > t)
is clear. For example, suppose that

(H1) The offspring distribution {p; : k > 0} belongs to the domain of attraction of an
a-stable, @ € (1, 2], distribution. More precisely, either there exist « € (1,2) and
k(a) € (0, 00) such that

o0
. o .
1im 0y pr = k().
k=n
or that (corresponding o = 2)
o0
Z K> Pk < 00.
k=0
Then it is known (see, for example, [14, 29, 31]) that, there exists a C(«) € (0, co) such that

tlllgozﬁp(g > 1) = Cla). (12)
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Tails of Extinction Time and Maximal Displacement...

The tail probability of the maximal displacement M has been intensively studied in the
literature. Sawyer and Fleischman [28] proved that under the assumption Y g2, k3 pr < oo
and that the spatial motion £ is a standard Brownian motion, there exists a constant 6(2) > 0
such that

lim x’P(M > x) = 0(2). (1.3)

X—>00

For corresponding results in the case of critical branching random walks with offspring
distribution having finite third moment, see [18], and for these in the case of critical branching
Lévy processes with offspring distribution having finite third moment, see [17, 25, 26]. In the
case of critical branching Lévy processes with offspring distribution belonging to the domain
of attraction of an «-stable distribution with « € (1, 2], we assume

(H2)
Eo(&) =0, o> =Eo(&}) € (0, 00)

and
(H3) for « given in (H1),

20
a—1
Hou, Jiang, Ren and Song [9] proved that under (H1) (although [9] did not deal with the
case @ = 2, the proof is actually the same as the case « € (1, 2), without the additional
assumption Z,fozo K3 Pk < 00, see the argument beneath [9, Theorem 1.1]), (H2) and (H3),
there exists a constant 6 («) > 0 such that

Eo (61 vV 0)°) < 0o for some rp >

lim xaTP(M > x) = 0(a). (1.4)
X—>00

The main concern of this paper is on critical branching Lévy processes. If, in the critical
branching Lévy process, we kill all particles (and their potential descendants) once they exit
(0, 00), we obtain a point process (Z,(O’OO)),Z() with

0,
7% = D Tinfozy Xu(9)>018X, (1)
ueN (1)

The process (Z,(O’oo) )¢>0 1s called a critical branching killed Lévy process. Let (29, IPy) stand
for a branching Markov process with spatial motion &, Aty where 7, :=inf{t > 0:& <0},
branching rate g and offspring distribution {px : k > 0}. Then it is easy to see that for any
t,y >0,

0, d
(219°9 By) = (200,000 Py)- (1.5)
Define
M,(O’OO) = sup Xu(t), MO .=gup Mt(o’oo)
ueN (t):infy<; X, (s)>0 t>0
and
¢ @2 = inf {r > 0: 2" ((0, 00)) = 0} (1.6)
with the convention M, ,(O’OO) = —oowhen Z t(O,oo) ((0, 00)) = 0. When the underlying motion

£ is a standard Brownian motion, Lalley and Zheng [19] proved that, if Y e K pr < o0,
then
lim X3P, (M > x) =9 2)y, forally > 0, (1.7)
X—>00
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where 8- (2) € (0, 00) is a constant independent of x and y. Comparing Eqs. 1.3 and 1.7,
we see that the tail P, (M 0.2 > x) of critical branching killed Brownian motion decays to 0
in the order x 2, while the tail Py (M > x) of critical branching Brownian motion decays to
0 in the order x 2. Lalley and Zheng [19] also showed that there exists a continuous function

0, 1) 3 y — 6 (2) such that

lim x*Pyr, (M > x) =00>2), ye (0, 1). (1.8)
X—>00

The argument of [19] relies heavily on the construction of P, (M 0.20) > ) via Weierstrass’
‘P-functions in the special case pg = pr = % and a comparison argument for general
offspring distributions.

There are also some works on the survival probability and maximal displacement of
branching killed Lévy processes when m = Z,‘:O:O kpr > 1 and the spatial motion £ is
a Brownian motion with drift —u where © = /28(m — 1), see [2, 3, 13, 21, 22]. For
these branching processes, +/28(m — 1) is the critical value of the drift in the sense that the
process will die out with probability 1 if and only if & > +/28(m — 1). When p> = 1 and
= +/2p (critical drift case), Berestycki, Berestycki and Schweinsberg [2] studied, among
other things, the asymptotic behavior of the position of the right-most particle as the position
y of the initial particle tends to infinity. In the case Y po kpx = 2and u = /2 (critical drift
case), the survival probability was first studied by Kesten [13], and the result of [13] was later
refined in [3, 22]. For the (all-time) maximal displacement M 0.00) — maxg>0 M, S(O’OO) and the
time when this all-time maximum is achieved m©:°) := arg maxs>0Ms(0’°°), Maillard and
Schweinsberg [21] proved the weak convergence for the conditioned law of (M (0.00) 'y (0.00)
on the event {¢ (%) > r}.

The purpose of the paper is to study the asymptotic behaviors of the tails of the survival
probability and maximal displacement of critical branching killed Lévy processes. More
precisely, our goals are as follows:

(i) generalize Eqs. 1.7 and 1.8 to critical branching killed Lévy processes with offspring
distribution satisfying (H1) and spatial motion satisfying (H2)—(H4), with (H4) given
in Section 1.3 below;

(i) find the exact decay rate of the survival probability Py(g(o’oo) > 1);

(iii) give probabilisitic interpretations of the limit in the generalization of Eq. 1.8 and the
limit of the survival probability when the initial position is at /7y for fixed y > 0;

(iv) find scaling limits of Z,(O’oo) and M,(O’oo) under law Py ( - ¢ 000 > t) and law P«ﬁv( .
1600 5 ),

Our approach for proving the generalizations of Eqs. 1.7 and 1.8 is different from that of
[19]. The probabilistic interpretations of the limits under P ﬁy( g 000 5 t) are given in
terms of a particular critical superprocess. So in the next subsection, we will give a description
of this superprocess and some basic facts about it.

1.2 Critical Super Killed Brownian Motion

Set R} := [0, 00). Let Mp(R4) and Mg ((0, 00)) be the families of finite Borel measures
on R and on (0, co) respectively, endowed with the weak topology. We will use 0 to denote
the null measure on R and on (0, 0o). Let Bp(R4) and B;r (R4) be the spaces of bounded
Borel functions and non-negative bounded Borel functions on R respectively. In this paper,
whenever we are given a function f on (0, 0o0), we automatically extend it to R by setting
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f(x) = 0 for x < 0. The meanings of By ((0, c0)) and B;r((O, 00)) are similar. For any
f e By(Ry) and u € Mp(Ry), we use (f, u) to denote the integral of f with respect to
. For any o € (1, 2], the function

wka when & € (1,2),
(S ke Dp) 2 =2,

where k () is givenin (H1) and I'(z) := fooo 1*~Lle~!dt is the Gamma function, is abranching
mechanism. Note that ¢ is the branching mechanism of a critical superprocess. For more
information on general branching mechanisms, we refer the reader to [20, Sections 2.3 and
2. 4]) For any x € Ry, let (W;, Py) be a Brownian motion starting from x, with variance
ot, where o2 is given in (H2). Let W? := W, e be the process W stopped at the first

@A) = Cla)AY := { (1.9)

exit time 'L'O ~ of (0, 00). Note that, when startmg from 0, W9 stays at 0.

In this paper, for any u € Mpr(R,), we will use X = {(X;);>0; P} to denote a super-
process with spatial motion W and branching mechanism ¢, that is, an M ¢ (R,.)-valued
Markov process such that for any f € B; Ry,

—logEy (exp (—(f, X)) = (wf (), ),

where (f, x) — v}( (z, x) is the unique locally bounded non-negative solution to

t
¥ (1, x) = E (f (WD) — Ey(/o P (vjf(t _s, WSO)) ds). (1.10)

Taking f = 61g, in Eq. 1.10, the uniqueness of the solution implies that

1

—logEs, (exp {— (0, X,)}) = ((@ — DC(@)r® +6'~%) T,

Therefore, letting & — 400 in the above equation, we obtain that

—logPs, (X, =0) = glggo ((0{ — DC(a)r® + 91—06)_‘171

1
Ta—T

= ((@ = DC(a)r*) =T, forallr >0,y € Ry. (1.11)

Next, we introduce the N-measures associated to the superprocess X. Without loss of
generality, we assume that X is the coordinate process on

= {w = (w;)r>0 : wis an M (R4 )-valued cadlag function on R }.

We assume that (Feo, (F;)s>0) is the natural filtration on D, completed as usual with the
Foo-measurable and P, -negligible sets for every u € Mp(R). Let W(J{ be the family of
M (R4 )-valued cadlag functions on (0, co) with 0 as a trap and with lim; o w; = 0. Note
that War can be regarded as a subset of D.

By Eq. 1.11, Ps, (X; = 0) > Oforallz > Oand y € R, which implies that there exists a

unique family of o -finite measures {Ny; y € Ry} on W(J{ such that for any u € Mp(Ry),
if NV'(dw) is a Poisson random measure on Wa' with intensity measure

Nu@w) i= [N @),
R4
then the process defined by

)?0 =, }?, = / . wN(dw), >0,

Wo
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is a realization of the superprocess X = {(X;);>0; PP,,}. Furthermore, forany t > 0,y € Ry
and f € B (Ry),

Ny (I —exp{—=(f, wn)}) = —logEs, (exp{—(f. X1)}). (1.12)

see [20, Theorems 8.27 and 8.28]. {N,; y € R} are called the N-measures associated to

{Ps,; ¥y € R4}. One can also see [7] for the definition of {Ny; y € Ry}. Note that for any

y > 0,Ps (X1((0, 00)) = 0) > 0. Thus by Eq. 1.12, we see that Ny (w; ((0, 00)) # 0) < oo.
Now we define

x> = x| t>0. (1.13)

(0,00)”
(X [(O,oo)) >0 18 called a critical super killed Brownian motion. By the definition of X 0.00) we
see that for any 7, y > 0, under Ps,

(f, X0y = (f, X)), forany f € B} ((0, 00)). (1.14)

1.3 Main Results

The following condition is stronger than (H3) since it requires that —& also satisfies (H3):

(H4) For the @ € (1, 2] in (H1), it holds that

200
a—1
The assumption (H4) will be used in the proofs of Lemmas 2.13, 3.2 and 3.8. In the proof of
Lemma 3.2, we need to apply Eq. 1.4 to critical branching killed Lévy processes with spatial
motion —&. The assumption (H4) is also essentially used in the proof of Lemma 3.8, see Eq.
4.25 below. In the case o = 2, the assumption (H4) is the same as that in [18] and is weaker
than that in [23, Remark 1.4].

For critical branching random walks, in the case @ = 2, [30, Theorem 1.3] says that the
assumption (H2) is sufficient to get Eq. 1.4. We believe that one might be able get Eq. 1.4
under (H1) and (H2), without (H4). However, different arguments are needed since (H4) is
used essentially in several places in our argument. We do not purse this here.

For any x € R, define

Eo (|$1|r°) < oo forsome ry >

tri=inf{t >0:& >x} and 7, :=inf{t > 0:& < x}.

Since & oscillates under condition (H2), we have P, (7, < oo) = 1. By Lemma 2.8 below,
we have Ex|*§r(;| < 00. Define

R(x) i=x —Ei(¢,-) = —Eo(§,- ), x=0. (1.15)

Note that R(x) > x and that R(x) is non-decreasing in x. In Lemma 2.8, we will show that
R is harmonic in (0, co) with respect to the process &, Aty When £ is a Brownian motion,

R(x) = x.
Our main results are as follows.

Theorem 1.1 Assume (H1), (H2) and (H4) hold.
(i) Forany y > 0,

Jim 17T 7 (0% > 1) = N, (wi((0,00)) £ 0),
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where Ny is the N-measure of the super Brownian motion defined in Section 1.2.
(ii) There exists a constant C0-%°) (@) € (0, 00) such that for any y > 0,

lim (7T T2P, (0% 5 1) = CO®) (@) R(y).

—00
Remark 1.2 For a critical branching Lévy process, the tail P(¢ > ¢) of extinction time decays
to zero like 11/~ see Eq. 1.2. Theorem 1.1 tells that, for a critical branching killed Lévy
process starting from a single particle at y > 0, the tail Py({(o"x’) > t) decays to zero like
t~1/@=D=172 "\while the tail Pﬁv (0% > 1) reverts back to ¢ ~1/@= D,

For any ¢t > 0, we define the following scaled version of Zt(o'oo):
0,00), L
Zi 00).t =1 o-l Z l{infsgr Xu(5)>0}8XM(l)/ﬁ' (1.16)
ueN (r)

The next theorem is about the limits of Zio’oo)” under P 7 (-|¢ @) > 1) and Py (-|¢ ) >
t) as t — oo. It is similar in spirit to the result that the Dawson-Watanabe process is an
appropriate scaling limit of branching Markov processes (see, for instance, [20, Proposition
4.6]). This result partially answers the question in [24, Question 1.8] when the domain is
assumed to be the half line.

Theorem 1.3 Assume (H1), (H2) and (H4) hold.
(i) For any y > 0,

lim P (2079 € - [¢ 0% > 1) = Ny (wil0.00) € w1 (0, 00)) #0).

where w1l(0,00) IS the restriction of the random measure wy on (0, 00).
(ii) There exists a random measure (n1, P) on (0, 0c0) such that for any y > 0,
: (0,00), _ | (0,00) _ )
lim Py(Z, e-¢ > 1) =P0n € ).
Remark 1.4 Powell [24] studied critical branching diffusion processes ZtD killed upon exiting
a bounded domain D C RY. It was proved in [24, Theorem 1.6] that for any y € D and
non-negative bounded continuous function f on D, %( !, Z,D ) under P, (~|Z,(D)(D) > 0)
converges weakly to an exponential random variable. In [24, Question 1.8], Powell asked

what happens when D is unbounded. Our Theorem 1.3 answers this question in the case that
D is the half-plane (0, c0).

The following theorem generalizes Eqs. 1.7 and 1.8 and also provides a probabilistic
interpretation for the limit of the generalization of Eq. 1.8. When specialized to the case
o = 2, the next theorem also gives an alternative proof of [19, Theorem 6.1]. Define the
maximal displacement of X %) by

MO2X . — supinfly € R : X% ((y, 00)) = 0}.

r>0

Theorem 1.5 Assume (H1), (H2) and (H4) hold.
(i) For any y > 0, it holds that

lim x@ 1P, (MO > x) = —logP; (M©X < 1), (1.17)
X—> 00
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(ii) Assume further that (H4) holds with ro > 1 + % Then there exists a constant
60 (@) € (0, 00) such that for any y > 0, it holds that

lim x@1 TP (MO > x) = 00 (@) R(y). (1.18)

X—> 00

The higher moment condition in Theorem 1.5 (ii) is used in Eq. 3.26.

Remark 1.6 (1) When o = 2, Theorem 1.5 (i) is consistent with Eq. 1.8, and Theorem 1.5
(ii) is consistent with Eq. 1.7. In Lalley and Zheng [19], the offspring distribution is assumed
to have finite 3rd moment.

In [19], the constant §(%-°°)(2) and the limit in Eq. 1.17 are given in terms of Weierstrass’
‘P-functions. Our limit in Eq. 1.17 is given in terms of superprocess and limit in Eq. 1.18
is given in terms of R(y) defined in Eq. 1.15. The right hand side of Eq. 1.17 can also be
given in terms of Weierstrass’ P-functions. In fact, by [19, p.12, line 1 from below], we
see that —log Ps, (M) % < 1) = 2%%7351 (442 + y)), where P, is the Weierstrass’
‘P-functions defined in [19, (4.1)] with £ and w; given in [19, (5.4) and (5.5)] respectively.
Our assumption (H1) on the offspring distribution is weaker and optimal in some sense. Since
%Wt {min,, w,>0) 1 @ martingale under Py, we define

dp]
dp,

=-W l{minsg, Wy>0} -
o (Wy,s<t) y

In the case 0 = 1, it is well-known that (W;, P;) is a Bessel-3 process. Combining Eq.
4.32 (with z = %) and Eq. 3.29, we can give the following probabilistic representation for
602 (q):

G(O,w)(a):KX(%) lim lEy(GXp{ _/Onv/vz’* o (KX(Ws)> ds};tl%,+ - ,L_W.—)

y—=>0+y

= 2KX<%> yl_i)r&_ Eg(exp { - /OTIV/VZY+ X (KX(Ws)) ds})

= ZKX(%)Eg(exp [ _ /On%* X (KX(WS)) ds}),

where ¥ X (v) := @(v)/v and KX (-) is the unique solution of Eq. 3.24. It is interesting and
natural to to ask whether 6% () is monotone or smooth in «. We have not pursued this.

(2) Equation 1.18 says that, unlike Eq. 1.4 for critical branching Lévy processes, the tail
P, (M©-%) > x) decays to zero like x~2/(@=D-1,

The following result gives a Yaglom-type limit for M,(O’OO). Define
M* % = inf{y e R: X" ((y. 00)) = 0}.
Theorem 1.7 Assume (H1), (H2) and (H4) hold.
(i) For any y > 0, it holds that

M 0 (0,00, X
,li%lopﬁy( 1/; € [t@ 5 t) = N, (M"% e Jwi (0, 00)) #0).
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(ii) Let n1 be the random measure in Theorem 1.3(ii) and MM := inf{y € R :
n1((y, 00)) = 0}. Then for any y > 0,

(0,00)
lim Py( L e s z) —P(M™ €.
Jt

1—>00

We mention in passing here that the proof of Theorem 1.7 does not use the conclusions of
Theorem 1.5. So, we only need (H4), not the enhanced version of (H4) in Theorem 1.5(ii).

Theorem 1.7 (ii) is similar in spirit to Lalley and Shao [18, Theorem 3] for branching
random walks. Let M,, be the maximal position of a critical branching random walk at time .
[18, Theorem 3] says that, conditioned on survival at time n, M,, / /n converges in distribution
to the maximum of the support of a random measure Y|, where Y] is the conditional limit of
a super-Brownian motion X such that for any nonnegative bounded continuous test function
/s

Jim Py, (171 (V). Xi) € 1X; # 0) =P((f. 1) € ),

see [18, Proposition 21]. Theorem 1.7 (i) corresponds to Lalley and Shao [18, Theorem 3],
and note that since there is killing at 0, to get the conditional limit as ¢ — oo, the starting
point needs to be at /7.

1.4 Proof Strategies and Organization of the Paper

Now we sketch the main idea of the proof of Theorem 1.1. The main ideas for the proofs of
Theorem 1.3 and Theorem 1.5 are similar, and Theorem 1.7 follows from Theorems 1.1 and
1.3.Fort > 0,s >0and y > 0, let

1 1
v (s, y) 1= 17TP £ (Z0°((0, 00)) > 0) = 1a=1P 7 (£ > 1),

In Section 2.1, we derive an integral equation for vffo) (s, y). In Section 2.3, we use the

Feynman-Kac formula to prove some analytical properties of vgo) (s, y) and show that, for
any so € (0, 1), {vffo) (s,y) 15 > 50,y > 0};>1 is tight. Then we show that the limit vg(o(s, y)
exists, is unique and can be represented via the superprocess X.

The remainder of this paper is organized as follows. In Section 2, we give some prelim-
inaries. The proofs of the main results are given in Section 3. The proofs of some auxiliary
results used in Section 3 are given in Section 4.

In the remainder of this paper, the notation f(x) < g(x) means that there exists some
constant C independent of x such that f(x) < Cg(x) holds for all x.

2 Preliminaries

Recall that (&, Py) is a Lévy process starting from y, and for any function f on (0, 00), we
automatically extend it to R by setting f(x) = O for all x < 0. For a random variable X
and events A, B, we will use E(X; A) and E(X; A, B) to denote E(X1,4) and E(X141p)
respectively.

@ Springer



H.Hou et al.

2.1 Feynman-Kac Representation

Define -
o) =B( Y pl =0 —(1=v), velo.1l

k=0

Let L be arandom variable with law { py }, then by our assumption, EL = m = 1. By Jensen’s
inequality, we have ¢(v) = B (E ((1 —v)t) — (1 —v)) = B((1 —v)EL — (1 —v)) = 0,
which implies that ¢ is a non-negative function on [0, 1].

Lemma 2.1 Forany f € B ((0, 00)),

un =B (en| - [ 1020 @n}). 120y e,

solves the equation

;00
k
up(t.y) =By (exp{ = 16, }) + ﬂEy(/O (/;)Pkuf(t i = s ))ds).
Consequently, vy(t,y) ;=1 —uy(t,y) satisfies
t
vty =Ey(1—exp| = £&,0]) - E)(/ st = 5.6, 0d5). QD)
0
Proof 1t follows from Eq. 1.5 that, for any f € B;((O, 00)),
— 0
usan =5 (| - [ rozian)).
By considering the first splitting time of the branching Markov process Z?, we get
t 00
up(t,y) = e PEy(exp| = fE ) |) + BB ( /0 PN prny(t = 5,6, M),
k=0

Now the first result follows from [6, Lemma 4.1]. Equation 2.1 follows from the first result
and the definition of v . This completes the proof of the lemma. (]

Foranys > 0,s > 0,x,y € Rand v € [0, zﬁ], define fi () := f (\—ﬁ) and

1 o 1 ()
o 5,3 = 17 g, s, Vi) 00 = 17T (T E ), YO w) = ¢T
(2.2)
and
gD = f—[t tOF =inf(s > 0: 6" > x} 1" :=inf{s >0:&" <x}. (23)
t

With a slight abuse of notation, we also use Py, to denote the law of {S_Y(I), s > 0} with Eét) =y.
4 ®
Then (E(lr)/\t(; s Pﬁy) = (ﬁgr/\rér)'7 s Py)~
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Tails of Extinction Time and Maximal Displacement...

Corollary 2.2 Foranyt > 0,y € Ry and 0 < w < r, it holds that
w
(O] _ 1) ® _ OO o 20
of ) =By (0P — w8 ) ~ By fo $00P ¢~ 580 Nds). @4
Proof Tt follows from Eq. 2.1 and the Markov property that for any y € Ry and 0 <r <1,
t—r
01 ) = B0 )~ B [ b0 =5, 000).
By the equality above with ¢ replaced by tr, r replaced by ¢(r — w) and f replaced by f(),
we get
® . . "
vy (r,y) = 1o Eﬁv(v_f(,) (t(r —w), é(,w)Af)) —t«TE 5 / (g, (tr — s, A_M(;))ds)
— Ey(v;t)(r w, S(t) (r) ) / ¢(1‘)(U(l‘)(r s, %-() “) ))dS)

where in the last equality we used the fact that (£, P 7,) = (V15" . Py). This
0

completes the proof of the corollary. (]

Taking f = 010,00y (-) in Eq. 2.4 and then letting & — +o00, Corollary 2.2 tells us that
v (r, y) = 17 TP 4 (2090, 00)) > 0) =17 TP ; (10 > 1) (25)
satisfies the following equation: forany r > 0,y €e Ry and 0 < w <,
V) =B, (000 —w g ) - / $O0L0 — 5,80, Nds). 26)
Proposition 2.3 Foranyt > 0,y € Ry and any 0 < w < r, it holds that
vg))(r, y) = Ey<exp { - /Ow w(t)(vffo)(r -, 551)))ds]vé2(r —w, “g‘s(t)); Tét)’i > w).

Also, for any f € B;((O, 00)), it holds that
w
v;t)(r, y) = Ey<exp{ — /0 w(l)(v.(fz)(r -5, 55’)))ds}v.(;)(r —w, g,ﬁf)); 1:5[)’_ > w).

Proof For fixed ¢, r, w > 0, write H(x) := v(t)(r —w,x), Qu(s,y) = v(')(s +r—uw,y),
Ny = €7 o and 1(q) :== [ O (Qpu(w — s, ny))ds for short. For any n € N, iterating
WATy

Eq.2.6 n tir(;les and applying the Markov property, we get that

Q0 (w.y)
w w—s
= Ey (H(w)) — E;(/0 I'(q) (E,,S (H () = En, (/0 ¢0Quw—s—q. éq»dq)) ds)

I i w
—E, (Z CIWD w>) +Ey(/0 I'@1@) 0w — g, 1g)dq)
=0 !

n 7 i
==K (Z( ) H(nu;>)+(—1)"“Ey(/o "D 1)@ 11w — 4. g104).
i=0
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Since 0 < H(x), Qp(g,x) < tﬁ forall x > 0,9 < w and w(’) > 0 is locally bounded,
we see that sup, -, [1(¢)| < oo. Therefore, letting n 1 oo in the above equality, we obtain

w
w00 ) =K, (exp | - fo VOORE =580 ) Nas Qe —w gl ().

Since v (r —w,y)=0forally <0and 0 < w < r, we get the first result. The case for

}) is similar. O

Remark 2.4 By the Markov property of S( ) for y > 0 and w € [0, r], it holds that

7
ROYNG 0 o) ®
._ 1) (,(t t
Yy 1= exp { — /0 v (voo (r—s, Smrél)._))ds}voo (r—w, gwmé‘)")

,
) (t) 6] .
=K, (exp | _/0 v O D (r _s,gwé,),,))ds]vgg)(o, AT] AT )

Hence, {1y, : w € [0, r]} is a Py-martingale. Thus, for any stopping time 7' of the Lévy

g

process Es(t) andany ¢t > 0,0 < w < r, we have
v&(r, ) =Ey (Tyar)
wAT
= Ey(exp{ — / w(’)(v&) (r—s, Ss(t)))ds}v&) (r—wAnT, SgiT) D= S wA T).
0
2.7
Forany 0 < y < x, define
v(y; x) i= Py (MO > x),

Proposition 2.5 Forany 0 < y < x, it holds that

v(y: x) = Ey<exp{ - /0+ w(v(gs;x))ds}; o < ro—) 2.8)

where - .
yo =0 FEEmd == (=)

v

Consequently, for 0 < y < z < x, by the strong Markov property, we have

2
vin =B, (veinen| - [ vocona)i <) @9)
0
Proof Assume 0 < y < x. Comparing the first branching time e with ", we get

v(y; x) =Py MO0 > 5 o> r(;)+IP (MO0 > e < 7))
/ Be~ BSP} x <757y s)ds

+/0 ﬁe_ﬂsEy«lf;pk (lfv(&;x))k);s<r0_/\r;'>ds

=E, (e*ﬂr;; T;r - TO / Be~ ﬂsE\ Z pr (1 —v(&; x)) ) s <T) A r;L)ds.
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By [6, Lemma 4.1], the above equation is equivalent to
o0
v(y; x) + ,3/ E, (v({-‘s; xX)s <1 A r;') ds
0

0 o k
=P, (1:;' < T(;) +ﬂ/0 Ey(l — Zpk<1 — v(gy;x)) is<Th A rof)ds,
k=0

which is also equivalent to

o0 o0
o0 =Py (<75 ) fﬁ/O Ey (D2 pic (1= (e o) = (1 = (s o < o Ay )ds
k=0

‘E;—A‘EO_
=Py (e <) <Bo( [ v nas).
Since ¥ (v) > 0 for all v € [0, 1], by the Feynman-Kac formula, we have

v(y; x) = Ey(eXp{ - /Orjmo 1ﬂ(v(és;Jc))ds}; Tt < ro‘)
= Ey(exp[ - /OT:r w(v(és;x))ds]; 1:;' < 1:(;),
which gives Eq. 2.8. g

For any x > O and y € Ry, define

2
—T

K9 (y) 1= x@To(xy; x) = xaT Py (M%) > ). (2.10)

Then K™ (0) = 0 and that K™ (y) = xfxZTI when y > 1.

Lemma 2.6 Foreveryx >0and0 <y < z < 1, it holds that

T(xz)Hr

z 2 2 2y _
K9 () =E,(exp | - f PO (KD (657))ds | K @ «f“z>+) (T <),

2
Proof By the definition of 7" in Eq. 2.3, (x2¢% ", P,) £ (¢
y q z Y

. Pyy). In fact, for any
a >0,

P, (2 F = 4) =P, sup 5("2) <z) =Pyy(supé&y < z2x) =Py (rl > a).
y z y w ) y z

x2w<a w<a

(2.11)
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Therefore, combining Eq. 2.9 and the definition of £ in Eq. 2.3, we get that

2 n _
KD ) =x7TEyy (expf - /0 P& 0)s fue g0t < 1)
20+

P z 2 2 2y
mey(eXp[ - / w(v(xé“;;_)z; x))ds]v(xé()&%*; x); ‘cz(xz)"" < ‘L'(gx ). )
0 L2

)+
T 2 2
= E_v(exp{ —/(; X2y (u(xEXD; x))ds}K(") ") ) r;xz)’J“ < )‘_>

rz(xzw

rfxz)’+

z 2 2y _
=By (o] = [T v EROENas]KOED )it <),

where in the last equality we used the fact that

2 2
Ta-T o Ta-T
leﬁ(vx_%) = xz(p(Lz) — X%M — W(X2)(U) (2.12)
vx eIl
and the definition of ) in Eq. 2.2. This completes the proof. O

2.2 Some Useful Properties of Lévy Processes

In this subsection, we always assume that the Lévy process fulfills (H2).

Lemma 2.7 IfEo (((—&1) v 0)*) < oo for some % > 2, then

A=2
) < OQ.

sup EX(

x>0

IfEy ((Sl \% O))‘) < 00 for some ) > 2, then

>

supE_X( 3:2) < 00.

x>0 0
Proof For the first result, see [9, Lemma 2.1]. The second result follows by the first result
with £ replaced by —&. O

Lemma 2.8 (i) For any x > 0, it holds that Ex|.§r(;| < oo and

R E (&,
fim B _ 1 _ iy =G
X—>00 X X—>00 X

—1. (2.13)

Furthermore, R(x) < x + 1.
(ii) R is harmonic with respect to &, Aty that is,

R(x) =Ey (R(&); 1y >5), s>0,x>0.

Proof (i) The first equality in Eq. 2.13 is an immediate consequence of the definition of
R(x), so we only prove the second equality of Eq. 2.13. We will use the decomposition
introduced in [4, p.208]. Suppose that 78 is the Lévy measure of £. If 75(jx| > 1) = 0, then

Eo(|&; I*) < oo, which implies the boundness of E, (lér(; |) according to Lemma 2.7. Now

assume that 7€ (x| > 1) > 0. Let 0, be the n-th time that & has a jump of magnitude larger
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than 1, and put o9 = 0, then {0, — 0,1, n > 1} are iid gxponential random variables with
parameter 78 ({|x] > 1}). We can define a random walk Z, given in [4, p. 208]:

Zn=&,, n>1, and Zy=&.
Similar t0 [9, (2.4) and (2.5)], under (H2), Eq(Z1) = 0 and Eq (2}) < oc. Forx = 0, define
RZ(x) =x —E, (Zrz.f),
0

where rOZ’7 = inf{n : Zn < 0}. It is well-known that, under the assumption (H2),

Ex|Zfz,7| < o00. Using a martingale argument for the ladder heights process of 7, we
0

know that (for example, see [10, (3.4) and (3.6)])

R (x) _

lim 1,
x—00 X
which is equivalent to
. EX (| ZTOZ‘_ |)
lim ——— =0. (2.14)
xX—00 X
By [4, p.209], for any z > 1 and any x > 0,
P (I | > 2) < PX(\QIOZJ > z). (2.15)

Combining Eqs. 2.14 and 2.15, we conclude that

x(|$,;0 |)_*+*/1‘ x(|$1—0|>z) Z
1+E,{(’ZTOZ,7‘)

X

| e SN
=t P (1Z,2-1> z)dz =

X—>00
—
The last assertion of (i) follows from Eq. 2.13 and the monotonicity of R.
(ii) Note that
X =Bt ) = Eulti g > 1)+ Bl <),

Letting ¢+ — oo in the above equation, using the definition of R(x) and the Markov property,
we have

R(x) = lim Ey (&7 > 1) = lim Ey (545075 > 1 +35)
= lim E, (E& (5,; Ty > t) i Ty > s) =E, (R(Ss), Ty > s),
—>00
where in the last equality, we used dominated convergence theorem and the fact
E: (&:75 > 1) = |x —E:(6, i1 SDISx+R0) Sx+1Lx>0.
The proof is complete. g

Remark 2.9 1t follows from Lemma 2.8(i) that, under (H2), E, (IST(; D < y+1foranyy > 0.
Similarly, replacing & by —&, we see that

E_,(& +
E—-(“G}J)Sy—l—l, forall y >0, and lim M:O,

y—00 y
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Recall the definitions £€®, @+ and (-~ in Eq. 2.3.

Lemma 2.10 (i) For any y,s,t > 0,

- t 1 t 1
P, (Tét)’ > s) < \[ji_ and Py (r;’)"" > s) < Qi— (2.16)
st st

(ii) Forany 0 <y < zand anyt > 0,

(0 — , Viz—y)+1
<) 2

Proof (i) By definition of ‘L’él) ', we have
(t),— : @)
Py(wc0 > s) = Py(gge > 0) Py ( 1nf & > 0)

Now set S, := &, for n € N. We use the trivial upper bound 1 in the case st < 1. Now we
assume that st > 1, then

_ Viy+1 iy +1
P,(z" " >5) <P inf S; >0 <2 ,
)( 0 ) =Yy (/<[st1 ) B - /st

where we used [1, (2.7)] in the second inequality above. For the second inequality in Eq.
2.16, noticing that

Po(ty D-F > 5) =Py(sup & < V/1y) = P\ﬁy(ggﬁt(—&) > 0),

<st

an argument similar to that used to prove the first inequality in Eq. 2.16 with & replaced by

—& leads to the desired assertion.

(1),—

(ii) By the definitions of .+

andt; "',

Py(r" " =t0T) =P (5 =)

Since (&, P \/;y) is a martingale with mean /7y, it holds that

Viy = E\/?y(gsmo—m}z) =E(Eis <7g AT)) +Eﬁy(‘§fo'm}z;s > 175 AT)-
(2.17)

According to Remark 2.9, we have
E«ﬁy("sro’Ar}z |) = Eﬁv("gr’ |) + Eﬁy (ErJr )
_Efy( )+‘[Z+Ef» «fz(S ) < 00.

Noticing that |&| < /tz when s < LA ¥ taking s — oo in Eq. 2.17, we get

),

f il

«/Ey = Eﬁy (Sfo_/\f}z

which implies

E /(€ ) JY—E@((S —S—);ro‘fr}z). (2.18)

@ Springer



Tails of Extinction Time and Maximal Displacement...

By Remark 2.9, we conclude that
1
(t),— ) - + R +
Py(rg " <o) =P (< tﬁz) = \/ZTZE\/;y((STj/—;Z —&-)it < tﬁz)

EJV( )\[y f(z—yH—E(J(zm( +) o V= +1
B «/Ez Viz . Viz ’

which completes the proof of (ii). O

Let S, be the random walk defined by S,, = &,, n € N. Sakhanenko [27] proved that (see
also [8, Lemma 3.6]) under the assumption

Eo(l&**?) < 0o forsome &> 0, (2.19)

we can find a Brownian motion W; with variance o’t, starting from the origin, such that for
any y € (0, ﬁ) and any ¢ > 1, there exists a constant N, (y) > 1 such that

) _ Ny (y) Ni(y)

= . (2.20)

11
P ( - b
o 3up [Sus = Wis| > 51277 ) = sy L A—E+-1

0<s<l1

By comparing S, with & for ¢ € [n, n + 1], we immediately have the following result.
Lemma 2.11 Assume that the inequality 2.19 holds. Let Wy be the Brownian motion in the
inequality 2.20, then for any y € (0, ﬁ) and any t > 1,

1 N.
Po(_ sup [6s — Wil > 127) £ o)
0<s<l1 tG—IE+2)—1

Proof By Doob’s inequality,

1 1

0<s<l 0<s<l

246

< mlziEo(w”) <

13—+ (G-Pe+o-1

Combining this with Eq. 2.20, we immediately get the desired result. O

Recall that the function R is defined in Eq. 1.15. The following result for Lévy processes
is analogous to the corresponding result for random walks proved in [8, Theorem 2.9]. We
postpone its proof to Section 4.1.

Lemma 2.12 Assume that the inequality 2.19 holds. For any y > 0 and any bounded contin-
uous function f on (0, 00), it holds that

Consequently, for any r > 0 and any bounded continuous function f on (0, 00),

Jfim VI, (&) o)) = Jim VEE, (1 (ftﬁ) )

= 1 2RG) /00 ze_éf(zaﬁ)dz.
0

r\2mwo?
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Since &2 — 0%t is a martingale, under the assumption E(|&|*) < oo, by the optional
stopping theorem and Lemma 2.7, we have

V0B, (59 A ) =By (g aet)’) SE((E))) +Ey((66)7) <00 22D)

The exit time estimates in the next result will be used to prove Egs. 3.26-3.28. The requirement
for the (4 + &)th moment of £ is to ensure that the (2 + &)th moment of the overshoots .§ - and

&, -+ are finite, see Eq. 2.26 below. Note that when (H4) holds, the condition of Lemma 2 13is
fulfilled because that for o € (1,2],wehaverg > Qa)/(a—1) =24+2/(ax—1) > 242 =4,
which implies that we can take ¢g = ro — 4 > 0 in the following lemma.

Lemma 2.13 Assume that Eo(|€1|*T40) < oo for some gy > 0.
(i) Forany y,z > 0,

() = R (2.22)

2
lim xP <1, )= lim xP, - (r(x <1
X—>00 ( Txz 0 ) x—o0 ¥ < 0 z

(ii) For any y > 0, there exists C > 0 such that for any z > 0 and any x > max{l, %},

2y _ 1 C
xEy -1 (rz(xz)’+; TZ(XZH' < Téx ), ) = ;Ey (it <1p) < szzPy (<10 ) + o
(2.23)
2
Proof (i) The first equality in Eq. 2.22 follows immediately from the definition of S,(x ), s0

we only need prove that the first limit in Eq. 2.22 is equal to the right hand side of Eq. 2.22.
According to Eq. 2.18 and the definition of R(y), we have

Ry =y—Ey(E-) =Ey((¢x —&-)inl<79)
> xzPy ( T, < t(;) (2.24)
On the other hand, for any § > 0,

R() =Ey((6x — &)1t < r(;) (2.25)

Txz
< (z+26)xP, ( T <7 éfo— > —éx,ér;rz < (z +5)x)
Ey((5,: — ff)(l{s(;s—ax} + ey =@rom)i T < %)

<(z+28)xP x <

Z

To
+ V2, By (5, — \/Py(€—< —6x) + Py(E+ > (2 +8)x).

Note that, by Lemma 2.7, for any fixed y, z > 0,

Ey((éf;z — sro—)Q) < 2By (57 + sfof) = 2(Ey_xz(gfo+ +xz) + Eygjo,) < X2

By Markov’s inequality, and using Lemma 2.7 again, we have that

J&«%vfgﬁJm@fsﬁm+m@¢z@+&w

S Va2 \/ G Bl Pro) + o )MO E (677

S xe2, (226)

@ Springer



Tails of Extinction Time and Maximal Displacement...

Putting Eq. 2.26 into Eq. 2.25 and applying Eq. 2.24, we obtain

R(y) - 1 + -
T <1¥210%fo (xz<TO)511£S;pxP)’(sz<TO)5 -

R(y)

Since § is arbitrary, we arrive at the desired result.

2
(i1) The first equality in Eq. 2.23 follows immediately from the definition of S,(X )

only need prove the inequality in Eq. 2.23. According to Eq. 2.21,

Ey((ST;rMJ)Z) =0o’E, (s <15) + o’E, (979 <712)+ y?

> o’E, (it <)

For the left-hand side of Eq. 2.27, by Lemma 2.7,
2 - 2
Ey((rinry)) = Ev((E) ot < 70) +E((6) 51 < 7h)
< 2Ey((&,+ —xz)2; T <1p) +2:2°Py (o < 1) —I—Ey((“;‘q;)Z)
SH??Py (<) + L.
Plugging this upper bound back to Eq. 2.27, we conclude that
1
fE (% ;<T&)<XZP (r," <r(;)+;.

This implies the result of the lemma.
2.3 Preliminary Estimates for the Survival Probability

Recall that 1) is defined in Eq. 2.2.

Lemma 2.14 Assume that (H1) and (H2) hold.
(i) Forany t,r,y > 0, it holds that

1 fy +1
v (r.y) S —
rﬁ yoa— 1+2\/>
(ii) For any r > 0 and y € Ry, it holds that
1
VO ) S s
r
and that for each K > 0, uniformly for v € [0, K],
()
lim [0 =C(),
t—oo po—1

where C(«) is given in Eq. 1.9.

, SO we

(2.27)

Proof (i) Recall the definitions of ¢, ¢ (%) and v (r y)inEgs. 1.1, 1.6 and 2.5 respectively.

Since (%) < ¢ by Eq. 1.2,

1 1
véQ(r,y)fzﬁPm(gwr)gtﬁ =

([r)m yoa—1

(2.28)
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On the other hand, taking w = % in Proposition 2.3, combining Eq. 2.28 and Lemma 2.10(i),
we get

_ 1 _
0O y) < By (00 (r/2.870): 1" = r/2) S ——Py (" > r/2)
yoa—l1
1 t 1 t 1
< — iyl {yT . (2.29)
raT ATt re1t2./1
Now the first result follows easily from Eqgs. 2.28 and 2.29.
(ii) For @ € (1, 2), by [9, Lemma 3.1], we have
i $p)  Pr(@)I'2—a)
im = ,
v—0+ V¥ a—1
which implies
P() Sv¥, velo,1]. (2.30)

When o = 2, Eq. 2.30 also holds since we have

lim w =¢"(0+) =C(2).

v—>0+ v
Therefore, by part (i),

L o 1
w(’) v(t)(r, M) S ——ta (t)(r )t a1 (t)(r y) —, r>0,yeR.
b5 0 it ) =R s

1
Since, for any K > 0, vt~ @=T converges uniformly to O for v € [0, K] as t — oo, we have,

uniformly for v € [0, K],
YO . giET)  Br@l (2 —a)
= lim =

lim = C(a).
t—o0 Po— 1—00 (vt~ aT)® oa—1
Therefore, the assertion of (i) is valid. O

Lemma 2.15 Assume that (H1) and (H2) hold.
(i) For any fixed ro > 0, there exists a constant N1(ro) > O such that for any t > 0,

14+ Jtw
‘vé’o)(r, y+w)— vffo)(r,y)‘ < Nl(ro)i\[, r>2ro,y € Ry, we (0,r).
Jiw
(ii) For any fixed ro > 0, there exists a constant Ny (rg) > 0 such that for any t > 0,
1+ g\
‘vc(fo)(”v)’) - Ug;)(” +q7}’)’ = NZ(VO)W, r>2rp,yeRy,qge (0’ rg).

Proof (i) Since v(l) (r, 0) = 0, the assertion for y = 0 follows from Lemma 2.14(i). So we
assume y > 0. Note that for0 <y < zandt > 0,

0, _ .
Py(c % > 1) =Py(Fu e N(t) : inf X, (1) > 0)

—P, (Elu €N : inf X, () > 2~ y> < IP’Z(EIM e N() ¢ inf X, (1) > 0) — P20 > p,
s< s=
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which implies that
v,y +w) — oD, »| = v,y +w) — oD, y), y,w > 0. (2.31)

Now for y > 0and w > 0, taking T = -+

ytw in Eq. 2.7, we get

(1)
Vs (7, )
o).+
B WATy Yy ® /(. © 0 ) )+ (@) L, — ).+
=E,(exp] — A YO (0 r — 5, EMN)ds ol r —w A gyl £ )Ty > WATL
ytw

w
= By (exp| = [ w0000 — s 6o = 60 e > e A <)

y+w

w
>0, y+ w)Ey<exp{ 7/(; w(’)(vé’o)(r —, ES(”))ds}; té”’f > téﬁlujr, I;QJ < ), (2.32)

where in the last inequality we used the facts that Py(;'(o’oo) > t) is decreasing in ¢ and

increasing in y, and S(i,)H > y + w. By Lemma 2.14(ii), there exists a constant I" > 0 such
ytw
that for any r9 € (0, r/2) and w € (0, rp),

w v r r
/ YO D — 5, £0))ds < r/ ds< —2 < —w.  (233)
0 0

r—s r—w -~ ro

Combining Eqs. 2.31, 2.32 and 2.33, we see that for any ¢t > 0,y > 0, w € (0, rp) and
r > 2ro,

POy +w) = o0 )|
w
<D,y + w)(l - Ey(exp{ 7/ A AG fs,és(’)))ds}; rét)’_ > T;QJ T;?_J < w))
0

_r _
<020y + (1 = FR (0 > 1 1 < )

<oy +w)(l - et +Py (7T =) Ry () > w)).

Combining Lemma 2.14(i), the inequality 1 — ¢~ < x for x > 0, and Lemma 2.10, we
conclude from the above inequality that
‘vé’o)(r, y+w)— vgo)(r, y)‘

1 r Jiw + 1 ﬁw+1> 1 ( Jiw + 1 ﬁw+1)
< — <
~ <r0w+ﬁ(y+w)+ N Yt tw T

1
a—1

ya—l1 ro
- 11 (ﬁw—i—l +2\/fw+1)7
T Vi(y +w) Vwt

. . . < Nw Jiw+1
where in the last inequality, we used w < J/roJ/w S o < e Therefore, when

y > 4/w, we have

t 1 t 1 t 1
vgo)(l’,y-i-w)—v&)(r,y) < Viw + Viw + <2«[w—|— .

SGmrw T e S (239
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On the other hand, when y < /w, using the monotonicity of v (+, ) in y and Lemma
2.14(1),
vy +w) v y)| < vy +w) < v 0 Vw +w)

f(f+w)+1 2 M+1< 2 Viw+1

2.35
rETTS T @roaTtr N T @rgaTtr Wiw 23

Together with Eqgs. 2.34 and 2.35, we complete the proof of (i).
(ii) Since v(t)(r 0) = 0 the assertion for y = 0 is trivial. So we assume y > 0. By the
monotonicity property of v (r y)inr,

00, ) = 000 + 4,0 =00 ) = 0L +q. ). (2.36)

Using Proposition 2.3 with r replaced by r 4+ ¢ and w replaced by ¢, and an argument similar
to that for Eq. 2.33, we have

q
vgo)(r +q,y) = Ey(exp { — /(.) w(’)(vgo) r+q —s, E‘Y(’)))ds}vgg(r, gét)); Tét)’ > q)
_rf4_1 _ S _
> TS, (000 g 7T > g) = ¢ VB, (W00 6 )i 7T > q)
J _
> e B, (vl £ 7T > g0 1 — vl < ).
Plugging this into Eq. 2.36, we obtain

_r —
000, ) = v +q. )| < Q) = ¢ 2B (R0 ) 7 > a, 16 — vl < g

<o, (1 —e “mp, V(1" > g, 180 =yl < g'%)
r
+¢ 200E, (b0 ) — v Qe 6 T > a 1E — vl < ). 2.37)

By part (i), the last term of Eq. 2.37 is bounded above by Nj(rp) IJ:[;/C,;?/;/4' Similarly, com-

bining Lemma 2.14(i), Doob’s maximal inequality and Markov’s inequality, we have

S _
v, y)(1— e 2Py (i > g, 181 — y| < ¢'%))

1 _Ir _
S (1= 20 4Py (07 = q) + Py (E — vl > ¢'74)

yoa—l
1 r
< —F +Py(inf £ < 0) +Py(|g\"| > ¢'/*
B (Zro)a T <2roq (;151(153 = ) 0(|§q I>q ))
<4 +P0(SUP(_5§Z))+ >y)+ g2 EO((g(t))z)

s<q

1
= q+ SVEo(( D)) +EoeDg' 2 S g + % (2.38)

A
When y > ¢!/, by combining ¢ < r02q1/8 < ¢'/® with Egs. 2.37 and 2.38, we get

1 l1/4 1 t1/4
VI IHig T Vi

y Vigh® o g8

v, y) —véi?(rJrq,y)’ <q'+
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On the other hand, when y < ql/ 4 by Lemma 2.14(i) and the monotonicity of Vo(f)) (r,y)in
r,
Viy+l _ Vigt+1
v ) = v +q. 0| =0y S S — < —— (240
reEtt T T Qr) g
Combining Egs. 2.39 and 2.40, we complete the proof of (ii). O

2.4 Preliminary Estimates for the Tail Probability of M(®->)

Recall that, for x, y > 0, K@ (y) is defined by Eq. 2.10.

Lemma 2.16 Assume that (H1), (H2) and (H3) hold.
(i) Forany x > 0 and y € (0, 1), it holds that

K9G S ——.
(1 =yt
(ii) There exists a constant Cy > 0 such that forany 0 <y <z < land x > 0,
@2).+
R e (). +
| YUKW ET))ds < Cy T Py-a.s.

Proof (i) Since MO0 < pp. by Eq. 1.4, we have

1 _ 1
@ —y)@T  (1—yar

K@ (y) < xaT Py (M > x) = x#TP(M > x(1 — y)) < xt

(ii) Combining Eqgs. 2.12, 2.30 and part (i), we get that forany 0 <y <z < landx > 0,

26D+ L&D+ , | ,
z 2 z o 2
w(xz)(K(x)(é}S(x )))ds < / Xl ———— (K(X)(gs(x ))x_ﬁ)ads
0 0 K@ ESD)
o2),+ x2),+ a—1
Tz 2 —1 T 1 1 2
= (K“)(gs“ )))a ds < —_— ds < — ‘L'Z(X A
0 0 (1 — Xyt (1-2)

O

Lemma 2.17 Assume that (H1), (H2) and (H3) hold. For any ro € (0, 1/4), there exists a
constant N3(rg) such that for any x > 0, any y € (0, 1 — 2rg) and any w € (0, rg), it holds
that

14+ xw 2
(x) _ W _ _ (x°),+
KV(y+w) —K (y)} < N3(rg) ((y Y +1—-Ep (exp{ N3(ro)t, })) .

Proof Letry € (0,1/4) and x > 0. For z > y, we have

K@ () = x@ TPy (31 >0, u € N(t) : X,(t) > x, inf X, (s) > 0)
sS=

‘ 5]

<xa 1P (3t >0, ue N(t): Xu(t) = x —x(z—y), inf X, (s) > —x(z -))

X@ TP (31> 0, ue N(t): Xu(r) > x, inf X, (s) > 0) = K9 (2).
§=
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Therefore,
KD +w) — KD =KD+ w) — K9 ().

Note that for y € (0,1 — 2rg) and w € (0,r3), wehave y + w < 1 —2rg 4+ 13 < 1 —ro.
Thus, combining Lemma 2.6 and Lemma 2.16 (ii), we obtain that for y € (0, 1 — 2r¢) and
w e (0,r),

1 2 2 2
K90 2y (exp | - O KO0 Jint <7 )
(1—y-—w T
1 2 2) _
= KO0+ wE, (exp{ - Comrl rin T <), (2.41)
o

Together with Lemma 2.16(i) and Eq. 2.41, for all y € (0, 1 — 2rg) and w € (0, rO)

1 2 2 2
KO0 +w) = K90) = KO0+ w)(1 -y (x| = Cozrfythirflyt <))
0

1 2 _ C 2
S (AL 2 ) H - Ey(en - S a)T))
(1 —y—w)eT "o
< xw + 1 _E. 7C7 (2)+ )
S (G 1 Blow =)

where in the last inequality we used Lemma 2.10(ii). Therefore, there exists N depending on
ro such that

+1 Co
K@ — K9G <N (2T 41—, — i ),
(y+w) ) = O+ w) + y | eXP 2 Turty

this completes the proof of the lemma with N3(r9) = max{N, f—g}. J

3 Proofs of the Main Results

Throughout this section we assume (H1), (H2) and (H4) hold.

3.1 Proof of Theorem 1.1

By Lemma 2.14(i), for any r, y > 0, we have

sup vé’o)(r, y) < 0.
>0

By a standard diagonalization argument, for any sequence of positive reals increasing to oo,
we can find a subsequence {tx : k € N} such that limy_, { fx = 00 and that the following
limit exists

lim v (r, y) = vX (r,y), forallr,y e (0,00) NQ. (3.1
k—o00
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Since vgo) (r, y) is decreasing in r and increasing in y, so is the limit vfo (r, y) for rational
number r and y. Therefore, for any r, y > 0, we can define

VX (res Y1) = sup vXw,z).  (32)

X .
v (r,y) = lim
* (0,00)NQ3 (rg, y)— (r,y) welr,00)NQ,z€(0,y]INQ

We define v (r, 0) = 0 for all r > 0.
Lemma 3.1 The relation Eq. 3.1 holds for all r,y > 0.

Proof Foranyr,y > 0,let {(ry, ym) : m € N} be asequence in ((0, 00) NQ) x ((0, 0c0) NQ)
with (r,, ym) — (r, y). Note that

X3 = 0@ 00| = [0 ) = vE G )

- ‘vg’@(rm, ym) — v (r, y)‘. (33)

+ ‘Ué(o(r}’n! Ym) — Uég()(rms Ym)

Fixrg € (0, (% inf,, rm) A 1), then there exists A > O such that |y,, —y| < roand |r,,, —r| <
r(‘)1 forallm > A. By Lemma 2.15, we have that

[0 G y) = 0B )| = [0 G ) = 08 s )|+ o ) = 0B, )

1+ﬁ|ym_Y| 1"‘\/tk|7’m_r|l/4
< Ni(rg)) ————1 A+ No(r 1 . 3.4
< Ni(ro) ] (Ym#Y) 2(ro) Jiilrm — 18 (rm#r) 3.4)

Combining Egs. 3.1, 3.3 and 3.4,

lim sup o35 (7, ¥) = VR (r, 0| S [0 ) = v &0 v |+ Viw = YT+ I = 11
— 00

(3.5)
By Eq. 3.2, letting m — oo in Eq. 3.5, we complete the proof of lemma. g

Combining Lemma 2.14(i) and the definition of vX above, we can easily see that for
ro > 0,

sup vfo(r, y) < oo. 3.6)

r>ro,y>0

To prove Theorem 1.1, we need some results on the uniform convergence of vgo) (s, y) to

vé‘o(s, y)ast — oo.Foreach 0 < w < r, taking t = f; in Lemma 2.15 and letting £ — oo,

we see that for any fixed ro € (0, (* — w)/2),s € [r —w,r],y € R;,5 € (0,r9) and
4

q € (0,rg),

WX (s, y +8) —vX (s, I < N ro) V5, X (5, 3) —vX (s + 4. 9)1 < N2 (r0) 48,
3.7

which implies that vX (s, y) is jointly continuous for all s € [r — w,r] and y > 0. Since
vgo) (s, y) is increasing in y and SUP;~.1 yeR, v&) (s, y) < oo, we see that vgo(s, y) is also
increasing in y and that SUPyeR, vgfo (s, y) < oo, which implies the existence of vé‘o (s,00) :=
limy_, vg(o (s, y). Letting r — oo first and then y — oo in Lemma 2.15 (ii), we see that
vg(o (s, 00) is continuous in s € [r — w, r]. Therefore, for any ¢ > 0, there exist J, L € N
andso=r—w<s;<..<sy=r,y=0<y <..<yL <yrLy1 = 0o such that

X X X X
max v (s, — v (si_q, Vvl (s, — v (si, yo— )<8 3.8
om0 =k v ke o = ke ven]) <6 68)
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and that there exists 7> > 0 such that for any ¢ > T,

X
jel0.J) Ce10.L] Vi (s, yo) = v (s, vo)| < e

Therefore, for all s € [s;—1,s;]and y € [ye—1, y¢) with j € [1, J], £ € [1, L + 1], by the
monotonicity of vgo) , we get

Ugo)(S, y)ngo)(Sj, Ye—1)=>—¢€+ vg(o(sj, Ye—1)>—3¢e + Ug(o(sj—l, ye) = =3¢ +vX (s, ).
3.9)

Similarly, we also have
v (s, y) < 3e +vX (s, ). (3.10)

The next lemma shows that any subsequential limit v (r, y) is a solution to some initial-
boundary problem. We postpone its proof to Section 4.2.

Lemma 3.2 The limit vg(o (r, y) solves the following initial-boundary value problem

2 a2 .
G0 ) = G 5vE ) = ¢ (W50 ). in (0, 00) x (0, 00),

lim, 04 v3 (r, y) = 00, y € (0,00), 3.11)
limy_ 0+ vX(r, y) =0, r € (0, 00),

and for eachr € (0, 00), sup,.. v (r, y) < oo.
The next proposition is on the uniqueness of the solution to the problem Eq. 3.11.
Proposition 3.3 The solution to the problem 3.11 is unique and can be written as
v (r,y) = —logPs, (X = 0),
where Xﬁo’oo) is the process defined in Eq. 1.13.

Proof Suppose that u solves problem 3.11. For any § > 0, v(r, y) := u(8 +r, y) solves the
following problem:

2 92 .
G0 y) =G 35v( ) =@ (. y). in(0,00) x (0, 00),

lim, 04+ v(r, y) =u(d,y), ye€ (0,00),
limy oy v(r,y) =0, r € (0,00),

which is equivalent to the integral equation Eq. 1.10 with f = u($, -). By the uniqueness of
the solution to Eq. 1.10, we get

u(r+948,y) = u,f(g’.)(r, y) = —logEgy(exp{ —(u(s, ), Xt(o’oo))}), r>0,y>0.

Now letting § — 0+ in the above equation, by Lemma 3.2 and the continuity of vé(o (r,y)in
r’

u(r.y) = lim u(r+3.y) = lim —logEs (exp{ — (u(3.). X"*)})

= —logPs, (X" = 0).

Now we are ready to prove Theorem 1.1.
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Proof of Theorem 1.1 (i) Combining Lemmas 3.1, 3.2 and Proposition 3.3, we get that, for
any y > 0,

: 0) — Tim o (0,00) __ (0,00) _
tilrlloovoo(l,y)—tlinoiot Py (g >t>— log Ps, (X =0). (3.12)

Taking f = 01(0,00) in Eq. 1.12 and letting & — 400, we have that

~logPs, (X\"* =0) = lim_ N, (1 —exp{—{61(9,00) (), w1)}) = Ny (w1 (0, 00)) # 0).

6—+o00
(3.13)
Combining Eqgs. 3.12 and 3.13, we arrive at assertion (i).
(i1) By Eq. 2.5, we have
vg)) (1, L) = trlle(g'(O’oo) > t), y > 0.
vt
It suffices to show that there exists C%° () € (0, co) such that
; o (1. 2) = (0,00)
[Jim Vi) (1, ﬁ) =R(C (o). (3.14)

By Proposition 2.3 and Eq. 2.33, there exists I' > 0 such that for any ro € (0, 1/2) and
w € (0, ro),

ﬁE),/J(v(’)(l —w, 5(')); tmﬁ > w)

> Vi) (1 7) >e —% \fE}/\[( VD1 —w, £D); 1, > w). (3.15)

By Eq. 3.10, for any ¢ > 0, when ¢ is large enough,

VB (000 = w. &) 17T > w) < VIBy £ —w, £D) +30) 77 > w),

which, by Lemma 2.12, tends to

I 2R(y) [*_ _2 «x
ﬁ N e 2 (Vi (1 —w, zo/w) + 3¢)dz
mo? Jo

as t — oo. Similarly, using Eq. 3.9, we have

«/;Ey/ﬁ(vélo)(l —w, “;‘,Sf)); rér)’7 > w) > «/ny/\/;((vg(O(l —w, 55,’)) — 3e); rét)ﬁ > w)
—

ﬁxﬂnaz 0

Therefore, letting ¢ — 0, we conclude that

o0 2
ze” T (vE (1 — w, zoVw) — 3e)dz.

tgnéo‘ﬁEy/ﬁ(véQ(l —w, &M ré’)’* > w)

1 2R(y) (> 2 %
:ﬁm ; ze” Tvi (1 —w, zo/w)dz = R(Y)G(1 —w,w). (3.16)
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Plugging this limit into Eq. 3.15, we get that

R(»)G( — w, w) > lim sup /7o) (1, l)
t—>00 \/E

imi (2 — v _
zhtrggf\/;voo (1,\/;>ze 0" R(yY)G(1 —w, w). (3.17)

Using Eq. 3.17, for any w € (0, 1), we easily see that G(1 — w, w) € (0, 0o0), which implies
that

. y .. y
oo > lim sup «/;vgo) (1, —— | > liminf \ﬁv(’) 1,— ) > 0.
\/Z — 1> o0 ﬁ

—>00

Therefore, letting w — 0+ in Eq. 3.17, we finally conclude that
. ) Y\ p _ _. (0,00)
Jim. NS (1, ﬁ) =R() lim G(1—w, w) = RECT (),

which is Eq. 3.14. The proof is complete. O

3.2 Proof of Theorem 1.3

To prove Theorem 1.3, we need to show the convergence of vjf) (r, y) for every continuous

function f € B;r ((0, 00)). The next lemma shows that we can assume additionally that f is
Lipschitz.

Lemma 3.4 Let i, and  be non-negative finite random measures on R, then the following
conditions are equivalent:

(i) For any continuous f € BZ’(R), S f @) pn(dx) N [ fpdx);
(ii) For any Lipschitz continuous f € B (R), [ f(x)un(dx) SN J fop(dx);

Proof We only need to prove (ii) = (i). First note that (ii) implies that (1,,),>1 is relatively
compact in distribution. In fact, by [12, Lemma 16.15], (1,),>1 is tight if and only if any
relatively compact Borel set B, w,(B) is tight. Taking f = 1 in (ii), we see that w, (R)
is tight. For any relatively compact Borel set B, using the fact that wu,(B) < w,(R), we
get 1, (B) is tight. Now it remains to show that the distribution of a random measure p is
determined by f f(x)p(dx) for all Lipschitz continuous f € B;r (R), which can be shown
via a routine argument. We omit the details. (]

The next two results will be needed in the proof of Theorem 1.3. We postpone their proofs
to Section 4.3.

Proposition 3.5 Suppose that f is a bounded Lipschitz function on Ry with f(0) = 0 and
that T > Q.
(i) For any r € [0, T] and any w > 0, it holds that

1
sup [vif'(r. ) = v .y + )| S (* + “’) A1),
y>0 logt

(ii) Forany r,q > O withr + g < T, it holds that

sup0 ‘v;f)(r, y) — v}')(r +4.9| 2 <7 +q1/4> (1 +r_1/2).
y>

logt
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Proposition 3.6 For any continuous function f € B;((O, o0)) and any r,y > 0, it holds
that
Jim v y) = vF ().

where v}((r, y) is the solution of Eq. 1.10.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3 (i) By the definition of Z io’oo) "in Eq. 1.16, for any continuous function
f € B ((0, 00)),

E iy ( exp [ - /(O,oo) Fe)) Zio’m’*’(dy)] @0 > t)

:Eﬁy<exp{ B talll /(o,oo> ! (%) Z’(O’OO)(dx)}k(OW) g t)'

Note that
_ X\ (0,00 (0,00)
E i, (e g /(O,m)f<w> z, (dx)}|; > 1)
SR [N E— X ) 50,00
—1 Pm@(o,oo)>t)lliﬁy( exp{ /<ooo)f(ﬁ> z! (dx)}), (3.18)

where in the equality we used the fact that Z,(O’OO)((O, 00)) = 0 on the set {;'(0'00) < t}.

Recall the definitions of v( and v(') in Egs. 2.2 and 2.5, Eq. 3.18 is equivalent to

(t)
X 0,00) (0,00) _ ( 5 y)
E exp{ / f(—) Z (dx)]; S1)=1-2L """ (319
J‘( 000 \W1) " | ) (1, y)
Combining Proposition 3.6 and Eq. 1.12, we get
lim v (1, ) = vf (1, y) = —logPs, (—(f, X1)) = N, (1 —exp{~{f, w)}). (3.20)
>0 f Y
Plugging Eqs. 3.12, 3.13 and 3.20 into Eq. 3.19, we conclude that

1 . ~
tlggoEﬁy(exp{ - = /(O.oo) d (%) z" )(dx)}\;(o’ '> t)
Ny (1 —exp {—(f,w)}) | Ny (1 —exp {—(f. wil©.00)})

Ny (w1((0,00)) #0) N, (w1((0, 00)) # 0)
=1 =N, (1 —exp {~(/, wil0.00)} [w1((0, 00)) # 0)
=N, (exp {—(f. wil(0.00)} |w1((0, 00)) # 0).

This completes the proof of (i).

(ii) Let f be an arbitrary non-negative bounded Lipschitiz function on (0, co). By Eq.
3.19, we see that

]E(exp{— 1 / s )z(‘“’o)(d )}|§(Ooo)>,)_1_v(ft)(1yt_£)
’ rat Jooo " VI oD (1, yt)
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By using an argument similar to that leading to Eq. 3.15, we get that exists I' > O such that
for any ro € (0, 1/2) and w € (0, rp),

«/;Ey/\/;(v}’)(l —w, M) " > w)
> V(1 2) 2 e BUVIE,, (01 — w, £0): 1 > w)
- VAR ﬁ = y/JI\YF »Sw ) T .
Proposition 3.5 implies that, for any T > ry,
1
|U(t)(”, y) — U(;)(S,Z)’ S oot +ly—zl+|r—s|"*, forallr,se(ro, T)and y,z>0.
. oz

Therefore, for any large N > 0 and any ¢ > 0, we can find so = rgp < .. < sy = T and
vo =0 < ... < yr41 = N such that Eq. 3.8 holds, which in turn implies that Egs. 3.9 and
3.10 hold for all s € (r9, T) and y € (0, N) when ¢ is large enough. Therefore, using an
argument similar to that leading to Eq. 3.16 and the following consequence of Lemma 4.1

hm lim sup \[Ey/\[( ()(1 w, a;ﬁ,”); T(gt)’7 > w, glﬁf) > N)

N—o00 r—
< ViR (e > w62 ) = im —Z ko [ e
hm lim sup v/tP >w, &’ >N)= hm ———=R(y) ze” 2dz =0,
N—>oo t—o00 )/\[ v 2o N/o
we get the following result analogous to Eq. 3.16:
: (1) (1), —
lim VIE (01— w60y 2 > w)
1 2R(y) [ _2
= — ze"Tvs (1 —w, zo/w)dz.
VW 2762 Jo f
Therefore,
) I 2R(y)
llm\fv(’)l—:hm— 2v 1—w,zo dz,
1=00 ( \ﬁ) w—=0 w2752 Jo f( V)

Together with Eq. 3.14, we conclude that

. 1
sn(enl- (5wl

ta—T
=1- ;# lim L OOze_évx(l —w, zoJ/w)dz. 3.21)
CO2) (@) /2762 w—0 w Jo ! ’
If we could show that
lim (exp { - / ef (l> z§°’°°>(dy)} |00 > t) =% 322
a1 J0.00) Vi
we would get that there exists a random measure 77 such that the right -hand side of Eq. 3.21

is equal to E( exp { —(f,n1) }) Combining this with Lemma 3.4, we arrive at the assertion
(ii). Now we prove Eq. 3.22. By Eq. 1.10,

vX (1 y) < eBy (FOWD) < e sup IF@IPy (g~ > 1) Sey,
x>

which implies that

2
2 e—>0+
UHOT/ ze” 2v€f(1 w, zoJ/w )d2<8/ z7e”2dz — 0.

Thus Eq. 3.22 is valid. O
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3.3 Proof of Theorem 1.5

By Lemma 2.16, for any y € (0, 1),

sup KW (y) < oo.

x>0

Therefore, using a diagonalization argument, we can find, for any sequence of positive reals
increasing to oo, a subsubsequence {xj : kK € N} such that the following limit exists

klim K@ (y)y =: KX(y), forally e (0,1)NQ. (3.23)
—00

Since K™ (y) is monotone in y € (0, 1), we can define

KX(y) = lim KX = inf KX@), ye(,1).
» o Vm) ™o (z), y€(,1)

Using an argument similar to that used in the proof of Lemma 3.1, with Lemma 2.15 replaced

2
by Lemma 2.17 and the fact that r,ﬁf‘ )t converges in distribution to the first exit time Tuv)v o+

of W from (—o0, w), we can easily get the following lemma, whose proof is omitted:
Lemma 3.7 The relation Eq. 3.23 holds for all y € (0, 1).

The following Lemma 3.8 says that the limit K* (y) solves the boundary value problem
3.24 below. Proposition 3.9 is about the uniqueness and probabilistic representation to prob-
lem Eq. 3.24. Since the main idea of the proof of Lemma 3.8 is similar to that of Lemma 3.2,
and since we need to introduce exit measures of superprocesses in the proof of Proposition
3.9, we postpone the proofs to Section 4.4.

Lemma 3.8 The limit KX (y) solves the following problem

5 (K)'() = ¢(K¥ (). v € © D, 3.24)
limy_, o4+ K (y) =0, limy;- K*(y) = o0.

Proposition 3.9 The problem in 3.24 has a unique solution and the unique solution admits
the representation K* (y) = —log Ps, (M(O’Oo)’x < 1).

Now we are ready to prove Theorem 1.5.
Proof of Theorem 1.5: Combining Lemma 3.7 and Proposition 3.9, we get that
lim K@ (y) = lim x# TP, (M > x) = —log Ps, (M**¥ < 1),
X—> 00 X—>00

which proves (i). For (ii), by the definition of K x) (y) given in Eq. 2.10 and Lemma 2.6, for
any fixed small z < %, when y < xz, we have

2
xﬁHPy(M(O’OO) > x) =xK®yx™h
r.(xz)""

1/;0‘2)(K<x>(5A§x2>))ds}1(<x)(g(x2> ) T < ré)‘2>*‘).

Tz(xz).+ z

=xE 71<exp{ —
yx 0
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Therefore, by Lemma 2.16(ii) and the fact that “g‘ ) z, we have

2)+—

2 _
xK(x)(z)nyfn (exp{— r("z)’Jr}; tz(xz)’+ < ‘L’éx ), ) < xK@(yx~h

“ha—pt
2y _
<xE, 1 (K@‘)(g(" D )itlOT <O, (3.25)
It follows from Lemma 2.7 that, for any § > 0,

2 _
xEy (K(x)(é:(sz) (x2)+ (X ),)

’ Z

2 2y
< K(X)(Z +5)xPyx71(Tzu ),+ (X ), +X1+a lex 1(%'((\’2>Jr > Z +8)

)
= K9 (e + 8Py (1% < f7) 4 TP (5 > x0)
)

LsupE_ (1§+107%), (3.26)
(VO 17% y=>0 Y

2
< K(X)(Z-F(S)XP,X ( (x2 )t (x),

+

2
where in the last equality we used the fact that P 1 (£ ()((VZ)) L > 2 +8) =Py(§+ > xz+x§),
(2 *e

which holds by Eq. 2.11. Therefore, combining Eqs. 3.25, 3.26 and Lemma 2.13(i), letting
x — oo first and then § — 0, we get that

limsupxK™® (yx~") < R(y)

X— 00

KX
@ (3.27)
z
On the other hand, by Lemma 2.13 (ii), there exists a constant C such that

Xz

2 2 2y _ _ C
C*xEyr] (TZ(X bt rz(x ht < ro(x ) ) < szzPy (r"‘ <7 ) + <

Thus, by Eq. 3.25, using the inequality e™* > 1 — x and Lemma 2.13 (i), we have

.. _ L. 1 2 2 2 _
lirggéfo(")(yx > kX lknigéfxE)'fl ((1 — Cy e t )’+); Ot < réx ): )

2

> KX(Z)(I _ (lciz)z)xlggoxp ( ;XZ),+ _ téx2)~_)
_ KX (2) cz?
=R— (1- a fz)z)' (3.28)

Letting z — 0, we conclude from Eqgs. 3.27 and 3.28 that hmzﬁm ( ) exists. Define

KX
602 (0) = Tim ~ @,
z—>0+
Then we have
lim xK® (yx™") = 00 (@) R(y). (3.29)
X—> 00

Choose zg € (0, 1) such that Czé/(l —20)? < 1. Then taking z = zo in Egs. 3.27 and 3.28,
we get

KX
2) < 9(0,00)(0[) < ﬂ < 00,
) 20

0<

KX(zo)( . Cz
20 1 —z0
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which implies that 002 (@) € (0, 1). We complete the proof of the theorem. O

3.4 Proof of Theorem 1.7

Fort,r,z > 0, define 01 (r, y) 1= 1#1P ;1 (M > V/iz2).

Lemma3.10 Letz > O and ¢ € (0, (z/2) A 1). There exists a constant L = L(g) > 0 such
that for any 6 > 0, there exists T = T(z, €, 8) such that whent > T,

018,z —2¢) < L(#)8.

Proof Note that for¢,r, y,z > 0,
By (M) > Viz) = tim (1= E g (exp | - 02 ((Wiz.00)) })).

Taking f = 01(; ) in Proposition 2.3 first and then letting & — 00, we see that for any
w € (0,r], ?’ (r, y) solves the equation

0, y) =B, (exp | - /Ow YO0V — 5. 6M)as |00 = w 60 7 > w).

(t) +

Taking r = 4, y = z — 2¢ and using the argument leading to Eq. 2.7 with T = 7,”°.", we get
095,z —26) <E,2. (006 — s ATt f;(’j&j))
= B2 (00 (0 - w7 6101 )56 > wlT), (3.30)

where in the equality we used the fact that Q(t) (0, y) =0. Using M,(f) ") < M, we see that
forany0 <y <zandr > 0,

1
0V, y) < 15T ;1 (M > Viz) = 1By (M > Vi(z — y)) § ——

(z—y)eT
where in the last inequality we used Eq. 1.4. Combining the inequality above with the mono-
tonicity of Q?) (r, y) in y, we get that

EZ*ZS(QS) (8 Z(t)8+’ g((r) +) 6> t(t) +)
= EZ—ZS(QS)( z(t)s+v 5((r)+) 5(0) - >z-27""¢,8> f(t) +)
+EZ—28(Q¥)( Z(z):’ g(ow) 5((x>+ <z-27"¢6> t(t) +)

= trl—le—Zs (sf(ir))Jr >z—2" 8) + Ez—ZE(Qy)( z(t)er’ z— 2_18) 8 > T(t) +)

N

1 _ 1
TP 2o (50, > 2= 27" e) + P (8> ). (3.31)
z—¢ ca—1

Since (ro — 2)/2 > 1/(a — 1), by Markov’s inequality and Lemma 2.7, we have

= ) e/t
l‘ot—lPZ_28<€TZ(,_):€+ >Z—2 )—[a p fg(S‘*' >T)

1 2 r0—2 5 l 1
stet{——x) E ) S o 3.32
B <8«ﬁ> Ve ( % ) ™~ logt g2 (3.32)
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. . . -2 _1_ .
where in the last inequality we used the fact that 12 ~a-T > logr (since ro > %). By
Doob’s inequality,

()2

Eo (&5 )
P.0.(8 > 7\") = Po(sup&l” > ¢) < # < . (3.33)

$<6 & &

Plugging Eqgs. 3.32 and 3.33 into Eq. 3.31, we see that for t > ¢!/%, we have
E.oo(00(s -t 60 )i > 1) R R (3.34)
=26\ ¥z ime 2504 ) e )~ o2 gu%l S .

Combining Eqgs. 3.30 and 3.34, we get the assertion of the lemma. (]

Proof of Theorem 1.7 1t suffices to study the limits of the conditional probabilities of the
{M,(O’Oo) > /tz} forz > 0.

(i) We first prove the lower bound. For any fixed z > 0, define g; (x) := min{1, (x —z)"}.
Then combining Theorem 1.3(i) and the fact that for any 6 > 0,

6 y
Hy=yiz) S exp {—Nl] 81 (ﬁ)} . VyeR,

we conclude that for any 6 > 0,
o (0,00) 0,
liminf B g, (M, > Viz|¢ 0> > 1)
= timinf (1P 7, (M < izl O > 1))

t—00

a

. 0 0.00) 0
> lim E ,1—ex[——/ A da] (0.00) _
=ee ﬁy( LT (o,oo)gl(«/f) P da e )
=N, (1 —exp —9/ gi@wi(da)}|wi (0, 00)) £0).
(0,00)
Letting & — +o00, we conclude that
L (0,00) 0,
th},‘.EfPﬁy(Mt ) > Viz]g 0% > 1)

> N, (M%) > 2w ((0, 00)) #0). (3.35)

For the upper bound, we fix an arbitrary z > 0. Let ¢ € (0, (z/2) A1) and § € (0, 1). We
note that for any r > &,

(0,00) (0,00) (0,00)
P i, (MO > Viz) :]Eﬁy(l —exp{/(o N log P, (M0 < ﬁz)zt(’_ﬁ)(da)}).

Note that for all a > 0,
Py (M5 < Viz) = P (0% <18) = Pt < 16) =3 1.

Using the fact that logx ~ x — 1 as x — 1, we get that there exists #yp = 79(§) > 0 such that
forall r > 19,

1

(0,00) (0,00) (0,00)

P iy (M ™ > Viz) < E«/fy(] B eXp{ 2 /(o o0) Pa(M;s ™ > ﬁz)zt("‘”(da)})'
(3.36)
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When a < 4/1(z — ), by Lemma 3.10 with ¢ replaced by £ and using the monotonicity of

() , we get that when t > T'(z, 5, ),

(TR (MO > Vi) < B g (MO > Vi) = 006.:— ) < L (5).
(3.37)

When a > /1(z — ¢), by Eq. 1.2, there exists a constant L such that

TR, (MO > Viz) = TR > ViD) <

(3.38)
Sa—1

For any fixed ¢ € (0, (z/2) A 1), let §, > 0 be small enough so that
L
L (%) 0y < —11
st
Define another non-negative bounded continuous function

Ly
Lx>z—¢)

28577

1/( L, e x —(z—2e) €
*3 ((i -1(3) 5*)f +L(5) 8 ) tretezecon:

a—1
85

1 £
&) = EL (5) 8*1{X52—28} +

Then Eqs. 3.37 and 3.38 imply that for all a € (0, c0),
1
1P (MY > Viz) < g2(a). (3.39)

Plugging this upper bound into Eq. 3.36, we conclude that

1
0, 0,
P, (M) > Viz) <E g (1—exp [ - — / ()70 @))
ramt Jo,00) At
= O =8y, > b (3.40)

Combining Proposition 3.6 (applied to g2) and Theorem 1.1, we get that

P (MO > Jiz)
0,00) 0,00) _ Viy
htrr_l)supIP’\/y(M > Vizl¢ >1) = h,rii‘.fp P, (602 > 1)

_ limsup, oo (1(1 487 IIPme( ,(Hg) 10 +8.2)

limy oo £ T lPﬁy({(O 20) > 1)

. _1 0,
, lim sup,_wotafl]P’ﬁ 1+5*},(Ml((1i081) > ﬁz)

< (1481
= ( ) Ny(U)] ((0, oo)) ;A 0)
i (1)
< (14 8,5 Moo Ve (L yVT+8)
N, (w1((0, 00)) # 0)
=0+ 50% —logEé‘my(exP{ - f(o,oo) gz(a)Xl(da)})’ a

Ny (w1 ((0, 00)) # 0)
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where in the second inequality we used Eq. 3.40 withr = 14-6,.. By the inequalitye™ > 1—x
and the fact that {X; ((z, 00)) = 0} = {X\®((z, 00)) = 0} = (M < 2}, we have

B (o0 - | m@xica))

(0,00)
> By e, (030 {—L (5) X1 (=00, 2 = 26D | X1 (2 = 26, 00)) = 0)
> By e, (1= L (5) 8:X1 (=002 = 26))): X1 (2 = 26, 00)) = 0)
=Py (MO <z —2¢) — L (g) 8.Es o X1(R).

Note that X (R) under P Ty
in the above inequality is equal to —L (%) 8,. Therefore, letting §, — 0, we conclude that

is a critical continuous-state branching process, the last term

limsup — log B exp{—/ gz(a)Xl(da)}
8,—0 VIHoey ( (0,00) )

< —log ng (M](O’oo) <z-— 26‘).

Now letting ¢ — 0, we conclude that

o L —logBs o (exp | = fig o 2@ X1 ()]
lim sup lim sup(1 + &,) «=T
>0 8,0 Ny (w1 ((0, 00)) # 0)

_ —logP, (M" < 2) Ny (M) > 2)

~ Ny (wi((0, 00)) #0) Ny (w1 ((0, 00)) # 0)
=N, (Ml(o""’) > z|wi((0, 00)) # 0) : (3.42)

Combining Eqgs. 3.35, 3.41 and 3.42, we get the assertion of (i).
(ii) The proof of (ii) is similar. In Eq. 3.35, by replacing /7y by y and applying Theorem
1.3(i1), we get that

lim inf ]I”y(Mf?;’oo) > Viz]c©%) > 1)

1—00

> lim E(l —exp[ —Of(oqoo)gl(a)m(da)}) =PM" > 7).

For the upper bound, the argument in Eq. 3.39 still holds in this case. Therefore, by Eq. 3.40
with r = 1 4 §,, we get that

o+ (0.00)
TP (M T > Vi2)

141 1 a 0
§ta71+2Ey(1—exp[— 1 /(O.oo)gz (\7) z© >(da)]), (3.43)

to—T
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Combining Eq. 3.43, Theorem 1.1(ii) and Theorem 1.3(ii), we see that
1,1 (0,00)
limsupta112P, (M, > V/12)
—00
1

= (1487112 lim sup 7=+ P, (MO > i1+ 80)2)

< (14 84)aT 1*2 11msupt% 7[@ (Mt((oljjs)) = \[IZ)
11— 00

< (1457 H OV @REE( e [~ [ p@mal).
(0,00)
Now letting 6, — O first and then ¢ — 0, we see that

lim sup P, (M,(O’oo) > «/Ez|§(0’°°) > 1)

1—00

CON@R)PM™ > 2)

— 1 1
limy o0 17T F2Py (£ 009 > 1)

=P(M" > 7),

which completes the proof of (ii). O

4 Proofs of the Auxiliary Results
4.1 Proof of Lemma 2.12
In this subsection, we assume that the Lévy process & satisfies (H2) and Eq. 2.19. We use
t 2
T () = / ze"Zzdz, t>0
0
to denote the Rayleigh distribution function.

Lemma4.1 Foranyy > 0 and a € (0, oo], it holds that

. _ _ 2 L/a
tl_l)nolo«ﬁPy(’;’, <avit, t, > t) = WR(y)QD (;)

Proof Recall that W; is the Brownian motion with variance o2¢ introduced in Section 1.2.
Forany r > 0 and ¢ € (0, §/(2(5 4 268))), where § is the constant in Eq. 2.19, we define

A = { sup &g — Wey| < r%*%}.

0<s<l1
Recall that the random walk S, is given by S,, = &,. For any b € R, define
1;9+ 1nf{]eNS>b}

Then we have the following decomposition:

4
ViPy (& <avi,ty >t) =) I,
y 0
k=1
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where i are defined by

) - S+ 1-
11.:\/;Py<$, <avtty >t Ty, >t 5]),

[t~

L=+t Z Ey(ng (Sz—k < av/t, T, >t—k, Af_k); T, >k, TISI’/;CS = k),
k=1
[t~

Li=vi Y By Py (x <avigg >t—k Ag)itg > k& > 1792 o =),
k=1
[t~

L=y ) By(Py &k <avi,tg >t —k Ag)ity >k & <1792 30 =k).
k=1

(i) In this part, we show that lim;_,», I; = 0. Since I} < ﬁPy (1:IS1’/2+_‘g > [tl_g]), it
suffices to prove that

lim ViPy (¢33 > [1'77]) = 0. (4.1)
Since [117¢] > [+ = 1][t!"%¢] =: L, - L,, we have

Py<r§;; > [;H]) :Pv( max || gtl/H) §Py<max|SL2,| gtl/H). (4.2)
! TNl jsLi

Applying the Markov property repeatedly, we get that

Py<max 18L2j1 = tl/Z%) = SUPPx(|SLz| <!/ )Py< max |Sg,;| < l1/276>
J=hi xeR j<Li-1

L,
<...< (supr(|SLz| < z”“)) . (4.3)

xeR

The classical central limit theorem implies that when x > 2./L>
Po(IS,| < 1127F) < Py(1SL,] < 2V/L2)
—oo 1
=Py(—x—2JLs <81, <2/Lr —x) <Py (51, <0) =% 5 (4.4)
Similarly, when x < —24/L», we have

P, (ISL,| <t'/27%) < Py (81, = 0) =% (4.5)

N =

and that for |x| < 24/L»,

Py (IS,] < 1127°) < Po(—4y/La < 51, < 4V/Lo) ti°>°/

—4 20

4 2
> e 22dz. (4.6

Combining Eqgs. 4.4, 4.5 and 4.6, we see that there exist ¢ € (0, 1) and 79 > 0 such that
P (IS0, <t"*7%) <¢, xeRt>1.

Plugging this into Eq. 4.3 and combining the conclusion with Eq. 4.2, we get Eq. 4.1.
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(ii) In this part, we show that lim,_,», /> = 0. By Lemma 2.11 and the definition of A,,
we have

[

B (P 0055 k=),

Ni(2¢) - S+
< 8 ? =
JI; (r— k)(2+5>(%728)71P}’(TO >k Tz =)
1—¢
ViNQe) 'S o St
< i LB A= @
k=1

Since Sy is also a martingale under Py, using the fact that S; > 11727 on the event {1:[51};6 =

k}, by Eq. 4.7,

(1]
VIN,(2¢) S.— s
N T_ ; _ P}'(Sk; T >k, Ttl,/;_—s = k)
1A =20=1p1/2-¢ £
VN (2¢) N.(2¢e)y

E B — xS

T )G -20)-141/2¢ u [ =* 1Ay ”,SI'/+LE) £8/2—(5+20)e”’

we see that when ¢ is sufficiently small so that ¢ < 6/(2(5 4 26)), we have lim;_.» I>» = 0.
(iii) In this part, we show that lim,_, o, /3 = 0. Set x’ = & > (179/2 by Lemma 2.10(i)

with r = 1, we have that

P(S <avi,t7 >t—k, A )<P (r_>t—k)<x/+1<i
x/'\St—k = » T s Ap—k) = Iy 0 ~ l‘—kN«/lT’
where in the last inequality we used the fact that r < ¢ — k forall k < [tl_s ]. Therefore, we
have

['=¢]
I 5 Z Ey &k TO >k, & > 1= g)/z ,1/2 & :k)
k=1
[
< D UE(Skity T =k oS> 11792 o0 = k). (4.8)
k=1

Now we deal with the random walk Sy. Set Ay := S — Sx_1. We have that

'~

Z E},(Sk; 1:05‘_ >k, Sy > = 8)/2, t1/2 e = k)

k=1
'~

< Y E(Scr+ Aty > k=1 S > 10 A > 1702 1)
k=1
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< Y E,(SicistyT > k— )Py (A > (1782 _41/27¢)

+ Y P55 > k= DEy(Ag; A > 117972 41/27¢),
k=1

Noting that, for any fixed y, E, (Sk 1 7"0 T >k— 1) < l,Py(T(f’7 >k — 1) < ﬁ and that

(Ax, Ey) 4 (&1, Ep), we can continue the estimates in the display above to get

(1]

S TE(Suity T > koS> T2 5 = k)
k=1

[tlis] g]
1
< Z PO(SI > (=82 _ ,1/2- a _|_ Z o 51 £ > (=82 _ 1/275)

k=1 k=1 ﬁ
ey B (B > 0 ”/2—11/2 ), M1 Fo (e = 702 - 1)
- (t(l e)/2 _ 41/2— e 0 f 1(1=8)/2 _ 41/2—¢

< Eo (s%; g > 1(1-9/2 _ zl/H) . (4.9)
Combining Eqgs. 4.8 and 4.9, we get that
I SEo(60: 6 > (1792 - 11/275) "2,
(iv) In this part, we deal with I;. We allow a to be co. For k < [t'~¢] and x” > 0, define
Kk, x) =Py (s,,k <avity >1—k A,,k) .
By the definition of A,, we see that

Kk, x') <P, (W,_k <avi+ -k, min Wy > —( - k)%—%) . (4.10)
s<i—

Since B, := W, /o is a standard Brownian motion, we see that (o B, Py) 4 (W;, Psy). For
any z > 0, define

dp!]
dp.

B,

= — lyminy<, B;>0}- 4.11)
o (By,s<t) Z

It is well-known (for example, see [11, (3.1)]) that under PZT , By is a Bessel-3 process with
transition density

Y x, ) y ozt (1 P 2'?')1 (4.12)
JY) = —— — 0} -
pt y xm {y>}
Set
1
"4t —k)272 i 2
x* = L and a* := avt + 5
o ot —k ot —k)*®
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Combining Eqgs. 4.10, 4.11, 4.12 and the inequality 1 — e~ < x, we obtain that

1
K (k,x") fo*(B,,k <a*/t —k, min By >0) —x*ET (B Bk <a \/t—k)
t_

s<t—k

(}’*X*)z 2x*y
= e 2k (1 —e % )dy
27 (t — k) /(‘)
Vit y—x*)2 * ar _i BRI (l*)z
5#/ ye*(z(l 2 dy:L/ ve LA Sy el = Hdy
V2t — k)3 Jo V2wt —k) Jo
1

2 x/ 12 2¢e a 7ﬁ+ yx*
< (* + )/ ye * Yikdy
2n(t — k) \o o 0
1 *
2 (x/ 1372 ajo _ﬁ+i a _ﬁ_;,_ﬁ
_ Ty )(/ ye 2 r—kdy+/ ye 2 ﬂdy), (4.13)
27 (t — k) \o o 0 a

where the last term on the right-hand side of the inequality above is 0 when a = co. Note
that for all x” < t1=9)/2 and all k < [+!~*],

* (1-8)/2 1-2¢
X < t +t

r—k "~ At

Note also that, for a € (0, 00), a* — o~ la = 0ast — oo. Therefore, we conclude from

Eq. 4.13 that for any a € (0, co] and &g > 0, there exists 7 > 0 such that when t > T, for
all x’ < ¢(1=9)/2,

— 0 ast — oo.

< t—e/2

Plugging this into the definition of 14, we see that when ¢ is large enough,

1—e

[t'°] 1_2¢
21+8) . sa £ 12
== et () m (G + )i = ke s O =),
k=1

Note that on {rfl;j_g — k}, we have & = S > 71/2=¢_ which implies that 2 2¢ < §o& for 1
large enough. Hence, for ¢ large enough, by the inequality R(x) > x, we have

(1]
2(1 + 89)2 a - -
Iy < ——o7 (;) DBty > ks <R 0 = k)
k=1

~

2o’

2(1+80)° , (a St -
O g (4) (g i i <100)

2o o g

2(1 + 80)2
2mo?
2(1 + 80)2

= = RO® (G) (4.14)

where in the last equality we used Lemma 2.8(ii).
For the lower bound, we have, similarly, for ¢1/27¢ < x’ < ¢(1-)/2

a - _ .S _
o <;> Ey (R(SIM A[IH]); Ty > Ttl’/;r_s Nz 6])
t £

1/2—

Kk, ) = Po(Wimg < vt = (6 =372, min Wy > (1 =) 7) = Po (A7),
§<t—
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In this case, we define

x' - (t—k)%_zs a~/t 2
=—————— and a,:= — 5 -
o ot —k ot —k)*®
Then combining the inequalities (y — x)?> < y2 +x2, 1 —e™* > x(1 — x) forallx,y > 0
and an argument similar to that used in Eq. 4.13, by Lemma 2.11, there exists some constant
C, > 0 such that

Xy o

Ce

/ .
Kk, x') = Py, (Biok < auw/r =k, min By >0) T

s<t—k

—xs)? XY
g (1 — g—zﬁ‘)dy — #
(t — k)(3—2006+2)-1

1 ax/1—k
NI /0 ¢

ax/t—k 2 X%
R
T V2n @ —k)3 Jo t—k (t — k)(T-20E+2)-1

2
2x.e 200 @ < 2x4y ) *%d Ce
= —m—m———— _— e S —
2 (t — k) Jo Ji—k Y - k)(%725>(5+2)71

2
X 1
2e7 0 ,x!  p272 G »? 2x o 2 C
L e
2gt \O o 0 t—k Jo (t — k)(3-206+2)-1

Noting that for all V2= < x/ < ¢(0=/2 gnd k < [117#],

1
Xi - [(l—s)/2+t772a

1 2¢ 1 2¢
2 2
N S, ;S;=f€,
i —k Ji X (12—
/
Ce < X ~(-e@b+s)

(t _k)(%—Zs)(M—Z)—] ~JE

and for any a € (0, 00), |0_1a — ay| < t7¢. Therefore, for any 8y € (0, 1), when ¢ is large
enough, we have for all k < [t!~®]and 1'/27¢ < x’ < ((1=9)/2,

2(1 = &) a
Kk, x> "—— x0T (—).
V2rto? (C’)

Therefore, for # large enough,

'~

2(1—8) ., (a - (1-e)/2_ S+
Iy 2 ———-0 (*) Ey(&:ty >k & <1792 007 =k).
\/27[7 o k; }( 0 1172 )

It follows from Lemma 2.8 that x > (1 — 8g) R(x) for x > ¢1/27¢ with large enough. Thus,
when ¢ is large enough,

2(1 — 80)* a - S+ S+ 1-
Iy > W‘Iﬁ (;) E, (R(%-Ttﬁyg—s)v To > Tap—esr Gijpe = [t S])
2(1—80)* , (a e St -
= (;) (RO) = Ey(R (g-) s 75 > 1L e > (1177)), (415)
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Tails of Extinction Time and Maximal Displacement...

where in the last inequality we used the following fact:
R(y)

— 1—
_E‘( (Srﬁfi At-e) 0 > T Al E])

=E, (R (¢ i > e T ST B (R (1)) i7p > [T T > 1)
Noting that &1} < t1/27¢ on {rﬁ’/j_g > [¢'7¢]} and applying Lemma 2.10 with r = 1, we
get

E, ( (“;‘[,1 g]) T, > #1727, r,/2 . > [t1_8]>
1
SRMM%WNT:ﬂH8D<Hﬂ£l%;*SU+DfM; (4.16)
' [£77¢]
Combining Eqgs. 4.14, 4.15 and 4.16, we conclude that

2(1 + 80)* + 2(1 - 80)° +
—————R(y)®" (— ) > limsup Iy > hmlan > 7R )
s RO (5)= msup Iy > 12 = RW) (%)

Letting 5o — 0, we arrive at the assertion of the lemma. OJ

Proof of Lemma 2.12 Define a sequence of measures

2R(y)

(t) _
(D) := /iP, ( —

€Dy >z) and w(D) = /ze%dz, D e B((0, 00)).
D

ot
Lemma 4.1 implies that for any y > 0 and any a € (0, c0),
lim (0, a]) = (0, al)
—00

and that 1im;_, o0 £ ((0, 00)) = 1((0, 00)). Therefore, 1) weakly converge to 1 and this
completes the proof of the lemma. g

4.2 Proof of Lemma 3.2

Proof of Lemma 3.2 First, it follows from Lemma 2.14(i) that supy-o vc’fo (r,y) < oo for any
r > 0. Next we prove that for any y € (0, 00), lim,_, o+ vfo (r, y) = oo. By the definition of
(t)(r y) in Eq. 2.5, we have

1
qu(r, y) > lw-l]P’ﬁy(;(O’oo) > tr, 1n£u€1r1\1]f X, (s) > 0)

:tm]P’f (; > tr, 1r>1g)u€1r1\1]f Xu (s)>0)

2 TR gy 6 > 1) = TRy (nf, i X) <0)

=;ﬁﬁbﬁy (¢ > tr) — t# TP (M > V1), (4.17)
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where in the last equality, M is the maximal displacement of the critical branching Lévy
process with spatial motion —&, branching rate £ and offspring distribution { py}. Combining
Egs. 1.2, 1.4 with M replaced by M and Eq. 4.17, we see that

c 01
vg(o(r,y) > (i) - ((:) guiy 0,

yoa—1 ym

which implies lim, .04+ v (r, y) = oo.

Letting + — oo first and then y — 0+ in Lemma 2.14 (i), we easily see that
limy 04 vg(o (r,y) = 0forany r > 0.

Now we prove that vX satisfies the partial differential differential equation in Eq. 3.11.
Forany 0 < w < r and y > 0, by Eq. 2.6,

w
R O W) e /0 $UCLr — s £ o ds). (@418)

By Lemma 2.14(i), K := SUP;~.0,5<w,yeR vé’o) (r —s,y) < co. By Lemma 2.14(ii) and the
definition of ¢ in Eq. 2.2, lim;—e0 2% — (@) uniformly for v € [0, K. Note that

e

@(}) = C(x)1® by definition Eq. 1.9. Therefore, for any ¢ > 0, there exists 77 > 0 such that
whent > Tj,

(1) (t)
oW —s, "Em(g'%-)) > (1—e)gp <vf;o>(r -, ;Wé,y_)) . (4.19)
Plugging Egs. 3.9, 3.10 and 4.19 into Eq. 4.18 we see that when t > max{T}, T2},

v, y) <3¢+ E,(vX 0 — w, g;’irm,))
0

(1),—

—(1- E)Ey( /0 o o((vX(r —5,60) = 3¢)" )ds). (4.20)

Define Ws(t) = ‘f/‘;’ , which has the same law as W;. Let T;Z)’W’7 be the exit time of Ws(t)

from (x, 00), which has the same law as 7" '~ For any fixed w > 0, by Lemma 2.11 with ¢
replaced by rw, we get that forany 0 < s < w and a > 0, for each y € (0, ﬁ),

1
< tywzy)

: 0 : () ' t
lim sup P, (gsmé”" > a) <limsupP, (SMTS& >a, sup ‘gtg) _ W; )

— 00 1—>00 qugw

. _ 1_ _ 1_ _
<limsupP, W >a—1t7w27, sup ‘5§’)—Wf) <t Vw2 V,r(')’w‘l >
t—00 0<s<w —trw2”7

. —y l,y W.— 0
<limsupPy ( Wy >a—t""w2 ", 77" | >3 :Py(WS >a).
t—00 — 1 rw2Y

Using a similar argument for the lower bound, we can get that lim,_, o P, <§ ® o > a) =
SATy

P, (W? > a)foralla > 0. Therefore, forany s > 0, <z§(t) O

Py> converges in distribution
SAT,
0
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to (W2, Py). Taking t = #; in Eq. 4.20 and letting k — oo, we get that
vg(o(r, y) <3¢ +E, (vfo(r —w, Wg))
w
—-(1- S)Ey</ (WX —s, W0 — 3£)+)ds>,
0

where WS0 is a Brownian motion with variance o2 stopped upon exiting (0, 00). Now letting
& — 0, we finally conclude that

véUJOSEy@éﬁ—ﬂmWﬁﬂ—J%(Lw¢@;0~—&wfnm)

A very similar argument for the lower bound implies that, forany 0 < w < r andy > 0,
vfo (r, y) solves the equation

vX (r.y) =E, (vgg(r —w, wg)) - EV(/W X (r — s, Wf))ds). “21)
0

This implies the desired result. Indeed, we may rewrite Eq. 4.21 as

w
vé‘o(r +w,y)=E, (vg(o(r, Wg)) —E, (/ (p(vgo(r +w—y, W?))ds) , y>0,r,w>0.
0

For each fixed r > 0, set f(y) = vX(r, y). Then the function u(w, y) := vX (r + w, y) is
the solution of the integral equation

u(w, y) =E, (F(W)) —Ey(/ow pu(w —s, Wds), y>0,w>0.

Recall that W0 is the Brownian motion W (with diffusion coefficient o2) stopped at tOW o
and the generator of W in the domain (0, c0) is "72 c?TZZ' Combining the display above with
Egs. 3.6 and 3.7, and repeating the argument in [5, Sections 8.1 and 8.2], we get that

o2 92

d x ° x X
%voo(r—l—w,y):78—))2voo(r+w,y)—(p(uoo(r—l—w,y)), row,y > 0.

Since r > 0 is arbitrary, we get

d y o2 3% ¥ ,
@%mw=7ﬁ%mm—dwmw)mmwwmwy
The proof is now complete. O

4.3 Proofs of Propositions 3.5 and 3.6

In this subsection, we assume that (H1) (H2) and Eq. 2.19 hold. When £ is a standard

Brownian motion, (Sr(t), Py) 4 (&, Py), and Proposition 3.6 follows immediately from [20,
Proposition 4.5].

Lemma4.2 Let f be a bounded Lipschitz function on Ry with f(0) = 0.
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(i) Foranyr,y, w > 0andt > 1, it holds that

1
fa-1

By (1—oxp | - N{]f@;gfé,,)}) “E(1-o0 |- 6,0
S (% +w)(d 47 = 60 w),
og1t

(ii) For anyr,y,q > 0andt > 1, it holds that

1l (e [ -6 ]) (oo - sl )

ta—1
1
S (pm +a) (1477 = 6L w).
logt

foa-1

Proof (i) By the inequality x — (1 — e™*) < x? for all x > 0, we have that

ey (1 - e | - — € 0 )}) = Eveu(1 —ewp | - llf(‘gmé’“)})‘

—f
pa=T
< (Sup,er !f()C)D2 + ‘Ey<f(sr(i)r(gf>~‘)) Ey iy (f(g(’) ))‘

By (&) 7" > 1) = Eypu (FE): " > 7).
Since f is a bounded Lipschitz function, we have
’Ey (f(&r(’)); ) > r) —Eyiu (f(Er(’)); 0 > r)
[ (1) 5 = 0) B (1160 + w6 - =)

Sw+Po(inf&0 € (—w -y, -y]). (4.22)

ta—1
< 1

~ 1

fa—1

Recalling the coupling in Lemma 2.11 and setting Wf’) = W, /+/t, we see that, for any fixed
y € (0, ﬁ), r > 0 and ¢ large enough (so that t‘yr%’y < t77/2), it holds that

Po(inf & € (—w -y, —y])
1
~ () Gne+2)-1
1
~ 1 G-Y6+2)-1

+Po(inf &0 € (—w —y, —yl, sup & — W] < 7?)
S<r

0<s<r
+ Po(m<in W e(—w—y—1772 —y+ t"’/zl)
S=r
1
< fog7 TP (W ely—t7"2 y+w+1777). (4.23)

Here the last inequality holds by the reflection principle. Therefore, by estimating the density
of Brownian motion, we obtain that

1 w4172 1 w + (log1)~!
Poinf 69 < oy, —yl) £ o W L domn !
0 y%rgs (-w =y, =] Nlogt+ S T logt T

which gives the assertion (i).
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(ii) Similar to the beginning of the proof of (i), we also have

B Y (R R WA

raT raTy faT (r+q)Atg
1 -
< B8 ) )]

Again using the fact that f is bounded Lipschitz, we have

B, (£ED): 0" = r) — By (F(6%,): 0" = 7 +4))|
SsupIf@IPy(7" " € (ror +41) + By (167 = &3

ta= "E (l—exp[

S Po(}lg §0 = -y,  inf & < —y) +V4-

Here in the last inequality we used the fact that E,, (]g(f ) r(Q p |) < VEo(|£1]%)q. Therefore,
using a coupling argument similar to that leadmg to Eq. 4.23, we get

; ) - _ ® —
(e = v 0 <)

1
<1—+P0<m1nW‘> vyt mmW< y+f’/)
og?

Using

P (minW > —y—17", min Wy <— +fV)
0 S<r $ Y s<r+q s=7Y

sPo(Wre(fy*t_y,fyﬂ"’+ql/4))+Po<Wr>fy+t‘y+q1/, min Wy <—y+1¢ ”)

S<r+q

Y 4 g/t | P y+ql/4 1 B
P Myt IHaT A< 1/4 1/2
ST +P0(mmW5 <—q/" 3 NG (k)gt +q )(H—r ),

we easily get the assertion of (ii). (]

The following lemma is a generalized Gronwall inequality. We omit the proof here since
the proof is standard.

Lemma 4.3 Suppose that F and G are two bounded non-negative measurable function on
[0, T). If foranyr € [0, T],

,
Fir)<G(r)+ C/ F(s)ds,
0
then we have for all r € [0, T],

F(r) <G+ C/r €I G (s)ds
0
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Proof of Proposition 3.5 (i) Combining Corollary 2.2 (with w = r) and Lemma 4.2(i), we see
that

‘v(f)(r y)—v(t)(r y+w)|

<ot (1o -

) (1o )
([ o000 s e {T(gf»—mds) By [ 60000 =560 0 o)
S G0 w) +[Ey fo 0D 5. £ (g )
B [ 0000001 o). “.24)
Using the fact that |¢(’)(u) (t)(v)| |u — v| for all u,v € [0, K] and t > K, and

an argument similar to that leading to Eq. 4.22, we get that, for ¢ large enough so that

t > sup,cg | f(x)], the second term on the right-hand side of Eq. 4.24 is bounded above by
a constant multiple of

.
/ sup |vf)(r —5,y) — v?)(r — 5,y +w)|ds +/ Po(inf“g‘[(t) € (—w—y,—yl)ds
0 0 L<s

yeR
ol w + (logr)~!
S [ sup v()(r—s y) =00 =5,y + w) ds—i—/ <7+7>d5
/OyeR| / | o \logt NG
1
5/ gUP|U()("—S )’)—v;{)(r—s,y+w)|ds+—+w
0 yeR logt

5/ sup|vf)(r—s,y)—vf)(r—s y+w)|ds+G(t)(r w).
0 yeR

Plugging this into Eq. 4.24, we conclude that there exists a constant L independent of » and
t such that forallr € [0, T]and t > 1,

sup |v( (r,y) — v(f')(r, y+w)| < LGY)(F, w)
y>0

+L/ sup|v(t)(r—s y)—v(t)(r—s y+w)|ds
0 yeR

Applying Lemma 4.3, we obtain that for all r € [0, T], we have that

-
sup |v( )(r y) — " )(r y+ w)| < LG(I)(r w) + L/ ec(’_S)G?)(s, w)ds
y=>0 0

S (@ + w)(l +r ) 4 /Or (é + w)(l +57Y2)ds

S (@ + w)(l +r1.

This completes the proof of (i).
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(i) By Lemma 4.2 (ii), we see that

Py = oo+, 0| S 60w+

.

Ev(fo ¢(r>(v;f>(r -5, ééﬁt)))l{Té,),xS}ds)
r+q

— fo PO +q =5, 80N o ds))]

.
SG?Uw0+q+&(A(¢mw?0—5£ﬁn—¢mw?0+q—sé@»hﬁwxﬁﬂ.

Again by the inequality 6@ ) — ¢® (v)] < |u — v|, we get that the last term on the
right-hand side of the inequality above is bounded from above by a constant multiple of

,
/ sup |v(ft)(r —s,y) — v(ft)(r +q —s, y)|ds.
0 y>0 :

Therefore, there exists a constant L independent of 7, ¢ and r such that forallr +¢ < T,

sup [V (r, y) = v + ¢, )|

y>0
,

< LGg)(r, w)+ Lg + L/ sup ’vjf)(r —5,y) — v(ff)(r +q —s, y)|ds.
0 y>0

Applying Lemma 4.3 for any fixed ¢ yields that

r
sup |v;f)(r, y) — v;f) r+gq, y)} < LGg)(r, w)+ Lg + L/ eL(’fs)(LG;[) (s, w) + Lq)ds
y>0 0

"l
<Gy, W)+q+/ (@ +q1/4)(l +571%)ds
0
1
< (1 1/4)1 ~1/2
~ <logt +a 7)1+,

which completes the proof of (ii). O

Proof of Proposition 3.6 Fix a continuous function f € B; ((0,00)) and T > 0. By Lemma

3.4, without loss of generality, we assume that f is Lipschitz continuous. Since vﬁf)(r, y)is
uniformly bounded for all » € [0, 7],y > 0 and ¢ > 1, we can find a sequence {f;} and a
limit v}‘ (r, y) such that

i y) = lim v (. y), forall r €[0.TINQ, y € (0,00) N Q.
k—o00

Proposition 3.5 implies that for any r € (0, T), y > O and any ((0, 7)NQ) x ((0, 00) x Q) >
(rm> ym) — (r, y), we have that vjf (rm, ym) is a Cauchy sequence. Thus we define, for any
re0,Tyandy > 0,

Vi@, y) = Ym)-

lim vf s
0,7)NQ) x ((0,00) xQ)> (ry, yim )= (r,y)
Using an argument similar to that leading to Lemma 3.1, we can get

vi(r.y) = lim U(ftk)(r,y), forall ¥ € (0, T), y € (0, 00).
k—o00
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Combining Corollary 2.2 and the fact that v f)(O X) = IL1 (1 — exp {

see that v;t) solves the equation

= r}). we

ta*

1 1 ’
0.0 =B (1 = exp | = = (6 )]) B ([ 60000 =582, ).

faT

Using the invariance principle and an argument similar to that leading to Eq. 4.21, we arrive
at the desired result. (]

4.4 Proof of Lemma 3.8 and Proposition 3.9

Proof of Lemma 3.8 We first show that limy_,o4 K*(y) = 0. Taking z = § in Lemma 2.6
and applying Lemma 2.16 (i), we get that for y < %,

2 2 2
KW (y) < E),<K(X) (50&2)”); T < g —)
T 2 ’

2 2 2 2
(x9),+ (%), =1 (x7)

< K(X)(g)Py (7:1/2 <1 ) + xaTP, <$r;}§)‘+ > 5)

_ K(X) 2 P (Xz) + x2),— + %P 1

- (g) 1/2 <7 xe —%x—&-xy S‘L’J > gx

ro—2
+

xro—2 E— %X-Hcy ( %-To

where in the last inequality we used Markov’s inequality. It follows from Lemma 2.7 that
ro—2
K ) =C

taking x = x; and letting k — oo in

2 ro—2
SP(rf T <o) +x ") (4.25)

E

*%Hw(

for some constant C > 0. Thus, since rop — 2 >
Eq. 4.25, we get that

al’

,) y10)+ 0.

KX(y) < Py(rl%’Jr < ‘L'(;)V’
Next we show that limy KX (y) = 0o. Note that

K@ (y) > XxTTP, (M(O ) > x,inf inf X, (1) > 0)

t>0ueN(r)
=xa271]P> (M>x inf inf X,(¢) >0)
t>0ueN(t)
> X1y (M 2 x) — x5 1Py (inf inf X,(1) <0)
t>0ueN(t)

— x@TP (M > x(1 - y) — xTTP(H = xy),

where M is the maximal displacement of the critical branching Lévy process with branching
rate B, offspring distribution {py} and spatial motion —&. Applying Eq. 1.4 to M and M we
see that under (H4),

K*(y) = lim K™ (y) > -
k—o00

6(a) O(a) y—>1—
A—ypat
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Finally, we show that K*(-) satisfies the differential equation in Eq. 3.24. We fix an
arbitrary z € (0, 1) in the remainder of this proof. By Lemma 2.16,

2
sp K () < K@) £ —
se(O,rz(Ik)#) (A=
Therefore, by Lemma 2.14(ii), for any ¢ > 0, there exists N > 0 such that for any k > N

ands € (0, T (xk) +),
w(xk)(mxk)(g(xkz)))

(K(Xk)(f;‘(xk)))

Recall that (1) = C(x)A“ defined in Eq. 1.9. Set vX(v) = ¢ (v)/v. For simplicity, we will
use xx as x in the remainder of this proof. Applying the display above to Lemma 2.6, we see
that fork > N,

Cla)I —e) < < C(a)(1 +e).

«2).+
Tz 2 2 _
Ey(exp{ —(1—-¢) A WX(K(X)(SX(X ))) }K(’\)(S(’\ 2)+)’ ,[Z(x )t~ é ) > K(x)(y)
ry(xz)’Jr

zEy(exp{—(lJrg)/o" X (KD E >))ds}K<X>(g<" )Tt < 52)’*). (4.26)

Now we willletk — 4-oo0in Eq. 4.26. For the upper bound, we note thatforany § € (0, 1—z),
K(X)(E(Xz) ) < K®(z + 5) on the event (£ s} and KW (%) ) < xait
z on the even {é} ), <z+ } an (S b ) < x@e-T on

+ rz(x )+

the event {é(x 5, > 2 + 8}. Thus,

+

Tz(xz)er ,
Ey(exp{ - (1- s)/o YX (KW Ex )))ds}K(““)(S(sz) 0 < o)
ISI2)’+
< KW+ 5)Ey(exp{ —(1- 8)/0 z lﬁX(K(X)@s(xz)))ds}; _L_;x2),+ < TéXZ)'_>

2

4 TP (E()‘m -z 10). 4.27)

The last term of the upper bound converges to 0 as k — oc. Indeed, sincer —2 > 2/(a — 1),
by Lemma 2.7, we have

2

2
xﬁP}(S(fz)H > z+8) XTTP_ Wt > x8) < ——— supE_y (§7+ ) =o.
2 (8 ) T w0 %

Therefore, combining Eqgs. 4.26 and 4.27, letting k — oo, we get

KX(y)

TZ(XZ)A+ 7
< KX(z 48 lim supE,(exp{ —qa —s)/ YX (KOS >))ds} @+ o (’“)f*).
k—00 0
(4.28)
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Using the continuity of KX (-) and the fact that limy_, o4 KX(y) =0, we get that, for any
e > 0, thereexist L e Nand 0 = wy < w; < ... < wy = z such that

max |K¥w;) — KX(w;_ ‘<8.
jell, ..., L}‘ (wj) (wj-1)

Let T = T (L, €) be large enough so that forall k > T,

ma K@) () — KX ‘ 5
je{o,..’fL}’ (w;) )| <

For w € [0, z), we have w € [w;_1, w;) for some j € {1, ..., L}. Using the fact that both
KO0 (w) and KX (w) are increasing in w, we get

K% w) > K(w;_1) > KX(wj_1) —e > K¥(w;) — 2¢ > KX (w) — 2e.
Therefore, when k is sufficiently large,
2.+
X (R e (Dt _ D)
Ey(exp{ - (1-e) PO E)ds 20D < 70 7)
0
o)+
* X((X e(x?) + ).+ (%), —
SEy(exp{—(l—s) A v ((K (& )—28) )ds];1:Z T < ) (4.29)
Plugging Eq. 4.29 into Eq. 4.28, we obtain

KX (y)
KX(z+96)

@)+
1%
< lim supEy(exp { —(1—2¢) / 1//X((KX($S()‘2)) - 28)+)d5}; rz()‘z)’Jr < réxz)’_).
k—00 0 ’
(4.30)

Fix a large real number A and an integer N, and set #; = %i fori € {0, ..., N}. Then we have

2
rz('x P TAA

N .
(RN =2 Jas=3 [T 1 o (06 20
=1 7li-1 ‘

ti—1,1]

N
A X X : (x%) +
=D e BTN ((K (XE[mf £09) — 2) )

Using an argument similar to that in [9, Step 1 in Lemma 3.3], with [9, Lemma 2.4] there
replaced by Lemma 2.11, we see that

tfxz)‘+

lim supEy<eXp [ —(1 - 8)/0 : WX((KX(SS(XZ)) _ 28)+)ds]; _L_Z(XZ),+ < T(gXZ)f)

k— 00

N
2) _ A
§limsupPy(r[§x ) >A)+Ey<exp{—(1—e)g Nl{ W+
i=1

i<t
k—00 i<t )

<y X (KX(_inf w)=20) ")t < 7T < ), 4.31)

S€lti—1,1i]
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where rZW‘+ is the exit time of the process W on (—o0, z). Combining Egs. 4.30 and 4.31,
taking N — oo first and then A — +00, we get

K*(y)
KX(z+9)
N
< limsupP V> A + lim sup lim sup E (exp[—(l W,
P y( 0 ) Ao Neno ) ; N i<z
<y ((KX(_int W) —2e) )it < 7T < 4)
SEti—1,t;

— 1 At X((wX + LW+ W,—
= 1msupEy(exp {—(1 — 8) v ((K (WS) — 28) )ds], T, <7 < A)

A—00
=E (exp[ —(1 —5)/ KX (Wy) —28) )ds}; rZW"" < ‘L'OW’f).

Since ¢ and § are independent, letting &, § — 0 in the above inequality, we conclude that

W.+

KX(y) < KX(z)Ey(exp{ - /OT wX(KX(Ws))ds}; ot < z()VV").

Using a similar argument, we can prove that

W.+

KX(y)ZKX(Z)E),(eXp{—/O ) W (KX(W ))ds W+ tow,—>'

Therefore,

w.+

KX(z)Ey<exp[ — /sz wX(KX(WS))ds]; ‘L'ZW’+ < r(;v’f) = KX(y). (4.32)

Note that z is fixed. The display above implies that K X (y) satisfies the differential equation
in Eq. 3.24. The proof is now complete. g

To prove Proposition 3.9, we first recall some basics on exit measures of superprocesses.
Let S := R x R, and we consider the evolution of the superprocess in S. Let O C B(S) be
the class of open subsets of S. Roughly speaking, we obtain the exit measures {X o; O € O} by
freezing “particles” once they exit O. For supercritical branching Brownian motion, similar
ideas but with a different terminology “stopping line" are used in [15]. For applications of
exit measures of supercritical super Brownian motion, one can see [16]. Now we formally
introduce the exit measures. For any r > 0 and x > 0, we use P, ; to denote the law
P (- |W, = x). Let B(S) be the Borel o-field on S, and MFp(S) the space of finite Borel
measures on S. A measure u € Mp(Ry) is identified with the corresponding measure on §
concentrated on {0} x R.. According to Dynkin [6], there exists a family of random measures
{(X0,PL); Q € O, u € Mp(S)} such that forany Q € O, u € Mp(S) with supp i C Q,
and bounded non-negative Borel function f (¢, x) on S,

Ey (exp{—(f. Xo)}) = exp{— (v}"%. )},
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where v?’ Q (s, x) is the unique positive solution of the equation
T
X, X,
vy Q(s,x) = Eyx (f(z, W) — Es / (v 2, Ww)dr
N

rArOWﬁ
=B (f(@. W, ) = Ess / e(vf L0, Wo)dr, (4.33)
N

with 7 := inf {r > 0: (r, W,) ¢ Q}. For Q = D, := (0,00) x (0,2), T =75~ Az)"".
Taking f(¢,x) = 01{y>0y in Eq. 4.33 and using the time-homogeneity of W, we get that

vjf-‘ b: (s, x) =: v;( D (x) isindependent of s and is the unique positive solution of the equation
of

W+

W
vy D) = 0P (it < 1)) — K, /Or o (v (W,))dr. (4.34)
Moreover, by Eq. 1.14,
vy P (x) = —log Es, (exp {—6Xp, ([0, 00) x {z))})
= —log s, (exp { — 60X (10, 00) x {z})}). (4.35)
Letting & — +o0 in the display above, by the definition of X p_, we see that

v3s % (x) = —log Py, (X§5 ([0, 00) x {z}) = 0)
= —log Ps, (M(O’oo)’x <z).

Proof of Proposition 3.9 Note that if K¥ is a solution to the problem 3.24, then for any 0 <
y<z<l,

W.+

7, At
KX () + By /0 0 (KX (We)ds ) = By (KX (W,we, ).

Thus, for each fixed z € (0, 1), KX (y) is a solution to the equation

Wb
s+ ([ o(F(Wo))ds)
0
= E)‘(KX(WI(_W,MT()V",—)) = KX@P, (T <77), ye 2, (4.36)

where the last inequality holds since KX (0) = 0. By Eqs. 4.34 and 4.35, Eq. 4.36 has a
unique solution given by

Ve, () = —log Es, (exp { — KX (X310, 00) x {z})}).
Since KX is a solution to Eq. 4.36, we have

K*(y) = —logEs, (exp { — K* ()X (10, 00) x {z})}), ¥ € (0.2).
On one hand,

K¥(y) < —logPs, (X} (10, 00) x {z}) = 0) = —logPs, (M ¥ <z). (437

@ Springer



Tails of Extinction Time and Maximal Displacement...

On the other hand, for any fixed zg € (y, 1), we choose z € (zo, 1) so that KX(z) > KX(z0).
Then

K¥(y) = —logEs, (exp | — K¥(z0)X [y (10, 00) x {zh}) = KX (yi2).  (438)

Note that K Z’g (+; z) is the unique bounded solution to

w,—
T /\1:0 ’ _
K5+ By ( /O (KX Wy; 2)ds) = KX o)y (17 < '),

~ 2
Define K Z}g (y) :=z¢TK z)(() (yz; 2), then the above equation is equivalent to

. y 5 rZVV’Jr/\r(;V’* R
KX (7> + ZWE_‘,(/é oz T KX (2 Wy z))ds)
KX(zo)Py (2 F < )" 7). (4.39)

2

Using the scaling property of Brownian motion and the fact that x =T go(x_% v)x2 = ¢(v),
Eq. 4.39 is equivalent to

VAV M
zx (Y 1 0 .
KZO <E) +E)'/z(A (p(Kz()(Z W Z))ds)

2 _
= za-T KX(Z())Py/Z (rIW’Jr < ‘L'OW’ )

Again using the uniqueness of the solution to Eq. 4.34, we conclude that

—logEs, (exp { — K¥(20)X [y (10, 00) x {z})}) = KX (y:2)

= wTKY (%) = (—togEs,,. (exp { = 277 K¥ (z) X[ ™10, 00) x (1D})) -2~
2
> ((—tog s, (exp { — =5 KX o)X (5 (10.00) x (1])) -2, (4.40)

Therefore, plugging Eq. 4.40 into Eq. 4.38 and then letting z — 1— in both Eqgs. 4.37 and
4.38, we conclude that

2

—logPs, (M©X < 1) > K¥(y) = —logEs, (exp | — 25 ' KX (z0)X 57 ([0. 00) x {1})}).
Since KX (z9) — 400 as zg — 1—, letting zo — 1— in the above inequality yields that
—logPs, (M@ < 1) > K¥(y) > —log Py, (X, ([0, 00) x {1}) = 0)
= —logPs, (M(O’OO)’X <1),

which implies that KX (y) = —log Ps, (M 0,00.X o 1). This completes the proof of the
proposition. (]
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