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Abstract
In this paper, we study asymptotic behaviors of the tails of extinction time and maximal
displacement of a critical branching killed Lévy process (Z (0,∞)

t )t≥0 in R, in which all
particles (and their descendants) are killed upon exiting (0,∞). Let ζ (0,∞) andM (0,∞)

t be the
extinction time andmaximal position of all the particles alive at time t of this branching killed
Lévy process and define M (0,∞) := supt≥0 M

(0,∞)
t . Under the assumption that the offspring

distribution belongs to the domain of attraction of an α-stable distribution, α ∈ (1, 2], and
some moment conditions on the spatial motion, we give the decay rates of the survival
probabilities

Py(ζ
(0,∞) > t), P√

t y(ζ
(0,∞) > t)

and the tail probabilities

Py(M
(0,∞) ≥ x), Pxy(M

(0,∞) ≥ x).

Wealso study the scaling limits ofM (0,∞)
t and thepoint process Z (0,∞)

t underP√
t y(·|ζ (0,∞) >

t) and Py(·|ζ (0,∞) > t). The scaling limits underP√
t y(·|ζ (0,∞) > t) are represented in terms

of super killed Brownian motion.
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1 Introduction andMain Results

1.1 Background andMotivation

A branching Lévy process on R is defined as follows: initially there is a particle at position
x ∈ R which moves according to a Lévy process (ξt ,Px ) on R. We will use Ex to denote
expectation with respect to Px . The lifetime of this particle is an exponentially distributed
random variable with parameter β > 0 and when it dies, this particle gives birth to a random
number of offspring with law {pk : k ≥ 0}. The children of this particle independently repeat
their parent’s behavior from their birthplace. The procedure goes on. We use N (t) to denote
the set of particles alive at time t and for each u ∈ N (t), we denote by Xu(t) the position of
u at time t . Also, for any u ∈ N (t) and s ≤ t , we use Xu(s) to denote the position of u or its
ancestor at time s. The point process (Zt )t≥0 defined by

Zt :=
∑

u∈N (t)

δXu(t)

is called a branching Lévy process. We will use Px to denote the law of this process and
use Ex to denote the corresponding expectation. We will use the convention P := P0 and
E := E0.

Suppose thatm :=∑∞
k=0 kpk ∈ (0,∞). It is well known that the branching Lévy process

(Zt )t≥0 will become extinct with probability one if and only if m < 1 (subcritical) or m = 1
and p1 �= 1(critical). In this paper, we will focus on the critical case, that is, we always
assume that m = 1 and p1 �= 1.

For any t , let Mt := supu∈N (t) Xu(t) be the maximal position of all the particles alive at
time t and we use the convention that Mt = −∞ if N (t) = ∅. Now we define the maximal
displacement and extinction time respectively by

M = sup
t≥0

Mt and ζ := inf {t > 0 : N (t) = ∅} . (1.1)

Since we always assume m = 1 and p1 �= 1, we have P(M < ∞) = P(ζ < ∞) = 1.
Due to the homogeneity of the branching rate β and offspring law {pk : k ≥ 0}, ζ is

equal in law to the extinction time of a continuous-time Galton-Waston process with the
same offspring distribution as (Zt )t≥0, so the decay rate of the survival probability P(ζ > t)
is clear. For example, suppose that

(H1) The offspring distribution {pk : k ≥ 0} belongs to the domain of attraction of an
α-stable, α ∈ (1, 2], distribution. More precisely, either there exist α ∈ (1, 2) and
κ(α) ∈ (0,∞) such that

lim
n→∞ nα

∞∑

k=n

pk = κ(α),

or that (corresponding α = 2)
∞∑

k=0

k2 pk < ∞.

Then it is known (see, for example, [14, 29, 31]) that, there exists a C(α) ∈ (0,∞) such that

lim
t→∞ t

1
α−1P(ζ > t) = C(α). (1.2)
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Tails of Extinction Time and Maximal Displacement...

The tail probability of the maximal displacement M has been intensively studied in the
literature. Sawyer and Fleischman [28] proved that under the assumption

∑∞
k=0 k

3 pk < ∞
and that the spatial motion ξ is a standard Brownian motion, there exists a constant θ(2) > 0
such that

lim
x→∞ x2P(M ≥ x) = θ(2). (1.3)

For corresponding results in the case of critical branching random walks with offspring
distribution having finite thirdmoment, see [18], and for these in the case of critical branching
Lévy processes with offspring distribution having finite third moment, see [17, 25, 26]. In the
case of critical branching Lévy processes with offspring distribution belonging to the domain
of attraction of an α-stable distribution with α ∈ (1, 2], we assume

(H2)
E0(ξ1) = 0, σ 2 = E0(ξ

2
1 ) ∈ (0,∞)

and

(H3) for α given in (H1),

E0
(
(ξ1 ∨ 0)r0

)
< ∞ for some r0 >

2α

α − 1
.

Hou, Jiang, Ren and Song [9] proved that under (H1) (although [9] did not deal with the
case α = 2, the proof is actually the same as the case α ∈ (1, 2), without the additional
assumption

∑∞
k=0 k

3 pk < ∞, see the argument beneath [9, Theorem 1.1]), (H2) and (H3),
there exists a constant θ(α) > 0 such that

lim
x→∞ x

2
α−1P(M ≥ x) = θ(α). (1.4)

The main concern of this paper is on critical branching Lévy processes. If, in the critical
branching Lévy process, we kill all particles (and their potential descendants) once they exit
(0,∞), we obtain a point process (Z (0,∞)

t )t≥0 with

Z (0,∞)
t :=

∑

u∈N (t)

1{infs≤t Xu (s)>0}δXu (t).

The process (Z (0,∞)
t )t≥0 is called a critical branching killed Lévy process. Let (Z0

t ,Py) stand
for a branching Markov process with spatial motion ξt∧τ−

0
where τ−

0 := inf{t > 0 : ξt ≤ 0},
branching rate β and offspring distribution {pk : k ≥ 0}. Then it is easy to see that for any
t, y > 0, (

Z (0,∞)
t ,Py

) d= (Z0
t |(0,∞),Py

)
. (1.5)

Define
M (0,∞)

t := sup
u∈N (t):infs≤t Xu (s)>0

Xu(t), M (0,∞) := sup
t≥0

M (0,∞)
t

and
ζ (0,∞) := inf

{
t > 0 : Z (0,∞)

t ((0,∞)) = 0
}

(1.6)

with the convention M (0,∞)
t = −∞when Z (0,∞)

t ((0,∞)) = 0.When the underlying motion
ξ is a standard Brownian motion, Lalley and Zheng [19] proved that, if

∑∞
k=0 k

3 pk < ∞,
then

lim
x→∞ x3Py(M

(0,∞) ≥ x) = θ(0,∞)(2)y, for all y > 0, (1.7)
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where θ(0,∞)(2) ∈ (0,∞) is a constant independent of x and y. Comparing Eqs. 1.3 and 1.7,
we see that the tail Py(M (0,∞) ≥ x) of critical branching killed Brownian motion decays to 0
in the order x−3, while the tail Py(M ≥ x) of critical branching Brownian motion decays to
0 in the order x−2. Lalley and Zheng [19] also showed that there exists a continuous function
(0, 1) � y → θ

(0,∞)
y (2) such that

lim
x→∞ x2Pxy(M

(0,∞) ≥ x) = θ(0,∞)
y (2), y ∈ (0, 1). (1.8)

The argument of [19] relies heavily on the construction of Py(M (0,∞) ≥ x) via Weierstrass’
P-functions in the special case p0 = p2 = 1

2 and a comparison argument for general
offspring distributions.

There are also some works on the survival probability and maximal displacement of
branching killed Lévy processes when m = ∑∞

k=0 kpk > 1 and the spatial motion ξ is
a Brownian motion with drift −μ where μ = √

2β(m − 1), see [2, 3, 13, 21, 22]. For
these branching processes,

√
2β(m − 1) is the critical value of the drift in the sense that the

process will die out with probability 1 if and only if μ ≥ √
2β(m − 1). When p2 = 1 and

μ = √
2β (critical drift case), Berestycki, Berestycki and Schweinsberg [2] studied, among

other things, the asymptotic behavior of the position of the right-most particle as the position
y of the initial particle tends to infinity. In the case

∑∞
k=0 kpk = 2 andμ = √

2β (critical drift
case), the survival probability was first studied by Kesten [13], and the result of [13] was later
refined in [3, 22]. For the (all-time)maximal displacementM (0,∞) = maxs≥0 M

(0,∞)
s and the

time when this all-time maximum is achieved m(0,∞) := arg maxs≥0M
(0,∞)
s , Maillard and

Schweinsberg [21] proved theweak convergence for the conditioned law of (M (0,∞),m(0,∞))

on the event {ζ (0,∞) > t}.
The purpose of the paper is to study the asymptotic behaviors of the tails of the survival

probability and maximal displacement of critical branching killed Lévy processes. More
precisely, our goals are as follows:

(i) generalize Eqs. 1.7 and 1.8 to critical branching killed Lévy processes with offspring
distribution satisfying (H1) and spatial motion satisfying (H2)–(H4), with (H4) given
in Section 1.3 below;

(ii) find the exact decay rate of the survival probability Py(ζ
(0,∞) > t);

(iii) give probabilisitic interpretations of the limit in the generalization of Eq. 1.8 and the
limit of the survival probability when the initial position is at

√
t y for fixed y > 0;

(iv) find scaling limits of Z (0,∞)
t and M (0,∞)

t under law Py
( · |ζ (0,∞) > t

)
and law P√

t y

( ·
|ζ (0,∞) > t

)
.

Our approach for proving the generalizations of Eqs. 1.7 and 1.8 is different from that of
[19]. The probabilistic interpretations of the limits under P√

t y

( · |ζ (0,∞) > t
)
are given in

terms of a particular critical superprocess. So in the next subsection, wewill give a description
of this superprocess and some basic facts about it.

1.2 Critical Super Killed BrownianMotion

Set R+ := [0,∞). Let MF (R+) and MF ((0,∞)) be the families of finite Borel measures
onR+ and on (0,∞) respectively, endowed with the weak topology. We will use 0 to denote
the null measure on R+ and on (0,∞). Let Bb(R+) and B+

b (R+) be the spaces of bounded
Borel functions and non-negative bounded Borel functions onR+ respectively. In this paper,
whenever we are given a function f on (0,∞), we automatically extend it to R by setting
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f (x) = 0 for x ≤ 0. The meanings of Bb((0,∞)) and B+
b ((0,∞)) are similar. For any

f ∈ Bb(R+) and μ ∈ MF (R+), we use 〈 f , μ〉 to denote the integral of f with respect to
μ. For any α ∈ (1, 2], the function

ϕ(λ) := C(α)λα :=
{

βκ(α)(2−α)
α−1 λα, when α ∈ (1, 2),

β
2

(∑∞
k=1 k(k − 1)pk

)
λ2, α = 2,

(1.9)

where κ(α) is given in (H1) and(z) := ∫∞
0 t z−1e−tdt is theGamma function, is a branching

mechanism. Note that ϕ is the branching mechanism of a critical superprocess. For more
information on general branching mechanisms, we refer the reader to [20, Sections 2.3 and
2.4]). For any x ∈ R+, let (Wt ,Px ) be a Brownian motion starting from x , with variance
σ 2t , where σ 2 is given in (H2). Let W 0

t := Wt∧τ
W ,−
0

be the process W stopped at the first

exit time τ
W ,−
0 of (0,∞). Note that, when starting from 0, W 0 stays at 0.

In this paper, for any μ ∈ MF (R+), we will use X = {(Xt )t≥0;Pμ} to denote a super-
process with spatial motion W 0 and branching mechanism ϕ, that is, an MF (R+)-valued
Markov process such that for any f ∈ B+

b (R+),

− logEμ (exp {−〈 f , Xt 〉}) = 〈vX
f (t, ·), μ〉,

where (t, x) → vX
f (t, x) is the unique locally bounded non-negative solution to

vX
f (t, x) = Ex

(
f (W 0

t )
)− Ey

( ∫ t

0
ϕ
(
vX
f (t − s,W 0

s )
)
ds
)
. (1.10)

Taking f ≡ θ1R+ in Eq. 1.10, the uniqueness of the solution implies that

− logEδy (exp {−〈θ, Xr 〉}) = ((α − 1)C(α)rα + θ1−α
)− 1

α−1 .

Therefore, letting θ → +∞ in the above equation, we obtain that

− logPδy (Xr = 0) = lim
θ→∞

(
(α − 1)C(α)rα + θ1−α

)− 1
α−1

= ((α − 1)C(α)rα
)− 1

α−1 , for all r > 0, y ∈ R+. (1.11)

Next, we introduce the N-measures associated to the superprocess X . Without loss of
generality, we assume that X is the coordinate process on

D := {w = (wt )t≥0 : w is an MF (R+)-valued càdlàg function on R+}.
We assume that (F∞, (Ft )t≥0) is the natural filtration on D, completed as usual with the
F∞-measurable and Pμ-negligible sets for every μ ∈ MF (R+). Let W+

0 be the family of
MF (R+)-valued càdlàg functions on (0,∞) with 0 as a trap and with limt↓0 wt = 0. Note
thatW+

0 can be regarded as a subset of D.
By Eq. 1.11, Pδy (Xt = 0) > 0 for all t > 0 and y ∈ R+, which implies that there exists a

unique family of σ -finite measures {Ny; y ∈ R+} on W
+
0 such that for any μ ∈ MF (R+),

if N (dw) is a Poisson random measure onW+
0 with intensity measure

Nμ(dw) :=
∫

R+
Ny(dw)μ(dy),

then the process defined by

X̂0 := μ, X̂t :=
∫

W
+
0

wtN (dw), t > 0,
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is a realization of the superprocess X = {(Xt )t≥0;Pμ}. Furthermore, for any t > 0, y ∈ R+
and f ∈ B+

b (R+),

Ny (1 − exp {−〈 f , wt 〉}) = − logEδy (exp {−〈 f , Xt 〉}) , (1.12)

see [20, Theorems 8.27 and 8.28]. {Ny; y ∈ R+} are called the N-measures associated to
{Pδy ; y ∈ R+}. One can also see [7] for the definition of {Ny; y ∈ R+}. Note that for any
y > 0, Pδy (X1((0,∞)) = 0) > 0. Thus by Eq. 1.12, we see thatNy(w1((0,∞)) �= 0) < ∞.

Now we define

X (0,∞)
t := Xt

∣∣
(0,∞)

, t ≥ 0. (1.13)

(X (0,∞)
t )t≥0 is called a critical super killed Brownian motion. By the definition of X (0,∞) we

see that for any t, y > 0, under Pδy ,

〈 f , Xt 〉 = 〈 f , X (0,∞)
t 〉, for any f ∈ B+

b ((0,∞)). (1.14)

1.3 Main Results

The following condition is stronger than (H3) since it requires that −ξ also satisfies (H3):

(H4) For the α ∈ (1, 2] in (H1), it holds that

E0
(|ξ1|r0

)
< ∞ for some r0 >

2α

α − 1
.

The assumption (H4) will be used in the proofs of Lemmas 2.13, 3.2 and 3.8. In the proof of
Lemma 3.2, we need to apply Eq. 1.4 to critical branching killed Lévy processes with spatial
motion −ξ . The assumption (H4) is also essentially used in the proof of Lemma 3.8, see Eq.
4.25 below. In the case α = 2, the assumption (H4) is the same as that in [18] and is weaker
than that in [23, Remark 1.4].

For critical branching random walks, in the case α = 2, [30, Theorem 1.3] says that the
assumption (H2) is sufficient to get Eq. 1.4. We believe that one might be able get Eq. 1.4
under (H1) and (H2), without (H4). However, different arguments are needed since (H4) is
used essentially in several places in our argument. We do not purse this here.

For any x ∈ R, define

τ+
x := inf{t > 0 : ξt ≥ x} and τ−

x := inf{t > 0 : ξt ≤ x}.
Since ξ oscillates under condition (H2), we have Px (τ

−
0 < ∞) = 1. By Lemma 2.8 below,

we have Ex |ξτ−
0
| < ∞. Define

R(x) := x − Ex
(
ξτ−

0

) = −E0
(
ξτ−−x

)
, x ≥ 0. (1.15)

Note that R(x) ≥ x and that R(x) is non-decreasing in x . In Lemma 2.8, we will show that
R is harmonic in (0,∞) with respect to the process ξt∧τ−

0
. When ξ is a Brownian motion,

R(x) ≡ x .
Our main results are as follows.

Theorem 1.1 Assume (H1), (H2) and (H4) hold.
(i) For any y > 0,

lim
t→∞ t

1
α−1P√

t y(ζ
(0,∞) > t) = Ny (w1((0,∞)) �= 0) ,
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where Ny is the N-measure of the super Brownian motion defined in Section 1.2.
(ii) There exists a constant C (0,∞)(α) ∈ (0,∞) such that for any y > 0,

lim
t→∞ t

1
α−1+ 1

2Py(ζ
(0,∞) > t) = C (0,∞)(α)R(y).

Remark 1.2 For a critical branching Lévy process, the tail P(ζ > t) of extinction time decays
to zero like t−1/(α−1), see Eq. 1.2. Theorem 1.1 tells that, for a critical branching killed Lévy
process starting from a single particle at y > 0, the tail Py(ζ

(0,∞) > t) decays to zero like
t−1/(α−1)−1/2, while the tail P√

t y(ζ
(0,∞) > t) reverts back to t−1/(α−1).

For any t > 0, we define the following scaled version of Z (0,∞)
t :

Z (0,∞),t
1 := t−

1
α−1

∑

u∈N (t)

1{infs≤t Xu(s)>0}δXu (t)/
√
t . (1.16)

The next theorem is about the limits of Z (0,∞),t
1 under P√

t y(·
∣∣ζ (0,∞) > t) and Py(·

∣∣ζ (0,∞) >

t) as t → ∞. It is similar in spirit to the result that the Dawson-Watanabe process is an
appropriate scaling limit of branching Markov processes (see, for instance, [20, Proposition
4.6]). This result partially answers the question in [24, Question 1.8] when the domain is
assumed to be the half line.

Theorem 1.3 Assume (H1), (H2) and (H4) hold.
(i) For any y > 0,

lim
t→∞P√

t y

(
Z (0,∞),t
1 ∈ · ∣∣ζ (0,∞) > t

) = Ny
(
w1|(0,∞) ∈ ·∣∣w1((0,∞)) �= 0

)
,

where w1|(0,∞) is the restriction of the random measure w1 on (0,∞).
(ii) There exists a random measure (η1,P) on (0,∞) such that for any y > 0,

lim
t→∞Py

(
Z (0,∞),t
1 ∈ · ∣∣ζ (0,∞) > t

) = P(η1 ∈ ·).

Remark 1.4 Powell [24] studied critical branching diffusion processes ZD
t killed upon exiting

a bounded domain D ⊂ R
d . It was proved in [24, Theorem 1.6] that for any y ∈ D and

non-negative bounded continuous function f on D, 1
t 〈 f , ZD

t 〉 under Py(·|Z (D)
t (D) > 0)

converges weakly to an exponential random variable. In [24, Question 1.8], Powell asked
what happens when D is unbounded. Our Theorem 1.3 answers this question in the case that
D is the half-plane (0,∞).

The following theorem generalizes Eqs. 1.7 and 1.8 and also provides a probabilistic
interpretation for the limit of the generalization of Eq. 1.8. When specialized to the case
α = 2, the next theorem also gives an alternative proof of [19, Theorem 6.1]. Define the
maximal displacement of X (0,∞) by

M (0,∞),X := sup
r>0

inf{y ∈ R : X (0,∞)
r ((y,∞)) = 0}.

Theorem 1.5 Assume (H1), (H2) and (H4) hold.
(i) For any y > 0, it holds that

lim
x→∞ x

2
α−1Pxy(M

(0,∞) ≥ x) = − logPδy

(
M (0,∞),X < 1

)
. (1.17)
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(ii) Assume further that (H4) holds with r0 > 1 + 2α
α−1 . Then there exists a constant

θ(0,∞)(α) ∈ (0,∞) such that for any y > 0, it holds that

lim
x→∞ x

2
α−1+1

Py(M
(0,∞) ≥ x) = θ(0,∞)(α)R(y). (1.18)

The higher moment condition in Theorem 1.5 (ii) is used in Eq. 3.26.

Remark 1.6 (1) When α = 2, Theorem 1.5 (i) is consistent with Eq. 1.8, and Theorem 1.5
(ii) is consistent with Eq. 1.7. In Lalley and Zheng [19], the offspring distribution is assumed
to have finite 3rd moment.

In [19], the constant θ(0,∞)(2) and the limit in Eq. 1.17 are given in terms of Weierstrass’
P-functions. Our limit in Eq. 1.17 is given in terms of superprocess and limit in Eq. 1.18
is given in terms of R(y) defined in Eq. 1.15. The right hand side of Eq. 1.17 can also be
given in terms of Weierstrass’ P-functions. In fact, by [19, p.12, line 1 from below], we

see that − logPδy

(
M (0,∞),X < 1

) = 2ω2
1

3 PL1(
ω1
3 (2 + y)), where PL1 is the Weierstrass’

P-functions defined in [19, (4.1)] with L1 and ω1 given in [19, (5.4) and (5.5)] respectively.
Our assumption (H1) on the offspring distribution is weaker and optimal in some sense. Since
1
y Wt1{mins≤t Ws>0} is a martingale under Py , we define

dP↑
y

dPy

∣∣∣∣
σ(Ws ,s≤t)

:= 1

y
Wt1{mins≤t Ws>0}.

In the case σ = 1, it is well-known that (Wt ,P
↑
y ) is a Bessel-3 process. Combining Eq.

4.32 (with z = 1
2 ) and Eq. 3.29, we can give the following probabilistic representation for

θ(0,∞)(α):

θ(0,∞)(α) = K X
(1
2

)
lim

y→0+
1

y
Ey

(
exp

{
−
∫ τ

W ,+
1/2

0
ψ X

(
K X (Ws)

)
ds
}
; τ

W ,+
1/2 < τ

W ,−
0

)

= 2K X
(1
2

)
lim

y→0+E↑
y

(
exp

{
−
∫ τ

W ,+
1/2

0
ψ X

(
K X (Ws)

)
ds
})

= 2K X
(1
2

)
E↑
0

(
exp

{
−
∫ τ

W ,+
1/2

0
ψ X

(
K X (Ws)

)
ds
})

,

where ψ X (v) := ϕ(v)/v and K X (·) is the unique solution of Eq. 3.24. It is interesting and
natural to to ask whether θ(0,∞)(α) is monotone or smooth in α. We have not pursued this.

(2) Equation 1.18 says that, unlike Eq. 1.4 for critical branching Lévy processes, the tail
Py(M (0,∞) ≥ x) decays to zero like x−2/(α−1)−1.

The following result gives a Yaglom-type limit for M (0,∞)
t . Define

M (0,∞),X
1 := inf{y ∈ R : X (0,∞)

1 ((y,∞)) = 0}.

Theorem 1.7 Assume (H1), (H2) and (H4) hold.
(i) For any y > 0, it holds that

lim
t→∞P√

t y

(M (0,∞)
t√
t

∈ ·∣∣ζ (0,∞) > t
)

= Ny
(
M (0,∞),X

1 ∈ ·∣∣w1((0,∞)) �= 0
)
.
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(ii) Let η1 be the random measure in Theorem 1.3(ii) and Mη1 := inf{y ∈ R :
η1((y,∞)) = 0}. Then for any y > 0,

lim
t→∞Py

(M (0,∞)
t√
t

∈ ·∣∣ζ (0,∞) > t
)

= P(Mη1 ∈ ·).

Wemention in passing here that the proof of Theorem 1.7 does not use the conclusions of
Theorem 1.5. So, we only need (H4), not the enhanced version of (H4) in Theorem 1.5(ii).

Theorem 1.7 (ii) is similar in spirit to Lalley and Shao [18, Theorem 3] for branching
randomwalks. Let Mn be the maximal position of a critical branching randomwalk at time n.
[18, Theorem3] says that, conditioned on survival at time n,Mn/

√
n converges in distribution

to the maximum of the support of a random measure Y1, where Y1 is the conditional limit of
a super-Brownian motion X such that for any nonnegative bounded continuous test function
f ,

lim
t→∞Pδ0

(
t−1〈 f (√t ·), Xt 〉 ∈ ·|Xt �= 0

) = P(〈 f , Y1〉 ∈ ·),

see [18, Proposition 21]. Theorem 1.7 (i) corresponds to Lalley and Shao [18, Theorem 3],
and note that since there is killing at 0, to get the conditional limit as t → ∞, the starting
point needs to be at

√
t y.

1.4 Proof Strategies and Organization of the Paper

Now we sketch the main idea of the proof of Theorem 1.1. The main ideas for the proofs of
Theorem 1.3 and Theorem 1.5 are similar, and Theorem 1.7 follows from Theorems 1.1 and
1.3. For t > 0, s ≥ 0 and y > 0, let

v(t)∞ (s, y) := t
1

α−1P√
t y

(
Z (0,∞)
ts ((0,∞)) > 0

) = t
1

α−1P√
t y

(
ζ (0,∞) > ts

)
.

In Section 2.1, we derive an integral equation for v
(t)∞ (s, y). In Section 2.3, we use the

Feynman-Kac formula to prove some analytical properties of v
(t)∞ (s, y) and show that, for

any s0 ∈ (0, 1), {v(t)∞ (s, y) : s ≥ s0, y > 0}t≥1 is tight. Then we show that the limit vX∞(s, y)
exists, is unique and can be represented via the superprocess X .

The remainder of this paper is organized as follows. In Section 2, we give some prelim-
inaries. The proofs of the main results are given in Section 3. The proofs of some auxiliary
results used in Section 3 are given in Section 4.

In the remainder of this paper, the notation f (x) � g(x) means that there exists some
constant C independent of x such that f (x) ≤ Cg(x) holds for all x .

2 Preliminaries

Recall that (ξt ,Py) is a Lévy process starting from y, and for any function f on (0,∞), we
automatically extend it to R by setting f (x) = 0 for all x ≤ 0. For a random variable X
and events A, B, we will use E(X; A) and E(X; A, B) to denote E(X1A) and E(X1A1B)

respectively.
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2.1 Feynman-Kac Representation

Define

φ(v) := β
( ∞∑

k=0

pk(1 − v)k − (1 − v)
)
, v ∈ [0, 1].

Let L be a random variable with law {pk}, then by our assumption,EL = m = 1. By Jensen’s
inequality, we have φ(v) = β

(
E
(
(1 − v)L

)− (1 − v)
) ≥ β

(
(1 − v)EL − (1 − v)

) = 0,
which implies that φ is a non-negative function on [0, 1].
Lemma 2.1 For any f ∈ B+

b ((0,∞)),

u f (t, y) := Ey

(
exp

{
−
∫

f (y)Z (0,∞)
t (dy)

})
, t > 0, y ∈ R+,

solves the equation

u f (t, y) = Ey

(
exp

{
− f (ξt∧τ−

0
)
})

+ βEy

( ∫ t

0

( ∞∑

k=0

pku f (t − s, ξs∧τ−
0

)k − u f (t − s, ξs∧τ−
0

)
)
ds
)
.

Consequently, v f (t, y) := 1 − u f (t, y) satisfies

v f (t, y) = Ey

(
1 − exp

{
− f (ξt∧τ−

0
)
})

− Ey

( ∫ t

0
φ(v f (t − s, ξs∧τ−

0
))ds

)
. (2.1)

Proof It follows from Eq. 1.5 that, for any f ∈ B+
b ((0,∞)),

u f (t, y) = Ey

(
exp

{
−
∫

f (y)Z0
t (dy)

})
.

By considering the first splitting time of the branching Markov process Z0
t , we get

u f (t, y) = e−βtEy

(
exp

{
− f (ξt∧τ−

0
)
})

+ βEy

( ∫ t

0
e−βs

∞∑

k=0

pku f (t − s, ξs∧τ−
0
)kds

)
.

Now the first result follows from [6, Lemma 4.1]. Equation 2.1 follows from the first result
and the definition of v f . This completes the proof of the lemma. �

For any t > 0, s ≥ 0, x, y ∈ R and v ∈ [0, t 1
α−1 ], define f(t)(·) := f

( ·√
t

)
and

v
(t)
f (s, y) := t

1
α−1 v f(t) (ts,

√
t y), φ(t)(v) := t

α
α−1 φ

(
vt−

1
α−1

)
, ψ(t)(v) := φ(t)(v)

v
(2.2)

and

ξ (t)
s := ξst√

t
, τ (t),+

x := inf{s > 0 : ξ (t)
s ≥ x} τ (t),−

x := inf{s > 0 : ξ (t)
s ≤ x}. (2.3)

With a slight abuse of notation, we also usePy to denote the law of {ξ (t)
s , s ≥ 0}with ξ

(t)
0 = y.

Then (ξ(tr)∧τ−
0
,P√

t y)
d= (

√
tξ (t)

r∧τ
(t),−
0

,Py).
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Corollary 2.2 For any t > 0, y ∈ R+ and 0 ≤ w ≤ r , it holds that

v
(t)
f (r , y) = Ey

(
v

(t)
f (r − w, ξ

(t)

w∧τ
(t),−
0

)
)− Ey

( ∫ w

0
φ(t)(v

(t)
f (r − s, ξ (t)

s∧τ
(t),−
0

))ds
)
. (2.4)

Proof It follows from Eq. 2.1 and the Markov property that for any y ∈ R+ and 0 ≤ r ≤ t ,

v f (t, y) = Ey(v f (r , ξ(t−r)∧τ−
0
)) − Ey

( ∫ t−r

0
φ(v f (t − s, ξs∧τ−

0
))ds

)
.

By the equality above with t replaced by tr , r replaced by t(r − w) and f replaced by f(t),
we get

v
(t)
f (r , y) = t

1
α−1E√

t y

(
v f(t) (t(r − w), ξ(tw)∧τ−

0
)
)− t

1
α−1E√

t y

( ∫ tw

0
φ(v f(t) (tr − s, ξs∧τ−

0
))ds

)

= Ey
(
v

(t)
f (r − w, ξ

(t)

w∧τ
(t),−
0

)
)− Ey

( ∫ w

0
φ(t)(v

(t)
f (r − s, ξ (t)

s∧τ
(t),−
0

))ds
)
,

where in the last equality we used the fact that (ξ(tr)∧τ−
0
,P√

t y)
d= (

√
tξ (t)

r∧τ
(t),−
0

,Py). This

completes the proof of the corollary. �

Taking f = θ1(0,∞)(·) in Eq. 2.4 and then letting θ → +∞, Corollary 2.2 tells us that

v(t)∞ (r , y) := t
1

α−1P√
t y

(
Z (0,∞)
tr ((0,∞)) > 0

) = t
1

α−1P√
t y

(
ζ (0,∞) > tr

)
(2.5)

satisfies the following equation: for any t > 0, y ∈ R+ and 0 ≤ w ≤ r ,

v(t)∞ (r , y) = Ey
(
v(t)∞ (r − w, ξ

(t)

w∧τ
(t),−
0

)
)− Ey

( ∫ w

0
φ(t)(v(t)∞ (r − s, ξ (t)

s∧τ
(t),−
0

))ds
)
. (2.6)

Proposition 2.3 For any t > 0, y ∈ R+ and any 0 < w < r , it holds that

v(t)∞ (r , y) = Ey

(
exp

{
−
∫ w

0
ψ(t)(v(t)∞ (r − s, ξ (t)

s )
)
ds
}
v(t)∞ (r − w, ξ(t)

s ); τ
(t),−
0 > w

)
.

Also, for any f ∈ B+
b ((0,∞)), it holds that

v
(t)
f (r , y) = Ey

(
exp

{
−
∫ w

0
ψ(t)(v(t)

f (r − s, ξ (t)
s )
)
ds
}
v

(t)
f (r − w, ξ(t)

w ); τ
(t),−
0 > w

)
.

Proof For fixed t, r , w > 0, write H(x) := v
(t)∞ (r − w, x), QH (s, y) := v

(t)∞ (s + r − w, y),
ηw := ξ

(t)

w∧τ
(t),−
0

and I (q) := ∫ q
0 ψ(t)(QH (w − s, ηs))ds for short. For any n ∈ N, iterating

Eq. 2.6 n times and applying the Markov property, we get that

QH (w, y)

= Ey (H(ηw)) − Ey

( ∫ w

0
I ′(q)

(
Eηs (H(ηw−s )) − Eηs

(∫ w−s

0
φ(t)(QH (w − s − q, ξq ))dq

))
ds
)

= Ex

⎛

⎝
1∑

i=0

(−I (w))i

i ! H(ηw)

⎞

⎠+ Ey
( ∫ w

0
I ′(q)I (q)QH (w − q, ηq )dq

)

= · · · = Ex

⎛

⎝
n∑

i=0

(−I (w))i

i ! H(ηw)

⎞

⎠+ (−1)n+1Ey

( ∫ w

0

I n(q)

n! I ′(q)QH (w − q, ηq )dq
)
.
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Since 0 ≤ H(x), QH (q, x) ≤ t
1

α−1 for all x ≥ 0, q ≤ w and ψ(t) ≥ 0 is locally bounded,
we see that supq≤w |I (q)| < ∞. Therefore, letting n ↑ ∞ in the above equality, we obtain

v(t)∞ (r , y) = Ey

(
exp

{
−
∫ w

0
ψ(t)(v(t)∞ (r − s, ξ (t)

s∧τ
(t),−
0

)
)
ds
}
v(t)∞ (r − w, ξ

(t)

w∧τ
(t),−
0

)
)
.

Since v
(t)∞ (r − w, y) = 0 for all y ≤ 0 and 0 < w < r , we get the first result. The case for

v
(t)
f is similar. �

Remark 2.4 By the Markov property of ξ
(t)

r∧τ
(t),−
0

, for y > 0 and w ∈ [0, r ], it holds that

ϒw := exp
{

−
∫ w

0
ψ(t)(v(t)∞ (r − s, ξ (t)

s∧τ
(t),−
0

)
)
ds
}
v(t)∞ (r − w, ξ

(t)

w∧τ
(t),−
0

)

= Ey

(
exp

{
−
∫ r

0
ψ(t)(v(t)∞ (r − s, ξ (t)

s∧τ
(t),−
0

)
)
ds
}
v(t)∞ (0, ξ (t)

r∧τ
(t),−
0

)

∣∣∣ξ (t)

s∧τ
(t),−
0

: s ≤ w
)
.

Hence, {ϒw : w ∈ [0, r ]} is a Py-martingale. Thus, for any stopping time T of the Lévy

process ξ
(t)
s and any t > 0, 0 < w < r , we have

v(t)∞ (r , y) = Ey (ϒw∧T )

= Ey

(
exp

{
−
∫ w∧T

0
ψ(t)(v(t)∞ (r − s, ξ (t)

s )
)
ds
}
v(t)∞ (r − w ∧ T , ξ

(t)
w∧T ); τ

(t),−
0 > w ∧ T

)
.

(2.7)

For any 0 < y < x , define

v(y; x) := Py(M
(0,∞) ≥ x).

Proposition 2.5 For any 0 < y < x, it holds that

v(y; x) = Ey

(
exp

{
−
∫ τ+

x

0
ψ(v(ξs; x))ds

}
; τ+

x < τ−
0

)
(2.8)

where

ψ(v) := φ(v)

v
= β

(∑∞
k=0 pk(1 − v)k − (1 − v)

)

v
, v ∈ [0, 1].

Consequently, for 0 < y < z < x, by the strong Markov property, we have

v(y; x) = Ey

(
v(ξτ+

z
; x) exp

{
−
∫ τ+

z

0
ψ(v(ξs; x))ds

}
; τ+

z < τ−
0

)
, (2.9)

Proof Assume 0 < y < x . Comparing the first branching time e with τ−
0 , we get

v(y; x) =Py(M
(0,∞) ≥ x, e ≥ τ−

0 ) + Py(M
(0,∞) ≥ x, e < τ−

0 )

=
∫ ∞
0

βe−βsPy

(
τ+
x < τ−

0 , τ+
x ≤ s

)
ds

+
∫ ∞
0

βe−βsEy

((
1 −

∞∑

k=0

pk (1 − v(ξs ; x))k
)
; s < τ−

0 ∧ τ+
x

)
ds

=Ey

(
e−βτ+

x ; τ+
x < τ−

0

)
+
∫ ∞
0

βe−βsEy

((
1 −

∞∑

k=0

pk (1 − v(ξs ; x))k
)
; s < τ−

0 ∧ τ+
x

)
ds.
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By [6, Lemma 4.1], the above equation is equivalent to

v(y; x) + β

∫ ∞

0
Ey
(
v(ξs; x); s < τ−

0 ∧ τ+
x

)
ds

= Py
(
τ+
x < τ−

0

)+ β

∫ ∞

0
Ey

(
1 −

∞∑

k=0

pk
(
1 − v(ξs; x)

)k; s < τ+
x ∧ τ−

0

)
ds,

which is also equivalent to

v(y; x) = Py

(
τ+
x < τ−

0

)
− β

∫ ∞
0

Ey

( ∞∑

k=0

pk (1 − v(ξs ; x))k − (1 − v(ξs ; x)); s < τ+
x ∧ τ−

0

)
ds

= Py

(
τ+
x < τ−

0

)
− Ey

( ∫ τ+
x ∧τ−

0

0
ψ(v(ξs ; x))v(ξs ; x)ds

)
.

Since ψ(v) ≥ 0 for all v ∈ [0, 1], by the Feynman-Kac formula, we have

v(y; x) = Ey

(
exp

{
−
∫ τ+

x ∧τ0

0
ψ(v(ξs; x))ds

}
; τ+

x < τ−
0

)

= Ey

(
exp

{
−
∫ τ+

x

0
ψ(v(ξs; x))ds

}
; τ+

x < τ−
0

)
,

which gives Eq. 2.8. �

For any x > 0 and y ∈ R+, define

K (x)(y) := x
2

α−1 v(xy; x) = x
2

α−1Pxy(M
(0,∞) ≥ x). (2.10)

Then K (x)(0) = 0 and that K (x)(y) = x
2

α−1 when y ≥ 1.

Lemma 2.6 For every x > 0 and 0 < y < z < 1, it holds that

K (x)(y) = Ey

(
exp

{
−
∫ τ

(x2),+
z

0
ψ(x2)(K (x)(ξ (x2)

s

))
ds
}
K (x)(ξ (x2)

τ
(x2),+
z

); τ (x2),+
z < τ

(x2),−
0

)
.

Proof By the definition of τ
(t),+
x in Eq. 2.3,

(
x2τ (x2),+

z ,Py
) d= (

τ+
xz,Pxy

)
. In fact, for any

a > 0,

Py
(
x2τ (x2),+

z > a
) = Py

(
sup

x2w<a
ξ (x2)
w < z

) = Pxy
(
sup
w<a

ξw < zx
) = Pxy

(
τ+
xz > a

)
.

(2.11)
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Therefore, combining Eq. 2.9 and the definition of ξ (t) in Eq. 2.3, we get that

K (x)(y) = x
2

α−1Exy

(
exp

{
−
∫ τ+

xz

0
ψ(v(ξs; x))ds

}
v(ξτ+

xz
; x); τ+

xz < τ−
0

)

= x
2

α−1Ey

(
exp

{
−
∫ x2τ (x2),+

z

0
ψ(v(xξ (x2)

sx−2 ; x))ds
}
v
(
xξ (x2)

τ
(x2),+
z

; x); τ (x2),+
z < τ

(x2),−
0

)

= Ey

(
exp

{
−
∫ τ

(x2),+
z

0
x2ψ(v(xξ (x2)

s ; x))ds
}
K (x)(ξ (x2)

τ
(x2),+
z

); τ (x2),+
z < τ

(x2),−
0

)

= Ey

(
exp

{
−
∫ τ

(x2),+
z

0
ψ(x2)(K (x)(ξ (x2)

s

))
ds
}
K (x)(ξ (x2)

τ
(x2),+
z

); τ (x2),+
z < τ

(x2),−
0

)
,

where in the last equality we used the fact that

x2ψ(vx− 2
α−1 ) = x2

φ(vx− 2
α−1 )

vx− 2
α−1

= x
2α

α−1
φ(vx− 2

α−1 )

v
= ψ(x2)(v) (2.12)

and the definition of ψ(t) in Eq. 2.2. This completes the proof. �

2.2 Some Useful Properties of Lévy Processes

In this subsection, we always assume that the Lévy process fulfills (H2).

Lemma 2.7 If E0
(
((−ξ1) ∨ 0)λ

)
< ∞ for some λ > 2, then

sup
x>0

Ex

( ∣∣∣ξτ−
0

∣∣∣
λ−2 )

< ∞.

If E0
(
(ξ1 ∨ 0)λ

)
< ∞ for some λ > 2, then

sup
x>0

E−x

(
ξλ−2
τ+
0

)
< ∞.

Proof For the first result, see [9, Lemma 2.1]. The second result follows by the first result
with ξ replaced by −ξ . �

Lemma 2.8 (i) For any x > 0, it holds that Ex |ξτ−
0
| < ∞ and

lim
x→∞

R(x)

x
= 1 − lim

x→∞
Ex
(
ξτ−

0

)

x
= 1. (2.13)

Furthermore, R(x) � x + 1.
(ii) R is harmonic with respect to ξt∧τ−

0
, that is,

R(x) = Ex
(
R(ξs); τ−

0 > s
)
, s > 0, x > 0.

Proof (i) The first equality in Eq. 2.13 is an immediate consequence of the definition of
R(x), so we only prove the second equality of Eq. 2.13. We will use the decomposition
introduced in [4, p.208]. Suppose that πξ is the Lévy measure of ξ . If πξ (|x | > 1) = 0, then

E0(|ξ1|3) < ∞, which implies the boundness of Ex

(
|ξτ−

0
|
)
according to Lemma 2.7. Now

assume that πξ (|x | > 1) > 0. Let σn be the n-th time that ξ has a jump of magnitude larger
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than 1, and put σ0 = 0, then {σn − σn−1, n ≥ 1} are iid exponential random variables with
parameter πξ ({|x | > 1}). We can define a random walk Ẑn given in [4, p. 208]:

Ẑn = ξσn , n ≥ 1, and Ẑ0 = ξ0.

Similar to [9, (2.4) and (2.5)], under (H2),E0(Ẑ1) = 0 andE0

(
Ẑ2
1

)
< ∞. For x ≥ 0, define

RZ (x) := x − Ex
(
Ẑ

τ
Z ,−
0

)
,

where τ
Z ,−
0 := inf{n : Ẑn < 0}. It is well-known that, under the assumption (H2),

Ex |Ẑτ
Z ,−
0

| < ∞. Using a martingale argument for the ladder heights process of Ẑ , we

know that (for example, see [10, (3.4) and (3.6)])

lim
x→∞

RZ (x)

x
= 1,

which is equivalent to

lim
x→∞

Ex
(∣∣Ẑ

τ
Z ,−
0

∣∣)

x
= 0. (2.14)

By [4, p.209], for any z > 1 and any x > 0,

Px
(|ξτ−

0
| > z

) ≤ Px
(∣∣Ẑ

τ
Z ,−
0

∣∣ > z
)
. (2.15)

Combining Eqs. 2.14 and 2.15, we conclude that

1

x
Ex
(|ξτ−

0
|) ≤ 1

x
+ 1

x

∫ ∞

1
Px
(|ξτ−

0
| > z

)
dz

≤ 1

x
+ 1

x

∫ ∞

0
Px
(|Ẑ

τ
Z ,−
0

| > z
)
dz =

1 + Ex
(∣∣Ẑ

τ
Z ,−
0

∣∣)

x
x→∞−→ 0.

The last assertion of (i) follows from Eq. 2.13 and the monotonicity of R.
(ii) Note that

x = Ex
(
ξτ−

0 ∧t
) = Ex

(
ξt ; τ−

0 > t
)+ Ex

(
ξτ−

0
; τ−

0 < t
)
.

Letting t → ∞ in the above equation, using the definition of R(x) and the Markov property,
we have

R(x) = lim
t→∞Ex

(
ξt ; τ−

0 > t
) = lim

t→∞Ex
(
ξt+s; τ−

0 > t + s
)

= lim
t→∞Ex

(
Eξs

(
ξt ; τ−

0 > t
) ; τ−

0 > s
) = Ex

(
R(ξs), τ

−
0 > s

)
,

where in the last equality, we used dominated convergence theorem and the fact

|Ex
(
ξt ; τ−

0 > t
) | = |x − Ex (ξτ−

0
; τ−

0 ≤ t)| ≤ x + R(x) � x + 1, x > 0.

The proof is complete. �

Remark 2.9 It follows from Lemma 2.8(i) that, under (H2),Ey(|ξτ−
0
|) � y+1 for any y > 0.

Similarly, replacing ξ by −ξ , we see that

E−y
(
ξτ+

0

)
� y + 1, for all y > 0, and lim

y→∞
E−y

(
ξτ+

0

)

y
= 0.
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Recall the definitions ξ (t), τ (t),+ and τ (t),− in Eq. 2.3.

Lemma 2.10 (i) For any y, s, t > 0,

Py

(
τ

(t),−
0 > s

)
�

√
t y + 1√
st

and P0

(
τ (t),+
y > s

)
�

√
t y + 1√
st

. (2.16)

(ii) For any 0 < y < z and any t > 0,

Py

(
τ

(t),−
0 ≤ τ (t),+

z

)
�

√
t(z − y) + 1√

t z
.

Proof (i) By definition of τ
(t),−
0 , we have

Py
(
τ

(t),−
0 > s

) = Py
(
inf
�≤s

ξ
(t)
� > 0

) = P√
t y

(
inf
�≤st

ξ� > 0
)
.

Now set Sn := ξn for n ∈ N. We use the trivial upper bound 1 in the case st ≤ 1. Now we
assume that st > 1, then

Py
(
τ

(t),−
0 > s

) ≤ P√
t y

(
inf
j≤[st] S j > 0

)
�

√
t y + 1√[st] ≤ 2

√
t y + 1√
st

,

where we used [1, (2.7)] in the second inequality above. For the second inequality in Eq.
2.16, noticing that

P0
(
τ (t),+
y > s

) = P0
(
sup
�≤st

ξ� <
√
t y
) = P√

t y

(
inf
�≤st

(−ξ�) > 0
)
,

an argument similar to that used to prove the first inequality in Eq. 2.16 with ξ replaced by
−ξ leads to the desired assertion.

(ii) By the definitions of τ
(t),−
0 and τ

(t),+
z ,

Py
(
τ

(t),−
0 ≤ τ (t),+

z

) = P√
t y

(
τ−
0 ≤ τ+√

t z

)
.

Since (ξs,P√
t y) is a martingale with mean

√
t y, it holds that

√
t y = E√

t y

(
ξs∧τ−

0 ∧τ+√
t z

) = E√
t y

(
ξs; s < τ−

0 ∧ τ+√
t z

)+ E√
t y

(
ξτ−

0 ∧τ+√
t z
; s ≥ τ−

0 ∧ τ+√
t z

)
.

(2.17)

According to Remark 2.9, we have

E√
t y

(|ξτ−
0 ∧τ+√

t z
|) ≤ E√

t y

(|ξτ−
0
|)+ E√

t y

(
ξτ+√

t z

)

= E√
t y

(|ξτ−
0
|)+ √

t z + E√
t y−√

t z

(
ξτ+

0

)
< ∞.

Noticing that |ξs | ≤ √
t z when s < τ−

0 ∧ τ+√
t z
, taking s → ∞ in Eq. 2.17, we get

√
t y = E√

t y

(
ξτ−

0 ∧τ+√
t z

)
,

which implies

E√
t y

(
ξτ+√

t z

)− √
t y = E√

t y

((
ξτ+√

t z
− ξτ−

0

); τ−
0 ≤ τ+√

t z

)
. (2.18)
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By Remark 2.9, we conclude that

Py
(
τ

(t),−
0 ≤ τ (t),+

z

) = P√
t y

(
τ−
0 ≤ τ+√

t z

) ≤ 1√
t z
E√

t y

((
ξτ+√

t z
− ξτ−

0

); τ−
0 ≤ τ+√

t z

)

=
E√

t y

(
ξτ+√

t z

)− √
t y

√
t z

=
√
t(z − y) + E−(

√
t(z−y))

(
ξτ+

0

)

√
t z

�
√
t(z − y) + 1√

t z
,

which completes the proof of (ii). �

Let Sn be the random walk defined by Sn = ξn , n ∈ N. Sakhanenko [27] proved that (see
also [8, Lemma 3.6]) under the assumption

E0
(|ξ1|2+δ

)
< ∞ for some δ > 0, (2.19)

we can find a Brownian motion Wt with variance σ 2t , starting from the origin, such that for
any γ ∈ (0, δ

2(2+δ)
) and any t > 1, there exists a constant N∗(γ ) > 1 such that

P0

(
sup

0≤s≤1

∣∣S[ts] − Wts
∣∣ >

1

2
t
1
2−γ
)

≤ N∗(γ )

tδ/2−(2+δ)γ
= N∗(γ )

t (
1
2−γ )(δ+2)−1

. (2.20)

By comparing Sn with ξt for t ∈ [n, n + 1], we immediately have the following result.

Lemma 2.11 Assume that the inequality 2.19 holds. Let Ws be the Brownian motion in the
inequality 2.20, then for any γ ∈ (0, δ

2(2+δ)
) and any t > 1,

P0

(
sup

0≤s≤1
|ξts − Wts | > t

1
2−γ
)

� N∗(γ )

t (
1
2−γ )(δ+2)−1

.

Proof By Doob’s inequality,

P0

(
sup

0≤s≤1

∣∣ξts − ξ[ts]
∣∣ >

1

2
t
1
2−γ
)

≤ �t�P0

(
sup

0≤s≤1
|ξs | >

1

2
t
1
2−γ
)

≤ �t� 22+δ

t (
1
2−γ )(2+δ)

E0

(
|ξ1|2+δ

)
� 1

t (
1
2−γ )(2+δ)−1

.

Combining this with Eq. 2.20, we immediately get the desired result. �

Recall that the function R is defined in Eq. 1.15. The following result for Lévy processes
is analogous to the corresponding result for random walks proved in [8, Theorem 2.9]. We
postpone its proof to Section 4.1.

Lemma 2.12 Assume that the inequality 2.19 holds. For any y > 0 and any bounded contin-
uous function f on (0,∞), it holds that

lim
t→∞

√
tEy

(
f
( ξt

σ
√
t

)
1{τ−

0 >t
}
)

= 2R(y)√
2πσ 2

∫ ∞

0
ze− z2

2 f (z)dz.

Consequently, for any r > 0 and any bounded continuous function f on (0,∞),

lim
t→∞

√
tEy/

√
t

(
f
(
ξ (t)
r

)
1{

τ
(t),−
0 >r

}
)

= lim
t→∞

√
tEy

(
f
( ξtr√

t

)
1{τ−

0 >tr
}
)

= 1√
r

2R(y)√
2πσ 2

∫ ∞

0
ze− z2

2 f (zσ
√
r)dz.
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Since ξ2t − σ 2t is a martingale, under the assumption E0(|ξ1|4) < ∞, by the optional
stopping theorem and Lemma 2.7, we have

y2 + σ 2Ey
(
τ−
0 ∧ τ+

x

) = Ey
((

ξτ−
0 ∧τ+

x

)2) ≤ Ey
((

ξτ−
0

)2)+ Ey
((

ξτ+
x

)2)
< ∞. (2.21)

The exit time estimates in the next resultwill be used to proveEqs. 3.26–3.28. The requirement
for the (4+ε)th moment of ξ is to ensure that the (2+ε)th moment of the overshoots ξτ−

0
and

ξτ+
x
are finite, see Eq. 2.26 below. Note that when (H4) holds, the condition of Lemma 2.13 is

fulfilled because that for α ∈ (1, 2], we have r0 > (2α)/(α−1) = 2+2/(α−1) ≥ 2+2 = 4,
which implies that we can take ε0 = r0 − 4 > 0 in the following lemma.

Lemma 2.13 Assume that E0(|ξ1|4+ε0) < ∞ for some ε0 > 0.
(i) For any y, z > 0,

lim
x→∞ xPy

(
τ+
xz < τ−

0

) = lim
x→∞ xPyx−1

(
τ (x2),+
z < τ

(x2),−
0

)
= R(y)

z
. (2.22)

(ii) For any y > 0, there exists C > 0 such that for any z > 0 and any x > max{1, y
z },

xEyx−1

(
τ (x2),+
z ; τ (x2),+

z < τ
(x2),−
0

)
= 1

x
Ey
(
τ+
xz; τ+

xz < τ−
0

) ≤ Cxz2Py
(
τ+
xz < τ−

0

)+ C

x
.

(2.23)

Proof (i) The first equality in Eq. 2.22 follows immediately from the definition of ξ
(x2)
t , so

we only need prove that the first limit in Eq. 2.22 is equal to the right hand side of Eq. 2.22.
According to Eq. 2.18 and the definition of R(y), we have

R(y) = y − Ey
(
ξτ−

0

) = Ey
((

ξτ+
xz

− ξτ−
0

); τ+
xz < τ−

0

)

≥ xzPy
(
τ+
xz < τ−

0

)
. (2.24)

On the other hand, for any δ > 0,

R(y) = Ey
((

ξτ+
xz

− ξτ−
0

); τ+
xz < τ−

0

)
(2.25)

≤ (z + 2δ)xPy
(
τ+
xz < τ−

0 , ξτ−
0

> −δx, ξτ+
xz

< (z + δ)x
)

+ Ey
((

ξτ+
xz

− ξτ−
0

)(
1{ξ

τ
−
0

≤−δx} + 1{ξ
τ
+
xz

≥(z+δ)x}
); τ+

xz < τ−
0

)

≤ (z + 2δ)xPy
(
τ+
xz < τ−

0

)

+ √
2

√
Ey
((

ξτ+
xz

− ξτ−
0

)2)√Py(ξτ−
0

≤ −δx) + Py
(
ξτ+

xz
≥ (z + δ)x

)
.

Note that, by Lemma 2.7, for any fixed y, z > 0,

Ey

((
ξτ+

xz
− ξτ−

0

)2) ≤ 2Ey
(
ξ2
τ+
xz

+ ξ2
τ−
0

) = 2
(
Ey−xz

(
ξτ+

0
+ xz

)2 + Eyξ
2
τ−
0

)
� x2.

By Markov’s inequality, and using Lemma 2.7 again, we have that
√
Ey
((

ξτ+
xz

− ξτ−
0

)2)√Py(ξτ−
0

≤ −δx) + Py
(
ξτ+

xz
≥ (z + δ)x

)

�
√
x2

√
1

(δx)2+ε0
Ey
(|ξτ−

0
|2+ε0

)+ 1

(δx)2+ε0
E−xz+y

(
ξ
2+ε0

τ+
0

)

� x−ε0/2. (2.26)
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Putting Eq. 2.26 into Eq. 2.25 and applying Eq. 2.24, we obtain

R(y)

z + 2δ
≤ lim inf

x→∞ xPy
(
τ+
xz < τ−

0

) ≤ lim sup
x→∞

xPy
(
τ+
xz < τ−

0

) ≤ R(y)

z
.

Since δ is arbitrary, we arrive at the desired result.

(ii) The first equality in Eq. 2.23 follows immediately from the definition of ξ
(x2)
t , so we

only need prove the inequality in Eq. 2.23. According to Eq. 2.21,

Ey
((

ξτ+
xz∧τ−

0

)2) = σ 2Ey
(
τ+
xz; τ+

xz < τ−
0

)+ σ 2Ey
(
τ−
0 ; τ−

0 < τ+
xz

)+ y2

≥ σ 2Ey
(
τ+
xz; τ+

xz < τ−
0

)
. (2.27)

For the left-hand side of Eq. 2.27, by Lemma 2.7,

Ey
((

ξτ+
xz∧τ−

0

)2) = Ey
((

ξτ+
xz

)2; τ+
xz < τ−

0

)+ Ey
((

ξτ−
0

)2; τ−
0 < τ+

xz

)

≤ 2Ey
((

ξτ+
xz

− xz
)2; τ+

xz < τ−
0

)+ 2x2z2Py
(
τ+
xz < τ−

0

)+ Ey
((

ξτ−
0

)2)

� x2z2Py
(
τ+
xz < τ−

0

)+ 1.

Plugging this upper bound back to Eq. 2.27, we conclude that

1

x
Ey
(
τ+
xz; τ+

xz < τ−
0

)
� xz2Py

(
τ+
xz < τ−

0

)+ 1

x
.

This implies the result of the lemma. �

2.3 Preliminary Estimates for the Survival Probability

Recall that ψ(t) is defined in Eq. 2.2.

Lemma 2.14 Assume that (H1) and (H2) hold.
(i) For any t, r , y > 0, it holds that

v(t)∞ (r , y) � 1

r
1

α−1

∧
√
t y + 1

r
1

α−1+ 1
2
√
t
.

(ii) For any r > 0 and y ∈ R+, it holds that

ψ(t)(v(t)∞ (r , y)
)

� 1

r
,

and that for each K > 0, uniformly for v ∈ [0, K ],

lim
t→∞

ψ(t)(v)

vα−1 = C(α),

where C(α) is given in Eq. 1.9.

Proof (i) Recall the definitions of ζ, ζ (0,∞) and v
(t)∞ (r , y) in Eqs. 1.1, 1.6 and 2.5 respectively.

Since ζ (0,∞) ≤ ζ , by Eq. 1.2,

v(t)∞ (r , y) ≤ t
1

α−1P√
t y (ζ > tr) � t

1
α−1

1

(tr)
1

α−1

= 1

r
1

α−1

. (2.28)
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On the other hand, takingw = r
2 in Proposition 2.3, combining Eq. 2.28 and Lemma 2.10(i),

we get

v(t)∞ (r , y) ≤ Ey
(
v(t)∞
(
r/2, ξ (t)

r/2

); τ
(t),−
0 > r/2

)
� 1

r
1

α−1

Py
(
τ

(t),−
0 > r/2

)

� 1

r
1

α−1

√
t y + 1√
r t

=
√
t y + 1

r
1

α−1+ 1
2
√
t
. (2.29)

Now the first result follows easily from Eqs. 2.28 and 2.29.
(ii) For α ∈ (1, 2), by [9, Lemma 3.1], we have

lim
v→0+

φ(v)

vα
= βκ(α)(2 − α)

α − 1
,

which implies
φ(v) � vα, v ∈ [0, 1]. (2.30)

When α = 2, Eq. 2.30 also holds since we have

lim
v→0+

φ(v)

v2
= φ′′(0+) = C(2).

Therefore, by part (i),

ψ(t)(v(t)∞ (r , y)
)

� 1

v
(t)∞ (r , y)

t
α

α−1
(
v
(t)∞ (r , y)t−

1
α−1

)α = (v(t)∞ (r , y)
)α−1 � 1

r
, r > 0, y ∈ R.

Since, for any K > 0, vt−
1

α−1 converges uniformly to 0 for v ∈ [0, K ] as t → ∞, we have,
uniformly for v ∈ [0, K ],

lim
t→∞

ψ(t)(v)

vα−1 = lim
t→∞

φ(vt−
1

α−1 )

(vt−
1

α−1 )α
= βκ(α)(2 − α)

α − 1
= C(α).

Therefore, the assertion of (ii) is valid. �

Lemma 2.15 Assume that (H1) and (H2) hold.
(i) For any fixed r0 > 0, there exists a constant N1(r0) > 0 such that for any t > 0,

∣∣∣v(t)∞ (r , y + w) − v(t)∞ (r , y)
∣∣∣ ≤ N1(r0)

1 + √
tw√

tw
, r > 2r0, y ∈ R+, w ∈ (0, r0) .

(ii) For any fixed r0 > 0, there exists a constant N2(r0) > 0 such that for any t > 0,

∣∣∣v(t)∞ (r , y) − v(t)∞ (r + q, y)
∣∣∣ ≤ N2(r0)

1 + √
tq1/4√

tq1/8
, r > 2r0, y ∈ R+, q ∈ (0, r40

)
.

Proof (i) Since v
(t)∞ (r , 0) = 0, the assertion for y = 0 follows from Lemma 2.14(i). So we

assume y > 0. Note that for 0 < y < z and t > 0,

Py(ζ
(0,∞) > t) = Py

(∃u ∈ N (t) : inf
s≤t

Xu(t) > 0
)

= Pz

(
∃u ∈ N (t) : inf

s≤t
Xu(t) > z − y

)
≤ Pz

(
∃u ∈ N (t) : inf

s≤t
Xu(t) > 0

)
= Pz(ζ

(0,∞) > t),
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which implies that
∣∣∣v(t)∞ (r , y + w) − v(t)∞ (r , y)

∣∣∣ = v(t)∞ (r , y + w) − v(t)∞ (r , y), y, w > 0. (2.31)

Now for y > 0 and w > 0, taking T = τ
(t),+
y+w in Eq. 2.7, we get

v(t)∞ (r , y)

= Ey

(
exp

{
−
∫ w∧τ

(t),+
y+w

0
ψ(t)(v(t)∞ (r − s, ξ (t)

s )
)
ds
}
v(t)∞ (r − w ∧ τ

(t),+
y+w , ξ

(t)

w∧τ
(t),+
y+w

); τ
(t),−
0 > w ∧ τ

(t),+
y+w

)

≥ Ey

(
exp

{
−
∫ w

0
ψ(t)(v(t)∞ (r − s, ξ (t)

s )
)
ds
}
v(t)∞ (r − τ

(t),+
y+w , ξ

(t)

τ
(t),+
y+w

); τ
(t),−
0 > τ

(t),+
y+w , τ

(t),+
y+w ≤ w

)

≥ v(t)∞ (r , y + w)Ey

(
exp

{
−
∫ w

0
ψ(t)(v(t)∞ (r − s, ξ (t)

s )
)
ds
}
; τ

(t),−
0 > τ

(t),+
y+w , τ

(t),+
y+w ≤ w

)
, (2.32)

where in the last inequality we used the facts that Py(ζ
(0,∞) > t) is decreasing in t and

increasing in y, and ξ
(t)

τ
(t),+
y+w

≥ y + w. By Lemma 2.14(ii), there exists a constant  > 0 such

that for any r0 ∈ (0, r/2) and w ∈ (0, r0),
∫ w

0
ψ(t)(v(t)∞ (r − s, ξ (t)

s )
)
ds ≤ 

∫ w

0

1

r − s
ds ≤ w

r − w
≤ 

r0
w. (2.33)

Combining Eqs. 2.31, 2.32 and 2.33, we see that for any t > 0, y > 0, w ∈ (0, r0) and
r > 2r0,

∣∣∣v(t)∞ (r , y + w) − v(t)∞ (r , y)
∣∣∣

≤ v(t)∞ (r , y + w)
(
1 − Ey

(
exp

{
−
∫ w

0
ψ(t)(v(t)∞ (r − s, ξ (t)

s )
)
ds
}
; τ

(t),−
0 > τ

(t),+
y+w , τ

(t),+
y+w ≤ w

))

≤ v(t)∞ (r , y + w)
(
1 − e

− 
r0

wPy
(
τ

(t),−
0 > τ

(t),+
y+w , τ

(t),+
y+w ≤ w

))

≤ v(t)∞ (r , y + w)
(
1 − e

− 
r0

w + Py
(
τ

(t),−
0 ≤ τ

(t),+
y+w

)+ Py
(
τ

(t),+
y+w > w

))
.

Combining Lemma 2.14(i), the inequality 1 − e−x ≤ x for x ≥ 0, and Lemma 2.10, we
conclude from the above inequality that
∣∣∣v(t)∞ (r , y + w) − v(t)∞ (r , y)

∣∣∣

� 1

r
1

α−1

(


r0
w +

√
tw + 1√
t(y + w)

+
√
tw + 1√

wt

)
� 1

r
1

α−1
0

(
w +

√
tw + 1√
t(y + w)

+
√
tw + 1√

wt

)

≤ 1

r
1

α−1
0

( √
tw + 1√
t(y + w)

+ 2

√
tw + 1√

wt

)
,

where in the last inequality, we used w ≤ √
r0

√
w �

√
tw√
wt

<
√
tw+1√
wt

. Therefore, when

y >
√

w, we have

∣∣∣v(t)∞ (r , y + w) − v(t)∞ (r , y)
∣∣∣ �

√
tw + 1√

t(
√

w + w)
+

√
tw + 1√

wt
≤ 2

√
tw + 1√

wt
. (2.34)
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On the other hand, when y ≤ √
w, using the monotonicity of v

(t)∞ (r , y) in y and Lemma
2.14(i),

∣∣∣v(t)∞ (r , y + w) − v(t)∞ (r , y)
∣∣∣ ≤ v(t)∞ (r , y + w) ≤ v(t)∞ (r ,

√
w + w)

�
√
t(

√
w + w) + 1

r
1

α−1+ 1
2
√
t

≤ 2

(2r0)
1

α−1+ 1
2

√
tw + 1√

t
≤ 2

(2r0)
1

α−1+ 1
2

√
tw + 1√
tw

. (2.35)

Together with Eqs. 2.34 and 2.35, we complete the proof of (i).
(ii) Since v

(t)∞ (r , 0) = 0, the assertion for y = 0 is trivial. So we assume y > 0. By the
monotonicity property of v

(t)∞ (r , y) in r ,
∣∣∣v(t)∞ (r , y) − v(t)∞ (r + q, y)

∣∣∣ = v(t)∞ (r , y) − v(t)∞ (r + q, y). (2.36)

Using Proposition 2.3 with r replaced by r +q andw replaced by q , and an argument similar
to that for Eq. 2.33, we have

v(t)∞ (r + q, y) = Ey

(
exp

{
−
∫ q

0
ψ(t)(v(t)∞ (r + q − s, ξ (t)

s )
)
ds
}
v(t)∞ (r , ξ (t)

q ); τ
(t),−
0 > q

)

≥ e−
∫ q
0

1
r+q−s dsEy

(
v(t)∞ (r , ξ (t)

q ); τ
(t),−
0 > q

) ≥ e
− 

2r0
qEy

(
v(t)∞ (r , ξ (t)

q ); τ
(t),−
0 > q

)

≥ e
− 

2r0
qEy

(
v(t)∞ (r , ξ (t)

q ); τ
(t),−
0 > q, |ξ (t)

q − y| < q1/4
)
.

Plugging this into Eq. 2.36, we obtain

∣∣∣v(t)∞ (r , y) − v(t)∞ (r + q, y)
∣∣∣ ≤ v(t)∞ (r , y) − e

− 
2r0

qEy
(
v(t)∞ (r , ξ (t)

q ); τ
(t),−
0 > q, |ξ (t)

q − y| < q1/4
)

≤ v(t)∞ (r , y)
(
1 − e

− 
2r0

qPy
(
τ

(t),−
0 > q, |ξ (t)

q − y| < q1/4
))

+ e
− 

2r0
qEy

(∣∣v(t)∞ (r , y) − v(t)∞ (r , ξ (t)
q )
∣∣; τ

(t),−
0 > q, |ξ (t)

q − y| < q1/4
)
. (2.37)

By part (i), the last term of Eq. 2.37 is bounded above by N1(r0)
1+√

tq1/4√
tq1/8

. Similarly, com-

bining Lemma 2.14(i), Doob’s maximal inequality and Markov’s inequality, we have

v(t)∞ (r , y)
(
1 − e

− 
2r0

qPy
(
τ

(t),−
0 > q, |ξ (t)

q − y| < q1/4
))

� 1

r
1

α−1

(
1 − e

− 
2r0

q + Py
(
τ

(t),−
0 ≤ q

)+ Py
(|ξ (t)

q − y| > q1/4
))

≤ 1

(2r0)
1

α−1

( 

2r0
q + Py

(
inf
s≤q

ξ (t)
s < 0

)+ P0
(|ξ (t)

q | > q1/4
))

� q + P0
(
sup
s≤q

(−ξ (t)
s )+ > y

)+ 1

q1/2
E0
((

ξ (t)
q

)2)

≤ q + 1

y

√
E0
((

ξ
(t)
q
)2)+ E0(ξ

2
1 )q1/2 � q +

√
q

y
. (2.38)

When y > q1/4, by combining q ≤ r
7
2
0 q

1/8 � q1/8 with Eqs. 2.37 and 2.38, we get

∣∣∣v(t)∞ (r , y) − v(t)∞ (r + q, y)
∣∣∣ � q1/8 +

√
q

y
+ 1 + √

tq1/4√
tq1/8

� 1 + √
tq1/4√

tq1/8
. (2.39)
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On the other hand, when y ≤ q1/4, by Lemma 2.14(i) and the monotonicity of V (t)∞ (r , y) in
r ,

∣∣∣v(t)∞ (r , y) − v(t)∞ (r + q, y)
∣∣∣ ≤ v(t)∞ (r , y) �

√
t y + 1

r
1

α−1+ 1
2
√
t

≤
√
tq1/4 + 1

(2r0)
1

α−1+ 1
2
√
t
. (2.40)

Combining Eqs. 2.39 and 2.40, we complete the proof of (ii). �

2.4 Preliminary Estimates for the Tail Probability ofM(0,∞)

Recall that, for x, y > 0, K (x)(y) is defined by Eq. 2.10.

Lemma 2.16 Assume that (H1), (H2) and (H3) hold.
(i) For any x > 0 and y ∈ (0, 1), it holds that

K (x)(y) � 1

(1 − y)
2

α−1

.

(ii) There exists a constant C∗ > 0 such that for any 0 < y < z < 1 and x > 0,

∫ τ
(x2),+
z

0
ψ(x2)(K (x)(ξ (x2)

s )
)
ds ≤ C∗

1

(1 − z)2
τ (x2),+
z , Py-a.s.

Proof (i) Since M (0,∞) ≤ M , by Eq. 1.4, we have

K (x)(y) ≤ x
2

α−1 Pxy(M ≥ x) = x
2

α−1 P(M ≥ x(1 − y)) � x
2

α−1
1

(x(1 − y))
2

α−1

= 1

(1 − y)
2

α−1

.

(ii) Combining Eqs. 2.12, 2.30 and part (i), we get that for any 0 < y < z < 1 and x > 0,

∫ τ
(x2),+
z

0
ψ(x2)(K (x)(ξ (x2)

s )
)
ds �

∫ τ
(x2),+
z

0
x

2α
α−1

1

K (x)(ξ
(x2)
s )

(
K (x)(ξ (x2)

s )x− 2
α−1
)αds

=
∫ τ

(x2),+
z

0

(
K (x)(ξ (x2)

s )
)α−1ds �

∫ τ
(x2),+
z

0

(
1

(1 − ξ
(x2)
s )

2
α−1

)α−1

ds ≤ 1

(1 − z)2
τ (x2),+
z .

�

Lemma 2.17 Assume that (H1), (H2) and (H3) hold. For any r0 ∈ (0, 1/4), there exists a
constant N3(r0) such that for any x > 0, any y ∈ (0, 1 − 2r0) and any w ∈ (0, r20 ), it holds
that
∣∣∣K (x)(y + w) − K (x)(y)

∣∣∣ ≤ N3(r0)

(
1 + xw

(y + w)x
+ 1 − E0

(
exp

{
−N3(r0)τ

(x2),+
w

}))
.

Proof Let r0 ∈ (0, 1/4) and x > 0. For z > y, we have

K (x)(y) = x
2

α−1Pxy
(∃ t > 0, u ∈ N (t) : Xu(t) ≥ x, inf

s≤t
Xu(s) > 0

)

≤ x
2

α−1Pxy
(∃ t > 0, u ∈ N (t) : Xu(t) ≥ x − x(z − y), inf

s≤t
Xu(s) > −x(z − y)

)

= x
2

α−1Pxz
(∃ t > 0, u ∈ N (t) : Xu(t) ≥ x, inf

s≤t
Xu(s) > 0

) = K (x)(z).
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Therefore,
∣∣∣K (x)(y + w) − K (x)(y)

∣∣∣ = K (x)(y + w) − K (x)(y).

Note that for y ∈ (0, 1 − 2r0) and w ∈ (0, r20 ), we have y + w < 1 − 2r0 + r20 < 1 − r0.
Thus, combining Lemma 2.6 and Lemma 2.16 (ii), we obtain that for y ∈ (0, 1 − 2r0) and
w ∈ (0, r20 ),

K (x)(y) ≥ Ey

(
exp

{
− C∗

1

(1 − y − w)2
τ

(x2),+
y+w

}
K (x)(ξ (x2)

τ
(x2),+
y+w

); τ
(x2),+
y+w < τ

(x2),−
0

)

≥ K (x)(y + w)Ey

(
exp

{
− C∗

1

r20
τ

(x2),+
y+w

}
; τ

(x2),+
y+w < τ

(x2),−
0

)
. (2.41)

Together with Lemma 2.16(i) and Eq. 2.41, for all y ∈ (0, 1 − 2r0) and w ∈ (0, r20 ),

K (x)(y + w) − K (x)(y) ≤ K (x)(y + w)
(
1 − Ey

(
exp

{− C∗
1

r20
τ

(x2),+
y+w

}; τ
(x2),+
y+w < τ

(x2),−
0

))

� 1

(1 − y − w)
2

α−1

(
Py
(
τ

(x2),+
y+w ≥ τ

(x2),−
0

)+ 1 − Ey
(
exp

{− C∗
r20

τ
(x2),+
w+y

}))

� 1

r
2

α−1
0

( xw + 1

x(y + w)
+ 1 − Ey

(
exp

{− C∗
r20

τ
(x2),+
w+y

}))
,

where in the last inequality we used Lemma 2.10(ii). Therefore, there exists N depending on
r0 such that

K (x)(y + w) − K (x)(y) ≤ N

(
xw + 1

x(y + w)
+ 1 − Ey

(
exp

{
−C∗

r20
τ

(x2),+
w+y

}))
,

this completes the proof of the lemma with N3(r0) = max{N , C∗
r20

}. �

3 Proofs of theMain Results

Throughout this section we assume (H1), (H2) and (H4) hold.

3.1 Proof of Theorem 1.1

By Lemma 2.14(i), for any r , y > 0, we have

sup
t>0

v(t)∞ (r , y) < ∞.

By a standard diagonalization argument, for any sequence of positive reals increasing to ∞,
we can find a subsequence {tk : k ∈ N} such that limk→+∞ tk = ∞ and that the following
limit exists

lim
k→∞ v(tk )∞ (r , y) =: vX∞(r , y), for all r , y ∈ (0,∞) ∩ Q. (3.1)
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Since v
(t)∞ (r , y) is decreasing in r and increasing in y, so is the limit vX∞(r , y) for rational

number r and y. Therefore, for any r , y > 0, we can define

vX∞(r , y) := lim
(0,∞)∩Q�(rk ,yk )→(r ,y)

vX∞(rk, yk) = sup
w∈[r ,∞)∩Q,z∈(0,y]∩Q

vX∞(w, z). (3.2)

We define vX∞(r , 0) = 0 for all r > 0.

Lemma 3.1 The relation Eq. 3.1 holds for all r , y > 0.

Proof For any r , y > 0, let {(rm, ym) : m ∈ N} be a sequence in ((0,∞)∩Q)×((0,∞)∩Q)

with (rm, ym) → (r , y). Note that
∣∣∣vX∞(r , y) − v(tk )∞ (r , y)

∣∣∣ ≤
∣∣∣vX∞(r , y) − vX∞(rm, ym)

∣∣∣

+
∣∣∣vX∞(rm, ym) − v(tk )∞ (rm, ym)

∣∣∣+
∣∣∣v(tk )∞ (rm, ym) − v(tk )∞ (r , y)

∣∣∣ . (3.3)

Fix r0 ∈ (0, ( 12 infm rm
) ∧ 1

)
, then there exists A > 0 such that |ym − y| < r0 and |rm −r | <

r40 for all m > A. By Lemma 2.15, we have that
∣∣∣v(tk )∞ (rm, ym) − v(tk )∞ (r , y)

∣∣∣ ≤
∣∣∣v(tk )∞ (rm, ym) − v(tk )∞ (rm, y)

∣∣∣+
∣∣∣v(tk )∞ (rm, y) − v(tk )∞ (r , y)

∣∣∣

≤ N1(r0)
1 + √

tk |ym − y|√
tk |ym − y| 1{ym �=y} + N2(r0)

1 + √
tk |rm − r |1/4√

tk |rm − r |1/8 1{rm �=r}. (3.4)

Combining Eqs. 3.1, 3.3 and 3.4,

lim sup
k→∞

∣∣∣vX∞(r , y) − v(tk )∞ (r , y)
∣∣∣ �

∣∣∣vX∞(r , y) − vX∞(rm, ym)

∣∣∣+
√|ym − y| + |rm − r |1/8 .

(3.5)

By Eq. 3.2, letting m → ∞ in Eq. 3.5, we complete the proof of lemma. �

Combining Lemma 2.14(i) and the definition of vX∞ above, we can easily see that for
r0 > 0,

sup
r≥r0,y>0

vX∞(r , y) < ∞. (3.6)

To prove Theorem 1.1, we need some results on the uniform convergence of v
(t)∞ (s, y) to

vX∞(s, y) as t → ∞. For each 0 < w < r , taking t = tk in Lemma 2.15 and letting k → ∞,
we see that for any fixed r0 ∈ (0, (r − w)/2), s ∈ [r − w, r ], y ∈ R+, δ ∈ (0, r0) and
q ∈ (0, r40 ),

|vX∞(s, y + δ) − vX∞(s, y)| ≤ N1 (r0)
√

δ, |vX∞(s, y) − vX∞(s + q, y)| ≤ N2 (r0) q
1/8,

(3.7)

which implies that vX∞(s, y) is jointly continuous for all s ∈ [r − w, r ] and y > 0. Since

v
(t)∞ (s, y) is increasing in y and supt>1,y∈R+ v

(t)∞ (s, y) < ∞, we see that vX∞(s, y) is also

increasing in y and that supy∈R+ vX∞(s, y) < ∞, which implies the existence of vX∞(s,∞) :=
limy→∞ vX∞(s, y). Letting t → ∞ first and then y → ∞ in Lemma 2.15 (ii), we see that
vX∞(s,∞) is continuous in s ∈ [r − w, r ]. Therefore, for any ε > 0, there exist J , L ∈ N

and s0 = r − w < s1 < ... < sJ = r , y0 = 0 < y1 < ... < yL < yL+1 = ∞ such that

max
j∈[1,J ],�∈[0,L+1]

(∣∣∣vX∞(s j , y�) − vX∞(s j−1, y�)
∣∣∣ ∨
∣∣∣vX∞(s j , y�) − vX∞(s j , y�−1)

∣∣∣
)

< ε (3.8)
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and that there exists T2 > 0 such that for any t > T2,

max
j∈[0,J ],�∈[0,L]

∣∣∣v(t)∞ (s j , y�) − vX∞(s j , y�)
∣∣∣ < ε.

Therefore, for all s ∈ [s j−1, s j ] and y ∈ [y�−1, y�) with j ∈ [1, J ], � ∈ [1, L + 1], by the

monotonicity of v
(t)∞ , we get

v(t)∞ (s, y)≥v(t)∞ (s j , y�−1)≥−ε + vX∞(s j , y�−1)≥−3ε + vX∞(s j−1, y�) ≥ −3ε + vX∞(s, y).
(3.9)

Similarly, we also have

v(t)∞ (s, y) ≤ 3ε + vX∞(s, y). (3.10)

The next lemma shows that any subsequential limit vX∞(r , y) is a solution to some initial-
boundary problem. We postpone its proof to Section 4.2.

Lemma 3.2 The limit vX∞(r , y) solves the following initial-boundary value problem
⎧
⎪⎨

⎪⎩

∂
∂r v

X∞(r , y) = σ 2

2
∂2

∂ y2
vX∞(r , y) − ϕ

(
vX∞(r , y)

)
, in (0,∞) × (0,∞),

limr→0+ vX∞(r , y) = ∞, y ∈ (0,∞),

limy→0+ vX∞(r , y) = 0, r ∈ (0,∞),

(3.11)

and for each r ∈ (0,∞), supy>0 vX∞(r , y) < ∞.

The next proposition is on the uniqueness of the solution to the problem Eq. 3.11.

Proposition 3.3 The solution to the problem 3.11 is unique and can be written as

vX∞(r , y) = − logPδy (X
(0,∞)
r = 0),

where X (0,∞)
r is the process defined in Eq. 1.13.

Proof Suppose that u solves problem 3.11. For any δ > 0, v(r , y) := u(δ + r , y) solves the
following problem:

⎧
⎪⎨

⎪⎩

∂
∂r v(r , y) = σ 2

2
∂2

∂ y2
v(r , y) − ϕ (v(r , y)) , in (0,∞) × (0,∞),

limr→0+ v(r , y) = u(δ, y), y ∈ (0,∞),

limy→0+ v(r , y) = 0, r ∈ (0,∞),

which is equivalent to the integral equation Eq. 1.10 with f = u(δ, ·). By the uniqueness of
the solution to Eq. 1.10, we get

u(r + δ, y) = vX
u(δ,·)(r , y) = − logEδy

(
exp

{− 〈u(δ, ·), X (0,∞)
t 〉}), r > 0, y > 0.

Now letting δ → 0+ in the above equation, by Lemma 3.2 and the continuity of vX∞(r , y) in
r ,

u(r , y) = lim
δ→0+ u(r + δ, y) = lim

δ→0+ − logEδy

(
exp

{− 〈u(δ, ·), X (0,∞)
t 〉})

= − logPδy (X
(0,∞)
r = 0).

�

Now we are ready to prove Theorem 1.1.
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Proof of Theorem 1.1 (i) Combining Lemmas 3.1, 3.2 and Proposition 3.3, we get that, for
any y > 0,

lim
t→+∞ v(t)∞ (1, y) = lim

t→∞ t
1

α−1P√
t y

(
ζ (0,∞) > t

)
= − logPδy (X

(0,∞)
1 = 0). (3.12)

Taking f = θ1(0,∞) in Eq. 1.12 and letting θ → +∞, we have that

− logPδy (X
(0,∞)
1 = 0) = lim

θ→+∞Ny
(
1 − exp

{−〈θ1(0,∞)(·), w1〉
}) = Ny (w1((0,∞)) �= 0) .

(3.13)

Combining Eqs. 3.12 and 3.13, we arrive at assertion (i).
(ii) By Eq. 2.5, we have

v(t)∞
(
1,

y√
t

)
= t

1
α−1Py

(
ζ (0,∞) > t

)
, y > 0.

It suffices to show that there exists C (0,∞)(α) ∈ (0,∞) such that

lim
t→∞

√
tv(t)∞

(
1,

y√
t

)
= R(y)C (0,∞)(α). (3.14)

By Proposition 2.3 and Eq. 2.33, there exists  > 0 such that for any r0 ∈ (0, 1/2) and
w ∈ (0, r0),

√
tEy/

√
t

(
v(t)∞ (1 − w, ξ(t)

w ); τ
(t),−
0 > w

)

≥ √
tv(t)∞

(
1,

y√
t

)
≥ e

− 
r0

w√
tEy/

√
t

(
v(t)∞ (1 − w, ξ(t)

w ); τ
(t),−
0 > w

)
. (3.15)

By Eq. 3.10, for any ε > 0, when t is large enough,

√
tEy/

√
t

(
v(t)∞ (1 − w, ξ(t)

w ); τ
(t),−
0 > w

) ≤ √
tEy/

√
t

(
(vX∞(1 − w, ξ(t)

w ) + 3ε); τ
(t),−
0 > w

)
,

which, by Lemma 2.12, tends to

1√
w

2R(y)√
2πσ 2

∫ ∞

0
ze− z2

2 (vX∞(1 − w, zσ
√

w) + 3ε)dz

as t → ∞. Similarly, using Eq. 3.9, we have

√
tEy/

√
t

(
v(t)∞ (1 − w, ξ(t)

w ); τ
(t),−
0 > w

) ≥ √
tEy/

√
t

(
(vX∞(1 − w, ξ(t)

w ) − 3ε); τ
(t),−
0 > w

)

t→∞−→ 1√
w

2R(y)√
2πσ 2

∫ ∞

0
ze− z2

2 (vX∞(1 − w, zσ
√

w) − 3ε)dz.

Therefore, letting ε → 0, we conclude that

lim
t→∞

√
tEy/

√
t

(
v(t)∞ (1 − w, ξ(t)

w ); τ
(t),−
0 > w

)

= 1√
w

2R(y)√
2πσ 2

∫ ∞

0
ze− z2

2 vX∞(1 − w, zσ
√

w)dz =: R(y)G(1 − w,w). (3.16)
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Plugging this limit into Eq. 3.15, we get that

R(y)G(1 − w,w) ≥ lim sup
t→∞

√
tv(t)∞

(
1,

y√
t

)

≥ lim inf
t→∞

√
tv(t)∞

(
1,

y√
t

)
≥ e

− 
r0

w
R(y)G(1 − w,w). (3.17)

Using Eq. 3.17, for any w ∈ (0, 1), we easily see that G(1− w,w) ∈ (0,∞), which implies
that

∞ > lim sup
t→∞

√
tv(t)∞

(
1,

y√
t

)
≥ lim inf

t→∞
√
tv(t)∞

(
1,

y√
t

)
> 0.

Therefore, letting w → 0+ in Eq. 3.17, we finally conclude that

lim
t→∞

√
tv(t)∞

(
1,

y√
t

)
= R(y) lim

w→0+G(1 − w,w) =: R(y)C (0,∞)(α),

which is Eq. 3.14. The proof is complete. �

3.2 Proof of Theorem 1.3

To prove Theorem 1.3, we need to show the convergence of v
(t)
f (r , y) for every continuous

function f ∈ B+
b ((0,∞)). The next lemma shows that we can assume additionally that f is

Lipschitz.

Lemma 3.4 Let μn and μ be non-negative finite random measures on R, then the following
conditions are equivalent:

(i) For any continuous f ∈ B+
b (R),

∫
f (x)μn(dx)

d�⇒ ∫
f (x)μ(dx);

(ii) For any Lipschitz continuous f ∈ B+
b (R),

∫
f (x)μn(dx)

d�⇒ ∫
f (x)μ(dx);

Proof We only need to prove (ii) ⇒ (i). First note that (ii) implies that (μn)n≥1 is relatively
compact in distribution. In fact, by [12, Lemma 16.15], (μn)n≥1 is tight if and only if any
relatively compact Borel set B, μn(B) is tight. Taking f ≡ 1 in (ii), we see that μn(R)

is tight. For any relatively compact Borel set B, using the fact that μn(B) ≤ μn(R), we
get μn(B) is tight. Now it remains to show that the distribution of a random measure μ is
determined by

∫
f (x)μ(dx) for all Lipschitz continuous f ∈ B+

b (R), which can be shown
via a routine argument. We omit the details. �

The next two results will be needed in the proof of Theorem 1.3. We postpone their proofs
to Section 4.3.

Proposition 3.5 Suppose that f is a bounded Lipschitz function on R+ with f (0) = 0 and
that T > 0.

(i) For any r ∈ [0, T ] and any w > 0, it holds that

sup
y>0

∣∣v(t)
f (r , y) − v

(t)
f (r , y + w)

∣∣ �
(

1

log t
+ w

)
(1 + r−1/2).

(ii) For any r , q ≥ 0 with r + q ≤ T , it holds that

sup
y>0

∣∣v(t)
f (r , y) − v

(t)
f (r + q, y)

∣∣ �
(

1

log t
+ q1/4

) (
1 + r−1/2) .
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Proposition 3.6 For any continuous function f ∈ B+
b ((0,∞)) and any r , y > 0, it holds

that
lim
t→∞ v

(t)
f (r , y) = vX

f (r , y),

where vX
f (r , y) is the solution of Eq. 1.10.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3 (i) By the definition of Z (0,∞),t
1 in Eq. 1.16, for any continuous function

f ∈ B+
b ((0,∞)),

E√
t y

(
exp

{
−
∫

(0,∞)

f (y) Z (0,∞),t
1 (dy)

}∣∣ζ (0,∞) > t
)

=E√
t y

(
exp

{
− 1

t
1

α−1

∫

(0,∞)

f

(
x√
t

)
Z (0,∞)
t (dx)

}∣∣ζ (0,∞) > t
)
.

Note that

E√
t y

(
exp

{
− 1

t
1

α−1

∫

(0,∞)

f

(
x√
t

)
Z (0,∞)
t (dx)

}∣∣ζ (0,∞) > t
)

= 1 − 1

P√
t y(ζ

(0,∞) > t)
E√

t y

(
1 − exp

{
− 1

t
1

α−1

∫

(0,∞)

f

(
x√
t

)
Z (0,∞)
t (dx)

})
, (3.18)

where in the equality we used the fact that Z (0,∞)
t ((0,∞)) = 0 on the set {ζ (0,∞) ≤ t}.

Recall the definitions of v
(t)
f and v

(t)∞ in Eqs. 2.2 and 2.5, Eq. 3.18 is equivalent to

E√
t y

(
exp

{
− 1

t
1

α−1

∫

(0,∞)

f

(
x√
t

)
Z (0,∞)
t (dx)

}∣∣ζ (0,∞) > t
)

= 1 − v
(t)
f (1, y)

v
(t)∞ (1, y)

. (3.19)

Combining Proposition 3.6 and Eq. 1.12, we get

lim
t→∞ v

(t)
f (1, y) = vX

f (1, y) = − logPδy (−〈 f , X1〉) = Ny (1 − exp {−〈 f , w1〉}) . (3.20)

Plugging Eqs. 3.12, 3.13 and 3.20 into Eq. 3.19, we conclude that

lim
t→∞E√

t y

(
exp

{
− 1

t
1

α−1

∫

(0,∞)

f

(
x√
t

)
Z (0,∞)
t (dx)

}∣∣ζ (0,∞) > t
)

= 1 − Ny (1 − exp {−〈 f , w1〉})
Ny (w1((0,∞)) �= 0)

= 1 − Ny
(
1 − exp

{−〈 f , w1|(0,∞)〉
})

Ny (w1((0,∞)) �= 0)

= 1 − Ny
(
1 − exp

{−〈 f , w1|(0,∞)〉
} ∣∣w1((0,∞)) �= 0

)

= Ny
(
exp

{−〈 f , w1|(0,∞)〉
} ∣∣w1((0,∞)) �= 0

)
.

This completes the proof of (i).
(ii) Let f be an arbitrary non-negative bounded Lipschitiz function on (0,∞). By Eq.

3.19, we see that

Ey

(
exp

{
− 1

t
1

α−1

∫

(0,∞)

f
( x√

t

)
Z (0,∞)
t (dx)

}∣∣ζ (0,∞) > t
)

= 1 − v
(t)
f

(
1, yt− 1

2
)

v
(t)∞
(
1, yt− 1

2
) .
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By using an argument similar to that leading to Eq. 3.15, we get that exists  > 0 such that
for any r0 ∈ (0, 1/2) and w ∈ (0, r0),

√
tEy/

√
t

(
v

(t)
f (1 − w, ξ(t)

w ); τ
(t),−
0 > w

)

≥ √
tv(t)

f

(
1,

y√
t

) ≥ e
− 

r0
w√

tEy/
√
t

(
v

(t)
f (1 − w, ξ(t)

w ); τ
(t),−
0 > w

)
.

Proposition 3.5 implies that, for any T > r0,

∣∣v(t)
f (r , y) − v

(t)
f (s, z)

∣∣ � 1

log t
+ |y − z| + |r − s|1/4 , for all r , s∈(r0, T ) and y, z>0.

Therefore, for any large N > 0 and any ε > 0, we can find s0 = r0 < .. < sJ = T and
y0 = 0 < ... < yL+1 = N such that Eq. 3.8 holds, which in turn implies that Eqs. 3.9 and
3.10 hold for all s ∈ (r0, T ) and y ∈ (0, N ) when t is large enough. Therefore, using an
argument similar to that leading to Eq. 3.16 and the following consequence of Lemma 4.1

lim
N→∞ lim sup

t→∞
√
tEy/

√
t

(
v(t)∞ (1 − w, ξ(t)

w ); τ
(t),−
0 > w, ξ(t)

w > N
)

� lim
N→∞ lim sup

t→∞
√
tPy/

√
t

(
τ

(t),−
0 > w, ξ(t)

w >N
) = lim

N→∞
2√
2πσ 2

R(y)
∫ ∞

N/σ

ze− z2
2 dz = 0,

we get the following result analogous to Eq. 3.16:

lim
t→∞

√
tEy/

√
t

(
v

(t)
f (1 − w, ξ(t)

w ); τ
(t),−
0 > w

)

= 1√
w

2R(y)√
2πσ 2

∫ ∞

0
ze− z2

2 vX
f (1 − w, zσ

√
w)dz.

Therefore,

lim
t→∞

√
tv(t)

f

(
1,

y√
t

) = lim
w→0

1√
w

2R(y)√
2πσ 2

∫ ∞

0
ze− z2

2 vX
f (1 − w, zσ

√
w)dz,

Together with Eq. 3.14, we conclude that

lim
t→∞Ey

(
exp

{
− 1

t
1

α−1

∫

(0,∞)

f

(
x√
t

)
Z (0,∞)
t (dx)

}∣∣ζ (0,∞) > t
)

= 1 − 1

C (0,∞)(α)

2√
2πσ 2

lim
w→0

1√
w

∫ ∞

0
ze− z2

2 vX
f (1 − w, zσ

√
w)dz. (3.21)

If we could show that

lim
t→∞Ey

(
exp

{
− 1

t
1

α−1

∫

(0,∞)

ε f

(
y√
t

)
Z (0,∞)
t (dy)

}∣∣ζ (0,∞) > t
)

ε→0+−→ 1, (3.22)

we would get that there exists a random measure η1 such that the right -hand side of Eq. 3.21
is equal to E

(
exp

{− 〈 f , η1〉
})
. Combining this with Lemma 3.4, we arrive at the assertion

(ii). Now we prove Eq. 3.22. By Eq. 1.10,

vX
ε f (1, y) ≤ εEy

(
f (W 0

1 )
) ≤ ε sup

x>0
| f (x)|Py

(
τ
W ,−
0 > 1

)
� εy,

which implies that

lim
w→0

1√
w

∫ ∞

0
ze− z2

2 vX
ε f (1 − w, zσ

√
w)dz � ε

∫ ∞

0
z2e− z2

2 dz
ε→0+−→ 0.

Thus Eq. 3.22 is valid. �
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3.3 Proof of Theorem 1.5

By Lemma 2.16, for any y ∈ (0, 1),

sup
x>0

K (x)(y) < ∞.

Therefore, using a diagonalization argument, we can find, for any sequence of positive reals
increasing to ∞, a subsubsequence {xk : k ∈ N} such that the following limit exists

lim
k→∞ K (xk )(y) =: K X (y), for all y ∈ (0, 1) ∩ Q. (3.23)

Since K (x)(y) is monotone in y ∈ (0, 1), we can define

K X (y) := lim
(0,1)∩Q�ym→y

K X (ym) = inf
z∈[y,1)∩Q K X (z), y ∈ (0, 1).

Using an argument similar to that used in the proof of Lemma 3.1, with Lemma 2.15 replaced

by Lemma 2.17 and the fact that τ (x2),+
w converges in distribution to the first exit time τW ,+

w

of W from (−∞, w), we can easily get the following lemma, whose proof is omitted:

Lemma 3.7 The relation Eq. 3.23 holds for all y ∈ (0, 1).

The following Lemma 3.8 says that the limit K X (y) solves the boundary value problem
3.24 below. Proposition 3.9 is about the uniqueness and probabilistic representation to prob-
lem Eq. 3.24. Since the main idea of the proof of Lemma 3.8 is similar to that of Lemma 3.2,
and since we need to introduce exit measures of superprocesses in the proof of Proposition
3.9, we postpone the proofs to Section 4.4.

Lemma 3.8 The limit K X (y) solves the following problem
{

σ 2

2 (K X )′′(y) = ϕ(K X (y)), y ∈ (0, 1),
limy→0+ K X (y) = 0, limy→1− K X (y) = ∞.

(3.24)

Proposition 3.9 The problem in 3.24 has a unique solution and the unique solution admits
the representation K X (y) = − logPδy

(
M (0,∞),X < 1

)
.

Now we are ready to prove Theorem 1.5.

Proof of Theorem 1.5: Combining Lemma 3.7 and Proposition 3.9, we get that

lim
x→∞ K (x)(y) = lim

x→∞ x
2

α−1Pxy(M
(0,∞) ≥ x) = − logPδy

(
M (0,∞),X < 1

)
,

which proves (i). For (ii), by the definition of K (x)(y) given in Eq. 2.10 and Lemma 2.6, for
any fixed small z < 1

2 , when y < xz, we have

x
2

α−1+1
Py(M

(0,∞) ≥ x) = xK (x)(yx−1)

= xEyx−1

(
exp

{
−
∫ τ

(x2),+
z

0
ψ(x2)(K (x)(ξ (x2)

s

))
ds
}
K (x)(ξ (x2)

τ
(x2),+
z

); τ (x2),+
z < τ

(x2),−
0

)
.
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Therefore, by Lemma 2.16(ii) and the fact that ξ (x2)

τ
(x2),+
z

≥ z, we have

xK (x)(z)Eyx−1
(
exp

{− C∗
1

(1 − z)2
τ (x2),+
z

}; τ (x2),+
z < τ

(x2),−
0

) ≤ xK (x)(yx−1)

≤ xEyx−1
(
K (x)(ξ (x2)

τ
(x2),+
z

); τ (x2),+
z < τ

(x2),−
0

)
. (3.25)

It follows from Lemma 2.7 that, for any δ > 0,

xEyx−1
(
K (x)(ξ (x2)

τ
(x2),+
z

); τ (x2),+
z < τ

(x2),−
0

)

≤ K (x)(z + δ)xPyx−1
(
τ (x2),+
z < τ

(x2),−
0

)+ x1+
2

α−1Pyx−1
(
ξ

(x2)

τ
(x2),+
z

> z + δ
)

= K (x)(z + δ)xPyx−1
(
τ (x2),+
z < τ

(x2),−
0

)+ x1+
2

α−1P−xz+y
(
ξτ+

0
> xδ

)

≤ K (x)(z + δ)xPyx−1
(
τ (x2),+
z < τ

(x2),−
0

)+ 1

δr0−2

1

xr0−1− 2α
α−1

sup
y>0

E−y(|ξτ+
0
|r0−2), (3.26)

where in the last equality we used the fact that Pyx−1
(
ξ

(x2)

τ
(x2),+
z

> z+δ
) = Py

(
ξτ+

xz
> xz+xδ

)
,

which holds by Eq. 2.11. Therefore, combining Eqs. 3.25, 3.26 and Lemma 2.13(i), letting
x → ∞ first and then δ → 0, we get that

lim sup
x→∞

xK (x)(yx−1) ≤ R(y)
K X (z)

z
. (3.27)

On the other hand, by Lemma 2.13 (ii), there exists a constant C such that

C∗xEyx−1
(
τ (x2),+
z ; τ (x2),+

z < τ
(x2),−
0

) ≤ Cxz2Py
(
τ+
xz < τ−

0

)+ C

x
.

Thus, by Eq. 3.25, using the inequality e−x ≥ 1 − x and Lemma 2.13 (i), we have

lim inf
x→∞ xK (x)(yx−1) ≥ K X (z) lim inf

x→∞ xEyx−1

((
1 − C∗

1

(1 − z)2
τ (x2),+
z

)
; τ (x2),+

z < τ
(x2),−
0

)

≥ K X (z)
(
1 − Cz2

(1 − z)2

)
lim
x→∞ xPyx−1

(
τ (x2),+
z < τ

(x2),−
0

)

= R(y)
K X (z)

z

(
1 − Cz2

(1 − z)2

)
. (3.28)

Letting z → 0, we conclude from Eqs. 3.27 and 3.28 that limz→0+ K X (z)
z exists. Define

θ(0,∞)(α) := lim
z→0+

K X (z)

z
.

Then we have

lim
x→∞ xK (x)(yx−1) = θ(0,∞)(α)R(y). (3.29)

Choose z0 ∈ (0, 1) such that Cz20/(1 − z0)2 < 1. Then taking z = z0 in Eqs. 3.27 and 3.28,
we get

0 <
K X (z0)

z0

(
1 − Cz20

(1 − z0)2

)
≤ θ(0,∞)(α) ≤ K X (z0)

z0
< ∞,
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which implies that θ(0,∞)(α) ∈ (0, 1). We complete the proof of the theorem. �

3.4 Proof of Theorem 1.7

For t, r , z > 0, define Q(t)
z (r , y) := t

1
α−1P√

t y

(
M (0,∞)

tr >
√
t z
)
.

Lemma 3.10 Let z > 0 and ε ∈ (0, (z/2) ∧ 1). There exists a constant L = L(ε) > 0 such
that for any δ > 0, there exists T = T (z, ε, δ) such that when t > T ,

Q(t)
z (δ, z − 2ε) ≤ L(ε)δ.

Proof Note that for t, r , y, z > 0,

P√
t y

(
M (0,∞)

tr >
√
t z
) = lim

θ→+∞

(
1 − E√

t y

(
exp

{− θ Z (0,∞)
tr

(
(
√
t z,∞)

) }))
.

Taking f = θ1(z,∞) in Proposition 2.3 first and then letting θ → +∞, we see that for any

w ∈ (0, r ], Q(t)
z (r , y) solves the equation

Q(t)
z (r , y) = Ey

(
exp

{
−
∫ w

0
ψ(t)(Q(t)

z (r − s, ξ (t)
s )
)
ds
}
Q(t)

z (r − w, ξ(t)
w ); τ

(t),−
0 > w

)
.

Taking r = δ, y = z − 2ε and using the argument leading to Eq. 2.7 with T = τ
(t),+
z−ε , we get

Q(t)
z (δ, z − 2ε) ≤ Ez−2ε

(
Q(t)

z (δ − δ ∧ τ
(t),+
z−ε , ξ

(t)

δ∧τ
(t),+
z−ε

)
)

= Ez−2ε
(
Q(t)

z

(
δ − τ

(t),+
z−ε , ξ

(t)

τ
(t),+
z−ε

); δ > τ
(t),+
z−ε

)
, (3.30)

where in the equality we used the fact that Q(t)
z (0, y) = 0. Using M (0,∞)

tr ≤ M , we see that
for any 0 < y < z and r > 0,

Q(t)
z (r , y) ≤ t

1
α−1P√

t y

(
M >

√
t z
) = t

1
α−1P0

(
M >

√
t(z − y)

)
� 1

(z − y)
2

α−1

,

where in the last inequality we used Eq. 1.4. Combining the inequality above with the mono-
tonicity of Q(t)

z (r , y) in y, we get that

Ez−2ε
(
Q(t)

z

(
δ − τ

(t),+
z−ε , ξ

(t)

τ
(t),+
z−ε

); δ > τ
(t),+
z−ε

)

= Ez−2ε
(
Q(t)

z

(
δ − τ

(t),+
z−ε , ξ

(t)

τ
(t),+
z−ε

); ξ
(t)

τ
(t),+
z−ε

> z − 2−1ε, δ > τ
(t),+
z−ε

)

+ Ez−2ε
(
Q(t)

z

(
δ − τ

(t),+
z−ε , ξ

(t)

τ
(t),+
z−ε

); ξ
(t)

τ
(t),+
z−ε

≤ z − 2−1ε, δ > τ
(t),+
z−ε

)

≤ t
1

α−1Pz−2ε
(
ξ

(t)

τ
(t),+
z−ε

> z − 2−1ε
)+ Ez−2ε

(
Q(t)

z

(
δ − τ

(t),+
z−ε , z − 2−1ε

); δ > τ
(t),+
z−ε

)

� t
1

α−1Pz−2ε
(
ξ

(t)

τ
(t),+
z−ε

> z − 2−1ε
)+ 1

ε
2

α−1

Pz−2ε
(
δ > τ

(t),+
z−ε

)
. (3.31)

Since (r0 − 2)/2 > 1/(α − 1), by Markov’s inequality and Lemma 2.7, we have

t
1

α−1Pz−2ε

(
ξ

(t)

τ
(t),+
z−ε

> z − 2−1ε
)

= t
1

α−1P−√
tε

(
ξτ+

0
>

ε
√
t

2

)

≤ t
1

α−1

(
2

ε
√
t

)r0−2

E−√
tε

(
ξ
r0−2
τ+
0

)
� 1

log t

1

εr0−2 , (3.32)
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where in the last inequality we used the fact that t
r0−2
2 − 1

α−1 � log t (since r0 > 2α
α−1 ). By

Doob’s inequality,

Pz−2ε
(
δ > τ

(t),+
z−ε

) = P0
(
sup
s≤δ

ξ (t)
s ≥ ε

) ≤ E0
(|ξ (t)

δ |2)
ε2

� δ

ε2
. (3.33)

Plugging Eqs. 3.32 and 3.33 into Eq. 3.31, we see that for t > e1/δ , we have

Ez−2ε

(
Q(t)

z

(
δ − τ

(t),+
z−ε , ξ

(t)

τ
(t),+
z−ε

)
; δ > τ

(t),+
z−ε

)
� δ

εr0−2 + δ

ε
2α

α−1

� δ

εr0
. (3.34)

Combining Eqs. 3.30 and 3.34, we get the assertion of the lemma. �

Proof of Theorem 1.7 It suffices to study the limits of the conditional probabilities of the
{M (0,∞)

t >
√
t z} for z > 0.

(i) We first prove the lower bound. For any fixed z > 0, define g1(x) := min{1, (x − z)+}.
Then combining Theorem 1.3(i) and the fact that for any θ > 0,

1{y≤√
t z} ≤ exp

{
− θ

t
1

α−1

g1

(
y√
t

)}
, ∀y ∈ R,

we conclude that for any θ > 0,

lim inf
t→∞ P√

t y

(
M (0,∞)

t >
√
t z
∣∣ζ (0,∞) > t

)

= lim inf
t→∞

(
1 − P√

t y

(
M (0,∞)

t ≤ √
t z
∣∣ζ (0,∞) > t

))

≥ lim
t→∞E√

t y

(
1 − exp

{
− θ

t
1

α−1

∫

(0,∞)

g1
( a√

t

)
Z (0,∞)
t (da)

}∣∣ζ (0,∞) > t
)

= Ny

(
1 − exp

{
− θ

∫

(0,∞)

g1(a)w1(da)
}∣∣w1((0,∞)) �= 0

)
.

Letting θ → +∞, we conclude that

lim inf
t→∞ P√

t y

(
M (0,∞)

t >
√
t z
∣∣ζ (0,∞) > t

)

≥ Ny
(
M (0,∞),X

1 > z
∣∣w1((0,∞)) �= 0

)
. (3.35)

For the upper bound, we fix an arbitrary z > 0. Let ε ∈ (0, (z/2) ∧ 1) and δ ∈ (0, 1). We
note that for any r > δ,

P√
t y

(
M (0,∞)

tr >
√
t z
) = E√

t y

(
1 − exp

{ ∫

(0,∞)

logPa
(
M (0,∞)

tδ ≤ √
t z
)
Z (0,∞)
t(r−δ)(da)

})
.

Note that for all a > 0,

Pa
(
M (0,∞)

tδ ≤ √
t z
) ≥ Pa

(
ζ (0,∞) ≤ tδ

) ≥ P(ζ ≤ tδ)
t→∞−→ 1.

Using the fact that log x ∼ x − 1 as x → 1, we get that there exists t0 = t0(δ) > 0 such that
for all t ≥ t0,

P√
t y

(
M (0,∞)

tr >
√
t z
) ≤ E√

t y

(
1 − exp

{
− 1

2

∫

(0,∞)

Pa
(
M (0,∞)

tδ >
√
t z
)
Z (0,∞)
t(r−δ)(da)

})
.

(3.36)
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When a <
√
t(z − ε), by Lemma 3.10 with ε replaced by ε

2 and using the monotonicity of

Q(t)
z , we get that when t ≥ T (z, ε

2 , δ),

t
1

α−1Pa
(
M (0,∞)

tδ >
√
t z
) ≤ t

1
α−1P√

t(z−ε)

(
M (0,∞)

tδ >
√
t z
) = Q(t)

z (δ, z − ε) ≤ L
( ε

2

)
δ.

(3.37)

When a ≥ √
t(z − ε), by Eq. 1.2, there exists a constant L1 such that

t
1

α−1Pa
(
M (0,∞)

tδ >
√
t z
) ≤ t

1
α−1P

(
ζ >

√
tδ
) ≤ L1

δ
1

α−1

. (3.38)

For any fixed ε ∈ (0, (z/2) ∧ 1), let δ∗ > 0 be small enough so that

L
( ε

2

)
δ∗ <

L1

δ
1

α−1∗
.

Define another non-negative bounded continuous function

g2(x) := 1

2
L
( ε

2

)
δ∗1{x≤z−2ε} + L1

2δ
1

α−1∗
1{x≥z−ε}

+ 1

2

((
L1

δ
1

α−1∗
− L

( ε

2

)
δ∗
)
x − (z − 2ε)

ε
+ L

( ε

2

)
δ∗
)
1{x∈(z−2ε,z−ε)}.

Then Eqs. 3.37 and 3.38 imply that for all a ∈ (0,∞),

t
1

α−1Pa
(
M (0,∞)

tδ∗ >
√
t z
) ≤ g2(a). (3.39)

Plugging this upper bound into Eq. 3.36, we conclude that

P√
t y

(
M (0,∞)

tr >
√
t z
) ≤ E√

t y

(
1 − exp

{
− 1

t
1

α−1

∫

(0,∞)

g2
( a√

t

)
Z (0,∞)
t(r−δ∗)(da)

})

= t−
1

α−1 v(t)
g2 (r − δ∗, y), r > δ∗. (3.40)

Combining Proposition 3.6 (applied to g2) and Theorem 1.1, we get that

lim sup
t→∞

P√
t y

(
M (0,∞)

t >
√
t z
∣∣ζ (0,∞) > t

) = lim sup
t→∞

P√
t y

(
M (0,∞)

t >
√
t z
)

P√
t y

(
ζ (0,∞) > t

)

= lim supt→∞(t(1 + δ∗))
1

α−1P√
t
√
1+δ∗y

(
M (0,∞)

t(1+δ∗) >
√
t(1 + δ∗)z

)

limt→∞ t
1

α−1P√
t y

(
ζ (0,∞) > t

)

≤ (1 + δ∗)
1

α−1
lim supt→∞ t

1
α−1P√

t
√
1+δ∗y

(
M (0,∞)

t(1+δ∗) >
√
t z
)

Ny
(
w1((0,∞)) �= 0

)

≤ (1 + δ∗)
1

α−1
limt→∞ v

(t)
g2 (1, y

√
1 + δ∗)

Ny (w1((0,∞)) �= 0)

= (1 + δ∗)
1

α−1
− logEδ√

1+δ∗ y
(
exp

{− ∫
(0,∞)

g2(a)X1(da)
})

Ny
(
w1((0,∞)) �= 0

) , (3.41)
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where in the second inequalityweusedEq. 3.40with r = 1+δ∗. By the inequality e−x ≥ 1−x
and the fact that {X1((z,∞)) = 0} = {X (0,∞)

1 ((z,∞)) = 0} = {M (0,∞)
1 ≤ z}, we have

Eδ√
1+δ∗ y

(
exp

{
−
∫

(0,∞)

g2(a)X1(da)
})

≥ Eδ√
1+δ∗ y

(
exp

{
−L

( ε

2

)
δ∗X1((−∞, z − 2ε])

}
; X1((z − 2ε,∞)) = 0

)

≥ Eδ√
1+δ∗ y

((
1 − L

( ε

2

)
δ∗X1((−∞, z − 2ε])

)
; X1((z − 2ε,∞)) = 0

)

≥ Pδ√
1+δ∗ y

(
M (0,∞)

1 ≤ z − 2ε
)− L

( ε

2

)
δ∗Eδ√

1+δ∗ y X1(R).

Note that X1(R) under Pδ√
1+δ∗ y is a critical continuous-state branching process, the last term

in the above inequality is equal to −L
(

ε
2

)
δ∗. Therefore, letting δ∗ → 0, we conclude that

lim sup
δ∗→0

− logEδ√
1+δ∗ y

(
exp

{
−
∫

(0,∞)

g2(a)X1(da)
})

≤ − logPδy

(
M (0,∞)

1 ≤ z − 2ε
)
.

Now letting ε → 0, we conclude that

lim sup
ε→0

lim sup
δ∗→0

(1 + δ∗)
1

α−1

− logEδ√
1+δ∗ y

(
exp

{
− ∫

(0,∞)
g2(a)X1(da)

})

Ny (w1((0,∞)) �= 0)

≤ − logPδy

(
M (0,∞)

1 ≤ z
)

Ny (w1((0,∞)) �= 0)
= Ny

(
M (0,∞)

1 > z
)

Ny (w1((0,∞)) �= 0)

= Ny

(
M (0,∞)

1 > z
∣∣w1((0,∞)) �= 0

)
. (3.42)

Combining Eqs. 3.35, 3.41 and 3.42, we get the assertion of (i).
(ii) The proof of (ii) is similar. In Eq. 3.35, by replacing

√
t y by y and applying Theorem

1.3(ii), we get that

lim inf
t→∞ Py

(
M (0,∞)√

t
>

√
t z
∣∣ζ (0,∞) > t

)

≥ lim
θ→∞E

(
1 − exp

{
− θ

∫

(0,∞)

g1(a)η1(da)
})

= P(Mη1 > z).

For the upper bound, the argument in Eq. 3.39 still holds in this case. Therefore, by Eq. 3.40
with r = 1 + δ∗, we get that

t
1

α−1+ 1
2Py
(
M (0,∞)

t(1+δ∗) >
√
t z
)

≤ t
1

α−1+ 1
2Ey

(
1 − exp

{
− 1

t
1

α−1

∫

(0,∞)

g2

(
a√
t

)
Z (0,∞)
t (da)

})
. (3.43)

123



Tails of Extinction Time and Maximal Displacement...

Combining Eq. 3.43, Theorem 1.1(ii) and Theorem 1.3(ii), we see that

lim sup
t→∞

t
1

α−1+ 1
2Py
(
M (0,∞)

t >
√
t z
)

= (1 + δ∗)
1

α−1+ 1
2 lim sup

t→∞
t

1
α−1+ 1

2Py
(
M (0,∞)

t(1+δ∗) >
√
t(1 + δ∗)z

)

≤ (1 + δ∗)
1

α−1+ 1
2 lim sup

t→∞
t

1
α−1+ 1

2Py

(
M (0,∞)

t(1+δ∗) >
√
t z
)

≤ (1 + δ∗)
1

α−1+ 1
2C (0,∞)(α)R(y)E

(
1 − exp

{
−
∫

(0,∞)

g2(a)η1(da)
})

.

Now letting δ∗ → 0 first and then ε → 0, we see that

lim sup
t→∞

Py
(
M (0,∞)

t >
√
t z
∣∣ζ (0,∞) > t

)

≤ C (0,∞)(α)R(y)P(Mη1 > z)

limt→∞ t
1

α−1+ 1
2Py

(
ζ (0,∞) > t

) = P(Mη1 > z),

which completes the proof of (ii). �

4 Proofs of the Auxiliary Results

4.1 Proof of Lemma 2.12

In this subsection, we assume that the Lévy process ξ satisfies (H2) and Eq. 2.19. We use

�+(t) :=
∫ t

0
ze− z2

2 dz, t ≥ 0

to denote the Rayleigh distribution function.

Lemma 4.1 For any y > 0 and a ∈ (0,∞], it holds that

lim
t→∞

√
tPy
(
ξt ≤ a

√
t, τ−

0 > t
) = 2√

2πσ 2
R(y)�+ ( a

σ

)
.

Proof Recall that Wt is the Brownian motion with variance σ 2t introduced in Section 1.2.
For any r > 0 and ε ∈ (0, δ/(2(5 + 2δ))), where δ is the constant in Eq. 2.19, we define

Ar :=
{

sup
0≤s≤1

|ξsr − Wsr | ≤ r
1
2−2ε

}
.

Recall that the random walk Sn is given by Sn = ξn . For any b ∈ R, define

τ
S,+
b := inf

{
j ∈ N : S j > b

}
.

Then we have the following decomposition:

√
tPy

(
ξt ≤ a

√
t, τ−

0 > t
)

=
4∑

k=1

Ik,
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where Ik are defined by

I1 :=√
tPy

(
ξt ≤ a

√
t, τ−

0 > t, τ S,+
t1/2−ε > [t1−ε]

)
,

I2 :=√
t

[t1−ε]∑

k=1

Ey
(
Pξk

(
ξt−k ≤ a

√
t, τ−

0 > t − k, Ac
t−k

); τ−
0 > k, τ S,+

t1/2−ε = k
)
,

I3 :=√
t

[t1−ε]∑

k=1

Ey
(
Pξk

(
ξt−k ≤ a

√
t, τ−

0 > t − k, At−k
); τ−

0 > k, ξk > t (1−ε)/2, τ
S,+
t1/2−ε = k

)
,

I4 :=√
t

[t1−ε]∑

k=1

Ey
(
Pξk

(
ξt−k ≤ a

√
t, τ−

0 > t − k, At−k
); τ−

0 > k, ξk ≤ t (1−ε)/2, τ
S,+
t1/2−ε = k

)
.

(i) In this part, we show that limt→∞ I1 = 0. Since I1 ≤ √
tPy
(
τ
S,+
t1/2−ε > [t1−ε]), it

suffices to prove that

lim
t→∞

√
tPy
(
τ
S,+
t1/2−ε > [t1−ε]) = 0. (4.1)

Since [t1−ε] ≥ [tε − 1][t1−2ε] =: L1 · L2, we have

Py

(
τ
S,+
t1/2−ε > [t1−ε]

)
= Py

(
max

j≤[t1−ε]
|S j | ≤ t1/2−ε

)
≤ Py

(
max
j≤L1

|SL2 j | ≤ t1/2−ε
)
. (4.2)

Applying the Markov property repeatedly, we get that

Py

(
max
j≤L1

|SL2 j | ≤ t1/2−ε
)

≤ sup
x∈R

Px

(
|SL2 | ≤1/2−ε

)
Py

(
max

j≤L1−1
|SL2 j | ≤ t1/2−ε

)

≤ · · · ≤
(
sup
x∈R

Px

(
|SL2 | ≤ t1/2−ε

))L1

. (4.3)

The classical central limit theorem implies that when x > 2
√
L2

Px
(|SL2 | ≤ t1/2−ε

) ≤ Px
(|SL2 | ≤ 2

√
L2
)

= P0
(− x − 2

√
L2 ≤ SL2 ≤ 2

√
L2 − x

) ≤ P0
(
SL2 ≤ 0

) t→∞−→ 1

2
. (4.4)

Similarly, when x < −2
√
L2, we have

Px
(|SL2 | ≤ t1/2−ε

) ≤ P0
(
SL2 ≥ 0

) t→∞−→ 1

2
(4.5)

and that for |x | ≤ 2
√
L2,

Px
(|SL2 | ≤ t1/2−ε

) ≤ P0
(− 4

√
L2 ≤ SL2 ≤ 4

√
L2
) t→∞−→

∫ 4

−4

1√
2πσ 2

e− z2

2σ2 dz. (4.6)

Combining Eqs. 4.4, 4.5 and 4.6, we see that there exist c ∈ (0, 1) and t0 > 0 such that

Px
(|SL2 | ≤ t1/2−ε

)
< c, x ∈ R, t ≥ t0.

Plugging this into Eq. 4.3 and combining the conclusion with Eq. 4.2, we get Eq. 4.1.
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(ii) In this part, we show that limt→∞ I2 = 0. By Lemma 2.11 and the definition of Ar ,
we have

I2 ≤ √
t

[t1−ε]∑

k=1

Ey

(
Pξk

(
Ac
t−k

) ; τ−
0 > k, τ S,+

t1/2−ε = k
)
,

�
√
t

[t1−ε]∑

k=1

N∗(2ε)
(t − k)(2+δ)( 12−2ε)−1

Py
(
τ−
0 > k, τ S,+

t1/2−ε = k
)

�
√
t N∗(2ε)

t (2+δ)( 12−2ε)−1

[t1−ε]∑

k=1

Py
(
τ
S,−
0 > k, τ S,+

t1/2−ε = k
)
. (4.7)

Since Sk is also a martingale under Py , using the fact that Sk ≥ t1/2−ε on the event {τ S,+
t1/2−ε =

k}, by Eq. 4.7,

I2 �
√
t N∗(2ε)

t (2+δ)( 12−2ε)−1t1/2−ε

[t1−ε]∑

k=1

Py
(
Sk; τ

S,−
0 > k, τ S,+

t1/2−ε = k
)

≤
√
t N∗(2ε)

t (2+δ)( 12−2ε)−1t1/2−ε
Ey
(
S[t1−ε]∧τ

S,−
0 ∧τ

S,+
t1/2−ε

) = N∗(2ε)y
tδ/2−(5+2δ)ε

,

we see that when ε is sufficiently small so that ε < δ/(2(5 + 2δ)), we have limt→∞ I2 = 0.
(iii) In this part, we show that limt→∞ I3 = 0. Set x ′ = ξk > t (1−ε)/2, by Lemma 2.10(i)

with t = 1, we have that

Px ′
(
ξt−k ≤ a

√
t, τ−

0 > t − k, At−k
) ≤ Px ′

(
τ−
0 > t − k

)
� x ′ + 1√

t − k
� x ′

√
t
,

where in the last inequality we used the fact that t � t − k for all k ≤ [t1−ε]. Therefore, we
have

I3 �
[t1−ε]∑

k=1

Ey
(
ξk; τ−

0 > k, ξk > t (1−ε)/2, τ
S,+
t1/2−ε = k

)

≤
[t1−ε]∑

k=1

Ey
(
Sk; τ

S,−
0 > k, Sk > t (1−ε)/2, τ

S,+
t1/2−ε = k

)
. (4.8)

Now we deal with the random walk Sk . Set �k := Sk − Sk−1. We have that

[t1−ε]∑

k=1

Ey
(
Sk; τ

S,−
0 > k, Sk > t (1−ε)/2, τ

S,+
t1/2−ε = k

)

≤
[t1−ε]∑

k=1

Ey
(
(Sk−1 + �k); τ

S,−
0 > k − 1, Sk > t (1−ε)/2,�k > t (1−ε)/2 − t1/2−ε

)
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≤
[t1−ε]∑

k=1

Ey
(
Sk−1; τ

S,−
0 > k − 1

)
Py
(
�k > t (1−ε)/2 − t1/2−ε

)

+
[t1−ε]∑

k=1

Py
(
τ
S,−
0 > k − 1

)
Ey
(
�k;�k > t (1−ε)/2 − t1/2−ε

)
.

Noting that, for any fixed y, Ey
(
Sk−1; τ

S,−
0 > k − 1

)
� 1, Py

(
τ
S,−
0 > k − 1

)
� 1√

k
and that

(�k,Ey)
d= (ξ1,E0), we can continue the estimates in the display above to get

[t1−ε]∑

k=1

Ey
(
Sk; τ

S,−
0 > k, Sk > t (1−ε)/2, τ

S,+
t1/2−ε = k

)

�
[t1−ε]∑

k=1

P0
(
ξ1 > t (1−ε)/2 − t1/2−ε

)+
[t1−ε]∑

k=1

1√
k
E0
(
ξ1; ξ1 > t (1−ε)/2 − t1/2−ε

)

≤ [t1−ε]E0
(
ξ21 ; ξ1 > t (1−ε)/2 − t1/2−ε

)
(
t (1−ε)/2 − t1/2−ε

)2 +
∫ [t1−ε]

0

1√
x
dx

E0
(
ξ21 ; ξ1 > t (1−ε)/2 − t1/2−ε

)

t (1−ε)/2 − t1/2−ε

� E0

(
ξ21 ; ξ1 > t (1−ε)/2 − t1/2−ε

)
. (4.9)

Combining Eqs. 4.8 and 4.9, we get that

I3 � E0
(
ξ21 ; ξ1 > t (1−ε)/2 − t1/2−ε

) t→∞−→ 0.

(iv) In this part, we deal with I4. We allow a to be ∞. For k ≤ [t1−ε] and x ′ > 0, define

K (k, x ′) := Px ′
(
ξt−k ≤ a

√
t, τ−

0 > t − k, At−k

)
.

By the definition of Ar , we see that

K (k, x ′) ≤ Px ′
(
Wt−k ≤ a

√
t + (t − k)

1
2−2ε, min

s≤t−k
Ws > −(t − k)

1
2−2ε

)
. (4.10)

Since Bt := Wt/σ is a standard Brownian motion, we see that (σ Bt ,Py)
d= (Wt ,Pσ y). For

any z > 0, define

dP↑
z

dPz

∣∣∣∣
σ(Bs ,s≤t)

:= Bt

z
1{mins≤t Bs>0}. (4.11)

It is well-known (for example, see [11, (3.1)]) that under P↑
z , Bs is a Bessel-3 process with

transition density

p↑
t (x, y) = y

x
√
2π t

e− (y−x)2

2t

(
1 − e− 2xy

t

)
1{y>0}. (4.12)

Set

x∗ := x ′ + (t − k)
1
2−2ε

σ
and a∗ := a

√
t

σ
√
t − k

+ 2

σ(t − k)2ε
.
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Combining Eqs. 4.10, 4.11, 4.12 and the inequality 1 − e−x ≤ x , we obtain that

K (k, x ′) ≤ Px∗
(
Bt−k ≤ a∗√t − k, min

s≤t−k
Bs > 0

) = x∗E↑
x∗
( 1

Bt−k
; Bt−k ≤ a∗√t − k

)

= 1√
2π(t − k)

∫ a∗√t−k

0
e− (y−x∗)2

2(t−k)
(
1 − e− 2x∗ y

t−k
)
dy

≤ 2x∗
√
2π(t − k)3

∫ a∗√t−k

0
ye− (y−x∗)2

2(t−k) dy = 2x∗
√
2π(t − k)

∫ a∗

0
ye

− y2

2 + yx∗√
t−k

− (x∗)2

2(t−k) dy

≤ 2√
2π(t − k)

( x ′

σ
+ t

1
2−2ε

σ

) ∫ a∗

0
ye

− y2

2 + yx∗√
t−k dy

= 2√
2π(t − k)

( x ′

σ
+ t

1
2−2ε

σ

)( ∫ a/σ

0
ye

− y2

2 + yx∗√
t−k dy +

∫ a∗

a/σ

ye
− y2

2 + yx∗√
t−k dy

)
, (4.13)

where the last term on the right-hand side of the inequality above is 0 when a = ∞. Note
that for all x ′ ≤ t (1−ε)/2 and all k ≤ [t1−ε],

x∗
√
t − k

� t (1−ε)/2 + t
1
2−2ε

√
t

� t−ε/2 → 0 as t → ∞.

Note also that, for a ∈ (0,∞), a∗ − σ−1a → 0 as t → ∞. Therefore, we conclude from
Eq. 4.13 that for any a ∈ (0,∞] and δ0 > 0, there exists T > 0 such that when t > T , for
all x ′ ≤ t (1−ε)/2,

K (k, x ′) ≤ 2(1 + δ0)√
2π t

( x ′

σ
+ t

1
2−2ε

σ

)
�+ ( a

σ

)
.

Plugging this into the definition of I4, we see that when t is large enough,

I4 ≤ 2(1 + δ0)√
2π

�+ ( a
σ

) [t1−ε]∑

k=1

Ey

((ξk

σ
+ t

1
2−2ε

σ

)
; τ−

0 > k, ξk ≤ t (1−ε)/2, τ
S,+
t1/2−ε = k

)
.

Note that on {τ S,+
t1/2−ε = k}, we have ξk = Sk ≥ t1/2−ε, which implies that t

1
2−2ε ≤ δ0ξk for t

large enough. Hence, for t large enough, by the inequality R(x) ≥ x , we have

I4 ≤ 2(1 + δ0)
2

√
2πσ 2

�+ ( a
σ

) [t1−ε]∑

k=1

Ey
(
ξk; τ−

0 > k, ξk ≤ t (1−ε)/2, τ
S,+
t1/2−ε = k

)

≤ 2(1 + δ0)
2

√
2πσ 2

�+ ( a
σ

)
Ey

(
R
(
ξ
τ
S,+
t1/2−ε

); τ−
0 > τ

S,+
t1/2−ε , τ

S,+
t1/2−ε ≤ [t1−ε]

)

≤ 2(1 + δ0)
2

√
2πσ 2

�+ ( a
σ

)
Ey

(
R
(
ξ
τ
S,+
t1/2−ε ∧[t1−ε ]

); τ−
0 > τ

S,+
t1/2−ε ∧ [t1−ε]

)

= 2(1 + δ0)
2

√
2πσ 2

R(y)�+ ( a
σ

)
, (4.14)

where in the last equality we used Lemma 2.8(ii).
For the lower bound, we have, similarly, for t1/2−ε ≤ x ′ ≤ t (1−ε)/2,

K (k, x ′) ≥ Px ′
(
Wt−k ≤ a

√
t − (t − k)

1
2−2ε, min

s≤t−k
Ws > (t − k)

1
2−2ε

)
− Px ′

(
Ac
t−k

)
.
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In this case, we define

x∗ := x ′ − (t − k)
1
2−2ε

σ
and a∗ := a

√
t

σ
√
t − k

− 2

σ(t − k)2ε
.

Then combining the inequalities (y − x)2 ≤ y2 + x2, 1 − e−x ≥ x(1 − x) for all x, y > 0
and an argument similar to that used in Eq. 4.13, by Lemma 2.11, there exists some constant
Cε > 0 such that

K (k, x ′) ≥ Px∗
(
Bt−k ≤ a∗

√
t − k, min

s≤t−k
Bs > 0

)
− Cε

(t − k)(
1
2 −2ε)(δ+2)−1

= 1√
2π(t − k)

∫ a∗
√
t−k

0
e− (y−x∗)2

2(t−k)
(
1 − e− 2x∗ y

t−k
)
dy − Cε

(t − k)(
1
2 −2ε)(δ+2)−1

≥ 2x∗√
2π(t − k)3

∫ a∗
√
t−k

0
y
(
1 − 2x∗y

t − k

)
e− y2+x2∗

2(t−k) dy − Cε

(t − k)(
1
2 −2ε)(δ+2)−1

= 2x∗e− x2∗
2(t−k)√

2π(t − k)

∫ a∗

0
y
(
1 − 2x∗y√

t − k

)
e− y2

2 dy − Cε

(t − k)(
1
2 −2ε)(δ+2)−1

≥ 2e− x2∗
2(t−k)√
2π t

( x ′

σ
− t

1
2 −2ε

σ

)( ∫ a∗

0
ye− y2

2 dy − 2x∗√
t − k

∫ ∞

0
y2e− y2

2 dy
)

− Cε

(t − k)(
1
2 −2ε)(δ+2)−1

.

Noting that for all t1/2−ε ≤ x ′ ≤ t (1−ε)/2 and k ≤ [t1−ε],
x∗√
t − k

� t (1−ε)/2 + t
1
2−2ε

√
t

� t−ε/2,
t
1
2−2ε

x ′ ≤ t
1
2−2ε

t1/2−ε
= t−ε,

Cε

(t − k)(
1
2−2ε)(δ+2)−1

� x ′
√
t
t−( δ

2−ε(2δ+5)),

and for any a ∈ (0,∞), |σ−1a − a∗| � t−ε . Therefore, for any δ0 ∈ (0, 1), when t is large
enough, we have for all k ≤ [t1−ε] and t1/2−ε ≤ x ′ ≤ t (1−ε)/2,

K (k, x ′) ≥ 2(1 − δ0)√
2π tσ 2

x ′�+ ( a
σ

)
.

Therefore, for t large enough,

I4 ≥ 2(1 − δ0)√
2πσ 2

�+ ( a
σ

) [t1−ε]∑

k=1

Ey
(
ξk; τ−

0 > k, ξk ≤ t (1−ε)/2, τ
S,+
t1/2−ε = k

)
.

It follows from Lemma 2.8 that x ≥ (1− δ0)R(x) for x ≥ t1/2−ε with t large enough. Thus,
when t is large enough,

I4 ≥ 2(1 − δ0)
2

√
2πσ 2

�+ ( a
σ

)
Ey

(
R
(
ξ
τ
S,+
t1/2−ε

); τ−
0 > τ

S,+
t1/2−ε , τ

S,+
t1/2−ε ≤ [t1−ε]

)

= 2(1 − δ0)
2

√
2πσ 2

�+ ( a
σ

) (
R(y) − Ey

(
R
(
ξ[t1−ε]

) ; τ−
0 > [t1−ε], τ S,+

t1/2−ε > [t1−ε])
)
, (4.15)
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where in the last inequality we used the following fact:

R(y)

=Ey

(
R
(
ξ
τ
S,+
t1/2−ε

∧[t1−ε]
); τ0 > τ

S,+
t1/2−ε ∧ [t1−ε]

)

=Ey

(
R
(
ξ
τ
S,+
t1/2−ε

); τ−
0 > τ

S,+
t1/2−ε , τ

S,+
t1/2−ε ≤ [t1−ε]

)
+ Ey

(
R
(
ξ[t1−ε]

)
; τ−

0 > [t1−ε], τ S,+
t1/2−ε > [t1−ε]).

Noting that ξ[t1−ε] ≤ t1/2−ε on {τ S,+
t1/2−ε > [t1−ε]} and applying Lemma 2.10 with t = 1, we

get

Ey

(
R
(
ξ[t1−ε]

); τ−
0 > [t1−ε], τ S,+

t1/2−ε > [t1−ε]
)

≤ R(t1/2−ε)Py
(
τ−
0 > [t1−ε]) � t1/2−ε y + 1√[t1−ε] � (y + 1)t−ε/2. (4.16)

Combining Eqs. 4.14, 4.15 and 4.16, we conclude that

2(1 + δ0)
2

√
2πσ 2

R(y)�+ ( a
σ

)
≥ lim sup

t→∞
I4 ≥ lim inf

t→∞ I4 ≥ 2(1 − δ0)
2

√
2πσ 2

R(y)�+ ( a
σ

)
.

Letting δ0 → 0, we arrive at the assertion of the lemma. �

Proof of Lemma 2.12 Define a sequence of measures

μ(t)(D) := √
tPy

( ξt

σ
√
t

∈ D, τ−
0 > t

)
and μ(D) := 2R(y)√

2πσ 2

∫

D
ze− z2

2 dz, D ∈ B((0, ∞)).

Lemma 4.1 implies that for any y > 0 and any a ∈ (0,∞),

lim
t→∞ μ(t)((0, a]) = μ((0, a])

and that limt→∞ μ(t)((0,∞)) = μ((0,∞)). Therefore, μ(t) weakly converge to μ and this
completes the proof of the lemma. �

4.2 Proof of Lemma 3.2

Proof of Lemma 3.2 First, it follows from Lemma 2.14(i) that supy>0 vX∞(r , y) < ∞ for any
r > 0. Next we prove that for any y ∈ (0,∞), limr→0+ vX∞(r , y) = ∞. By the definition of

v
(t)∞ (r , y) in Eq. 2.5, we have

v(t)∞ (r , y) ≥ t
1

α−1P√
t y

(
ζ (0,∞) > tr , inf

s>0
inf

u∈N (s)
Xu(s) > 0

)

= t
1

α−1P√
t y

(
ζ > tr , inf

s>0
inf

u∈N (s)
Xu(s) > 0

)

≥ t
1

α−1P√
t y (ζ > tr) − t

1
α−1P√

t y

(
inf
s>0

inf
u∈N (s)

Xu(s) ≤ 0
)

= t
1

α−1P√
t y (ζ > tr) − t

1
α−1P0

(
M̃ ≥ √

t y
)
, (4.17)
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where in the last equality, M̃ is the maximal displacement of the critical branching Lévy
process with spatial motion−ξ , branching rate β and offspring distribution {pk}. Combining
Eqs. 1.2, 1.4 with M replaced by M̃ and Eq. 4.17, we see that

vX∞(r , y) ≥ C(α)

r
1

α−1

− θ̃ (α)

y
2

α−1

r→0+−→ ∞,

which implies limr→0+ vX∞(r , y) = ∞.

Letting t → ∞ first and then y → 0+ in Lemma 2.14 (i), we easily see that
limy→0+ vX∞(r , y) = 0 for any r > 0.

Now we prove that vX∞ satisfies the partial differential differential equation in Eq. 3.11.
For any 0 < w < r and y > 0, by Eq. 2.6,

v(t)∞ (r , y) = Ey
(
v(t)∞ (r − w, ξ

(t)

w∧τ
(t),−
0

)
)− Ey

( ∫ w

0
φ(t)(v(t)∞ (r − s, ξ (t)

s∧τ
(t),−
0

))ds
)
. (4.18)

By Lemma 2.14(i), K := supt>0,s≤w,y∈R v
(t)∞ (r − s, y) < ∞. By Lemma 2.14(ii) and the

definition of φ(t) in Eq. 2.2, limt→∞ φ(t)(v)
vα = C(α) uniformly for v ∈ [0, K ]. Note that

ϕ(λ) = C(α)λα by definition Eq. 1.9. Therefore, for any ε > 0, there exists T1 > 0 such that
when t > T1,

φ(t)(v(t)∞ (r − s, ξ (t)

s∧τ
(t),−
0

)) ≥ (1 − ε)ϕ

(
v(t)∞ (r − s, ξ (t)

s∧τ
(t),−
0

)

)
. (4.19)

Plugging Eqs. 3.9, 3.10 and 4.19 into Eq. 4.18 we see that when t > max{T1, T2},

v(t)∞ (r , y) ≤ 3ε + Ey
(
vX∞(r − w, ξ

(t)

w∧τ
(t),−
0

)
)

− (1 − ε)Ey

( ∫ w∧τ
(t),−
0

0
ϕ
((

vX∞(r − s, ξ (t)
s ) − 3ε

)+)ds
)
. (4.20)

Define W (t)
s = Wst√

t
, which has the same law as Ws . Let τ

(t),W ,−
x be the exit time of W (t)

s

from (x,∞), which has the same law as τ
W ,−
x . For any fixed w ≥ 0, by Lemma 2.11 with t

replaced by tw, we get that for any 0 ≤ s ≤ w and a ≥ 0, for each γ ∈ (0, δ
2(2+δ)

),

lim sup
t→∞

Py

(
ξ

(t)

s∧τ
(t),−
0

> a

)
≤ lim sup

t→∞
Py

(
ξ

(t)

s∧τ
(t),−
0

> a, sup
0≤q≤w

∣∣∣ξ (t)
q − W (t)

q

∣∣∣ ≤ t−γ w
1
2−γ

)

≤ lim sup
t→∞

Py

(
W (t)

s > a − t−γ w
1
2−γ , sup

0≤s≤w

∣∣∣ξ (t)
s − W (t)

s

∣∣∣ ≤ t−γ w
1
2−γ , τ

(t),W ,−
−t−γ w

1
2 −γ

> s

)

≤ lim sup
t→∞

Py

(
Ws > a − t−γ w

1
2−γ , τ

W ,−
−t−γ w

1
2 −γ

> s

)
= Py

(
W 0

s > a
)
.

Using a similar argument for the lower bound, we can get that limt→∞ Py

(
ξ

(t)

s∧τ
(t),−
0

> a

)
=

Py
(
W 0

s > a
)
for alla ≥ 0.Therefore, for any s > 0,

(
ξ

(t)

s∧τ
(t),−
0

,Py

)
converges in distribution
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to
(
W 0

s ,Py
)
. Taking t = tk in Eq. 4.20 and letting k → ∞, we get that

vX∞(r , y) ≤ 3ε + Ey

(
vX∞(r − w,W 0

w)
)

− (1 − ε)Ey

( ∫ w

0
ϕ
((

vX∞(r − s,W 0
s ) − 3ε

)+)ds
)
,

whereW 0
s is a Brownian motion with variance σ 2t stopped upon exiting (0,∞). Now letting

ε → 0, we finally conclude that

vX∞(r , y) ≤ Ey

(
vX∞(r − w,W 0

w)
)

− Ey

( ∫ w

0
ϕ
(
vX∞(r − s,W 0

s )
)
ds
)
.

A very similar argument for the lower bound implies that, for any 0 < w < r and y > 0,
vX∞(r , y) solves the equation

vX∞(r , y) = Ey

(
vX∞(r − w,W 0

w)
)

− Ey

( ∫ w

0
ϕ(vX∞(r − s,W 0

s ))ds
)
. (4.21)

This implies the desired result. Indeed, we may rewrite Eq. 4.21 as

vX∞(r + w, y) = Ey

(
vX∞(r ,W 0

w)
)

− Ey

(∫ w

0
ϕ(vX∞(r + w − s,W 0

s ))ds

)
, y > 0, r , w ≥ 0.

For each fixed r > 0, set f (y) = vX∞(r , y). Then the function u(w, y) := vX∞(r + w, y) is
the solution of the integral equation

u(w, y) = Ey
(
f (W 0

w)
)− Ey

( ∫ w

0
ϕ(u(w − s,W 0

s ))ds
)
, y > 0, w ≥ 0.

Recall that W 0
s is the Brownian motion W (with diffusion coefficient σ 2) stopped at τ

W ,−
0

and the generator of W 0
s in the domain (0,∞) is σ 2

2
d2

dx2
. Combining the display above with

Eqs. 3.6 and 3.7, and repeating the argument in [5, Sections 8.1 and 8.2], we get that

∂

∂w
vX∞(r + w, y) = σ 2

2

∂2

∂ y2
vX∞(r + w, y) − ϕ

(
vX∞(r + w, y)

)
, r , w, y > 0.

Since r > 0 is arbitrary, we get

∂

∂w
vX∞(w, y) = σ 2

2

∂2

∂ y2
vX∞(w, y) − ϕ

(
vX∞(w, y)

)
, in (0,∞) × (0,∞).

The proof is now complete. �

4.3 Proofs of Propositions 3.5 and 3.6

In this subsection, we assume that (H1) (H2) and Eq. 2.19 hold. When ξ is a standard

Brownian motion,
(
ξ

(t)
r ,Py

) d= (ξr ,Py
)
, and Proposition 3.6 follows immediately from [20,

Proposition 4.5].

Lemma 4.2 Let f be a bounded Lipschitz function on R+ with f (0) = 0.
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(i) For any r , y, w > 0 and t > 1, it holds that

t
1

α−1

∣∣∣Ey

(
1 − exp

{
− 1

t
1

α−1

f
(
ξ

(t)

r∧τ
(t),−
0

)})− Ey+w

(
1 − exp

{
− 1

t
1

α−1

f
(
ξ

(t)

r∧τ
(t),−
0

)})∣∣∣

�
( 1

log t
+ w

)
(1 + r−1/2) =: G(t)

1 (r , w).

(ii) For any r , y, q > 0 and t > 1, it holds that

t
1

α−1

∣∣∣Ey

(
1 − exp

{
− 1

t
1

α−1

f
(
ξ

(t)

r∧τ
(t),−
0

)})− Ey

(
1 − exp

{
− 1

t
1

α−1

f
(
ξ

(t)

(r+q)∧τ
(t),−
0

)})∣∣∣

�
( 1

log t
+ q1/4

)(
1 + r−1/2) =: G(t)

2 (r , w).

Proof (i) By the inequality x − (1 − e−x ) � x2 for all x > 0, we have that

t
1

α−1

∣∣∣Ey

(
1 − exp

{
− 1

t
1

α−1

f
(
ξ

(t)

r∧τ
(t),−
0

)})− Ey+w

(
1 − exp

{
− 1

t
1

α−1

f
(
ξ

(t)

r∧τ
(t),−
0

)})∣∣∣

� (supx∈R | f (x)|)2
t

1
α−1

+
∣∣∣Ey

(
f
(
ξ

(t)

r∧τ
(t),−
0

))− Ey+w

(
f
(
ξ

(t)

r∧τ
(t),−
0

))∣∣∣

� 1

t
1

α−1

+
∣∣∣Ey

(
f
(
ξ (t)
r

); τ
(t),−
0 > r

)
− Ey+w

(
f
(
ξ (t)
r

); τ
(t),−
0 > r

)∣∣∣.

Since f is a bounded Lipschitz function, we have
∣∣∣Ey

(
f
(
ξ (t)
r

); τ
(t),−
0 > r

)
− Ey+w

(
f
(
ξ (t)
r

); τ
(t),−
0 > r

)∣∣∣

=
∣∣∣Ey

(
f
(
ξ (t)
r

); inf
s≤r

ξ (t)
s > 0

)
− Ey

(
f
(
ξ (t)
r + w

); inf
s≤r

ξ (t)
s > −w

)∣∣∣

� w + P0

(
inf
s≤r

ξ (t)
s ∈ (−w − y,−y]

)
. (4.22)

Recalling the coupling in Lemma 2.11 and settingW (t)
s = Wst/

√
t , we see that, for any fixed

γ ∈ (0, δ
2(2+δ)

), r > 0 and t large enough (so that t−γ r
1
2−γ ≤ t−γ /2), it holds that

P0

(
inf
s≤r

ξ (t)
s ∈ (−w − y,−y]

)

� 1

(tr)(
1
2−γ )(δ+2)−1

+ P0

(
inf
s≤r

ξ (t)
s ∈ (−w − y,−y], sup

0≤s≤r
|ξ (t)
s − W (t)

s | ≤ t−γ /2
)

� 1

t (
1
2−γ )(δ+2)−1

+ P0

(
min
s≤r

W (t)
s ∈ (−w − y − t−γ /2,−y + t−γ /2]

)

� 1

log t
+ P0

(
Wr ∈ [y − t−γ /2, y + w + t−γ /2)

)
. (4.23)

Here the last inequality holds by the reflection principle. Therefore, by estimating the density
of Brownian motion, we obtain that

P0

(
inf
s≤r

ξ (t)
s ∈ (−w − y,−y]

)
� 1

log t
+ w + t−γ /2

√
r

� 1

log t
+ w + (log t)−1

√
r

,

which gives the assertion (i).
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(ii) Similar to the beginning of the proof of (i), we also have

t
1

α−1

∣∣∣Ey

(
1 − exp

{
− 1

t
1

α−1

f
(
ξ

(t)

r∧τ
(t),−
0

)})− Ey

(
1 − exp

{
− 1

t
1

α−1

f
(
ξ

(t)

(r+q)∧τ
(t),−
0

)})∣∣∣

� 1

log t
+
∣∣∣Ey

(
f
(
ξ (t)
r

); τ
(t),−
0 > r

)
− Ey

(
f
(
ξ

(t)
r+q

); τ
(t),−
0 > r + q

)∣∣∣.

Again using the fact that f is bounded Lipschitz, we have

∣∣∣Ey

(
f
(
ξ (t)
r

); τ
(t),−
0 > r

)
− Ey

(
f
(
ξ

(t)
r+q

); τ
(t),−
0 > r + q

)∣∣∣

� sup
x>0

| f (x)|Py
(
τ

(t),−
0 ∈ (r , r + q])+ Ey

(∣∣ξ (t)
r − ξ

(t)
r+q

∣∣)

� P0

(
inf
s≤r

ξ (t)
s ≥ −y, inf

s≤r+q
ξ (t)
s < −y

)
+ √

q.

Here in the last inequality we used the fact that Ey
(∣∣ξ (t)

r −ξ
(t)
r+q

∣∣) ≤ √E0(|ξ1|2)q . Therefore,
using a coupling argument similar to that leading to Eq. 4.23, we get

P0

(
inf
s≤r

ξ (t)
s ≥ −y, inf

s≤r+q
ξ (t)
s < −y

)

� 1

log t
+ P0

(
min
s≤r

Ws > −y − t−γ , min
s≤r+q

Ws ≤ −y + t−γ
)
.

Using

P0
(
min
s≤r

Ws > −y − t−γ , min
s≤r+q

Ws ≤ −y + t−γ
)

≤ P0
(
Wr ∈ (−y − t−γ , −y + t−γ + q1/4)

)+ P0
(
Wr > −y + t−γ + q1/4, min

s≤r+q
Ws ≤ −y + t−γ

)

� t−γ + q1/4√
r

+ P0
(
min
s≤q

Ws < −q1/4
)

� t−γ + q1/4√
r

+ q1/4 �
( 1

log t
+ q1/4

)(
1 + r−1/2),

we easily get the assertion of (ii). �

The following lemma is a generalized Gronwall inequality. We omit the proof here since
the proof is standard.

Lemma 4.3 Suppose that F and G are two bounded non-negative measurable function on
[0, T ]. If for any r ∈ [0, T ],

F(r) ≤ G(r) + C
∫ r

0
F(s)ds,

then we have for all r ∈ [0, T ],

F(r) ≤ G(r) + C
∫ r

0
eC(r−s)G(s)ds
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Proof of Proposition 3.5 (i) Combining Corollary 2.2 (withw = r ) and Lemma 4.2(i), we see
that

∣∣v(t)
f (r , y) − v

(t)
f (r , y + w)

∣∣

≤ t
1

α−1
∣∣∣Ey

(
1 − exp

{
− 1

t
1

α−1

f
(
ξ
(t)

r∧τ
(t),−
0

)})− Ey+w

(
1 − exp

{
− 1

t
1

α−1

f
(
ξ
(t)

r∧τ
(t),−
0

)})∣∣∣

+
∣∣∣Ey

( ∫ r

0
φ(t)(v

(t)
f (r − s, ξ (t)

s ))1{τ (t),−
0 >s}ds

)
− Ey+w

( ∫ r

0
φ(t)(v

(t)
f (r − s, ξ (t)

s ))1{τ (t),−
0 >s}ds

)∣∣∣

� G(t)
1 (r , w) +

∣∣∣Ey

( ∫ r

0
φ(t)(v

(t)
f (r − s, ξ (t)

s ))1{τ (t),−
0 >s}ds

)

− Ey+w

( ∫ r

0
φ(t)(v

(t)
f (r − s, ξ (t)

s ))1{τ (t),−
0 >s}ds

)∣∣∣. (4.24)

Using the fact that
∣∣φ(t)(u) − φ(t)(v)

∣∣ � |u − v| for all u, v ∈ [0, K ] and t > K , and
an argument similar to that leading to Eq. 4.22, we get that, for t large enough so that
t > supx∈R | f (x)|, the second term on the right-hand side of Eq. 4.24 is bounded above by
a constant multiple of

∫ r

0
sup
y∈R

∣∣v(t)
f (r − s, y) − v

(t)
f (r − s, y + w)

∣∣ds +
∫ r

0
P0
(
inf
�≤s

ξ
(t)
� ∈ (−w − y,−y])ds

�
∫ r

0
sup
y∈R

∣∣v(t)
f (r − s, y) − v

(t)
f (r − s, y + w)

∣∣ds +
∫ r

0

( 1

log t
+ w + (log t)−1

√
s

)
ds

�
∫ r

0
sup
y∈R

∣∣v(t)
f (r − s, y) − v

(t)
f (r − s, y + w)

∣∣ds + 1

log t
+ w

≤
∫ r

0
sup
y∈R

∣∣v(t)
f (r − s, y) − v

(t)
f (r − s, y + w)

∣∣ds + G(t)
1 (r , w).

Plugging this into Eq. 4.24, we conclude that there exists a constant L independent of r and
t such that for all r ∈ [0, T ] and t > 1,

sup
y>0

∣∣v(t)
f (r , y) − v

(t)
f (r , y + w)

∣∣ ≤ LG(t)
1 (r , w)

+ L
∫ r

0
sup
y∈R

∣∣v(t)
f (r − s, y) − v

(t)
f (r − s, y + w)

∣∣ds.

Applying Lemma 4.3, we obtain that for all r ∈ [0, T ], we have that

sup
y>0

∣∣v(t)
f (r , y) − v

(t)
f (r , y + w)

∣∣ ≤ LG(t)
1 (r , w) + L

∫ r

0
eC(r−s)G(t)

1 (s, w)ds

�
( 1

log t
+ w

)
(1 + r−1/2) +

∫ r

0

( 1

log t
+ w

)
(1 + s−1/2)ds

�
( 1

log t
+ w

)
(1 + r−1/2).

This completes the proof of (i).
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(ii) By Lemma 4.2 (ii), we see that

∣∣v(t)
f (r , y) − v

(t)
f (r + q, y)

∣∣ � G(t)
2 (r , w) +

∣∣∣Ey

( ∫ r

0
φ(t)(v

(t)
f (r − s, ξ (t)

s ))1{τ (t),−
0 >s}ds

)

− Ey

( ∫ r+q

0
φ(t)(v

(t)
f (r + q − s, ξ (t)

s ))1{τ (t),−
0 >s}ds

)∣∣∣

� G(t)
2 (r , w) + q + Ey

( ∫ r

0

∣∣∣φ(t)(v
(t)
f (r − s, ξ (t)

s )) − φ(t)(v
(t)
f (r + q − s, ξ (t)

s ))

∣∣∣1{τ (t),−
0 >s}ds

)
.

Again by the inequality |φ(t)(u) − φ(t)(v)| � |u − v|, we get that the last term on the
right-hand side of the inequality above is bounded from above by a constant multiple of

∫ r

0
sup
y>0

∣∣v(t)
f (r − s, y) − v

(t)
f (r + q − s, y)

∣∣ds.

Therefore, there exists a constant L independent of t, q and r such that for all r + q ≤ T ,

sup
y>0

∣∣v(t)
f (r , y) − v

(t)
f (r + q, y)

∣∣

≤ LG(t)
2 (r , w) + Lq + L

∫ r

0
sup
y>0

∣∣v(t)
f (r − s, y) − v

(t)
f (r + q − s, y)

∣∣ds.

Applying Lemma 4.3 for any fixed q yields that

sup
y>0

∣∣v(t)
f (r , y) − v

(t)
f (r + q, y)

∣∣ ≤ LG(t)
2 (r , w) + Lq + L

∫ r

0
eL(r−s)(LG(t)

2 (s, w) + Lq
)
ds

� G(t)
2 (r , w) + q +

∫ r

0

( 1

log t
+ q1/4

)(
1 + s−1/2)ds

�
( 1

log t
+ q1/4

)(
1 + r−1/2),

which completes the proof of (ii). �

Proof of Proposition 3.6 Fix a continuous function f ∈ B+
b ((0,∞)) and T > 0. By Lemma

3.4, without loss of generality, we assume that f is Lipschitz continuous. Since v
(t)
f (r , y) is

uniformly bounded for all r ∈ [0, T ], y > 0 and t > 1, we can find a sequence {tk} and a
limit vX

f (r , y) such that

vX
f (r , y) = lim

k→∞ v
(tk )
f (r , y), for all r ∈ [0, T ] ∩ Q, y ∈ (0,∞) ∩ Q.

Proposition 3.5 implies that for any r ∈ (0, T ), y > 0 and any ((0, T )∩Q)×((0,∞)×Q) �
(rm, ym) → (r , y), we have that vX

f (rm, ym) is a Cauchy sequence. Thus we define, for any
r ∈ (0, T ) and y > 0,

vX
f (r , y) := lim

((0,T )∩Q)×((0,∞)×Q)�(rm ,ym )→(r ,y)
vX
f (rm, ym).

Using an argument similar to that leading to Lemma 3.1, we can get

vX
f (r , y) = lim

k→∞ v
(tk )
f (r , y), for all r ∈ (0, T ), y ∈ (0,∞).
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Combining Corollary 2.2 and the fact that v
(t)
f (0, x) = t

1
α−1

(
1 − exp

{ − 1

t
1

α−1
f (x)

})
, we

see that v(t)
f solves the equation

v
(t)
f (r , y) = t

1
α−1Ey

(
1 − exp

{
− 1

t
1

α−1

f
(
ξ

(t)

r∧τ
(t),−
0

)})− Ey

( ∫ r

0
φ(t)(v

(t)
f (r − s, ξ (t)

s∧τ
(t),−
0

))ds
)
.

Using the invariance principle and an argument similar to that leading to Eq. 4.21, we arrive
at the desired result. �

4.4 Proof of Lemma 3.8 and Proposition 3.9

Proof of Lemma 3.8 We first show that limy→0+ K X (y) = 0. Taking z = 1
2 in Lemma 2.6

and applying Lemma 2.16 (i), we get that for y < 1
2 ,

K (x)(y) ≤ Ey

(
K (x)

(
ξ

(x2)

τ
(x2),+
1/2

)
; τ

(x2),+
1/2 < τ

(x2),−
0

)

≤ K (x)(2
3

)
Py

(
τ

(x2),+
1/2 < τ

(x2),−
0

)
+ x

2
α−1Py

(
ξ

(x2)

τ
(x2),+
1/2

>
2

3

)

= K (x)(2
3

)
Py

(
τ

(x2),+
1/2 < τ

(x2),−
0

)
+ x

2
α−1P− 1

2 x+xy

(
ξτ+

0
>

1

6
x
)

� Py

(
τ

(x2),+
1/2 < τ

(x2),−
0

)
+ x

2
α−1

6r0−2

xr0−2E− 1
2 x+xy

( ∣∣∣ξτ+
0

∣∣∣
r0−2 )

, (4.25)

where in the last inequality we used Markov’s inequality. It follows from Lemma 2.7 that

E− 1
2 x+xy

( ∣∣∣ξτ+
0

∣∣∣
r0−2 ) ≤ C

for some constant C > 0. Thus, since r0 − 2 > 2
α−1 , taking x = xk and letting k → ∞ in

Eq. 4.25, we get that

K X (y) � Py
(
τ
W ,+
1/2 < τ

W ,−
0

) y→0+−→ 0.

Next we show that limy→1− K X (y) = ∞. Note that

K (x)(y) ≥ x
2

α−1Pxy

(
M (0,∞) ≥ x, inf

t>0
inf

u∈N (t)
Xu(t) > 0

)

= x
2

α−1Pxy

(
M ≥ x, inf

t>0
inf

u∈N (t)
Xu(t) > 0

)

≥ x
2

α−1Pxy (M ≥ x) − x
2

α−1Pxy

(
inf
t>0

inf
u∈N (t)

Xu(t) ≤ 0
)

= x
2

α−1P (M ≥ x(1 − y)) − x
2

α−1P(M̃ ≥ xy),

where M̃ is the maximal displacement of the critical branching Lévy process with branching
rate β, offspring distribution {pk} and spatial motion −ξ . Applying Eq. 1.4 to M̃ and M we
see that under (H4),

K X (y) = lim
k→∞ K (xk )(y) ≥ θ(α)

(1 − y)
2

α−1

− θ̃ (α)

y
2

α−1

y→1−−→ +∞.
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Finally, we show that K X (·) satisfies the differential equation in Eq. 3.24. We fix an
arbitrary z ∈ (0, 1) in the remainder of this proof. By Lemma 2.16,

sup

s∈(0,τ
(x2k ),+
z )

K (xk )
(
ξ

(x2k )
s
) ≤ K (xk )(z) � 1

(1 − z)
2

α−1

.

Therefore, by Lemma 2.14(ii), for any ε > 0, there exists N > 0 such that for any k > N

and s ∈ (0, τ
(x2k ),+
z ),

C(α)(1 − ε) ≤ ψ(x2k )
(
K (xk )

(
ξ

(x2k )
s
))

(
K (xk )

(
ξ

(x2k )
s
))α−1

≤ C(α)(1 + ε).

Recall that ϕ(λ) = C(α)λα defined in Eq. 1.9. Set ψ X (v) := ϕ(v)/v. For simplicity, we will
use xk as x in the remainder of this proof. Applying the display above to Lemma 2.6, we see
that for k > N ,

Ey

(
exp

{
− (1 − ε)

∫ τ
(x2),+
z

0
ψ X (K (x)(ξ (x2)

s )
)
ds
}
K (x)(ξ (x2)

τ
(x2),+
z

); τ (x2),+
z < τ

(x2),−
0

)
≥ K (x)(y)

≥ Ey

(
exp

{
− (1 + ε)

∫ τ
(x2),+
z

0
ψ X (K (x)(ξ (x2)

s )
)
ds
}
K (x)(ξ (x2)

τ
(x2),+
z

); τ (x2),+
z < τ

(x2),−
0

)
. (4.26)

Nowwewill let k → +∞ in Eq. 4.26. For the upper bound,we note that for any δ ∈ (0, 1−z),

K (x)
(
ξ

(x2)

τ
(x2),+
z

) ≤ K (x)(z + δ) on the event
{
ξ

(x2)

τ
(x2),+
z

≤ z + δ
}
and K (x)

(
ξ

(x2)

τ
(x2),+
z

) ≤ x
2

α−1 on

the event
{
ξ

(x2)

τ
(x2),+
z

> z + δ
}
. Thus,

Ey

(
exp

{
− (1 − ε)

∫ τ
(x2),+
z

0
ψ X (K (x)(ξ (x2)

s )
)
ds
}
K (x)(ξ (x2)

τ
(x2),+
z

); τ (x2),+
z < τ

(x2),−
0

)

≤ K (x)(z + δ)Ey

(
exp

{
− (1 − ε)

∫ τ
(x2),+
z

0
ψ X (K (x)(ξ (x2)

s )
)
ds
}
; τ (x2),+

z < τ
(x2),−
0

)

+ x
2

α−1Py
(
ξ

(x2)

τ
(x2),+
z

> z + δ
)
. (4.27)

The last term of the upper bound converges to 0 as k → ∞. Indeed, since r −2 > 2/(α −1),
by Lemma 2.7, we have

x
2

α−1Py

(
ξ

(x2)

τ
(x2),+
z

> z + δ
)

= x
2

α−1P−x(z−y)
(
ξτ+

0
> xδ

) ≤ x
2

α−1

(δx)r−2 sup
w>0

E−w

(
ξ r−2
τ+
0

) x→∞−→ 0.

Therefore, combining Eqs. 4.26 and 4.27, letting k → ∞, we get

K X (y)

≤ K X (z + δ) lim sup
k→∞

Ey

(
exp

{
− (1 − ε)

∫ τ
(x2),+
z

0
ψ X (K (x)(ξ (x2)

s )
)
ds
}
; τ (x2),+

z < τ
(x2),−
0

)
.

(4.28)
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Using the continuity of K X (·) and the fact that limy→0+ K X (y) = 0, we get that, for any
ε > 0, there exist L ∈ N and 0 = w0 < w1 < ... < wL = z such that

max
j∈{1,...,L}

∣∣∣K X (w j ) − K X (w j−1)

∣∣∣ < ε.

Let T = T (L, ε) be large enough so that for all k ≥ T ,

max
j∈{0,...,L}

∣∣∣K (xk )(w j ) − K X (w j )

∣∣∣ < ε.

For w ∈ [0, z), we have w ∈ [w j−1, w j ) for some j ∈ {1, ..., L}. Using the fact that both
K (xk )(w) and K X (w) are increasing in w, we get

K (xk )(w) ≥ K (xk )(w j−1) ≥ K X (w j−1) − ε ≥ K X (w j ) − 2ε ≥ K X (w) − 2ε.

Therefore, when k is sufficiently large,

Ey

(
exp

{
− (1 − ε)

∫ τ
(x2),+
z

0
ψ X (K (x)(ξ (x2)

s )
)
ds
}
; τ (x2),+

z < τ
(x2),−
0

)

≤ Ey

(
exp

{
− (1 − ε)

∫ τ
(x2),+
z

0
ψ X ((K X (ξ (x2)

s ) − 2ε
)+)ds

}
; τ (x2),+

z < τ
(x2),−
0

)
. (4.29)

Plugging Eq. 4.29 into Eq. 4.28, we obtain

K X (y)

K X (z + δ)

≤ lim sup
k→∞

Ey

(
exp

{
− (1 − ε)

∫ τ
(x2),+
z

0
ψ X
((

K X (ξ (x2)
s ) − 2ε

)+)ds
}
; τ (x2),+

z < τ
(x2),−
0

)
.

(4.30)

Fix a large real number A and an integer N , and set ti = A
N i for i ∈ {0, ..., N }. Then we have

∫ τ
(x2),+
z ∧A

0
ψ X
((

K X (ξ (x2)
s ) − 2ε

)+)ds=
N∑

i=1

∫ ti

ti−1

1{s<τ
(x2),+
z }ψ

X
((

K X (ξ (x2)
s ) − 2ε

)+)ds

≥
N∑

i=1

A

N
1{ti<τ

(x2),+
z }ψ

X
((

K X
(

inf
s∈[ti−1,ti ]

ξ (x2)
s

)
− 2ε

)+)
.

Using an argument similar to that in [9, Step 1 in Lemma 3.3], with [9, Lemma 2.4] there
replaced by Lemma 2.11, we see that

lim sup
k→∞

Ey

(
exp

{
− (1 − ε)

∫ τ
(x2),+
z

0
ψ X ((K X (ξ (x2)

s ) − 2ε
)+)ds

}
; τ (x2),+

z < τ
(x2),−
0

)

≤ lim sup
k→∞

Py
(
τ

(x2),−
0 > A

)+ Ey

(
exp

{
− (1 − ε)

N∑

i=1

A

N
1{ti<τ

W ,+
z }

× ψ X ((K X ( inf
s∈[ti−1,ti ]

Ws
)− 2ε

)+)}; τW ,+
z < τ

W ,−
0 < A

)
, (4.31)
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where τ
W ,+
z is the exit time of the process W on (−∞, z). Combining Eqs. 4.30 and 4.31,

taking N → ∞ first and then A → +∞, we get

K X (y)

K X (z + δ)

≤ lim sup
A→∞

Py
(
τ
W ,−
0 > A

)+ lim sup
A→∞

lim sup
N→∞

Ey

(
exp

{
− (1 − ε)

N∑

i=1

A

N
1{ti<τ

W ,+
z }

× ψ X ((K X ( inf
s∈[ti−1,ti ]

Ws
)− 2ε

)+)}; τW ,+
z < τ

W ,−
0 < A

)

= lim sup
A→∞

Ey

(
exp

{
−(1 − ε)

∫ A∧τ
W ,+
z

0
ψ X ((K X (Ws

)− 2ε
)+)ds

}
; τW ,+

z < τ
W ,−
0 < A

)

= Ey

(
exp

{
− (1 − ε)

∫ τ
W ,+
z

0
ψ X ((K X (Ws) − 2ε

)+)ds
}
; τW ,+

z < τ
W ,−
0

)
.

Since ε and δ are independent, letting ε, δ → 0 in the above inequality, we conclude that

K X (y) ≤ K X (z)Ey

(
exp

{
−
∫ τ

W ,+
z

0
ψ X (K X (Ws)

)
ds
}
; τW ,+

z < τ
W ,−
0

)
.

Using a similar argument, we can prove that

K X (y) ≥ K X (z)Ey

(
exp

{
−
∫ τ

W ,+
z

0
ψ X (K X (Ws)

)
ds
}
; τW ,+

z < τ
W ,−
0

)
.

Therefore,

K X (z)Ey

(
exp

{
−
∫ τ

W ,+
z

0
ψ X (K X (Ws)

)
ds
}
; τW ,+

z < τ
W ,−
0

)
= K X (y). (4.32)

Note that z is fixed. The display above implies that K X (y) satisfies the differential equation
in Eq. 3.24. The proof is now complete. �

To prove Proposition 3.9, we first recall some basics on exit measures of superprocesses.
Let S := R+ ×R+ and we consider the evolution of the superprocess in S. LetO ⊂ B(S) be
the class of open subsets of S. Roughly speaking,weobtain the exitmeasures {XO ; O ∈ O}by
freezing “particles” once they exit O . For supercritical branching Brownian motion, similar
ideas but with a different terminology “stopping line" are used in [15]. For applications of
exit measures of supercritical super Brownian motion, one can see [16]. Now we formally
introduce the exit measures. For any r > 0 and x ≥ 0, we use Pr ,x to denote the law
P (· |Wr = x). Let B(S) be the Borel σ -field on S, and MF (S) the space of finite Borel
measures on S. A measure μ ∈ MF (R+) is identified with the corresponding measure on S
concentrated on {0}×R+. According to Dynkin [6], there exists a family of randommeasures
{(XQ,Pμ); Q ∈ O, μ ∈ MF (S)} such that for any Q ∈ O, μ ∈ MF (S) with supp μ ⊂ Q,
and bounded non-negative Borel function f (t, x) on S,

Eμ

(
exp

{−〈 f , XQ〉}) = exp
{− 〈vX ,Q

f , μ〉},
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where v
X ,Q
f (s, x) is the unique positive solution of the equation

v
X ,Q
f (s, x) = Es,x

(
f (τ,W 0

τ )
)− Es,x

∫ τ

s
ϕ
(
v
X ,Q
f (r ,W 0

r )
)
dr

= Es,x
(
f (τ,W

τ∧τ
W ,−
0

)
)− Es,x

∫ τ∧τ
W ,−
0

s
ϕ
(
v
X ,Q
f (r ,Wr )

)
dr , (4.33)

with τ := inf {r > 0 : (r ,Wr ) /∈ Q}. For Q = Dz := (0,∞) × (0, z), τ = τ
W ,−
0 ∧ τ

W ,+
z .

Taking f (t, x) = θ1{x>0} in Eq. 4.33 and using the time-homogeneity of W , we get that

v
X ,Dz
f (s, x) =: v

X ,Dz
θ (x) is independent of s and is the unique positive solution of the equation

of

v
X ,Dz
θ (x) = θPx

(
τW ,+
z < τ

W ,−
0

)− Ex

∫ τ
W ,+
z ∧τ

W ,−
0

0
ϕ
(
v
X ,Dz
θ (Wr )

)
dr . (4.34)

Moreover, by Eq. 1.14,

v
X ,Dz
θ (x) = − logEδx

(
exp

{−θXDz ([0,∞) × {z})})

= − logEδx

(
exp

{− θX (0,∞)
Dz

([0,∞) × {z})}). (4.35)

Letting θ → +∞ in the display above, by the definition of XDz , we see that

v
X ,Dz∞ (x) = − logPδx

(
X (0,∞)
Dz

([0,∞) × {z}) = 0
)

= − logPδx

(
M (0,∞),X < z

)
.

Proof of Proposition 3.9 Note that if K X is a solution to the problem 3.24, then for any 0 <

y < z < 1,

K X (y) + Ey

( ∫ τ
W ,+
z ∧τ

W ,−
0

0
ϕ(K X ((Ws))ds

)
= Ey

(
K X (W

τ
W ,+
z ∧τ

W ,−
0

)
)
.

Thus, for each fixed z ∈ (0, 1), K X (y) is a solution to the equation

f (y) + Ey

( ∫ τ
W ,+
z ∧τ

W ,−
0

0
ϕ( f (Ws))ds

)

= Ey
(
K X (W

τ
W ,+
z ∧τ

W ,−
0

)
) = K X (z)Py

(
τW ,+
z < τ

W ,−
0

)
, y ∈ (0, z), (4.36)

where the last inequality holds since K X (0) = 0. By Eqs. 4.34 and 4.35, Eq. 4.36 has a
unique solution given by

v
X ,Dz

K X (z)
(y) = − logEδy

(
exp

{− K X (z)X (0,∞)
Dz

([0,∞) × {z})}).

Since K X is a solution to Eq. 4.36, we have

K X (y) = − logEδy

(
exp

{− K X (z)X (0,∞)
Dz

([0,∞) × {z})}), y ∈ (0, z).

On one hand,

K X (y) ≤ − logPδy

(
X (0,∞)
Dz

([0,∞) × {z}) = 0
) = − logPδy

(
M (0,∞),X < z

)
. (4.37)
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On the other hand, for any fixed z0 ∈ (y, 1), we choose z ∈ (z0, 1) so that K X (z) > K X (z0).
Then

K X (y) ≥ − logEδy

(
exp

{− K X (z0)X
(0,∞)
Dz

([0,∞) × {z})}) =: K X
z0(y; z). (4.38)

Note that K X
z0(·; z) is the unique bounded solution to

K X
z0(y; z) + Ey

( ∫ τ
W ,+
z ∧τ

W ,−
0

0
ϕ(K X

z0(Ws; z))ds
)

= K X (z0)Py
(
τW ,+
z < τ

W ,−
0

)
.

Define K̂ X
z0(y) := z

2
α−1 K X

z0(yz; z), then the above equation is equivalent to

K̂ X
z0

(
y

z

)
+ z

2
α−1Ey

( ∫ τ
W ,+
z ∧τ

W ,−
0

0
ϕ
(
z−

2
α−1 K̂ X

z0(z
−1Ws; z)

)
ds
)

= z
2

α−1 K X (z0)Py
(
τW ,+
z < τ

W ,−
0

)
. (4.39)

Using the scaling property of Brownian motion and the fact that x
2

α−1 ϕ
(
x− 2

α−1 v
)
x2 = ϕ(v),

Eq. 4.39 is equivalent to

K̂ X
z0

(
y

z

)
+ Ey/z

( ∫ τ
W ,+
1 ∧τ

W ,−M
0

0
ϕ
(
K̂ X
z0(z

−1Ws; z)
)
ds
)

= z
2

α−1 K X (z0)Py/z
(
τ
W ,+
1 < τ

W ,−
0

)
.

Again using the uniqueness of the solution to Eq. 4.34, we conclude that

− logEδy

(
exp

{− K X (z0)X
(0,∞)
Dz

([0,∞) × {z})}) = K X
z0(y; z)

= z−
2

α−1 K̂ X
z0

(
y

z

)
=
(

− logEδy/z

(
exp

{− z
2

α−1 K X (z0)X
(0,∞)
D1

([0,∞) × {1})})
)

· z− 2
α−1

≥
(

− logEδy/z

(
exp

{− z
2

α−1
0 K X (z0)X

(0,∞)
D1

([0,∞) × {1})})
)

· z− 2
α−1 . (4.40)

Therefore, plugging Eq. 4.40 into Eq. 4.38 and then letting z → 1− in both Eqs. 4.37 and
4.38, we conclude that

− logPδy

(
M (0,∞),X < 1

) ≥ K X (y) ≥ − logEδy

(
exp

{− z
2

α−1
0 K X (z0)X

(0,∞)
D1

([0, ∞) × {1})}).

Since K X (z0) → +∞ as z0 → 1−, letting z0 → 1− in the above inequality yields that

− logPδy

(
M (0,∞),X < 1

) ≥ K X (y) ≥ − logPδy

(
X (0,∞)
D1

([0,∞) × {1}) = 0
)

= − logPδy

(
M (0,∞),X < 1

)
,

which implies that K X (y) = − logPδy

(
M (0,∞),X < 1

)
. This completes the proof of the

proposition. �
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