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Abstract

In this paper, we study asymptotic behaviors of a subcritical branching Brownian
motion with drift −ρ, killed upon exiting (0, ∞), and offspring distribution {pk: k ≥ 0}.
Let ζ̃−ρ be the extinction time of this subcritical branching killed Brownian motion,
M̃−ρ

t the maximal position of all the particles alive at time t and M̃−ρ := maxt≥0 M̃−ρ
t

the all-time maximal position. Let Px be the law of this subcritical branching killed
Brownian motion when the initial particle is located at x ∈ (0, ∞). Under the assumption∑∞

k=1 k(log k)pk < ∞, we establish the decay rates of Px (̃ζ−ρ > t) and Px(M̃−ρ > y) as
t and y respectively tend to ∞. We also establish the decay rate of Px(M̃−ρ

t > z(t, ρ)) as
t → ∞, where z(t, ρ) = √

tz − ρt for ρ ≤ 0 and z(t, ρ) = z for ρ > 0. As a consequence,
we obtain a Yaglom-type limit theorem.

Keywords: Branching killed Brownian motion; survival probability; maximal displace-
ment; Feynman–Kac representation.
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1. Introduction

The goal of this paper is to study asymptotic behaviors of subcritical branching killed
Brownian motions with drifts. Before we introduce the model of branching killed Brownian
motion, we first give some preliminaries on branching Brownian motions without killing and
review some related literature about them. Then we introduce branching killed Brownian
motions and present our main results.
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2 H. HOU ET AL.

1.1. Branching Brownian motions

A branching Brownian motion with drift −ρ is a continuous-time Markov process defined
as follows. At time 0, there is a particle at x ∈R and this particle moves according to a
Brownian motion with drift −ρ ∈R. After an exponential time with parameter β > 0, inde-
pendent of the spatial motion, this particle dies and is replaced by k offspring with probability
pk, k ≥ 0. The offspring move independently according to Brownian motion with drift −ρ from
the place where they are born and obey the same branching mechanism as their parent. This
procedure continues. Let Nt be the collection of particles alive at time t. If u ∈ Nt, let X−ρ

u (t)
denote the position of the particle u at time t, and for s ∈ (0, t) we denote by X−ρ

u (s) the position
at time s of the ancestor of u. The point process (Z−ρ

t )t≥0 defined by

Z−ρ
t :=

∑
u∈Nt

δX−ρ
u (t), t ≥ 0,

is called a branching Brownian motion with drift −ρ. We will use Px to denote the law of this
process and use Ex to denote the corresponding expectation. Let

ζ := inf{t > 0, Nt = ∅}
be the extinction time of (Z−ρ

t )t≥0. Note that the law of ζ does not depend on ρ and is equal
to that of the extinction time of the continuous-time Galton–Watson process with the same
branching mechanism as the branching Brownian motion. Let m:=∑∞

k=0 kpk be the mean
number of offspring and let f be the generating function of the offspring distribution, f (u) =∑∞

k=0 pkuk, u ∈ [0, 1]. It is well known that the process will become extinct in finite time with
probability 1 if and only if m < 1 (subcritical) or m = 1 and p1 
= 1 (critical). When m > 1
(supercritical), the process survives with positive probability.

For any t ≥ 0, let

M−ρ
t := max{X−ρ

u (t) : u ∈ Nt}
be the maximal position of all the particles alive at time t and let

M−ρ := supt>0 M−ρ
t

be the all-time maximal position. In the subcritical and critical cases, Px
(
M−ρ < ∞)= 1 for

any x, ρ ∈R.
In the critical case m = 1 and p1 
= 1, Sawyer and Fleischman [24] proved that if β = 1 and

the offspring distribution has finite third moment, then

lim
x→∞ x2

P0(M0 ≥ x) = 6

σ 2
, (1.1)

where σ is the variance of the offspring distribution. For a critical branching random walk with
spatial motion having finite (4 + ε)th moment, a result similar to (1.1) was proved by Lalley
and Shao [14]. It was also proved in [14] that the law of M0

t /
√

t under P0 (·|ζ > t) converges
weakly to some random variable. For related results in the case of critical branching Lévy
processes, see [23].

In the subcritical case m ∈ (0, 1), let

α:= β(1 − m) ∈ (0, ∞).
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Subcritical branching killed Brownian motion with drift 3

Define

	(u):= β (f (1 − u) − (1 − u)) = : (α + ϕ(u)) u, u ∈ [0, 1], (1.2)

where ϕ(u) = 	(u)−αu
u for u ∈ (0, 1] and ϕ(0) = 	′(0 + ) − α = 0. ϕ is a nonnegative continu-

ous increasing function; see Lemma 7 below. It is well known (see Theorem 2.4 in [1, p. 121])
that the limit

lim
t→∞ eαt

P0(ζ > t) = Csub ∈ (0, ∞) (1.3)

if and only if

∞∑
k=1

k(log k)pk < ∞. (1.4)

We now give another equivalent form of (1.3). For any t > 0, define

g(t):= P0(ζ > t).

It is well known that g(t) satisfies the equation

d

dt
g(t) = −	(g(t)) = − (α + ϕ(g(t))) g(t),

thus

eαtg(t) = exp

{
−
∫ t

0
ϕ(g(s))ds

}
. (1.5)

It follows from (1.3) that

Csub = exp

{
−
∫ ∞

0
ϕ(g(s))ds

}
. (1.6)

Therefore, (1.3) is equivalent to ∫ ∞

0
ϕ(g(s))ds < ∞. (1.7)

For M−ρ , when the underlying motion is a standard Brownian motion and the offspring
distribution has finite third moment, it was proved in [24] that, if ρ = 0,

lim
x→∞

P0(M0 > x)

(1 − m)s(x)e−√
2αx

= 1, (1.8)

where s(x) is a bounded positive function. The limit (1.8) was later generalized in [23] to
subcritical branching spectrally negative Lévy processes. When specialized to our setting, [23,
Theorem 1.1] says that, when

∑∞
k=0 k3pk < ∞, there exists a constant κ ∈ (0, ∞) such that

lim
x→∞ e

(
ρ+

√
2α+ρ2

)
x
P0
(
M−ρ ≥ x

)= κ . (1.9)

In the case of subcritical branching random walks, it was proved in [21, Theorem 1.2] that
when the random walk has finite range and is nearly right-continuous in the sense of [21], a
result similar to (1.8) holds. In [21], the authors also gave some estimates for the limit behavior
of P0(M0 ≥ x) in the case of general subcritical branching random walks. For related results
about near-critical branching random walks, see [22].
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1.2. Branching killed Brownian motions

We are interested in asymptotic behaviors of branching killed Brownian motions with drift
−ρ, in which particles are killed (along with their descendants) upon exiting (0, ∞). The point
process (̃Z−ρ

t )t≥0 defined by

Z̃−ρ
t :=

∑
u∈Nt

1{mins≤t X−ρ
u (s)>0}δX−ρ

u (t)

is called a branching killed Brownian motion with drift −ρ. Let

ζ̃−ρ := inf
{

t ≥ 0:̃Z−ρ
t ((0, ∞)) = 0

}
be the extinction time of (̃Z−ρ

t )t≥0. We define the maximal position at time t and the all-time
maximal position of (̃Z−ρ

t )t≥0 by

M̃−ρ
t := max

u∈Nt: mins≤t X−ρ
u (s)>0

X−ρ
u (t) and M̃−ρ := max

t≥0
M̃−ρ

t .

In the critical case (m = 1 and p1 
= 1), Lalley and Zheng [15, Theorem 6.1] proved that, if∑∞
k=0 k3pk < ∞, then

lim
y→∞ y3

Px(M̃0 ≥ y) = C1x,

where C1 ∈ (0, ∞) is a constant independent of x. It was also shown in [15, Theorem 6.1] that,
for any s ∈ (0, 1),

lim
y→∞ y2

Psy(M̃0 ≥ y) = C2(s) ∈ (0, ∞).

Recently, Hou et al. [12] studied the asymptotic behaviors of the tails of the extinction time and
the maximal displacement of critical branching killed Lévy processes under some assumptions
on the spatial motion and the assumption that the offspring distribution belongs to the domain
of attraction of an α-stable distribution for α ∈ (1, 2].

There are also quite a few papers in the literature studying the asymptotic behaviors of
supercritical (i.e. m ∈ (1, ∞)) branching killed Brownian motions with drift −ρ. Kesten [13]
proved that, when ρ >

√
2β(m − 1), the process will become extinct almost surely and Harris

and Harris [10, Theorem 1] obtained the asymptotic behavior of the survival probability. In
the case ρ <

√
2β(m − 1), Harris, Harris and Kyprianou [11] investigated the large deviation

probability of the maximal position. The papers [3, 7, 18] studied the tail of the total number
of killed particles under different drift conditions. [3, Proposition 4] studied the asymptotic
behavior of the probability that the all-time minimum of a dyadic branching Brownian motion
with drift −ρ >

√
2β starting from 0 does not fall below −x, which is similar in spirit to our

Theorem 2 below. For related results in the critical case ρ = √
2β(m − 1), see [2, 13, 19, 20].

The main focus of this paper is on the asymptotic behaviors of subcritical branching
killed Brownian motions with drift. More precisely, we will study the asymptotic behaviors
of Px

(̃
ζ−ρ > t

)
and Px

(
M̃−ρ > y

)
as t and y tend to ∞, respectively. Define

z(t, ρ) =
{√

tz − ρt, if ρ ≤ 0,

z, if ρ > 0.
(1.10)
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We will also study the decay rate of Px
(
M̃−ρ

t > z(t, ρ)
)

as t tends to ∞.
Our first main result is as follows. Recall that Csub is given in (1.3). Also, the notation

f (t) ∼ g(t) as t → a means that limt→a f (t)/g(t) = 1.

Theorem 1. Assume m ∈ (0, 1) and (1.4). Let x > 0.

(i) If ρ = 0, then

lim
t→∞

√
teαt

Px
(̃
ζ−ρ > t

)=
√

2

π
Csubx.

(ii) If ρ < 0, then

lim
t→∞ eαt

Px
(̃
ζ−ρ > t

)= Csub(1 − e2ρx).

(iii) If ρ > 0, then

lim
t→∞ t

3
2 e

(
α+ ρ2

2

)
t
Px
(̃
ζ−ρ > t

)=
√

2

π
C0(ρ)xeρx,

where C0(ρ):= limN→∞ e(α+ ρ2

2 )N ∫∞
0 ye−ρy

Py
(̃
ζ−ρ > N

)
dy ∈ (0, ∞).

Furthermore, for any ρ ∈R, as t → ∞,

Px
(̃
ζ−ρ > t

)∼ ρEx
(̃
Z−ρ

t ((0, ∞))
)
,

where ρ = Csub when ρ ≤ 0 and ρ = ρ2C0(ρ) when ρ > 0.

Let (Bt, Px) be a standard Brownian motion starting from x. For any ρ ∈R, it is known that

{e−ρ(Bt−x)− ρ2

2 t, t ≥ 0} is a positive Px-martingale with mean 1. Define Ft:= σ (Bs:s ≤ t) and

dP−ρ
x

dPx

∣∣∣Ft
:= e−ρ(Bt−x)− ρ2

2 t. (1.11)

Then under P−ρ
x , {Bt, t ≥ 0} is a Brownian motion with drift −ρ starting from x.

Remark 1. Combining Theorem 1 with the asymptotic behavior of P−ρ
x (τ0 > t) (where, for

any y ∈R, τy is the first hitting time of y) in Lemma 1, we see that, when ρ ≤ 0, Px
(̃
ζ−ρ >

t
)∼ Px (ζ > t) P−ρ

x (τ0 > t), i.e., the branching and the spatial motion are nearly independent.
For ρ > 0, the constant C0(ρ) is related to the existence of a quasi-stationary distribution.
Moreover, one can show that in this case,

lim
t→∞

Px
(̃
ζ−ρ > t

)
Px (ζ > t) P−ρ

x (τ0 > t)
> 1; (1.12)

see (3.26) below.

Our second main result is on the tail probability Px(M̃−ρ > y). In the case when there is
no killing, the results (1.8) and (1.9) were proved under the assumption that the offspring
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distribution has finite third moment. Our assumption (1.4) on the offspring distribution is much
weaker.

Theorem 2. Assume m ∈ (0, 1) and (1.4). Then for any ρ ∈R, there exists a constant C∗(ρ) ∈
(0, ∞) such that, for any x > 0,

lim
y→∞ e(ρ+

√
2α+ρ2)y

Px(M̃−ρ > y) = 2C∗(ρ)eρx sinh (x
√

2α + ρ2).

Remark 2. On {M̃−ρ > y}, there is at least one particle which achieves the level y before hit-
ting 0. The reason for the appearance of the sinh function in the theorem above is that this
function is related to the Laplace transformation of τy on the event {τy < τ0} and this event
gives the main contribution to the tail probability of {M̃−ρ > y}.

Our third main result is on the limit behavior of the maximal position at time t.

Theorem 3. Assume m ∈ (0, 1) and (1.4). Let x > 0.

(i) For ρ = 0 and z ≥ 0,

lim
t→∞

√
teαt

Px

(
M̃−ρ

t >
√

tz
)

=
√

2

π
Csubxe−z2/2,

or equivalently, as t → ∞,

Px

(
M̃−ρ

t >
√

tz
)

∼ CsubEx

(
Z̃−ρ

t
(
(
√

tz, ∞)
))

.

(ii) For ρ < 0 and z ∈R,

lim
t→∞ eαt

Px

(
M̃−ρ

t + ρt >
√

tz
)

= Csub(1 − e2ρx)√
2π

∫ ∞

z
e− y2

2 dy,

or equivalently, as t → ∞,

Px

(
M̃−ρ

t + ρt >
√

tz
)

∼ CsubEx

(
Z̃−ρ

t
(
(
√

tz − ρt, ∞)
))

.

(iii) For ρ > 0 and z ≥ 0,

lim
t→∞ t

3
2 e

(
α+ ρ2

2

)
t
Px

(
M̃−ρ

t > z
)

=
√

2

π
Cz(ρ)xeρx,

where Cz(ρ):= limN→∞ e

(
α+ ρ2

2

)
N ∫∞

0 ye−ρy
Py

(
M̃−ρ

N > z
)

dy ∈ (0, ∞) is a function of

z independent of x. Or equivalently, as t → ∞,

Px

(
M̃−ρ

t > z
)

∼ ρ2Cz(ρ)eρz

ρz + 1
Ex

(
Z̃−ρ

t ((z, ∞))
)

. (1.13)

Remark 3. Actually, combining inequalities (3.22) and (3.24) in the proof of Theorem 3, we
can get that when ρ > 0, for any z ≥ 0,

Csub

∫ ∞

z
ye−ρydy ≤ Cz(ρ) ≤

∫ ∞

z
ye−ρydy.

https://doi.org/10.1017/apr.2025.17 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2025.17


Subcritical branching killed Brownian motion with drift 7

We mention here that we do not know the exact expression for Cz(ρ). By (1.12), we know that
Cz(ρ) is not equal to Csub

∫∞
z ye−ρydy.

Combining Theorems 1 and 3, we get the following Yaglom-type theorem.

Corollary 1. Assume m ∈ (0, 1) and (1.4). Let x > 0.

(i) If ρ = 0, then

Px

(
M̃−ρ

t√
t

∈ ·∣∣̃ζ−ρ > t

)
d=⇒ P(R ∈ ·),

where (R, P) is a Rayleigh random variable with density ze−z2/21{z>0}.

(ii) If ρ < 0, then

Px

(
M̃−ρ

t + ρt√
t

∈ ·∣∣̃ζ−ρ > t

)
d=⇒ P0(B1 ∈ ·),

where (B1, P0) is a standard normal random variable.

(iii) If ρ > 0, then there exists a random variable (X, P) whose law is independent of x such
that

Px

(
M̃−ρ

t ∈ ·∣∣̃ζ−ρ > t
)

d=⇒ P(X ∈ ·).
Remark 4. Note that the Rayleigh distribution is the law of a Brownian meander (starting
from 0) at time 1, so it is not surprising that it appears in Corollary 1(i) above. Furthermore,
compared with [14, Theorem 3] in the case of critical branching random walks, for ρ ≤ 0, the
weak limit of M̃−ρ

t conditioned on survival up to time t is simpler. The limit in [14, Theorem
3] is related to the maximum of a measure-valued process (see [14, Corollary 4]).

Remark 5. It is natural to study similar problems for subcritical branching killed Lévy pro-
cesses. However, in the general case, even when the spatial motion is spectrally negative, some
of the main ingredients, such as Lemma 1, are much more difficult. So, to avoid technical
details, we concentrate on the case of subcritical branching killed Brownian motion with drift.
It also natural to study similar problems for subcritical branching killed random walks.

Organization of the paper. The rest of the paper is organized as follows. In Section 2.1, we
first give some results on Brownian motion and the three-dimensional Bessel process that will
be used in the proofs of our main results. Then we recall some connections between a certain
evolution equation and our model in Section 2.2. The proofs of Theorems 1 and 3 are given in
Section 3 and the proof of Theorem 2 is given in Section 4.

2. Preliminaries

2.1. Some useful properties of Brownian motion

Recall that (Bt, Px) is a standard Brownian motion starting from x and Ft := σ (Bs : s ≤ t).
For any z ∈R, define τz:= inf{t > 0 : Bt = z}. Note that for any x > 0, under Px, Bt

x 1{τ0>t} is a
positive martingale of mean 1. Define

dPB
x

dPx

∣∣∣Ft
:= Bt

x
1{τ0>t} = Bt

x
1{mins≤t Bs>0}. (2.1)
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It is well known that (Bt, PB
x ) is a three-dimensional Bessel process with transition probability

density pB
t (x, y) given by

pB
t (x, y) := y

x

1√
2π t

e− (y−x)2

2t

(
1 − e− 2xy

t

)
1{y>0}.

Recall that P−ρ
x is defined in (1.11). The following result gives the asymptotic behavior of

P−ρ
x (τ0 > t, Bt > z(t, ρ)) as t → ∞ where z(t, ρ) is defined in (1.10). For the case ρ < 0, see

[5, p. 30], and for the case ρ > 0, see [17, (7) and Lemma 3.1]. The case ρ = 0 follows from
the reflection principle.

Lemma 1. Let x > 0.

(i) If ρ = 0, then for any z ≥ 0, we have

lim
t→∞

√
tPx(τ0 > t, Bt >

√
tz) =

√
2

π
xe− z2

2 .

(ii) If ρ < 0, then

lim
t→∞ P−ρ

x (τ0 > t) = 1 − e2ρx.

Also, for any z ∈R,

lim
t→∞ P−ρ

x

(
τ0 > t, Bt + ρt >

√
tz
)= (1 − e2ρx)√

2π

∫ ∞

z
e− y2

2 dy.

(iii) If ρ > 0, then for any z ≥ 0,

lim
t→∞ t

3
2 e

ρ2

2 tP−ρ
x (τ0 > t, Bt > z) =

√
2

π
xeρx

∫ ∞

z
ye−ρydy.

In the following result, we give the asymptotic behaviors of Ex

(
Z̃−ρ

t ((0, ∞))
)

and

Ex

(
Z̃−ρ

t ((z(t, ρ), ∞))
)

as t → ∞.

Lemma 2. Let x > 0.

(i) If ρ = 0, then for any z ≥ 0,

lim
t→∞

√
teαt

Ex

(
Z̃−ρ

t ((
√

tz, ∞))
)

=
√

2

π
xe− z2

2 .

(ii) If ρ < 0, we have

lim
t→∞ eαt

Ex
(̃
Z−ρ

t ((0, ∞))
)= 1 − e2ρx,

and for any z ∈R,

lim
t→∞ eαt

Ex

(
Z̃−ρ

t ((
√

tz − ρt, ∞))
)

= 1 − e2ρx

√
2π

∫ ∞

z
e− y2

2 dy.
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Subcritical branching killed Brownian motion with drift 9

(iii) If ρ > 0, then for any z ≥ 0,

lim
t→∞ t3/2e

(
α+ ρ2

2

)
t
Ex

(
Z̃−ρ

t ((z, ∞))
)

=
√

2

π
xeρx

∫ ∞

z
ye−ρydy = 1

ρ2

√
2

π
xeρ(x−z)(ρz + 1).

Proof. For any bounded measurable function F, by the many-to-one lemma (see Hardy and
Harris [9, Theorem 2.8]), we have

Ex

( ∑
u∈N−ρ

t

F(Xu(s), 0 ≤ s ≤ t)
)

= e−αtE−ρ
x (F(Bs, 0 ≤ s ≤ t)) , (2.2)

which implies that

Ex
(̃
Z−ρ

t ((0, ∞))
)= e−αtP−ρ

x (τ0 > t)

and

Ex
(̃
Z−ρ

t ((z(t, ρ), ∞))
)= e−αtP−ρ

x (Bt > z(t, ρ), τ0 > t).

Combining this with Lemma 1, we arrive at the desired result. �
Lemma 5 below will play an important role in the proof of Theorem 2. To prove this result,

we give two elementary lemmas first. The proofs of these two lemmas are routine and we give
the details for completeness.

Lemma 3. For any a ≥ 0, 0 < x ≤ y and nonnegative Borel function h, we have

Ex

(
1{τy<τ0}e−aτy−

∫ τy
0 h(Bs)ds

)
= x

y
EB

x

(
e−aτy−

∫ τy
0 h(Bs)ds

)
.

Proof. Note that PB
x (τy = ∞) = 0 for any 0 < x ≤ y. Since Fτy∧t ⊂Ft, it follows from (2.1)

that

EB
x

(
e−aτy−

∫ τy
0 h(Bs)ds

)
= lim

t→∞ EB
x

(
e−aτy−

∫ τy
0 h(Bs)ds1{τy<t}

)
= lim

t→∞ Ex

(
Bt

x
1{τ0>t}e−aτy−

∫ τy
0 h(Bs)ds1{τy<t}

)
= lim

t→∞ Ex

(
e−aτy−

∫ τy
0 h(Bs)ds1{τy<t}Ex

(
Bt

x
1{τ0>t}|Fτy∧t

))
.

Since
(

Bt
x 1{τ0>t}

)
t≥0

is a Px-martingale with respect to (Ft)t≥0, by the optional stopping

theorem, we have

Ex

(
Bt

x
1{τ0>t}|Fτy∧t

)
= Bτy∧t

x
1{τ0>τy∧t}.
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It follows from the dominated convergence theorem that

EB
x

(
e−aτy−

∫ τy
0 h(Bs)ds

)
= y

x
lim

t→∞ Ex

(
1{τy<t,τ0>τy}e−aτy−

∫ τy
0 h(Bs)ds

)
= y

x
Ex

(
1{τ0>τy}e−aτy−

∫ τy
0 h(Bs)ds

)
.

This completes the proof. �
Lemma 4. For any a ≥ 0, 0 < x ≤ y, ρ ∈R and nonnegative Borel function h, we have

E−ρ
x

(
1{τy<τ0}e−aτy−

∫ τy
0 h(Bs)ds

)
= eρ(x−y)Ex

⎛⎝1{τy<τ0}e
−
(

a+ ρ2

2

)
τy−

∫ τy
0 h(Bs)ds

⎞⎠ .

Proof. From [6, Theorem 6, p. 16], we know that {τy < τ0} ∩ {τy < t} = {τy ∧ t < τ0} ∩
{τy ∧ t < t} is Fτy∧t-measurable. We deal with the case a > 0 first. For a > 0, since
e−aτy1{τy=∞} = 0, it follows from (1.11) that

E−ρ
x

(
1{τy<τ0}e−aτy−

∫ τy
0 h(Bs)ds

)
(2.3)

= lim
t→∞ E−ρ

x

(
1{τy<τ0}e−aτy−

∫ τy
0 h(Bs)ds1{τy<t}

)
= lim

t→∞ Ex

(
e−ρ(Bt−x)− ρ2

2 t1{τy<τ0}e−aτy−
∫ τy

0 h(Bs)ds1{τy<t}
)

= lim
t→∞ Ex

(
e−aτy−

∫ τy
0 h(Bs)ds1{τy<τ0,τy<t}Ex

(
e−ρ(Bt−x)− ρ2

2 t
∣∣∣Fτy∧t

))
.

Recall that

(
e−ρ(Bt−x)− ρ2

2 t
)

t≥0
is a Px-martingale with respect to (Ft)t≥0, so by the optional

stopping theorem, on {τy < t}, we have

Ex

(
e−ρ(Bt−x)− ρ2

2 t|Fτy∧t

)
= e−ρ(Bτy∧t−x)− ρ2

2 (τy∧t) = e−ρ(y−x)− ρ2

2 τy .

Combining this with (2.3) and using the fact that Px
(
τy < ∞)= 1, we get for a > 0,

E−ρ
x

(
1{τy<τ0}e−aτy−

∫ τy
0 h(Bs)ds

)
= eρ(x−y)Ex

(
1{τy<τ0}e

−
(

a+ ρ2

2

)
τy−

∫ τy
0 h(Bs)ds)

. (2.4)

For the case a = 0, by the dominated convergence theorem and the display above,

E−ρ
x

(
1{τy<τ0}e− ∫ τy

0 h(Bs)ds
)

= lim
θ→0+ E−ρ

x

(
1{τy<τ0}e−θτy−

∫ τy
0 h(Bs)ds

)
= lim

θ→0+ eρ(x−y)Ex

(
1{τy<τ0}e

−
(

θ+ ρ2

2

)
τy−

∫ τy
0 h(Bs)ds)

= eρ(x−y)Ex

(
1{τy<τ0}e− ρ2

2 τy−
∫ τy

0 h(Bs)ds
)

.

This completes the proof. �
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Combining Lemmas 3 and 4, we immediately get the following result.

Lemma 5. For any a ≥ 0, 0 < x ≤ y, ρ ∈R and nonnegative Borel function h, we have

E−ρ
x

(
1{τy<τ0}e−aτy−

∫ τy
0 h(Bs)ds

)
= x

y
eρ(x−y)EB

x

⎛⎝e
−
(

a+ ρ2

2

)
τy−

∫ τy
0 h(Bs)ds

⎞⎠ .

The following result can be found in [5, p. 469].

Lemma 6. For any a > 0 and 0 < x ≤ y, we have

EB
x

(
e−aτy

)= y sinh (x
√

2a)

x sinh (y
√

2a)
.

Combining Lemmas 5 and 6, we see that for any ρ < 0 and x > 0,

lim
y→∞ P−ρ

x

(
τy < τ0

)= lim
y→∞ eρ(x−y) sinh ( − xρ)

sinh ( − yρ)
= 1 − e2ρx. (2.5)

2.2. An evolution equation related to branching killed Brownian motion

Recall that (Bt, P−ρ
x ) is a Brownian motion with drift −ρ and that τ0 is the first time that

B hits 0. Let ξt:= Bt1{τ0>t} be the Brownian motion killed upon hitting 0. Then the branching
killed Brownian motion with drift is also a branching Markov process with spatial motion
(ξt, P−ρ

x ), branching rate β and offspring distribution {pk:k ∈N}. Let Ñ−ρ
t be the set of particles

alive at time t of the branching killed Brownian motion. It is well known that, for any [0,1]-
valued Borel function h, the function

uh(x, t) = 1 −Ex

⎛⎜⎝ ∏
v∈Ñ−ρ

t

h(X−ρ
v (t))

⎞⎟⎠ (2.6)

is the unique positive locally bounded solution to

uh(x, t) = E−ρ
x (h(Bt), t < τ0) − E−ρ

x

(∫ t

0
	(uh(Bs, t − s))ds, t < τ0

)
, (2.7)

where the function 	 is given as in (1.2) (see, for example, [16, (4.8), p. 102]). Now we check

that the unique solution is given by E−ρ
x

(
h(Bt)e

− ∫ t
0

	(uh(Bs,t−s))
uh(Bs,t−s) ds

, t < τ0

)
. For 0 ≤ s ≤ t, define

As,t = −
∫ t

s

	(uh(Br, t − r))

uh(Br, t − r)
dr.

It is elementary to check that

eA0,t = 1 −
∫ t

0
eAs,t

	(uh(Bs, t − s))

uh(Bs, t − s)
ds.

Hence we have

E−ρ
x

(
eA0,t h(Bt), t < τ0

)
(2.8)

= E−ρ
x (h(Bt), t < τ0) − E−ρ

x

(
h(Bt)

∫ t

0
eAs,t

	(uh(Bs, t − s))

uh(Bs, t − s)
ds, t < τ0

)
.
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Now using the Markov property and the fact that

As,t =
∫ t−s

0

	(uh(Br+s, t − s − r))

uh(Br+s, t − s − r)
dr,

equation (2.8) says that E−ρ
x

(
h(Bt)e

− ∫ t
0

	(uh(Bs,t−s))
uh(Bs,t−s) ds

, t < τ0

)
satisfies (2.7). Thus we have

uh(x, t) = E−ρ
x

(
h(Bt)e

− ∫ t
0

	(uh(Bs,t−s))
uh(Bs,t−s) ds

, t < τ0

)
(2.9)

= e−αtE−ρ
x

(
h(Bt)e

− ∫ t
0 ϕ(uh(Bs,t−s))ds, t < τ0

)
.

By the Markov property, the function

u(x, t) := Px (̃ζ−ρ > t) (2.10)

satisfies u(x, t) = 1 −Ex(
∏

v∈Ñ−ρ
t

u(X−ρ
v (s), t − s)). By taking s = t in (2.8), we get that the

function u defined in (2.10) has the representation (2.9) with h(x) = 1{x>0}. By a similar
argument, we can get that the function

Qz(x, t) := Px(M̃−ρ
t > z), x, t > 0, (2.11)

has the representation (2.9) with h(x) = 1{x>z}.
Recall that ϕ is defined in (1.2). The next simple result will be used in the proofs of our

main results.

Lemma 7. The function ϕ(u) is increasing in u ∈ [0, 1]. Moreover, under (1.4), for any c > 0,
we have ∫ ∞

0
ϕ
(
e−ct) dt < ∞.

Proof. By the definition of ϕ,

β−1ϕ(u) =
∑∞

k=0 pk(1 − u)k − (1 − u)

u
−
(

1 −
∞∑

k=0

kpk

)

=
∞∑

�=0

⎛⎝ ∞∑
k=�+1

pk

⎞⎠−
∞∑

k=1

pk

k−1∑
�=0

(1 − u)� =
∞∑

�=0

⎛⎝ ∞∑
k=�+1

pk

⎞⎠(1 − (1 − u)�
)

.

Therefore, ϕ is increasing in u. Combining the monotonicity of ϕ and (1.5), we have∫ ∞

0
ϕ(Csube−αt)dt ≤

∫ ∞

0
ϕ(g(t))dt < ∞.

Setting N := − 1
α

log Csub, then for any c > 0,∫ ∞

0
ϕ
(
e−ct) dt = α

c

∫ ∞

0
ϕ
(
e−αt) dt ≤ α

c

∫ N

0
ϕ(1)dt + α

c

∫ ∞

0
ϕ(e−α(t−N))dt

= α

c
Nϕ(1) + α

c

∫ ∞

0
ϕ(Csube−αt)dt < ∞.

�

https://doi.org/10.1017/apr.2025.17 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2025.17


Subcritical branching killed Brownian motion with drift 13

3. Proofs of Theorems 1 and 3

In this section, we prove Theorems 1 and 3 by establishing some upper and lower bounds
for the functions u(t,x) and Qz(x, t) defined in (2.10) and (2.11), respectively. It is easy to see
that

Q0(x, t) = Px
(
M̃−ρ

t > 0
)= Px

(̃
ζ−ρ > t

)= u(x, t). (3.1)

We first estimate Q√
tz−ρt(x, t) and u(x,t) from below. We treat the cases ρ = 0 and ρ < 0

together since it turns out that branching and spatial motion are nearly independent in these
two cases.

Lemma 8. Suppose that x > 0 and ρ ≤ 0.

(i) If ρ = 0, then for any z ≥ 0,

lim inf
t→∞

√
teαtQ√

tz(x, t) ≥
√

2

π
Csubxe− z2

2 .

(ii) If ρ < 0, then
lim inf

t→∞ eαtu(x, t) ≥ Csub
(
1 − e2ρx),

and for any z ∈R,

lim inf
t→∞ eαtQ√

tz−ρt(x, t) ≥ Csub(1 − e2ρx)√
2π

∫ ∞

z
e− y2

2 dy.

Proof. At the end of the first paragraph of Section 2.2, we have shown that Qz(x, t) defined
in (2.11) admits the following expression:

Qz(x, t) = e−αtE−ρ
x

(
1{τ0>t,Bt>z}e− ∫ t

0 ϕ(Qz(Bs,t−s))ds
)

. (3.2)

Since ζ̃ ≤ ζ , we have that

Qz(x, t) ≤ Px(ζ > t) = g(t), x, t > 0, z ≥ 0. (3.3)

Thus by Lemma 7,

Qz(x, t) ≥ e−αtE−ρ
x

(
1{τ0>t,Bt>z}e− ∫ t

0 ϕ(g(t−s))ds
)

= e− ∫ t
0 ϕ(g(s))dse−αtP−ρ

x (τ0 > t, Bt > z)

≥ Csube−αtP−ρ
x (τ0 > t, Bt > z),

where in the last inequality we used (1.6). Recalling (3.1) and using Lemma 1 with z replaced
by 0 and

√
tz − ρt, we get the desired result. �

Lemma 9. Assume that ρ = 0 and x > 0. Then for any z ≥ 0, we have that

lim sup
t→∞

√
teαtQ√

tz(x, t) ≤
√

2

π
Csubxe− z2

2 .
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Proof. For any y ≥ x,

Qz(y, t) = Py

(
∃u ∈ Nt s.t. min

s≤t
X−ρ

u (s) > 0, X−ρ
u (t) > z

)
(3.4)

≥ Py

(
∃u ∈ Nt s.t. min

s≤t
X−ρ

u (s) > y − x, X−ρ
u (t) > z + y − x

)
= Px

(
∃u ∈ Nt s.t. min

s≤t
X−ρ

u (s) > 0, X−ρ
u (t) > z

)
= Qz(x, t),

which implies that Qz(x, t) is increasing in x. Fix an N > 0. For t ≥ N, by (3.4),

Q√
tz(x, t) ≤ e−αtEx

(
1{τ0>t,Bt>

√
tz}e

− ∫ t
t−N ϕ(Q√

tz(Bs,t−s))ds
)

(3.5)

≤ e−αtEx

(
1{τ0>t,Bt>

√
tz}e

− ∫ t
t−N ϕ(Q√

tz( infr∈[t−N,t] Br,t−s))ds
)

= e−αtEx

(
1{τ0>t,Bt>

√
tz}e

− ∫ N
0 ϕ(Q√

tz( infr∈[t−N,t] Br,s))ds
)

.

Take a γ ∈ (0, 1
2 ) and define

I1(t): = Ex

(
1{τ0>t,Bt>

√
tz,infr∈[t−N,t] Br≥√

tz+tγ }e
− ∫ N

0 ϕ(Q√
tz( infr∈[t−N,t] Br,s))ds

)
,

I2(t): = Ex

(
1{τ0>t,Bt>

√
tz,infr∈[t−N,t] Br<

√
tz+tγ }e

− ∫ N
0 ϕ(Q√

tz( infr∈[t−N,t] Br,s))ds
)

.

Then Q√
tz(x, t) ≤ e−αt(I1(t) + I2(t)). Since Qz(x, t) is increasing in x, we have

I1(t) ≤e− ∫ N
0 ϕ(Q√

tz(
√

tz+tγ, s))dsPx(τ0 > t, Bt >
√

tz). (3.6)

Set M̃s:= M̃0
s , Ms:= M0

s and X0
u(r):= Xu(r) for simplicity. For any s ≤ N, we have

Q√
tz(

√
tz + tγ , s) ≥ P√

tz+tγ (M̃s >
√

tz, inf
r≤s

inf
u∈Nr

Xu(r) > 0)

= P√
tz+tγ (Ms >

√
tz) − P√

tz+tγ (Ms >
√

tz, inf
r≤s

inf
u∈Nr

Xu(r) ≤ 0)

≥ P0(Ms > −tγ ) − P0( inf
r≤s

inf
u∈Nr

Xu(r) ≤ −(
√

tz + tγ ))

= P0(Ms > −tγ ) − P0( max
r≤s

Mr ≥ √
tz + tγ ).

According to (2.2),

P0(Ms > −tγ ) ≥ P0(ζ > s, Ms > −tγ ) = P0(ζ > s) − P0(ζ > s, Ms ≤ −tγ ) (3.7)

≥ P0(ζ > s) − P0

⎛⎝∑
u∈Ns

1{Xu(s)≤t−γ } ≥ 1

⎞⎠
≥ P0(ζ > s) − e−αsP0(Bs ≤ −tγ ).

Therefore, for any fixed s ≤ N, we get

Q√
tz(

√
tz + tγ, s) ≥ g(s) − e−αsP0(Bs ≤ −tγ ) − P0( max

r≤s
Mr ≥ √

tz + tγ ).
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Plugging this into (3.6) and applying the dominated convergence theorem, we get

lim sup
t→∞

I1(t)

Px(τ0 > t, Bt >
√

tz)

≤ lim sup
t→∞

exp

{
−
∫ N

0
ϕ

((
g(s) − e−αsP0(Bs ≤ −tγ ) − P0( max

r≤s
Mr ≥ √

tz + tγ )
)

+

)
ds

}
= e− ∫ N

0 ϕ(g(s))ds.

Letting N → ∞, we get

lim sup
N→∞

lim sup
t→∞

I1(t)

Px(τ0 > t, Bt >
√

tz)
≤ e− ∫∞

0 ϕ(g(s))ds = Csub < ∞.

Therefore, applying Lemma 1(i), we obtain that

lim sup
N→∞

lim sup
t→∞

√
tI1(t) ≤

√
2

π
Csubxe−z2/2. (3.8)

Next, we show that limt→∞
√

tI2(t) = 0. For δ > 0, it holds that

I2(t) ≤ Px(τ0 > t, Bt >
√

tz, inf
r∈[t−N,t]

Br <
√

tz + tγ ) (3.9)

≤ Px
(
τ0 > t,

√
tz < Bt <

√
t(z + δ)

)
+ Px

(
Bt ≥ √

t(z + δ), inf
r∈[t−N,t]

Br <
√

tz + tγ
)

.

Note that e−u(1 − e−x) ≤ x for all u, x > 0. Thus by (2.1), we get

Px
(
τ0 > t,

√
tz < Bt <

√
t(z + δ)

)= EB
x

(
x

Bt
1{√tz<Bt<

√
t(z+δ)}

)
(3.10)

=
∫ √

t(z+δ)

√
tz

1√
2π t

e− (y−x)2

2t

(
1 − e− 2xy

t

)
dy ≤ δ√

2π

2x(z + δ)√
t

.

For any t ≥ N, by the reflection principle, we have

Px

(
Bt ≥ √

t(z + δ), inf
r∈[t−N,t]

Br <
√

tz + tγ
)

(3.11)

≤ P0

(
inf

r∈[0,N]
Br < −δ

√
t + tγ

)
= P0

(|BN | > δ
√

t − tγ
)

.

Combining (3.9), (3.10) and (3.11), letting t → ∞ first and then δ → 0, we get

lim
t→∞

√
tI2(t) = 0.

Combining this with (3.5) and (3.8), we get the desired assertion. �
Lemma 10. Assume that x > 0 and ρ < 0.

(i) It holds that

lim sup
t→∞

eαtu(x, t) ≤ Csub(1 − e2ρx).
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(ii) For any z ∈R, we have

lim sup
t→∞

eαtQ√
tz−ρt(x, t) ≤ Csub(1 − e2ρx)√

2π

∫ ∞

z
e− y2

2 dy.

Proof. We will prove (i) and (ii) in one stroke. For (i) we put zt = 0 and for (ii) we put
zt = √

tz − ρt. Then taking z = zt in (3.2), we get

Qzt (x, t) ≤ e−αtE−ρ
x

(
1{τ0>t,Bt>zt}e− ∫ t

t−N ϕ(Qzt (Bs,t−s))ds
)

(3.12)

≤ e−αtE−ρ
x

(
1{τ0>t,Bt>zt}e− ∫ N

0 ϕ(Qzt ( infr∈[t−N,t] Br,s))ds
)

.

Take a γ ∈ (0, 1
2 ) and define

C1(t):= E−ρ
x

(
1{τ0>t,Bt>zt,infr∈[t−N,t] Br≥zt+tγ }e− ∫ N

0 ϕ(Qzt ( infr∈[t−N,t] Br,s))ds
)

,

C2(t):= E−ρ
x

(
1{τ0>t,Bt>zt,infr∈[t−N,t] Br<zt+tγ }e− ∫ N

0 ϕ(Qzt ( infr∈[t−N,t] Br,s))ds
)

.

Then Qzt (x, t) ≤ e−αt(C1(t) + C2(t)). Using (3.4), we have

C1(t) ≤e− ∫ N
0 ϕ(Qzt (zt+tγ ,s))dsP−ρ

x (τ0 > t, Bt > zt). (3.13)

For any s ≤ N, similarly to (3.7), for t large enough such that zt ≥ 0, we have

Qzt (zt + tγ , s) ≥ Pzt+tγ (M̃−ρ
s > zt, inf

r≤s
inf

u∈Nr
X−ρ

u (r) > 0)

= Pzt+tγ (M−ρ
s > zt) − Pzt+tγ (M−ρ

s > zt, inf
r≤s

inf
u∈Nr

X−ρ
u (r) ≤ 0)

≥ P0(M−ρ
s > −tγ ) − P0( inf

r≤s
inf

u∈Nr
X−ρ

u (r) ≤ −(zt + tγ ))

≥ P0(Ms > −tγ ) − P0( max
r≤s

Mρ
r ≥ tγ ),

where the last inequality follows from M−ρ
s ≥ Ms and zt ≥ 0. Combining this with (3.7), we

get

Qzt (zt + tγ , s) ≥ g(s) − e−αsP0(Bs ≤ −tγ ) − P0( max
r≤s

Mρ
r ≥ tγ ).

Letting N → ∞ in (3.13) and combining the resulting conclusion with the above, we get

lim sup
N→∞

lim sup
t→∞

C1(t)

P−ρ
x (τ0 > t, Bt > zt)

≤ e− ∫∞
0 ϕ(g(s))ds = Csub.

Applying Lemma 1(ii), we get that for zt = 0,

lim sup
N→∞

lim sup
t→∞

C1(t) ≤ Csub(1 − e2ρx), (3.14)

and for zt = √
tz − ρt,

lim sup
N→∞

lim sup
t→∞

C1(t) ≤ Csub(1 − e2ρx)√
2π

∫ ∞

z
e− y2

2 dy. (3.15)
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Next, we show that limt→∞ C2(t) = 0. For δ > 0, we have

C2(t) ≤ P−ρ
x (τ0 > t, Bt > zt, inf

r∈[t−N,t]
Br < zt + tγ )

≤ P−ρ
x (zt < Bt < zt + √

tδ)

+ P−ρ
x (Bt ≥ zt + √

tδ, inf
r∈[t−N,t]

Br < zt + tγ ).

Since the density of Bt under P−ρ
x is equal to 1√

2π t
e− (y−x+ρt)2

2t ≤ 1√
2π t

, we have

P−ρ
x (zt < Bt < zt + √

tδ) ≤
∫ zt+√

tδ

zt

1√
2π t

dy = δ√
2π

.

Moreover, for any fixed N > 0, similarly to (3.11), we have, for t ≥ N,

P−ρ
x (Bt ≥ zt + √

tδ, inf
r∈[t−N,t]

Br < zt + tγ ) ≤ P0
(|BN | > δ

√
t − tγ − Nρ

)
.

Letting t → ∞ first and then δ → 0, we get that, for any ρ < 0, limt→∞ C2(t) = 0. Combining
this with (3.12), (3.14) and (3.15), we get the desired assertion. �

Now we consider the asymptotic behavior of Qz(x, t) as t → ∞ for ρ > 0. Fix an N > 0 and
define

f z
N(y):= E−ρ

y

(
1{τ0>N,BN>z}e− ∫ N

0 ϕ(Qz(Bs,N−s))ds
)
, y > 0, z ≥ 0.

Obviously, f z
N is a bounded function on (0, ∞). Combining with (3.2), we easily see that

f z
N(y) = eαN

Py
(
M̃−ρ

N > z
)
, (3.16)

which implies that f z
N is increasing with respect to y.

Lemma 11. Assume that ρ > 0, x > 0 and z ≥ 0. It holds that

lim
t→∞ t3/2e

ρ2

2 tE−ρ
x

(
1{τ0>t,Bt>z}e− ∫ t

t−N ϕ(Qz(Bs,t−s))ds
)

=
√

2

π
xeρxe

(
α+ ρ2

2

)
N
∫ ∞

0
Py

(
M̃−ρ

N > z
)

ye−ρydy.

Proof. By the Markov property,

E−ρ
x

(
1{τ0>t,Bt>z}e− ∫ t

t−N ϕ(Qz(Bs,t−s))ds
)

= E−ρ
x

(
1{τ0>t−N}E−ρ

Bt−N

(
1{τ0>N,BN>z}e− ∫ N

0 ϕ(Qz(Bs,N−s))ds
))

= E−ρ
x

(
1{τ0>t−N} f z

N(Bt−N)
)= E−ρ

x

(
f z
N(Bt−N)|τ0 > t − N

)
P−ρ

x (τ0 > t − N).

Since f z
N is increasing and bounded, it is almost everywhere continuous. Then applying

Lemma 1(iii), we get that

lim
t→∞ t3/2e

ρ2

2 (t−N)E−ρ
x

(
f z
N(Bt−N)|τ0 > t − N

)
P−ρ

x (τ0 > t − N)

= ρ2
∫ ∞

0
f z
N(y)ye−ρydy ×

√
2

π
xρ−2eρx =

√
2

π
xeρx

∫ ∞

0
f z
N(y)ye−ρydy,
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which implies the desired result together with (3.16). �
Proofs of Theorem 1 and Theorem 3. Parts (i) and (ii) of both Theorem 1 and

Theorem 3 follow directly from Lemmas 8, 9, 10 and 2. So we only need to prove part (iii) of
both theorems. By (3.1), it suffices to prove (iii) of Theorem 3. Fix ρ > 0, N > 0 and z ≥ 0. By
(3.2), we have, for t ≥ N,

Qz(x, t) = e−αtE−ρ
x

(
1{τ0>t,Bt>z}e− ∫ t

0 ϕ(Qz(Bs,t−s))ds
)

(3.17)

≤ e−αtE−ρ
x

(
1{τ0>t,Bt>z}e− ∫ t

t−N ϕ(Qz(Bs,t−s))ds
)

.

Applying Lemma 11, we get

lim sup
t→∞

t3/2e

(
α+ ρ2

2

)
t
Qz(x, t) (3.18)

≤
√

2

π
xeρx lim inf

N→∞ e

(
α+ ρ2

2

)
N
∫ ∞

0
Py

(
M̃−ρ

N > z
)

ye−ρydy.

It follows from (3.3) that

Qz(x, t) ≥ e−αtE−ρ
x

(
1{τ0>t,Bt>z}e− ∫ t

t−N ϕ(Qz(Bs,t−s))ds
)

e− ∫ t−N
0 ϕ(g(t−s))ds. (3.19)

Recall that the moment condition (1.4) is equivalent to (1.7), which implies that

1 ≥ e− ∫ t−N
0 ϕ(g(t−s))ds = e− ∫ t

N ϕ(g(s))ds ≥ e− ∫∞
N ϕ(g(s))ds N→∞−→ 1.

Using Lemma 11 again, we get

lim inf
t→∞ t3/2e

(
α+ ρ2

2

)
t
Qz(x, t) (3.20)

≥ lim sup
N→∞

e− ∫∞
N ϕ(g(s))ds

√
2

π
xeρxe

(
α+ ρ2

2

)
N
∫ ∞

0
Py

(
M̃−ρ

N > z
)

ye−ρydy

=
√

2

π
xeρx lim sup

N→∞
e

(
α+ ρ2

2

)
N
∫ ∞

0
Py

(
M̃−ρ

N > z
)

ye−ρydy.

Combining (3.18) and (3.20), we get

lim
t→∞ t3/2e

(
α+ ρ2

2

)
t
Qz(x, t) (3.21)

=
√

2

π
xeρx lim

N→∞ e

(
α+ ρ2

2

)
N
∫ ∞

0
Py

(
M̃−ρ

N > z
)

ye−ρydy =
√

2

π
xeρxCz(ρ),

where Cz(ρ):= limN→∞e

(
α+ ρ2

2

)
N ∫∞

0 Py

(̃
M−ρ

N > z
)

ye−ρydy. Now we show that Cz(ρ) ∈
(0, ∞). First, applying (3.17), we get

Qz(x, t) ≤ e−αtP−ρ
x (τ0 > t, Bt > z) .
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Combining this with Lemma 1, we get that

lim sup
t→∞

t
3
2 e

(
α+ ρ2

2

)
t
Qz(x, t) ≤

√
2

π
xeρx

∫ ∞

z
ye−ρydy. (3.22)

Therefore, Cz(ρ) ≤ ∫∞
z ye−ρydy < ∞. Next, by (3.3), we have

Qz(x, t) ≥ e− ∫ t
0 ϕ(g(s))dse−αtP−ρ

x (τ0 > t, Bt > z) (3.23)

≥ Csube−αtP−ρ
x (τ0 > t, Bt > z) ,

where the last inequality follows from (1.6). Using Lemma 1 (iii) again, we get

lim inf
t→∞ t

3
2 e

(
α+ ρ2

2

)
t
Qz(x, t) ≥ Csub

√
2

π
xeρx

∫ ∞

z
ye−ρydy. (3.24)

Therefore, we see that

Cz(ρ) ≥ Csub

∫ ∞

z
ye−ρydy > 0.

Combining (3.21) and Lemma 2, we get (1.13).
Proof of (1.12). First using Theorem 1(iii), and then Lemma 11 and (3.19) with N = 1 and

z = 0, we see that

C0(ρ) =
√

π

2

1

xeρx
lim

t→∞ t
3
2 e

(
α+ ρ2

2

)
t
Q0(x, t)

≥
√

π

2

1

xeρx
lim

t→∞ t
3
2 e

ρ2

2 tE−ρ
x

(
1{τ0>t}e− ∫ t

t−1 ϕ(Qz(Bs,t−s))ds
)

e− ∫ t
1 ϕ(g(s))ds

= e− ∫∞
1 ϕ(g(s))dseα+ ρ2

2

∫ ∞

0
Py

(
M̃−ρ

1 > 0
)

ye−ρydy

= e− ∫∞
1 ϕ(g(s))dse

ρ2

2

∫ ∞

0
E−ρ

y

(
1{τ0>1}e− ∫ 1

0 ϕ(Q0(Bs,1−s))ds
)

ye−ρydy,

where in the last equality we used (3.2). Since Q0(Bs, 1 − s) ≤ g(1 − s) by the definition of Q,
applying the inequality ex ≥ 1 + x, x ≥ 0, we conclude from the display above that

C0(ρ) ≥ e− ∫∞
0 ϕ(g(s))dse

ρ2

2

∫ ∞

0
E−ρ

y

(
1{τ0>1}e

∫ 1
0 ϕ(g(1−s))−ϕ(Q0(Bs,1−s))ds

)
ye−ρydy

≥ Csube
ρ2

2

∫ ∞

0
E−ρ

y

(
1 +

∫ 1

0
ϕ(g(1 − s)) − ϕ(Q0(Bs, 1 − s))ds, τ0 > 1

)
ye−ρydy

> Csube
ρ2

2

∫ ∞

0
P−ρ

y (τ0 > 1) ye−ρydy. (3.25)
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Now combining (1.11), (2.1) and (3.25), we obtain that

C0(ρ) > Csub

∫ ∞

0
Ey
(
e−ρB1 1{τ0>1}

)
ydy = Csub

∫ ∞

0
EB

y

(
e−ρB1

B1

)
y2dy

= Csub

∫ ∞

0

∫ ∞

0

e−ρa

√
2π

ye− (a−y)2

2

(
1 − e−2ay

)
dyda

= Csub

∫ ∞

0
e−ρada

∫ ∞

0

y√
2π

(
e− (a−y)2

2 − e− (a+y)2

2

)
dy.

Noticing that ∫ ∞

0

y√
2π

(
e− (a−y)2

2 − e− (a+y)2

2

)
dy =

∫ ∞

−∞
y√
2π

e− (a−y)2

2 dy = a,

we obtain that

C0(ρ) > Csub

∫ ∞

0
ae−ρada. (3.26)

Therefore, combining (1.3), Theorem 1(iii) and Lemma 1(iii), we get (1.12).
Proof of Corollary 1. We only give the proof of (iii). Taking N = 0 in (3.17), by (3.23) with

z = 0, we have

Px

(
M̃−ρ

t > z
∣∣̃ζ−ρ > t

)
= Qz(x, t)

u(x, t)

≤ P−ρ
x (τ0 > t, Bt > z)

CsubP−ρ
x (τ0 > t)

= 1

Csub
P−ρ

x

(
Bt > z

∣∣τ0 > t
)

.

By Lemma 1(iii), the tightness of M̃−ρ
t follows from the tightness of Bt under P−ρ

x
(·∣∣τ0 > t

)
.

Therefore, the weak convergence of M̃−ρ
t is a consequence of the existence of Cz(ρ) in

Theorem 3(iii), which implies the desired result.

4. Proof of Theorem 2

Proof of Theorem 2. For x, y > 0, define v(x, y):= Px(M̃−ρ > y). We divide the proof into
three steps. In Step 1, we use the Feynman–Kac formula and the strong Markov property to
rewrite v(x,y) as the product of two factors A1(x, y) and A2(y); see (4.3) below. In Steps 2 and
3, we study the asymptotic behavior of A1(x, y) and A2(y) respectively as y → ∞. Combining
these results, we arrive at the assertion of the theorem.

Step 1: For 0 < x < y, comparing the first branching time with τy, we have

v(x, y) =
∫ ∞

0
βe−βsP−ρ

x (τy < τ0, τy ≤ s)ds

+
∫ ∞

0
βe−βsE−ρ

x

((
1 −

∞∑
k=0

pk
(
1 − v(Bs, y)

)k)1{τy∧τ0>s}
)

= E−ρ
x

(
e−βτy 1{τy<τ0}

)+
∫ ∞

0
βe−βsE−ρ

x

((
1 −

∞∑
k=0

pk (1 − v(Bs, y))k
)

1{τy∧τ0>s}
)

ds.
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By [8, Lemma 4.1], the above equation is equivalent to

v(x, y) + β

∫ ∞

0
E−ρ

x

(
v(Bs, y)1{τy∧τ0>s}

)
ds

= P−ρ
x

(
τy < τ0

)+ β

∫ ∞

0
E−ρ

x

((
1 −

∞∑
k=0

pk (1 − v(Bs, y))k
)

1{τy∧τ0>s}
)

ds,

which is also equivalent to

v(x, y) = P−ρ
x

(
τy < τ0

)
− E−ρ

x

( ∫ τy∧τ0

0
	(v(Bs, y))ds

)
,

where 	 is defined in (1.2). By repeating the argument leading to (2.9), we get that

v(x, y) = E−ρ
x

(
1{τy<τ0}e−ατy−

∫ τy
0 ϕ(v(Bs,y))ds

)
(4.1)

= x

y
eρ(x−y)EB

x

(
e
−
(

α+ ρ2

2

)
τy−

∫ τy
0 ϕ(v(Bs,y))ds)

,

where the last equality follows from Lemma 5. Combining the first equality in (4.1) and (2.4)
(with h = 0), we have that

v(x, y) ≤ E−ρ
x

(
e−ατy

)= eρ(x−y)Ex

(
e−(α+ ρ2

2 )τy
)

= e

(
ρ+

√
2α+ρ2

)
(x−y)

. (4.2)

Fix a γ ∈ (0, 1). By the strong Markov property of three-dimensional Bessel processes, we
have

v(x, y) =x

y
eρ(x−y)EB

x

⎛⎝e
−
(

α+ ρ2

2

)
τ(y−yγ )−

∫ τ(y−yγ )
0 ϕ(v(Bs,y))ds

⎞⎠ (4.3)

× EB
y−yγ

⎛⎝e
−
(

α+ ρ2

2

)
τy−

∫ τy
0 ϕ(v(Bs,y))ds

⎞⎠
= :

x

y
eρ(x−y)A1(x, y)A2(y),

where

A1(x, y):= EB
x

⎛⎝e
−
(

α+ ρ2

2

)
τ(y−yγ )−

∫ τ(y−yγ )
0 ϕ(v(Bs,y))ds

⎞⎠
and

A2(y):= EB
y−yγ

⎛⎝e
−
(

α+ ρ2

2

)
τy−

∫ τy
0 ϕ(v(Bs,y))ds

⎞⎠ .
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Step 2: In this step, we study the asymptotic behavior of A1(x, y) as y → ∞. By Lemma 5
with a = 0, ρ replaced by −√2α + ρ2, y replaced by y − yγ , and h = ϕ ◦ v(·, y), we get

A1(x, y) = y − yγ

x
e−

√
2α+ρ2(y−yγ −x)E

√
2α+ρ2

x

(
1{τ(y−yγ )<τ0}e− ∫ τ(y−yγ )

0 ϕ(v(Bs,y))ds
)

=:
y − yγ

x
e−

√
2α+ρ2(y−yγ −x)Â1(x, y).

By the inequality 1 − e−|x| ≤ |x|, we obtain that

0 ≤ P
√

2α+ρ2

x
(
τ(y−yγ ) < τ0

)− Â1(x, y) (4.4)

= E
√

2α+ρ2

x

(
1{τ(y−yγ )<τ0}

(
1 − e− ∫ τ(y−yγ )

0 ϕ(v(Bs,y))ds
))

≤ E
√

2α+ρ2

x

(∫ τ(y−yγ )

0
ϕ(v(Bs, y))ds

)
.

Now set y∗(x):= inf{w ≥ y − yγ :w − x ∈N} to be the smallest number w greater than or equal
to y − yγ such that w − x is a positive integer and c∗:= ρ +√

2α + ρ2 > 0. By (4.2),

E
√

2α+ρ2

x

(∫ τ(y−yγ )

0
ϕ(v(Bs, y))ds

)
≤ E

√
2α+ρ2

x

(∫ τy∗(x)

0
ϕ(ec∗(Bs−y))ds

)

=
y∗(x)−x−1∑

k=0

E
√

2α+ρ2

x

(∫ τx+k+1

τx+k

ϕ(ec∗(Bs−y))ds

)

≤
y∗(x)−x−1∑

k=0

E
√

2α+ρ2

x (τx+k+1 − τx+k) ϕ(ec∗(x+k+1−y))

= E
√

2α+ρ2

0 (τ1)

y∗(x)−x∑
k=1

ϕ
(

e−c∗(y−1−y∗(x)+k)
)

.

According to the definition of y∗(x), for y large enough,

y − 1 − y∗(x) ≥ y − 1 − (y − yγ + 1) = yγ − 2.

Therefore, when y is large enough so that yγ − 2 ≥ yγ /2, by Lemma 7, we have

E
√

2α+ρ2

x

(∫ τ(y−yγ )

0
ϕ(v(Bs, y))ds

)
≤ E

√
2α+ρ2

0 (τ1)

∞∑
k=1

ϕ
(

e−c∗(yγ /2+k)
)

≤ E
√

2α+ρ2

0 (τ1)

∫ ∞

0
ϕ
(

e−c∗(yγ /2+z)
)

dz

= E
√

2α+ρ2

0 (τ1)

∫ ∞

yγ /2
ϕ
(
e−c∗z) dz

y→∞−→ 0.

Combining the above limit with (4.4), it holds that

lim
y→∞

(
P
√

2α+ρ2

x
(
τ(y−yγ ) < τ0

)− Â1(x, y)

)
= 0.
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Combining (2.5) and the definition of Â1, we conclude that

lim
y→∞

A1(x, y)

y
e
√

2α+ρ2(y−yγ ) = e
√

2α+ρ2x

x
lim

y→∞ P
√

2α+ρ2

x
(
τ(y−yγ ) < τ0

)
(4.5)

= 2

x
sinh

(
x
√

2α + ρ2

)
.

Step 3: In this step, we study the limit behavior for A2. We define v(x, y) = 0 for x ≤ 0. By
Lemma 5, we have

A2(y) = ye−
√

2α+ρ2yγ

y − yγ
E

√
2α+ρ2

y−yγ

(
1{τy<τ0}e− ∫ τy

0 ϕ(v(Bs,y))ds
)

(4.6)

= ye−
√

2α+ρ2yγ

y − yγ

(
E

√
2α+ρ2

y−yγ

(
e− ∫ τy

0 ϕ(v(Bs,y))ds
)

− E
√

2α+ρ2

y−yγ

(
1{τy≥τ0}e− ∫ τy

0 ϕ(v(Bs,y))ds
))

,

where, under P
√

2α+ρ2

y−yγ , B is a Brownian motion with drift
√

2α + ρ2 starting from y − yγ . We
claim that

lim
y→∞ E

√
2α+ρ2

y−yγ

(
e− ∫ τy

0 ϕ(v(Bs,y))ds
)

= C∗(ρ) > 0, (4.7)

lim
y→∞ E

√
2α+ρ2

y−yγ

(
1{τy≥τ0}e− ∫ τy

0 ϕ(v(Bs,y))ds
)

= 0. (4.8)

We prove (4.8) first. In fact, by Lemma 5 and 6, we have

E
√

2α+ρ2

y−yγ

(
1{τy≥τ0}e− ∫ τy

0 ϕ(v(Bs,y))ds
)

≤ P
√

2α+ρ2

y−yγ (τy ≥ τ0) = 1 − P
√

2α+ρ2

y−yγ (τy < τ0)

= 1 − y − yγ

y
e−

√
2α+ρ2yγ

EB
y−yγ

(
e− 2α+ρ2

2 τy

)
= 1 − e−

√
2α+ρ2yγ sinh ((y − yγ )

√
2α + ρ2)

sinh (y
√

2α + ρ2)

y→∞−→ 0,

which gives (4.8). To prove (4.7), for any y > 0, define

G(y):= E
√

2α+ρ2

y−yγ

(
e− ∫ τy

0 ϕ(v(Bs,y))ds
)

.

For z > y, by the strong Markov property, we have

G(z) = E
√

2α+ρ2

0

(
e− ∫ τzγ

0 ϕ(v(Bs+z−zγ ,z))ds
)

= E
√

2α+ρ2

0

(
e− ∫ τ(zγ −yγ )

0 ϕ(v(Bs+z−zγ ,z))ds
)

E
√

2α+ρ2

zγ −yγ

(
e− ∫ τzγ

0 ϕ(v(Bs+z−zγ ,z))ds
)

The first term of the above display is dominated by 1 from above, and the second is equal to

E
√

2α+ρ2

0

(
e− ∫ τyγ

0 ϕ(v(Bs+z−yγ ,z))ds
)

. Hence, G(z) is bounded from above by

G(z) ≤ E
√

2α+ρ2

0

(
e− ∫ τyγ

0 ϕ(v(Bs+y−yγ +z−y,y+z−y))ds
)

. (4.9)
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Note that, for w > 0, when x > 0, we have that

v(x + w, y + w) = Px+w(∃ t > 0, u ∈ N−ρ
t s.t. min

s≤t
Xu(s) > 0, Xu(t) > y + w)

≥ Px+w(∃ t > 0, u ∈ N−ρ
t s.t. min

s≤t
Xu(s) > w, Xu(t) > y + w) = v(x, y).

When x ≤ 0, the above inequality holds trivially since v(x, y) = 0. Combining this with (4.9),
we get that

G(z) ≤ E
√

2α+ρ2

0

(
e− ∫ τyγ

0 ϕ(v(Bs+y−yγ ,y))ds
)

= G(y), z > y.

Thus the limit C∗(ρ):= limy→∞ G(y) exists. Combining (4.6), (4.7) and (4.8), we get

lim
y→∞ A2(y)e

√
2α+ρ2yγ = C∗(ρ). (4.10)

It is obvious that C∗(ρ) ∈ [0, 1]. Now we show that C∗(ρ) is positive. Combining the definition
of G, (4.2) and Jensen’s inequality, we get that

G(y) ≥ E
√

2α+ρ2

y−yγ

(
exp

{
−
∫ τy

0
ϕ

(
e

(
ρ+

√
2α+ρ2

)
(Bs−y)

)
ds

})
= E

−
√

2α+ρ2

yγ

(
exp

{
−
∫ τ0

0
ϕ

(
e
−
(
ρ+

√
2α+ρ2

)
Bs

)
ds

})
≥ exp

{
−E

−
√

2α+ρ2

yγ

(∫ τ0

0
ϕ

(
e
−
(
ρ+

√
2α+ρ2

)
Bs

)
ds

)}
. (4.11)

Combining Lemma 1(ii) and [4, Proposition 17(i) and (ii), p. 172], we know that the

renewal functions of the ladder height process of B under P
−
√

2α+ρ2

0 and P
√

2α+ρ2

0 are

equal to K1(1 − e−2
√

2α+ρ2x) and K2x for some constants K1, K2 > 0, respectively. Therefore,
combining (4.11) and [4, Proposition 20, p. 176], there exists a constant K > 0 such that

C∗(ρ) = lim
y→∞ G(y) ≥ lim

y→∞exp

{
−K
∫ ∞

0
e−2

√
2α+ρ2zdz

∫ yγ

0
ϕ
(
e−(ρ+

√
2α+ρ2)(yγ +z−x)

)
dx

}

= lim
y→∞ exp

{
−K

∫ ∞

0
e−2

√
2α+ρ2zdz

∫ yγ +z

z
ϕ
(

e−(ρ+
√

2α+ρ2)x
)

dx

}

≥ exp

{
−K

∫ ∞

0
e−2

√
2α+ρ2zdz

∫ ∞

0
ϕ
(

e−(ρ+
√

2α+ρ2)x
)

dx

}
> 0,

where in the last inequality we used Lemma 7. This implies C∗(ρ) > 0. Combining (4.3), (4.5)
and (4.10), we conclude that

lim
y→∞ e(

√
2α+ρ2+ρ)yv(x, y) = 2C∗(ρ)eρx sinh (x

√
2α + ρ2),

which completes the proof of the theorem.
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