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ABSTRACT

Suppose A is a continuous additive functional of a Brownian
motion. A d-dimensional super-Brownian motion with general
branching rate functional A and general mechanism ψ is con-
structed under a condition on A, which is weaker than the conditions
imposed by Dynkin (Ann. Prob. 1991, 19, 1157–1194; An Introduc-
tion to Branching Measure-Valued Processes; Amer. Math. Soc.:
Providence, RI., 1994).

1. INTRODUCTION AND MAIN RESULT

For every Borel measurable space (E,B(E)), we denote by M(E) the set
of all finite measures on B(E) endowed with the topology of weak convergence.
The expression 〈 f, µ〉 stands for the integral of f with respect to µ and ‖µ‖
means 〈1, µ〉. We write f ∈ B(E) if f is aB(E)-measurable function. Writing f ∈
pB(E)(bB(E)) means that, in addition, f is positive (bounded). We put bpB(E) =
(bB(E) ∩ pB(E)). If E = R

d we simply write B instead of B(Rd ) and M instead
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of M(Rd ). We put f ∈ H if bpB is supported by some interval [0, T ), T > 0.
We will use the symbol

bp→ to denote bounded pointwise convergence. (Recall
that functions converge boundedly pointwise if they are uniformly bounded and
converge pointwise).

Let W := {W, �r,x , r ≥ 0, x ∈ R
d} denote the canonical Brownian mo-

tion in R
d with birth time α. �r,x (α = r, Wα = x) = 1. Set F0

≤r = σ (Ws, s ≤ r );
F0

>r = σ (Ws, s > r ) and F0
∞ = ∨{F0

≤r , r ≥ 0}.
Set S = [0, ∞) × R

d . To every set Q ⊂ S there corresponds the first exit
time τ = inf{t : t ≥ α, (t, Wt ) /∈ Q}. Put (r, x) ∈ Q0 if �r,x {τ > r} = 1. A set
Q ∈ B(S) is called finely open if Q0 = Q. We denote by T the set of all exit times
from finely open sets Q ∈ B(S). Put τ ∈ T , Put C ∈ F0

≥τ if C ∈ F0
∞ and if, for

each r, {C, τ > r} ∈ F0
>r .

Let

ψ(s, x, z) = a(s, x)z + b(s, x)z2 +
∫ ∞

0
(e−uz − 1 + uz)n(s, x, du), s, z

≥ 0, x ∈ R
d , (1)

where a, b are positive measurable functions, n is a kernel from R
d to (0, ∞)

such that for every finite interval �, a(s, x), b(s, x) and
∫ ∞

0 u ∧ u2n(s, x, du) are
positive bounded Borel functions on � × R

d .
Suppose A is a continuous additive functional of W . Fix a measurable space

(�,F). Suppose that to every τ ∈ T there corresponds a random measure Xτ on
S, and to every µ ∈ M(S) there corresponds a probability measure Pµ on (�,F).
According to Ref. (1) X = (Xτ , Pµ; µ ∈ M(S)) is called a super-Brownian motion
with parameters (A, ψ) if the following hold:

1. for every f ∈ H, τ ∈ T and µ ∈ M(S), we have

Pµ exp 〈− f, Xτ 〉 = exp 〈−u(r, ·), µ〉, (2)

where u is the unique bounded solution of the integral equation

u(r, x) + �r,x

∫ τ

r
ψ(s, Ws, u(s, Ws))A(ds)

= �r,x ( f (τ, Wτ )), x ∈ R
d . (3)

2. For n ≥ 2, the joint probability distribution of Xτ1, . . . , Xτn is described
as follows. Let

I = {1, 2, . . . , n}, τI = min{τ1, . . . , τn}, λ = {i : τi = τI }
for every f ∈ H, i = 1, . . . , n,

Pµ exp

{
−

n∑
i=1

〈
fi , Xτi

〉} = exp〈−uI (r, ·), µ〉, (4)
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where the function uI are determined recursively by the integral equa-
tions

uI (r, x) + �r,x

∫ τI

r
ψ(s, Ws, UI (s, Ws))A(ds) = �r,x G I (5)

with G I = [ fλ + uI−λ](τλ, Wτλ
).

Dynkin (Theorem 1.1 in Ref. (2)) showed that if A is a continuous addi-
tive functional of the d-dimensional Brownian motion W satisfying the following
moment conditions

�r,x exp[λA(r, T )] < ∞, for every λ > 0, r < T and x ∈ R
d ; (6)

sup{�r,x A(r, T )] < ∞; r ∈ [L , T ), x ∈ R
d} for every L < T, (7)

then there exists a time-inhomogeneous super-Brownian motion X = (Xτ , Pµ, µ ∈
M(S)) with parameters (A, ψ). But the above conditions (Eqs. (6) and (7)) are very
strong and in many cases we need to consider super-Brownian motions with more
general A. Dynkin (see Theorem 3.4.1 in Ref. (3)) proved the existence of a super-
Brownian motion under conditions:

�r,x A(r, T ) < ∞ for every r < T, x ∈ R
d ; (8)

�r,x A(r, T ) → 0 uniformly in x as r, T → s for every s. (9)

Comparing conditions (6) and (7) with conditions (8) and (9) we conjecture that
conditions (8) is sufficient for the existence of a super-Brownian motion. The
purpose of this paper is to prove that this conjecture is right. Now we state the
main result of this paper.

Theorem 1.1. Let ψ be given by Equation (1). Suppose A is a continuous additive
functional of W satisfying Equation (8). Then there corresponds a super-Brownian
motion with parameters (A, ψ).

Note that our proof also holds if the Brownian motion W is replaced by a
general Markov process ξ , i.e., if A is a continuous additive functional of a time-
inhomogeneous Markov process ξ and satisfies condition (8), then there exists a
superprocess X related to the integral Equation (3) with W replaced by ξ .

2. BASIC INTEGRAL EQUATION

The discussion about solutions of the basic integral Equation (3) plays a
fundamental role in the construction of super-super-Brownian motions. so, we first
investigate the existence, uniqueness and properties of the integral Equation (3).
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For c ∈ pB put

H c(r1, r2) = exp

(
−

∫ r2

r1

c(s, Ws)A(ds)

)
, 0 ≤ r1 ≤ r2. (10)

The main result of this section about the integral Equation (3) is the following
Theorem 2.1.

Theorem 2.1. Under the conditions of Theorem 1.1, the following results hold.

1. (Existence and Uniqueness). For every f ∈ H, there is exactly one
U (A, f ) ∈ H which solves Equation (3). Moreover if f is supported
by [0, T ), then U (A, f ) is also supported by [0, T ).

2. (Continuity). Put BT = B([0, T )) × B. U (A, f ) as a map of bpBT →
bBT is continuous relative to the uniform convergence in bBT .

3. (First Derivative with Respect to a Small Parameter). For every f ∈ H,

λ−1U (A, λ f )
bp−→ �·,·[H a(r, τ ) f (τ, Wτ )] as λ → 0,

where H a is defined by Equation (10).

The main technique used in this paper is that we translate the integral Equa-
tion (3) into the following equivalent equation:

u(r, x) = �r,x [ f (τ, Wτ )H a+λ(r, τ )]

+ �r,x

[ ∫ τ

r
H a+λ(r, s)R(λ, ψ)(s, Ws, u(s, Ws))A(ds)

]
, (11)

where λ(s, x) ∈ pB(S) is a suitably chosen function, R(λ, ψ)(s, x, z) is defined
as

R(λ, ψ)(s, x, z) = [a(s, x) + λ(s, x)]z − ψ(s, x, z), s, z ≥ 0, x ∈ R
d .

We do not directly discuss solutions of the integral Equation (3), but discuss the
equivalent Equation (11). We will see the benefits of discussing solutions of the
integral Equation (11) in the proof of Theorem 2.1 below.

Let us first state two lemmas on the integral Equation (3).

Lemma 2.1. Suppose A(dt) is a nonnegative continuous additive functional of
the Brownian motion W in R

d . Let τ ∈ T , and c, g ∈ bpB(S). Assume that ω ∈
B(S) and F ∈ F0

≥r satisfy

�r,x

∫ τ

r
|ω(s, Ws)|A(ds) < ∞; �r,x |F | < ∞, r ≥ 0, x ∈ R

d .
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Then

g(r, x) = �r,x

[
H c(r, τ )F +

∫ τ

r
H c(r, s)ω(s, Ws)A(ds)

]
(12)

iff

g(r, x) + �r,x

∫ τ

r
(cg)(s, Ws)A(ds) = �r,x

[
F +

∫ τ

r
ω(s, Ws)A(ds)

]
. (13)

Proof: This lemma is taken from Dynkin (1) with a slight modification. The
proof is similar to that of Lemma 2.1 in Ren and Wang (4). We omit the details
here. �

The following lemma is a generalization of Gronwall’s lemma from deter-
ministic time to random time.

Lemma 2.2 (Generalized Gronwall’s lemma). Let c, f and λ belong to pB(s).
If hn ∈ pB(s) satisfy the following conditions:

�r,x

∫ τ

r
(λh0)(s, Ws)A(ds) < ∞,

hn(r, x) ≤ �r,x [H c+λ(r, τ ) f (τ, Wτ )] + q�r,x

∫ τ

r
H c+λ(r, s)A(ds)

+ �r,x

∫ τ

r
H c+λ(r, s)(λhn−1)(s, Ws)A(ds), for r ≥ 0, x ∈ R

d , n ∈ N,

where q is a positive constant. Then

hn(r, x) ≤ �r,x [H c(r, τ ) f (τ, Wτ )] + q�r,x

∫ τ

r
H c(r, s)A(ds)

+ �r,x

∫ τ

r
A(ds)H c+λ(r, s)

∫ s
r λ(t, Wt )A(dt))n−1

(n − 1)!
(λh0)(s, Ws).

(14)

In particular, if h0 = 0 if hn does not depend on n, then, for r ≥ 0, x ∈ R
d ,

hn(r, x) ≤ �r,x [H c(r, τ ) f (τ, Wτ )] + q�r,x

∫ τ

r
H c(r, s)A(ds). (15)
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Proof: By induction in n, we get

hn(r, x) ≤ �r,x

[
H c+λ(r, τ )

n−1∑
i=0

( ∫ τ

r λ(s, Ws)A(ds)
)i

i!
f (τ, Wτ )

]

+ q�r,x

∫ τ

r
A(ds)H c+λ(r, s)

n−1∑
i=0

( ∫ s
r λ(t, Wt )A(dt)

)i

i!

+ �r,x

∫ τ

r
A(ds)H c+λ(r, s)

( ∫ s
r λ(t, Wt )A(dt)

)n−1

(n − 1)!
(λh0)(s, Ws).

�

Clearly, this implies Equation (14). If h0 = 0, Equation (14) is exactly Equa-
tion (15). If hn does not depend on n, letting n → ∞ in inequality (Eq. (14)) and
using the dominated convergence theorem, we get Equation (15).

For 0 < β < 1, let

ψβ(s, x, z) = a(s, x)z +
∫

(β,∞)
(e−uz − 1 + uz)n(s, x, du)

+ 2b(s, x)β−2[e−2 − 1 + βz]; (16)

λβ(s, x) = 2b(s, x)β−1 +
∫

(β,∞)
un(s, x, du); (17)

R(λβ, ψβ)(s, x, z) = [a(s, x) + λβ(s, x)]z − ψβ(s, x, z)

=
∫

(β,∞)
(1 − e−uz)n(s, x, du) + 2b(s, x)β−2(1 − e−βz).

(18)

Then λβ is bounded in [0, T ) × R
d for any T ≥ 0, R(λβ, ψβ)(s, x, z) is increasing

in z, and

0 ≤ R(λβ, ψβ)(s, x, z) ≤ λβ(s, x)z, for x ∈ R
d , s, z ∈ [0, ∞). (19)

Proposition 2.1. For every f ∈ H, there existis a positive solution u(β, f ) of
the Equation (3) with ψ replaced by ψβ, i.e.,

u(β, f )(r, x) + �r,x

∫ τ

r
ψβ(s, Ws, u(β, f )(s, Ws))A(ds) = �r,x (τ, Wτ ).

(20)

Moreover, if f is supported by an interval [0, T ), then u(β, f ) is also supported
by the interval [0, T ).
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Proof: Suppose f is supported by [0, T ). Using Lemma 2.1 with g(r, x) =
u(r, x), c(s, x) = a(s, x) + λβ(s, x), Equation (20) can be rewritten as

u(β, f )(r, x) = �r,x [(H a+λβ (r, τ ) f (τ, Wτ )]

+ �r,x

∫ τ

r
H a+λβ (r, s)R(λβ, ψβ)

× (s, Ws, u(β, f )(s, Ws, ))A(ds). (21)
�

Therefore, we only need to prove that there exists a positive bounded function
u(β, f ), supported by [0, T ), satisfies Equation (21).

Define a sequence un(β, f ) by the recursive formula:

u0(β, f )(r, x) = 0

un(β, f )(r, x) = �r,x [H a+λβ(r, τ ) f (τ, Wτ )]

+ �r,x

∫ τ

r
H a+λβ(r, s)R(λβ, ψβ)(s, Ws, un−1(β, f )

× (s, Ws, ))A(ds), (22)

with r ∈ [0, ∞), x ∈ R
d . By Equation (19),

un((β, f )(r, x) ≤ �r,x [(H a+λβ (r, τ ) f (τ, Wτ )]

+ �r,x

∫ τ

0
H a+λβ (r, s)(λβun−1(β, f )(s, Ws)A(ds).

Using Lemma 2.2 with q = 0, c = a, λ = λβ and hn = un(β, f ), we get

0 ≤ un(β, f )(r, x) ≤ �r,x [H a(r, τ ) f (τ, Wτ )] ≤ ‖ f ‖∞, (23)

where ‖ f ‖∞ = sups≥0,x∈Rd | f (s, x)|. Since R(λβ, ψβ)(s, x, z) is increasing in z,
there exists a function u(β, f ) ∈ bpB(S) such that for all r ∈ [0, ∞), x ∈ R

d ,

un(β, f )(r, x) ↑ u(β, f )(r, x). (24)

Using the monotone convergence theorem, letting n → ∞ in Equation (22), we get
u(β, f ) is a positive bounded solution of Equation (21), and therefore, a solution
of Equation (20). By Equations (23) and (24), u(β, f ) is supported by [0, T ).

Proof of Theorem 2.1:

1. Suppose f is supported by [0, T ). For 0 < β < 1, let ψβ(s, x, z) be
defined by Equation (16), and let u(β, f ) be the solution of Equation (20)
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constructed in Proposition 2.1. Since

|ψ(s, x, z) − ψβ(s, x, z)| ≤
∫

[0,β]
(e−uz − 1 + uz)n(s, x, du)

+ 2b(s, x)β−2

∣∣∣∣12 z2β2− e−βz +1 − βz

∣∣∣∣
≤

∫
[0,β]

1

2
u2z3n(s, x, du) + 1

3
b(s, x)z3β,

We have, for every C ∈ (0, ∞), there exist constants α(β, T, C) → 0
as β → 0 such that

|ψ(s, x, z) − ψβ(s, x, z)| ≤ α(β, T, C), (25)

for all β ∈ (0, 1), x ∈ R
d , 0 ≤ s ≤ T, and 0 ≤ z ≤ C. Let M ≥ 1 be a

constant such that ‖ f ‖∞ ≤ M, and let

λ(s, x) =
[

2b(s, x) +
∫ ∞

0
u ∧ u2n(s, x, du)

]
M ; (26)

R(λ, ψ)(s, x, z) = [a(s, x) + λ(s, x)]z − ψ(s, x, z); (27)

R(λ, ψβ)(s, x, z) = [a(s, x) + λ(s, x)]z − ψβ(s, x, z). (28)

Then,

[R(λ, ψ)(s, x, z)]′z = λ(s, x) − 2b(s, x)z −
∫ ∞

0
u(1 − e−uz)

× n(s, x, du) ≤ λ(s, x).

by Equation (26),

[R(λ, ψ)(s, x, z)]′z = 2b(s, x)(M − z)

+
∫ 1

0
u(Mu − 1 + e−uz)n(s, x, du)

+
∫ ∞

1
u(M − 1 + e−uz)n(s, x, du) ≥ 0.

Therefore, for all x ∈ R
d , 0 ≤ z ≤ M ,

0 ≤ [R(λ, ψ)(s, x, z)]′z ≤ λ(s, x). (29)

Consequently

|R(λ, ψ)(s, x, z1) − R(λ, ψ)(s, x, z2)| ≤ λ(s, x)|z1 − z2|, (30)
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for all x ∈ R
d , s ≥ 0, 0 ≤ z1, z2 ≤ M . Combining Equations (25) and

(30), we get, for x ∈ R
d , 0 ≤ s ≤ T, 0 ≤ z1, z2 ≤ M , and β, β ′ ∈ (0, 1),

|R(λ, ψβ)(s, x, z1) − R(λ, ψβ ′ (s, x, z2)|
≤ |R(λ, ψβ)(s, x, z1) − R(λ, ψ)(s, x, z1)|

+ |R(λ, ψ)(s, x, z1) − R(λ, ψ)(s, x, z2)|
+ |R(λ, ψβ ′ )(s, x, z2) − R(λ, ψ)(s, x, z2)|

≤ |ψ(s, x, z1) − ψβ(s, x, z1)| + |ψ(s, x, z2) − ψβ ′ (s, x, z2)|
+ λ(s, x)|z1 − z2|

≤ α(β, T, M) + α(β ′, T, M) + λ(s, x)|z1 − z2|, (31)

where α(β, T, M), β ∈ (0, 1) are constants satisfying α(β, T, M) → 0,
as β → 0. Using Lemma 2.1 with g = u(β, f ), c = a + λ, F = f (τ, Wτ )
and ω = R(λ, ψβ), Equation (20) can be rewritten as

u(β, f )(r, x) = �r,x [(H a+λ(r, τ ) f (τ, Wr )]

+ �r,x

∫ τ

r
H a+λ(r, s)R(λ, ψβ)(s, Ws, u(β, f )

× (s, Ws))A(ds). (32)

Let hβ,β ′ = |u(β, f ) − u(β ′, f )|. hβ,β ′ is supported by [0, T ). By
Equations (31) and (32) we have

hβ,β ′ ≤ q�r,x

∫ T

r
H c+λ(r, s)A(ds)

+ �r,x

∫ T

r
H c+λ(r, s)(λhβ,β ′ )(s, Ws)A(ds),

where q = α(β, T, M) + α(β ′, T, M). Since the additive function A
satisfies Equation (8) with I = [0, T ), we have

�r,x

∫ T

r
(λhβ,β ′ )(s, Ws)A(ds) < C�r,x A(r, T ) < ∞,

where C is a constant. By Lemma 2.2, hβ,β ′ (r, x) ≤ q�r,x A(r, T ), r ∈
[0, T ), x ∈ R

d . Since‖u(β, f )‖∞ ≤ ‖ f ‖∞ and�r,x A(r, T ) < ∞, there
exists a function U (A, f ) ∈ bpB(S) supported by [0, T ) such that

u(β, f )
bp→ U ( f ) as β → 0.

The dominated convergence theorem implies that U (A, f ) is a bou-
nded positive solution of Equation (3). Since f is supported by [0, T ),
U (A, f ) is also supported by [0, T ).
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The uniqueness can be proved similarly as above. In fact, assume
that u1, u2 ∈ bpB(S) are two solutions of Equation (3), and M ≥ 1 is a
constant such that 0 ≤ u1, u2 ≤ M . Since 0 ≤ ui (r, x) ≤ �r,x f (τ, Xτ ),
i = 1, 2. If f is supported by [0, T ), the u1 and u2 are also supported
by [0, T ). Let λ and R(λ, ψ) be defined as in Equations (26) and (27),
respectively. Then we similarly get

|u1 − u2| ≤ �r,x

∫ T

r
H a+λ(r, s)(λ|u1 − u2|)(s, Ws)A(ds).

By Lemma 2.2, u1 ≡ u2.
2. Let λ, R(λ, ψ) be given by Equations (26) and (27), respectively, with

constant M satisfies M ≥ 1 ∨ ‖ f1‖∞ ∨ ‖ f2‖∞. Then

|U (A, f1) − U (A, f2)| ≤ �r,x [H a+λ(r, τ )| f1 − f2|(τ, Wτ )]

+ �r,x

∫ T

r
H a+λ(r, s)(λ|U (A, f1)

− U (A, f2)|)(s, Ws)A(ds).

By Lemma 2.2, |U (A, f1) − U (A, f2)| ≤ �r,x [H a,λ(r, τ )| f1 − f2|
(τ, Wτ )] ≤ ‖ f1 − f2‖∞, which means the statement 2 is valid.

3. Let �(s, x, z) = ψ(s, x, z) − a(s, x)z. Using Lemma 3.1 with c = a,

F = λ f (τ, Wτ ) and ω(·, ·) = −�(·, ·, U (A, λ f )(·, ·)), we get U (A, λ f )
satisfies

U (A, λ f ) = λ�r,x [H a(r, τ ) f (τ, Wτ )]

− �r,x

∫ τ

r
H a(r, s)�(s, Ws, U (A, λ f )(s, Ws)A(ds).

(33)

Suppose f is supported by [0, T ) then U (A, λ f ) is also supported by
[0, T ), and therefore,

�r,x

∫ τ

r
H a(r, s)�(s, Ws, U (A, λ f )(s, Ws))A(ds)

≤ �r,x

∫ T

r
H a(r, s)�(s, Ws, Cλ)A(ds), (34)

where C = ‖ f ‖∞ ∨ 1. If we can prove

1

λ
�r,x

∫ T

r
H a(r, s)�(s, Ws, Cλ)A(ds) → 0, as λ → 0, (35)

then by Equations (34) and (35),

U (A, λ f )/λ
bp→ �·,·[H a(r, τ ) f (τ, Wτ )], as λ → 0.
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Now we are left to prove Equation (35). Not that for λ ≤ 1,

1

λ
(Cλu − 1 + e−Cλu) ≤ (Cu) ≤ (C2λu2) ≤ C2(u ∨ u2), u ≥ 0.

(36)

By the dominated convergence theorem and the assumption of
∫ ∞

0 u ∧
u2n(s, x, du) ≤ ∞, we have, for fixed s ≥ 0, x ∈ R

d ,

lim
λ→0

1

λ
�(s, x, Cλ)

= lim
λ→0

∫ ∞

0

1

λ
(Cλu − 1 + e−Cλu)n(s, x, du) = 0. (37)

By Equation (36),

sup
s∈[0,T ],x∈Rd

1

λ
�(s, x, Cλ)

≤ sup
s∈[0,T ],x∈Rd

∫ ∞

0
u ∧ u2n(s, x, du) < ∞.

Then, using the dominated convergence theorem again and by noticing
Equations (8) and (37), we get that Equation (35) holds.

A real-valued function u on the Abelian semigroup G = bpB(S)
is called nagative definite if

n∑
i, j=1

λiλ j u(gi + g j ) ≤ 0,

for every n ≥ 2, all g1, . . . , gn ∈ G and all λ1, . . . , λn ∈ R such that∑n
1 λi = 0. It is known that if u is negative definite, then L( f ) = e−u( f )

is positive definite. (See Berg et al. (5).) �

Proof of Theorem 1.1: Fix T > 0 and restrict ourselves to functions fi supported
by the interval [0, T ). By Theorem 2.1, uI satisfying Equation (5) exists and
is unique. We consider G I and uI as functions of ( f1, . . . , fn) ∈ (bpBT )n . By
induction on n and the construction process of uI given by Theorem 2.1, we can
prove uI is negative definite and vanishes if f1 = · · · = fn = 0. (We omit the
details. See, e.g., Dynkin (1).) Let

L I ( f1, . . . , fn) = exp〈−uI , µ〉. (38)

Then L I is positive definite. By Theorem 2.1 L I is continuous. It follows from
Lemma 1.4 in Dynkin (1) that there exists a unique probability measure on µ(S≤T )n

with Laplace transform given by Equation (38). By Lemma 1.3 and Section 1.6
in Dynkin (1), there exists a unique probability measure Pµ on µ(S)n such that
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Equations (4) and (5) hold. Obviously, L I ( f1, . . . , fn) = L J ( f1, . . . , fn−1) if J =
{1, . . . , n − 1} and fn = 0, which means L I satisfy consistency property. There-
fore the existence of the stochastic process (Xτ , Pµ; µ ∈ M(S)) subject to the
statement of Theorem 1.1 follows from Kolmogorov’s theorm. �
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