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1. Introduction

Consider the following branching Brownian motion on R: initially there is a particle at 0, it moves according to a standard
Brownian motion with drift 1. After an exponentially distributed time with parameter g > 0, it dies and splits into a random number
of offspring with law {p, : k > 0}. The offspring repeat the parent’s behavior independently from where they were born. We will
use N(7) to denote the set of particles alive at time ¢ and for u € N(r), we will use X, (¢) to denote the position of u. Without loss of
generality, assume that

< 1
ﬁ(;kl’k—1>—§,

which implies that for any ¢ > 0 (for example, see [11, (1.2) and (1.3)]),

IE( Z e*XuO)) =1, ]E< Z Xu(t)e’X"(’)> =0 and IE( Z (Xu(t))ze’X“(’)> =t

ueN (1) ueN (1) ueEN (1)

The derivative martingale of the branching Brownian motion is defined as

Z = ) X,(ne X,
UEN(f)
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It was proved in [9,14] that Z, converges almost surely to a non-degenerate non-negative limit Z,, if and only if >}, k(log k)?p; <
c0. Maillard and Pain [11] studied the fluctuation of Z,, — Z,. They showed that, under the assumption ;7 k(log k)*p; < oo,

logt fdd.

<\/;<Zoo_zat+ £ ZOO) ’]P(.|FYB)> - ((Sa‘]/zzw)azl’lp(‘zoc))
\2rat a>1

in probability, where S, is a spectrally positive 1-stable Lévy process independent of Z, and {F}} . is the filtration of the branching

Brownian motion. More precisely, they showed that, for all m > 1,4, ...,a,, € [1, ) and bounded continuous f : R” - R,

log? > > B>
E i Zo-2,,+ Zo ) 1<k<m)|F
<f<\/—< W \2mayt " ) !

—E <f <sa,,/zz JA<k< m> (zoo) ,  in probability. 1.1)
1z,

t—oo

Now we turn to branching random walks. A branching random walk on R is defined as follows. At generation 0, there is a particle
at the origin. At generation n = 1, this particle dies and gives birth to a set of offspring. The law of the positions of the offspring
relative to their parent is given by a point process L. The offspring evolve independently and obey the same rule as their parent.
The procedure goes on. Note that we allow the total number of offspring to be infinite with positive probability as in [5]. We will
use T to denote the genealogical tree of the branching random walk, N'(r) to denote the collection of particles in the nth generation,
|x| to denote the generation of particle x and {V(x),x € N'(n)} to denote the positions of the particles in the nth generation. We
will use P to denote the law of the branching random walk above and use E to denote the expectation with respect to P. If the
initial particle is located at x € R instead of the origin, we will use P, to denote the law of the corresponding branching random
walk and use E, to denote the expectation with respect to P,. For n > 0, we denote by F, the o-field generated by the branching
random walk up to generation » (including generation n). We will always assume that

(A1)
E( D e—V<X>>=1, ]E< > V(x)e_V(x)>=0
xeN (1) xeN'(1)
and
o2 :=E( Z V(x))? e_V(x)> < co.
xeN'(1)
Under (A1),
W, = Z V™ p, = Z Vx)e "™, nx>o0,
XEN (n) XEN (n)

are martingales with respect to {F, : n > 0}. They are called the additive martingale and the derivative martingale of the branching
random walk respectively. Suppose that

(A2)
IE(VVI (10g+1/171)2) +E(f/171 log+f/I7]> < o0,
where log, y := max{0,log y} and

w, = z WV (x) eV ®
xeN (1)

with (V(x)), :=max{V(x),0}. It was proved in Aidékon [1], Biggins and Kyprianou [4] and Chen [6] that, under (A1), D, converges
almost surely to a non-negative limit D, with P(D,, > 0) > 0 if and only if (A2) holds. Aidékon and Shi [2] studied the relationship
between W, and D,, and showed that, under the assumptions (A1) and (A2),

lim \/ZVV,, =4/ LD‘X,, in probability. (1.2)
n—oo 7[0-2
Under (A1), (A2) and the additional assumption

(A3) The branching random walk is non-arithmetic, i.e., for any § > 0,

P(L@R\6Z)>0)>0,

Buraczewski, Iksanov and Mallein [5] proved that

lim (E(Delip <y ) - logy) = o 1.3)

y—=+co
for some real number c, if and only if

E (W (log, W')") +E <u~/1 (1og, Wl)2> + IEI( 3 e (—V(x))i) <o
xeN(1)



H. Hou et al. Stochastic Processes and their Applications 172 (2024) 104338
and
- —\3
E <W1 (log, W) I{Wpco}) < oo for some C; > 0.

Here, I/V1+, W and 171\/] are defined respectively by

. -V - . -V
W= e Olpse. W= Y e Py
XEN(1) xeN(1)
W, = Z (1+V(x)— min V(y)) eminyeN(UV(Y)_V(x)lw(x)<0).
xeN(1) YEN (D)

The following sufficient condition for (1.3) was given in [5, Remark 2.3(2)]:

(A4)
3 — \2
IE](VVl (log+VVl) ) +E <Wl (log+ Wl) > < 00.
[5, Theorem 2.4] says that, under conditions (A1)-(A4), for any bounded continuous function f : R — R, it holds that

E (f (ﬁ(nw -D,+ 1°§"Wn>)

where X, is a spectrally positive 1-stable random variable independent of D, with generating triplet ((co +1-y)4/2/ (zc?),

P
7:'”) —>]E(f(DooXl)| Doo), n— oo, (1.4)

) (202), 1), y is the Euler-Mascheroni constant and ¢, is the constant in (1.3). More precisely, the characteristic function of
X, is given by

E (441 = exp {i(co +1- y)\/2/ (n02)4 - \/n/ (262) 1211 +isgn(A)(2/ ) log |/1|)}
=P {“”w/<252>.(cﬁ+ww(mz) } ., A€R, (1.5)
where Vo, (A) 1= o|A(1 +isgn(A)(2/m)log |A]) —ipd. Combining (1.2) and (1.4), we can easily get the following fact: for any ¢ > 0,
lim P (|D, — D,| > n*"'/2) = 0. (1.6)
The goal of this paper is to prove the counterpart of (1.1) for branching random walks. We work under the additional assumption

(A5) There exists a constant a € (0, 1] such that

o 3 o) <o

ueN (1)

Let {(S,),»0,P} be the random walk defined in (3.1) below and let E denote the corresponding expectation. Then (A5) says that
E(e~*S1) < oo. This assumption is only used in (3.25).

2. Main result
We will always assume that (A1)-(A5) hold. Define [y] :=min{k € Z : k > y}.

Theorem 2.1. Let (X,) 1> De a spectrally positive 1-stable Lévy process with characteristic function given in (1.5), independent of D.
Then the conditional law of

logn
Vi Dg - Dran) + —=Wian) .

given F, converges weakly in probability (in the sense of finite-dimensional distributions) to the conditional law of (X a12p,, ) . given D .

In other words, for all m > 1,a,,...,a,, € [1, ) and bounded continuous f : R™ — R, we have
logn
E(f(ﬁ(’% —Dpgym + TW[akn]>’l <k< m> T’n)

— E (f (Xa—l/ZD 1 <k< m> |Dw> ,  in probability.
Do

n—oo

Recall that {(S,),50,P} is the random walk defined in (3.1) below. It follows from [2, (2.8)] that there exists 6* > 0 such that

lim /P (min s, > 0) = 6.

n—oo

Set

8, 1= (6")"" V/aP(mins, >0). @.1)
Jj<n
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Proposition 2.2. There exists a 5, > 0 such that

. 2 -5, ) _
)H&P< \/ZW,,-‘/E@,DW‘ >n +> =0.

Consequently, for all m > 1,ay,...,a,, € [1,0) and bounded continuous f : R" — R,

1E<f<\/Z<D°° — Dy + IOL&W]D(”)J <k< m) F,,)
V2o ayn)

— E <f <Xa_]/2D 1<k< m> | Dco> ,  in probability.
Do
If we want to replace 6, by 1, we will need a slightly stronger condition:

n—oo

(A6) For some y, > 0,

IE( 2 [V (u)|*F70 e-"<">> < co.

ueN (1)

The assumption (A6) says that the random walk S, has finite (2 + y,)th moment, which implies that §, — 1 = o(n~¢0) with some
&9 > 0 according to [7]. We summarize the result of [7, Theorem 2.7] as follows:

Lemma 2.3. If (A1)-(A6) hold, then there exists £y, > 0 such that
lim 0[5, — 1| = 0.
Combining Theorem 2.1, Proposition 2.2 and Lemma 2.3, we immediately get the following theorem:

Theorem 2.4. Assume that (A1)—(A6) hold. Then for all m > 1,a,,...,a,, € [1,0) and bounded continuous f : R™ — R, we have

logn
[Ef( <Dw—Da,,+—Doo>,1SkS >7",,>
< Vi far] V2o ayn] "

— ]E(f <X <i2p o1 §k5m> | Doc>, in probability.
a, o

n—oo

The main idea of this paper is a modification of that of [11]. To get the fluctuation of Dy, — Dy,,;, we choose a level y, and
define a quantity D,[,,”ﬂ “n_for m > [an], which roughly takes care of the contributions to D,, by the paths that stay above the level y,
between generations [an]| and m. We first show that D,[,f"’]'y” converges to a limit DL’,"” " as m — oo and get a rate of convergence for
D{Z:}’y" as n — oo, see Lemma 4.1. Then we analyze the contribution of D([Z"]’V” to the limit behavior of Dy, in Proposition 4.3 . For
contributions to D, by the collection £[¢"17x of particles x with |x| > [an], V(x) < y, and min ielan,|x|—1]

nz V(x;) > 7,, we separate
£len into two sets ££ZZL’V” and ££ZT’V" and look at their respective contributions to the limit behavior of D, see (4.8) in which

Fg[::d]’y” represents the contributions by ELZ:;”" and Fb[:l;'w“ represents the contributions by £,[)‘a’y‘y”. We show in Proposition 4.9 that

Fb[:;]’y” is asymptotically negligible. For the contributions by ELZZL’V”, we define a sequence of random variables ﬁg;l;;’y” (see (4.30)).
By using the branching property and the tail behavior of D, we show in Proposition 4.10 that \/Z(Fg(:ﬂ’y" - Ng[‘::;’y”) converges in

distribution to ¢*X 12 Do, with ¢* being the positive constant defined in (3.4) below, which leads to the main result.
Although the general approach of this paper is similar to that of [11], adapting it to the case of branching random walk is pretty
challenging. In [11], the continuity of the sample paths of Brownian motion makes things a lot easier. For instance, the counterpart

of 1/\75: d"'" in the branching Brownian motion case takes care the contributions by the particles that hit a certain level at some time

after at due to the continuity of Brownian motion. The main difficulty in the case of branching random walks is that a branching
random walk can jump across the level and one needs to take care of the landing positions of the particles after crossing the level.
This leads to many complications and many subtle modifications are needed to actually carry out the program.

3. Preliminaries

We will use f(x) < g(x), x € E, to denote that there exists a constant C independent of x € E such that
f(x) < Cg(x), x€E.

We will use f(x) =< g(x),x € E to denote f(x) < g(x),x € E and g(x) < f(x),x € E.
3.1. Spine decomposition
Define a random walk {(S,),>¢.P} such that for any » € N and measurable function g : R" — [0, o),

IE]( > g(V(xl),.A.,V(x,,))>=E(eS”g(Sl,.A.,S,,)), (3.1)
xeN(n)
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where E stands for expectation with respect to P and for x € N'(n) and j < n, x; denotes the ancestor of x in the jth generation.
(3.1) is also known as the many-to-one formula. See [12, Theorem 1.1] for more information about the random walk {.S,,n > 0}.
By taking n = 1, g(x) = xe™* and g(x) = x>~ respectively in (3.1), we get that (A1) and (A2) imply that ES; = 0,¢6? = ESl2 < oo.
For any y € R, we use P, to denote the law of {y+ S,,n > 0} and E, to denote the expectation with respect to P,. Note that, under
P, {S,,n >0} is a random walk starting from y.
We define a probability Q such that for all n > 0,
4o

=W,.
dP |, "

Denote by L the law of L under Q. Lyons [10] gave the following description of the law of the branching random walk under Q:
there is a spine process denoted by {w,},s¢ wif\h w, = @ and the initial position of the spine is V' (w,) = 0. At generation n = 1, w,
dies and splits into a set of offspring with law L. Choose one offspring x from all the offspring of w, with probability proportional
to e™V®, and call it w,. w, evolves independently as w, and the other unmarked offspring evolve independently as in the original
branching random walk. By Lyons [10], for any x € N'(n), we have

eV

W,

n

Q(w, =xIF,) = (3.2)

Moreover, the position process {V(w,)},., along the spine under Q is equal in law to {5, } , defined in (3.1). Also, for y € R, we

n>0
will use Q, to denote the counterpart of Q in the case of branching random walk with the initial particle located at y.

Let z* :=inf{k > 1 : S} > 0}. Define the renewal function R(y) by

tr-1
RG) = E( Y 1(5,.2-”)7 yeR.
=1

Using the facts that ES| = 0 and ESI2 < o0, one can easily get that (see, for example, [2, Section 2.2]) R(0) =1, R(y) =0 for y <0
and

ROy)<x(1+y), y=0, (3.3)

and the limit

o = lim R(y) 3.9
y—+oo y
exists in (0, +o0). According to [2, (2.4)], we also have
[s+]
R(G) = Y\ P(H,| < ), (3.5)
k=0
where H; := Sor with o5 :=0 and o :=inf {i >0, 185 < mi“ostakil Sj}. For y > 0, define ‘L':j}H :=inf{k>1: H;, <—-y} and

rjy :=inf{n>1: S, < —y}. Then we can rewrite (3.5) as

RG) = ;P(Hk >—y) = gp(r:,yH >k)=E (7).

Note that E(H,) € (0, ) (see [5, Lemma A.4.(a)]) and that H, — kE(H,) is a martingale. Thus, combining the optional sampling
theorem and the fact that H - = Sfy, we obtain that
= -

(~EH)E (ij”) -E (—HT:,YH) & ROE(H,|) =-E (S 7 ) =y-E, (S,a) . (3.6)

7y

By [2, the first paragraph in the proof of Lemma 2.1], we have ¢* = E(|H,|)~!. Note that, as a consequence of (A4), we have
E ((—Sl)fr) < co. Thus, by [5, Lemma A.4.(d)], under (A3) and (A4), there exists an a* € (0, c0) such that

Jlim (RO —c*y) =a*. 3.7
One can easily check that

RO)=E (RS + D550 )> 120, 3.8)
Hence the sequence of random variables

-y . -V
D= Y RV +»e Dl vy
XEN (n)
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is a non-negative P-martingale with respect to {F,},5o with E (D,”) = R(y) for all n > 0. Define a new probability measure Q>
such that for all n > 0,
Q| _ D’

dP [r, © RO
Similar to the spine decomposition under Q, we can also describe the spine decomposition for the branching random walk under
Q™ with a spine denoted by {w, },>, and with spatial displacement following the law of the random walk {.S,} conditioned to stay
in [—y, +o0): there is a spine process denoted by {w, },5o with w, = ¢ and the initial position of the spine is ¥ (w,) = 0. At generation
n =1, w, dies and gives birth to a set of offspring according to the law of L under Q. Choose one offspring x from all the offspring
of w, with probability proportional to R(V (x) + y)e‘V(x)l(V(x)Z_y), and call it w,. At generation n = 2, given V(w,), w, gives birth
to a set of offspring according to a point process with the same law as L under the law Q=@+ and again choose one offspring
x from all the offspring of w, with probability proportional to R(V (x) + y)e ™1 (V(x)2—y) Named w,. The other unmarked offspring
evolve independently as in the original branching random walk. The procedure goes on. According to [2, Fact 3.2] or [6, Section
2.2], for x € N'(n),

(3.9

RV (x)+y) e V™1 {min;<, V(x))z-y}
D_y

n

Q7 (w, =x|F,) = (3.10)

and the position process ( V(w,,))n>l along the spine is equal in law to {S,},,, conditioned to stay in [y, +o0).
3.2. Elementary properties for centered random walk

Lemma 3.1. (i) For all a > 0 and n > 1, it holds that
) (1+a)

n

P (mmS >0

j<n

(ii) For all a,u > 0, b > 0 and n > 1, it holds that
b+Db+u+1)(a+1)

i

P (mmS >20,u<S,<b+u )5
j<n
(iii) For all a, b > 0, it holds that
[s+]
ZPa<minSj >0,5, sb) SU+b)(1+@nb).
-0 Jj<n

Here a A b := min{a, b}.
(iv) For any 4 > 0, there exists a constant C,(4) > 0 such that

Z Ea( 1{"“"/<k 0}) <Ci(, ax0.
k=0

Proof. For (i), see [1, (2.7)]; for (ii), see [2, Lemma 2.2]; for (iii) and (iv), see [1, Lemma B.2 (i) and (iii)]. [
Lemma 3.2. Forall a >0 and n > 1, it holds that

E(Sﬁl{mmm . a}) < +a/.
Proof. Note that under P, {S? —¢%n : n > 1} is a mean 0 martingale. Thus, by Lemma 3.1(i),

(S l{mm,<n 5,2 a}) =0 nP(mmS > a>+E((S —azn) {min;<, S;> H})

Jj<n
s +a)\/_—E<(S3 - O_Zn) 1{mm/<,, Sj<— u})
n
=(1+a)\/;+ZE<(62n—S2) 1{min/£f 1S } {Sy<—a} )
=1
n
= +an+ Z E((62f -52) Uiminp_y §,2-a} l(sf<_a])
=1
n
< +a)\/;+62;=lfP(Jm;£1 S;2-a, S, < a)

Using Lemma 3.1(i) again, we get
n n n
fP( mmS > —a,S, ): ‘P (mmS >—a>— fP(minS-z—a)
f; j<t—1 ¢< 21 j<f-1 ; j<t !

6
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n
=1- n+lP<minS->—a)+ P(minS->—a>
( ) jsn T ;1 j<e )T

o 1 "l
<S1+(1+a) Y — <1+ +a)/ —dx=1+2(1+a)\/n S (1 +a)/n
,Z’l N 0 x
Combining the two displays above, we get the desired conclusion. []

Lemma 3.3. If X and X are non-negative random variables such that

E(X (log, X)*) +E(X (log, 5(‘)2) < oo,
B(x(og, (T 4x))") +B(X(log, (T4x)) ) <o

Proof. By the trivial inequality log, (x + y) < log, (2x) + log, (2y), we only need to show that

E( X (log, )?)3) +E( X (log, X)2> < .

For this, it suffices to prove that for any x,X > 0,

then

x(log_,_?)3 < 8x (log, x)3+2§(log+ 3)2, (3.11)
% (log, x)2 < 4% (log, §)2+2x (log, x). (3.12)

We will only prove (3.11), the proof of (3.12) is similar. Assume that X > 1. If X < x2, then x (log ?)3 < x (log (xz))3 = 8x (log x)°. If
X > x2, then by trivial inequality

log¥ <2VX, > 1,

we have x (log 2)3 <Vx (log §)3 <25 (log §)2. The proof is complete. []

Lemma 3.4. Suppose that X,Y are random variables and that H is a o-field. For any € > 0 and g > 0, it holds that

P(1X — E(X|M)| > 3¢|H) < %E(p{ ~vif)+ gl—qIEl(|Y ~E ol 1)

Proof. By Markov’s inequality,
P(1X — E(X[H)| > 3e|H) <P(IX = Y| > e|H) + P(|Y — E(Y[H)| > €|H)
+ L Ex-yr)1>e)
< é]E (|X - Y|‘H) + Elqna (|Y —E(Y|H)| |H) + é [E(X - Y[H)].

Now the desired conclusion follows immediately from the inequality |[E(X — Y|H)| <E(|X - Y||H). O
3.3. Moment estimates for the truncated martingales

For u € N'(n), 2w) := {v € N(n) : v#u : v>u, | denotes the set of siblings of u. For x,y > 0 and m € N, define

A ={xe1r:v15js|x|,
D (1 +(Vw - V(xj_l))+) e VW-Veo) < Ke(V(xrl)+y)/2}, (3.13)
ueA(x;)
D= Y RV +0e Ol vy lixeal):
XEN (m)

Lemma 3.5. There exists a decreasing function h : R, — R, satisfying lim__,, , h(z) = 0 such that for all y,x >0 and m € N,

0<E (D;y - D;ﬁ() < h(x).

Proof. The first inequality is trivial, so we only prove the second. For j > 1, set

Ej(y.x) = { > (1 + (V) - v<w,._1>)+) e~ (V@Vwp) 5 Ke<V<wf—1>+y)/2}.

uEQ(wj)U{wj}
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It follows from (3.10) that

- - -V
E (Dmy _ Dmi) = E( Y RV +ye <x>1{mi%m V(x/_)z_y}l(m%)>
x€N'(m)

R(y) v
=Eg-y ( D7 Y RV®+ye L fmin e vzt Hxga?)
n - xeN(m)

= R(y)Eny( Z Q™ (wm = x|Fm) l(xéAﬁ)>
xEN'(m)

= RYQ™ (w, & AY) S RG) Y, Q7 (E;(3,%)). (3.14)
j=1
By the Markov property, for any z > —y,

Q™ (E,(y, K)\V(w,_l) = Z) = Q‘H( Y 1+ w)y) e > xe<z+y)/2>

ueN (1)
_pf Zuev RV@ +z+ L Tt —
- R(z+y) {EMEN<1>(1+(V(M))+ YoV > e/ 2}
5 Zue./\/(l) RV )+ z+ y)eV®
- R(z +y) {Zuew ry (1+ V@) )e™! ")>"e(z+w7}
Using (3.3), we have
RV +z+y) < VW), +z+y+1 _ V(W)
R(iz+y) ~ z+y+1 - z+y+1°

Thus,
0 (B0 m|Vaw,_) =z)

VW), > ,
<E +—F ) eV _ ey
(ueNm ( z+y+1 {Buewiay (0@ eV @>elzn/2 |

W,
=E<<Wl + Z+y+1)1{W1+W1>Ke(7+3’)/2}>' (3.15)

Since the law of (W}, W) is independent of z, we deduce from (3.15) that
W,
-V (E. A0 T—
Q (Ej(y’ K)) (]EQ - ®]E) << V(w 1)+y+ 1 ) 1{Wl+W]>KE(V(“"!—1)+")/2})

Z)
=E(Eg-y B c—— 20 4% . 3.16
( Qv ((zl Vw;_)+y+ 1) {V(W; 1)+y<210g( s )}) Z1=W131=W1> ¢ )

Here under Q™7 ® P, (Wl, Wl) is independent of V(w;_,). Next, note that the law of V(w;) under Q7 is equal to the law of the
random walk §; conditioned to stay in [~y, +c0). Summing j from I to oo, and using (3.8) and the fact that R(y) S 1 +y, we get

Z1
R”’ZE@ y(( Vo, trr1 ]>+y+1> (Vo perezion( 250 )})

j=1

(s ~
2]
L CLRRI O ﬁ) {soraim( 220 >}>

=0

~.

N

©
;E( S +y+ 1) +El) l(minfgj S/Z—Y)I{S/+y<2]0g(@)})

~ o ~
z1+7) ~ . zZ1+z
<zl<1+210g+< . ))+zl>§2§j§)P<r&1§}S¢Z—y,Sj+y<210g+( = >>
+ +7Z
:<z1<1+210g+<zl Z')) > (2log+<z‘ Z')), (3.17)
K
>

where F(x) := sup,cg Z/ <o P, (min,; S
(3.16), we get

~.

IN

0,8; < x). Taking P-expectation in (3.17), and combining the result with (3.14) and

E(D;? - D, ) < R) ,21 Q™ (E,00)

o (oo (525 o (25

8



H. Hou et al. Stochastic Processes and their Applications 172 (2024) 104338
It follows from Lemma 3.1 (iii) that F(x) < (1 + x)? for all x > 0. Since F(0) =0 and F is increasing, we have for « > 1,

E(Dy? - D)) SE <(Wl (14210, (Wi + W) + W1 ) F (2log,W; + W) 1{W,+W1>K}>

SE <(Wl (1+ tog Wi + W) ) + 4 ) (1 + Tog, ( + ") 1{W]+V~VI>K}> = h(K).

By Lemma 3.3, we know that h(x) is finite for all ¥ > 0 and & is a decreasing function with lim
complete. []

h(z) = 0. The proof is

Z—+00

Lemma 3.6. Forally>0,x>1and m>0,
2
E((D;y)() >5Key.

Proof. Using (3.10) and the fact that D,”’. < D,”, we get

mk =

2
E <<D;l,yk> > =E (D;z:vk z RV (x)+y) eV (mianm V(X/)Z—Y} 1(X€Ai: ))
x€N'(m)

= R(»)Eq-y (D;:"K 2 Q™ (wm = x|f'm) l{xeA{))
xXeN (m)

< ROIEg ( D ,) ‘ (3.18)

Let G be the o-field consisting of all the information about the spine, including the set of children of the spine particles. By the spine
decomposition, we have

Egos (D;2[6) = R(V (w,) + ) e (m) + i Y RV +yeVE. (3.19)
=1zeQ(w,)

Since

Rx+y)<Rx,+n)SU+x,+y<U+x)1+y), y>0,x€eR,
we get, forany 1 <7 <m,

RV@+0S (1+y+V (o)) (14 (V@ -V (w,)), ). €2 ().
Thus, for w,, € B, and 1 <Z <m,

Y RV@+pe’®

zeQ(wy)

S(+y+V (w,))) o~V (we) Z (1 +(V@-v (wf_]))+)ef(V(z)—V(w71))
zeQ(wy)

< Key/2 (1 +y+V (w{’—l)) e_V(wt’—l)/z_

Combining this with (3.19) and the fact that V(w,,) + y > 0, we get
RO)Eq-y (D;yl {wmem) = R()Eq- (E@*y (D,;y(g) 1<wmeAi->)

S R()Eqg-y (R (V (wm) + y) eV (wn) 4 z xe?/? (l +y+V (wf—l)) e_V(W*I)ﬂ)
£=1

< Keymy);m‘sxa@,y (14 54V (wp)) O+ N2, (3.20)
Since ((1 + y)ze_fV//“_) < 1 on [0, ), we have for all # > 0 and y > 0,

R(O)Eg-s ((1 +y+V (w,)) e—(y+V(Wf))/2) -E, (R(sf) (1+57) e 1 S,zo})

SE (145,75 P s 50y) SE (€5 5501 )

where in the equality we used (3.9). Applying Lemma 3.1 (iv) with A = 5, we get that for all y > 0,m > 0,

1
1

RO) Y, By (14 3+ V () e 0V (@)2)
£=0

S Y E (5 i, 5,50y ) G/ S 1, 3.21)
=0

Combining (3.18), (3.20) and (3.21), we get the desired conclusion. []
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3.4. Moment estimate for weighted number of particles hitting —y

Recall the definition of A2 in (3.13). For y >0, ¥ >0 and n,m € N := {1,2,...} with n < m, define

m
y - —V(x)
Nipm = Z ¢ 1{V<x><—y,min,£f,1 V(x)2-y}>
£=nxeN ()

m

¥y - —V(x) ,
N[y,,m],,( = Z Z e 1{l/(x)<—y,min/»5,;_] V(x/)z—y}l{xeA,{.}'

t=nxeN(¢)
We will use the notation N[yl,co) = lim,,,_, N[y1,m] and N[ylm)x = lim,,,_, o, N[yl,m],’(.
Lemma 3.7. (i) Forany y >0,
E(N ) =1
(ii) There exists a decreasing function g : R, — R, with lim__,, , g(z) = 0 such that
(N = M) S %, y> 06> 1.

Proof. (i) By the definition of QQ, we have
oV
E (N[yl’m)> =

( Z 1{V(x)<—ymin» Vi(x;)=— >
Lminjgy V(x;)2-y}
xEN (k) Wi = !

M5 T
<

Eo( Y Qur=xVwy <y min V(w) > -yIF))
XEN (k)

~
Il

Q(Vwe) < —y. min V(w)) 2 ~y) = 1.

~
I

where in the second equality we used (3.2).
(ii) For any m € N, by the definition of Q and (3.2), we have

Yy Y
E (N[l,m] - N[l,m],x)

Il
M=

—V(x)
E( Z ¢ 1 {V)<—ymin;cp_y V(x))z—y} 1 {xeA), })
XeN(£)

Y
Il

Il
M=

@(V(wf) < -y, min V(w;) > -y, w, & Ay>
j<—-1 J K

A
I

IA
M

— i X — y
Q(Viwy) < . min V(w)) 2 yw & AL ).

Y
Il

Since

4 ¢
1 < 1 ) =: 1g ,
{wegAx} qz:; {Zueg(wq)(l+(V(u)—V(wq-1))+)ef(y(")fw“ﬂ—l))>Ke(V(”'q—l)+V)/2} ; Gy

we have

M

— i . - y
Q(V(wp) < —y. min Viw) 2 ~y.w, ¢ A}

N\
Il

IA
Ms
M-~

— 1 ) > -
@(V(wf) <=y, min V@) 2 -y, Gq>

Y
A
S
I

o
Q(V o) < —y. min V()2 .G, ) = g@(Gq,jgaqigl Vw) > -y)
EQ<1 {minj<,_y V(wJ)Z—Y)Q< Z (1 + (V(u))+) VW > K.e(z+y)/2> >
ueN (1) z=V(wq_])
Recalling the definition of F in (3.17) and using an argument similar to that of the proof of Lemma 3.5, we get
o
Zu«:@<1 [— V(wj)z_y,@< Y (1 +vwy) eV > Ke<z+y>/z) )
a=1 z=V(wy-1)

ueN (1)
m1:W1+W1>

M

=
Il

Ny
<
B

Mg

<

£
I

= JE@(Z Q(kqif‘l V(w)) > =y, V(w, ) +y<2log, (%))
=1 S

10
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)
oo (B1))) o (125)

It follows from Lemma 3.1(iii) that F(x) < (1 + x)? for x > 0. Note that F(0) = 0, we have

E(Ny -N’ )<E w,F( 210 Wit 1
[Leo) ~ Milooye ) = 1 S+ s (Wi}

<E(w,(1+21 Wit 21 —log+(Wl+Wl) = 80
~ 1 elogs K {W1+f"71>'f} log & T logk’

<EQ<supZQ< mm Vw;) =z -y, V(w,_ ])+y<210g+< Kl))

yeR

The proof is complete. []

Lemma 3.8. Let a be the constant in (A5). Then

1+a
E((Ny ) )51(“6‘”, y>0,k>1.

[1,00),k
Proof. By Lemma 3.7(i), we have

E(N]| o) SE(N] ) = 1. (3.22)

[1,00),c

Define 7~ := inf {k>1:V(w,) <-y}. For m> 1, it holds that

I+a
(%)) =%(
[1,m],x
k=1 xeN (k)

= ]E@<l{r:ysm} l{wf:yGAi} (N[yl’m]x)a)

Using the trivial inequality

) y N
¢ Ny o <mpaming gy Vepz-v)  real ) (N [Lm]x)

(x+»*"<x"+y%, x,y20,a€(0,1],

we get that
1+a V(w _ ) @
y y _ -
£ ((Nn,m]x) ) SEQ<1{TZySm}1{w,:yeAi} <N[1,m],:< ¢ ’ )
—aV(w,:y) .
+EQ<1{T:ySm}1{wr:yEAi}e Y > = I1+1I. (3.23)
By the spine decomposition, we have
( ) f:y/\m
y _ Vi wez am oV y+V (u)
Nl =€ Y+ N ke
k=1 ueQ(w;)

By the branching property, (3.22) and using Jensen’s inequality E(|X|*) < E(]X|)* (since « € (0, 1]), we have

Il/aS]EQ L= <m) {w—eAy}< K_e—V(wr:y))>

T

=EQ<1{T ysm} {WZEAy}Z Z _V(u)E(NZ“" ‘1K )z:V(u)+y>

£=1ue(wy)

IN

y
2oy 3 E )
B £=1ue(wy)

T_

< E@<1{wiye;1{,} LZ:] oV wep) Z (1 + (V- V(Wf_]))+) e*(V(u)—V(wml)))

UE(wye)

7Z

y —y
TR

/=1
Using Lemma 3.1 (iv) with 1 = 1/2, we get that

—y ‘r:yfl
E@(ze-(v<u;f,l)+y)/z> < 1+IEQ< > e—(V(Wf)+y)/2>

=1 =1

11
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=14 Y B (S 50y ) S THCU/D S 1,
=1

Then we have
I S k%™, (3.24)

Finally, using Lemma 3.1 (iv) with A = 1 and (A5), we get

IT <Eq <e_av(wf:y) > = E<e_nST:y >

—aS 1
{mmkq 1 Sk>0} H{s,<0}

—aS —a(Sy—Sy_
( Sy 11 {mineer 1 Skzo})Ey(e a(Sp—Sy 1))

< Cl(l)e“yE(e“’Sl) = Cl(l)e’”IE< > e—<‘+'*>"<">> <Se™. (3.25)
ueN'(1)

Hence, combining (3.23), (3.24) and (3.25), we get that

1+a
E <<Ny ) ) S k%e™
[1.m].x ~ !

This completes the proof of the Lemma. []

I/\

For a sequence (,),» of positive numbers, define

m

Sy -V (x)
N =2 Y (Ve B +9) e L g ytocymingey s Vea—y)

9=¢ xeN(q)
Syn -V
Ny Z Z V) + B, +y) e 1 (=3, /22V (<—y, min;c,_y Vx )2} | {xeal }o
q=t xeN'(q)
and let ﬁ P i=lim, o N N and N :=lim,, o N N”"  Then we have the following result similar to that in Lemma 3.7 and
o) L [£,00),k [£.m].x g

Lemma 3. 8 for N ol and N

[1,00),k"

Lemma 3.9. (i) Let g be the function in Lemma 3.7 (ii). Then

E(Nyl"w) N[YI"W)K) ﬁnf(K), y>0,6>Lnx 1.

(ii) Let a be the constant in (A5). Then

1+
IE((N“M > n>5ﬁi+"1<"e"y, y>0,k>1,n>1.

[1,00),x

Proof. (i) By direct calculation and Lemma 3.7 (ii), we have

y.n y.n
E<N[loo)_ N[loo)x)

5
< E(Z Z (V(X) + B, + y)+ eiV(X)l{V(xK—y, minj <t V0e)2—v} 1 (xg AL })

9=1 xeN'(q)
[oo]
-V(x) )
< ﬁnE(Z Z ey o <my ming gy V(x)2-y) l{xeAi}>
q=1 xeN'(q)
y g(x)
=hE ( [1,00) NU@O)JC) Priosx logk’
(ii) Combining Lemma 3.8 and the inequality 0 < ﬁ[yl"’ <B,N, 1 Doy WE immediately get the desired conclusion. []
4. Proof of Theorem 2.1
For n > 1, set
1
Yp = 510gn+ﬂn, 4.1)
where (8,),., is a sequence of positive numbers with
1
lim B, = +oo0, limsup %" o and lim —" Py =0. 4.2)
n—00

n—oo n n—oo n1/16

12



H. Hou et al. Stochastic Processes and their Applications 172 (2024) 104338

An example of a sequence (ﬂ,,)n> , satisfying the conditions above is §, = logn. We remark that the first condition in (4.2) is used
in the proof of Lemma 4.1, the second condition in (4.2) is used in (4.38), and the third condition in (4.2) is needed at the end of
the proof of Lemma 4.2.

We first give the main idea of the proof of Theorem 2.1. Recall that ¢* and «* are the constants in (3.4) and (3.7) respectively.
Let £(y) := c*y+a*. According to [3], under (A1), the branching random walk is in the so-called boundary case, which implies that

lim,,,_,, W,, = 0, P-a.s. Therefore, for any n > 1, Do, = lim,,_, o, ¥ cprim VX ® = lim,,_ ¥ prim (V(X) = 1,)e”V ™, from which
we get that
* T _ -V (x)
¢* Dy, —’il_l;l’olo Z f(V(x) yn)e . (4.3)
XEN(m)

For x € T and m > 0, let T, be the subtree of T with root at x and N'(x, m) be the collections of particles in the mth generation of
T,. Define

D,(x) = Y (V= V(x)e V@V,
ueN (x,m)
and
D (x) := lim D,,(x).
m—0oo
For n > 1 and m > [an], we define the quantity
[anl.y, . _
D= ; ‘ (V(x) - 7’") ¢ V(X)l{minjdan.mlnz V(x)21n}? (4.4
x€N (m)
which roughly takes care of the contributions to D,, by the paths that stay above the level y, between generations [an] and m. We
show in Lemma 4.1(i) that D!*"!"" converges to a limit D/*"'"" as m — co. Then by (4.3), the branching property, we get
"Dy, = DL‘,M]’“ + Z eV D (x). (4.5)
xeﬁ[ﬂ”]«}’n

Here for any n € N and a > 1, £[#"l% ¢ T is defined by

clanlr = {x eT: |x| > [an],V(x) <y, and Vix;) 2 y,,}. (4.6)

min
Jj€lan,|x|-11nZ
Recall that, for x € £l*17, D_ (x) is the limit of the derivative martingale of the branching random walk starting from a single
particle at x. To consider contributions to D, by particles in £[%17», we separate £[*'1"» into two sets ELZ';JI’”’ and ﬁz[)zgl'y", where

fanln . _ lanl7n - mi 3> >y, - &}
Lopod " {x €L ' ns?gﬁzn] V@) 2 V) 27, 2 )

fanlyy ._ fanlyy - o
Lyg "= {xeﬁ”” n : nSI]‘_I;l%"lm] V(xj)<y,,}
By

[anlry - i > _on
U{x eL Dlx] > [an]’ngjsfg—l V(x]) >V V(X) <y, ) } 4.7)

. [an].,y, [an].y, . . . . [an].y, [an].y, . .
We define F oo and F, " to be the contributions to D, by particles in £g00 . and L, " respectively, that is,

[anl.y, . -V [anl.y, . -V
Fgood 't = Z ce (")Doo(x) and Fo, "= Z ce (X)Doo(x).
xEﬁLZ:L'y” xeﬁl[zgl ¥n

Then by (4.5), we get

c*Dw:DLZ"]’V"+ Z c*e_V(X)Doo(x)+ Z c*e_V(x)Dm(x)

XEELI(JI:‘L'V" xe[il)zgl n
_ Dg:nlrn + F;;:;.rn + be:;],rn' (4.8)

Using this, we get that

logn 1 n .
D, - D[an] + TW(an] = C_* (Dc[:”] " (C*D[an] - (C*}/n - a*) W[arﬂ ))
1 [an].y, 1 lanl.y,
+ = (o™ = (* By = @) Wian ) + S, (4.9)

Now we give a heuristic description of the steps in the proof of Theorem 2.1. For two random sequences X, and Y,, we use
X, ~ Y, to mean \/n(X, — Y,) — 0 in probability. In Section 4.1, we prove that DI“""" ~ ¢*Digny = ("1 — @) Wign)» see
Proposition 4.3 below. In Section 4.2, we analyze the weighted number of particles ﬁg[gﬂ’y" defined in (4.30) below, and prove

that N1l (c*B, — @) Wy, see Corollary 4.8 below. In Section 4.3, we prove that Fb[:;] “n is negligible, see Proposition 4.9.

ood

Then, by (4.9), we see that

. log n [an]y, 5 lan).yy,
¢ (Doo - D[an] + TWPM] ) ~ Fgood - Ngzmd :

13
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In Section 4.4, we prove the convergence of W(Fg[:ﬂ’y” - J\Algsﬂ’y"

these, we can easily get the conclusion of Theorem 2.1.

) to ¢*X 172 in distribution, see Proposition 4.10 below. Using

4.1. Modifications of the martingales with level y,

For a > 1, n € N and m > [an], define

Nlanly, ._ v
Dm = Z R (V(x) - yn) e (X)l{minje[an'm]nz V(xj)Zyn}'
XEN (m)

Recall the definition of D,E,a"]’y" in (4.4). The quantities 5,[:"] " and D,E,a"] » are related to contribution by particles that are not in
LNTn

Lemma 4.1. Leta > 1. Then
@ DI = lim,,_ D} exists P-almost surely.
(ii) Moreover, under P,

tim /n| D" — D

n—oo [an]

=0, in probability.

Proof. (i) For m > [an], by the branching property,

~lanly, _ —V(x)
E (Dm+1 Pm) - Z l{min/E[mLm]nZ V(X;)Zrn}e *
XEN (m)
— /
x E( Z RV +z—y,) "™ >1{V(X,)+zzyn}>
x'eN(1) 2=V (x)
-y lanl.yy
= Z 1{minj6[an,m]nZ V(Xj)Zi’n}e (X)R (V(x) - Y,,) = Dm .
XEN (m)
Thus <5,[,,”"]’y” is a non-negative martingale and hence D([;M’Y” = lim,,_, o 5,[,”"1’7” exists P-almost surely. It follows from (3.7)

m>[an]
that sup 5 |R(y) — £(y)| < co. Therefore,

| plarln _ plant

<sup|RY) -2 ), e =sup|RG) - £WIW,, P-as.
y20 XEN (m) y20

Since lim,,_, ,, W,, = 0, we get the desired conclusion.
(ii) For k > 1 and m > [an] + 1, define

B,Ef,ﬁ]’y” = {x EN(m): V[an] +1<j<m,

> (1 + (V) - V(xj—l))+) e (VVe-n) < Ke(V(Xf'“)fy")/z},

k)
Slanly, . _ —V(x)
Dm’K "= z R (V(X) - y") € l{minjEItm.m]ﬂZ V(xj)ZJ/n} I{XGB,[‘”Z]'V” }
xXEN (m) ?

Then by the branching property and Lemma 3.5,

E ( B’Lan]-}'n _ 5'(’321.7" r[‘m])
— —V(u) -y -y
- z e I(V(M)ZV”)E (Dm—[anl - Dm—[anl,x) Y=V (-7 s Wf‘"ﬂ h(x), (4.10)

ueN ([an])
where 4 is the function in Lemma 3.5. By Lemma 3.6, we have
2
-2V () -y
F[‘”']) < Z e E((Dm—[anhf) )‘y:V(u)—y
ueN ([an]) n

<k Z VWY@ = e W . (4.11)
ueN ([an])

Var (5[,,“? In

Combining (4.10)-(4.11) with E ( Pl

T’W]) = 5{::} “n and Lemma 3.4 with ¢ = 2, we get that, for any ¢ > 0,

P()ﬁlﬂ“"lvh _ planln

[an]

> 3_6 ‘F[an] )
Vlan]
<> v [an] - (5’[;1;1],«/,1 _ 5%@%

- 3

[an] ~[an].y,
Ffaﬂ ) + E—ZVar (D,l,;ii] 7 F[an])

14
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2h(x Vlan -1
S VWi, ( ( ) L 1 e 1(’3”"3"> }

Letting m — oo, we get that forall x > 1 and n > 1,

P()DE”W Bl ‘T’W]) S VTanWig (h(c) + ke ). (4.12)

>

3¢
VTan]
By (4.2), lim,_, , B, = o. Using (1.2) and (4.12), first letting n — oo and then x — o0, we get
Jim i |D" - By
On the other hand, by (3.7) we know that there exists C > 0 such that |R(y) — #(y)| < C for all y > 0 and that, for any n > 0, there
exists K = K(17) > 0 such that |R(y) — £(y)| < # for y > K. Since min g /() V' (x) = +oco0 as m — oo, for any § > 0, there exists L > 0
such that

=0, in probability. (4.13)

P(min V(x) < —L) < 6. (4.14)
xeT
Therefore,
[anl.pn _ pylan)z v
‘D[m =D < Wi + € Y e O ok (4.15)
x€N([an])

Combining (4.14), (4.15) and Markov’s inequality, we get that, for any £ > 0,

[an].ra [an].r, 3
()D[Z;’]y _D[Z;’1 "> %) < 5+P<n\/;W[an] > g/2)

-V
+IP(C\/Z Y e L <v <K miny < Vo) > £/2>
x€N([an])

<5+ (nVaWia > €/2)

+2C\/;E< PR

£

{7, <V (x0)<y,+K} l{minl»s[a,,] V(XJ)Z—L} )
xeN([an])

=6+P (n\/;W[,,,,] > 8/2) +

C+/n
\/_P(y,, < Spgm) <7+ K, min S§; >—L). (4.16)

j<[an]

By the third condition in (4.2), we have y, = o(n'/'%). Thus by Lemma 3.1(ii) we have

. cyn .
lim sup P(y,, <SSt <Vut K,j;n(ﬂ] S; > —L)

n—co

20/ (L+ DK + D)y, + L+ K +1)
< lim

Thus, using (1.2) and letting n — o in (4.16), we get

> ?) <5+ E(my/ ﬁa‘l/sz >¢/2). 4.17)
n

Letting 6,7 — 0 in (4.17), and then combining the resulting fact with (4.13), we get the desired conclusion. []

=0.

lim sup IP’<|D[H"] o _ planlan

oo [an] [an]

For m > n, define

’W':,rn . Z O ) (4.18)

{mm/EIn.man V(Xj)ZVn}
XEN (m)

Lemma 4.2. (i) Foralla>1,b€R, asn— oo, (v, +b) \/_(WW,] W[[‘”? ) > 0 in probability.
(ii) Forall a > 1,b € R, as n - oo, (7, +b) \/n(Wi,, — W'") > 0 in probability. Moreover, if there exists a sequence of random

(ﬂ"]
variables {J,} such that for all n > 1,

B (19 [Fran) 5 (4 )V (Wian = W75 ).

then J, — 0 in probability.

Proof. (i) Without loss of generality, we assume b > 0. Fix § > 0 and let L be the constant in (4.14). By (4.18), ﬁ/d[[;"]]‘y" =

YN (fan]) e V] {V(x)27, ) Therefore, for any & > 0,

P<W[an| et €

15
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77 lanl.y, £ : :
<6+P(W;, —-W. "> ————0H min min V(x;)>-L
(Wion =70 nr0) o St <o)V )

=6+P eV 1o, gy > ;, min min  V(x;) > —L)
xEJ\;ﬂm]) {veo<w} {min; g V0xj)z—L} (Yn + b) \/; Jj<[an] xeN ([an]) J
<6 +P( z eV Vo<y,} Hmin < Vi )z—L) = — )
{ ) minyfan) V(22 (v, +b) \/n

xeN([an])

Using Markov’s inequality and Lemma 3.1 (ii), we obtain that

]P’(W[an1 — Wl > ;)

TR
_5+ME< 2 e VM1

£ {V(x)<yn} l(minjs[aﬂ V(xj)Z—L}>

x€N([an])

th +0 DAL+ 1
=5+MPL(SW1<J/"+L, min Sj20>55+(7n JVh G P+ D)
I3 j<[an] I3 \/W

Since y, = o(n'/19), by taking n — co first and then 6 — 0 in the display above, we get the conclusion of (i).
(ii) When a = 1, the first assertion in (ii) is simply the assertion of (i). By Markov’s inequality,

P(|J,| > €

— P
< 2B (I1[F) £ 2+ 0) Vi (W, - W) —o.

& 13
Since P(|J,| > €|F,) is bounded, the second assertion in (ii) now follows from the bounded convergence theorem. Now we assume
a > 1. Without loss of generality, we assume b > 0. It suffices to prove the second result since the first one holds by taking
Jy=(ra+b)y/n (W[a,,] - W["mﬁ' ) Using the same argument as in (i) gives

P(|J,|>¢) <6+ é]E (E(|Jn|

Plan ) 1
[an] {minjga,ﬂ Min e n(fan]) V(xj)z—L} )

(}’,, + b) \/; TGV
<6+ — E <(W[an] - W{an] ) {mmjgmﬂ Min e p7(Fan]) V(xJ)Z—L}>
+ (72 +b) ﬁE( Z V@

£ l{mi“/ein, fanlinz V (5)<ru} Vimin <o) V(x)2-L) )

xEN ([an])

(ra+b) \/EPL(

£

=5+ min S <7,+L, min S; > 0). (4.19)

n<j<[an

Let fi(Sy) 1= Pg, (min; o S; > 0). By Lemma 3.1(i), we know that f,(S;) < (1 + S)([an] — k)~/2. By Lemma 3.1 (ii), we have

[an]
i . i >0) < i o>
PL(ng?Elﬂn] SJ <y,+ L’jgﬂ% Sj > O) < ,;, PL(Sk <7, + L,jrsr}lar),] SJ > 0)
[an]—[y/n] [an]
< kz, E, (fk(Sk)l{Sk<yn+L} Limin, o, 5,20 > + Z PL<Sk <ru+L rjnsl,‘} Sj 2 O)
=n

k=[an] —[\/;J+1

[an]=[y/n]
SU+y,+L) )

1
k=n V [an] -k

2 2
.(1+y,,+L) (1+L)+\/;l (1+y,+L)(1+L)

2
)+\/; (I4+y,+L) (1+L)3
(Tanl -1y +1)

=: b

P, (s <7+ LominS; 20

< (1+y,+L) - [an]

3 3
[v/n] Vi (Tam -1y +1)
Using 7, — oo as n — oo, we can easily get n*/4b,/ (y3) < 1. Combining this with (4.19), we get that as n — co,

(ra+b) Vn 7
]P’(|J,,|>e)55+"fb,,§6+nl'}4.

n-

4
Note that by the third condition of (4.2), lim,_, n% = 0. Letting n — oo first and then § — 0, we get the desired result. []

Recall that c¢* and a* are the constants in (3.4) and (3.7) and #(y) = c¢*y + a*.

Proposition 4.3. For any a > 1, under P,

lim \/Z|D<[§"]*’" — (¢*Dpgpy — (¥, — a¥) W[an])| =0  in probability.

n—oco

16
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Proof. Define D" := Yeenm? (V&) —v,) V@ =c*D,, — (c*y, — a*) W,,. Note that
lanlrn _ pn lanl.pn _ planl.ra lanl.ry _ prn
Vi = B, | < Vi | - V| = By, |

[a"]
= 0 in probability with respect to P. On the set {min|,_(,, V(x) > 0}, we have

By Lemma 4.1 (ii), lim,_, \/n |D£§”1 o _ planln

fan]
[anl.y, D
V| = bi,,

=Vi| Y (V0 -1) e e,

xeN ([an])
< (c*y, +a*) \n <W[an] - W[[:an?] 7") .

Combining Lemma 4.2(i) with the fact that lim,, ., P (min,c s, V' (x) > 0) = 1, we immediately get that lim,,_, \/n ‘D[Zﬂ o D’E’; al=
0 in probability with respect to P. Now the desired conclusion follows. []

4.2. Approximation of the martingales via weighted number of particles

Recall that y, is defined in (4.1). For any n € N and a > 1, we define
(s8]
[anly, «— —V(x)
N1 = Z Z e 1{mi“ngjsk—1 V(x,-)Z}’,,,V(x)<Vn}'
k=[an]+1 xeN (k)

Lemma 4.4. For every a > 1, under P,

Jlim \/np,

Nl _ | ( Nlanlr

Fran )‘ =0, in probability.

Proof. Recall that £/l is defined in (4.6). Define

Al o= {x e Ll Van +1< ) < [xl,

D (1 + (V) -V(x 1—1))+) e~ (V0Vxjo0) < yoVExj-D=12) /2 } (4.20)
uEQ(xj)
fan] S
anlyy ._ —V(x)
Ny T Z Z e l{minnsjsf—l V(xj)ZVn,V(XKVn}l{xeAL.”ﬂ”"}'

Z=[an]+1 xeN'(¢)

Then by Lemma 3.4 with ¢ = 1 + «, for any ¢ > 0, we have
P <\/Zﬁ,, ‘N[‘"’Wn -E (NWM Fran )' > 35)7‘[“,,])

24/n
RN

1+a
Vb, [anl 7, fanl.7,
+<T> IE(‘NK —E(NK rw>
Using Lemma 3.7 (ii) and the Markov property, we get
P[rm])

S

— —V(x)

- E( Z Z € 1{mi“ngjsf—l V(xj)Zyn,V(x)<yn} 1 {XéAL‘"’Lm } F[an] >
¢=[an]+1 xeN'(¢)

1+a
PW]> : (4.21)

E (N[an] In _ N’Ea"],}’n

[s+]

—V(x)

= E( 2 X e Vit gy <ot VG2 rmV (00<ry ) | {xgalemtmny ‘P{aﬂ)
¢=[an]+1 xeN(¢)

< &K
=Vw-r, ~ logx 1’

- -V
= Z ¢ ul{wu)zrn}E(lel,oo) leleo)K)
ueN ([an])

(4.22)

where g is the function in Lemma 3.7 (ii). It follows from [13, Theorem 2] that, for any random variables X, ..., X,, with finite
(1 + @)-moment satisfying E(X,;,;|X; + - X;) = 0 for all j = 1,...,m — 1, we have E (|Z, X[|1+a) <2Y,E(]X;]'*"). Note that, by

the branching property, Nl‘”']'yn = Yuen(fanyy H@W with {H@) : u € N ([an])} being independent random variables conditioned on
Fan)- More precisely, for u € N'([an]),

[

— =V (x)
Hu) = z Z e l{minnslsf_l V)27V (<1, ) l{xeAL“”W" }
¢=[an]+1 xeN'(£),x>u

17
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Using these two observations, the branching property, the trivial inequality E (|X — EX |1+”) < 2R X|'**) and Lemma 3.8, we

get
I+a
Fian )| [Fian )

E <‘N ,[“"W I _R ( Ni“"]%.
> (Hw-E(HW[F,)) 1+a|7:[‘m]>

=E(
ueN ([an])
I+a
Y E(‘H(u)—E(H(u)‘T’(an]) (r[mﬂ)s Y E(1H@"
ueN ([an))

ueN ([an))
I+a
—(1 |4
< Z e+ () (Vs }E( (N[zl,oo),)(> )
ueN ([an])

< P Z e7(1+a)V(u)ea(V(u)fy,,) = k%~ %n W(an] ) (423)
ueN ([an])

Flam )

z=V W)=y,

Combining (4.21), (4.22) and (4.23), taking x = ef+/2 and using the definition of y,, we get

(==l

(P2)  plreeah/? )

g n
s\/;W(arﬂ( e T i

Letting n — o0, and combining (1.2), (4.2) and the fact that lim,_, , g(z) = 0, we get the desired conclusion. []

(4.24)

Recall the definition of ££j’jd”" in (4.7). Define

o0
Slanly, . _ —V(x)
Ngood T Z Z ¢ l{minnsjsk—l V()27 0 =B /2SV (X)<1, }* (4.25)
k=[an]+1 xeN (k)

Proposition 4.5. For any a > 1, under P, it holds that

. ~fanly,
"linolo \/;ﬂn N W[an]

g00d =0, in probability.

Proof. By the branching property and Lemma 3.7(i), we have

E ( Tl

- -V @)
Frmﬂ) = E( Z Z € min, gy V210V <1, Fﬂzﬂ)
k=[an]+1 xeN (k)

— —V (u) z
= Z € l{minnsjsw V(upzy,,}E(Nu,oo))
ueN ([an])

V) _ T,
Z e l{miﬂns/‘s[an] Vuzy,) = W[an]' (4.26)
ueN ([an])

z=V(u)-y,

Then we have

VnB,

NICEA
Ngood W[“"]

< Vg, |[NFerlon — RTn) o\, ‘ Nlorlz _ | ( Nlanl
W .Y VI/[[M] .

+ /g, |W

It follows from Lemma 4.2 and Lemma 4.4 that the second and third terms on the right hand side of the above inequality converge
to 0 in probability as n — . To prove the desired result, we only need to prove

lim \/;ﬂn ‘N[an],y,, Nl
n—o00

good

Fran ) ‘

=0, in probability. (4.27)

Recall that (.S, P,) is the random walk defined in (3.1) with S, = y. By the Markov property and (3.1), we have

n sty

E (Vs (N1 = R ()
(s
=\/;ﬂnE< 2 X fwx)l{minnw,lV(x,->2rn,V<x><r,,—ﬂ,,/2}|7’[an1)

k=[an]+1 xeN (k)

<ViB Y O sy SP ( min S, > 0,5, < —f,/2

- )}:V .
weNan]) =l j<k—1 y=V -7,

For k > 2, U, := S, — S,_; is independent to S|, ..., S,_; and has the same law as S| — ;. Thus for all y >0,

up=Uy )

8

(4.28)

ZP min 5,2 0.5, <~f,/2) = (ZP(rr}(mS>0Sk1< ~ux = $,/2)

18
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u:Sl—y>.

=E,(), P,( min 5,205, <—u- 5/2)
k=1 -

By Lemma 3.1 (iii), we see that

©

D Py(jré}(iill S; 20,8,y <—u=$,/2) S (L =u=B,/21_uy 120)-
k=1 -

d
Therefore, using the fact that (S, — y, P, =(S,,P), we obtain

2 P,(min S; 2 0.5, <~4,/2) SE((1= 51 = /2)" Ls,<-p, 1))
Note that for u < —$,/2 and ,/2 > 1,

(1—u=5,/2)" <2( + (B,/2 - 1)7) < 4.
Hence, for all y>0and n > 1,

1

ZP min S, > 0.5, < ~f,/2) S 4E (Sf1{51<_ﬁn/2}> < ﬂ—E((—Sl)3 si<ppo))- (4.29)

Combining (4.28) and (4.29), we obtain

E (\/;ﬂn (Nf“"”n - ﬁgjﬂ”") ‘me) S VnWignE ((—51)3 Lisi<p,2) ) '

which implies (4.27). The proof is complete. []

Corollary 4.6. Letm>1,1<a; < <a, <a,, = and (z"),cy € (C™N, here z" = (2}, 25, ..., 20). Assume that for all 1 <k <m
and n > 0, Re (z}) <0 and z" converges to some z = (zy, ..., z,) € C". Then under P,

. [a nl,yn S lagpin]vn
nlgg E <exp{ z k \/_ ( go:;d - Ngogc}rl ) } Fn)
2 1 1 . o
= exp{ \/—=D Zy <— - ) } in probability.
no? % sz NCTE™
Proof. Using (1.2) and Proposition 4.5, we have that, for all 1 <a < b < oo,
[an].y, ~[bnl.y, 2 1 1 _ . .
(N wod '~ Neood ) -1 / ED" <$ - % =0, in probability.
Noticing that ﬁ;::;’y” > ﬁ;ﬁ:}l’y” and Re (z}) <0, using [11, Remark A.3], it suffices to prove that
m
. 2 1 1
lim E( ex z"‘/—D - }F)
n—oo < p{; “V 202 n(\/“k \/“k+1> !
[2 < 1 1 ) .
= exp{ ——Dg ) z < - ) } in probability.
o2 1; NV

Since D, € F, and lim,_,, D, = D, the equality above is trivial. []

lim

n—oo

Define
o0
Slanly, o _ eV IOg”
Ngaod T Z Z : * (V( ) ) {mmngjsk—l V(xj>27n} 1 {Vn_ﬂn/zﬁy(x)<7n } ° (430)

k=[an]+1 xeN (k)

Lemma 4.7. For any a > 1, under P, it holds that

lim \/—|th] I _ ﬁn )N[‘"ﬂ n

good good =0, in prObClblllty

Proof. Note that

VAR (e, - ) Rl

(e )
E (R Fran ) = (¢* By =) E (N1 |y, )'

19
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+ (c*ﬂ,, - a*)

+(c*B, —a*) \/ZlN(”"”" -N

= L+ 1L, +1I1,+1V,.
It follows from Lemma 4.4 and (4.27) that I11, and IV, tend to 0 in probability as n — o
= 0 in probability. Define

p(an] ) — Nlanly,

) ( NTanlr

[an].yy
good

We first show that lim,_,, I,

Slanly, . _ i Z % _V(X)<V( ) — 10§n>

good,x T
Z=[an]+1 xeN'(¢)

X Uming ey Vopzn} Hm=pa2sveo<m} el

where A" is defined in (4.20). By Lemma 3.4, we get that, for any & > 0

[anl.yy Ry lanlrn
<\/_ ‘N ood Ngood P(‘m] ) ‘ > 36|P[‘"’] >
1+a
2\/— " N, - " I+a
Alanlrn fanl.r, [anl.ru [an].r,
( good - Ngor)d,l( F”“"]) + < € ) E <‘Ngood,/( -E (Ngood,rc F(“"]) F[“"W) .

By an argument similar to that leading to (4.24), taking x = e¢/»/2 and using Lemma 3.9, we can get
Sl _ g < Ry Tan 7

P < good good P[a”] )‘ > 3£|F[‘"l]>
g (eh/?)  plraeah/?
S \/;W(an] < € + elta )
Combining this with (1.2), (4.2) and the fact lim,_, , g(z) = 0, we immediately get lim,_,, I, = 0 in probability.
11, =0 in probability. By the branching property, we have

Therefore, it remains to prove that lim,,_,

[an].yy _ -V
E (Ngood F[""] ) =¢ Z € ‘ l{mi"ngjg[mq V('lj)Z}’n)
ueN ([an])

y=V -y,

o
-V
x z ]E< Z e (V) + 8, +) l{minjs,(,l V(xl)z—y}1{—y—ﬂ,,/25V(x)<—y})
k=1 \xeN(k)

— % =V ()
=c¢ Z ¢ l{mmngjs[an] V)2, )

ueN ([an])
(4.31)

[s+]
X 2 Eyuyy, ((Sk +B,) l{minjsk_l 5,20} 1{—ﬂn/255k<0}) .

For y > 0,n > 1, define

A, () = ZE ( Sk+ﬁn {minjgk_]Sj20}1{3k<—ﬂn/2})'

By (4.29), we have
A,0) < B, ZP <m1n 5,20, < ﬂ,,/2> ((—S1)3 1{S1<_,}"/2})A

On the other hand, we have

_An(y) < ZEy ((_Sk> l{minjsk,l Sj20}1{3k<7ﬂ,,/2}>

Ey ( (_Sk) l{minjsk,, S;20} 1 {Sy—1<=Ux—p,/2} )

=~
Il

Ey ((_Uk) l{mmjs,(,l $;20} l{Sk,1<—Uk—ﬁ,,/2} ) >

IA
M

U, on the set {S;_; > 0}. By Lemma 3.1 (iii), we

=
I

where U, = S, — S,_;, and in the last inequality we used the fact that —S; <

have
2B ((U) Voniny oy 5,204 {501 <-0-/2))
k=1

)

0
- ((_ {(=U1>8,/2} Z y( r<nk1nlS 20,8y <-m = ﬁn/Z) uy
k=1

20
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2
SE((-Uy) (1-U, - 5,/2) L_v,5p,/21)
3 3
SE((-U) 1_ysp,21) =E((=51)" 15,2, /2))-
Therefore, for all y > 0,n > 1,

14,00 SE((=51)" 1(5,<-,/2})-

Combining this inequality and the definition of A,, we get

s

V)
¢ Z ¢ 1 {mi“nSJS[ﬂn] V(",)Zyn}
ueN ([an])

* e—V(u)

> By, ((Sk + ) Umin o, 5,20} 1 {sk<—p"/2}) |
k=1

=c¢ Vi< fan) V27, |4,V @) =)

ueN ([an])
3
SE((-5)) L{s,<=p,/2) YWian- (4.32)
By (3.6), we see that R(y) = ¢*y — c*Ey(STJ) for y > 0. Thus

* -V (u)
¢ 2 eV l{minnsjﬂa,,] V)=y,} ZEV(M)—V,, ((Sk + ﬁn) 1{minjsk,l sjzo}l{sk«)})
ueN ([an]) k=1
= e_V(u)l{mi"ngjg[an] V(Mj)ZVn}c*EV(")—Yn (STE + ﬂn)
ueN ([an))
= e_V(u)l{mi"nSjS[an] V(Mj)Z}’n} (C*ﬁn +c* (V(u) - 7,,) -R (V(M) - Yn)) . (4.33)
ueN ([an))

For any ¢ > 0, let K be large enough such that |R(y) — (c*y + a*)| < € for y > K. Therefore, when V' (u) — y, > K, we have
|(c*ﬂ" +cF (Vw—r,)-R(Vw=r,)) - (c*B, - a*)| <e.

Recall that by (4.26),
(c*ﬁ,, - a*) E (N[”"]’“

_ * * =V (u)
r[an]) = (C ﬂn - ) Z e~ l{mi“ngjg[aﬂ V(uj)zy,,}‘
ueN ([an))

Combining this with (4.31), (4.32) and (4.33), we get
I1,=+/n|E (N;’:;V F ] )‘
3 _
SE ((_Sl) 1{s1<7ﬁ,,/2}) VAW +ev/n Z e V(")l{mmngga,ﬂ Vvpzr,} Hywsr,+K}
ueN ([an])

+ s (RO= @) Vi 3 ) sk (@30
Y€[0,K] ueN ([an])

F[an] ) - (C*ﬂn - a*) E (N[”"]J’n

Let L and 6 be the constants in (4.14). Then for any 6 > 0,

-V
P(‘/; 2 M i vpzn )  (Vsn k) >9>
ueN ([an])

-V
55+P<\/Z > e (u)l{minjgu,qV(uj)Z—L}l{V(u)SYn‘*'K}>€)

ueN ([an])

n
<6+ —E eV

< l{minjs[,m] V(uj)Z—L} 1{V(u)5y,,+l(}>
ueN ([an])

Voo
=6+ TP(J]'SDLI;] Sj > —L,S[an] < Yn +K>
Vi, + L+ K2(L+1)

—_— s (4.35)
7

where in the last line we used Lemma 3.1 (ii). Letting n — oo first and then § — 0 in (4.35), we get that the third term on the
right-side hand of (4.34) converges to 0 in probability as n — 0. Note that the second term on the right-side hand is bounded by

e\/ZWW], so letting n — oo first and then € — 0 in (4.34), by (1.2), we get that lim,_ , I1, = 0 in probability. The proof is now
complete. []

S8+

Corollary 4.8. For any a > 1, under P,

tim \/n| N — (6, = @) Wian

n—oo

=0, in probability.

Proof. This is a direct consequence of Proposition 4.5 and Lemma 4.7. []

21



H. Hou et al. Stochastic Processes and their Applications 172 (2024) 104338

4.3. Limit behavior of Fb[::]’y”

Proposition 4.9. For any a > 1, under P,

lim /nF,“"" =0, in probability.

n—oo
Proof. SetY, :=+/n (Fb[f;] RN 1) > 0. We only need to prove that lim,_, . ¥, = 0 in probability. We claim that (1.3) implies that

IE(DmAy)S(1+log+y), y>0. (4.36)

Indeed, (1.3) implies that E (Dcol{Dwsy} ) —log, y $ 1,y > 0. (1.3) also implies (see [5, Theorem 2.2]) that lim_,, ., yP (Dm > y) =1,
which means yP (D, > y) < 1,y > 0. Therefore, for all y > 0,

E (Dg Ay) =E(Dm1{DmSy}) +yP(Dy > y) S 1+log, y.
Since V (x) < y, for all x € £I*"171, we have

be::W,, Al < Z eV (Dw(x)/\ ((c*)_l evu)))

xetgzz]’”'
< Z eV (Doo(x)/\ <(c*)_1 e}’n)).
xetl[zz]‘y”
It follows from (4.36) that
T . -1
E (Fb[:T Tn A 1|7:'£[an1.7n ) < Z e VOR (Doo(x) A ((C*) eh) |Fﬂaﬂ-7n )
xecolm

s Yn Z er(x). (437)

[an].yn
XELy

By the branching property and the definition of ELZZ]’V”, we have

-V (x) _ -V (x)

]E< Z e ‘Fﬁl'ﬂ) = 2 ¢ 1{mi“nsjsm1 Vx)<r,}
xerlan xeN ([an])

bad

0
)
“E(k [Z% 1 % ¢ Xl{minns,-gkflV<x,)zyn}1{v<x><yn—ﬂ,,/2}|7’"[an1>
=[an]|+1 xeN (k)

7 -V
= (W[mﬂ = Wian ) + 2 Ty,
ueN ([an])

[so]
—V(x)
X E(Z % ¢ l{minogjgk_l V(X/)ZY} 1 {Vv(x)<y-B,/2} >
k=1 xeN (k)

- T -V ;
=(Wan =Tt )+ 2 e vy, ZP(OJ}EE_I S;2 050 <y=h,/2)
ueN ([an)) k=1 -

y=V@w-ry

B

y=V -y,

where W["G’Zi' is defined in (4.18). By (4.29) and (4.37), we have

E (Y,,

Flan ) S 1V (Wian = Wyt ) + ;—:\/ZWME (=5 1si<nr21) - (4.38)

By Lemma 4.2, the first term on the right hand side above converges to 0 in probability. Combining the second condition in (1.2)
and (4.2), we get that the second term on the right hand side above also converges to 0 in probability. Thus E (Y,,
to 0 in probability. Finally, applying Jensen’s inequality, we have

36 =B 5 i)) 22 o {2 1))

By the bounded convergence theorem, we get that
1>limsupE (e’yﬂ) > liminf E (e’Y") > lim E (exp {—IE (Yn
n—oo n—oo

n—oo

Fram ) converges

Flan) }) =1

Therefore, for any ¢ > 0,

limsupP (Y, > ¢) = limsup P (1 —e 1 —ef) < 1 lim E (1 —e_yﬂ) =0,

n—oo n—oco — e~ € noo

which implies that lim Y, = 0 in probability. []

n—co
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4.4. Convergence in distribution for \/n (Fg[::d]’y” N;Z:; 7")

[an].y, S lanl.y, 3 . .
Recall that Fgoo # and Ngoa . are defined in (4.8) and (4.25) respectively.

Proposition 4.10. Let (X;) >0 De the 1-stable Lévy process with characteristic function given by (1.5). For any m>1,1<a; <--<a
and A € R™, under P, N

m
. . [axnl,vn [agn].rvy
,}g{}ﬁ(exp{l X i (i = Mt )}"’)

k=1

=E i X - D_ ), in probability.
<exp{120 k akl/sz}' oo> Di ty.

k=1

m

Proof. Let A¥ := A, + - + 4 and a,,,; = o, by the definitions of Fg[:;;w’y” and 1/\75[’7‘:]‘7" in (4.8) and (4.30), we have
S fan] fagnl. S v
apn|,y, aghl,yy _ -V
X an( Flaghn - glalo) = ) Ak\/Z< Y Y o
k=1 k=1 C=[agn]+1 xeN'(£)
N logn
x l{mi"'rS/Sf—l V(Xj )Zyn,yn—ﬂn/ZsV(xKy,,}c <D°°(X) - V(X) + 2 >>

[ag4+1n]

m
= Z Z Z {minggj<r1 V)2Tntn=Bn/2<V (<1, }
k=17¢=[a;n]+1 xeN (£)

xc*a e V(Do) - V) + lof")

Define ¥p_(4) := E(e'*P). For each K € N, define a =a fork=1,...,mand d  :=a,+K.Also, for n,/ € Nwithn <7,

define I'(?) := {x e N(©) : min,cjcr 1 VX)) 27 ¥y = Bu/2 S V(%) <y,} for 51mp11c1ty We first calculate
m I<+1 nl gn
(exp{ Z z Y aVne (D) - V) + )} F,,)

£=[a n]+l xel'(¢)
rn>,

B
logn
—- ; -V - =
= E<exp{1 > Y A (Doo(x) Ve + = )}
F=AXEL(?)

where A = [a{n] +1,B = [d) n] and 4,, = c*/l;i\/; for [a;n] +1 < ¢ < [d4) n]. Note that for every ¢ € [A, B], if there is an
x € I'(¢), then x; & I'(j) for all j € [A, £~ 1]. Therefore, by the branching property, conditioned on Fp, { D, (x),x € I'(£),? € [A, Bl}
are mutually independent, which implies that

rB)

B
E(exp{i Z Z An,fe“/(x)(l)w(x) -V(x)+ 10§n ) }

f=A xe]"(t’)

:E(eXp{ Z Y e (D0 - V<x>+—)} ?B)
£=Axel(£)
x H e—uwe*"(*)(V(x)—logn/2>¥,D 4, Be—V(x))
xel'(B) ©
B V) logn
=E(exp< i Z Z Anpe (Dw(x) -V(x)+ T)
¢=Axel ()

: =V (x
x H e~itnBe OV (x)-log rl/z)ngm (/‘ln,Be_V(X))
xel'(B)

s

Using the fact that x € I'(B) implies x5_; ¢ I'(B — 1), we have
e—i/l,,yge"’(""(V(x)—log n/z)lpr (}‘n,Be_V(X))
xEI'(B)
— e*iin'Be—V(u)(V(u)—log n/2)¥/Dm (AKVBer(u)).
xEN (B—I\T'(B-1) u€N'(B):u>x

Therefore, again by the Markov property and the branching property, conditioned on Fp_;, {D(x) : x € I['(£),£ € [A,B — 1]} are
independent and also independent of the o-field generated by {u € T,up € N'(B)}, which implies that

B
E(exp{i z Z ﬂn,fe_v(x)(Doo(X) V(x )+1i)} JL’13-1)

¢=AxEL(t)
23
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B-2
=E<exp{iz D e O (D) = V() + Og")} PB_1>

£=AXET(t)

i —V(x) — _
X e id, p-1€ V(x) logn/Z)g/Dw (/1)’1,3—] e V(x))
xel'(B-1)

; -V
e_MN,BC (“)(V(u)—log n/2);1/Doo (An,Be_V(M)) F

FB—I)
-

Iterating the above equation and using the fact that 7, c F,, we finally get that

E(exp{ 3N Ae V(")(D )=V + g")} P,,)

f=AxEL(t)
r,,)

m (g,
_ E(H H H e*iitg*\/;g‘V(X)(V(x)flogn/Z)lpr (c* A \/;ew(x))

k=1 ¢= [a,’(n+]] xel'(¢)

X IE(
XEN (B—D\I'(B—1)ueN'(B):u>x

B-2
= E(exp{i Z Z Anfe_v(")<D°o(x) -V(x)+ 10%) }

F=AxEL(£)
B
; —V(x
x E( H H e—ll,,/e M)V (x)-log "/Z)WDOQ (/lnfefl/(x))
¢=B-1x€l'(¢)

B
— E(H H e—i/l,,fe*V(x)(V(x)—log n/2)q/DBo (lnfe—V(x))
¢=Axel ()

T’n> . (4.39)

By [11, (1.12)] and [11, Lemma 2.3], there exist continuous functions #,q : R - C with 5(0) = ¢(0) = 0 such that
efi/l::g"\/;g‘V(X)(V(x)flogn/Z)IIUDotJ (C*ﬁz \/;e—V(x))

_ —iate*yne VO W (x)-logn/2) % g% —V(x) c*l;ﬁe’w"‘)“c*lzﬁe’y(")
=e Tk Vi W29+l | € Ak\/;e e )

= CXP{ Ve Oy iy (€F47) + a5 y/ne ™V 0g ((2*/1; \/Ze‘V(")) }

where ¢ is the constant in (1.3). Define

m
[axnl.vn [ 1.7
—Z\/Z(NLZ,?Z R s i (€ AD,

m
— —V -V
- z z Z {minngjgf—l V(Xj)ZVn-Vn—ﬂ,,/ZSV(xkyn}c*)”;: \/;e (x)q (C*lj: \/;e (X)> .

1 ¢=[agn]+1 xeN(¢)
rn> =E( 7).

) ‘ — 0 in probability. (4.40)

Letting K — oo in (4.39), we get

(o S oy (plzte - 8l )
We claim that
7)-E(

2

Indeed, for any € € (0, 1) and any complex number z = a + ib with |z| < e, we have |a], |b| < e, which implies that

ea-Hb _ elb

ez—1|§

eib—l)ge.

Thus, we get that, for any ¢ > 0,

2 ( 7)=E (e R} [7)| s (120]> <
Recalling that ]\NI;Z;;]’V" is defined in (4.25) with a = a,, we see that, for any fixed 4, ..., 4,,, we have
m
Uity ro VO 21 ta-Ba25V (051, V1€

- [aynl.yn
4<c*/lzoe Y) VN,

Applying Corollary 4.6 with m = 1 and z" = ia with a € R, we see that (\/;]\Nfg[:;?’y”,IP’chn)) converges in distribution. Since

) +e. (4.41)

[ag+1n]

|Z,| $ max  max ' ( )
L<ko<m y€[By/2,8,) £=[agn]+] xeN (£)

-V (x)

< max max
1<ko<m YEIBn/2.5n)

lim,_,  q(z) = 0, we have lim,_,, P (|Zn| >e P,,) = 0. Letting n — oo first and then € — 0 in (4.41), we get (4.40).
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Combining (4.40) and Corollary 4.6, we get

. [axnl.r, [agnl.ry
,,ILTOE<6XP{ Z A (Fgo:d Ngogd )} T’n>
1 . .
=ex ) , in probability.
P{ V= Z W /20417 <\/_ m) } p y

A standard computation yields

m
E<BXP{iZC*}“an;I/2Dw}‘ > HE(exp{lcﬂ( -1/2 —Xa;l/sz)}‘Dm)

k=1

_exP{zD <\/_ \/m)vl\/n/hrz (co+1— J/)\/Z/mrz(c A )}

This implies the desired result since

2
Ve cr-nya7ea M =\ 23 ¥apen - A€ R0

Proof of Theorem 2.1. By (4.8), we get that

logn n
\/; (Doo - D(an] + § W[uﬂ) = \C/*_ (Dign]!yn - (C*D[an] - (C*yn - (X*) W[[m]))

Vn ( Slanl.z, Vs,

* *
c* Ngood - (C ﬂ" -a ) W[“k"]) + co* Fbad
n
Vi ( lang, _ Qe
c* (Fgoad Ngaod ) :

It follows from Proposition 4.3, Corollary 4.8 and Proposition 4.9 that the first three terms on the right hand side of the display
above converge to 0 in probability as n — co. Now the conclusion of Theorem 2.1 follows from Proposition 4.10. [J

+

+

5. Proof of Proposition 2.2

Recall that a € (0, 1] is the constant in (A5). Fix an r € (0, 1) such that

14+« < %(l—a)+“<(1+’)/\<%>>’

2
which is equivalent to
{ l—a 1-2a }
r > max , .
l+a l-a

By the definition (4.18) of W™, we have

70 _ Z ~V(x)
W, - e l{minl»e[,,rﬁ,‘]nz V(xj)ZO} .
XEN(n)

Note that min,¢ v,y V' (x) = +oc0,P-a.s., so
lim P (W,["’W # Wn) =0. (5.1)
n—00

As preparation for the proof of Proposition 2.2, we prove a few lemmas first.

Lemma 5.1. Forany fj (o, Loaa- r))), it holds that

=[n"1.0 2
Vi (W Y|P ) - \ % D
Proof. By the branching property, we have
Vi (WP ) = -
To2 " n"
_ 2
= 2 Py (ﬁl’wx)( Sy 2 0) \/ mfan(x))

xeN([n"])

=0, in probability.

lim n?
n—oo

It follows from [8, Lemma 2.2] that, for any y > 0 and positive integer n with n — [n"] > 1,

|P< min S, >O)—R(y)P( min S, >0)|5 %}R(y)P( min S, >0)

jsn=[n"] j<n=[n"] Jj<n=[n"]
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Combining Lemma 3.1(i) with the facts that n — [#"] < n and |R(y) — c¢*y| < 1,y > 0, we get that for all y > 0 and large n,

|\/;P( min S >0>—c y\/—P(.mm S >0)‘

Jj<n—[n"] [n"]

2
SWMP( min S >0)+ \/;P( min .S >0)

\/n— |'nr] Jj<n—[n"] Jj<n—[n"]

Recall that 7; :=inf {# > 0 : S, <0}. Then by [8, (2.18)],

[P(_min 5;>0)~P(mins; >0)| =P min ;>0 min__5,<0)

j<n=n] jn=nr] 7 n—[n"+1<j<n I
n n 1 n 1
= ) P(p=0)s Y —s/ ——dx
C=n—[n"]+1 f=n—[n"]+1 £32 n—=[n"] x3/2

(e
T Ve T

Combining the two displays above with (2.1), we get that for all y > 0 and large n,

1 2
|\/;Py( min SjZO)— igﬂy SM+1+ Y ,
Jj<n=[n" o2 \/ﬁ nl=r

which implies that

|\/5E<f"7n[’”’°‘ﬂnq)— /ﬁi2§ Dy

_ (1 +V (x))? V(x)
S O pgsoy [ ———=—— + 1+ —==).
xe./\;[n"]) ( \/; nt=r )

By (1.2), we have

lim /] Y eV® /2D, in probability. (5.2)
n—oo ol

xeN([n"])

Since lim,_,, D, = D, almost surely and D is non-negative, we have

lim 2 V(x)e™ @150, = Dgo. almost surely. (5.3)
"7 e N )

Since g € (0, l((1 —r) A r)), using the two displays above, we get that for any £ > 0,
. _ V(x)
"lirglP’<nﬂ Z e V(x)l(y(x)zo)(l + prEn ) > £> =0.

xeN([n"])
For any 6 > 0, let L satisfy (4.14). Then for any € > 0,

_ A+VE)°
1P’<nﬂ z e V(x)l(y(x)zo)— >€
xeN([n"]) \/;‘

_ (1 +V (x))*
<é +]P’<nﬂ z e V(X)I(V(x)zo)—I(min,s[m V(xjz-L) > €

xeN([n"]) Vn
1 -1 2 -V
sa+;nﬂ 2]E< Y A+V)Ye <x>1(v(x)20}1{mmjsmV(XJ)Z_L}>
xeN([n"])

_ 1 p-1 2

=5+ o zE((l + St 15500 (mingepr 5,21} )
1

<6+ énﬂ_i ((1 + L2+ 1+ D[ )

where in the last inequality we used Lemma 3.2. Letting n — o first, and then § — 0, we get

2
e—V(x)l(V(x)> 1+ V(x)) S E) -0

>0} \/;l

lim P<nﬂ
e xeN([n])

This completes the proof. []

For m < n, define

n,l1

A™ = {xEJ\/(n) s forall j=m+1,...,n
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> (1+ (@ -ve),)e Vo) < eV“f—lW},

uEQ(x‘ /)

~[n,0 _
Wn{;l] = Z e V(X)l{min

et minz V(x)20} 1 {xeA["]”'O} ) G4
xeN(n) m

Lemma 5.2. For large n,

=10 _ 757110 1V v
E (Wnn -W.i ‘ﬂn’l) s Y [+ " )e 1y w0-
ueN([n']) \/ﬁ

Proof. By (3.2) and the branching property, we have

E (ano - W?q’o‘f’m)

_ V()
= Z 1(V(u)20}]Ey< 2 € M iy V(x))20) l{ngo.o )
y=V ()

ueN([n"]) xeN (n—[n"]-1) n=[n"]-11
n—[n"]-1
Vv .
< D g Y Q( o min | Vw) 2 -y,
ueN([n') £=1 J=

Z (1 + (V) - V(wf—l))+) e~ (V@=V@we_ ) 5 e(V(wf—l)‘H’)/Z) (5.5)

ue(wye)

y=V ()

Suppose » is large so that n — [#"] > 1. For any positive integer # < n— [n"] — 1, conditioned on F,, by Lemma 3.1(i), we have

@( min V()= -y, Y (1+(V(u)—V(wf_1>)+)e-<V<">-V<Wf—1>>>e(V<w71>+y)/2>

Jsn=[nr-1 uewy)

N

1
<1 " m)ﬂi@ <(1 Vo) + y) l‘mi‘”‘jsf V(wj)z2-y}

x 1 , ,
{Zueauputuy) 1+ @=V@ws_y ))+)e_(y(")_v(w”'l D>e(V@we-0)/2) >

: <1 A +>IEQ(J,¢). (5.6)
Vr—[n]-1-¢

Conditioned on F,_;, we get that, given V(w,_;) = z,
E@(JK|V(w{,1) =2
=Ey ((1 +V(w)+z+7y) Ly w2 —y-2) 1(ZXEN<1>(1+(V(V>)+)E‘V(")”(”y)/z1)

=E< A+V@+z2+0e @1 sy ] _ )
XE%:(I) Vz=y-z) {z+y<2log+(W1+Wl)}

<E <(VV] (l +210g+ (VV] +ﬁ7])) +ﬁ7‘) 1{z+y<210g+<Wl+f/I7,)}> ’

Therefore,
Eg(J,) < JE((W1 (1+210g, (Wi + ﬁf])) + 17/1)

><P<jsfj£1] S; 2=y, Sy +y<2log, (ml)>

ml:Wl+W1>

=: E<WP<,~5,}E1 S; > =y, S +y<2log, (m])>

5

m1=W1+17Vd1>
where W := W, (1 + 2log, (W, + W,)) + W,. Thus, if k, is the integer such that 2k, < n— [n"] = 1 < 2k, + 1, then by Lemma 3.1
(ii)(iii), we have

n—[n"]-1

1
I A ———— |Eg(/J,
; < A\/ﬂ—[ﬂ’]—l—f) o)

k
1 < .
5—]E<W P( min S; > -y, S,_| +y <2log, (m ) ~>
V=[] -1-k, fz=l N +(m) my =W, +W,

+n_[§_1<u | >E<W(y+1)(l+210g+(W1+W1>)2>

n—[n]-1-¢ (¢ =132

O=ky+1
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n—[n"]-1

1 1 1
S| ——=+(+1 z 1A FQ), (5.7)
<V"—["r1—1—kn v )f:k,,+1< vn—fn’]—l—f)(f—l)m) M

with F(1) given by

F(1) :=E<(W1(1 +2log, (W + W) + W, ) (1 +2log, (W, +Wl))2> < co.

If n is large enough, we have

n—[n"]-1 1 1
Z 1A 3/2
| Vn=TnT-1-¢/& =1

| n=[n"]1-2 | {
L———r+
("_ |'nr'] _1)3/2 K:kzn+l Vn— [n’] _1_f(f—1)3/2
n=[n"1-2 .41
< 1 + ! dx
no A e =] = 1= x)(x =232
L (n=[n"1-2)
= l + l/ 1 dx S l
O ()] V@mtn = n] = 1) = x)(x — 2n~1)3/2 n

This implies that for n large enough,

n—[n"1-1

1 1 1 1
—_— 4+ (+ 1) <1A ) S—+
n—[n"]-1-k, Y f=k2n+1 Vn=[nl-1=-¢ (¢ =132 \/;

Combining this with (5.5), (5.6) and (5.7), we get the desired result. []

S I

Recall that Wn[:r]_o is defined in (5.4).

Lemma 5.3. For large n,

I+a

E('@?r]’o ~E (W)

ars )

< v (L4 yaw®e (L ywten?) ),
~ Z e P (u) 2372 n (u) 372 {(V ()>0}
ueN ([n"])

SUpn +Wieue

["] =[]
with
L v 1 (log m)?
Ul'nq = 2 e (u)<;+V(M)—n3/2 )1“/(“)20).
ueN ([n")
Proof. By the branching property,
I+a
w10 w10
E('Wn,? -E (Wl |Fw1) ”m)

I+a
V()
S Z I(V(u)ZO}Ey<< Z e l{minjs,,_l,,r‘_lV(xj)z()}l{xeA(’)l‘U }) )

ueN([n"]) xeN (n—[n"]-1) =[n"]-11

= 2 LB (M)
ueN ([n"])

y=V@w

y=V @)
Recalling the definition of Q, in beginning of Section 3.1, we similarly have
Ia) _ -
Ey (F a) =e yEQy<1(mian,,,[nq,1 V(w;)=0} 1 {werf[ ot 1} ra).

For u < x, define V(x;u) := V(x) — V(u). Recall that N'(u, m) := {x e N(lu| +m) : x> u}. By the spine decomposition, we have

— -V )
r= € R—— V(XJ)ZO}I{XEAO‘O - }
xXeN (n—[n"1-1) n=[n"]-1
n—[n"]-1
—V (W ] -V —V(x:
<e (Wp—fur-1) 4 z e VW z eV x u)l{mmjgn—[nr]—l—k Vi V@)
k=1 ue(wy) xEN (u,n—[n"]-1-k)
n—[n"]-1

= e_V(wnf[n’]—l)_i_ 2 Z e_V(")H(u),
k=1 ue(wy)
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where H() := ¥ e un-in-1-0 € " Umin 11 V(x,s002-v ) - Therefore, using the inequality E(1X|) < (E(| X)), we get

o
Eq, (l‘mi“/s»f—wm Vw2011 {wed? 1o} I )

~aV Wy fr1-1)
<Eqg, (e 1 iy 112 V0320) )
n—[n"]-1

a
=V
+ <E@y <1["‘i"/5n4n’l—l V(w/)zo)l{wGAO’O } Z Z e H(u)))
n=[n"]-11 k=1 ue(wy)

By the branching property and Lemma 3.1(i), we have

n—[n"1-1
=V ()
E@y<1[mi“j5n—[n’]—1 V(Wj)ZO)l{weAO'U } Z Z e H(u))
==L k=1 ueQ(wy)

=Eq, <1(mi“js’«—|nr\—l Vwp20) e 00
n—[n"]-1,1

n—[n"]-1

—V (u) .

X e P( min S, > —z) >
I; uEf%Uk) JEn=fnr]=1-k =

< .
S B, <1(m.njgn_|”q_l Vo fuear

n—[n"1-1
x Yy ooy e—V“‘)(]/\M>>.

k=1 uewy) n—[n]-1-k
Since

Gevay (1 0@=v), v )

VT =Tk i v
(1 + (V- V(wk_l))+) (1+V(wy_)))
<1A
Vi=[nl-1-k
I+ V(wg_1) )
<(1+ (Vw = Vw,_ IA—— kel )
< (1+ (v -V, 1))+)< N

and, on the set {w € A"’ (w1 .}, it holds that

> W (1 + (V- V(wk_l))+) < e Vwe)2,
I

We have

1A

Eq, <1<miw-lnr|-l viepzo e 00 )

n—[nr-1,1
n—[n"]-1

% V@ (1A (1+ V() >
;Z{ “E-QZ(Wk)e ( V"-f"’]-l—k)

n—[n"]-1
_ 1+ V(wg_y))
< : v 4 VD)
N EQy (1(m|njgn—|nq_| V(w;)=0} ; e A <1 A P [n’] 11—k .
Therefore, by the arguments above, we conclude that

I+a -y —aS,_rpr1-1 .
EY (F ) S’ e Ey (e i l(m'“jgn—In'\—l S/ZO])

n—[n"]-1 «
_ _ a+S._)
+ y E 1. Sk-1/2 IAN—
¢ < /Zi y( iyt 5520} V=[] -1-k
= e V(I + I1%).

By Lemma 3.1 (ii), for all y > 0 and large n, it holds that

1 . -1
<= > o <
1< p +P, <jsnr_n[1nrr1]_1Sj 20,8, -1 <« logn)
—1 2 2
< 1 1+ y)(1+a " logn) < 1 +y(logn)
n (n— [n’] — 1)3/2 n n3/2

For 11, we have
S 1-1/2 S/
IT<E, (e M ming g szO)) +E, (e M2 min o ya S,zo;)

29
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n—[n"]1-3

1+S5.))
. *Sk—1/2(#
+ l; EJ’(H"“"ISH*[H’]*I SJZO}e /—n — |,nr_| 1 k)

=11+ 11 +115. (5.10)

Applying Lemma 3.1 (ii) with k =n— [n"] =1 or n— [n"] — 2, we get

_s./2 1, d+p0+2logn? 1 (logn)?
Ey (e i/ l[mi"/sk5120)> < ; + T hS ; y 32
Thus
1, (logny
11 11, < - 11
1Vih s o+ y—55 (5.11)
For II;, we note that for, k =1,...,n— [n"] =3,
1+S5._))
_Sk—l/z—( k-1 )
Ey <€ = [nr] —— {minj<, -1 Sj20)>
1+S._) .
—E (e Sk1/2 - T Tk=l7 4 P S. >0
y<e n—[n]—-1-k tminj it 2015 S \ o, Ty i 20 =
2
_sey/2 A4Sk
5Ey<e = n—[n] -1 —k Hminyicr 5,201 )

Recall that k, is the integer such that 2k, < n— [n"] — 1 < 2k, + 1. Combining Lemma 3.1 (iv) with 1 = i and the fact that
SUp,..q (e"‘/z(l + x)2) < o0,

k

z _ A+ S
Z y<e Sk_l/zml(miann—[n’]—lstO)
k=1 - —1=
1 < 1
—S, /4
g [n] =k, —1 z:‘)Ey <e iy 5120’) S (5.12)
k=

On the other hand, for k, + 1 <k <n— [n"] — 3, by Lemma 3.1 (ii), we have

14 5,)?
ez A+ S .
Ey(e k=1 n -1k {min; < s,zO))
0 2
= ZE (e_Sk—l/2M . 1 )
v H— ] — L=k (Mt 5,200 (i €14.6+D)
=l
1 [s+}
<1 Yo f2P( in S, >0, ¢, 1)
_n—[n’]—l—k;oe @+ yjsklillf_”"lel’ +D
1 (y+1D (1+y)

Y P +D S
=0

I P P p Y

This implies that

n—[n"1-3 S (1 +Sk—1)2
Ey<e B [m]—-1-k Loming <1 SJZO’)
k=l +1
n—[n"]-3 1
sa+y Y

[ (n—1[n"] = 1-k)(k—1)3/2

| n—[n"1-3 dx
<
<( +y)/kn (n—[n’]—2—X)(X—1)3/2

—a +y)(10g (n— [n"] —Z—kn) N é/k"_w]_z log(n— [n"] —2—x)dx>

(k, — 1)3/2 2 J, (x - 1)5/2
log (n—[n"] =2-k,) (log n)?
< <
<(+y " — 1" S+y) Y
Combining this with (5.12), we get
1 (log ny?
L T (5.13)

Combining (5.8), (5.9),(5.10), (5.11) and (5.13), we get the desired result. []
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Lemma 5.4. Let , € (0, 3((1 - r) A1) satisfy

(ﬁ+ + %)(1 )< min{(l FPA (%) %(1 —@)+a(l+P)A (%)} (5.14)

For any g € (0, ), it holds that

~ ~pr 1
lim P <'W[ W_g (WJ” O P )' > 3n‘ﬁ—z> =0.

n—oo

Proof. We only need to prove that
= [n" =5 [n" _g-1 . .
P[0~ B (WP ) | > 30772 |Fruy ) = 0 i probability. (5.15)
Recall that « € (0, 1] is given in (A5) and that ﬁij;‘rlﬂ is defined in (5.4). Then by Lemma 3.4,

P()ﬁ;ﬂf"qvo -E (ﬁ;r'["r]’o|7-’[m ) ‘ > 3n_ﬁ_% )P[nr])
(T Ty
n,

1+a

([T ()

Piur))- (5.16)
Now combining (5.16), Lemma 5.2 and Lemma 5.3, we get
~ —~pr 1
P()u/n[n 1.0 _ E (VI/H[VI ]’O|F[n’1 ) ‘ > 3n—ﬁ—§ )F[nr])

1 ) ! i}
SHOWn #0777 Ve @1y + P70 (UW +wlaue ) .
ueN([n"])

Using (5.2) and (5.3), we get that for any € € (0,(1 +r) A (%)), n*U, — 0 in probability. Therefore, we have (5.15) and the proof is
complete. []

Proof of Proposition 2.2. Recall the definition (2.1) of §,. Let g, € (0, %((1 —r) A r)) satisfy (5.14). If we can show that for any

B €(0,5,),
lim IP<nﬁ \/nW, - \/%5,,1)00‘ > 5> =0,
n—oo o

then the desired conclusion follows immediately. Note that

[2
1P><nﬂ \nW, — — 6D zs)

<B(19 4 W) 4 B [0 B9[] > 3)

. /2 _ =[n"1,0 2
+P<(bl£p5k) ﬁle - D(n’]l >n ﬂ) +]P<I’lﬂ \/;E <Vl/n )F[n’]) - EﬁnD[n’] > 1>

Using (1.6) and (5.1), we know that the first and third term on the right hand side above tend to 0 as n — co. Lemma 5.1 says that
the fourth term on the right hand side above tend to 0 as n — o0, and Lemma 5.4 says that the second term on the right hand side
above tend to 0 as n — oo. This completes the proof of Proposition 2.2. []
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