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Abstract
Let N (t) be the collection of particles alive at time t in a branching Brownian motion
in R

d , and for u ∈ N (t), let Xu(t) be the position of particle u at time t . For θ ∈ R
d ,

we define the additive measures of the branching Brownian motion by

μθ
t (dx) := e−(1+ ‖θ‖2

2 )t
∑

u∈N (t)

e−θ ·Xu (t)δ(Xu(t)+θ t)(dx),

here ‖θ‖is the Euclidean norm of θ.

In this paper, under some conditions on the offspring distribution, we give asymptotic
expansions of arbitrary order for μθ

t ((a,b]) and μθ
t ((−∞, a]) for θ ∈ R

d with ‖θ‖ <√
2, where (a,b] := (a1, b1] × · · · × (ad , bd ] and (−∞, a] := (−∞, a1] × · · · ×

(−∞, ad ] for a = (a1, · · · , ad) and b = (b1, · · · , bd). These expansions sharpen the
asymptotic results of Asmussen andKaplan (Stoch Process Appl 4(1):1–13, 1976) and
Kang (J Korean Math Soc 36(1): 139–157, 1999) and are analogs of the expansions
in Gao and Liu (Sci China Math 64(12):2759–2774, 2021) and Révész et al. (J Appl
Probab 42(4):1081–1094, 2005) for branching Wiener processes (a particular class of
branching random walks) corresponding to θ = 0.
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1 Introduction andMain Results

1.1 Introduction

A branching random walk in R
d is a discrete-time Markov process which can be

defined as follows: At time 0, there is a particle at 0 ∈ R
d ; at time 1, this particle

is replaced by a random number of particles distributed according to a point process
L; at time 2, each individual, of generation 1, if located at x ∈ R

d , is replaced by a
point process x + Lx, where Lx is an independent copy of L. This procedure goes
on. We use Zn to denote the point process formed by the positions of the particles of
generation n. (Zn)≥0 is called a branching random walk.

For any n ∈ N and θ ∈ R
d , define

Wn(θ) := 1

m(θ)n

∫
e−θ ·xZn(dx),

wherem(θ) := E
(∫

e−θ ·xZ1(dx)
)
. It is well known that, for any θ ∈ R

d , (Wn(θ))n≥0
is a martingale. (Wn(θ))n≥0 is called the additive martingale of the branching random
walk. The additive martingale is a fundamental tool for studying various asymptotic
behaviors of branching randomwalks, see [23] for some of its applications. Biggins [6]
used the L p convergence of the additive martingale to study the asymptotic behavior
of Zn(nc + I ) for fixed c and bounded interval I . To describe Biggins’ result, we
introduce the following additive measure μ

Z ,θ
n of the branching random walk, which

is a shifted version of the measure introduced before Theorem 4 in [6]:

μZ ,θ
n (A) := m(θ)−n

∫
e−θ ·y1A(y − cθn)Zn(dy), A ∈ B(Rd), (1.1)

with (cθ )i := m(θ)−1
E

(∫
xi e−θ ·xZ1(dx)

)
. In the case θ = 0, the additive measure

above reduces to the normalization of Zn . The additive measures appear as Gibbs
measures in the studyof directed polymers on trees in randomenvironment, seeDerrida
and Spohn [9]. Theorem 4 in [6] implies that, in the weak disorder regime (i.e.,
− logm(θ) < −θ · �m(θ)/m(θ)), if there exists γ > 1 such that E(W1(θ)γ ) < ∞,
then for x ∈ R

d and h > 0, as n → ∞,

nd/2μZ ,θ
n (x + Ih) −→ (2h)dW∞(θ)

(2πdet(�θ ))d/2 , a.s. (1.2)
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where W∞(θ) := limn→∞ Wn(θ), Ih = [−h, h]d and

(�θ )i, j = m(θ)−1
E

( ∫
(xi − (cθ )i )(x j − (cθ ) j )e

−θ ·xZ1(dx)
)
, i, j ∈ {1, ..., d}.

From (1.2), we see that the limit of nd/2μ
Z ,θ
n (x + Ih) is proportional to the volume

of Ih and the proportion is a multiple of the limit W∞(θ) of the additive martingale
with parameter θ . The limit result (1.2) also tells us that μ

Z ,θ
n (x + Ih) decays to 0

at the rate n−d/2. In the case d = 1, Pain proved that, see [19, (1.14)], in the weak
disorder regime, if there exists γ > 1 such that E(W1(θ)γ ) < ∞, then for any b ∈ R,
as n → ∞,

μZ ,θ
n

(
(−∞, b�θ

√
n]) → W∞(θ)�(b) in probability, (1.3)

where �(b) := 1√
2π

∫ b
−∞ e−z2/2dz. The limit result (1.2) is a local limit theorem for

the additive measure μ
Z ,θ
n , and (1.3) is a central limit type theorem for μ

Z ,θ
n .

For the case θ = 0, there aremany further asymptotic results. In the casewhend = 1
and the point process L is given by L = ∑B

i=1 δXi , where Xi are iid with common
distributionG and B is an independentN-valued randomvariablewithP(B = k) = pk
and μ := ∑

k kpk > 1, Asmussen and Kaplan [2, 3] proved in 1976 that if G has
mean 0, variance 1 and

∑∞
k=2 k(log k)

1+ε pk < ∞ for some ε > 0, then conditioned
on survival, for any b ∈ R,

μZ ,0
n ((−∞, b

√
n]) n→∞−→ W∞(0)�(b), a.s. (1.4)

They also proved that if G has finite 3rd moment and
∑∞

k=2 k(log k)
3/2+ε pk < ∞ for

some ε > 0, then, for any a < b ∈ R, conditioned on survival,

√
2πnμZ ,0

n ([a, b]) n→∞−→ (b − a)W∞(0), a.s. (1.5)

Of course, (1.4) and (1.5) are special cases of (1.3) and (1.2), respectively. A natural
and important next step is to study the convergence rates in these two limits above.
Gao and Liu [13] gave first and second-order expansions of μ

Z ,0
n ((−∞, b

√
n]). A

third-order expansion was proved by Gao and Liu [12, 14], where branching random
walks in (time) random environment were studied. They also conjectured the form of
asymptotic expansion of arbitrary order forμZ ,0

n ((−∞, b
√
n]). For general branching

random walks, results similar to (1.4) and (1.5) were proved in Biggins [5].
When the point process L is given by L = ∑B

i=1 δXi where X1,X2, ... are inde-
pendent d-dimensional standard normal random variables and B is an independent
N-valued random variable with P(B = k) = pk and μ := ∑

k kpk > 1, Zn is
called a supercritical branching Wiener process. Révész [21] first proved the analogs
of (1.4) and (1.5) for branching Wiener processes, and then, Chen [8] studied the cor-
responding convergence rates. Gao and Liu [11] proved that, for each m ∈ N, when∑∞

k=1 k(log k)
1+λ pk < ∞ for some λ > 3max{(m + 1), dm}, there exist random
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variables {Va, |a| ≤ m} such that for each t ∈ R
d ,

1

μn
Zn((−∞, t

√
n]) = �d(t)V0 +

m∑


=1

(−1)


n
/2

∑

|a|=


Da�d(t)
a! Va + o(n−m/2), a.s.,

(1.6)

where for a = (a1, ..., ad), |a| = a1 + ... + ad , a! = a1! · · · ad !, �d(t) is
the distribution function of a d-dimensional standard normal random vector and
Da�d(t) := ∂

a1
t1 ...∂

ad
td �d(t). For the local limit theorem (1.5), Révész, Rosen and

Shi [22] proved that when
∑∞

k=1 k
2 pk < ∞, for any bounded Borel set A ⊂ R

d ,

(2πn)d/2 1

μn
Zn(A) =

m∑


=0

(−1)


(2n)


∑

|a|=


1

a!
∑

b≤2a

Cb
2a(−1)|b|Mb(A)V2a−b + o(n−m),

a.s., (1.7)

where b ≤ 2a means that bi ≤ 2ai for all 1 ≤ i ≤ d, Cb
2a := Cb1

2a1
· · ·Cbd

2ad
,

Ck
n := n!

k!(n−k)! andMb(A) := ∫
A xb11 · · · xbdd dx1...dxd . The two results above give the

asymptotic expansions of 1
μn Zn((−∞, t

√
n]) and (2πn)d/2 1

μn Zn(A) (with A being a

bounded Borel sets of Rd ) up to arbitrary order.
For the lattice case, analogs of (1.4) and (1.5) can be found in [10, 16], and an

asymptotic expansion similar to (1.7) for Zn({k})was given by Grübel and Kabluchko
[16].

In this paper, we are concerned with branching Brownian motions inRd . A branch-
ing Brownian motion in R

d is a continuous-time Markov process defined as follows:
Initially, there is a particle at 0 ∈ R

d , it moves according to a d-dimensional standard
Brownian motion and its lifetime is an exponential random variable of parameter 1,
independent of the spatial motion. At the end of its lifetime, it produces k offspring
with probability pk for k ∈ N and the offspring move independently according to a
d-dimensional standard Brownian motion from the death location of their parent and
repeat their parent’s behavior independently. This procedure goes on. Let N (t) be the
set of particles alive at time t and for u ∈ N (t), we use Xu(t) to denote the position
of particle u at time t . Define

Zt :=
∑

u∈N (t)

δXu(t).

(Zt )t≥0 is called a branching Brownian motion. We will use P to denote the law of
branching Brownian motion and E to denote the corresponding expectation. We will
use (Bt )t≥0 to denote a standard Brownian motion in Rd . For x ∈ R

d , we will use Px
to the law of Brownian motion starting from x and use Ex to denote the corresponding
expectation. For x ∈ R, we will also use Px andEx to denote, respectively, the law and
the corresponding expectation of a 1-dimensional standard Brownian motion started
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at x . For convenience, we write P for P0 or P0, and E for E0 or E0. Without loss of
generality, we assume that

∞∑

k=0

kpk = 2.

This assumption is not essential and is assumed for convenience. For the general case,
see the discussion in Remark 1.6. For θ = (θ1, ..., θd) ∈ R

d ,

Wt (θ) := e−(1+ ‖θ‖2
2 )t

∑

u∈N (t)

e−θ ·Xu(t)

is a nonnegative martingale and is called the additive martingale of the branching
Brownian motion, here ‖θ‖ is the Euclidean norm of θ . When θ is the zero vector,
Wt (θ) reduces to e−t Zt (R

d). The additive martingale is very useful in studying
the asymptotic behaviors of branching Brownian motions. For instance, in the case
d = 1, it has been used to study the maximal position of branching Brownian motions.
It was also used to give a probabilistic representation for the traveling wave solution
of the KPP equation, see [18]. The limit of the additive martingale is related to the
limit behavior of the number of particles whose speed is larger than θ , see [15].
The additive martingale and its limit also appear in the study of extremal processes of
some inhomogeneous branchingBrownianmotions and reducible branchingBrownian
motions, see, for instance, [4, 7] and the references therein. It is well known that (for
d = 1, see Kyprianou [18]), for each θ ∈ R

d , Wt (θ) converges to a non-trivial limit
W∞(θ) if and only if ‖θ‖ <

√
2 and

∞∑

k=1

k(log k)pk < ∞. (1.8)

From now on, we will only consider θ ∈ R
d with ‖θ‖ <

√
2. For any set A ⊂ R

and a ∈ R, we use |A| to denote the Lebesgue measure of A and aA := {ax : x ∈ A}.
Asmussen and Kaplan [3, Part 5] proved that when d = 1, under the assumption∑∞

k=1 k
2 pk < ∞, for any Borel set B with |∂B| = 0, as t → ∞,

e−t Zt

(√
t B

)
−→ W∞(0)√

2π

∫

B
e−z2/2dz, P-a.s. (1.9)

and that for any bounded Borel set B with |∂B| = 0, as t → ∞,

√
2π te−t Zt (B) −→ |B|W∞(0), P-a.s. (1.10)

Kang [17,Theorem1]weakened themoment condition andproved that (1.9) holdswith
B = (−∞, b] under condition (1.8). The results (1.9) and (1.10) are the counterparts
of (1.4) and (1.5) for branching Brownian motions.
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Similar to (1.1), we define the additive measure μθ
t of branching Brownian motion

as

μθ
t (dx) := e−(1+ ‖θ‖2

2 )t
∑

u∈N (t)

e−θ ·Xu(t)δ(Xu(t)+θ t)(dx).

The normalized random probability measure μθ
t (R

d)−1μθ
t appears as the Gibbs mea-

sure of a directed polymer on trees in random environment, see Derrida and Spohn
[9]. The goal of this paper is to sharpen the results in (1.9) and (1.10) and establish
asymptotic expansions of the additive measure μθ

t in the subcritical case ‖θ‖ <
√
2,

see Theorems 1.1 and 1.2. These expansions sharpen the asymptotic results of [3, Part
5] and [17] mentioned above. The asymptotic expansions of [11, 22] are for the addi-
tive measureμ

Z ,0
n of branchingWiener processes, while the asymptotic expansions of

Theorems 1.1 and 1.2 are for the additive measure μθ
t of branching Brownian motions

with θ not necessarily 0.
One might expect that the asymptotic expansions for branching Wiener processes,

when considered along {tn = nδ, n ∈ N}, can be used to get the expansions of this
paper by letting δ → 0. However, it seems that this idea does not work due to two
reasons. One of the reasons is that values along {nδ, n ∈ N} are not good enough
to control the behavior between the time intervals [tn, tn+1]. Another reason is that
{Znδ : n ∈ N} is not a branching Wiener process since in Zδ = ∑

u∈N (δ) δXu(δ), for
u, v ∈ N (δ), u 
= v, Xu(δ) and Xv(δ) are not independent.

1.2 Notation

We list here some notation that will be used repeatedly below. Throughout this paper,
N = {0, 1, . . . }. Recall that N (t) is the set of the particles alive at time t and that for
u ∈ N (t), Xu(t) is the position of u. For u ∈ N (t), we use du and Ou to denote the
death time and the offspring number of u, respectively. For v and u, we will use v < u
to denote that v is an ancestor of u. The notation v ≤ u means that v = u or v < u.

For a = (a1, ..., ad) ∈ R
d , define (a) j := a j and (−∞, a] := (−∞, a1] ×

· · · × (−∞, ad ]. For a,b ∈ R
d , we use a < b (a ≤ b) to denote that (a) j < (b) j

((a) j < (b) j ) for all 1 ≤ j ≤ d. For a,b ∈ R
d with a < b, define (a,b] :=

(a1, b1]× · · ·× (ad , bd ]. The definition of [a,b] is similar. For k = (k1, ..., kd) ∈ N
d ,

set |k| := k1 + ... + kd and k! := k1! · · · kd !. For a function f on R
d , x ∈ R

d and
k ∈ N

d , let Dk f (x) := ∂
k1
x1 ...∂

kd
xd f (x). We also use the notation φ(y) := 1√

2π
e−y2/2

and �d(x) := ∏d
j=1

∫ x j
−∞ φ(z)dz. Sometimes we write �(y) for �1(y). For two

functions f and g, we will use f � g to denote that there exists a constant C such
that f (x) ≤ Cg(x) for all x in the common domain of definition of f and g.
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1.3 Main Results

We will assume that

∞∑

k=1

k(log k)1+λ pk < ∞ (1.11)

for appropriate λ > 0. Let Hk be the k-th-order Hermite polynomial: H0(x) := 1 and
for k ≥ 1,

Hk(x) :=
[k/2]∑

j=0

k!(−1) j

2 j j !(k − 2 j)! x
k−2 j .

It is well known that if {(Bt )t≥0,P} is a standard Brownian motion in R, then for any
k ≥ 0, {tk/2Hk(Bt/

√
t), σ (Bs : s ≤ t), P} is a martingale. Since the spine of the

branching Brownian motion is a Brownian motion, we can use the martingales above
and the many-to-one formula in Lemma 2.1 to construct martingales for branching
Brownian motions. This motivates the definition of the following martingales:

Now for k ∈ N
d and θ ∈ R

d with ‖θ‖ <
√
2, we define

M (k,θ)
t := e−(1+ ‖θ‖2

2 )t
∑

u∈N (t)

e−θ ·Xu(t)t |k|/2
d∏

j=1

Hk j

( (Xu(t)) j + θ j t√
t

)
, t ≥ 0.

Note that M (0,θ)
t = Wt (θ). We will prove in Proposition 2.6 that {M (k,θ)

t , t ≥ 0; P}
is a martingale, and if (1.11) holds for λ large enough, M (k,θ)

t will converge almost
surely and in L1 to a limit M (k,θ)∞ . Here are the main results of this paper:

Theorem 1.1 Suppose θ ∈ R
d with ‖θ‖ <

√
2. For any given m ∈ N, if (1.11) holds

for some λ > max {3m + 8, d(3m + 5)}, then for any b ∈ R
d , P-almost surely, as

s → ∞,

μθ
s

(
(−∞,b

√
s]) =

∑

k:|k|≤m

(−1)|k|

k!
1

s|k|/2 D
k�d(b)M (k,θ)∞ + o(s−m/2)

=
m∑


=0

(−1)


s
/2

∑

k:|k|=


Dk�d(b)

k! M (k,θ)∞ + o(s−m/2). (1.12)

Theorem 1.2 Suppose θ ∈ R
d with ‖θ‖ <

√
2. For any given m ∈ N, if (1.11) holds

for some λ > max{d(3m + 5), 3m + 3d + 8}, then for any a,b ∈ R
d with a < b,

P-almost surely, as s → ∞,

sd/2μθ
s ((a,b])
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=
m∑


=0

1

s
/2


∑

j=0

(−1) j
∑

k:|k|= j

M (k,θ)∞
k!

∑

i:|i|=
− j

Dk+i+1�d(0)
i!

∫

[a,b]

d∏

j=1

z
i j
j dz1...dzd

+ o(s−m/2), (1.13)

where 1 := (1, ..., 1).

Remark 1.3 Theorems 1.1 and 1.2 give asymptotic expansions, up to arbitrary order,
of μθ

s

(
(−∞,b

√
s]) and sd/2μθ

s ((a,b]), respectively. They give much more precise
information than (1.9) and (1.10). When d = 1, θ = 0 and m = 0, Theorem 1.1 is
exactly (1.9), and Theorem 1.2 is exactly (1.10).

Remark 1.4 Taking θ = 0 and s = nδ, n ∈ N, with δ being a positive constant, in
(1.12), we see that it is consistent with (1.6). The asymptotic expansion (1.13) is also
consistent with (1.7). In fact, combining the definition of Hk and (2.5), we see that
d2


dx2

�(x)

∣∣
x=0 = 0 for all 
 ≥ 1. Let m = 2m′ with m′ ≥ 1. Then for each odd

number 
 = 2
′ + 1 with 0 ≤ 
′ ≤ m′ − 1 and any (k, i) such that |k + i| = 
, there
must be some i0 ∈ N such that (k + i)i0 is odd, which implies that

d(k+i)i0+1

dx (k+i)i0+1
�(x)

∣∣
x=0 = 0 �⇒ Dk+i+1�d(0) = 0.

Therefore, for m = 2m′, (1.13) can be written as

sd/2μθ
s ((a,b])

=
m′∑


=0

1

s


2
∑

j=0

(−1) j
∑

k:|k|= j

M (k,θ)∞
k!

∑

i:|i|=2
− j

Dk+i+1�d(0)
i!

∫

[a,b]

d∏

j=1

z
i j
j dz1...dzd

+ o(s−m′
).

Remark 1.5 We briefly explain here how the martingale limits M (k,θ)∞ appear in The-
orem 1.1. The reason for their appearance in Theorem 1.2 is similar. Using the
branching property, one can show that, under (1.11), for a certain sequence (rn)n≥1

of positive reals with rn ↑ ∞ and s ∈ [rn, rn+1), E
(
μθ
s

(
(−∞,b

√
s]) ∣∣F√

rn

)

is a good approximation of μθ
s

(
(−∞,b

√
s]), see Lemma 3.2. The quantity

E

(
μθ
s

(
(−∞,b

√
s]) ∣∣F√

rn

)
can be written as a sum involving the normal distribution

function �, see (3.8). Combining this with the Taylor expansions (involving Hermite
polynomials) of the normal distribution in Lemmas 2.3 and 2.4, themartingalesM (k,θ)

t
appear naturally.

Remark 1.6 Note that we only dealt with the case when the branching rate is 1 and the
mean number of offspring is 2 in the two theorems above. In the general case when
the branching rate is β > 0 and the mean number of offspring is μ > 1, one can
use the same argument to prove the following counterpart of Theorem 1.1: Suppose
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θ ∈ R
d with ‖θ‖ <

√
2β(μ − 1). For any given m ∈ N, if (1.11) holds for some

λ > max {3m + 8, d(3m + 5)}, then for any b ∈ R
d , P-almost surely, as s → ∞,

μθ
s

(
(−∞,b

√
s]) := e−(β(μ−1)+ ‖θ‖2

2 )t
∑

u∈N (t)

e−θ ·Xu(t)1(−∞,b
√
s] (Xu(t) + θ t)

=
m∑


=0

(−1)


s
/2

∑

k:|k|=


Dk�d(b)

k! M (k,θ)∞ + o(s−m/2),

with M (k,θ)∞ given by

M (k,θ)∞

:= lim
t→∞ e−(β(μ−1)+ ‖θ‖2

2 )t
∑

u∈N (t)

e−θ ·Xu(t)t |k|/2
d∏

j=1

Hk j

( (Xu(t)) j + θ j t√
t

)
. (1.14)

In the general case, the counterpart of Theorem 1.2 is as follows: Suppose θ ∈ R
d

with ‖θ‖ <
√
2β(μ − 1). For any given m ∈ N, if (1.11) holds for some λ >

max{d(3m + 5), 3m + 3d + 8}, then for any a,b ∈ R
d with a < b, P-almost surely,

as s → ∞,

sd/2μθ
s ((a,b]) = e−(β(μ−1)+ ‖θ‖2

2 )t
∑

u∈N (t)

e−θ ·Xu(t)1(a,b] (Xu(t) + θ t)

=
m∑


=0

1

s
/2


∑

j=0

(−1) j
∑

k:|k|= j

M (k,θ)∞
k!

∑

i:|i|=
− j

Dk+i+1�d(0)
i!

∫

[a,b]

d∏

j=1

z
i j
j dz1...dzd

+ o(s−m/2),

with M (k,θ)∞ given in (1.14).

Remark 1.7 One could also consider asymptotic expansions for the additive measure
μ
Z ,θ
n for branching random walks. Using the tools established in [12], it is possible to

get fixed order expansions. However, getting asymptotic expansions of arbitrary order
may be difficult.

We end this section with a few words about the strategy of the proofs and the orga-
nization of the paper. In Sect. 2, we introduce the spine decomposition and gather
some useful facts. We also study the convergence rate of the martingales M (k,θ)

t
and moments of the additive martingale Wt (θ). In Sect. 3, we prove Theorems 1.1
and 1.2. To prove Theorem 1.1, we choose a sequence of discrete-time rn = n1/κ

for some κ > 1. To control the behavior of particles alive in (rn, rn+1), we need
rn+1 − rn → 0. This is the reason we do not choose rn = nδ. We prove in Lemma

3.1 that μθ
rn

(
(−∞,b

√
rn]

) ≈ E

[
μθ
rn

(
(−∞,b

√
rn]

) ∣∣F√
rn

]
, where Ft is the σ -field

generated by the branching Brownian motion up to time t . To deal with s ∈ (rn, rn+1),
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we adapt some ideas from [3, Lemma 8] and [17, paragraph below (13)]. We prove in

Lemma 3.2 that, for s ∈ (rn, rn+1),μθ
s

(
(−∞,b

√
s]) ≈ E

[
μθ
s

(
(−∞,b

√
s]) ∣∣F√

rn

]
.

We complete the proof of Theorem 1.1 by using a series of identities proved in [11].
The proof of Theorem 1.2 is similar.

2 Preliminaries

2.1 Spine Decomposition

Define

dP−θ

dP

∣∣∣∣Ft

:= Wt (θ). (2.1)

Then under P−θ , the evolution of our branching Brownian motion can be described
as follows (spine decomposition) (see [18] for the case d = 1 or see [20] for a more
general case):

(i) There is an initial marked particle at 0 ∈ R
d which moves according to the law of

a standard Brownian motion {Bt − θ t,P0};
(ii) The branching rate of this marked particle is 2;
(iii) When the marked particle dies at site y, it gives birth to L̂ children with P−θ (L̂ =

k) = kpk/2;
(iv) One of these children is uniformly selected and marked, and the marked child

evolves as its parent independently and the other children evolve independently
with law Py, where Py denotes the law of a branching Brownian motion starting
at y.

Let di be the i-th splitting time of the spine and Oi be the number of children produced
by the spine at time di . According to the spine decomposition, it is easy to see that
{di : i ≥ 1} are the atoms for a Poisson point process with rate 2, {Oi : i ≥ 1} are
iid with common law L̂ given by P

−θ (L̂ = k) = kpk/2, and that {di : i ≥ 1} and
{Oi : i ≥ 1} and Xξ are independent. This fact will be used repeatedly.

We use ξt and Xξ (t) to denote the marked particle at time t and the position of this
marked particle, respectively. By [20, Theorem 2.11], we have that, for u ∈ N (t),

P
−θ

(
ξt = u

∣∣Ft
) = e−θ ·Xu(t)

∑
u∈N (t) e

−θ ·Xu(t)
= e−(1+ ‖θ‖2

2 )t e−θ ·Xu(t)

Wt (θ)
. (2.2)

Using (2.2), we can get the following many-to-one formula.

Lemma 2.1 For any t > 0 and u ∈ N (t), let �(u, t) be a nonnegative Ft -measurable
random variable. Then,

E

( ∑

u∈N (t)

�(u, t)
)

= e(1+ ‖θ‖2
2 )t

E
−θ

(
eθ ·Xξ (t)�(ξt , t)

)
.
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Proof Combining (2.1) and (2.2), we get

E

( ∑

u∈N (t)

�(u, t)
)

= E
−θ

( ∑

u∈N (t)

�(u, t)

Wt (θ)

)

= E
−θ

( ∑

u∈N (t)

�(u, t)e(1+ ‖θ‖2
2 )t eθ ·Xu(t)P−θ

(
ξt = u

∣∣Ft
) )

= e(1+ ‖θ‖2
2 )t

E
−θ

(
E

−θ
( ∑

u∈N (t)

1{ξt=u}�(u, t)eθ ·Xu(t)
∣∣Ft

))

= e(1+ ‖θ‖2
2 )t

E
−θ

(
�(ξt , t)e

θ ·Xξ (t)
∑

u∈N (t)

1{ξt=u}
)

= e(1+ ‖θ‖2
2 )t

E
−θ

(
eθ ·Xξ (t)�(ξt , t)

)
.

��

2.2 Some Useful Facts

In this subsection, we gather some useful facts that will be used later.

Lemma 2.2 (i) Let 
 ∈ [1, 2] be a fixed constant. Then for any finite family of inde-
pendent centered random variables {Xi : i = 1, . . . , n} with E|Xi |
 < ∞ for all
i = 1, . . . , n, it holds that

E
∣∣

n∑

i=1

Xi
∣∣
 ≤ 2

n∑

i=1

E|Xi |
.

(ii) For any 
 ∈ [1, 2] and any random variable X with E|X |2 < ∞,

E |X − EX |
 � E|X |
 ≤ (EX2)
/2.

Proof For (i), see [24, Theorem 2]. (ii) follows easily from Jensen’s inequality. ��
Lemma 2.3 For any ρ ∈ (0, 1), b, x ∈ R, it holds that

�

(
b − ρx√
1 − ρ2

)
= �(b) − φ(b)

∞∑

k=1

ρk

k! Hk−1(b)Hk(x).

Proof See [11, Lemma 4.2.]. ��
To prove Theorem 1.1, we will define rn := n

1
κ for some κ > 1. For s ∈ [rn, rn+1),

applying Lemma 2.3 with ρ = √√
rn/s and x = r−1/4

n y, we get that for any b, y ∈ R,

�
( b

√
s − y√

s − √
rn

)
= �(b) − φ(b)

∞∑

k=1

1

k!
1

sk/2
Hk−1(b)r

k/4
n Hk

( y

r1/4n

)
. (2.3)
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Recall that (see [11, (4.1)]) for any k ≥ 1 and x ∈ R,

|Hk(x)| ≤ 2
√
k!ex2/4. (2.4)

Lemma 2.4 For a given m ∈ N, let κ = m + 3 and rn = n1/κ . Let K > 0 be a
fixed constant and J be an integer such that J > 2m + Kκ . For any b, y ∈ R and
s ∈ [rn, rn+1), it holds that

�
( b

√
s − y√

s − √
rn

)
= �(b) − φ(b)

J∑

k=1

1

k!
1

sk/2
Hk−1(b)r

k/4
n Hk

( y

r1/4n

)
+ εm,y,b,s,

and that

sup
{
sm/2

∣∣εm,y,b,s
∣∣ : s ∈ [rn, rn+1), |y| ≤

√
K

√
rn log n, b ∈ R

}
n→∞−→ 0.

Proof It follows from (2.4) that there exists a constantC such that for all b ∈ R, n ≥ 2,
s ∈ [rn, rn+1), |y| ≤ √

K
√
rn log n and k ≥ m,

sm/2 1

k!
1

sk/2
(φ(b) |Hk−1(b)|)

∣∣∣rk/4n Hk

( y

r1/4n

)∣∣∣ ≤ C
nk/(4κ)

n(k−m)/(2κ)
nK/4.

Combining this with (2.3), we get that for J > 2m + Kκ , n ≥ 2, s ∈ [rn, rn+1),
b ∈ R and |y| ≤ √

K
√
rn log n,

sm/2
∣∣εm,y,b,s

∣∣ ≤ C
∞∑

k=J+1

n−(k−2m−Kκ)/(4κ) � n−(J+1−2m−Kκ)/(4κ).

Thus, the assertions of the lemma are valid. ��

Now, we give a result of similar flavor which will be used to prove Theorem 1.2.
Taking derivative with respect to b in Lemma 2.3, and using the fact that

dk

dbk
�(b) = (−1)k−1Hk−1(b)φ(b), (2.5)

we get that

1√
1 − ρ2

φ
( b − ρx√

1 − ρ2

)
= φ(b) + φ(b)

∞∑

k=1

ρk

k! Hk(b)Hk(x). (2.6)
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Now letting ρ = √√
rn/s, b = z/

√
s and x = r−1/4

n y in (2.6), we get that for any
z, y ∈ R,

√
s√

s − √
rn

φ
( z − y√

s − √
rn

)
= φ

( z√
s

)(
1 +

∞∑

k=1

1

k!
1

sk/2
Hk

( z√
s

)
rk/4n Hk

( y

r1/4n

))
.

The proof of the following result is similar to that of Lemma 2.4, and we omit the
details.

Lemma 2.5 For a given m ∈ N, let κ = m + 3 and rn = n1/κ . Let K > 0 be a fixed
constant and J be an integer such that J > 2m + Kκ . For any a < b ∈ R, y, z ∈ R

and s ∈ [rn, rn+1), it holds that

√
s√

s − √
rn

φ
( z − y√

s − √
rn

)

= φ
( z√

s

)(
1 +

J∑

k=1

1

k!
1

sk/2
Hk

( z√
s

)
rk/4n Hk

( y

r1/4n

))
+ εm,y,z,s,

and that

sup
{
sm/2

∣∣εm,y,z,s
∣∣ : s ∈ [rn, rn+1), z ∈ [a, b], |y| ≤

√
K

√
rn log n

}
n→∞−→ 0.

2.3 Convergence Rate for theMartingales

Proposition 2.6 For any θ ∈ R
d with ‖θ‖ <

√
2 and k ∈ N

d , {M (k,θ)
t , t ≥ 0; P}

is a martingale. If (1.11) holds for some λ > |k|/2, then M (k,θ)
t converges to a limit

M (k,θ)∞ P-a.s. and in L1. Moreover, for any η ∈ (0, λ − |k|/2), as t → ∞,

M (k,θ)
t − M (k,θ)∞ = o(t−(λ−|k|/2)+η), P-a.s.

Before presenting the proof, we first sketch the main idea of the proof. Both of
the existence of the limit M (k,θ)∞ and the convergence rate of M (k,θ)

t − M (k,θ)∞ rely

on the convergence of the series
∑∞

n=1 n
−|k|/2+λ−η

E

(∣∣∣M (k,θ)
n+1 − M (k,θ)

n

∣∣∣
)
. Thus, our

main effort is to analyze the decay rate of E
(∣∣∣M (k,θ)

n+1 − M (k,θ)
n

∣∣∣
)
under (1.11). The

assumption (1.11) does not guarantee the finiteness of 
th moment of |M (k,θ)
n | for any


 > 1. We appropriately truncate the number of offspring of particles born between
time n and time n+1. The sequence M (k,θ),B

n will have 
th absolute moment for some

 ∈ (1, 2), and M (k,θ),B

n is also a good approximation for the martingale M (k,θ)
n . We

will get the desired result by combining the trivial inequalities (2.19) with the moment
estimate for |M (k,θ)

n − M (k,θ),B
n | and |M (k,θ),B

n |
.
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Proof of Proposition 2.6 Combining Lemma 2.1, the Markov property and the branch-
ing property, for any t, s > 0,

E

(
M (k,θ)

t+s

∣∣Ft

)
= e−(1+ ‖θ‖2

2 )(t+s)
∑

u∈N (t)

× EXu(t)

⎛

⎝
∑

v∈N (s)

e−θ ·Xv(s)(t + s)|k|/2
d∏

j=1

Hk j

( (Xv(s)) j + θ j (t + s)√
t + s

)
⎞

⎠

= e−(1+ ‖θ‖2
2 )t

∑

u∈N (t)

E
−θ
Xu(t)

⎛

⎝(t + s)|k|/2
d∏

j=1

Hk j

( (Xξ (s)) j + θ j (t + s)√
t + s

)
⎞

⎠

= e−(1+ ‖θ‖2
2 )t

∑

u∈N (t)

d∏

j=1

E(Xu(t)) j+θ j t

(
(t + s)k j /2Hk j

( Bs√
t + s

))
, (2.7)

where recall that (Xξ (s) + θs,P−θ ) is a d-dimensional standard Brownian motion.
Since

EBt

(
(t + s)k j /2Hk j

( Bs√
t + s

))
= E

(
(t + s)k j /2Hk j

( Bt+s√
t + s

)∣∣σ(Br , r ≤ t)

)

= tk j /2Hk j

(
Bt√
t

)
,

we see that Ex

(
(t + s)k j /2Hk j

(
Bs√
t+s

))
= tk j /2Hk j

(
x√
t

)
for all x ∈ R, t, s > 0 and

k j ∈ N. Plugging this fact back to (2.7), we obtain that

E

(
M (k,θ)

t+s

∣∣Ft

)
= e−(1+ ‖θ‖2

2 )t
∑

u∈N (t)

d∏

j=1

tk j /2Hk j

(
(Xu(t)) j + θ j t√

t

)
= M (k,θ)

t ,

which implies that M (k,θ)
t is a martingale.

Now, we fix k ∈ N
d and assume (1.11) holds for some λ > |k|/2. We first look at

the case when t → ∞ along integers. Let t = n ∈ N. Recall that N (n + 1) is the set
of particles alive at time n + 1. For u ∈ N (n + 1), define Bn,u to be the event that,
for all v < u with dv ∈ (n, n + 1), it holds that Ov ≤ ec0n , where c0 > 0 is a small
constant to be determined later. Set

M (k,θ),B
n+1 := e−(1+ ‖θ‖2

2 )(n+1)

×
∑

u∈N (n+1)

e−θ ·Xu(n+1)(n + 1)|k|/2
d∏

j=1

Hk j

( (Xu(n + 1)) j + θ j (n + 1)√
n + 1

)
1Bn,u .
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Since |Hk(x)| � |x |k + 1 for all x ∈ R and (|x |+ |y|)k � |x |k +|y|k for all x, y ∈ R,
we have

(n + 1)k/2
∣∣∣Hk

( x + z√
n + 1

)∣∣∣ � (|x | + |z|)k + (n + 1)k/2 � |x |k + |z|k + nk/2,

which implies that for all j ∈ {1, ..., d},

(n + 1)k j /2
∣∣∣Hk j

( (Xu(n + 1)) j + θ j (n + 1)√
n + 1

)∣∣∣

� |(Xu(n)) j + θ j n|k j + nk j /2 + |(Xu(n + 1)) j − (Xu(n)) j + θ j |k j . (2.8)

Therefore,

∣∣∣M (k,θ)
n+1 − M (k,θ),B

n+1

∣∣∣ ≤ e−(1+ ‖θ‖2
2 )(n+1)

×
∑

u∈N (n+1)

e−θ ·Xu(n+1)
∣∣∣(n + 1)|k|/2

d∏

j=1

Hk j

( (Xu(n + 1)) j + θ j (n + 1)√
n + 1

)∣∣∣1(Bn,u)c

� e−(1+ ‖θ‖2
2 )(n+1)

∑

u∈N (n)

e−θ ·Xu(n)
∑

v∈N (n+1):u≤v

e−θ ·(Xv(n+1)−Xu(n))

×
d∏

j=1

(
|(Xu(n)) j + θ j n|k j + nk j /2 + |(Xv(n + 1)) j − (Xu(n)) j + θ j |k j

)
1(Bn,v)c .

By the branching property and the Markov property, we get that

E

(∣∣∣M (k,θ)
n+1 − M (k,θ),B

n+1

∣∣∣
∣∣Fn

)
� e−(1+ ‖θ‖2

2 )n
∑

u∈N (n)

e−θ ·Xu (n)e−(1+ ‖θ‖2
2 )

× E

( ∑

v∈N (1)

e−θ ·Xv(1)
d∏

j=1

( ∣∣(Xv(1)) j + θ j
∣∣k j + y j

)
1(Dn,v )c

)∣∣∣
y j=|(Xu (n)) j+θ j n|k j +nk j /2

=: e−(1+ ‖θ‖2
2 )n

∑

u∈N (n)

e−θ ·Xu (n)F (y)
∣∣∣
y j=|(Xu (n)) j+θ j n|k j +nk j /2

, (2.9)

where, for v ∈ N (1), Dn,v denotes the event that, for all w < v, it holds that
Ow ≤ ec0n . Recall that di is the i-th splitting time of the spine and Oi is the number
of children produced by the spine at time di . Note that Dn,ξ1 is the event that, for all i
with di < 1, it holds that Oi ≤ ec0n . By Lemma 2.1,

F(y) = E
−θ

( d∏

j=1

(∣∣(Xξ (1)) j + θ j
∣∣k j + y j

)
1(Dn,ξ1 )c

)
.
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Using the independence of {di : i ≥ 1}, {Oi : i ≥ 1} and Xξ , we have that Dn,ξ1 is
independent of Xξ , which implies that for y j ≥ 1,

F(y) =
d∏

j=1

(
E(|B1|k j ) + y j

)
P

−θ
(
Dc
n,ξ1

)

≤
d∏

j=1

(
E(|B1|k j ) + y j

)
E

−θ
( ∑

i :di≤1

1{Oi>ec0n}
)

�
( d∏

j=1

y j
)
P

−θ (L̂ > ec0n) �
∏d

j=1 y j

n1+λ
, (2.10)

where in the first equality, we also used the fact that {Xξ (t) + θ t,P−θ } is a
d-dimensional standard Brownian motion, and in the last inequality, we used
E

−θ (log1+λ+ L̂) < ∞ (which follows from (1.11)) and Markov’s inequality. By (2.9)
and (2.10), we have

E

(∣∣∣M (k,θ)
n+1 − M (k,θ),B

n+1

∣∣∣
∣∣Fn

)

� e−(1+ ‖θ‖2
2 )n

∑

u∈N (n)

e−θ ·Xu(n)

∏d
j=1

(|(Xu(n)) j + θ j n|k j + nk j /2
)

n1+λ
.

Taking expectation with respect to P, by Lemma 2.1, we obtain that

E

(∣∣∣M (k,θ)
n+1 − M (k,θ),B

n+1

∣∣∣
)

� 1

n1+λ

d∏

j=1

E
(
|Bn|k j + nk j /2

)
� n|k|/2

n1+λ
. (2.11)

On the other hand, by the branching property,

M (k,θ),B
n+1 = e−(1+ ‖θ‖2

2 )n
∑

u∈N (n)

e−θ ·Xu(n) Jn,u,

where

Jn,u := e−(1+ ‖θ‖2
2 )

∑

v∈N (n+1):u≤v

e−θ ·(Xv(n+1)−Xu(n))

× (n + 1)|k|/2
d∏

j=1

Hk j

( (Xv(n + 1)) j + θ j (n + 1)√
n + 1

)
1Bn,v

are independent given Fn . For any fixed 1 < 
 < min{2/‖θ‖2, 2}, applying
Lemma 2.2 (i) to the finite family {Jn,u − E(Jn,u

∣∣Fn) : u ∈ N (n)} and Lemma 2.2
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(ii) to Jn,u , together with (2.8), we get that

E

(∣∣∣M (k,θ),B
n+1 − E

(
M (k,θ),B

n+1

∣∣Fn

)∣∣∣

∣∣Fn

)

� e−
(1+ ‖θ‖2
2 )n

∑

u∈N (n)

e−
θ ·Xu(n)
(
Mn,u

)
/2
, (2.12)

where Mn,u is given by

Mn,u := E

(
e−2(1+ ‖θ‖2

2 )
( ∑

v∈N (1)

e−θ ·Xv(1)Sv(y, 1)1Dn,v

)2)∣∣∣
y j=|(Xu(n)) j+θ j n|k j +nk j /2

with Sv(y, r) := ∏d
j=1

(∣∣(Xv(r)) j + θ j r
∣∣k j + y j

)
. Set

Tn,w := Sw(y, 1)1Dn,we
−(1+ ‖θ‖2

2 )
∑

v∈N (1)

e−θ ·Xv(1)Sv(y, 1)1Dn,v .

By Lemma 2.1, we have

Mn,u = e−(1+ ‖θ‖2
2 )

E

( ∑

w∈N (1)

e−θ ·Xw(1)Tn,w

)∣∣∣
y j=|(Xu (n)) j+θ j n|k j +nk j /2

= E
−θ

(
Tn,ξ1

) ∣∣∣
y j=|(Xu (n)) j+θ j n|k j +nk j /2

= E
−θ

(
1Dn,ξ1

Sξ1 (y, 1)e
−(1+ ‖θ‖2

2 )
∑

v∈N (1)

e−θ ·Xv(1)Sv(y, 1)1Dn,v

)∣∣∣
y j=|(Xu (n)) j+θ j n|k j +nk j /2

≤ E
−θ

(
1Dn,ξ1

Sξ1 (y, 1)e
−(1+ ‖θ‖2

2 )
∑

v∈N (1)

e−θ ·Xv(1)Sv(y, 1)
)∣∣∣

y j=|(Xu (n)) j+θ j n|k j +nk j /2
. (2.13)

For each i with di < 1, we use Ni (1− di ) to denote the set of particles whose most
recent common ancestor is ξdi−1 . By spine decomposition, we have that

∑

v∈N (1)

e−θ ·Xv(1)Sv(y, 1) = e−θ ·Xξ (1)Sξ1(y, 1) +
∑

i :di<1

∑

v∈Ni (1−di )\{ξ1}
e−θ ·Xv(1)Sv(y, 1).

Bydefinition,wehaveOi ≤ ec0n on the eventDn,ξ1 .Note thatE
(∏d

j=1

( ∣∣(Bs) j + z j
∣∣k j

+ y j
))

�
∏d

j=1(|z j |k j + y j ) for all s ∈ (0, 1), z j ∈ R and y j ≥ 1. Using these and

the branching property, we get

e−(1+ ‖θ‖2
2 )

E
−θ

( ∑

v∈N (1)

e−θ ·Xv(1)Sv(y, 1)
∣∣G

)
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= e−(1+ ‖θ‖2
2 )e−θ ·Xξ (1)Sξ1(y, 1) +

∑

i :di<1

(Oi − 1)e−(1+ ‖θ‖2
2 )di e−θ ·Xξ (di )

× E
( d∏

j=1

(∣∣(B1−di ) j + z j
∣∣k j + y j

) )∣∣∣
z j=(Xξ (di )) j+θ j di

� e−θ ·Xξ (1)Sξ1(y, 1) + ec0n
∑

i :di<1

e−θ ·Xξ (di )
d∏

j=1

(
y j + ∣∣(Xξ (di )) j + θ j di

∣∣k j
)

= e−θ ·Xξ (1)Sξ1(y, 1) + ec0n
∑

i :di<1

e−θ ·Xξ (di )Sξdi
(y, di ), (2.14)

where G is the σ -field generated by all information along the spine, and in the first
equality we also used Lemma 2.1. Plugging (2.14) into (2.13), noting that Xξ and di
are independent, we get that

E
−θ

(
1Dn,ξ1

Sξ1(y, 1)e
−(1+ ‖θ‖2

2 )
∑

v∈N (1)

e−θ ·Xv(1)Sv(y, 1)
∣∣Xξ

)

� eθ ·Xξ (1)Sξ1(y, 1)
2 + Sξ1(y, 1)e

c0nE−θ
( ∑

i :di<1

e−θ ·Xξ (di )Sξdi
(y, di )

∣∣Xξ

)

= e−θ ·Xξ (1)Sξ1(y, 1)
2 + 2Sξ1(y, 1)e

c0n
∫ 1

0
e−θ ·Xξ (s)Sξs (y, s)ds

� ec0n
d∏

j=1

{(
y j + sup

s<1

∣∣(Xξ (s)) j + θ j s
∣∣k j

)2

e‖θ‖ sups<1 |(Xξ (s)) j+θ j s|
}

. (2.15)

Since {Xξ (s) + θs,P−θ } is a d-dimensional standard Brownian motion, combining
with (2.13) and (2.15), we conclude that

Mn,u � ec0n
d∏

j=1

E
((

y j + sup
s<1

|(Bs) j |k j
)2
e‖θ‖ sups<1 |(Bs ) j |

)∣∣∣
y j=|(Xu(n)) j+θ j n|k j +nk j /2

�
d∏

j=1

(
|(Xu(n)) j + θ j n|k j + nk j /2

)2
ec0n . (2.16)

Plugging (2.16) into (2.12), we conclude that

E

( ∣∣∣M (k,θ),B
n+1 − E

(
M (k,θ),B

n+1

∣∣Fn
)∣∣∣


 ∣∣Fn

)

� ec0
n/2e−
(1+ ‖θ‖2
2 )n

∑

u∈N (n)

e−
θ ·Xu(n)
d∏

j=1

(
|(Xu(n)) j + θ j n|k j + nk j /2

)


= e−(
(
−1)(1−‖θ‖2
/2)−c0
/2

)
ne−(1+
2‖θ‖2/2)n
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×
∑

u∈N (n)

e−
θ ·Xu(n)
d∏

j=1

(
|(Xu(n)) j + θ j n|k j + nk j /2

)


. (2.17)

Choose c0 > 0 small so that c0
/2 < (
− 1)(1−‖θ‖2
/2) and set c1 := (
− 1)(1−
‖θ‖2
/2) − c0
/2 > 0. Taking expectation with respect to P in (2.17), by Lemma 2.1
with θ replaced to 
θ , we get that

E

(∣∣∣M (k,θ),B
n+1 − E

(
M (k,θ),B

n+1

∣∣Fn

)∣∣∣


)

� e−c1n
d∏

j=1

E
(
|(Bn) j − (
 − 1)θ j n|k j + nk j /2

)


�
(
n|k|/2

n1+λ

)


. (2.18)

Note that if X is a random variable with finite expectation and Y is a random variable
with finite 
-th moment, then

E (|X − E(X |F)|) ≤ E (|X − Y |) + E (|Y − E(Y |F)|) + E
(∣∣E

(
X − Y

∣∣F)∣∣)

≤ 2E (|X − Y |) + E
(
|Y − E(Y |F)|


)1/

. (2.19)

Combining this with (2.11), (2.18) and the fact that M (k,θ)
n = E

(
M (k,θ)

n+1

∣∣Fn

)
, we get

that

E

(∣∣∣M (k,θ)
n+1 − M (k,θ)

n

∣∣∣
)

≤ 2E
(∣∣∣M (k,θ)

n+1 − M (k,θ),B
n+1

∣∣∣
)

+ E

(∣∣∣M (k,θ),B
n+1 − E

(
M (k,θ),B

n+1

∣∣Fn

)∣∣∣


)1/


� n|k|/2

n1+λ
. (2.20)

Since λ > |k|/2, we have
∑∞

n=1 E

(∣∣∣M (k,θ)
n+1 − M (k,θ)

n

∣∣∣
)

< ∞, which implies that

M (k,θ)
n converges to a limit M (k,θ)∞ P-almost surely and in L1. Therefore, M (k,θ)

n =
E

(
M (k,θ)∞

∣∣Fn

)
, n ≥ 1.

For s ∈ (n, n + 1), M (k,θ)
s = E

(
M (k,θ)

n+1

∣∣Fs

)
= E

(
M (k,θ)∞

∣∣Fs

)
, thus the second

assertion of the proposition is valid.
Now, we prove the last assertion of the proposition. For any η ∈ (0, λ − |k|/2), by

(2.20),

∞∑

n=1

n−|k|/2+λ−η
E

(∣∣∣M (k,θ)
n+1 − M (k,θ)

n

∣∣∣
)

�
∞∑

n=1

1

n1+η
< ∞,

which implies that

∞∑

n=1

nλ−|k|/2−η
(
M (k,θ)

n+1 − M (k,θ)
n

)
converges a.s.
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Thus, nλ−|k|/2−η
(
M (k,θ)

n − M (k,θ)∞
)

n→∞−→ 0, P-a.s. (see, for example, [1, Lemma 2]).

For s ∈ [n, n + 1], by Doob’s inequality, for any ε > 0,

∞∑

n=1

P

(
n−|k|/2+λ−η sup

n≤s≤n+1

∣∣∣M (k,θ)
s − M (k,θ)

n

∣∣∣ > ε
)

≤ 1

ε

∞∑

n=1

n−|k|/2+λ−η
E

(∣∣∣M (k,θ)
n+1 − M (k,θ)

n

∣∣∣
)

< ∞.

Therefore, n−|k|/2+λ−η supn≤s≤n+1

∣∣∣M (k,θ)
s − M (k,θ)

n

∣∣∣ n→∞−→ 0,P-a.s. Hence,

P-almost surely,

sup
n≤s≤n+1

s−|k|/2+λ−η
∣∣∣M (k,θ)

s − M (k,θ)∞
∣∣∣

≤ (n+1)−|k|/2+λ−η sup
n≤s≤n+1

∣∣∣M (k,θ)
s −M (k,θ)

n

∣∣∣+(n+1)−|k|/2+λ−η
∣∣∣M (k,θ)

n −M (k,θ)∞
∣∣∣

n→∞−→ 0,

which completes the proof of the last assertion of the proposition.

2.4 Moment Estimate for the Additive Martingale

In this subsection, we give an upper bound for Wt (θ) which will be used later.

Lemma 2.7 Suppose θ ∈ R
d with ‖θ‖ <

√
2. If (1.11) holds for some λ > 0, then

there exists a constant Cθ,λ such that for all t > 0,

E

(
(Wt (θ) + 1) log1+λ(Wt (θ) + 1)

)
≤ Cθ,λ(t + 1).

Proof Since EWt (θ) = 1, it suffices to prove that there exists a constant Cθ,λ such

that for all t > 0, E
(
Wt (θ) log1+λ+ (Wt (θ))

)
≤ Cθ,λ(t + 1). By using a projection

argument, we can easily reduce to the one dimensional case. Indeed, for each t > 0
and u ∈ N (t), define Yu(t) := θ · Xu(t)/‖θ‖ when θ 
= 0 and for Yu(t) = (Xu(t))1
when θ = 0, then {Yu(t) : u ∈ N (t)}t≥0 is a 1-dimensional branching Brownian
motion with branching rate β = 1 and offspring distribution {pk}. Moreover, for each

θ ∈ R
d , Wt (θ) = e−(1+ ‖θ‖2

2 )t ∑
u∈N (t) e

−‖θ‖Yu(t). So we will only deal with the

case d = 1. By (2.1), we have E
(
(Wt (θ)) log1+λ+ (Wt (θ))

)
= E

−θ
(
log1+λ+ (Wt (θ))

)
.

Using the spine decomposition, we have

Wt (θ) = e−(1+ θ2
2 )t e−θXξ (t) +

∑

i :di≤t

e−(1+ θ2
2 )di e−θXξ (di )

Oi−1∑

j=1

Wi, j
t−di

,

123



Journal of Theoretical Probability (2024) 37:3355–3394 3375

where di , Oi are the i-th fission time and the number of offspring of the spine at time di ,
respectively. Given all the information G about the spine, (Wi, j

t−di
) j≥1 are independent

with the same law as Wt−di (θ) under P.
Using elementary analysis, one can easily show that there exists A = Aλ > 1 such

that for any x, y > A,

log1+λ+ (x + y) ≤ log1+λ+ (x) + log1+λ+ (y). (2.21)

We set

K1 := e−(1+ θ2
2 )t e−θXξ (t),

K2 :=
∑

i :di≤t

e−(1+ θ2
2 )di e−θXξ (di )

Oi−1∑

j=1

Wi, j
t−di

1{
e−(1+ θ2

2 )di e−θXξ (di )
∑Oi−1

j=1 Wi, j
t−di

≤A
}

≤ A
∑

i :di≤t

1,

K3 :=
∑

i :di≤t

e−(1+ θ2
2 )di e−θXξ (di )

Oi−1∑

j=1

Wi, j
t−di

1{
e−(1+ θ2

2 )di e−θXξ (di )
∑Oi−1

j=1 Wi, j
t−di

>A
}.

Note that log1+λ+ (x + y+ z) ≤ log1+λ+ (3x)+ log1+λ+ (3y)+ log1+λ+ (3z), log1+λ+ (xy) ≤
(log+ x + log+ y)1+λ � log1+λ+ (x) + log1+λ+ (y) and log1+λ+ (x) � x . By (2.21), we
have

log1+λ+ (Wt (θ)) = log1+λ+ (K1 + K2 + K3)

≤ log1+λ+ (3K1) + log1+λ+ (3K2) + log1+λ+ (3K3)

� 1 + log1+λ+ (K1) +
( ∑

i :di≤t

1
)

+
∑

i :di≤t

log1+λ+
(
e−(1+ θ2

2 )di e−θXξ (di )
Oi−1∑

j=1

Wi, j
t−di

)

� 1 + log1+λ+ (K1) +
( ∑

i :di≤t

1 + log1+λ+
(
e−(1+ θ2

2 )di e−θXξ (di )
))

+
∑

i :di≤t

log1+λ+
( Oi−1∑

j=1

Wi, j
t−di

)
. (2.22)

Putγ := 1−θ2/2 > 0.Recalling that {Xξ (t)+θ t,P−θ } is a standardBrownianmotion
and {di : i ≥ 1} are the atoms of a Poisson point process with rate 2 independent of
Xξ , we have

E
−θ

(
log1+λ+ (K1) + ( ∑

i :di≤t

1 + log1+λ+
(
e−(1+ θ2

2 )di e−θXξ (di )
)))

= E
−θ

(
log1+λ+ (K1) + 2

∫ t

0

(
1 + log1+λ+

(
e−(1+ θ2

2 )se−θXξ (s))ds
))
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� E
(

(−θBt − γ t)1+λ+ +
∫ t

0

(
1 + (−θBs − γ s)1+λ+

)
ds

)
� t + 1, (2.23)

where the last inequality follows from the following estimate:

E
(
(−θBs − γ s)1+λ+

) = s(1+λ)/2E
( (|θ |B1 − γ

√
s
)1+λ

1{|θ |B1>γ
√
s}
)

≤ s(1+λ)/2e−γ
√
sE

(
(|θ ||B1|)1+λ e|θ |B1) � 1.

For the last term on the right-hand side of (2.22), conditioned on {di , Oi : i ≥ 1}, we
get

E
−θ

( ∑

i :di≤t

log1+λ+
( Oi−1∑

j=1

Wi, j
t−di

)∣∣di , Oi , i ≥ 1
)

�
∑

i :di≤t

log1+λ+ (Oi − 1) +
∑

i :di≤t

E
−θ

(
log1+λ+

(
max

j≤Oi−1
Wi, j

t−di

)∣∣di , Oi , i ≥ 1
)
.

(2.24)

Note that

E
−θ

(
log1+λ+

(
max

j≤Oi−1
Wi, j

t−di

)∣∣di , Oi , i ≥ 1
)

= (1 + λ)

∫ ∞

0
yλ
P

−θ
(

max
j≤Oi−1

Wi, j
t−di

> ey
∣∣∣∣di , Oi , i ≥ 1

)
dy

= (1 + λ)

∫ ∞

0
yλ

(
1 −

Oi−1∏

j=1

(
1 − P

−θ
(
Wi, j

t−di
> ey

∣∣di , Oi , i ≥ 1
)))

dy

�
∫ ∞

0
yλ

(
1 − (

1 − e−y)Oi−1 )
dy, (2.25)

where in the inequality we used Markov’s inequality. When Oi − 1 ≥ ey/2 (which is

equivalent to y ≤ 2 log(Oi − 1)), we have yλ
(
1 − (

1 − e−y
)Oi−1

)
� logλ(Oi − 1);

when Oi − 1 < ey/2, by the inequality (1 − x)n ≥ 1 − nx , we get

yλ
(
1 − (

1 − e−y)Oi−1 ) ≤ yλ(Oi − 1)e−y ≤ yλe−y/2.

Thus, by (2.25),

E
−θ

(
log1+λ+

(
max

j≤Oi−1
Wi, j

t−di

)∣∣di , Oi , i ≥ 1
)

� log1+λ+ (Oi − 1) + 1.

Note that condition (1.11) implies that E−θ log1+λ+ (Oi − 1) = 1
2

∑∞
k=2 k log

1+λ(k −
1)pk < ∞. Plugging this back to (2.24) and taking expectation with respect to P

−θ ,
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we conclude that

E
−θ

( ∑

i :di≤t

log1+λ+
( Oi−1∑

j=1

Wi, j
t−di

))

� E
−θ

( ∑

i :di≤t

(
log1+λ+ (Oi − 1) + 1

))
� t + 1. (2.26)

Combining (2.22), (2.23) and (2.26), we get the desired result. ��

3 Proof of theMain Results

Let κ > 1 be fixed. Define

rn := n
1
κ , n ∈ N.

Lemma 3.1 For any given α, β ≥0 and δ ∈ (0, 1], assume that (1.11) holds for λ with
λδ − α > κ(1 + β).

(i) For each n, let an ≤ nβ and {Yn,u : u ∈ N (r δ
n)} be a family of random variables

such that E
(
Yn,u

∣∣Frδ
n

)
= 0, and conditioned on Frδ

n
, Yn,u, u ∈ N (r δ

n), are indepen-

dent. If |Yn,u | ≤ Wan (θ; u) + 1 for all n and u ∈ N (r δ
n), with

(
Wan (θ; u),P(·∣∣Frδ

n
)
)

being a copy of Wan (θ), then

rα
n e

−(1+ ‖θ‖2
2 )rδ

n
∑

u∈N (rδ
n )

e−θ ·Xu(rδ
n )Yn,u

n→∞−→ 0, a.s.

(ii) Consequently, if λδ − α > κ + 1, then for any sequence {An} of Borel sets in
R
d ,

rα
n

∣∣∣μθ
rn (An) − E

[
μθ
rn (An)

∣∣Frδ
n

]∣∣∣ n→∞−→ 0, a.s.

Proof (i) Define

Yn,u := Yn,u1{|Yn,u |≤ec∗rδn }, Y ′
n,u = Yn,u − E

(
Y n,u

∣∣Frδ
n

)
,

where c∗ > 0 is a constant to be chosen later. Then for any ε > 0,

P

(∣∣∣rα
n e

−(1+ ‖θ‖2
2 )rδ

n
∑

u∈N (rδ
n )

e−θ ·Xu(rδ
n )Yn,u

∣∣∣ > ε

∣∣∣Frδ
n

)

≤ P

(∣∣∣rα
n e

−(1+ ‖θ‖2
2 )rδ

n
∑

u∈N (rδ
n )

e−θ ·Xu(rδ
n )

(
Yn,u − Yn,u

) ∣∣∣ >
ε

3

∣∣∣Frδ
n

)
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+ P

(
rα
n e

−(1+ ‖θ‖2
2 )rδ

n

∣∣∣
∑

u∈N (rδ
n )

e−θ ·Xu(rδ
n )Y ′

n,u

∣∣∣ >
ε

3

∣∣∣Frδ
n

)

+ 1{
rα
n e

−(1+ ‖θ‖2
2 )rδn

∣∣∣
∑

u∈N (rδn )
e−θ ·Xu (rδn )E

(
Yn,u

∣∣F
rδn

)∣∣∣> ε
3

} =: I + I I + I I I . (3.1)

Using the inequality

|Yn,u − Y n,u | = |Yn,u |1{|Yn,u |>ec∗rδn } ≤ (
Wan (θ; u) + 1

)
1{

Wan (θ;u)+1>ec∗rδn
}

and Markov’s inequality, we have

I ≤ 3

ε
rα
n e

−(1+ ‖θ‖2
2 )rδ

n
∑

u∈N (rδ
n )

e−θ ·Xu(rδ
n )
E

(∣∣Yn,u − Yn,u
∣∣
∣∣∣Frδ

n

)

� rα
n e

−(1+ ‖θ‖2
2 )rδ

n
∑

u∈N (rδ
n )

e−θ ·Xu(rδ
n )
E

((
Wan (θ) + 1

)
1{Wan (θ)+1>ec∗rδn }

)

≤ rα
n

(c∗r δ
n)

λ+1 e
−(1+ ‖θ‖2

2 )rδ
n

∑

u∈N (rδ
n )

e−θ ·Xu(rδ
n )
E

((
Wan (θ) + 1

)
log1+λ+

(
Wan (θ) + 1

))

� rα
n

(c∗r δ
n)

λ+1 e
−(1+ ‖θ‖2

2 )rδ
n

∑

u∈N (rδ
n )

e−θ ·Xu(rδ
n )nβ, (3.2)

where in the last inequality we used Lemma 2.7. For 1 < 
 < min{2/‖θ‖2, 2},
set b := e(
−1)(1−‖θ‖2
/2)/2 ∈ (1, e) and c∗ := ln b. Using Markov’s inequality,
Lemma 2.2 (ii) with X = Yn,u , the conditional independence of Y ′

n,u , and the fact that

|Yn,u |
 ≤ ec∗(
−1)rδ
n |Yn,u | ≤ ec∗r

δ
n
(
Wan (θ; u) + 1

)
, we have

I I ≤ 3


ε

rα

n e−
(1+ ‖θ‖2

2 )rδ
nE

(∣∣∣
∑

u∈N (rδ
n )

e−θ ·Xu(rδ
n )Y ′

n,u

∣∣∣

∣∣∣Frδ

n

)

� 3


ε

r
α
n e−
(1+ ‖θ‖2

2 )rδ
n

∑

u∈N (rδ
n )

e−
θ ·Xu(rδ
n )
E

(∣∣Y ′
n,u

∣∣
 ∣∣Frδ
n

)

� 3


ε

r
α
n e−
(1+ ‖θ‖2

2 )rδ
n

∑

u∈N (rδ
n )

e−
θ ·Xu(rδ
n )
E

(∣∣Yn,u
∣∣
 ∣∣Frδ

n

)

≤ 3


ε

r
α
n e−
(1+ ‖θ‖2

2 )rδ
n

∑

u∈N (rδ
n )

e−
θ ·Xu(rδ
n )ec∗r

δ
nE

(
Wan (θ; u) + 1

∣∣Frδ
n

)

� r
α
n b−2rδ

n e−(1+ 
2‖θ‖2
2 )rδ

n br
δ
n

∑

u∈N (rδ
n )

e−
θ ·Xu(rδ
n ), (3.3)
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where in the last inequality, we used the identities E

(
Wan (θ; u) + 1

∣∣Frδ
n

)
=

E
(
Wan (θ) + 1

) = 2, e−
(1+ ‖θ‖2
2 )rδ

n = b−2rδ
n e−(1+ 
2‖θ‖2

2 )rδ
n , and ec∗ = b. Therefore,

by (3.3), we get

I I � r
α
n b−rδ

nWrδ
n
(
θ). (3.4)

Now taking expectation with respect to P in (3.1), and using (3.2) and (3.4), we get
that

P

(∣∣∣rα
n e

−(1+ ‖θ‖2
2 )rδ

n
∑

u∈N (rδ
n )

e−θ ·Xu(rδ
n )Yn,u

∣∣∣ > ε
)

� rα
n n

β

(r δ
n)

λ+1 + r
α
n b−rδ

n + P

⎛

⎝rα
n e

−(1+ ‖θ‖2
2 )rδ

n

∣∣∣
∑

u∈N (rδ
n )

e−θ ·Xu(rδ
n )
E

(
Yn,u

∣∣Frδ
n

) ∣∣∣ >
ε

3

⎞

⎠ .

(3.5)

ByMarkov’s inequality and the fact thatE
(
Y n,u

∣∣Frδ
n

)
= −E

(
Yn,u1{|Yn,u |>ec∗rδn }

∣∣Frδ
n

)
,

the third term on the right-hand side of (3.5) is bounded from above by

3

ε
rα
n e

−(1+ ‖θ‖2
2 )rδ

nE

( ∑

u∈N (rδ
n )

e−θ ·Xu(rδ
n )
E
(|Yn,u |1{|Yn,u |>ec∗rδn

}∣∣Frδ
n

))

≤ 3

ε
rα
n (c∗r δ

n)
−λ−1

E

((
Wan (θ) + 1

)
logλ+1+ (1 + Wan (θ))

)
� rα

n (r δ
n)

−λ−1nβ,

where in the last inequality we used Lemma 2.7. Plugging the upper bound above into

(3.5) and recalling rn = n
1
κ , we get

∞∑

n=1

P

(∣∣∣rα
n e

−(1+ ‖θ‖2
2 )rδ

n
∑

u∈N (rδ
n )

e−θ ·Xu(rδ
n )Yn,u

∣∣∣ > ε
)

�
∞∑

n=1

( rα
n n

β

(r δ
n)

λ+1 + r
α
n b−rδ

n + r−((λ+1)δ−α−κβ)
n

)
,

which is summable since λδ − α > κ(1 + β). This completes the proof of (i).
(ii) By the Markov property and Lemma 2.1,

E

[
μθ
rn (An)

∣∣Frδ
n

]

= e−(1+ ‖θ‖2
2 )rδ

n
∑

u∈N (rδ
n )

e−θ ·Xu(rδ
n )
P

−θ
(
Xξ (rn − r δ

n) + θrn + y ∈ An
) ∣∣

y=Xu(rδ
n )

.
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Since {Xξ (t) + θ t,P−θ } is a d-dimensional standard Brownian motion, we have

E

[
μθ
rn (An)

∣∣Frδ
n

]

= e−(1+ ‖θ‖2
2 )rδ

n
∑

u∈N (rδ
n )

e−θ ·Xu(rδ
n )P

(
Brn−rδ

n
+ y + θr δ

n ∈ An

) ∣∣
y=Xu(rδ

n )
. (3.6)

Therefore,

μθ
rn (An) − E

[
μθ
rn (An)

∣∣Frδ
n

]
=: e−(1+ ‖θ‖2

2 )rδ
n

∑

u∈N (rδ
n )

e−θ ·Xu(rδ
n )Yn,u,

where

Yn,u := e−(1+ ‖θ‖2
2 )(rn−rδ

n )
∑

v∈N (rn):u≤v

e−θ ·(Xv(rn)−Xu(rδ
n )

)
1{Xv(rn)+θrn∈An}

− P
(
Brn−rδ

n
+ y + θr δ

n ∈ An

) ∣∣
y=Xu(rδ

n )
.

By the branching property, we see that, conditioned on Frδ
n
, {Yn,u : u ∈ N (r δ

n)} is a
family of centered independent random variables. Furthermore, it holds that

|Yn,u | ≤ e−(1+ ‖θ‖2
2 )(rn−rδ

n )
∑

v∈N (rn):u≤v

e−θ ·(Xv(rn)−Xu(rδ
n )

)
+ 1

= Wrn−rδ
n
(θ; u) + 1.

Therefore, the second result is valid by (i) by taking β = 1/κ and an = rn − r δ
n . ��

Now, we treat the case s ∈ [rn, rn+1). Wewill take δ = 1/2, β = 1/κ and α = m/2
form ∈ N. Then, the condition λδ −α > κ(1+β) is equivalent to λ > m+2(κ +1).

Lemma 3.2 For b ∈ R
d , let bs := b

√
s or bs := b. For any given m ∈ N, assume

that κ > m + 2 and that (1.11) holds for some λ > m + 2(κ + 1). Define ks := √
rn

for s ∈ [rn, rn+1). Then for any b ∈ R
d ,

sm/2
∣∣μθ

s ((−∞,bs]) − E
[
μθ
s ((−∞,bs])

∣∣Fks

]∣∣ s→∞−→ 0, P-a.s.

Proof Step 1: In this step, we prove that almost surely,

sup
rn≤s<rn+1

sm/2
∣∣E

[
μθ
s ((−∞,bs])

∣∣Fks

] − E
[
μθ
rn

(
(−∞,brn ]

) ∣∣Fks

]∣∣ n→∞−→ 0. (3.7)

By the Markov property and Lemma 2.1, a similar argument as (3.6) yields that

E
[
μθ
s ((−∞,bs])

∣∣Fks

]
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= e−(1+ ‖θ‖2
2 )

√
rn

∑

u∈N (
√
rn)

e−θ ·Xu(
√
rn)P

(
Bs−√

rn + y + θ
√
rn ≤ bs

) ∣∣∣
y=Xu(

√
rn)

= e−(1+ ‖θ‖2
2 )

√
rn

∑

u∈N (
√
rn)

e−θ ·Xu(
√
rn)�d

(bs − θ
√
rn − Xu(

√
rn)√

s − √
rn

)
. (3.8)

Thus, for s ∈ [rn, rn+1), it holds that

sm/2
∣∣E

[
μθ
s ((−∞, bs])

∣∣Fks

] − E
[
μθ
rn

(
(−∞, brn ]

) ∣∣Fks

]∣∣

≤ rm/2
n+1e

−(1+ ‖θ‖2
2 )

√
rn

∑

u∈N (
√
rn)

e−θ ·Xu(
√
rn)

×
∣∣∣�d

(bs − θ
√
rn − Xu(

√
rn)√

s − √
rn

)
− �d

(brn − θ
√
rn − Xu(

√
rn)√

rn − √
rn

)∣∣∣

=: rm/2
n+1e

−(1+ ‖θ‖2
2 )

√
rn

∑

u∈N (
√
rn)

e−θ ·Xu(
√
rn)R(u, s).

Let E(u, rn, θ) := ∪d
j=1{|(Xu(

√
rn)) j + θ j

√
rn| >

√
rn}. Using Lemma 2.1, the

trivial upper-bound suprn≤s<rn+1
R(u, s) ≤ 2 and the fact that {Xξ (t) + θ t,P−θ } is a

d-dimensional standard Brownian motion, we have

∞∑

n=1

rm/2
n+1e

−(1+ ‖θ‖2
2 )

√
rnE

( ∑

u∈N (
√
rn)

e−θ ·Xu(
√
rn)1E(u,rn ,θ) sup

rn≤s<rn+1

R(u, s)
)

≤ 2
∞∑

n=1

rm/2
n+1P

(
∪d

j=1

{
|(B1) j | > r1/4n

})
≤ 2dE(e|(B1)1|)

∞∑

n=1

rm/2
n+1e

−r1/4n < ∞,

which implies that P-almost surely,

rm/2
n+1e

−(1+ ‖θ‖2
2 )

√
rn

∑

u∈N (
√
rn)

e−θ ·Xu(
√
rn)1E(u,rn ,θ)R(u, s)

s→∞−→ 0. (3.9)

On the other hand, on the event E(u, rn, θ)c = ∩d
j=1{|(Xu(

√
rn)) j + θ j

√
rn| ≤ √

rn},
in the case bs = b, using the trivial inequality

|�d(a) − �d(b)| ≤
d∑

j=1

∣∣�(a j ) − �(b j )
∣∣ ≤ 1√

2π

d∑

j=1

|a j − b j |,

we get that, uniformly for s ∈ [rn, rn+1),

R(u, s) ≤
d∑

j=1

( |b j |√
2π

∣∣∣∣∣
1√

s − √
rn

− 1√
rn − √

rn

∣∣∣∣∣
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+ |(Xu(
√
rn)) j + θ j

√
rn |√

2π

∣∣∣∣∣
1√

s − √
rn

− 1√
rn − √

rn

∣∣∣∣∣

)

� |s − rn |√
s − √

rn
√
rn − √

rn
(√

s − √
rn + √

rn − √
rn

) + √
rn

∣∣√s − √
rn − √

rn − √
rn

∣∣
√
s − √

rn
√
rn − √

rn

� 1

r3/2n

(rn+1 − rn) +
√
rn

r3/2n

(rn+1 − rn) � 1

rn
(rn+1 − rn).

In the case bs = b
√
s, uniformly for s ∈ [rn, rn+1),

R(u, s) ≤
d∑

j=1

( |b j |√
2π

∣∣∣∣∣

√
s√

s − √
rn

−
√
rn√

rn − √
rn

∣∣∣∣∣

+ |(Xu(
√
rn)) j + θ j

√
rn|√

2π

∣∣∣∣∣
1√

s − √
rn

− 1√
rn − √

rn

∣∣∣∣∣

)

�
∣∣√s(rn − √

rn) − √
rn(s − √

rn)
∣∣

√
s − √

rn
√
rn − √

rn
+ √

rn

∣∣√s − √
rn − √

rn − √
rn

∣∣
√
s − √

rn
√
rn − √

rn

� 1

rn

∣∣s(rn − √
rn) − rn(s − √

rn)
∣∣

rn
+

√
rn

r3/2n

(rn+1 − rn) � 1

rn
(rn+1 − rn).

Thus in both cases, we have that

rm/2
n+1e

−(1+ ‖θ‖2
2 )

√
rn

∑

u∈N (
√
rn)

e−θ ·Xu(
√
rn)1E(u,rn ,θ)c sup

rn≤s<rn+1

R(u, s)

� rm/2
n+1

1

rn
(rn+1 − rn)W√

rn (θ). (3.10)

We claim that the right-hand side of (3.10) goes to 0 almost surely as s → ∞. In fact,

rm/2
n+1

1

rn
(rn+1 − rn) � r (−2+m)/2

n (rn+1 − rn) = n(−2+m)/(2κ)
(
(n + 1)1/κ − n1/κ

)
.

By the mean value theorem, the right-hand side above is equal to

n(−2+m)/(2κ)ν−1+ 1
κ � n(m−2κ)/(2κ), for some ν ∈ [n, n + 1].

Since κ > m + 2 and limn→∞ W√
rn (θ) exists (due to the fact that Wt (θ) is a non-

negative martingale), the claim is valid. Combining this with (3.9) and (3.10), we get
(3.7).

Step 2: In this step, we prove that

sup
rn≤s<rn+1

sm/2
∣∣μθ

s ((−∞,bs]) − μθ
rn

(
(−∞,brn ]

)∣∣ n→∞−→ 0, P-a.s. (3.11)
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Once we get (3.11), we can combine (3.7) and Lemma 3.1 (ii) (with An = (−∞,brn ]
and δ = 1/2) to get the assertion of the lemma.

To prove (3.11), we first prove that

lim inf
n→∞ inf

rn≤s<rn+1
sm/2 (

μθ
s ((−∞,bs]) − μθ

rn

(
(−∞,brn ]

)) ≥ 0, P-a.s. (3.12)

Define εn := √
rn+1 − rn . For u ∈ N (rn), let Gu be the event that u does not split

before rn+1 and that maxs∈(rn ,rn+1) ‖Xu(s) − Xu(rn)‖ ≤ √
rnεn . Then,

P
(
Gu

∣∣Frn

) = e−(rn+1−rn)P
(

max
r≤rn+1−rn

‖Br‖ ≤ √
rnεn

)

= e−(rn+1−rn)P
(
max
r≤1

‖Br‖ ≤ √
rn

)
.

Recalling that 1 := (1, ..., 1), it holds that

μθ
s ((−∞,bs]) = e−(1+ ‖θ‖2

2 )s
∑

u∈N (rn)

e−θ ·Xu(rn)

×
∑

v∈N (s):u≤v

e−θ ·(Xv(s)−Xu(rn))1{Xv(s)+θs≤bs }

≥ e−(1+ ‖θ‖2
2 )rn+1e−‖θ‖√rnεn

×
∑

u∈N (rn)

e−θ ·Xu(rn)1{Xu(rn)+θrn≤brn−εn
√
rn1−‖θ‖(rn+1−rn)1}1Gu

= e−(1+ ‖θ‖2
2 )rn+1−‖θ‖√rnεn

∑

u∈N (rn)

e−θ ·Xu(rn)

× 1{Xu(rn)+θrn≤brn−εn
√
rn1−‖θ‖(rn+1−rn)1}

(
1Gu − P

(
Gu

∣∣Frn

))

+ e−(1+ ‖θ‖2
2 )rn+1−‖θ‖√rnεn

∑

u∈N (rn)

e−θ ·Xu(rn)

× 1{Xu(rn)+θrn≤brn−εn
√
rn1−‖θ‖(rn+1−rn)1}P

(
Gu

∣∣Frn

) =: I + I I .
(3.13)

For I , we will apply Lemma 3.1 (i) with α = m/2, δ = 1, an = 0, β = 0 and

Yn,u := 1{Xu(rn)+θrn≤brn−εn
√
rn1−‖θ‖(rn+1−rn)1}

(
1Gu − P

(
Gu

∣∣Frn

))
.

It is easy to see that |Yn,u | ≤ 2, rn+1 − rn → 0 and
√
rnεn �

√
n(2−κ)/κ → 0. Since

λ > m + 2(κ + 1), we have

sup
rn≤s<rn+1

sm/2|I | n→∞−→ 0, P-a.s. (3.14)

123



3384 Journal of Theoretical Probability (2024) 37:3355–3394

If we can prove that

sup
rn≤s<rn+1

sm/2
∣∣I I − μθ

rn

(
(−∞,brn ]

)∣∣ n→∞−→ 0, P-a.s., (3.15)

then (3.12) will follow from (3.13), (3.14) and (3.15). Now, we prove (3.15). Since
κ > m + 2, we have rm/2

n (rn+1 − rn) � n−1+(m+2)/(2κ) → 0. Thus,

sm/2
∣∣1 − P

(
Gu

∣∣Frn

)∣∣ ≤ rm/2
n+1(1 − e−(rn+1−rn)) + rm/2

n+1P
(
max
r≤1

‖Br‖ >
√
rn

)

� rm/2
n+1(rn+1 − rn) + rm/2

n+1e
−√

rn → 0.

Hence, using the fact that limn→∞ Wrn (θ) = W∞(θ) exists, we get

sm/2
∣∣∣∣e

(1+ ‖θ‖2
2 )(rn+1−rn)e‖θ‖√rnεn I I − μθ

rn

(
(−∞,brn − εn

√
rn1 − ‖θ‖(rn+1 − rn)1]

)∣∣∣∣

� Wrn (θ)
(
rm/2
n+1(rn+1 − rn) + rm/2

n+1e
−√

rn
)

s→∞−→ 0, P-a.s. (3.16)

Note that 0 ≤ e(1+ ‖θ‖2
2 )(rn+1−rn)e‖θ‖√rnεn I I ≤ Wrn (θ), e(1+ ‖θ‖2

2 )(rn+1−rn) = 1 +
O(rn+1 − rn) = 1 + o(r−m/2

n ), and that e‖θ‖√rnεn = 1 + O(
√
rn

√
rn+1 − rn) =

1+O(n1/κ−1/2) = 1+o(r−m/2
n ) by the assumption that κ > m+2. Therefore, (3.16)

implies that

sm/2
∣∣I I − μθ

rn

(
(−∞,brn − εn

√
rn1 − ‖θ‖(rn+1 − rn)1]

)∣∣ s→∞−→ 0, P-a.s. (3.17)

Now, we put An = (−∞,brn ]\(−∞,brn − εn
√
rn1−‖θ‖(rn+1 − rn)1] ⊂ ∪d

j=1Cn, j

whereCn, j := {
x = (x1, ..., xd) : x j ∈ ((brn ) j − εn

√
rn − ‖θ‖(rn+1 − rn), (brn ) j ]

}
.

Then by Lemma 2.1 and the inequality P
(
Bt + y ∈ Cn, j

) ≤ εn
√
rn+‖θ‖(rn+1−rn)√

2π t
, we

obtain that

rm/2
n E

[
μθ
rn (An)

∣∣F√
rn

]

= rm/2
n e−(1+ ‖θ‖2

2 )
√
rn

∑

u∈N (
√
rn)

e−θ ·Xu(
√
rn)

× P
−θ

(
Xξ (rn − √

rn) + y + θrn ∈ An
) |y=Xu(

√
rn)

≤
d∑

j=1

rm/2
n e−(1+ ‖θ‖2

2 )
√
rn

∑

u∈N (
√
rn)

e−θ ·Xu(
√
rn)

× P
(
Brn−√

rn + y + θ
√
rn ∈ Cn, j

)
|y=Xu(

√
rn)

≤ dW√
rn (θ)

rm/2
n

(
εn

√
rn + ‖θ‖(rn+1 − rn)

)
√
2π(rn − √

rn)

s→∞−→ 0, P-a.s.
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Here, the last assertion about the limit being 0 follows from the following argument:

rm/2
n

(
εn

√
rn + ‖θ‖(rn+1 − rn)

)
√
2π(rn − √

rn)
� rm/2

n εn = nm/(2κ)
√

(n + 1)1/κ − n1/κ

� n(m+1−κ)/(2κ) → 0.

Using Lemma 3.1 (ii), we immediately get that rm/2
n μθ

rn (An) → 0, P-almost surely.
Then by (3.17), we conclude that (3.15) holds.

Applying similar arguments for the interval (bs,+∞), we can also get

lim inf
n→∞ inf

rn≤s<rn+1
sm/2 (

μθ
s ((bs,+∞)) − μθ

rn

(
(brn ,+∞)

)) ≥ 0, P-a.s. (3.18)

Using Proposition 2.6 with k = 0 and η = 2(κ + 1), and the assumption λ >

m + 2(κ + 1), we get

lim
n→∞ sup

rn≤s<rn+1

sm/2
∣∣∣μθ

s

(
R
d
)

− μθ
rn

(
R
d
)∣∣∣ = lim

n→∞ sup
rn≤s<rn+1

sm/2
∣∣Ws(θ) − Wrn (θ)

∣∣

= 0. (3.19)

Now, we prove (3.11) follows from (3.12), (3.18) and (3.19). Indeed, for any ε > 0,
(3.12), (3.18) and (3.19) imply that one can find a random time N such that for all
n > N and rn ≤ s < rn+1,

sm/2 (
μθ
s ((−∞,bs]) − μθ

rn

(
(−∞,brn ]

))
> −ε,

sm/2 (
μθ
s ((bs,+∞)) − μθ

rn

(
(brn ,+∞)

))
> −ε and sm/2

∣∣∣μθ
s

(
R
d
)

− μθ
rn

(
R
d
)∣∣∣

< ε.

Thus,

sm/2 (
μθ
s ((−∞,bs]) − μθ

rn

(
(−∞,brn ]

))

= sm/2
(
μθ
s

(
R
d
)

− μθ
rn

(
R
d
))

− sm/2 (
μθ
s ((bs,+∞)) − μθ

rn

(
(brn ,+∞)

))
< 2ε.

Hence, we have that when n > N and rn ≤ s < rn+1,

sm/2
∣∣μθ

s ((−∞,bs]) − μθ
rn

(
(−∞,brn ]

)∣∣ < 2ε,

which implies (3.11). ��
For any given m ∈ N, we will take κ := m + 3 in the remainder of this section. It

follows from Lemma 3.2 and (3.8) that if (1.11) holds for some λ > m + 2(κ + 1) =
3m + 8, then P-almost surely for all s ∈ [rn, rn+1) and bs = b

√
s,

μθ
s

(
(−∞,b

√
s]) = E

[
μθ
s

(
(−∞,b

√
s]) ∣∣Fks

] + o(s−m/2)
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= e−(1+ ‖θ‖2
2 )

√
rn

∑

u∈N (
√
rn)

e−θ ·Xu(
√
rn)�d

(b
√
s − θ

√
rn − Xu(

√
rn)√

s − √
rn

)

+ o(s−m/2). (3.20)

Note that, for any a < b, (a,b] = ∏d
j=1(a j , b j ] can be expressed in terms

∏d
j=1 E j

where E j ∈ {(−∞, a j ], (−∞, b j ]} using a finite number of set theoretic operations.
Thus, applying Lemma 3.2 to

∏d
j=1 E j and by (3.8), we get that if (1.11) holds for

some λ > 3(m + d) + 8 = 3m + 3d + 8, then

μθ
s ((a,b]) = o(s−(m+d)/2) + e−(1+ ‖θ‖2

2 )
√
rn

∑

u∈N (
√
rn)

e−θ ·Xu(
√
rn)

×
d∏

j=1

1√
s − √

rn

∫ b j

a j

φ
( z j − θ j

√
rn − (Xu(

√
rn)) j√

s − √
rn

)
dz j . (3.21)

Proof of Theorem 1.1 Let m ∈ N and assume (1.11) holds for some λ > max{3m +
8, d(3m + 5)}. Recall that rn = n1/κ and κ = m + 3. Put K := m/κ + 3
and F(u, rn, θ) := ∪d

j=1

{∣∣(Xu(
√
rn)) j + θ j

√
rn

∣∣ >
√
K

√
rn log n

}
. Combining

Lemma 2.1, supz∈Rd �d(z) = 1 and the fact that {(Xξ (t) + θ t)t≥0,P
−θ } is a d-

dimensional standard Brownian motion, we get that

∞∑

n=2

rm/2
n E

(
e−(1+ ‖θ‖2

2 )
√
rn

∑

u∈N (
√
rn)

e−θ ·Xu(
√
rn)1F(u,rn ,θ)

× sup
rn≤s<rn+1

�d

(b
√
s − θ

√
rn − Xu(

√
rn)√

s − √
rn

))

≤
∞∑

n=2

nm/(2κ)
d∑

j=1

P
(

|(B√
rn ) j | >

√
K

√
rn log n

)

= d
∞∑

n=2

nm/(2κ)P
(
|(B1)1| >

√
K log n

)
�

∞∑

n=1

nm/(2κ)n−K/2 < ∞, (3.22)

where in the last inequality we used the fact that P(|(B1)1| > x) � e−x2/2. Therefore,
P-almost surely,

rm/2
n e−(1+ ‖θ‖2

2 )
√
rn

∑

u∈N (
√
rn)

e−θ ·Xu(
√
rn)1F(u,rn ,θ)

× sup
rn≤s<rn+1

�d

(b
√
s − θ

√
rn − Xu(

√
rn)√

s − √
rn

)
n→∞−→ 0. (3.23)
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Since λ > 3m + 8, by (3.20) and (3.23), for any θ ∈ R
d with ‖θ‖ <

√
2,b ∈ R

d and
s ∈ [rn, rn+1),

μθ
s

(
(−∞,b

√
s]) = o(s−m/2) + e−(1+ ‖θ‖2

2 )
√
rn

∑

u∈N (
√
rn)

e−θ ·Xu(
√
rn)1F(u,rn ,θ)c

× �d

(b
√
s − θ

√
rn − Xu(

√
rn)√

s − √
rn

)
.

Put J := 6m + 10. Then, J > 2m + Kκ = 3m + 3κ = 6m + 9. By Lemma 2.4, we
get that for any θ ∈ R

d with ‖θ‖ <
√
2,b ∈ R

d and s ∈ [rn, rn+1),

μθ
s

(
(−∞,b

√
s])

= o(s−m/2) + e−(1+ ‖θ‖2
2 )

√
rn

∑

u∈N (
√
rn)

e−θ ·Xu(
√
rn)1F(u,rn ,θ)c

d∏

j=1

(
�(b j ) − φ(b j )

J∑

k=1

1

k!
1

sk/2

× Hk−1(b j )
(√

rn
)k/2

Hk

( (Xu(
√
rn)) j + θ j

√
rn

r1/4n

)
+ εm,u,s, j

)

= o(s−m/2) + e−(1+ ‖θ‖2
2 )

√
rn

∑

u∈N (
√
rn)

e−θ ·Xu(
√
rn)1F(u,rn ,θ)c

d∏

j=1

(
�(b j ) − φ(b j )

J∑

k=1

1

k!
1

sk/2

× Hk−1(b j )
(√

rn
)k/2

Hk

( (Xu(
√
rn)) j + θ j

√
rn

r1/4n

))
, (3.24)

where εm,u,s, j = εm,y,b,s |y=θ j
√
rn+(Xu(

√
rn)) j , b=b j . To justify the last equality, we first

apply Lemma 2.4 to get that, for each u ∈ N (
√
rn), as s → ∞, P-almost surely,

sm/2e−(1+ θ2
2 )

√
rn

∑

u∈N (
√
rn)

e−θXu(
√
rn)1F(u,rn ,θ)c

∣∣εm,u,s, j
∣∣

≤ W√
rn (θ) × sm/2 sup

j≤d
sup

u∈N (
√
rn)

|εm,u,s, j |1F(u,rn ,θ)c → 0.

Then, note that by (2.4) and |Hk(x)| � |x |k + 1, on the event F(u, rn, θ)c =
∩d

j=1

{∣∣(Xu(
√
rn)) j + θ j

√
rn

∣∣ ≤ √
K

√
rn log n

}
,

|Qu, j | :=
∣∣∣�(b j ) − φ(b j )

J∑

k=1

1

k!
1

sk/2
Hk−1(b j )

(√
rn

)k/2
Hk

( (Xu(
√
rn)) j + θ j

√
rn

r1/4n

)∣∣∣
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� 1 +
J∑

k=1

1

rk/2n

rk/4n

(
1 +

∣∣∣
(Xu(

√
rn)) j + θ j

√
rn

r1/4n

∣∣∣
k)

� 1 + (log n)J/2

r1/4n

� 1.

Combining the two displays above, we get that, on the event F(u, rn, θ)c,

∣∣∣�d

(b
√
s − θ

√
rn − Xu(

√
rn)√

s − √
rn

)
−

d∏

j=1

Qu, j

∣∣∣

≤
d∑

j=1

∏


 
= j

∣∣Qv,


∣∣ |εm,u,s, j | � d sup
j≤d

sup
u∈N (

√
rn)

|εm,u,s, j |,

which implies (3.24).
Let ε ∈ (0, 1) be small enough so that K (1− ε) ≥ m/κ + 2. For any k ∈ N

d with
1 ≤ |k| ≤ J , using the inequality |Hk(x)| � 1 + |x |k first and then Lemma 2.1, we
get

∞∑

n=2

rm/2
n E

(
e−(1+ ‖θ‖2

2 )
√
rn

∑

u∈N (
√
rn)

e−θ ·Xu(
√
rn)1F(u,rn ,θ)

× sup
rn≤s<rn+1

d∏

j=1

(√
rn

)k j /2

sk j /2

∣∣∣Hk j

( (Xu(
√
rn)) j + θ j

√
rn

r1/4n

)∣∣∣
)

�
∞∑

n=2

rm/2
n E

( d∑

j=1

1{∣∣∣(B√
rn ) j

∣∣∣>
√

K
√
rn log n

}
d∏


=1

1

rk
/4
n

(
1 +

∣∣∣∣∣
(B√

rn )
√√
rn

∣∣∣∣∣

k
 ))

=
d∑

j=1

∞∑

n=2

n(2m−|k|)/(4κ)E
(
1{|(B1) j |>√

K log n}
d∏


=1

(
1 + |(B1)
|k


) )

� E
((

1 + |B1|J
)
e(1−ε)|B1|2/2

) ∞∑

n=2

n(2m−|k|)/(4κ)n−(1−ε)K/2

�
∞∑

n=2

n−(4κ+1)/(4κ) < ∞. (3.25)

Thus, we have that P-almost surely,

lim
n→∞ rm/2

n e−(1+ ‖θ‖2
2 )

√
rn

∑

u∈N (
√
rn)

e−θ ·Xu(
√
rn)1F(u,rn ,θ)

× sup
rn≤s<rn+1

d∏

j=1

(√
rn

)k j /2

sk j /2

∣∣∣Hk j

( (Xu(
√
rn)) j + θ j

√
rn

r1/4n

)∣∣∣ = 0.
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Consequently, for s ∈ [rn, rn+1), as n → ∞,

e−(1+ ‖θ‖2
2 )

√
rn

∑

u∈N (
√
rn)

e−θ ·Xu(
√
rn)1F(u,rn ,θ)

×
d∏

j=1

∣∣∣∣�(b j ) − φ(b j )

J∑

k=1

1

k!
1

sk/2
Hk−1(b j )

(√
rn

)k/2
Hk

( (Xu(
√
rn)) j + θ j

√
rn

r1/4n

)∣∣∣∣

= e−(1+ ‖θ‖2
2 )

√
rn

∑

u∈N (
√
rn)

e−θ ·Xu(
√
rn)1F(u,rn ,θ)

×
d∏

j=1

∣∣∣∣
J∑

k=0

(−1)k

k!
1

sk/2
dk

dbkj
�(b j )

(√
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)k/2
Hk

( (Xu(
√
rn)) j + θ j

√
rn

r1/4n

)∣∣∣∣

≤
∑

k≤J1

∣∣Dk�d(b)
∣∣

k! e−(1+ ‖θ‖2
2 )

√
rn

∑

u∈N (
√
rn)

e−θ ·Xu(
√
rn)1F(u,rn ,θ)

×
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j=1

(√
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)k j /2

sk j /2

∣∣∣∣Hk j

( (Xu(
√
rn)) j + θ j

√
rn

r1/4n

)∣∣∣∣

= o(s−m/2).

Now combining the above limit and (3.24), we may drop the indicator function in
(3.24) to get

μθ
s

(
(−∞,b

√
s]) = o(s−m/2) + e−(1+ ‖θ‖2

2 )
√
rn

∑

u∈N (
√
rn)

e−θ ·Xu (
√
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×
d∏

j=1

(
�(b j ) +

J∑
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(−1)k
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1

sk/2
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dbkj
�(b j )

(√
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)k/2
Hk

( (Xu(
√
rn)) j + θ j

√
rn

r1/4n

))

= o(s−m/2) + e−(1+ ‖θ‖2
2 )

√
rn

∑

u∈N (
√
rn)

e−θ ·Xu (
√
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×
d∏

j=1

( J∑

k=0

(−1)k

k!
1

sk/2
dk

dbkj
�(b j )

(√
rn

)k/2
Hk

( (Xu(
√
rn)) j + θ j

√
rn

r1/4n

))

= o(s−m/2) +
∑

k:k≤J1

(−1)|k|

k!
1

s|k|/2 D
k�d (b)M (k,θ)√

rn
.

Since λ > |J1|/2 = d(3m+5), it follows from Proposition 2.6 that for any k ∈ N
d

with m + 1 ≤ |k| ≤ |J1|, s−|k|/2M (k,θ)√
rn

= o(s−m/2). Thus,

μθ
s

(
(−∞,b

√
s]) =

∑

k:|k|≤m

(−1)|k|

k!
1

s|k|/2 D
k�d(b)M (k,θ)√

rn
+ o(s−m/2).
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Take η > 0 sufficient small so that λ > 3m
2 + η. Then by Proposition 2.6, for any

k ∈ N
d with 0 ≤ |k| ≤ m,

M (k,θ)√
rn

− M (k,θ)∞ = o(r−(λ−|k|/2)/2+η/2
n ) = o

(
r−m/2
n rm/2−(λ−m/2)/2+η/2

n

)

= o(r−m/2
n ),

which implies that as s → ∞,

μθ
s

(
(−∞,b

√
s]) =

∑

k:|k|≤m

(−1)|k|

k!
1

s|k|/2 D
k�d(b)M (k,θ)∞ + o(s−m/2), P-a.s.

Therefore, the assertion of the theorem is valid under the assumption λ >

max {3m + 8, d(3m + 5)}.

Proof of Theorem 1.2 Let m ∈ N and assume (1.11) holds for some λ > max{d(3m +
5), 3m + 3d + 8}. Recall that rn = n1/κ and κ = m + 3. Put K := m/κ + 3,
F(u, rn, θ) := ∪d

j=1

{∣∣(Xu(
√
rn)) j + θ j

√
rn

∣∣ >
√
K

√
rn log n

}
and define

Ys,n,u := e−θ ·Xu(
√
rn)

d∏

j=1

√
s√

s − √
rn

∫ b j

a j

φ
( z j − θ j

√
rn − (Xu(

√
rn)) j√

s − √
rn

)
dz j .

Since λ > 3m + 3d + 8, by (3.21), for any θ ∈ R
d with ‖θ‖ <

√
2, any a,b ∈ R

d

with a < b and s ∈ [rn, rn+1), P-almost surely, as s → ∞,

sd/2μθ
s ((a,b]) = e−(1+ ‖θ‖2

2 )
√
rn

∑

u∈N (
√
rn)

Ys,n,u + o(s−m/2). (3.26)

Noticing that

0 ≤ sup
rn≤s<rn+1

Ys,n,u ≤ e−θ ·Xu(
√
rn)

d∏

j=1

(b j − a j )
√
rn+1√

rn − √
rn

� e−θ ·Xu(
√
rn),

and using (3.22), we get

∞∑

n=2

rm/2
n E

(
sup

rn≤s<rn+1

e−(1+ ‖θ‖2
2 )

√
rn

∑

u∈N (
√
rn)

Ys,n,u1F(u,rn ,θ)

)

� d
∞∑

n=2

nm/(2κ)P
(

|(B√
rn )1| >

√
K

√
rn log n

)
< ∞.
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Therefore, P-almost surely,

sm/2e−(1+ ‖θ‖2
2 )

√
rn

∑

u∈N (
√
rn)

Ys,n,u1F(u,rn ,θ)
s→∞−→ 0.

By (3.26), for s ∈ [rn, rn+1),

sd/2μθ
s ((a,b]) = e−(1+ ‖θ‖2

2 )
√
rn

∑

u∈N (
√
rn)

Ys,n,u1F(u,rn ,θ)c + o(s−m/2). (3.27)

Using Lemma 2.5, on the event F(u, rn, θ)c, for J = 6m + 10,

√
s√

s − √
rn

∫ b j

a j

φ
( z j − θ j

√
rn − (Xu(

√
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s − √
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=
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z j√
s

)( J∑
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1
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1
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( z j√
s

)
rk/4n Hk
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√
rn)) j + θ j

√
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dz j

+ εm,u,s, j

=
J∑
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1

k!
1

sk/2

( ∫ b j

a j

φ
( z j√

s

)
Hk

( z j√
s

)
dz j

)
rk/4n Hk

( (Xu(
√
rn)) j + θ j

√
rn

r1/4n

)

+ εm,u,s, j ,

where, as n → ∞,

rm/2
n+1 sup

s∈[rn ,rn+1)

sup
j≤d

sup
u∈N (

√
rn)

|εm,u,s, j |1F(u,rn ,θ)c → 0.

Therefore, using (3.27) and an argument similar to that leading to (3.24), we get

sd/2μθ
s ((a,b]) = o(s−m/2) + e−(1+ ‖θ‖2

2 )
√
rn

∑

u∈N (
√
rn)

e−θ ·Xu (
√
rn)1F(u,rn ,θ)c

×
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j=1

{ J∑

k=0

1

k!
1

sk/2

( ∫ b j
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φ
( z j√

s

)
Hk

( z j√
s

)
dz j

)
rk/4n Hk

( (Xu(
√
rn)) j + θ j

√
rn

r1/4n

)}
.

(3.28)

By Lemma 2.1 and (3.25) and the fact that
∣∣∣
∫ b
a φ

(
z√
s

)
Hk

(
z√
s

)
dz

∣∣∣ � |b − a|, we
have that for any k ∈ N

d with 0 ≤ |k| ≤ J ,

∞∑

n=2

rm/2
n E sup

rn≤s<rn+1

∣∣∣e−(1+ ‖θ‖2
2 )

√
rn

∑

u∈N (
√
rn)

e−θ ·Xu(
√
rn)1F(u,rn ,θ)
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×
d∏


=1

( ∫ b


a


φ
( z
√

s

)
Hk


( z
√
s

)
dz


)(√
rn

)k
/2

sk
/2
Hk


( (Xu(
√
rn))
 + θ


√
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r1/4n

)∣∣∣

�
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rm/2
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√
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√
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∣∣∣Hk


( (B√
rn )


r1/4n
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)

�
d∑

j=1

∞∑

n=2

n(2m−|k|)/(4κ)E
(
1{|(B1) j |>√

K log n}
d∏


=1

(
1 + |(B1)
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) )
< ∞.

Thus, P-almost surely, as s → ∞,

lim
n→∞ rm/2

n sup
rn≤s<rn+1

∣∣∣e−(1+ ‖θ‖2
2 )

√
rn

∑

u∈N (
√
rn)

e−θ ·Xu(
√
rn)1F(u,rn ,θ)
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φ
( z
√

s
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( z
√
s

)
dz


)(√
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)k
/2

sk
/2
Hk


( (Xu(
√
rn))
 + θ


√
rn

r1/4n

)∣∣∣ = 0.

Therefore, by (3.28), since λ > 3m + 3d + 8,

sd/2μθ
s ((a,b]) = o(s−m/2) + e−(1+ ‖θ‖2

2 )
√
rn

∑

u∈N (
√
rn)

e−θ ·Xu(
√
rn)

×
d∏

j=1

{ J∑

k=0

1
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1

sk/2

( ∫ b j
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s
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( z j√
s

)
dz j

)
rk/4n Hk

( (Xu(
√
rn)) j + θ j

√
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r1/4n

)}

= o(s−m/2) +
∑

k:k≤J1

d∏

j=1

1

k j !
1

sk j /2

( ∫ b j

a j

φ
( z j√

s

)
Hk j

( z j√
s

)
dz j

)
M (k,θ)√

rn
.

Since λ > max{d(3m+5), 3m+3d +8}, using Proposition 2.6 and argument similar
to that used in the proof of Theorem 1.1, we get that

sd/2μθ
s ((a,b])

= o(s−m/2) +
∑

k:|k|≤m

d∏

j=1

1

k j !
1

sk j /2

( ∫ b j

a j

φ
( z j√

s

)
Hk j

( z j√
s

)
dz j

)
M (k,θ)∞ . (3.29)

By Taylor’s expansion, as x → 0,

φ(x) =
m∑

j=0

φ( j)(0)

j ! x j + o(xm). (3.30)

123



Journal of Theoretical Probability (2024) 37:3355–3394 3393

Note that φ(k)(x) = (−1)k Hk(x)φ(x) and that, for each 1 ≤ k ≤ m,

φ(x)Hk(x) = (−1)k
m∑

j=0

φ(k+ j)(0)

j ! x j + o(xm). (3.31)

Note that for all k with |k| ≤ m and all i with i ≤ m1, it holds that s−|k|/2s−|i|/2 =
o(s−m/2) if |i| + |k| = |i + k| > m. Thus, combining (3.30) and (3.31),
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d∏
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∑
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i j
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∑
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i j
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Therefore, by (3.29), we conclude that
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j

i!s|i|/2 dz1...dzd + o(s−m/2)

=
m∑


=0

1

s
/2


∑

j=0

(−1) j
∑

k:|k|= j

M (k,θ)∞
k!

∑

i:|i|=
− j

∏d
j=1 φ(k j+i j )(0)

i!
∫

[a,b]

d∏

j=1

z
i j
j dz1...dzd

+o(s−m/2).
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