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Abstract

Let XI
n be the coalescence time of two particles picked at random from the nth generation of a

critical Galton-Watson process with immigration, and let AI
n be the coalescence time of the whole

population in the nth generation. In this paper, we study the limiting behaviors of XI
n and AI

n as
n → ∞.
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1 Introduction and Main Results

Suppose (Yn)n≥0 is a Galton-Watson process with offspring distribution (pj)j≥0 and initial size
Y0 = 1. For n ≥ 1, conditional on {Yn ≥ 2}, pick 2 distinct particles uniformly from the n-th
generation and trace their lines of descent backward in time. The common nodes in the two lines
are called the common ancestors of the two particles. Let Xn denote the generation of their most
recent common ancestor, which is called the pairwise coalescence time. Next, for n ≥ 1, conditional
on {Yn ≥ 1}, we trace the lines of descent of all particles in generation n backward in time. The
common nodes in the Yn lines of descent are called the common ancestors of all the particles in
generation n. Define the total coalescence time An as the generation of the most recent common
ancestor of all the particles in generation n. When m :=

∑∞
n=0 jpj = 1 (critical case), p1 < 1 and

σ2 :=
∑∞

n=0 j
2pj − 1 < ∞, Athreya [3] proved that for u ∈ (0, 1),

lim
n→∞

P

(
Xn

n
≥ u

∣∣Yn ≥ 2

)
= E

[ ∑Nu

i=1 η
2
i

(
∑Nu

i=1 ηi)
2

]
, (1.1)
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where (ηi)i≥1 are independent and identically distributed exponential random variables with mean
σ2/2, and Nu is independent of (ηi)i≥1 and is a geometric random variable of parameter 1−u (i.e.,
P (Nu = k) = (1− u)uk−1, k ≥ 1). Athreya [3] also proved the following conditional limit result:

lim
n→∞

P

(
An

n
> u

∣∣Yn ≥ 1

)
= 1− u, for u ∈ (0, 1).

The genealogy of branching processes has been widely studied. Athreya [1, 2], Durrett [6], Zubkov
[21] also investigated the distributional properties of the coalescence times for Galton-Watson pro-
cesses. Kersting [12] gave the genealogy structure of branching processes in random environment.
Harris, Johnston and Roberts [7], Johnston [10] and Le [14] investigated the coalescent structure of
continuous time Galton-Watson processes. Hong [9] studied the corresponding results for multitype
branching processes.

Suppose (pj)j≥0 and (bj)j≥0 are probability distributions on the set N of nonnegative integers.
Let (ξn,i;n ∈ N, i ∈ N) be a doubly infinite family of independent random variables with common
distribution (pj)j≥0, and let (In)n≥0 be a sequence of independent random variables with common
distribution (bj)j≥0 which are independent of (ξn,i;n ∈ N, i ∈ N) as well. Let (Zn)n≥0 be a Galton-
Watson process with immigration (GWPI for short) defined by

Z0 = I0, Zn+1 =

Zn∑

i=1

ξn,i + In+1, n = 0, 1, . . . .

Here Zn is the population size in generation n, and In is the number of immigrants in generation
n. For each 1 ≤ i ≤ Zn, ξn,i denotes the number of children of the i-th particle in generation n. We
assume that all the immigrants have different ancestors. Set m = Eξ0,1 =

∑∞
j=0 jpj. Then (Zn)n≥0

is called supercritical, critical or subcritical according to m > 1,m = 1 or m < 1, respectively.
GWPI was first considered by Heathcote [8] in 1965. Recently, Wang, Li and Yao [20] found
that the pairwise coalescence time Xn for some supercritical GWPI converges in distribution to a
(0,∞]-valued random variable as n → ∞.

In this paper, we consider the coalescence times for critical GWPI (Zn)n≥0. Unlike the case
of a Galton-Watson process starting with one particle, two randomly picked distinct particles
(all particles ) from generation n of a GWPI may not have a common ancestor. Conditional on
{Zn > 1}, we pick two distinct particles, say v1 and v2, uniformly from the nth generation and
trace their lines of descent backward in time. Define the pairwise coalescence time for GWPI

XI
n =

{
|v|, if the most recent common ancestor of v1 and v2 is v,
∞, otherwise,

(1.2)

where |v| is the generation of v. Note that even if v1 and v2 are descendants of two distinct particles
immigrated to the system at the same time, we do not say they have a common ancestor. Similarly,
conditional on {Zn > 0}, define the total coalescence time for GWPI

AI
n =

{
|v|, if the most recent common ancestor of all particles alive at n is v,
∞, otherwise.

(1.3)

We will study the asymptotic behaviors of the distribution of XI
n conditioned on {Zn > 1} and the

distribution of AI
n conditioned on {Zn > 0}. We will explore the effect of the immigrations on the

coalescence times. Throughout this paper we suppose the following assumption holds.
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Assumption 1 0 < p0 + p1 < 1, m = 1, σ2 =
∑

j(j
2 − 1)pj < ∞. b0 < 1 and β =

∑
j jbj < ∞.

We use 〈g, µ〉 to denote the integral of a function g with respect to a Radon measure µ whenever
this integral makes sense.

Theorem 1.1 Suppose Assumption 1 holds. Let γ = 2β/σ2. Define

φ(j, µ) = E
[ ∑j

i=1 ω
2
i + 〈f2, µ〉

(
∑j

i=1 ωi + 〈f, µ〉)2

]
, (1.4)

where f(r) = r, r > 0, and (ωi)i≥1 are independent exponential random variables with parameter
2
σ2 .

(1) For 0 < u < 1,

lim
n→∞,k/n→u

P
(
k ≤ XI

n < n
∣∣∣Zn > 1

)
= Eφ(N I

u ,W ),

where N I
u is a negative binomial random variable with law

P (N I
u = k) =

(−γ)(−γ − 1) · · · (−γ − k + 1)

k!
(1− u)γ(−u)k, k = 0, 1, 2, . . . , (1.5)

with the convention
(−γ)(−γ−1)···(−γ−k+1)

k! = 1 when k = 0, W is a Poisson random measure

on (0,∞) with intensity γ
r e

− 2
σ2 rdr, and N I

u and W are independent.

(2)

lim
n→∞

P
(
XI

n < ∞
∣∣Zn > 1

)
= E

[
〈f2,W 〉

〈f,W 〉2

]
.

Note that Nu in (1.1) for a critical Galton-Watson process only takes positive integer values, while
N I

u in Theorem 1.1 can take value 0 with positive probability. In the special case γ = 1, the random
number N I

u + 1 and Nu have the same distribution.
We conclude from [16, Theorem 3] (see Lemma 2.2) that Zn diverges to infinity in probability as

n → ∞. Our second result says that as n → ∞, the probability that all the particles of generation
n have a common ancestor goes to 0.

Theorem 1.2 Suppose Assumption 1 holds. Then

lim
n→∞

P (AI
n < ∞|Zn > 0) = 0.

2 Some preliminary results

Recall that (Yn)n≥0 is a critical Galton-Watson process with offspring distribution (pj)j≥0 starting
with Y0 = 1. The following result was proved in [4].

Lemma 2.1 When m = 1, p1 < 1, σ2 =
∑

j(j
2 − j)pj < ∞,

lim
n→∞

nP (Yn > 0) =
2

σ2
, (2.1)

and for any t > 0,

lim
n→∞

P

(
Yn

n
> t

∣∣Yn > 0

)
= e−

2t
σ2 . (2.2)
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The following result for critical GWPI is from [16, Theorem 3].

Lemma 2.2 Suppose Assumption 1 holds. Put γ = 2β
σ2 . Then, as n → ∞, Zn

n converges in

distribution to a Gamma random variable with parameters (2/σ2, γ), whose density function is

h(t) =
2

σ2Γ(γ)

(
2t

σ2

)γ−1

e−
2t
σ2 , t > 0. (2.3)

The above lemma implies that limn→∞ P (Zn > 0) = 1. The rate that 1 − P (Zn > 0) converges to
0 was investigated in [15].

From the construction (1.2) of the GWPI (Zn)n≥0, for any 0 ≤ k < n, Zn can be rewritten as

Zn =

Zk∑

i=1

Yn,k,i +
n∑

j=k+1

Ij∑

l=1

Y
(j)
n−j,l, (2.4)

where Yn,k,i, i = 1, 2, . . . , are independent and have the same distribution as Yn−k, and for 0 ≤ j ≤ n,

Y
(j)
n−j,l, l = 1, 2 . . ., are independent and have the same distribution as Yn−j. Note that Yn,k,i

represents the number of descendants in generation n of the ith particle in generation k, and Y
(j)
n−j,l

represents the number of descendants in generation n of the lth particle in the Ij immigrants in
generation j. For any non-negative integer m, set (m)2 = m(m − 1). Notice that (m)2 = 0 when
m = 0 or 1. Starting from the representation (2.4), the distribution of the pairwise coalescence
time XI

n, given {Zn > 1}, has the following expression.

Lemma 2.3 For any 0 ≤ k < n,

P
(
k ≤ XI

n < n
∣∣Zn > 1

)
= E

[∑Zk

i=1

(
Yn,k,i

)
2
+

∑n−1
j=1+k

∑Ij
l=1

(
Y

(j)
n−j,l

)
2

(Zn)2

∣∣∣Zn > 1
]
,

with the convention that the second term in the numerator equals 0 when k > n− 2. In particular,

P
(
XI

n < ∞|Zn > 1
)
= E

[∑n−1
j=0

∑Ij
l=1

(
Y

(j)
n−j,l

)
2

(Zn)2

∣∣∣Zn > 1
]
.

Proof. For 0 ≤ k < n, the event {k ≤ XI
n < n} occurs if and only if either the two randomly picked

particles from generation n are both descendants of a particle in the kth generation, or they are
both descendants of a particle immigrated into the system between generation k+1 and generation
n − 1. The number of choices of the two particles from the descendants of the ith particle in
generation k is (Yn,k,i)2, and therefore the total number is

∑Zk

i=1(Yn,k,i)2 with the convention that
the sum is 0 if Zk = 0. The number of choices of the two particles from the descendants of the

lth particle immigrated into the system in generation j for k + 1 ≤ j < n is (Y
(j)
n−j,l)2, and the

total number is
∑n−1

j=k+1

∑Ij
l=1(Y

(j)
n−j,l)2. Also, the total number of choices of the two particles from

the nth generation is (Zn)2. Thus for any n ≥ 1 and 0 ≤ k < n, conditional on {Zn > 1}, the
probability of {k ≤ XI

n < n} is given by

P (k ≤ XI
n < n|Zn > 1) = E

[∑Zk

i=1(Yn,k,i)2 +
∑n−1

j=k+1

∑Ij
l=1(Y

(j)
n−j,l)2

(Zn)2

∣∣∣Zn > 1
]
.
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Since Z0 = I0, we have Yn,0,i = Y
(0)
n,i , i = 1, . . . , I0. Taking k = 0 in the above identity, we obtain

P (XI
n < ∞|Zn > 1) = P (XI

n < n|Zn > 1) = E
[∑n−1

j=0

∑Ij
l=1(Y

(j)
n−j,l)2

(Zn)2

∣∣∣Zn > 1
]
.

✷

LetM be the space of finite measures on [0,∞) equipped with the topology of weak convergence.
Let Cb[0,∞)(C+

b [0,∞)) be the space of bounded continuous (nonnegative bounded continuous)
functions on [0,∞). Then for any g ∈ Cb[0,∞), the map πg : µ → 〈g, µ〉 on M is continuous. For
random measures ηn, η ∈ M, n = 1, 2, . . ., ηn converges to η in distribution as n → ∞ is equivalent

to 〈g, ηn〉
d
→ 〈g, η〉 for all g ∈ C+

b [0,∞). We refer the readers to [11, p.109] for more details. Let
Fk be the σ-algebra generated by ξi,j, i < k, j = 1, 2, . . ., and Ij , j = 0, 1, . . . , k. Then Fk contains
all information up to generation k. For k ≥ 0, given Fk, (Yn,k,i)n≥k, i = 1, 2, . . ., are independent
critical Galton-Watson processes with initial value 1 at generation k.

Lemma 2.4 Suppose Assumption 1 holds. If k
n → u as n → ∞ for some u ∈ (0, 1), then as

n → ∞, the random measure

Vn,k(·) =

Zk∑

i=1

I{Yn,k,i>0}δYn,k,i

n−k

(·) ∈ M

converges in distribution to the random measure Vu :=
∑NI

u

i=1 δωi
(·) ∈ M with the convention that

Vu = 0 when N I
u = 0, where (ωi)i≥1 are independent exponential random variables with parameter

2
σ2 , and N I

u ∈ N is independent of (ωi)i≥1 with the law given by (1.5).

Proof. Suppose g ∈ C+
b [0,∞). For any 0 ≤ k < n, let

Ln,k(g) = exp {−〈g, Vn,k〉} = exp
{
−

Zk∑

i=1

g
( Yn,k,i

n− k

)
I{Yn,k,i>0}

}
,

and set Sn,kg = E
(
exp

{
− g

(Yn−k

n−k

)
I{Yn−k>0}

})
. Then we have

E[Ln,k(g)|Fk] = E[Ln,k(g)|Zk] =
[
E
(
exp

{
− g

( Yn−k

n− k

)
I{Yn−k>0}

})]Zk

= (Sn,kg)
Zk .

Let qn = P (Yn > 0) be the survival probability of the process (Yk)k≥0 in generation n. Then we
have

Sn,kg = E
[
exp

{
− g

( Yn−k

n− k

)}∣∣∣Yn−k > 0
]
qn−k + (1− qn−k)

= 1− qn−k

[
1− E

(
exp

{
− g

( Yn−k

n− k

)}∣∣∣Yn−k > 0
)]

.

It follows from (2.2) that for any g ∈ C+
b [0,∞) and u ∈ (0, 1),

lim
n→∞,k/n→u

E
[
exp

{
− g

( Yn−k

n− k

)}∣∣∣Yn−k > 0
]
=

2

σ2

∫ ∞

0
e−g(r)e−

2r
σ2 dr =: L(g).
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By the dominated convergence theorem for convergence in distribution, we have that

lim
n→∞,k/n→u

E[Ln,k(g)] = lim
n→∞,k/n→u

E
[
E (Ln,k(g)|Fk)

]
= lim

n→∞,k/n→u
E
[
(Sn,kg)

Zk
]

= E lim
n→∞,k/n→u

[(
1− qn−k

[
1− E

(
exp

{
− g

( Yn−k

n− k

)}∣∣∣Yn−k > 0
)])Zk

]

= E
[
exp

{
− lim

n→∞,k/n→u
Zkqn−k

[
1− E

(
exp

{
− g

( Yn−k

n− k

)}∣∣∣Yn−k > 0
)]}]

.

Then using (2.1) and Lemma 2.2, we obtain

lim
n→∞,k/n→u

E[exp {−〈g, Vn,k〉}] = lim
n→∞,k/n→u

E[Ln,k(g)] = E[exp{−ξu(1− L(g))}], (2.5)

where ξu is a random variable having Gamma distribution with parameters

(
1− u

u
, γ

)
. Then the

Laplace transform of ξu is given by (c.f. [17, Example 2.15])

Lξu(λ) = Ee−λξu =
(
1 +

uλ

1− u

)−γ
, λ > 0.

Therefore,

E [exp {−ξu(1− L(g))}] =
[
1 +

u

1− u
(1− L(g))

]−γ
= (1− u)γ [1− uL(g)]−γ

=

∞∑

k=0

(−γ)(−γ − 1) · · · (−γ − k + 1)

k!
(1− u)γ(−u)kL(g)k

= Ee−
∑NI

u
j=1 g(wj) = E

[
e−〈g,Vu〉

]
.

In conclusion, Vn,k converges to Vu in distribution as n → ∞, k/n → u. ✷

For r > 0, put
f(r) = r, g1(r) = r ∧ r−1, g2(r) = 1 ∧ r2. (2.6)

Remark 2.5 Using the same argument as in the proof of Lemma 2.4 for the random measure

Ṽn,k(·) :=

Zk∑

i=1

I{Yn,k,i>0}

(
1 ∨

( Yn,k,i

n− k

)2)
δYn,k,i

n−k

(·),

and using the fact that h(r) := (1 ∨ r2) is a continuous function on [0,∞), we obtain that

Ṽn,k(dr)
d
→ (1 ∨ r2)Vu(dr) =: Ṽu(dr) in M.

Since g1, g2 ∈ C+
b [0,∞), 〈g1, Ṽn,k〉 = 〈f, Vn,k〉 and 〈g2, Ṽn,k〉 = 〈f2, Vn,k〉, we have

(〈f, Vn,k〉, 〈f2, Vn,k〉) = (〈g1, Ṽn,k〉, 〈g2, Ṽn,k〉)

d
→ (〈g1, Ṽu〉, 〈g2, Ṽu〉) = (〈f, Vu〉, 〈f2, Vu〉) =

( NI
u∑

k=1

ωk,

NI
u∑

k=1

ω2
k

)
, (2.7)

as n → ∞, k/n → u with u ∈ (0, 1).
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Define the birth time τn of the oldest clan in generation n by

τn = inf
{
0 ≤ j ≤ n;

Ij∑

l=1

Y
(j)
n−j,l > 0

}

with the convention inf ∅ = +∞. The birth time of the oldest clan for stationary continuous state
branching processes is studied in [5, Corollary 4.2]. Using Lemma 2.4, it is easy to get the limit
distribution of τn. Recall that γ = 2β/σ2.

Corollary 2.6 Suppose Assumption 1 holds. We have

lim
n→∞,k/n→u

P (τn > k) = P (N I
u = 0) = (1− u)γ , 0 < u < 1.

Proof. The event {τn > k} can be written as {Vn,k(1) = 0}. Thus

lim
n→∞,k/n→u

P (τn > k) = lim
n→∞,k/n→u

P (Vn,k(1) = 0) = P (N I
u = 0) = (1− u)γ .

✷

Define a function w by
w(r) = r ∨ r2, r ∈ (0,∞). (2.8)

We next consider the following random measures related to immigrations after generation k,

Wn,k(·) :=
n∑

j=k+1

Ij∑

l=1

I{
Y

(j)
n−j,l

>0
}w

(Y (j)
n−j,l

n− k

)
δ

Y
(j)
n−j,l

n−k

(·), n > k.

For each (n, k) with k < n, thanks to (2.4), we see that Wn,k(·) has the same distribution as the
random measure

W̃n−k(·) :=
n−k−1∑

j=0

Ij∑

l=1

I{
Yj,l>0

}w
( Yj,l

n− k

)
δ Yj,l

n−k

(·), (2.9)

where Yj,l, j ∈ N, l = 1, 2, . . ., are independent and for each j, Yj,l, l = 1, 2, . . ., are identically
distributed as Yj , and where (Yj,l)j≥0,l≥1 are independent of the immigration process (Ij)j≥0. By
an argument very similar to that used in the proof of Lemma 2.4, we get the following convergence
in distribution result for the random measures (Wn,k)n≥k.

Lemma 2.7 Suppose Assumption 1 holds. Let ζ be the random measure defined by

ζ(dr) = w(r)W (dr),

where W is a Poisson random measure with intensity γ
r e

− 2r
σ2 dr on (0,∞) and w is the function

defined in (2.8). Then Wn,k
d
→ ζ in M as n− k → ∞.
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Proof. Since Wn,k
d
= W̃n−k, we have for g ∈ C+

b [0,∞),

E
[
exp

{
− 〈g,Wn,k〉

}]
= E

[
exp

{
− 〈g, W̃n−k〉

}]
, (2.10)

which means that we only need to consider the limit of the Laplace functional of W̃n as n → ∞.
For any g ∈ C+

b [0,∞), put

Tn,j(g) = E
[
exp

{
− w

(
Yj

n

)
g

(
Yj

n

)
I{Yj>0}

}]
, j = 0, 1, · · · , n − 1.

Then 0 < Tn,j(g) < 1. By the definition (2.9) of W̃n,

exp
{
− 〈g, W̃n〉

}
= exp

{
−

n−1∑

j=0

Ij∑

l=1

w

(
Yj,l

n

)
g

(
Yj,l

n

)
I{Yj,l>0}

}
.

The Laplace transform of W̃n can be written as

E
[
exp

{
− 〈g, W̃n〉

}]
=

n−1∏

j=0

E
[
Tn,j(g)

Ij
]
=

n−1∏

j=0

B
(
Tn,j(g)

)
= exp

{ n−1∑

j=0

lnB
(
Tn,j(g)

)}
, (2.11)

where B(s) =
∑

j bjs
j, |s| < 1, is the probability generating function of Ik, k ≥ 0. We claim that

lim
n→∞

n−1∑

j=0

lnB
(
Tn,j(g)

)
= γ

∫ ∞

0

(
e−w(r)g(r) − 1

)1
r
e−

2r
σ2 dr. (2.12)

Suppose for the moment the claim is true. Then by (2.11), for any g ∈ C+
b [0,∞),

lim
n→∞

E
[
exp

{
− 〈g, W̃n〉

}]
= exp

{
γ

∫ ∞

0

(
e−w(r)g(r) − 1

)1
r
e−

2r
σ2 dr

}
.

And then using (2.10), we have

lim
n−k→∞

E
[
exp

{
− 〈g,Wn,k〉

}]
= exp

{
γ

∫ ∞

0

(
e−w(r)g(r) − 1

)1
r
e−

2r
σ2 dr

}
.

Since
∫∞
0 (w(r) ∧ 1)1r e

− 2r
σ2 dr < ∞, it follows from [11, Theorem 3.20] that there is an infinitely

divisible random measure ζ ∈ M represented as ζ(dr) = w(r)W (dr), r > 0, where W is a Poisson

random measure with intensity I{r>0}
γ
r e

− 2r
σ2 dr. The Laplace functional of ζ is given by

E
[
exp{−〈g, ζ〉}

]
= exp

{
γ

∫ ∞

0

(
e−w(r)g(r) − 1

)1
r
e−

2r
σ2 dr

}
, ∀g ∈ C+

b [0,∞).

Thus Wn,k
d
→ ζ as n− k → ∞.

Now we prove the claim (2.12). By the mean value theorem, there exists ξn,j ∈ (Tn,j(g), 1) such
that

B
(
Tn,j(g)

)
− 1 = B′(ξn,j)

(
Tn,j(g) − 1

)
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= β
(
Tn,j(g) − 1

)
+ (B′(ξn,j)− β)

(
Tn,j(g)− 1

)
. (2.13)

Thanks to the inequality 0 < 1− e−x ≤ x for x > 0 and the fact that Var(Yj) = jσ2 (see [4, Section
I.2]), we have that for 0 ≤ j ≤ n− 1,

0 ≤ 1− Tn,j(g) ≤ ‖g‖∞E
[
w
(Yj

n

)]
≤ ‖g‖∞E

[Yj

n
+

(
Yj

n

)2 ]
≤

a‖g‖∞
n

, (2.14)

for some constant a > 0. Thus n(1−Tn,j(g)) is bounded for n > 0 and j ≤ n. Moreover from (2.1)
and (2.2), it follows that for any 0 < t < 1,

lim
n→∞

n[1− Tn,[nt](g)] = lim
n→∞

nP (Y[nt] > 0)E
[
1− exp

{
− w

(Y[nt]

n

)
g
(Y[nt]

n

)}∣∣∣Y[nt] > 0
]

=
4

(σ2)2t

∫ ∞

0

(
1− e−w(rt)g(rt)

)
e−

2r
σ2 dr.

Then by the dominated convergence theorem,

lim
n→∞

n−1∑

j=0

(Tn,j(g) − 1) = lim
n→∞

∫ 1

0
n(Tn,[nt](g)− 1)dt

=

∫ 1

0

4

(σ2)2t
dt

∫ ∞

0

(
e−w(rt)g(rt) − 1

)
e−

2r
σ2 dr (2.15)

=
2

σ2

∫ ∞

0

(
e−w(r)g(r) − 1

)1
r
e−

2r
σ2 dr.

Using (2.14) and the continuity of B′(s) on [0, 1], we get that B′(ξn,j)−β converges to 0 uniformly
for 0 ≤ j ≤ n, as n → ∞. It has been shown in (2.15) that

∑n−1
j=0

∣∣Tn,j(g)−1
∣∣ converges. Therefore,∑n−1

j=0 (B
′(ξn,j) − β)

(
Tn,j(g) − 1

)
converges to 0. Thus, by (2.13),

∑n−1
j=0

(
B
(
Tn,j(g)

)
− 1

)
and

β
∑n−1

j=0

(
Tn,j(g) − 1

)
have the same limit. More precisely, from (2.15), it follows that

lim
n→∞

n−1∑

j=0

(B
(
Tn,j(g)

)
− 1) = lim

n→∞
β

n−1∑

j=0

(
Tn,j(g) − 1

)

= γ

∫ ∞

0

(
e−w(r)g(r) − 1

)1
r
e−

2r
σ2 dr.

Meanwhile, since −x ≥ ln(1− x) ≥ −x−
x2

1− x
for 0 < x < 1, if

lim
n→∞

n−1∑

j=0

[
B
(
Tn,j(g)

)
− 1

]2

B
(
Tn,j(g)

) = 0, (2.16)

then
∑n−1

j=0 lnB
(
Tn,j(g)

)
and β

∑n−1
j=0

(
Tn,j(g) − 1

)
have the same limit as n → ∞, and thus the

claim is true. Now we prove (2.16). By (2.14), for any 1/2 < δ < 1, there is N > 0, such that for
any n > N, 0 < j ≤ n, Tn,j(g) > δ. Since B(s) is an increasing continuous function on [0, 1] and
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B(1) = 1, for any ε > 0, we can choose δ above such that when 1 > s > δ, B(s) > 1− ε. Therefore
when n > N ,

0 ≤
n−1∑

j=0

[
B
(
Tn,j(g)

)
− 1

]2

B
(
Tn,j(g)

) ≤
ε

B(12)

n−1∑

j=0

[
1−B

(
Tn,j(g)

)]
.

Then (2.16) follows from the convergence of
∑n−1

j=0

[
1−B (Tn,j(g))

]
and the arbitrariness of ε. ✷

Remark 2.8 (1) Let g̃1(r) = 1 ∧ r−1, r > 0 and g̃2(r) = 1 ∧ r, r > 0. Then g̃1, g̃2 ∈ C+
b [0,∞).

Thanks to Lemma 2.7 and the facts g̃1(r)w(r) = r = f(r) and g̃2(r)w(r) = r2 = f2(r) for r > 0,
we get that

(
〈g̃1,Wn,k〉, 〈g̃2,Wn,k〉

) d
→

(
〈g̃1, ζ〉, 〈g̃2, ζ〉

)
=

(
〈f,W 〉, 〈f2,W 〉

)
, as n− k → ∞.

(2) We observe that
n− k

n

[
〈f, Vn,k〉+ 〈g̃1,Wn,k〉

]
=

Zn

n
,

where f and g̃1 are defined as above. Since Vn,k and Wn,k are independent, from Lemma 2.4 and

Lemma 2.7, it follows that for any λ > 0.

lim
n→∞

E
[
exp

{
− λ

Zn

n

}]
= lim

n→∞,k/n→u
E exp

{
− λ

n− k

n
(〈f, Vn,k〉+ 〈g̃1,Wn,k〉)

}

= lim
n→∞,k/n→u

E
[
exp

{
− λ

n− k

n
〈f, Vn,k〉

}]
lim

n→∞,k/n→u
E
[
exp

{
− λ

n− k

n
〈g̃1,Wn,k〉

}]

= E[exp{−λ(1 − u)〈f, Vu〉}]E[exp{−λ(1− u)〈f,W 〉}]

=
( λ+ 2

σ2

λ(1− u) + 2
σ2

)−γ(λ(1− u) + 2
σ2

2
σ2

)−γ
=

(
1 +

λ
2
σ2

)−γ
,

where the last term is the Laplace transform of the Gamma distribution with parameters ( 2
σ2 , γ).

This is consistent with Lemma 2.2.

3 Proofs of the main results

Proof of Theorem 1.1: Let f be the function defined in (2.6), and let g̃1, g̃2 be the functions
defined in Remark 2.8(1). The random variable in Lemma 2.3 can be expressed in terms of the
random measures defined in Section 2, and then we have
∑Zk

i=1

(
Yn,k,i

)
2
+

∑n−1
j=1+k

∑Ij
l=1

(
Y

(j)
n−j,l

)
2

(Zn)2
=

〈f2, Vn,k〉 −
1

n−k 〈f, Vn,k〉+ 〈g̃2,Wn,k〉 −
1

n−k 〈g̃1,Wn,k〉
[
〈f, Vn,k〉+ 〈g̃1,Wn,k〉

]2
− 1

n−k

[
〈f, Vn,k〉+ 〈g̃1,Wn,k〉

] .

Since (Vn,k)n>k and (Wn,k)n>k are independent and 0 <

∑Zk

i=1

(
Yn,k,i

)
2
+

∑n
j=1+k

∑Ij
l=1

(
Y

(Ij)
n−j,l

)
2

(Zn)2
≤

1 is a bounded continuous function of (〈f, Vn,k〉, 〈f
2, Vn,k〉, 〈g̃1,Wn,k〉, 〈g̃2,Wn,k〉), according to Re-

mark 2.5 and Remark 2.8, for u ∈ (0, 1),

lim
n→∞,k/n→u

〈f2, Vn,k〉 −
1

n−k 〈f, Vn,k〉+ 〈g̃2,Wn,k〉 −
1

n−k 〈g̃1,Wn,k〉
[
〈f, Vn,k〉+ 〈g̃1,Wn,k〉

]2
− 1

n−k

[
〈f, Vn,k〉+ 〈g̃1,Wn,k〉

] =
〈f2, Vu〉+ 〈f2,W 〉
[
〈f, Vu〉+ 〈f,W 〉

]2
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in distribution. It follows from Lemma 2.2 that limn→∞ P (Zn > 1) = 1. The results of this theorem
follow from Lemma 2.3.

Proof of Theorem 1.2: If all the particles in generation n have the same ancestor, then they
must be descendants of one immigrant before generation n. Thus

{
AI

n < ∞, Zn > 0
}
⊂

{
Y

(j)
n−j,l = 0 for all but one pair (j, l), 0 ≤ j ≤ n, 1 ≤ l ≤ Ij

}
.

Then we only need to prove that the probability of the event on the right hand side converges to
0. Recall that qn = P (Yn > 0). Set an = 1− qn = P (Yn = 0). Then

P
(
Y

(j)
n−j,l = 0 for all but one pair(j, l), 0 ≤ j ≤ n, 1 ≤ l ≤ Ij

)

= E
[ n∑

j=0

∏

k 6=j

P (Yn−k = 0)IkIjP (Yn−j = 0)Ij−1P (Yn−j > 0)
]

=
[ n∏

k=0

B(ak)
][ n∑

j=0

B′(aj)

B(aj)
qj

]
, (3.1)

where B(a0) = B(0) = b0 and B′(a0) = B′(0) = b1. From (2.1), we know qk = 1 − ak ∼ 2
σ2k as

k → ∞. In addition, since B(s) = 1 + β(s− 1) + o(1− s) as s → 1−,

lim
j→∞

j(1 −B(aj)) = lim
j→∞

βj(1 − aj) + o(j(1 − aj)) = γ > 0. (3.2)

Therefore, there exists some N ∈ N, such that when k ≥ N , k(1 − B(ak)) > γ/2, which implies
that B(ak) < 1− γ

2k for k ≥ N . Noticing that B(ak) ≤ 1, the first factor on the right-hand side of
(3.1) can be estimated as follows:

n∏

j=0

B(aj) ≤
n∏

j=N

B(aj) ≤
n∏

j=N

(
1−

γ

2j

)
= exp

{ n∑

j=N

ln(1−
γ

2j
)
}
, n > N.

Since ln(1− x) < −x for 0 < x < 1, we have

n∑

k=N

ln(1−
γ

2k
) ≤ −

n∑

k=N

γ

2k
≤ −L(lnn− lnN),

for some constant L > 0. As a result, there exists C1 > 0, such that

n∏

k=0

B(ak) ≤ C1 · n
−L. (3.3)

Since ak is nondecreasing in k and converges to 1 as k → ∞, and B′(s) is a continuous function on
[0, 1],

lim
j→∞

B′(aj)

B(aj)
= B′(1) = β.
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The the second factor on the right-hand side of (3.1) has the following upper bound:

n∑

j=1

B′(aj)

B(aj)
qj ≤ C2

n∑

j=1

qj ≤ C3

n∑

j=1

1

j
≤ C3(1 + lnn), (3.4)

for some positive constants C2 and C3. Combining (3.3) and (3.4), we obtain

lim
n→∞

P
(
Y

(j)
n−j,l = 0 for all but one pair (j, l), 0 ≤ j ≤ n, 1 ≤ l ≤ Ij

)
= 0.

We finish the proof. ✷
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