Coalescence times for critical Galton-Watson processes with immigration*

Rong-Li Liu ${ }^{a,},{ }^{\dagger}$ Yan-Xia Ren, ${ }^{b, \ddagger}$ Yingrui Wang ${ }^{c}$
${ }^{a}$ School of Mathematics and Statistics, Beijing Jiaotong University, Beijing, 100044, P.R.China. E-mail: rlliu@bjtu.edu.cn
${ }^{b}$ LMAM School of Mathematical Sciences \& Center for Statistical Science, Peking University, Beijing 100871, P. R. China. E-mail: yxren@math.pku.edu.cn
${ }^{c}$ School of Mathematics and Statistics, Beijing Jiaotong University, Beijing 100044, P. R. China. E-mail:

wyr2120873@gmail.com

Abstract

Let X_{n}^{I} be the coalescence time of two particles picked at random from the nth generation of a critical Galton-Watson process with immigration, and let A_{n}^{I} be the coalescence time of the whole population in the nth generation. In this paper, we study the limiting behaviors of X_{n}^{I} and A_{n}^{I} as $n \rightarrow \infty$.

Keywords critical Galton-Watson process, immigration, coalescence times.
2010 MR Subject Classification primary 60J68; secondary 62E15; 60F10; 60J80

1 Introduction and Main Results

Suppose $\left(Y_{n}\right)_{n \geq 0}$ is a Galton-Watson process with offspring distribution $\left(p_{j}\right)_{j \geq 0}$ and initial size $Y_{0}=1$. For $n \geq 1$, conditional on $\left\{Y_{n} \geq 2\right\}$, pick 2 distinct particles uniformly from the n-th generation and trace their lines of descent backward in time. The common nodes in the two lines are called the common ancestors of the two particles. Let X_{n} denote the generation of their most recent common ancestor, which is called the pairwise coalescence time. Next, for $n \geq 1$, conditional on $\left\{Y_{n} \geq 1\right\}$, we trace the lines of descent of all particles in generation n backward in time. The common nodes in the Y_{n} lines of descent are called the common ancestors of all the particles in generation n. Define the total coalescence time A_{n} as the generation of the most recent common ancestor of all the particles in generation n. When $m:=\sum_{n=0}^{\infty} j p_{j}=1$ (critical case), $p_{1}<1$ and $\sigma^{2}:=\sum_{n=0}^{\infty} j^{2} p_{j}-1<\infty$, Athreya [3] proved that for $u \in(0,1)$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(\left.\frac{X_{n}}{n} \geq u \right\rvert\, Y_{n} \geq 2\right)=E\left[\frac{\sum_{i=1}^{N_{u}} \eta_{i}^{2}}{\left(\sum_{i=1}^{N_{u}} \eta_{i}\right)^{2}}\right] \tag{1.1}
\end{equation*}
$$

[^0]where $\left(\eta_{i}\right)_{i \geq 1}$ are independent and identically distributed exponential random variables with mean $\sigma^{2} / 2$, and N_{u} is independent of $\left(\eta_{i}\right)_{i \geq 1}$ and is a geometric random variable of parameter $1-u$ (i.e., $\left.P\left(N_{u}=k\right)=(1-u) u^{k-1}, k \geq 1\right)$. Athreya [3] also proved the following conditional limit result:
$$
\lim _{n \rightarrow \infty} P\left(\left.\frac{A_{n}}{n}>u \right\rvert\, Y_{n} \geq 1\right)=1-u, \quad \text { for } u \in(0,1)
$$

The genealogy of branching processes has been widely studied. Athreya [1, 2], Durrett [6], Zubkov [21] also investigated the distributional properties of the coalescence times for Galton-Watson processes. Kersting [12] gave the genealogy structure of branching processes in random environment. Harris, Johnston and Roberts [7], Johnston [10] and Le [14] investigated the coalescent structure of continuous time Galton-Watson processes. Hong [9] studied the corresponding results for multitype branching processes.

Suppose $\left(p_{j}\right)_{j \geq 0}$ and $\left(b_{j}\right)_{j \geq 0}$ are probability distributions on the set \mathbb{N} of nonnegative integers. Let $\left(\xi_{n, i} ; n \in \mathbb{N}, i \in \mathbb{N}\right)$ be a doubly infinite family of independent random variables with common distribution $\left(p_{j}\right)_{j \geq 0}$, and let $\left(I_{n}\right)_{n \geq 0}$ be a sequence of independent random variables with common distribution $\left(b_{j}\right)_{j \geq 0}$ which are independent of $\left(\xi_{n, i} ; n \in \mathbb{N}, i \in \mathbb{N}\right)$ as well. Let $\left(Z_{n}\right)_{n \geq 0}$ be a GaltonWatson process with immigration (GWPI for short) defined by

$$
Z_{0}=I_{0}, \quad Z_{n+1}=\sum_{i=1}^{Z_{n}} \xi_{n, i}+I_{n+1}, \quad n=0,1, \ldots
$$

Here Z_{n} is the population size in generation n, and I_{n} is the number of immigrants in generation n. For each $1 \leq i \leq Z_{n}, \xi_{n, i}$ denotes the number of children of the i-th particle in generation n. We assume that all the immigrants have different ancestors. Set $m=E \xi_{0,1}=\sum_{j=0}^{\infty} j p_{j}$. Then $\left(Z_{n}\right)_{n \geq 0}$ is called supercritical, critical or subcritical according to $m>1, m=1$ or $m<1$, respectively. GWPI was first considered by Heathcote [8] in 1965. Recently, Wang, Li and Yao [20] found that the pairwise coalescence time X_{n} for some supercritical GWPI converges in distribution to a $(0, \infty]$-valued random variable as $n \rightarrow \infty$.

In this paper, we consider the coalescence times for critical GWPI $\left(Z_{n}\right)_{n \geq 0}$. Unlike the case of a Galton-Watson process starting with one particle, two randomly picked distinct particles (all particles) from generation n of a GWPI may not have a common ancestor. Conditional on $\left\{Z_{n}>1\right\}$, we pick two distinct particles, say v_{1} and v_{2}, uniformly from the nth generation and trace their lines of descent backward in time. Define the pairwise coalescence time for GWPI

$$
X_{n}^{I}= \begin{cases}|v|, & \text { if the most recent common ancestor of } v_{1} \text { and } v_{2} \text { is } v, \tag{1.2}\\ \infty, & \text { otherwise }\end{cases}
$$

where $|v|$ is the generation of v. Note that even if v_{1} and v_{2} are descendants of two distinct particles immigrated to the system at the same time, we do not say they have a common ancestor. Similarly, conditional on $\left\{Z_{n}>0\right\}$, define the total coalescence time for GWPI

$$
A_{n}^{I}= \begin{cases}|v|, & \text { if the most recent common ancestor of all particles alive at } n \text { is } v, \tag{1.3}\\ \infty, & \text { otherwise }\end{cases}
$$

We will study the asymptotic behaviors of the distribution of X_{n}^{I} conditioned on $\left\{Z_{n}>1\right\}$ and the distribution of A_{n}^{I} conditioned on $\left\{Z_{n}>0\right\}$. We will explore the effect of the immigrations on the coalescence times. Throughout this paper we suppose the following assumption holds.

Assumption $10<p_{0}+p_{1}<1, m=1, \sigma^{2}=\sum_{j}\left(j^{2}-1\right) p_{j}<\infty . b_{0}<1$ and $\beta=\sum_{j} j b_{j}<\infty$.
We use $\langle g, \mu\rangle$ to denote the integral of a function g with respect to a Radon measure μ whenever this integral makes sense.

Theorem 1.1 Suppose Assumption 1 holds. Let $\gamma=2 \beta / \sigma^{2}$. Define

$$
\begin{equation*}
\phi(j, \mu)=E\left[\frac{\sum_{i=1}^{j} \omega_{i}^{2}+\left\langle f^{2}, \mu\right\rangle}{\left(\sum_{i=1}^{j} \omega_{i}+\langle f, \mu\rangle\right)^{2}}\right], \tag{1.4}
\end{equation*}
$$

where $f(r)=r, r>0$, and $\left(\omega_{i}\right)_{i \geq 1}$ are independent exponential random variables with parameter $\frac{2}{\sigma^{2}}$.
(1) For $0<u<1$,

$$
\lim _{n \rightarrow \infty, k / n \rightarrow u} P\left(k \leq X_{n}^{I}<n \mid Z_{n}>1\right)=E \phi\left(N_{u}^{I}, W\right),
$$

where N_{u}^{I} is a negative binomial random variable with law

$$
\begin{equation*}
P\left(N_{u}^{I}=k\right)=\frac{(-\gamma)(-\gamma-1) \cdots(-\gamma-k+1)}{k!}(1-u)^{\gamma}(-u)^{k}, \quad k=0,1,2, \ldots, \tag{1.5}
\end{equation*}
$$

with the convention $\frac{(-\gamma)(-\gamma-1) \cdots(-\gamma-k+1)}{k!}=1$ when $k=0$, W is a Poisson random measure on $(0, \infty)$ with intensity $\frac{\gamma}{r} e^{-\frac{2}{\sigma^{2} r}} d r$, and N_{u}^{I} and W are independent.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(X_{n}^{I}<\infty \mid Z_{n}>1\right)=E\left[\frac{\left\langle f^{2}, W\right\rangle}{\langle f, W\rangle^{2}}\right] . \tag{2}
\end{equation*}
$$

Note that N_{u} in (1.1) for a critical Galton-Watson process only takes positive integer values, while N_{u}^{I} in Theorem 1.1 can take value 0 with positive probability. In the special case $\gamma=1$, the random number $N_{u}^{I}+1$ and N_{u} have the same distribution.

We conclude from [16, Theorem 3] (see Lemma 2.2) that Z_{n} diverges to infinity in probability as $n \rightarrow \infty$. Our second result says that as $n \rightarrow \infty$, the probability that all the particles of generation n have a common ancestor goes to 0 .

Theorem 1.2 Suppose Assumption 1 holds. Then

$$
\lim _{n \rightarrow \infty} P\left(A_{n}^{I}<\infty \mid Z_{n}>0\right)=0 .
$$

2 Some preliminary results

Recall that $\left(Y_{n}\right)_{n \geq 0}$ is a critical Galton-Watson process with offspring distribution $\left(p_{j}\right)_{j \geq 0}$ starting with $Y_{0}=1$. The following result was proved in [4].
Lemma 2.1 When $m=1, p_{1}<1, \sigma^{2}=\sum_{j}\left(j^{2}-j\right) p_{j}<\infty$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n P\left(Y_{n}>0\right)=\frac{2}{\sigma^{2}}, \tag{2.1}
\end{equation*}
$$

and for any $t>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(\left.\frac{Y_{n}}{n}>t \right\rvert\, Y_{n}>0\right)=e^{-\frac{2 t}{\sigma^{2}}} . \tag{2.2}
\end{equation*}
$$

The following result for critical GWPI is from [16, Theorem 3].
Lemma 2.2 Suppose Assumption 1 holds. Put $\gamma=\frac{2 \beta}{\sigma^{2}}$. Then, as $n \rightarrow \infty, \frac{Z_{n}}{n}$ converges in distribution to a Gamma random variable with parameters $\left(2 / \sigma^{2}, \gamma\right)$, whose density function is

$$
\begin{equation*}
h(t)=\frac{2}{\sigma^{2} \Gamma(\gamma)}\left(\frac{2 t}{\sigma^{2}}\right)^{\gamma-1} e^{-\frac{2 t}{\sigma^{2}}}, \quad t>0 \tag{2.3}
\end{equation*}
$$

The above lemma implies that $\lim _{n \rightarrow \infty} P\left(Z_{n}>0\right)=1$. The rate that $1-P\left(Z_{n}>0\right)$ converges to 0 was investigated in [15].

From the construction (1.2) of the GWPI $\left(Z_{n}\right)_{n \geq 0}$, for any $0 \leq k<n, Z_{n}$ can be rewritten as

$$
\begin{equation*}
Z_{n}=\sum_{i=1}^{Z_{k}} Y_{n, k, i}+\sum_{j=k+1}^{n} \sum_{l=1}^{I_{j}} Y_{n-j, l}^{(j)} \tag{2.4}
\end{equation*}
$$

where $Y_{n, k, i}, i=1,2, \ldots$, are independent and have the same distribution as Y_{n-k}, and for $0 \leq j \leq n$, $Y_{n-j, l}^{(j)}, l=1,2 \ldots$, are independent and have the same distribution as Y_{n-j}. Note that $Y_{n, k, i}$ represents the number of descendants in generation n of the i th particle in generation k, and $Y_{n-j, l}^{(j)}$ represents the number of descendants in generation n of the l th particle in the I_{j} immigrants in generation j. For any non-negative integer m, set $(m)_{2}=m(m-1)$. Notice that $(m)_{2}=0$ when $m=0$ or 1 . Starting from the representation (2.4), the distribution of the pairwise coalescence time X_{n}^{I}, given $\left\{Z_{n}>1\right\}$, has the following expression.

Lemma 2.3 For any $0 \leq k<n$,

$$
P\left(k \leq X_{n}^{I}<n \mid Z_{n}>1\right)=E\left[\left.\frac{\sum_{i=1}^{Z_{k}}\left(Y_{n, k, i}\right)_{2}+\sum_{j=1+k}^{n-1} \sum_{l=1}^{I_{j}}\left(Y_{n-j, l}^{(j)}\right)_{2}}{\left(Z_{n}\right)_{2}} \right\rvert\, Z_{n}>1\right]
$$

with the convention that the second term in the numerator equals 0 when $k>n-2$. In particular,

$$
P\left(X_{n}^{I}<\infty \mid Z_{n}>1\right)=E\left[\left.\frac{\sum_{j=0}^{n-1} \sum_{l=1}^{I_{j}}\left(Y_{n-j, l}^{(j)}\right)_{2}}{\left(Z_{n}\right)_{2}} \right\rvert\, Z_{n}>1\right]
$$

Proof. For $0 \leq k<n$, the event $\left\{k \leq X_{n}^{I}<n\right\}$ occurs if and only if either the two randomly picked particles from generation n are both descendants of a particle in the k th generation, or they are both descendants of a particle immigrated into the system between generation $k+1$ and generation $n-1$. The number of choices of the two particles from the descendants of the i th particle in generation k is $\left(Y_{n, k, i}\right)_{2}$, and therefore the total number is $\sum_{i=1}^{Z_{k}}\left(Y_{n, k, i}\right)_{2}$ with the convention that the sum is 0 if $Z_{k}=0$. The number of choices of the two particles from the descendants of the l th particle immigrated into the system in generation j for $k+1 \leq j<n$ is $\left(Y_{n-j, l}^{(j)}\right)_{2}$, and the total number is $\sum_{j=k+1}^{n-1} \sum_{l=1}^{I_{j}}\left(Y_{n-j, l}^{(j)}\right)_{2}$. Also, the total number of choices of the two particles from the nth generation is $\left(Z_{n}\right)_{2}$. Thus for any $n \geq 1$ and $0 \leq k<n$, conditional on $\left\{Z_{n}>1\right\}$, the probability of $\left\{k \leq X_{n}^{I}<n\right\}$ is given by

$$
P\left(k \leq X_{n}^{I}<n \mid Z_{n}>1\right)=E\left[\left.\frac{\sum_{i=1}^{Z_{k}}\left(Y_{n, k, i}\right)_{2}+\sum_{j=k+1}^{n-1} \sum_{l=1}^{I_{j}}\left(Y_{n-j, l}^{(j)}\right)_{2}}{\left(Z_{n}\right)_{2}} \right\rvert\, Z_{n}>1\right]
$$

Since $Z_{0}=I_{0}$ ，we have $Y_{n, 0, i}=Y_{n, i}^{(0)}, i=1, \ldots, I_{0}$ ．Taking $k=0$ in the above identity，we obtain

$$
P\left(X_{n}^{I}<\infty \mid Z_{n}>1\right)=P\left(X_{n}^{I}<n \mid Z_{n}>1\right)=E\left[\left.\frac{\sum_{j=0}^{n-1} \sum_{l=1}^{I_{j}}\left(Y_{n-j, l}^{(j)}\right)_{2}}{\left(Z_{n}\right)_{2}} \right\rvert\, Z_{n}>1\right] .
$$

Let \mathcal{M} be the space of finite measures on $[0, \infty)$ equipped with the topology of weak convergence． Let $C_{b}[0, \infty)\left(C_{b}^{+}[0, \infty)\right)$ be the space of bounded continuous（nonnegative bounded continuous） functions on $[0, \infty)$ ．Then for any $g \in C_{b}[0, \infty)$ ，the map $\pi_{g}: \mu \rightarrow\langle g, \mu\rangle$ on \mathcal{M} is continuous．For random measures $\eta_{n}, \eta \in \mathcal{M}, n=1,2, \ldots, \eta_{n}$ converges to η in distribution as $n \rightarrow \infty$ is equivalent to $\left\langle g, \eta_{n}\right\rangle \xrightarrow{d}\langle g, \eta\rangle$ for all $g \in C_{b}^{+}[0, \infty)$ ．We refer the readers to［11，p．109］for more details．Let \mathcal{F}_{k} be the σ－algebra generated by $\xi_{i, j}, i<k, j=1,2, \ldots$ ，and $I_{j}, j=0,1, \ldots, k$ ．Then \mathcal{F}_{k} contains all information up to generation k ．For $k \geq 0$ ，given $\mathcal{F}_{k},\left(Y_{n, k, i}\right)_{n \geq k}, i=1,2, \ldots$ ，are independent critical Galton－Watson processes with initial value 1 at generation k ．

Lemma 2．4 Suppose Assumption $⿴ 囗 十$ holds．If $\frac{k}{n} \rightarrow u$ as $n \rightarrow \infty$ for some $u \in(0,1)$ ，then as $n \rightarrow \infty$ ，the random measure

$$
V_{n, k}(\cdot)=\sum_{i=1}^{Z_{k}} \mathrm{I}_{\left\{Y_{n, k, i}>0\right\}} \delta_{\frac{Y_{n, k, i}}{n-k}}(\cdot) \in \mathcal{M}
$$

converges in distribution to the random measure $V_{u}:=\sum_{i=1}^{N_{u}^{I}} \delta_{\omega_{i}}(\cdot) \in \mathcal{M}$ with the convention that $V_{u}=0$ when $N_{u}^{I}=0$ ，where $\left(\omega_{i}\right)_{i \geq 1}$ are independent exponential random variables with parameter $\frac{2}{\sigma^{2}}$ ，and $N_{u}^{I} \in \mathbb{N}$ is independent of $\left(\omega_{i}\right)_{i \geq 1}$ with the law given by（1．5）．
Proof．Suppose $g \in C_{b}^{+}[0, \infty)$ ．For any $0 \leq k<n$ ，let

$$
L_{n, k}(g)=\exp \left\{-\left\langle g, V_{n, k}\right\rangle\right\}=\exp \left\{-\sum_{i=1}^{Z_{k}} g\left(\frac{Y_{n, k, i}}{n-k}\right) I_{\left\{Y_{n, k, i}>0\right\}}\right\},
$$

and set $S_{n, k} g=E\left(\exp \left\{-g\left(\frac{Y_{n-k}}{n-k}\right) \mathrm{I}_{\left\{Y_{n-k}>0\right\}}\right\}\right)$ ．Then we have

$$
E\left[L_{n, k}(g) \mid \mathcal{F}_{k}\right]=E\left[L_{n, k}(g) \mid Z_{k}\right]=\left[E\left(\exp \left\{-g\left(\frac{Y_{n-k}}{n-k}\right) I_{\left\{Y_{n-k}>0\right\}}\right\}\right)\right]^{Z_{k}}=\left(S_{n, k} g\right)^{Z_{k}} .
$$

Let $q_{n}=P\left(Y_{n}>0\right)$ be the survival probability of the process $\left(Y_{k}\right)_{k \geq 0}$ in generation n ．Then we have

$$
\begin{aligned}
S_{n, k} g & =E\left[\left.\exp \left\{-g\left(\frac{Y_{n-k}}{n-k}\right)\right\} \right\rvert\, Y_{n-k}>0\right] q_{n-k}+\left(1-q_{n-k}\right) \\
& =1-q_{n-k}\left[1-E\left(\left.\exp \left\{-g\left(\frac{Y_{n-k}}{n-k}\right)\right\} \right\rvert\, Y_{n-k}>0\right)\right] .
\end{aligned}
$$

It follows from（2．2）that for any $g \in C_{b}^{+}[0, \infty)$ and $u \in(0,1)$ ，

$$
\lim _{n \rightarrow \infty, k / n \rightarrow u} E\left[\left.\exp \left\{-g\left(\frac{Y_{n-k}}{n-k}\right)\right\} \right\rvert\, Y_{n-k}>0\right]=\frac{2}{\sigma^{2}} \int_{0}^{\infty} e^{-g(r)} e^{-\frac{2 r}{\sigma^{2}}} d r=: L(g)
$$

By the dominated convergence theorem for convergence in distribution, we have that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty, k / n \rightarrow u} E\left[L_{n, k}(g)\right]=\lim _{n \rightarrow \infty, k / n \rightarrow u} E\left[E\left(L_{n, k}(g) \mid \mathcal{F}_{k}\right)\right]=\lim _{n \rightarrow \infty, k / n \rightarrow u} E\left[\left(S_{n, k} g\right)^{Z_{k}}\right] \\
= & E \lim _{n \rightarrow \infty, k / n \rightarrow u}\left[\left(1-q_{n-k}\left[1-E\left(\left.\exp \left\{-g\left(\frac{Y_{n-k}}{n-k}\right)\right\} \right\rvert\, Y_{n-k}>0\right)\right]\right)^{Z_{k}}\right] \\
= & E\left[\exp \left\{-\lim _{n \rightarrow \infty, k / n \rightarrow u} Z_{k} q_{n-k}\left[1-E\left(\left.\exp \left\{-g\left(\frac{Y_{n-k}}{n-k}\right)\right\} \right\rvert\, Y_{n-k}>0\right)\right]\right\}\right] .
\end{aligned}
$$

Then using (2.1) and Lemma 2.2, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty, k / n \rightarrow u} E\left[\exp \left\{-\left\langle g, V_{n, k}\right\rangle\right\}\right]=\lim _{n \rightarrow \infty, k / n \rightarrow u} E\left[L_{n, k}(g)\right]=E\left[\exp \left\{-\xi_{u}(1-L(g))\right\}\right] \tag{2.5}
\end{equation*}
$$

where ξ_{u} is a random variable having Gamma distribution with parameters $\left(\frac{1-u}{u}, \gamma\right)$. Then the Laplace transform of ξ_{u} is given by (c.f. [17, Example 2.15])

$$
L_{\xi_{u}}(\lambda)=E e^{-\lambda \xi_{u}}=\left(1+\frac{u \lambda}{1-u}\right)^{-\gamma}, \quad \lambda>0
$$

Therefore,

$$
\begin{aligned}
& E\left[\exp \left\{-\xi_{u}(1-L(g))\right\}\right]=\left[1+\frac{u}{1-u}(1-L(g))\right]^{-\gamma}=(1-u)^{\gamma}[1-u L(g)]^{-\gamma} \\
= & \sum_{k=0}^{\infty} \frac{(-\gamma)(-\gamma-1) \cdots(-\gamma-k+1)}{k!}(1-u)^{\gamma}(-u)^{k} L(g)^{k} \\
= & E e^{-\sum_{j=1}^{N_{u}^{I}} g\left(w_{j}\right)}=E\left[e^{-\left\langle g, V_{u}\right\rangle}\right]
\end{aligned}
$$

In conclusion, $V_{n, k}$ converges to V_{u} in distribution as $n \rightarrow \infty, k / n \rightarrow u$.

For $r>0$, put

$$
\begin{equation*}
f(r)=r, \quad g_{1}(r)=r \wedge r^{-1}, \quad g_{2}(r)=1 \wedge r^{2} \tag{2.6}
\end{equation*}
$$

Remark 2.5 Using the same argument as in the proof of Lemma 2.4 for the random measure

$$
\widetilde{V}_{n, k}(\cdot):=\sum_{i=1}^{Z_{k}} \mathrm{I}_{\left\{Y_{n, k, i}>0\right\}}\left(1 \vee\left(\frac{Y_{n, k, i}}{n-k}\right)^{2}\right) \delta_{\frac{Y_{n, k, i}}{n-k}}(\cdot)
$$

and using the fact that $h(r):=\left(1 \vee r^{2}\right)$ is a continuous function on $[0, \infty)$, we obtain that

$$
\widetilde{V}_{n, k}(d r) \xrightarrow{d}\left(1 \vee r^{2}\right) V_{u}(d r)=: \widetilde{V}_{u}(d r) \quad \text { in } \mathcal{M}
$$

Since $g_{1}, g_{2} \in C_{b}^{+}[0, \infty),\left\langle g_{1}, \widetilde{V}_{n, k}\right\rangle=\left\langle f, V_{n, k}\right\rangle$ and $\left\langle g_{2}, \widetilde{V}_{n, k}\right\rangle=\left\langle f^{2}, V_{n, k}\right\rangle$, we have

$$
\begin{align*}
&\left(\left\langle f, V_{n, k}\right\rangle,\left\langle f^{2}, V_{n, k}\right\rangle\right)=\left(\left\langle g_{1}, \widetilde{V}_{n, k}\right\rangle,\left\langle g_{2}, \widetilde{V}_{n, k}\right\rangle\right) \\
& \xrightarrow{d} \quad\left(\left\langle g_{1}, \widetilde{V}_{u}\right\rangle,\left\langle g_{2}, \widetilde{V}_{u}\right\rangle\right)=\left(\left\langle f, V_{u}\right\rangle,\left\langle f^{2}, V_{u}\right\rangle\right)=\left(\sum_{k=1}^{N_{u}^{I}} \omega_{k}, \sum_{k=1}^{N_{u}^{I}} \omega_{k}^{2}\right), \tag{2.7}
\end{align*}
$$

as $n \rightarrow \infty, k / n \rightarrow u$ with $u \in(0,1)$.

Define the birth time τ_{n} of the oldest clan in generation n by

$$
\tau_{n}=\inf \left\{0 \leq j \leq n ; \sum_{l=1}^{I_{j}} Y_{n-j, l}^{(j)}>0\right\}
$$

with the convention $\inf \emptyset=+\infty$. The birth time of the oldest clan for stationary continuous state branching processes is studied in [5, Corollary 4.2]. Using Lemma [2.4, it is easy to get the limit distribution of τ_{n}. Recall that $\gamma=2 \beta / \sigma^{2}$.

Corollary 2.6 Suppose Assumption 1 holds. We have

$$
\lim _{n \rightarrow \infty, k / n \rightarrow u} P\left(\tau_{n}>k\right)=P\left(N_{u}^{I}=0\right)=(1-u)^{\gamma}, \quad 0<u<1 .
$$

Proof. The event $\left\{\tau_{n}>k\right\}$ can be written as $\left\{V_{n, k}(1)=0\right\}$. Thus

$$
\lim _{n \rightarrow \infty, k / n \rightarrow u} P\left(\tau_{n}>k\right)=\lim _{n \rightarrow \infty, k / n \rightarrow u} P\left(V_{n, k}(1)=0\right)=P\left(N_{u}^{I}=0\right)=(1-u)^{\gamma} .
$$

Define a function w by

$$
\begin{equation*}
w(r)=r \vee r^{2}, \quad r \in(0, \infty) \tag{2.8}
\end{equation*}
$$

We next consider the following random measures related to immigrations after generation k,

$$
W_{n, k}(\cdot):=\sum_{j=k+1}^{n} \sum_{l=1}^{I_{j}} \mathrm{I}_{\left\{Y_{n-j, l}^{(j)}>0\right\}} w\left(\frac{Y_{n-j, l}^{(j)}}{n-k}\right) \delta_{\frac{Y_{n-j, l}^{(j)}}{n-k}}(\cdot), \quad n>k .
$$

For each (n, k) with $k<n$, thanks to (2.4), we see that $W_{n, k}(\cdot)$ has the same distribution as the random measure

$$
\begin{equation*}
\widetilde{W}_{n-k}(\cdot):=\sum_{j=0}^{n-k-1} \sum_{l=1}^{I_{j}} \mathrm{I}_{\left\{Y_{j, l}>0\right\}} w\left(\frac{Y_{j, l}}{n-k}\right) \delta_{\frac{Y_{j, l}}{n-k}}(\cdot), \tag{2.9}
\end{equation*}
$$

where $Y_{j, l}, j \in \mathbb{N}, l=1,2, \ldots$, are independent and for each $j, Y_{j, l}, l=1,2, \ldots$, are identically distributed as Y_{j}, and where $\left(Y_{j, l}\right)_{j \geq 0, l \geq 1}$ are independent of the immigration process $\left(I_{j}\right)_{j \geq 0}$. By an argument very similar to that used in the proof of Lemma [2.4, we get the following convergence in distribution result for the random measures $\left(W_{n, k}\right)_{n \geq k}$.

Lemma 2.7 Suppose Assumption \square holds. Let ζ be the random measure defined by

$$
\zeta(d r)=w(r) W(d r),
$$

where W is a Poisson random measure with intensity $\frac{\gamma}{r} e^{-\frac{2 r}{\sigma^{2}}} d r$ on $(0, \infty)$ and w is the function defined in (2.8). Then $W_{n, k} \xrightarrow{d} \zeta$ in \mathcal{M} as $n-k \rightarrow \infty$.

Proof. Since $W_{n, k} \stackrel{d}{=} \widetilde{W}_{n-k}$, we have for $g \in C_{b}^{+}[0, \infty)$,

$$
\begin{equation*}
E\left[\exp \left\{-\left\langle g, W_{n, k}\right\rangle\right\}\right]=E\left[\exp \left\{-\left\langle g, \widetilde{W}_{n-k}\right\rangle\right\}\right] \tag{2.10}
\end{equation*}
$$

which means that we only need to consider the limit of the Laplace functional of \widetilde{W}_{n} as $n \rightarrow \infty$. For any $g \in C_{b}^{+}[0, \infty)$, put

$$
T_{n, j}(g)=E\left[\exp \left\{-w\left(\frac{Y_{j}}{n}\right) g\left(\frac{Y_{j}}{n}\right) \mathrm{I}_{\left\{Y_{j}>0\right\}}\right\}\right], \quad j=0,1, \cdots, n-1
$$

Then $0<T_{n, j}(g)<1$. By the definition (2.9) of \widetilde{W}_{n},

$$
\exp \left\{-\left\langle g, \widetilde{W}_{n}\right\rangle\right\}=\exp \left\{-\sum_{j=0}^{n-1} \sum_{l=1}^{I_{j}} w\left(\frac{Y_{j, l}}{n}\right) g\left(\frac{Y_{j, l}}{n}\right) \mathrm{I}_{\left\{Y_{j, l}>0\right\}}\right\}
$$

The Laplace transform of \widetilde{W}_{n} can be written as

$$
\begin{equation*}
E\left[\exp \left\{-\left\langle g, \widetilde{W}_{n}\right\rangle\right\}\right]=\prod_{j=0}^{n-1} E\left[T_{n, j}(g)^{I_{j}}\right]=\prod_{j=0}^{n-1} B\left(T_{n, j}(g)\right)=\exp \left\{\sum_{j=0}^{n-1} \ln B\left(T_{n, j}(g)\right)\right\} \tag{2.11}
\end{equation*}
$$

where $B(s)=\sum_{j} b_{j} s^{j},|s|<1$, is the probability generating function of $I_{k}, k \geq 0$. We claim that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{j=0}^{n-1} \ln B\left(T_{n, j}(g)\right)=\gamma \int_{0}^{\infty}\left(e^{-w(r) g(r)}-1\right) \frac{1}{r} e^{-\frac{2 r}{\sigma^{2}}} d r \tag{2.12}
\end{equation*}
$$

Suppose for the moment the claim is true. Then by (2.11), for any $g \in C_{b}^{+}[0, \infty)$,

$$
\lim _{n \rightarrow \infty} E\left[\exp \left\{-\left\langle g, \widetilde{W}_{n}\right\rangle\right\}\right]=\exp \left\{\gamma \int_{0}^{\infty}\left(e^{-w(r) g(r)}-1\right) \frac{1}{r} e^{-\frac{2 r}{\sigma^{2}}} d r\right\}
$$

And then using (2.10), we have

$$
\lim _{n-k \rightarrow \infty} E\left[\exp \left\{-\left\langle g, W_{n, k}\right\rangle\right\}\right]=\exp \left\{\gamma \int_{0}^{\infty}\left(e^{-w(r) g(r)}-1\right) \frac{1}{r} e^{-\frac{2 r}{\sigma^{2}}} d r\right\}
$$

Since $\int_{0}^{\infty}(w(r) \wedge 1) \frac{1}{r} e^{-\frac{2 r}{\sigma^{2}}} d r<\infty$, it follows from [11, Theorem 3.20] that there is an infinitely divisible random measure $\zeta \in \mathcal{M}$ represented as $\zeta(d r)=w(r) W(d r), r>0$, where W is a Poisson random measure with intensity $\mathrm{I}_{\{r>0\}} \frac{\gamma}{r} e^{-\frac{2 r}{\sigma^{2}}} d r$. The Laplace functional of ζ is given by

$$
E[\exp \{-\langle g, \zeta\rangle\}]=\exp \left\{\gamma \int_{0}^{\infty}\left(e^{-w(r) g(r)}-1\right) \frac{1}{r} e^{-\frac{2 r}{\sigma^{2}}} d r\right\}, \quad \forall g \in C_{b}^{+}[0, \infty)
$$

Thus $W_{n, k} \xrightarrow{d} \zeta$ as $n-k \rightarrow \infty$.
Now we prove the claim (2.12). By the mean value theorem, there exists $\xi_{n, j} \in\left(T_{n, j}(g), 1\right)$ such that

$$
B\left(T_{n, j}(g)\right)-1=B^{\prime}\left(\xi_{n, j}\right)\left(T_{n, j}(g)-1\right)
$$

$$
\begin{equation*}
=\beta\left(T_{n, j}(g)-1\right)+\left(B^{\prime}\left(\xi_{n, j}\right)-\beta\right)\left(T_{n, j}(g)-1\right) . \tag{2.13}
\end{equation*}
$$

Thanks to the inequality $0<1-e^{-x} \leq x$ for $x>0$ and the fact that $\operatorname{Var}\left(Y_{j}\right)=j \sigma^{2}$ (see 44, Section I.2]), we have that for $0 \leq j \leq n-1$,

$$
\begin{equation*}
0 \leq 1-T_{n, j}(g) \leq\|g\|_{\infty} E\left[w\left(\frac{Y_{j}}{n}\right)\right] \leq\|g\|_{\infty} E\left[\frac{Y_{j}}{n}+\left(\frac{Y_{j}}{n}\right)^{2}\right] \leq \frac{a\|g\|_{\infty}}{n} \tag{2.14}
\end{equation*}
$$

for some constant $a>0$. Thus $n\left(1-T_{n, j}(g)\right)$ is bounded for $n>0$ and $j \leq n$. Moreover from (2.1) and (2.2), it follows that for any $0<t<1$,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n\left[1-T_{n,[n t]}(g)\right] & =\lim _{n \rightarrow \infty} n P\left(Y_{[n t]}>0\right) E\left[\left.1-\exp \left\{-w\left(\frac{Y_{[n t]}}{n}\right) g\left(\frac{Y_{[n t]}}{n}\right)\right\} \right\rvert\, Y_{[n t]}>0\right] \\
& =\frac{4}{\left(\sigma^{2}\right)^{2} t} \int_{0}^{\infty}\left(1-e^{-w(r t) g(r t)}\right) e^{-\frac{2 r}{\sigma^{2}}} d r .
\end{aligned}
$$

Then by the dominated convergence theorem,

$$
\begin{align*}
\lim _{n \rightarrow \infty} \sum_{j=0}^{n-1}\left(T_{n, j}(g)-1\right) & =\lim _{n \rightarrow \infty} \int_{0}^{1} n\left(T_{n,[n t]}(g)-1\right) d t \\
& =\int_{0}^{1} \frac{4}{\left(\sigma^{2}\right)^{2} t} d t \int_{0}^{\infty}\left(e^{-w(r t) g(r t)}-1\right) e^{-\frac{2 r}{\sigma^{2}}} d r \tag{2.15}\\
& =\frac{2}{\sigma^{2}} \int_{0}^{\infty}\left(e^{-w(r) g(r)}-1\right) \frac{1}{r} e^{-\frac{2 r}{\sigma^{2}}} d r .
\end{align*}
$$

Using (2.14) and the continuity of $B^{\prime}(s)$ on $[0,1]$, we get that $B^{\prime}\left(\xi_{n, j}\right)-\beta$ converges to 0 uniformly for $0 \leq j \leq n$, as $n \rightarrow \infty$. It has been shown in (2.15) that $\sum_{j=0}^{n-1}\left|T_{n, j}(g)-1\right|$ converges. Therefore, $\sum_{j=0}^{n-1}\left(B^{\prime}\left(\xi_{n, j}\right)-\beta\right)\left(T_{n, j}(g)-1\right)$ converges to 0 . Thus, by (2.13), $\sum_{j=0}^{n-1}\left(B\left(T_{n, j}(g)\right)-1\right)$ and $\beta \sum_{j=0}^{n-1}\left(T_{n, j}(g)-1\right)$ have the same limit. More precisely, from (2.15), it follows that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sum_{j=0}^{n-1}\left(B\left(T_{n, j}(g)\right)-1\right)=\lim _{n \rightarrow \infty} \beta \sum_{j=0}^{n-1}\left(T_{n, j}(g)-1\right) \\
= & \gamma \int_{0}^{\infty}\left(e^{-w(r) g(r)}-1\right) \frac{1}{r} e^{-\frac{2 r}{\sigma^{2}}} d r .
\end{aligned}
$$

Meanwhile, since $-x \geq \ln (1-x) \geq-x-\frac{x^{2}}{1-x}$ for $0<x<1$, if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{j=0}^{n-1} \frac{\left[B\left(T_{n, j}(g)\right)-1\right]^{2}}{B\left(T_{n, j}(g)\right)}=0 \tag{2.16}
\end{equation*}
$$

then $\sum_{j=0}^{n-1} \ln B\left(T_{n, j}(g)\right)$ and $\beta \sum_{j=0}^{n-1}\left(T_{n, j}(g)-1\right)$ have the same limit as $n \rightarrow \infty$, and thus the claim is true. Now we prove (2.16). By (2.14), for any $1 / 2<\delta<1$, there is $N>0$, such that for any $n>N, 0<j \leq n, T_{n, j}(g)>\delta$. Since $B(s)$ is an increasing continuous function on $[0,1]$ and
$B(1)=1$, for any $\varepsilon>0$, we can choose δ above such that when $1>s>\delta, B(s)>1-\varepsilon$. Therefore when $n>N$,

$$
0 \leq \sum_{j=0}^{n-1} \frac{\left[B\left(T_{n, j}(g)\right)-1\right]^{2}}{B\left(T_{n, j}(g)\right)} \leq \frac{\varepsilon}{B\left(\frac{1}{2}\right)} \sum_{j=0}^{n-1}\left[1-B\left(T_{n, j}(g)\right)\right] .
$$

Then (2.16) follows from the convergence of $\sum_{j=0}^{n-1}\left[1-B\left(T_{n, j}(g)\right)\right]$ and the arbitrariness of ε.

Remark 2.8 (1) Let $\tilde{g}_{1}(r)=1 \wedge r^{-1}, r>0$ and $\tilde{g}_{2}(r)=1 \wedge r, r>0$. Then $\tilde{g}_{1}, \tilde{g}_{2} \in C_{b}^{+}[0, \infty)$. Thanks to Lemma 2.7 and the facts $\tilde{g}_{1}(r) w(r)=r=f(r)$ and $\tilde{g}_{2}(r) w(r)=r^{2}=f^{2}(r)$ for $r>0$, we get that

$$
\left(\left\langle\tilde{g}_{1}, W_{n, k}\right\rangle,\left\langle\tilde{g}_{2}, W_{n, k}\right\rangle\right) \xrightarrow{d}\left(\left\langle\tilde{g}_{1}, \zeta\right\rangle,\left\langle\tilde{g}_{2}, \zeta\right\rangle\right)=\left(\langle f, W\rangle,\left\langle f^{2}, W\right\rangle\right), \quad \text { as } n-k \rightarrow \infty .
$$

(2) We observe that

$$
\frac{n-k}{n}\left[\left\langle f, V_{n, k}\right\rangle+\left\langle\tilde{g}_{1}, W_{n, k}\right\rangle\right]=\frac{Z_{n}}{n},
$$

where f and \tilde{g}_{1} are defined as above. Since $V_{n, k}$ and $W_{n, k}$ are independent, from Lemma 2.4 and Lemma 2.7, it follows that for any $\lambda>0$.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} E\left[\exp \left\{-\lambda \frac{Z_{n}}{n}\right\}\right]=\lim _{n \rightarrow \infty, k / n \rightarrow u} E \exp \left\{-\lambda \frac{n-k}{n}\left(\left\langle f, V_{n, k}\right\rangle+\left\langle\tilde{g}_{1}, W_{n, k}\right\rangle\right)\right\} \\
= & \lim _{n \rightarrow \infty, k / n \rightarrow u} E\left[\exp \left\{-\lambda \frac{n-k}{n}\left\langle f, V_{n, k}\right\rangle\right\}\right]_{n \rightarrow \infty, k / n \rightarrow u} E\left[\exp \left\{-\lambda \frac{n-k}{n}\left\langle\tilde{g}_{1}, W_{n, k}\right\rangle\right\}\right] \\
= & E\left[\exp \left\{-\lambda(1-u)\left\langle f, V_{u}\right\rangle\right\}\right] E[\exp \{-\lambda(1-u)\langle f, W\rangle\}] \\
= & \left(\frac{\lambda+\frac{2}{\sigma^{2}}}{\lambda(1-u)+\frac{2}{\sigma^{2}}}\right)^{-\gamma}\left(\frac{\lambda(1-u)+\frac{2}{\sigma^{2}}}{\frac{2}{\sigma^{2}}}\right)^{-\gamma}=\left(1+\frac{\lambda}{\frac{2}{\sigma^{2}}}\right)^{-\gamma},
\end{aligned}
$$

where the last term is the Laplace transform of the Gamma distribution with parameters $\left(\frac{2}{\sigma^{2}}, \gamma\right)$. This is consistent with Lemma 2.2.

3 Proofs of the main results

Proof of Theorem 1.1: Let f be the function defined in (2.6), and let $\tilde{g}_{1}, \tilde{g}_{2}$ be the functions defined in Remark 2.8(1). The random variable in Lemma 2.3 can be expressed in terms of the random measures defined in Section 2, and then we have
$\frac{\sum_{i=1}^{Z_{k}}\left(Y_{n, k, i}\right)_{2}+\sum_{j=1+k}^{n-1} \sum_{l=1}^{I_{j}}\left(Y_{n-j, l}^{(j)}\right)_{2}}{\left(Z_{n}\right)_{2}}=\frac{\left\langle f^{2}, V_{n, k}\right\rangle-\frac{1}{n-k}\left\langle f, V_{n, k}\right\rangle+\left\langle\tilde{g}_{2}, W_{n, k}\right\rangle-\frac{1}{n-k}\left\langle\tilde{g}_{1}, W_{n, k}\right\rangle}{\left[\left\langle f, V_{n, k}\right\rangle+\left\langle\tilde{g}_{1}, W_{n, k}\right\rangle\right]^{2}-\frac{1}{n-k}\left[\left\langle f, V_{n, k}\right\rangle+\left\langle\tilde{g}_{1}, W_{n, k}\right\rangle\right]}$.
Since $\left(V_{n, k}\right)_{n>k}$ and $\left(W_{n, k}\right)_{n>k}$ are independent and $0<\frac{\sum_{i=1}^{Z_{k}}\left(Y_{n, k, i}\right)_{2}+\sum_{j=1+k}^{n} \sum_{l=1}^{I_{j}}\left(Y_{n-j, l}^{\left(I_{j}\right)}\right)_{2}}{\left(Z_{n}\right)_{2}} \leq$ 1 is a bounded continuous function of $\left(\left\langle f, V_{n, k}\right\rangle,\left\langle f^{2}, V_{n, k}\right\rangle,\left\langle\tilde{g}_{1}, W_{n, k}\right\rangle,\left\langle\tilde{g}_{2}, W_{n, k}\right\rangle\right)$, according to Remark 2.5 and Remark [2.8, for $u \in(0,1)$,

$$
\lim _{n \rightarrow \infty, k / n \rightarrow u} \frac{\left\langle f^{2}, V_{n, k}\right\rangle-\frac{1}{n-k}\left\langle f, V_{n, k}\right\rangle+\left\langle\tilde{g}_{2}, W_{n, k}\right\rangle-\frac{1}{n-k}\left\langle\tilde{g}_{1}, W_{n, k}\right\rangle}{\left[\left\langle f, V_{n, k}\right\rangle+\left\langle\tilde{g}_{1}, W_{n, k}\right\rangle\right]^{2}-\frac{1}{n-k}\left[\left\langle f, V_{n, k}\right\rangle+\left\langle\tilde{g}_{1}, W_{n, k}\right\rangle\right]}=\frac{\left\langle f^{2}, V_{u}\right\rangle+\left\langle f^{2}, W\right\rangle}{\left[\left\langle f, V_{u}\right\rangle+\langle f, W\rangle\right]^{2}}
$$

in distribution. It follows from Lemma 2.2 that $\lim _{n \rightarrow \infty} P\left(Z_{n}>1\right)=1$. The results of this theorem follow from Lemma 2.3,

Proof of Theorem 1.2; If all the particles in generation n have the same ancestor, then they must be descendants of one immigrant before generation n. Thus

$$
\left\{A_{n}^{I}<\infty, Z_{n}>0\right\} \subset\left\{Y_{n-j, l}^{(j)}=0 \text { for all but one pair }(j, l), 0 \leq j \leq n, 1 \leq l \leq I_{j}\right\} .
$$

Then we only need to prove that the probability of the event on the right hand side converges to 0 . Recall that $q_{n}=P\left(Y_{n}>0\right)$. Set $a_{n}=1-q_{n}=P\left(Y_{n}=0\right)$. Then

$$
\begin{align*}
& P\left(Y_{n-j, l}^{(j)}=0 \text { for all but one pair }(j, l), 0 \leq j \leq n, 1 \leq l \leq I_{j}\right) \\
= & E\left[\sum_{j=0}^{n} \prod_{k \neq j} P\left(Y_{n-k}=0\right)^{I_{k}} I_{j} P\left(Y_{n-j}=0\right)^{I_{j}-1} P\left(Y_{n-j}>0\right)\right] \\
= & {\left[\prod_{k=0}^{n} B\left(a_{k}\right)\right]\left[\sum_{j=0}^{n} \frac{B^{\prime}\left(a_{j}\right)}{B\left(a_{j}\right)} q_{j}\right], } \tag{3.1}
\end{align*}
$$

where $B\left(a_{0}\right)=B(0)=b_{0}$ and $B^{\prime}\left(a_{0}\right)=B^{\prime}(0)=b_{1}$. From (2.1), we know $q_{k}=1-a_{k} \sim \frac{2}{\sigma^{2} k}$ as $k \rightarrow \infty$. In addition, since $B(s)=1+\beta(s-1)+o(1-s)$ as $s \rightarrow 1-$,

$$
\begin{equation*}
\lim _{j \rightarrow \infty} j\left(1-B\left(a_{j}\right)\right)=\lim _{j \rightarrow \infty} \beta j\left(1-a_{j}\right)+o\left(j\left(1-a_{j}\right)\right)=\gamma>0 \tag{3.2}
\end{equation*}
$$

Therefore, there exists some $N \in \mathbb{N}$, such that when $k \geq N, k\left(1-B\left(a_{k}\right)\right)>\gamma / 2$, which implies that $B\left(a_{k}\right)<1-\frac{\gamma}{2 k}$ for $k \geq N$. Noticing that $B\left(a_{k}\right) \leq 1$, the first factor on the right-hand side of (3.1) can be estimated as follows:

$$
\prod_{j=0}^{n} B\left(a_{j}\right) \leq \prod_{j=N}^{n} B\left(a_{j}\right) \leq \prod_{j=N}^{n}\left(1-\frac{\gamma}{2 j}\right)=\exp \left\{\sum_{j=N}^{n} \ln \left(1-\frac{\gamma}{2 j}\right)\right\}, \quad n>N .
$$

Since $\ln (1-x)<-x$ for $0<x<1$, we have

$$
\sum_{k=N}^{n} \ln \left(1-\frac{\gamma}{2 k}\right) \leq-\sum_{k=N}^{n} \frac{\gamma}{2 k} \leq-L(\ln n-\ln N)
$$

for some constant $L>0$. As a result, there exists $C_{1}>0$, such that

$$
\begin{equation*}
\prod_{k=0}^{n} B\left(a_{k}\right) \leq C_{1} \cdot n^{-L} \tag{3.3}
\end{equation*}
$$

Since a_{k} is nondecreasing in k and converges to 1 as $k \rightarrow \infty$, and $B^{\prime}(s)$ is a continuous function on $[0,1]$,

$$
\lim _{j \rightarrow \infty} \frac{B^{\prime}\left(a_{j}\right)}{B\left(a_{j}\right)}=B^{\prime}(1)=\beta
$$

The the second factor on the right-hand side of (3.1) has the following upper bound:

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{B^{\prime}\left(a_{j}\right)}{B\left(a_{j}\right)} q_{j} \leq C_{2} \sum_{j=1}^{n} q_{j} \leq C_{3} \sum_{j=1}^{n} \frac{1}{j} \leq C_{3}(1+\ln n) \tag{3.4}
\end{equation*}
$$

for some positive constants C_{2} and C_{3}. Combining (3.3) and (3.4), we obtain

$$
\lim _{n \rightarrow \infty} P\left(Y_{n-j, l}^{(j)}=0 \text { for all but one pair }(j, l), 0 \leq j \leq n, 1 \leq l \leq I_{j}\right)=0
$$

We finish the proof.

Acknowledgment: We thank the referees for very helpful comments and suggestions.

References

[1] K. B. Athreya (2010). Ancestor problem for branching trees. in: Mathematics Newsletter: Special Issue Commemorating ICM 2010 in India 19(1): 1-10.
[2] K. B. Athreya (2012). Coalescence in the recent past in rapidly growing populations. Stochastic Process. Appl. 122: 3757-3766.
[3] K. B. Athreya (2012). Coalescence in critical and subcritical Galton-Watson branching processes. J. Appl. Probab. 49(03): 627-638.
[4] K. B. Athreya, P. E. Ney (1972). Branching Processes. Springer Verlag, New York-Heidelberg.
[5] Y. T. Chen, J. F. Delmas (2012). Smaller population size at the mrca time for stationary branching processes. Ann.Probab. 40: 2034-2068.
[6] R. Durrett (1978). The genealogy of critical branching processes. Stochastic Process. Appl. 8: 101-116.
[7] S. C. Harris, S. G. G. Johnston, M. I. Roberts (2020). The coalescent structure of continuous-time GaltonWatson trees. Ann. Appl. Probab. 30: 1368-1414.
[8] C. R. Heathcote (1965). A branching process allowing immigration. J. Roy. Statist. Soc. Ser. B 27: 138-143.
[9] J.-I Hong (2016). Coalescence on critical and subcritical multitype branching processes. J. Appl. Probab. 53: 802-817.
[10] S. G. G. Johnston (2019). The genealogy of Galton-Watson trees. Electron. J. Probab. 24: 1-35.
[11] O. Kallenberg (2017). Random Measures, Theory and Applications. Probability Theory and Stochastic Modelling 77, Springer, Cham.
[12] G. Kersting (2022). On the genealogical structure of critical branching processes in a varying environment. Proc. Steklov Inst. Math. 316: 209-219.
[13] A. Lambert (2003). Coalescence times for the branching process. Adv. Appl. Probab. 35: 1071-1089.
[14] V. Le (2014). Coalescence times for the Bienaymé-Galton-Watson process. J. Appl. Probab. 51(1): 209-218.
[15] A. G. Pakes (1971a). Branching processes with immigration. J. Appl. Probab. 8: 32-42.
[16] A. G. Pakes (1971b). On the critical Galton-Watson process with immigration. J. Austral. Math. Soc. 12: 476-482.
[17] K. Sato (2014). Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University.
[18] R. S. Slack (1968). A branching process with mean one and possibly infinite variance. Z. Wahrschein. Verw. Geb. 9(2): 139-145.
[19] R. S. Slack (1972/73). Further notes on branching processes with mean 1. Z. Wahrschein. Verw. Geb. 25: 31-38.
[20] H. M. Wang, L. Li and H. Yao (2019). Coalescence for supercritical Galton-Watson processes with immigration. arXiv:1906.03945.
[21] A. M. Zubkov(1975). Limit distributions of the distance to the nearest common ancestor. Theory Probab. Appl. 20: 602-612.

[^0]: *The research of this project is supported by the National Key R\&D Program of China (No. 2020YFA0712902)
 ${ }^{\dagger}$ The research of R. Liu is supported in part by NSFC (Grant No. 12271374)
 ${ }^{\ddagger}$ The research of Y.-X. Ren is supported in part by NSFC (Grant Nos. 12071011 and 12231002) and The Fundamental Research Funds for the Central Universities, Peking University LMEQF

