Coalescence times for critical Galton-Watson processes with immigration*

Rong-Li Liu a,† Yan-Xia Ren, b,‡ Yingrui Wang c

- ^a School of Mathematics and Statistics, Beijing Jiaotong University, Beijing, 100044, P.R.China. E-mail: rlliu@bjtu.edu.cn
- b LMAM School of Mathematical Sciences & Center for Statistical Science, Peking University, Beijing 100871, P. R. China. E-mail: yxren@math.pku.edu.cn
 - ^c School of Mathematics and Statistics, Beijing Jiaotong University, Beijing 100044, P. R. China. E-mail: wyr2120873@gmail.com

Abstract

Let X_n^I be the coalescence time of two particles picked at random from the *n*th generation of a critical Galton-Watson process with immigration, and let A_n^I be the coalescence time of the whole population in the *n*th generation. In this paper, we study the limiting behaviors of X_n^I and A_n^I as $n \to \infty$.

Keywords critical Galton-Watson process, immigration, coalescence times.

2010 MR Subject Classification primary 60J68; secondary 62E15; 60F10; 60J80

1 Introduction and Main Results

Suppose $(Y_n)_{n\geq 0}$ is a Galton-Watson process with offspring distribution $(p_j)_{j\geq 0}$ and initial size $Y_0=1$. For $n\geq 1$, conditional on $\{Y_n\geq 2\}$, pick 2 distinct particles uniformly from the n-th generation and trace their lines of descent backward in time. The common nodes in the two lines are called the common ancestors of the two particles. Let X_n denote the generation of their most recent common ancestor, which is called the pairwise coalescence time. Next, for $n\geq 1$, conditional on $\{Y_n\geq 1\}$, we trace the lines of descent of all particles in generation n backward in time. The common nodes in the Y_n lines of descent are called the common ancestors of all the particles in generation n. Define the total coalescence time A_n as the generation of the most recent common ancestor of all the particles in generation n. When $m:=\sum_{n=0}^{\infty} jp_j=1$ (critical case), $p_1<1$ and $\sigma^2:=\sum_{n=0}^{\infty} j^2p_j-1<\infty$, Athreya [3] proved that for $u\in(0,1)$,

$$\lim_{n \to \infty} P\left(\frac{X_n}{n} \ge u \middle| Y_n \ge 2\right) = E\left[\frac{\sum_{i=1}^{N_u} \eta_i^2}{(\sum_{i=1}^{N_u} \eta_i)^2}\right],\tag{1.1}$$

^{*}The research of this project is supported by the National Key R&D Program of China (No. 2020YFA0712902)

[†]The research of R. Liu is supported in part by NSFC (Grant No. 12271374)

[‡]The research of Y.-X. Ren is supported in part by NSFC (Grant Nos. 12071011 and 12231002) and The Fundamental Research Funds for the Central Universities, Peking University LMEQF

where $(\eta_i)_{i\geq 1}$ are independent and identically distributed exponential random variables with mean $\sigma^2/2$, and N_u is independent of $(\eta_i)_{i\geq 1}$ and is a geometric random variable of parameter 1-u (i.e., $P(N_u=k)=(1-u)u^{k-1}, k\geq 1$). Athreya [3] also proved the following conditional limit result:

$$\lim_{n \to \infty} P\left(\frac{A_n}{n} > u \middle| Y_n \ge 1\right) = 1 - u, \quad \text{ for } u \in (0, 1).$$

The genealogy of branching processes has been widely studied. Athreya [1, 2], Durrett [6], Zubkov [21] also investigated the distributional properties of the coalescence times for Galton-Watson processes. Kersting [12] gave the genealogy structure of branching processes in random environment. Harris, Johnston and Roberts [7], Johnston [10] and Le [14] investigated the coalescent structure of continuous time Galton-Watson processes. Hong [9] studied the corresponding results for multitype branching processes.

Suppose $(p_j)_{j\geq 0}$ and $(b_j)_{j\geq 0}$ are probability distributions on the set \mathbb{N} of nonnegative integers. Let $(\xi_{n,i}; n \in \mathbb{N}, i \in \mathbb{N})$ be a doubly infinite family of independent random variables with common distribution $(p_j)_{j\geq 0}$, and let $(I_n)_{n\geq 0}$ be a sequence of independent random variables with common distribution $(b_j)_{j\geq 0}$ which are independent of $(\xi_{n,i}; n \in \mathbb{N}, i \in \mathbb{N})$ as well. Let $(Z_n)_{n\geq 0}$ be a Galton-Watson process with immigration (GWPI for short) defined by

$$Z_0 = I_0,$$
 $Z_{n+1} = \sum_{i=1}^{Z_n} \xi_{n,i} + I_{n+1},$ $n = 0, 1, \dots$

Here Z_n is the population size in generation n, and I_n is the number of immigrants in generation n. For each $1 \le i \le Z_n$, $\xi_{n,i}$ denotes the number of children of the i-th particle in generation n. We assume that all the immigrants have different ancestors. Set $m = E\xi_{0,1} = \sum_{j=0}^{\infty} jp_j$. Then $(Z_n)_{n\ge 0}$ is called supercritical, critical or subcritical according to m > 1, m = 1 or m < 1, respectively. GWPI was first considered by Heathcote [8] in 1965. Recently, Wang, Li and Yao [20] found that the pairwise coalescence time X_n for some supercritical GWPI converges in distribution to a $(0,\infty]$ -valued random variable as $n \to \infty$.

In this paper, we consider the coalescence times for critical GWPI $(Z_n)_{n\geq 0}$. Unlike the case of a Galton-Watson process starting with one particle, two randomly picked distinct particles (all particles) from generation n of a GWPI may not have a common ancestor. Conditional on $\{Z_n > 1\}$, we pick two distinct particles, say v_1 and v_2 , uniformly from the nth generation and trace their lines of descent backward in time. Define the pairwise coalescence time for GWPI

$$X_n^I = \begin{cases} |v|, & \text{if the most recent common ancestor of } v_1 \text{ and } v_2 \text{ is } v, \\ \infty, & \text{otherwise,} \end{cases}$$
 (1.2)

where |v| is the generation of v. Note that even if v_1 and v_2 are descendants of two distinct particles immigrated to the system at the same time, we do not say they have a common ancestor. Similarly, conditional on $\{Z_n > 0\}$, define the total coalescence time for GWPI

$$A_n^I = \begin{cases} |v|, & \text{if the most recent common ancestor of all particles alive at } n \text{ is } v, \\ \infty, & \text{otherwise.} \end{cases}$$
 (1.3)

We will study the asymptotic behaviors of the distribution of X_n^I conditioned on $\{Z_n > 1\}$ and the distribution of A_n^I conditioned on $\{Z_n > 0\}$. We will explore the effect of the immigrations on the coalescence times. Throughout this paper we suppose the following assumption holds.

Assumption 1 $0 < p_0 + p_1 < 1$, m = 1, $\sigma^2 = \sum_j (j^2 - 1)p_j < \infty$. $b_0 < 1$ and $\beta = \sum_j jb_j < \infty$.

We use $\langle g, \mu \rangle$ to denote the integral of a function g with respect to a Radon measure μ whenever this integral makes sense.

Theorem 1.1 Suppose Assumption 1 holds. Let $\gamma = 2\beta/\sigma^2$. Define

$$\phi(j,\mu) = E\left[\frac{\sum_{i=1}^{j} \omega_i^2 + \langle f^2, \mu \rangle}{(\sum_{i=1}^{j} \omega_i + \langle f, \mu \rangle)^2}\right],\tag{1.4}$$

where f(r) = r, r > 0, and $(\omega_i)_{i \geq 1}$ are independent exponential random variables with parameter $\frac{2}{\sigma^2}$.

(1) For 0 < u < 1,

$$\lim_{n \to \infty, k/n \to u} P\left(k \le X_n^I < n \middle| Z_n > 1\right) = E\phi(N_u^I, W),$$

where N_u^I is a negative binomial random variable with law

$$P(N_u^I = k) = \frac{(-\gamma)(-\gamma - 1)\cdots(-\gamma - k + 1)}{k!}(1 - u)^{\gamma}(-u)^k, \quad k = 0, 1, 2, \dots,$$
 (1.5)

with the convention $\frac{(-\gamma)(-\gamma-1)\cdots(-\gamma-k+1)}{k!}=1$ when k=0, W is a Poisson random measure on $(0,\infty)$ with intensity $\frac{\gamma}{r}e^{-\frac{2}{\sigma^2}r}dr$, and N_u^I and W are independent.

(2)
$$\lim_{n \to \infty} P\left(X_n^I < \infty \middle| Z_n > 1\right) = E\left[\frac{\langle f^2, W \rangle}{\langle f, W \rangle^2}\right].$$

Note that N_u in (1.1) for a critical Galton-Watson process only takes positive integer values, while N_u^I in Theorem 1.1 can take value 0 with positive probability. In the special case $\gamma = 1$, the random number $N_u^I + 1$ and N_u have the same distribution.

We conclude from [16, Theorem 3] (see Lemma 2.2) that Z_n diverges to infinity in probability as $n \to \infty$. Our second result says that as $n \to \infty$, the probability that all the particles of generation n have a common ancestor goes to 0.

Theorem 1.2 Suppose Assumption 1 holds. Then

$$\lim_{n \to \infty} P(A_n^I < \infty | Z_n > 0) = 0.$$

2 Some preliminary results

Recall that $(Y_n)_{n\geq 0}$ is a critical Galton-Watson process with offspring distribution $(p_j)_{j\geq 0}$ starting with $Y_0=1$. The following result was proved in [4].

Lemma 2.1 When m = 1, $p_1 < 1$, $\sigma^2 = \sum_j (j^2 - j) p_j < \infty$,

$$\lim_{n \to \infty} nP(Y_n > 0) = \frac{2}{\sigma^2},\tag{2.1}$$

and for any t > 0,

$$\lim_{n \to \infty} P\left(\frac{Y_n}{n} > t \middle| Y_n > 0\right) = e^{-\frac{2t}{\sigma^2}}.$$
(2.2)

The following result for critical GWPI is from [16, Theorem 3].

Lemma 2.2 Suppose Assumption 1 holds. Put $\gamma = \frac{2\beta}{\sigma^2}$. Then, as $n \to \infty$, $\frac{Z_n}{n}$ converges in distribution to a Gamma random variable with parameters $(2/\sigma^2, \gamma)$, whose density function is

$$h(t) = \frac{2}{\sigma^2 \Gamma(\gamma)} \left(\frac{2t}{\sigma^2}\right)^{\gamma - 1} e^{-\frac{2t}{\sigma^2}}, \qquad t > 0.$$
 (2.3)

The above lemma implies that $\lim_{n\to\infty} P(Z_n > 0) = 1$. The rate that $1 - P(Z_n > 0)$ converges to 0 was investigated in [15].

From the construction (1.2) of the GWPI $(Z_n)_{n\geq 0}$, for any $0\leq k < n$, Z_n can be rewritten as

$$Z_n = \sum_{i=1}^{Z_k} Y_{n,k,i} + \sum_{j=k+1}^n \sum_{l=1}^{I_j} Y_{n-j,l}^{(j)},$$
(2.4)

where $Y_{n,k,i}$, $i=1,2,\ldots$, are independent and have the same distribution as Y_{n-k} , and for $0 \le j \le n$, $Y_{n-j,l}^{(j)}$, $l=1,2,\ldots$, are independent and have the same distribution as Y_{n-j} . Note that $Y_{n,k,i}$ represents the number of descendants in generation n of the ith particle in generation k, and $Y_{n-j,l}^{(j)}$ represents the number of descendants in generation n of the lth particle in the I_j immigrants in generation j. For any non-negative integer m, set m=1. Notice that m=1 when m=1 or 1. Starting from the representation m=1, the distribution of the pairwise coalescence time X_n^I , given $\{Z_n>1\}$, has the following expression.

Lemma 2.3 For any $0 \le k < n$,

$$P\left(k \le X_n^I < n \middle| Z_n > 1\right) = E\left[\frac{\sum_{i=1}^{Z_k} (Y_{n,k,i})_2 + \sum_{j=1+k}^{n-1} \sum_{l=1}^{I_j} (Y_{n-j,l}^{(j)})_2}{(Z_n)_2} \middle| Z_n > 1\right],$$

with the convention that the second term in the numerator equals 0 when k > n-2. In particular,

$$P(X_n^I < \infty | Z_n > 1) = E\left[\frac{\sum_{j=0}^{n-1} \sum_{l=1}^{I_j} (Y_{n-j,l}^{(j)})_2}{(Z_n)_2} \middle| Z_n > 1\right].$$

Proof. For $0 \le k < n$, the event $\{k \le X_n^I < n\}$ occurs if and only if either the two randomly picked particles from generation n are both descendants of a particle in the kth generation, or they are both descendants of a particle immigrated into the system between generation k+1 and generation n-1. The number of choices of the two particles from the descendants of the ith particle in generation k is $(Y_{n,k,i})_2$, and therefore the total number is $\sum_{i=1}^{Z_k} (Y_{n,k,i})_2$ with the convention that the sum is 0 if $Z_k = 0$. The number of choices of the two particles from the descendants of the lth particle immigrated into the system in generation j for $k+1 \le j < n$ is $(Y_{n-j,l}^{(j)})_2$, and the total number is $\sum_{j=k+1}^{n-1} \sum_{l=1}^{I_j} (Y_{n-j,l}^{(j)})_2$. Also, the total number of choices of the two particles from the nth generation is $(Z_n)_2$. Thus for any $n \ge 1$ and $0 \le k < n$, conditional on $\{Z_n > 1\}$, the probability of $\{k \le X_n^I < n\}$ is given by

$$P(k \le X_n^I < n | Z_n > 1) = E \left[\frac{\sum_{i=1}^{Z_k} (Y_{n,k,i})_2 + \sum_{j=k+1}^{n-1} \sum_{l=1}^{I_j} (Y_{n-j,l}^{(j)})_2}{(Z_n)_2} \middle| Z_n > 1 \right].$$

Since $Z_0 = I_0$, we have $Y_{n,0,i} = Y_{n,i}^{(0)}$, $i = 1, ..., I_0$. Taking k = 0 in the above identity, we obtain

$$P(X_n^I < \infty | Z_n > 1) = P(X_n^I < n | Z_n > 1) = E\left[\frac{\sum_{j=0}^{n-1} \sum_{l=1}^{I_j} (Y_{n-j,l}^{(j)})_2}{(Z_n)_2} \Big| Z_n > 1\right].$$

Let \mathcal{M} be the space of finite measures on $[0,\infty)$ equipped with the topology of weak convergence. Let $C_b[0,\infty)(C_b^+[0,\infty))$ be the space of bounded continuous (nonnegative bounded continuous) functions on $[0,\infty)$. Then for any $g\in C_b[0,\infty)$, the map $\pi_g:\mu\to\langle g,\mu\rangle$ on \mathcal{M} is continuous. For random measures $\eta_n,\eta\in\mathcal{M},\ n=1,2,\ldots,\eta_n$ converges to η in distribution as $n\to\infty$ is equivalent to $\langle g,\eta_n\rangle\stackrel{d}{\to}\langle g,\eta\rangle$ for all $g\in C_b^+[0,\infty)$. We refer the readers to [11, p.109] for more details. Let \mathcal{F}_k be the σ -algebra generated by $\xi_{i,j},i< k,j=1,2,\ldots$, and $I_j,j=0,1,\ldots,k$. Then \mathcal{F}_k contains all information up to generation k. For $k\geq 0$, given \mathcal{F}_k , $(Y_{n,k,i})_{n\geq k},\ i=1,2,\ldots$, are independent critical Galton-Watson processes with initial value 1 at generation k.

Lemma 2.4 Suppose Assumption 1 holds. If $\frac{k}{n} \to u$ as $n \to \infty$ for some $u \in (0,1)$, then as $n \to \infty$, the random measure

$$V_{n,k}(\cdot) = \sum_{i=1}^{Z_k} I_{\{Y_{n,k,i} > 0\}} \delta_{\frac{Y_{n,k,i}}{n-k}}(\cdot) \in \mathcal{M}$$

converges in distribution to the random measure $V_u := \sum_{i=1}^{N_u^I} \delta_{\omega_i}(\cdot) \in \mathcal{M}$ with the convention that $V_u = 0$ when $N_u^I = 0$, where $(\omega_i)_{i \geq 1}$ are independent exponential random variables with parameter $\frac{2}{\sigma^2}$, and $N_u^I \in \mathbb{N}$ is independent of $(\omega_i)_{i \geq 1}$ with the law given by (1.5).

Proof. Suppose $g \in C_b^+[0,\infty)$. For any $0 \le k < n$, let

$$L_{n,k}(g) = \exp\{-\langle g, V_{n,k}\rangle\} = \exp\{-\sum_{i=1}^{Z_k} g(\frac{Y_{n,k,i}}{n-k}) \mathbf{I}_{\{Y_{n,k,i}>0\}}\},$$

and set $S_{n,k}g = E\left(\exp\left\{-g\left(\frac{Y_{n-k}}{n-k}\right)I_{\{Y_{n-k}>0\}}\right\}\right)$. Then we have

$$E[L_{n,k}(g)|\mathcal{F}_k] = E[L_{n,k}(g)|Z_k] = \left[E\left(\exp\left\{-g\left(\frac{Y_{n-k}}{n-k}\right)I_{\{Y_{n-k}>0\}}\right\}\right) \right]^{Z_k} = (S_{n,k}g)^{Z_k}.$$

Let $q_n = P(Y_n > 0)$ be the survival probability of the process $(Y_k)_{k \ge 0}$ in generation n. Then we have

$$S_{n,k}g = E\left[\exp\left\{-g\left(\frac{Y_{n-k}}{n-k}\right)\right\} \middle| Y_{n-k} > 0\right] q_{n-k} + (1 - q_{n-k})$$
$$= 1 - q_{n-k}\left[1 - E\left(\exp\left\{-g\left(\frac{Y_{n-k}}{n-k}\right)\right\} \middle| Y_{n-k} > 0\right)\right].$$

It follows from (2.2) that for any $g \in C_b^+[0,\infty)$ and $u \in (0,1)$,

$$\lim_{n\to\infty,k/n\to u} E\Big[\exp\Big\{-g\Big(\frac{Y_{n-k}}{n-k}\Big)\Big\}\Big|Y_{n-k}>0\Big] = \frac{2}{\sigma^2} \int_0^\infty e^{-g(r)} e^{-\frac{2r}{\sigma^2}} dr =: L(g).$$

By the dominated convergence theorem for convergence in distribution, we have that

$$\lim_{n \to \infty, k/n \to u} E[L_{n,k}(g)] = \lim_{n \to \infty, k/n \to u} E\left[E\left(L_{n,k}(g)|\mathcal{F}_k\right)\right] = \lim_{n \to \infty, k/n \to u} E\left[\left(S_{n,k}g\right)^{Z_k}\right]$$

$$= E\lim_{n \to \infty, k/n \to u} \left[\left(1 - q_{n-k}\left[1 - E\left(\exp\left\{-g\left(\frac{Y_{n-k}}{n-k}\right)\right\}\middle|Y_{n-k} > 0\right)\right]\right)^{Z_k}\right]$$

$$= E\left[\exp\left\{-\lim_{n \to \infty, k/n \to u} Z_k q_{n-k}\left[1 - E\left(\exp\left\{-g\left(\frac{Y_{n-k}}{n-k}\right)\right\}\middle|Y_{n-k} > 0\right)\right]\right\}\right].$$

Then using (2.1) and Lemma 2.2, we obtain

$$\lim_{n \to \infty, k/n \to u} E[\exp\{-\langle g, V_{n,k} \rangle\}] = \lim_{n \to \infty, k/n \to u} E[L_{n,k}(g)] = E[\exp\{-\xi_u(1 - L(g))\}], \tag{2.5}$$

where ξ_u is a random variable having Gamma distribution with parameters $\left(\frac{1-u}{u},\gamma\right)$. Then the Laplace transform of ξ_u is given by (c.f. [17, Example 2.15])

$$L_{\xi_u}(\lambda) = Ee^{-\lambda \xi_u} = \left(1 + \frac{u\lambda}{1-u}\right)^{-\gamma}, \quad \lambda > 0.$$

Therefore,

$$E\left[\exp\left\{-\xi_{u}(1-L(g))\right\}\right] = \left[1 + \frac{u}{1-u}(1-L(g))\right]^{-\gamma} = (1-u)^{\gamma}[1-uL(g)]^{-\gamma}$$

$$= \sum_{k=0}^{\infty} \frac{(-\gamma)(-\gamma-1)\cdots(-\gamma-k+1)}{k!}(1-u)^{\gamma}(-u)^{k}L(g)^{k}$$

$$= Ee^{-\sum_{j=1}^{N_{u}^{I}}g(w_{j})} = E\left[e^{-\langle g, V_{u}\rangle}\right].$$

In conclusion, $V_{n,k}$ converges to V_u in distribution as $n \to \infty, k/n \to u$.

For r > 0, put

$$f(r) = r, \quad g_1(r) = r \wedge r^{-1}, \quad g_2(r) = 1 \wedge r^2.$$
 (2.6)

Remark 2.5 Using the same argument as in the proof of Lemma 2.4 for the random measure

$$\widetilde{V}_{n,k}(\cdot) := \sum_{i=1}^{Z_k} I_{\{Y_{n,k,i} > 0\}} \left(1 \vee \left(\frac{Y_{n,k,i}}{n-k} \right)^2 \right) \delta_{\frac{Y_{n,k,i}}{n-k}}(\cdot),$$

and using the fact that $h(r) := (1 \vee r^2)$ is a continuous function on $[0, \infty)$, we obtain that

$$\widetilde{V}_{n,k}(dr) \stackrel{d}{\to} (1 \vee r^2) V_u(dr) =: \widetilde{V}_u(dr) \quad in \mathcal{M}.$$

Since $g_1, g_2 \in C_b^+[0, \infty)$, $\langle g_1, \widetilde{V}_{n,k} \rangle = \langle f, V_{n,k} \rangle$ and $\langle g_2, \widetilde{V}_{n,k} \rangle = \langle f^2, V_{n,k} \rangle$, we have

$$(\langle f, V_{n,k} \rangle, \langle f^2, V_{n,k} \rangle) = (\langle g_1, \widetilde{V}_{n,k} \rangle, \langle g_2, \widetilde{V}_{n,k} \rangle)$$

$$\stackrel{d}{\to} (\langle g_1, \widetilde{V}_u \rangle, \langle g_2, \widetilde{V}_u \rangle) = (\langle f, V_u \rangle, \langle f^2, V_u \rangle) = \left(\sum_{k=1}^{N_u^1} \omega_k, \sum_{k=1}^{N_u^1} \omega_k^2 \right), \tag{2.7}$$

as $n \to \infty$, $k/n \to u$ with $u \in (0,1)$.

Define the birth time τ_n of the oldest clan in generation n by

$$\tau_n = \inf \left\{ 0 \le j \le n; \sum_{l=1}^{I_j} Y_{n-j,l}^{(j)} > 0 \right\}$$

with the convention inf $\emptyset = +\infty$. The birth time of the oldest clan for stationary continuous state branching processes is studied in [5, Corollary 4.2]. Using Lemma 2.4, it is easy to get the limit distribution of τ_n . Recall that $\gamma = 2\beta/\sigma^2$.

Corollary 2.6 Suppose Assumption 1 holds. We have

$$\lim_{n \to \infty, k/n \to u} P(\tau_n > k) = P(N_u^I = 0) = (1 - u)^{\gamma}, \qquad 0 < u < 1.$$

Proof. The event $\{\tau_n > k\}$ can be written as $\{V_{n,k}(1) = 0\}$. Thus

$$\lim_{n \to \infty, k/n \to u} P(\tau_n > k) = \lim_{n \to \infty, k/n \to u} P(V_{n,k}(1) = 0) = P(N_u^I = 0) = (1 - u)^{\gamma}.$$

Define a function w by

$$w(r) = r \vee r^2, \quad r \in (0, \infty). \tag{2.8}$$

We next consider the following random measures related to immigrations after generation k,

$$W_{n,k}(\cdot) := \sum_{j=k+1}^{n} \sum_{l=1}^{I_j} I_{\left\{Y_{n-j,l}^{(j)} > 0\right\}} w\left(\frac{Y_{n-j,l}^{(j)}}{n-k}\right) \delta_{\frac{Y_{n-j,l}^{(j)}}{n-k}}(\cdot), \qquad n > k.$$

For each (n,k) with k < n, thanks to (2.4), we see that $W_{n,k}(\cdot)$ has the same distribution as the random measure

$$\widetilde{W}_{n-k}(\cdot) := \sum_{j=0}^{n-k-1} \sum_{l=1}^{I_j} I_{\{Y_{j,l}>0\}} w\left(\frac{Y_{j,l}}{n-k}\right) \delta_{\frac{Y_{j,l}}{n-k}}(\cdot), \tag{2.9}$$

where $Y_{j,l}, j \in \mathbb{N}, l = 1, 2, \ldots$, are independent and for each $j, Y_{j,l}, l = 1, 2, \ldots$, are identically distributed as Y_j , and where $(Y_{j,l})_{j\geq 0, l\geq 1}$ are independent of the immigration process $(I_j)_{j\geq 0}$. By an argument very similar to that used in the proof of Lemma 2.4, we get the following convergence in distribution result for the random measures $(W_{n,k})_{n>k}$.

Lemma 2.7 Suppose Assumption 1 holds. Let ζ be the random measure defined by

$$\zeta(dr) = w(r)W(dr),$$

where W is a Poisson random measure with intensity $\frac{\gamma}{r}e^{-\frac{2r}{\sigma^2}}dr$ on $(0,\infty)$ and w is the function defined in (2.8). Then $W_{n,k} \stackrel{d}{\to} \zeta$ in \mathcal{M} as $n-k \to \infty$.

Proof. Since $W_{n,k} \stackrel{d}{=} \widetilde{W}_{n-k}$, we have for $g \in C_b^+[0,\infty)$,

$$E\left[\exp\left\{-\langle g, W_{n,k}\rangle\right\}\right] = E\left[\exp\left\{-\langle g, \widetilde{W}_{n-k}\rangle\right\}\right],\tag{2.10}$$

which means that we only need to consider the limit of the Laplace functional of \widetilde{W}_n as $n \to \infty$. For any $g \in C_b^+[0,\infty)$, put

$$T_{n,j}(g) = E\left[\exp\left\{-w\left(\frac{Y_j}{n}\right)g\left(\frac{Y_j}{n}\right)I_{\{Y_j>0\}}\right\}\right], \quad j = 0, 1, \dots, n-1.$$

Then $0 < T_{n,j}(g) < 1$. By the definition (2.9) of \widetilde{W}_n ,

$$\exp\left\{-\langle g, \widetilde{W}_n \rangle\right\} = \exp\left\{-\sum_{i=0}^{n-1} \sum_{l=1}^{I_j} w\left(\frac{Y_{j,l}}{n}\right) g\left(\frac{Y_{j,l}}{n}\right) I_{\{Y_{j,l}>0\}}\right\}.$$

The Laplace transform of \widetilde{W}_n can be written as

$$E\left[\exp\left\{-\langle g,\widetilde{W}_{n}\rangle\right\}\right] = \prod_{j=0}^{n-1} E\left[T_{n,j}(g)^{I_{j}}\right] = \prod_{j=0}^{n-1} B\left(T_{n,j}(g)\right) = \exp\left\{\sum_{j=0}^{n-1} \ln B\left(T_{n,j}(g)\right)\right\}, \quad (2.11)$$

where $B(s) = \sum_{j} b_{j} s^{j}, |s| < 1$, is the probability generating function of $I_{k}, k \geq 0$. We claim that

$$\lim_{n \to \infty} \sum_{j=0}^{n-1} \ln B(T_{n,j}(g)) = \gamma \int_0^\infty \left(e^{-w(r)g(r)} - 1 \right) \frac{1}{r} e^{-\frac{2r}{\sigma^2}} dr.$$
 (2.12)

Suppose for the moment the claim is true. Then by (2.11), for any $g \in C_b^+[0,\infty)$,

$$\lim_{n\to\infty} E\big[\exp\big\{-\langle g,\widetilde{W}_n\rangle\big\}\big] = \exp\Big\{\gamma\int_0^\infty \big(e^{-w(r)g(r)}-1\big)\frac{1}{r}e^{-\frac{2r}{\sigma^2}}dr\Big\}.$$

And then using (2.10), we have

$$\lim_{n-k\to\infty} E\left[\exp\left\{-\langle g, W_{n,k}\rangle\right\}\right] = \exp\left\{\gamma \int_0^\infty \left(e^{-w(r)g(r)} - 1\right) \frac{1}{r} e^{-\frac{2r}{\sigma^2}} dr\right\}.$$

Since $\int_0^\infty (w(r) \wedge 1) \frac{1}{r} e^{-\frac{2r}{\sigma^2}} dr < \infty$, it follows from [11, Theorem 3.20] that there is an infinitely divisible random measure $\zeta \in \mathcal{M}$ represented as $\zeta(dr) = w(r)W(dr), r > 0$, where W is a Poisson random measure with intensity $I_{\{r>0\}} \frac{\gamma}{r} e^{-\frac{2r}{\sigma^2}} dr$. The Laplace functional of ζ is given by

$$E\left[\exp\{-\langle g,\zeta\rangle\}\right] = \exp\left\{\gamma \int_0^\infty \left(e^{-w(r)g(r)} - 1\right) \frac{1}{r} e^{-\frac{2r}{\sigma^2}} dr\right\}, \quad \forall g \in C_b^+[0,\infty).$$

Thus $W_{n,k} \stackrel{d}{\to} \zeta$ as $n-k \to \infty$.

Now we prove the claim (2.12). By the mean value theorem, there exists $\xi_{n,j} \in (T_{n,j}(g), 1)$ such that

$$B(T_{n,j}(g)) - 1 = B'(\xi_{n,j})(T_{n,j}(g) - 1)$$

$$= \beta (T_{n,j}(g) - 1) + (B'(\xi_{n,j}) - \beta) (T_{n,j}(g) - 1).$$
 (2.13)

Thanks to the inequality $0 < 1 - e^{-x} \le x$ for x > 0 and the fact that $Var(Y_j) = j\sigma^2$ (see [4, Section 1.2]), we have that for $0 \le j \le n - 1$,

$$0 \le 1 - T_{n,j}(g) \le \|g\|_{\infty} E\left[w\left(\frac{Y_j}{n}\right)\right] \le \|g\|_{\infty} E\left[\frac{Y_j}{n} + \left(\frac{Y_j}{n}\right)^2\right] \le \frac{a\|g\|_{\infty}}{n},\tag{2.14}$$

for some constant a > 0. Thus $n(1 - T_{n,j}(g))$ is bounded for n > 0 and $j \le n$. Moreover from (2.1) and (2.2), it follows that for any 0 < t < 1,

$$\lim_{n \to \infty} n[1 - T_{n,[nt]}(g)] = \lim_{n \to \infty} nP(Y_{[nt]} > 0)E\left[1 - \exp\left\{-w\left(\frac{Y_{[nt]}}{n}\right)g\left(\frac{Y_{[nt]}}{n}\right)\right\} \middle| Y_{[nt]} > 0\right]$$

$$= \frac{4}{(\sigma^2)^2 t} \int_0^\infty \left(1 - e^{-w(rt)g(rt)}\right) e^{-\frac{2r}{\sigma^2}} dr.$$

Then by the dominated convergence theorem,

$$\lim_{n \to \infty} \sum_{j=0}^{n-1} (T_{n,j}(g) - 1) = \lim_{n \to \infty} \int_0^1 n(T_{n,[nt]}(g) - 1) dt$$

$$= \int_0^1 \frac{4}{(\sigma^2)^2 t} dt \int_0^\infty \left(e^{-w(rt)g(rt)} - 1 \right) e^{-\frac{2r}{\sigma^2}} dr$$

$$= \frac{2}{\sigma^2} \int_0^\infty \left(e^{-w(r)g(r)} - 1 \right) \frac{1}{r} e^{-\frac{2r}{\sigma^2}} dr.$$
(2.15)

Using (2.14) and the continuity of B'(s) on [0,1], we get that $B'(\xi_{n,j}) - \beta$ converges to 0 uniformly for $0 \le j \le n$, as $n \to \infty$. It has been shown in (2.15) that $\sum_{j=0}^{n-1} |T_{n,j}(g)-1|$ converges. Therefore, $\sum_{j=0}^{n-1} (B'(\xi_{n,j}) - \beta) (T_{n,j}(g) - 1)$ converges to 0. Thus, by (2.13), $\sum_{j=0}^{n-1} (B(T_{n,j}(g)) - 1)$ and $\beta \sum_{j=0}^{n-1} (T_{n,j}(g) - 1)$ have the same limit. More precisely, from (2.15), it follows that

$$\lim_{n \to \infty} \sum_{j=0}^{n-1} (B(T_{n,j}(g)) - 1) = \lim_{n \to \infty} \beta \sum_{j=0}^{n-1} (T_{n,j}(g) - 1)$$
$$= \gamma \int_0^\infty (e^{-w(r)g(r)} - 1) \frac{1}{r} e^{-\frac{2r}{\sigma^2}} dr.$$

Meanwhile, since $-x \ge \ln(1-x) \ge -x - \frac{x^2}{1-x}$ for 0 < x < 1, if

$$\lim_{n \to \infty} \sum_{j=0}^{n-1} \frac{\left[B(T_{n,j}(g)) - 1\right]^2}{B(T_{n,j}(g))} = 0,$$
(2.16)

then $\sum_{j=0}^{n-1} \ln B(T_{n,j}(g))$ and $\beta \sum_{j=0}^{n-1} (T_{n,j}(g) - 1)$ have the same limit as $n \to \infty$, and thus the claim is true. Now we prove (2.16). By (2.14), for any $1/2 < \delta < 1$, there is N > 0, such that for any $n > N, 0 < j \le n$, $T_{n,j}(g) > \delta$. Since B(s) is an increasing continuous function on [0,1] and

B(1) = 1, for any $\varepsilon > 0$, we can choose δ above such that when $1 > s > \delta$, $B(s) > 1 - \varepsilon$. Therefore when n > N,

$$0 \le \sum_{j=0}^{n-1} \frac{\left[B(T_{n,j}(g)) - 1\right]^2}{B(T_{n,j}(g))} \le \frac{\varepsilon}{B(\frac{1}{2})} \sum_{j=0}^{n-1} \left[1 - B(T_{n,j}(g))\right].$$

Then (2.16) follows from the convergence of $\sum_{j=0}^{n-1} [1 - B(T_{n,j}(g))]$ and the arbitrariness of ε . \square

Remark 2.8 (1) Let $\tilde{g}_1(r) = 1 \wedge r^{-1}$, r > 0 and $\tilde{g}_2(r) = 1 \wedge r$, r > 0. Then $\tilde{g}_1, \tilde{g}_2 \in C_b^+[0, \infty)$. Thanks to Lemma 2.7 and the facts $\tilde{g}_1(r)w(r) = r = f(r)$ and $\tilde{g}_2(r)w(r) = r^2 = f^2(r)$ for r > 0, we get that

$$(\langle \tilde{g}_1, W_{n,k} \rangle, \langle \tilde{g}_2, W_{n,k} \rangle) \stackrel{d}{\to} (\langle \tilde{g}_1, \zeta \rangle, \langle \tilde{g}_2, \zeta \rangle) = (\langle f, W \rangle, \langle f^2, W \rangle), \text{ as } n - k \to \infty.$$

(2) We observe that

$$\frac{n-k}{n} \left[\langle f, V_{n,k} \rangle + \langle \tilde{g}_1, W_{n,k} \rangle \right] = \frac{Z_n}{n}$$

where f and \tilde{g}_1 are defined as above. Since $V_{n,k}$ and $W_{n,k}$ are independent, from Lemma 2.4 and Lemma 2.7, it follows that for any $\lambda > 0$.

$$\lim_{n \to \infty} E \left[\exp \left\{ -\lambda \frac{Z_n}{n} \right\} \right] = \lim_{n \to \infty, k/n \to u} E \exp \left\{ -\lambda \frac{n-k}{n} (\langle f, V_{n,k} \rangle + \langle \tilde{g}_1, W_{n,k} \rangle) \right\}$$

$$= \lim_{n \to \infty, k/n \to u} E \left[\exp \left\{ -\lambda \frac{n-k}{n} \langle f, V_{n,k} \rangle \right\} \right] \lim_{n \to \infty, k/n \to u} E \left[\exp \left\{ -\lambda \frac{n-k}{n} \langle \tilde{g}_1, W_{n,k} \rangle \right\} \right]$$

$$= E \left[\exp \left\{ -\lambda (1-u) \langle f, V_u \rangle \right\} \right] E \left[\exp \left\{ -\lambda (1-u) \langle f, W \rangle \right\} \right]$$

$$= \left(\frac{\lambda + \frac{2}{\sigma^2}}{\lambda (1-u) + \frac{2}{\sigma^2}} \right)^{-\gamma} \left(\frac{\lambda (1-u) + \frac{2}{\sigma^2}}{\frac{2}{\sigma^2}} \right)^{-\gamma} = \left(1 + \frac{\lambda}{\frac{2}{\sigma^2}} \right)^{-\gamma},$$

where the last term is the Laplace transform of the Gamma distribution with parameters $(\frac{2}{\sigma^2}, \gamma)$. This is consistent with Lemma 2.2.

3 Proofs of the main results

Proof of Theorem 1.1: Let f be the function defined in (2.6), and let \tilde{g}_1, \tilde{g}_2 be the functions defined in Remark 2.8(1). The random variable in Lemma 2.3 can be expressed in terms of the random measures defined in Section 2, and then we have

$$\frac{\sum_{i=1}^{Z_k} (Y_{n,k,i})_2 + \sum_{j=1+k}^{n-1} \sum_{l=1}^{I_j} (Y_{n-j,l}^{(j)})_2}{(Z_n)_2} = \frac{\langle f^2, V_{n,k} \rangle - \frac{1}{n-k} \langle f, V_{n,k} \rangle + \langle \tilde{g}_2, W_{n,k} \rangle - \frac{1}{n-k} \langle \tilde{g}_1, W_{n,k} \rangle}{\left[\langle f, V_{n,k} \rangle + \langle \tilde{g}_1, W_{n,k} \rangle \right]^2 - \frac{1}{n-k} \left[\langle f, V_{n,k} \rangle + \langle \tilde{g}_1, W_{n,k} \rangle \right]}.$$

Since $(V_{n,k})_{n>k}$ and $(W_{n,k})_{n>k}$ are independent and $0 < \frac{\sum_{i=1}^{Z_k} (Y_{n,k,i})_2 + \sum_{j=1+k}^n \sum_{l=1}^{I_j} (Y_{n-j,l}^{(I_j)})_2}{(Z_n)_2} \le C_n$

1 is a bounded continuous function of $(\langle f, V_{n,k} \rangle, \langle f^2, V_{n,k} \rangle, \langle \tilde{g}_1, W_{n,k} \rangle, \langle \tilde{g}_2, W_{n,k} \rangle)$, according to Remark 2.5 and Remark 2.8, for $u \in (0,1)$,

$$\lim_{n \to \infty, k/n \to u} \frac{\langle f^2, V_{n,k} \rangle - \frac{1}{n-k} \langle f, V_{n,k} \rangle + \langle \tilde{g}_2, W_{n,k} \rangle - \frac{1}{n-k} \langle \tilde{g}_1, W_{n,k} \rangle}{\left[\langle f, V_{n,k} \rangle + \langle \tilde{g}_1, W_{n,k} \rangle \right]^2 - \frac{1}{n-k} \left[\langle f, V_{n,k} \rangle + \langle \tilde{g}_1, W_{n,k} \rangle \right]} = \frac{\langle f^2, V_u \rangle + \langle f^2, W \rangle}{\left[\langle f, V_u \rangle + \langle f, W \rangle \right]^2}$$

in distribution. It follows from Lemma 2.2 that $\lim_{n\to\infty} P(Z_n > 1) = 1$. The results of this theorem follow from Lemma 2.3.

Proof of Theorem 1.2: If all the particles in generation n have the same ancestor, then they must be descendants of one immigrant before generation n. Thus

$$\big\{A_n^I<\infty, Z_n>0\big\}\subset \big\{Y_{n-j,l}^{(j)}=0 \text{ for all but one pair } (j,l), 0\leq j\leq n, 1\leq l\leq I_j\big\}.$$

Then we only need to prove that the probability of the event on the right hand side converges to 0. Recall that $q_n = P(Y_n > 0)$. Set $a_n = 1 - q_n = P(Y_n = 0)$. Then

$$P\left(Y_{n-j,l}^{(j)} = 0 \text{ for all but one pair}(j,l), 0 \le j \le n, 1 \le l \le I_j\right)$$

$$= E\left[\sum_{j=0}^n \prod_{k \ne j} P(Y_{n-k} = 0)^{I_k} I_j P(Y_{n-j} = 0)^{I_j - 1} P(Y_{n-j} > 0)\right]$$

$$= \left[\prod_{k=0}^n B(a_k)\right] \left[\sum_{j=0}^n \frac{B'(a_j)}{B(a_j)} q_j\right],$$
(3.1)

where $B(a_0) = B(0) = b_0$ and $B'(a_0) = B'(0) = b_1$. From (2.1), we know $q_k = 1 - a_k \sim \frac{2}{\sigma^2 k}$ as $k \to \infty$. In addition, since $B(s) = 1 + \beta(s-1) + o(1-s)$ as $s \to 1-$,

$$\lim_{j \to \infty} j(1 - B(a_j)) = \lim_{j \to \infty} \beta j(1 - a_j) + o(j(1 - a_j)) = \gamma > 0.$$
(3.2)

Therefore, there exists some $N \in \mathbb{N}$, such that when $k \geq N$, $k(1 - B(a_k)) > \gamma/2$, which implies that $B(a_k) < 1 - \frac{\gamma}{2k}$ for $k \geq N$. Noticing that $B(a_k) \leq 1$, the first factor on the right-hand side of (3.1) can be estimated as follows:

$$\prod_{j=0}^{n} B(a_j) \le \prod_{j=N}^{n} B(a_j) \le \prod_{j=N}^{n} \left(1 - \frac{\gamma}{2j}\right) = \exp\Big\{\sum_{j=N}^{n} \ln(1 - \frac{\gamma}{2j})\Big\}, \quad n > N.$$

Since ln(1-x) < -x for 0 < x < 1, we have

$$\sum_{k=N}^{n} \ln(1 - \frac{\gamma}{2k}) \le -\sum_{k=N}^{n} \frac{\gamma}{2k} \le -L(\ln n - \ln N),$$

for some constant L > 0. As a result, there exists $C_1 > 0$, such that

$$\prod_{k=0}^{n} B(a_k) \le C_1 \cdot n^{-L}. \tag{3.3}$$

Since a_k is nondecreasing in k and converges to 1 as $k \to \infty$, and B'(s) is a continuous function on [0,1],

$$\lim_{j \to \infty} \frac{B'(a_j)}{B(a_j)} = B'(1) = \beta.$$

The the second factor on the right-hand side of (3.1) has the following upper bound:

$$\sum_{j=1}^{n} \frac{B'(a_j)}{B(a_j)} q_j \le C_2 \sum_{j=1}^{n} q_j \le C_3 \sum_{j=1}^{n} \frac{1}{j} \le C_3 (1 + \ln n), \tag{3.4}$$

for some positive constants C_2 and C_3 . Combining (3.3) and (3.4), we obtain

$$\lim_{n\to\infty} P\left(Y_{n-j,l}^{(j)} = 0 \text{ for all but one pair } (j,l), \ 0 \le j \le n, 1 \le l \le I_j\right) = 0.$$

We finish the proof.

Acknowledgment: We thank the referees for very helpful comments and suggestions.

References

- [1] K. B. Athreya (2010). Ancestor problem for branching trees. in: *Mathematics Newsletter: Special Issue Commemorating ICM 2010 in India* **19(1)**: 1–10.
- [2] K. B. Athreya (2012). Coalescence in the recent past in rapidly growing populations. *Stochastic Process. Appl.* **122**: 3757–3766.
- [3] K. B. Athreya (2012). Coalescence in critical and subcritical Galton-Watson branching processes. J. Appl. Probab. 49(03): 627–638.
- [4] K. B. Athreya, P. E. Ney (1972). Branching Processes. Springer Verlag, New York-Heidelberg.
- [5] Y. T. Chen, J. F. Delmas (2012). Smaller population size at the mrca time for stationary branching processes. Ann. Probab. 40: 2034–2068.
- [6] R. Durrett (1978). The genealogy of critical branching processes. Stochastic Process. Appl. 8: 101–116.
- [7] S. C. Harris, S. G. G. Johnston, M. I. Roberts (2020). The coalescent structure of continuous-time Galton-Watson trees. *Ann. Appl. Probab.* **30**: 1368–1414.
- [8] C. R. Heathcote (1965). A branching process allowing immigration. J. Roy. Statist. Soc. Ser. B 27: 138–143.
- [9] J.-I Hong (2016). Coalescence on critical and subcritical multitype branching processes. J. Appl. Probab. 53: 802-817.
- [10] S. G. G. Johnston (2019). The genealogy of Galton-Watson trees. Electron. J. Probab. 24: 1–35.
- [11] O. Kallenberg (2017). Random Measures, Theory and Applications. Probability Theory and Stochastic Modelling 77, Springer, Cham.
- [12] G. Kersting (2022). On the genealogical structure of critical branching processes in a varying environment. Proc. Steklov Inst. Math. 316: 209–219.
- [13] A. Lambert (2003). Coalescence times for the branching process. Adv. Appl. Probab. 35: 1071–1089.
- [14] V. Le (2014). Coalescence times for the Bienaymé-Galton-Watson process. J. Appl. Probab. 51(1): 209–218.
- [15] A. G. Pakes (1971a). Branching processes with immigration. J. Appl. Probab. 8: 32–42.
- [16] A. G. Pakes (1971b). On the critical Galton-Watson process with immigration. J. Austral. Math. Soc. 12: 476–482.
- [17] K. Sato (2014). Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University.
- [18] R. S. Slack (1968). A branching process with mean one and possibly infinite variance. Z. Wahrschein. Verw. Geb. 9(2): 139–145.

- [19] R. S. Slack (1972/73). Further notes on branching processes with mean 1. Z. Wahrschein. Verw. Geb. 25: 31–38.
- [20] H. M. Wang, L. Li and H. Yao (2019). Coalescence for supercritical Galton-Watson processes with immigration. arXiv:1906.03945.
- [21] A. M. Zubkov(1975). Limit distributions of the distance to the nearest common ancestor. *Theory Probab. Appl.* **20**: 602–612.