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Abstract

Consider a two-type reducible branching Brownian motion in which particles’ diffusion coeffi-
cients and branching rates are influenced by their types. Here reducible means that type 1 particles
can produce particles of type 1 and type 2, but type 2 particles can only produce particles of type
2. The maximum of this process is determined by two parameters: the ratio of the diffusion coef-
ficients and the ratio of the branching rates for particles of different types. Belloum and Mallein
[Electron. J. Probab. 26(20121), no. 61] identified three phases of the maximum and the extremal
process, corresponding to three regions in the parameter space.

We investigate how the extremal process behaves asymptotically when the parameters lie on the
boundaries between these regions. An interesting consequence is that a double jump occurs in the
maximum when the parameters cross the boundary of the so called anomalous spreading region,
while only single jump occurs when the parameters cross the boundary between the remaining two
regions.

MSC2020 Subject Classifications: Primary 60J80; 60G55, Secondary 60G70; 92D25.

Keywords and Phrases: branching Brownian motion; double jump; extremal process; reducible
branching process; Brownian motion.

1 Introduction

Over the last few years, many people have studied the extreme values of the so-called log-corrected
fields, which form a large universality class for the distributions of extreme values of correlated stochas-
tic processes. One of the simple model in this class is the branching Brownian motion (BBM), which
can be described as follows. Initially we have a particle moving as a standard Brownian motion. At
rate 1 it splits into two particles. These particles behave independently of each other, continue move
and split, subject to the same rule.

Due to the presence of a tree structure and Brownian trajectories, many precise results for the
extreme value of BBM were obtained. Bramson [26, 27] gave the correct order of the maximum
for BBM and the convergence in law of the centered maximum. Lalley and Sellke [39] obtained a
probabilistic representation of the limit distribution. A remarkable contribution for the extreme value
statistics is the construction of the limiting extremal process for BBM, obtained in Arguin, Bovier
and Kistler [9], as well as in Aı̈dékon, Berestycki, Brunet and Shi [3]. With motivation from disorder
system [24, 25], serval works studied the extreme value for variable speed BBMs see, for examples,
[21, 22, 33, 43]. Many results on BBM were extended to branching random walks [2, 42], and other
log-corrected fields, such as 2-dimensional discrete Gaussian free fields [18, 19, 28, 29], log-correlated
Gaussian fields on d-dimensional boxes [1, 30, 40], and high-values of the Riemann zeta-function
[6, 7, 10]. For recent reviews see, e.g. [5, 11].
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†The research of this author is supported by NSFC (Grant Nos. 12071011 and 12231002) and the Fundamental

Research Funds for Central Universities, Peking University LMEQF.
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This article concerns the extreme values of a multi-type branching Brownian motion, in which
particles of different types have different branching mechanisms and diffusion coefficients. Just like
in the case of Markov chains, we say a multi-type branching Brownian motion is reducible if particles
of some type i can not give birth to particles of some type j; and otherwise call it irreducible. For
irreducible multi-type BBMs (with a common diffusion coefficient for all types), the spreading speed
was given by Ren and Yang [47], and recently Hou, Ren and Song [36] obtained the precise order of
the maximum and the limiting extremal process. For reducible multi-type branching random walks
(BRWs), Biggins [16, 17] studied the leading coefficient of the maximum and found that in some cases
the processes exhibit the so-called anomalous spreading phenomenon. More precisely, the leading
coefficient of the maximum for a multi-type BRW is larger than that of a BRW consisting only of
particles of a single type. Holzer [34, 35] extended results of Biggins to the BBM setting, by studying
the associated system of F-KPP equations.

Belloum and Mallein [13] studied the extremal process of a two-type reducible BBM and obtained
in particular the precise order of the maximum. One can construct this process by first running a BBM
with branching rate β and diffusion coefficient σ2 (type 1 BBM), and then adding standard BBMs
(type 2 BBMs) along each (β, σ2) BBM path according to a Poisson process. There are three different
regimes: type 1/type 2 domination, and anomalous spreading, corresponding to the parameters (β, σ2)
belong three different sets CI ,CII ,CIII (see Figure 1). However when the parameters (β, σ2) are on
the boundaries between these three sets, the precise order of the maximum and the behavior of
extremal process are not clear, except the common intersection of these boundaries which was studied
by Belloum [12].

In this article, we study the asymptotic behavior of extremal particles in the two-type reducible
BBM above when the parameters (β, σ2) lie on the boundaries between CI ,CII ,CIII . We show that
the extremal process converges in law towards a decorated Poisson point process and give the precise
order of the maximum. Combined with the main results in [12, 13], the phase diagram of the two-type
reducible BBM is now complete and clear. As an interesting by-product, a double jump occurs in
the maximum of the two-type reducible BBM when the parameters (β, σ2) cross the boundary of
the anomalous spreading region CIII , and only single jump occurs when the parameters cross the
boundary between CI ,CII .

1.1 Standard branching Brownian motion

Let {(Xu(t), u ∈ Nt)t≥0,P} be a standard BBM, where Nt is the set of all particles alive at time t, and
Xu(t) denotes the position of individual u ∈ Nt. Let Mt = maxu∈Nt Xu(t) be the maximal displacement
among all the particles alive at time t. Bramson [26, 27] obtained an explicit asymptotic formula of Mt:
If let mt :=

√
2t− 3

2
√
2

log t, then (Mt −mt : t > 0) converges weakly, and the cumulative distribution

function of the limit distribution is the unique (up to transition) solution of a certain ODE. Lalley
and Sellke [39] improved this result and they proved that Mt−mt converges weakly to a random shift
of the Gumbel distribution. Specifically, they showed that for some constant C⋆,

lim
t→∞

P(Mt −mt ≤ x) = E[exp{−C⋆Z∞e−
√
2x}], (1.1)

where Z∞ is the almost sure limit of the so-called derivative martingale (Zt)t>0 defined by Zt =∑
u∈Nt

(√
2t− Xu(t)

)
e
√
2Xu(t)−2t. The name “derivative martingale” comes from the fact that Zt =

− ∂
∂λ |λ=√

2Wt(λ), where Wt(λ) :=
∑

u∈Nt
e
λXu(t)−

(
1+λ2

2

)
t

is called the additive martingale for BBM.
After the maximum of the process was known, many researches focus on the full extreme value

statistics for BBM, which can be encoded by the following point process, called extremal process

Et :=
∑

u∈Nt

δXu(t)−mt
.
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It was proved independently by Arguin, Bovier, Kistler [9], and Aı̈dékon, Berestycki, Brunet, Shi [3]
that Et converges in law to a random shifted decorated Poisson point process (DPPP for short) defined
as follows.

A DPPP E is determined by an intensity measure µ and a decoration process D, where µ is
a (random) measure on R and D is the law of a random point process on R. Conditioned on µ,
sampling a Poisson point process

∑
i δxi with intensity µ, and an independent family of i.i.d. point

processes
(∑

j δdij
: i ≥ 0

)
with law D, then the point measure E ∼ DPPP(µ,D) can be constructed

as E =
∑

i,j δxi+dij
.

Using this notation, the main result in [3] and [9] is that

lim
t→∞

∑

u∈Nt

δXu(t)−mt
= DPPP

(√
2C⋆Z∞e−

√
2x dx,D

√
2
)

in law. (1.2)

The decoration law D
√
2 belongs to the family

(
Dϱ, ϱ ≥

√
2
)
, defined as the limits of the “gap pro-

cesses” conditioned on Mt ≥ ϱt :

Dϱ(·) := lim
t→∞

P


∑

u∈Nt

δXu(t)−Mt
∈ · | Mt ≥ ϱt


 . (1.3)

Bovier and Hartung [21] used these point processes as the decorations in the extremal processes of 2-
speed BBMs. See also [14] for an alternative representation using the spine decomposition techniques.

1.2 Two-type reducible branching Brownian motion

Now we give the definition of a two-type reducible branching Brownian motion, which is the model
we are going to study in this paper. The difference between our two-type reducible BBM and the
standard BBM is that in our two-type BBM, each particle now has a type and the branching and
movement depend on the type. Specifically, type 1 particles move according to a Brownian motion
with diffusion coefficient σ2. They branch at rate β into two children of type 1 and give birth to
particles of type 2 at rate α. Type 2 particles move according to a standard Brownian motion and
branch at rate 1 into 2 children of type 2, but can not give birth to offspring of type 1. We use Nt

to represent all particles alive at time t, as well as N1
t and N2

t for particles of type 1 and type 2 alive
at time t respectively. For u ∈ Nt and s ≤ t, let Xu(s) be the position of the ancestor at time s of
particle u. So we write {(Xu(t), u ∈ Nt)t≥0,P} for a two-type reducible BBM and Mt := max

u∈Nt

Xu(t)

for its maximum.
As mentioned at the beginning of the paper, Biggins [16, 17] found that anomalous spreading

may occur for multi-type reducible BRWs. Belloum and Mallein [13] studied more details on the
precise order of maximum and extremal process for this two-type BBM. Especially in the case when
anomalous spreading occurs, they showed that the extremal process, formed by type 2 particles at
time t, converge towards a DPPP.

To describe the limiting extremal process in the form of (1.2), we introduce the additive and
derivative martingales of type 1 particles. Note that particles {Xu(t) : u ∈ N1

t } of type 1 alone have
the same law as the BBM with branching rate β and diffusion coefficient σ2, which is denoted by

(Xβ,σ2

u (t) : u ∈ Nt)t≥0 (So the standard BBM X = X1,1.) Using the scaling property of Brownian
motion, we have (

Xβ,σ2

u (t) : u ∈ Nt

)
law
=

(
σ√
β
Xu(βt) : t ∈ Nβt

)
.

So the corresponding derivative martingale of type 1 individuals and its limit are given by

Z
(I)
t :=

∑

u∈N1
t

(vt−Xu(t)) eθXu(t)−2βt and Z(I)
∞ = lim

t→∞
Z

(I)
t . (1.4)
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The corresponding additive martingales of type 1 individuals and its limit are given by

W
(I)
t (λ) :=

∑

u∈N1
t

eλXu(t)−(λ
2σ2

2
+β)t and W (I)

∞ (λ) = lim
t→∞

W
(I)
t (λ), for λ ∈ R. (1.5)

Divide the parameter space
(
β, σ2

)
∈ R2

+ into three regions (see Figure 1):

CI =

{(
β, σ2

)
: σ2 >

1

β
1{β≤1} +

β

2β − 1
1{β>1}

}
,

CII =

{(
β, σ2

)
: σ2 <

1

β
1{β≤1} + (2 − β)1{β>1}

}
,

CIII =

{(
β, σ2

)
: σ2 + β > 2 and σ2 <

β

2β − 1

}
.

The main results in [13] are as follows. Recall the constant C⋆ in (1.1), (1.2), and the decorations
(Dϱ)ρ≥

√
2 in (1.3). Let v :=

√
2βσ2 and θ :=

√
2β/σ2.

• If
(
β, σ2

)
∈ CI , then Mt = vt− 3

2θ log t + OP(1). For some constant C and some decoration law
D, we have

lim
t→∞

∑

u∈N2
t

δXu(t)−vt+ 3
2θ

log t = DPPP
(
θCZ(I)

∞ e−θx dx,D
)

in law.

• If
(
β, σ2

)
∈ CII , then Mt =

√
2t − 3

2
√
2

log t + OP(1). There is some random variable Z̄∞ (see

Lemma 5.3) such that

lim
t→∞

∑

u∈N2
t

δXu(t)−
√
2t+ 3

2
√
2
log t = DPPP

(√
2C⋆Z̄∞e−

√
2x dx,D

√
2
)

in law,

• If
(
β, σ2

)
∈ CIII , then Mt = v∗t + OP(1), where v∗ = β−σ2√

2(1−σ2)(β−1)
> max(v,

√
2). For

θ∗ =
√

2 β−1
1−σ2 and C = αC(θ∗)

2(β−1) (where C(θ∗) is defined in Lemma 2.4, (ii)), we have

lim
t→∞

∑

u∈N2
t

δXu(t)−v∗t = DPPP
(
θ∗CW (I)

∞ (θ∗)e−θ∗x dx,Dθ∗
)

in law.

Moreover, Belloum [12] showed that

• If
(
β, σ2

)
= (1, 1), then Mt =

√
2t− 1

2
√
2

log t + OP(1). The extremal process

lim
t→∞

∑

u∈N2
t

δXu(t)−
√
2t+ 1

2
√
2
log t = DPPP

(√
2C⋆Z

(I)
∞ e−

√
2x dx,D

√
2
)

in law.

The above results were explained by Belloum and Mallein [13] as follows: If
(
β, σ2

)
∈ CIII , the

leading coefficient v∗ is larger than max
(√

2, v
)
, and the extremal process is given by a mixture of

the long-time behavior of the processes of particles of type 1 and 2. If
(
β, σ2

)
∈ Ci for i = 1, 2, the

order of Mt is the same as a single BBM of particles of type i, and the extremal process is dominated
by the long-time behavior of particles of type i.

The aim of this article is to obtain the asymptotic behavior of the maximum and the extremal
process of the two-type branching process when parameters (β, σ2) are on the boundaries between
CI ,CII ,CIII , except the point (1, 1). In this cases there were some conjectures in [13, Section 2,4].
Our main results confirm that the conjectures are true with some coefficients being corrected and we
also give the result for the case for which there was no conjecture.
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1.3 Main results

In the statements of our theorems, we continue to use the notation introduced earlier: the constant

C⋆ in (1.2) and decorations (Dϱ : ρ ≥
√

2) in (1.3), the derivative martingale Z
(I)
∞ and additive

martingales W
(I)
∞ (λ) in (1.4) and (1.5). Denote by

BI,II = ∂CI ∩ ∂CII\{(1, 1)} =
{

(β, σ2) : βσ2 = 1, β < 1
}

;

BII,III = ∂CII ∩ ∂CIII\{(1, 1)} =
{

(β, σ2) : β + σ2 = 2, β > 1
}

;

BI,III = ∂CI ∩ ∂CIII\{(1, 1)} =

{
(β, σ2) :

1

β
+

1

σ2
= 1, β < 1

}
.

1

1

β

σ2

CI√
2βσ2t− 3

2
√

2β/σ2
log t

CII
√

2t−
3

2
√
2

log t

CIII β−σ2

2
√

(1−σ2)(β−1)
t

BI,II

√
2t − 3

2
√
2

log t

BII,III√
2t− 1

2
√
2

log t

BI,III
√

2βσ2t− 1

2
√

2β/σ2
log t

1

Figure 1: Phase diagram for the maximum of two type reducible BBM

Theorem 1.1 (Boundary between CII , CIII). Assume that (β, σ2) ∈ BII,III . Let

m2,3
t :=

√
2t− 1

2
√

2
log t.

Then for the constant C = αC⋆√
2(1−σ2)

> 0, we have

lim
t→∞

∑

u∈Nt

δ
Xu(t)−m2,3

t
= lim

t→∞

∑

u∈N2
t

δ
Xu(t)−m2,3

t
= DPPP

(√
2CW (I)

∞ (
√

2)e−
√
2x dx,D

√
2
)

in law.

Theorem 1.1 confirms Conjecture 2.2 of Belloum and Mallein [13] with the constant before log t

being corrected as 1
2
√
2
, and the random variable Z̃ there taken to be W

(I)
∞ (

√
2).

Throughout this paper, we set

v :=
√

2βσ2 and θ :=
√

2β/σ2.

Theorem 1.2 (Boundary between CI , CIII). Assume that (β, σ2) ∈ BI,III . Let

m1,3
t := vt− 1

2θ
log t.

Then we have

lim
t→∞

∑

u∈Nt

δ
Xu(t)−m1,3

t
= lim

t→∞

∑

u∈N2
t

δ
Xu(t)−m1,3

t
= DPPP

(
θCZ(I)

∞ e−θx dx,Dθ
)

in law

with C = ασC(θ)√
2πβ(1−σ2)

(where C(θ) is defined in Lemma 2.4, (ii)).
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Figure 2: Coefficients for term t and log t as function of (β, σ2)

Theorem 1.2 confirms Conjecture 2.1 of Belloum and Mallein [13] with the coefficient before log t
being corrected as 1

2θ and the decoration law D̃ there taken to be Dθ.

Theorem 1.3 (Boundary between CI , CII). Assume that (β, σ2) ∈ BI,II . Let

m1,2
t := mt =

√
2t− 3

2
√

2
log t.

For some random variable Z̄∞ (defined in Lemma 5.3), we have

lim
t→∞

∑

u∈Nt

δ
Xu(t)−m1,2

t
= lim

t→∞

∑

u∈N2
t

δ
Xu(t)−m1,2

t
= DPPP

(√
2C⋆Z̄∞e−

√
2x dx,D

√
2
)

in law.

Remark 1.4. Combining Theorems 1.1, 1.2, 1.3 and results in [13, 12], we can observe a double
jump in the maximum maxu∈Nt Xu(t) when the parameters (β, σ2) cross the boundary of anomalous
spreading region CIII . The leading order varies continuously but the logarithmic correction changes
from − 3

2
√
2

log t to − 1
2
√
2

log t then to 0; or from − 3
2θ log t to − 1

2θ log t then to 0. See Figure 2. Such

a phase transition reminds us of the study of time inhomogeneous BRW [32], in which a constant
multiplying the logarithmic correction changes from −1

2 to −3
2 then to −6

2 . Also in a more general
setting of [32], phase transitions becomes a little bit more complex and a double jump can occur as well
(see [44]). A more interesting problem is to make the logarithmic correction smoothly interpolates
from 1 to 6, which is done for variable speed BBM in [23] (see also [37]). For two-type reducible
BBMs, we ask a similar question as follows.

Question 1. Can we let the parameters (βt, σ
2
t ) depend on the time horizon t, in order that the

logarithmic correction for the order of the maximum at time t smoothly interpolates − 3
2
√
2

log t to

− 1
2
√
2

log t then to 0 or from − 3
2θ log t to − 1

2θ log t then to 0?

Remark 1.5. When (β, σ2) ∈ BI,II , the localization of paths of extremal particles is the same as
the case (β, σ2) ∈ CII (see Lemma 5.1). So when (β, σ2) crosses the boundary between CI , CII , the
maximum of the process only experience one jump: the subleading coefficient changes from − 3

2
√
2

to

− 3
2θ .

Remark 1.6. Our results Theorems 1.1, 1.2, 1.3 can be strengthened as the joint convergence of the
extremal processes and its maximum (Et,max Et) to DPPPs and its maximum (E∞,max E∞). Since by
[14, Lemma 4.4], these assertions are both equivalent to convergence of Laplace functional E[e−⟨ϕ,Et⟩]
with certain test functions φ ∈ T introduced below.
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Notation convention. Let T be the set of functions φ ∈ C+
b (R) such that inf supp(φ) > −∞ and

for some a ∈ R, φ(x) ≡ some positive constant for all x > a. T will serve as test functions in the
Laplace functional (see [14, Lemma 4.4]). For two quantities f and g, we write f ∼ g if lim f/g = 1.
We write f ≲ g if there exists a constant C > 0 such that f ≤ Cg. We write f ≲λ g to stress that the
constant C depends on parameter λ. We use the standard notation Θ(f) to denote a non-negative
quantity such that there exists constant c1, c2 > 0 such that c1f ≤ Θ(f) ≤ c2f .

1.4 Heuristics

We restate the optimization problem introduced in [13, Section 2.1] (see also Biggins [16]). First, we
introduce the following definition:

Definition 1.7. If u ∈ N2
t , we denote by Tu the time at which the oldest ancestor of type 2 of u was

born. We say Tu is the type transformation time of u.

For p ∈ [0, 1], let Np,a,b(t) be the expected number of type 2 particles at time t who has speed a
before time Tu ≈ pt and speed b after time pt. Note that these particles are at level [pa + (1 − p)b]t.

First-moment computations yield that there are around e

(
β− a2

2σ2

)
pt+o(t)

type 1 particles at time pt

at level apt, and a type 2 particle has probability e

(
1− b2

2

)
(1−p)t+o(t)

of having a descendant at level

b(1 − p)t at time (1 − p)t. Hence we get Np,a,b(t) = exp
{

[(β − a2

2σ2 )p + (1 − b2

2 )(1 − p)]t + o(t)
}

. In

order to get the maximum, we just maximize pa + (1 − p)b among all the parameter p, a, b such that(
β − a2

2σ2

)
p ≥ 0 and Np,a,b(t) ≥ 1. This turns to the following optimization problem:

v∗ = max

{
pa + (1 − p)b : p ∈ [0, 1],

(
β − a2

2σ2

)
p ≥ 0,

(
β − a2

2σ2

)
p + (1 − b2

2
)(1 − p) ≥ 0

}
.

Write (p∗, a∗, b∗) for the maximizer of the problem above. If
(
β, σ2

)
∈ CI , then p∗ = 1, a∗ = v, and

v∗ = v; if
(
β, σ2

)
∈ CII , then p∗ = 0, b∗ =

√
2 and v∗ =

√
2; if

(
β, σ2

)
∈ CIII , then p∗ = σ2+β−2

2(1−σ2)(β−1)
,

b∗ =
√

2 β−1
1−σ2 , a∗ = σ2b∗, and v∗ = β−σ2√

2(1−σ2)(β−1)
. Also if (β, σ2) = (1, 1), then p∗ can be arbitrary in

[0, 1], a∗ = b∗ =
√

2 and v∗ =
√

2.
When (β, σ2) ∈ BII,III , the maximizer p∗ = 0, v∗ = b∗ =

√
2, and a∗ can be arbitrary. Hence

each individual u ∈ N2
t near the maximal position should satisfy p∗ = Tu/t ≈ 0. But now the order

of Tu really matters, and if Tu ≫ 1, a∗ should be
√

2σ2 predicted by the formula for the case CIII .
When (β, σ2) ∈ BI,III , the maximizer p∗ = 1, v∗ = a∗ = v, and b∗ can be arbitrary. We can deduce
that each individual u ∈ N2

t near the maximal position satisfies p∗ = Tu/t ≈ 1. The order of t− Tu is
also important, and if t − Tu ≫ 1, b∗ should be

√
2β/σ2 predicted by the formula for the case CIII .

Similar problems occur when we consider the boundary BI,II . The following computations, based on
a finer analysis, provide more insights for localization of paths of extremal particles.

The case (β, σ2) ∈ BII,III . As the computation above, the expected number of particles of type 1

at time s = o(t) at level λs is roughly e(β−
λ2

2σ2 )s+O(log t). A typical particle of type 2 has probability

of e−(2−
√
2λ)s− (

√
2−λ)2

2
s2

t−s
+O(log t) having a descendant at level

√
2t− λs at time t− s. Hence there are

around

exp

{[
β − λ2

2σ2
− (2 −

√
2λ)

]
s− (

√
2 − λ)2

2

s2

t− s
+ O(log t)

}
(1.6)

particles of type 2 at level
√

2t at time t. In order that the quantity in (1.6) is not zero as t → ∞,

first we have to ensure that β − λ2

2σ2 − (2 −
√

2λ) = − 1
2σ2 (λ−

√
2σ2)2 ≥ 0 (here we used β + σ2 = 2),

7



which forces λ =
√

2σ2. Secondly we have to ensure that s2

t−s is bounded, i.e., s = O(
√
t). In other

words, the extremal particle u ∈ N2
t should satisfy Tu = O(

√
t) and Xu(Tu) ≈

√
2σ2Tu.

The case (β, σ2) ∈ BI,III . The expected number of type 1 particles at time s = t − o(t) at level

vs−a(t) (where a(t) will be determined later) is roughly eθa(t)−
a(t)2

2s
+O(log t). A typical particle of type

2 has the probability of e
−
[
( v

2

2
−1)(t−s)+va(t)+

a(t)2

2(t−s)

]
+O(log t)

having a descendant at level v(t− s) + a(t)
at time t− s. Hence there are around

exp

{
−
[(

v2

2
− 1

)
(t− s) +

a(t)2

2s
+

a(t)2

2(t− s)

]
+ (θ − v)a(t) + O(log t)

}
(1.7)

particles of type 2 at level vt at time t. In order that the quantity in (1.7) is not zero as t → ∞, using

the prior knowledge s ∼ t, first we have to ensure that a(t) has the same order as t− s or a(t)2

t−s , and

we get a(t) = Θ(t− s). We also need to ensure that a(t)2

2s = O(1), thus implies a(t) = t− s = O(
√
t).

So, letting a(t) = a
√
t and t− s = λ

√
t, we can rewrite (1.7) as

exp

{(
θa− (a + λv)2

2λ
+ λ

)√
t + O(log t)

}
.

We now have to ensure θa − (a+λv)2

2λ + λ = − 1
2λ [a − (θ − v)λ]2 ≥ 0 (here we used 1

β + 1
σ2 = 2). This

forces a = (θ − v)λ and hence a(t) = a
√
t = (θ − v)(t − s). In other words, the extremal particle

u ∈ N2
t should satisfy Tu = t− Θ(

√
t) and Xu(Tu) ≈ vTu − (θ − v)(t− Tu).

The case (β, σ2) ∈ BI,II We do the same computation as in the case (β, σ2) ∈ BI,III , and get
(1.7). However, when βσ2 = 1 and β < 1, we have v =

√
2 and θ =

√
2β, and then (1.7) becomes

exp

{
−
[√

2(1 − β)a(t) +
a(t)2

2s
+

a(t)2

2(t− s)

]
+ O(log t)

}
. (1.8)

In order that (1.8) tends to a nonzero limit, we need a(t) = O(log t). This is very different from
the case (β, σ2) = (1, 1) in [12], for which case we can get a(t) = O(

√
t) (now s is of order t). Now

the simple first moment computations can not tell us more. However, we can still make a guess.
Notice that the extremal particle u ∈ N2

t are also extremal (up to O(log t)) at time Tu. This fact
reminds us of the decreasing variances case in [32]: The maximum at time t is the highest value
among the descendants of the maximal particle at time t/2. So we guess that maxu∈Nt Xu(t) ≈
maxTu∈[0,t]{

√
2Tu − 3

2θ log Tu +
√

2(t− Tu)− 3
2
√
2

log(t− Tu)}. As θ <
√

2, we should choose Tu small.

So we expect Tu = O(1) and maxu∈Nt Xu(t) should be
√

2t− 3
2
√
2

log t.

2 Preliminary results

2.1 Brownian motions estimates

We always use {(Bt)t≥0;P} to denote a standard Brownian motion (BM) starting from the origin.
Here is a useful upper bound for the probability that a Brownian bridge is below a line, see [26,
Lemma 2] for a proof.

Lemma 2.1. Consider a line segment with endpoints (0, x1), (t, x2) with x1, x2 ≥ 0. We have

P

(
Bs ≤

s

t
x2 +

t− s

t
x1, ∀s ∈ [0, t]

∣∣∣∣Bt = 0

)
= 1 − e−

2x1x2
t ≤ 2x1x2

t
.
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As a corollary, we also have an estimate for the probability that a BM stays below a line and ends
up in a finite interval. For all K ≥ 1 and y ≥ 0 we have

P (Bs ≤ K, s ≤ t, Bt −K ∈ [−y − 1,−y]) ≤ C
K(y + 1)

(1 + t)3/2
. (2.1)

In fact, the desired probability is less than the product of P(Bt − K + y ∈ [−1, 0]) ≤ 1√
2πt

and

maxz∈[0,1]P(Bs ≤ K, ∀s ∈ [0, t] |Bt = K − y − z) ≤ 2K(y + 1)/t by Lemma 2.1.
Later in the proof of Lemma 4.1, we will use a slight modification of Lemma 2.1 as follows. For

completeness, we give its proof in the appendix A.

Lemma 2.2. Let m̃t = vt − wt, where wt = Θ(log t). Assume that σ2 ≤ 1. Fix K ≥ 0 and x ∈ R.
Then for sufficiently large t and s ∈ [t−

√
t log t, t],

P (σBr ≤ vr + K,∀r ≤ s|σBs + Bt −Bs = m̃t + x) ≲K,β,σ
t− s + wt + |x|

t
. (2.2)

2.2 Branching Brownian motions estimates

We always use {(Xβ,σ2

u (t) : u ∈ Nt)t≥0,P} to denote a BBM starting from one particle at the origin
with branching rate β and diffusion coefficient σ2. For the BBM, there is an upper envelope through
which particles find it difficult to pass. In fact, letting at = 3

2θ log(t + 1), for some constant C > 0
and for all t > 0,K > 0,

P
(
∃s ≤ t, u ∈ Ns : Xβ,σ2

u (s) ≥ vs− at + at−s + K
)
≤ C(K + 1)e−θK , (2.3)

see [13, (6.1)] (or [45, Lemma 3.1]). In particular, we have

P
(
∃s ≤ t, u ∈ Ns : Xβ,σ2

u (s) ≥ vs + K
)
≤ C(K + 1)e−θK . (2.4)

We collect several results for the standard BBM (Xu(t) : u ∈ Nt)t≥0, (i.e., β = σ2 = 1) that will
be used frequently. Recall that Mt = maxu∈Nt Xu(t). The following estimate of the upper tail of Mt

was proved in [8, Corollary 10]

Lemma 2.3. For x > 1 and t ≥ to (for to a numerical constant),

P

(
Mt ≥

√
2t− 3

2
√

2
log t + x

)
≤ ρ · x · exp

(
−
√

2x− x2

2t
+

3

2
√

2
x

log t

t

)

for some constant ρ > 0.

As a consequence of Lemma 2.3, we have

P

(
Mt ≥

√
2t− 3

2
√

2
log t + x

)
≤ ρ · x exp

(
−
√

2x + 1
)
, (2.5)

for all x > 1 and t > t0, since −x2

2t + 3
2
√
2
x log t

t ≤ 1, for all t > 100 and x > 1.

The following estimates for the Laplace functionals of standard BBMs can be found in [12, Corol-
lary 2.9] and [13, Corollary 2.9]. One can also obtain the same results from the large deviations
probability P(Mt > ρt + x) with ρ ≥

√
2 and the conditioned convergence of the gap processes (1.3).

Lemma 2.4. Let φ ∈ T , R > 0 and ρ >
√

2. Then the following assertions hold.
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(i) For x ∈ [−R
√
t,− 1

R

√
t] uniformly

1 − E
(
e−

∑
u∈Nt

φ(x+Xu(t)−
√
2t)
)

= γ√2(φ)
(−x)

t3/2
e
√
2x−x2

2t (1 + o(1)),

as t → ∞, where γ√2(φ) =
√

2C⋆

∫
e−

√
2z
(

1 − E
(
e−⟨D

√
2,φ(·+z)⟩

))
dz.

(ii) For x ∈ [−R
√
t,− 1

R

√
t] uniformly

1 − E
(
e−

∑
u∈Nt

φ(x+Xu(t)−ρt)
)

= γρ(φ)
e(1−ρ2/2)t

√
t

eρx−
x2

2t (1 + o(1)),

as t → ∞, where γρ(φ) =
C(ρ)√

2π

∫
e−ρz

(
1 − E(e−⟨Dρ,φ(·+z)⟩)

)
dz.

2.3 Choosing an individual according to Gibbs measure

For a standard BBM {(Xu(t) : u ∈ Nt),P}, it is well known that the additive martingale

Wt(η) =
∑

u∈Nt

e
ηXu(t)−

(
η2

2
+1

)
t

converges almost surely and in L1 to a non-degenerate random variable W∞(η) when η ∈ (0,
√

2).
And, when η =

√
2, the non-negative martingale Wt(η) converges to zero with probability one (see

e.g. [38]). Conditioned on BBM at time t, we randomly choose a particle u ∈ Nt with probability
eηXu(t)∑

u∈Nt
eηXu(t) , which is the so called Gibbs measure at inverse temperature η. Hence the additive

martingale is the normalized partition function of the Gibbs measure.
Firstly we state a law of large number theorem for the particle chosen according to the Gibbs

measure. This result is not new. Since we didn’t find a reference, we offer a simple proof in Section
6 for completeness.

Proposition 2.5. Let f be a bounded continuous function on R. Suppose η ∈ (0,
√

2). Define

Wf
t (η) :=

∑

u∈Nt

f

(
Xu(t)

t

)
e
ηXu(t)−

(
η2

2
+1

)
t
.

Then
lim
t→∞

Wf
t (η) = f(η)W∞(η) in L1(P).

This law of large number holds since the Gibbs measure is supported on the particles at position
around ηt for η ∈ (0,

√
2). One may further ask the fluctuations of Xu(t) − ηt. Indeed a central limit

theorem (CLT) holds (see [46, (1.14)]): for η ∈ (0,
√

2) and for each bounded continuous function f ,

lim
t→∞

∑

u∈Nt

f

(
Xu(t) − ηt√

t

)
e
ηXu(t)−t

(
η2

2
+1

)
= W∞(η)

∫

R
f(z)e−

z2

2
dz√
2π

P-a.s.

In the critical case η =
√

2, the limiting distribution in the CLT is no longer Gaussian, but the

Rayleigh distribution µ(dz) = ze−
z2

2 1{z>0} dz. Madaule [41, Theorem 1.2] showed that for every
bounded continuous function F ,

lim
t→∞

√
t
∑

u∈Nt

F

(√
2t− Xu(t)√

t

)
e−

√
2(
√
2t−Xu(t)) =

√
2

π
Z∞⟨F, µ⟩ (2.6)

10



in probability, where ⟨F, µ⟩ :=
∫∞
0 F (z)µ(dz). In fact, Madaule’s result is a Donsker-type theorem for

BRWs. A simple proof of (2.6) can be found in [43, Theorem B.1].
The following proposition gives a natural generalization of (2.6). We didn’t find such a result in

the literature and to our knowledge, it is new.

Proposition 2.6. Let G be a non-negative bounded measurable function with compact support. Sup-
pose Ft(z) = G( z−rt

ht
), where rt and ht satisfy that for some ϵ > 0 and for large t, t−

1
2
+ϵ ≤ rt ≤ r̄ < ∞

and rt + yht = Θ(rt) uniformly for y ∈ supp(G). Define

WFt
t (

√
2) :=

∑

u∈Nt

Ft

(√
2t− Xu(t)√

t

)
e−

√
2(
√
2t−Xu(t)).

Then we have

lim
t→∞

√
t

⟨Ft, µ⟩
WFt

t (
√

2) =

√
2

π
Z∞ in probability.

Taking rt = λ and ht = t−1/4, and denoting Ft,λ := G((z − λ)t1/4), for any finite interval I ⊂ (0,∞)
with strictly positive endpoints we have

lim
t→∞

t3/4
∫

I
W

Ft,λ

t (
√

2) dλ =

√
2

π
µ(I)

∫

R
G(y) dy Z∞ in probability. (2.7)

Remark 2.7. To make Proposition 2.6 easier to understand, we choose the function G to be the
indicator function 1[a,b]. Letting ht = 1 and rt = λ > 0, Proposition 2.6 gives the CLT (2.6):

√
t
∑

u∈Nt

e−
√
2(
√
2t−Xu(t))1{

√
2t−Xu(t)∈[(λ+a)

√
t,(λ+b)

√
t]} = [1 + oP(1)]µ([λ + a, λ + b])

√
2

π
Z∞.

Letting ht = t−1/2 and rt = λ > 0, Proposition 2.6 yields that

√
t
∑

u∈Nt

e−
√
2(
√
2t−Xu(t))1{

√
2t−Xu(t)∈[λ

√
t+a,λ

√
t+b]} = [1 + oP(1)]

(b− a)√
t

λe−
λ2

2

√
2

π
Z∞.

This can be thought of a local limit theorem (LLT) result for the position of a particle sampled
according to the Gibbs measure with parameter η =

√
2. (See also [15, Theorem 4] for a LLT result

in the case η <
√

2.) Letting ht = t−1/4 and rt = λ > 0, we get

√
t
∑

u∈Nt

e−
√
2(
√
2t−Xu(t))1{

√
2t−Xu(t)∈[λ

√
t+at1/4,λ

√
t+bt1/4]} = [1 + oP(1)]

(b− a)

t1/4
λe−

λ2

2

√
2

π
Z∞,

which can be regarded as a result between CLT and LLT.

Remark 2.8. Formally, applying Proposition 2.6 to the function zFt(z), we have

1

⟨Ft(z), µ̂⟩
∑

u∈Nt

Ft

(√
2t− Xu(t)√

t

)
(
√

2t−Xu(t))e−
√
2(
√
2t−Xu(t)) → Z∞ in probability,

where µ̂(dz) =
√

2
πz

2e−z2/21{z>0} dz. A rigorous proof can be achieved by slightly modifying the

proof of Proposition 2.6.
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Remark 2.9. In the proof of Proposition 2.6 (and proof of (2.6) [41, Theorem 1.2]), we use the
powerful method developed in [4]. For the CLT case (i.e., rt = Θ(1) = ht), it’s easy to get an O(1)
upper bound for the 2nd moment I2(t) in (6.8), and then easily show that ∆2(t) in (6.14) is negligible.
But this is not the case if ht = o(1) or rt = o(1). Especially we will apply Proposition 2.6 with
ht = Θ(t−1/4). To overcome this difficulty, we upper bound the p-th moment Ip(t) in (6.8) (p ∈ (1, 2)
is carefully chosen) instead of the 2nd moment. We also need to carefully choose parameters in the
good event Gt in (6.15). Combining these two things, we employ a bootstrap argument (6.16) to
show that ∆p(t) in (6.14) is negligible. Here our assumptions on rt and ht are near optimal, since

for ht ≤ rt = o( log t√
t

), (1.1) implies that
√
t

⟨Ft,µ⟩ W
Ft
t (

√
2) → 0 in probability. Our arguments do fail if

log t ≤ rt
√
t ≪ tϵ for all ϵ > 0.

2.4 Many-to-one lemmas for two-type BBMs

Let {(Xu(t), u ∈ Nt),P} be a two-type reducible BBM. Recall that for a type 2 particle u, Tu is the
time at which the oldest ancestor of type 2 of u was born. Let bu be the time when u was born. We
write

B =
{
u ∈ ∪t≥0N

2
t , Tu = bu

}

for the set of particles of type 2 that are born from a particle of type 1. The following useful many-
to-one lemmas were proved in [13, Proposition 4.1 and Corollary 4.3].

Lemma 2.10. Let f be a non-negative measurable function f . Then

(i) E
( ∑

u∈N2
t

f ((Xu(s), s ≤ t) , Tu)

)
= α

∫ t

0
eβs+(t−s)E

(
f ((σBu∧s + (Bu −Bu∧s) , u ≤ t) , s)

)
ds.

(ii) E

(∑

u∈B
f (Xu(s), s ≤ Tu)

)
= α

∫ ∞

0
eβtE (f (Bs, s ≤ t)) dt.

(iii) E
[

exp

(
−
∑

u∈B
f (Xu(s), s ≤ Tu)

)]
= E

[
exp

(
− α

∫ ∞

0

∑

u∈N1
t

1 − e−f(Xu(s),s≤t) dt

)]
.

3 Boundary between CII and CIII

In this section we always assume that (β, σ2) ∈ BII,III , i.e., β > 1, σ2 = 2 − β < 1 and recall that

m2,3
t :=

√
2t− 1

2
√
2

log t.

Lemma 3.1. For any A > 0, we have

lim
R→∞

lim sup
t→∞

P
(
∃u ∈ N2

t : Tu /∈ [
1

R

√
t, R

√
t], Xu(t) ≥ m2,3

t −A

)
= 0.

We are going to show Theorem 1.1, postponing the proof of Lemma 3.1 in the end of this section.

Proof of Theorem 1.1. In this proof, we set Êt :=
∑

u∈N2
t
δ
Xu(t)−m2,3

t
, and for fixed R > 0, let

ÊR
t :=

∑

u∈N2
t

1{Tu∈[ 1R
√
t,R

√
t]}δXu(t)−m2,3

t
.

Thanks to Lemma 3.1, ÊR
t is very close to Êt. More precisely, for all φ ∈ T , we have,

∣∣∣E
(
e−⟨ÊR

t ,φ⟩)− E
(
e−⟨Êt,φ⟩

)∣∣∣ ≤ P
(
∃u ∈ N2

t : Xu(t) ≥ m2,3
t −A, Tu /∈ [

1

R

√
t, R

√
t]

)
,
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where A is chosen such that supp(φ) ⊂ [−A,∞). Thus applying Lemma 3.1 we have

lim
R→∞

lim sup
t→∞

∣∣∣E
(
e−⟨ÊR

t ,φ⟩)− E
(
e−⟨Êt,φ⟩

)∣∣∣ = 0. (3.1)

Hence in order to study the asymptotic behavior of E
(
e−⟨Êt,φ⟩

)
, we only need to study the convergence

of ÊR
t as t and then R goes to infinity.
Fix R > 0 and φ ∈ T . Observe that we can rewrite ⟨ÊR

t , φ⟩ as

∑
u∈B

Tu∈[ 1R
√
t,R

√
t]

∑
u′∈N2

t
u′≽u

φ

(
Xu′(t) −Xu(Tu) −

√
2(t− Tu) + Xu(Tu) −

√
2Tu +

1

2
√

2
log t

)
,

where u′ ≽ u means that u′ is a descendant of u. Using the branching property first and then Lemma
2.10(iii), we have

E
(
e−⟨ÊR

t ,φ⟩) = E
( ∏

u∈B
Tu∈[ 1R

√
t,R

√
t]

f
(
t− Tu, Xu(Tu) −

√
2Tu +

1

2
√

2
log t

))

= E
(

exp

{
− α

∫ R
√
t

1
R

√
t

∑

u∈N1
s

F
(
t− s,Xu(s) −

√
2s +

1

2
√

2
log t

)
ds

})
,

where F (r, x) = 1 − f(r, x) = 1 − E
(
exp{−∑u∈Nr

φ(Xu(r) −
√

2r + x)}
)
. Additionally, as the speed

v =
√

2βσ2 of the BBM of type 1 is less than
√

2, we have, for all s ∈ [ 1R
√
t, R

√
t] and u ∈ N1

s ,√
2s−Xu(s) = Θ(s). Then applying part (i) of Lemma 2.4 we have, uniformly for s ∈ [ 1R

√
t, R

√
t],

F

(
t− s,Xu(s) −

√
2s +

1

2
√

2
log t

)

= (1 + o(1))γ√2(φ)
(
√

2s−Xu(s))

t
e
√
2(Xu(s)−

√
2s)e−

(Xu(s)−
√

2s)2

2t ,

as t → ∞, where the o(1) term is deterministic. Thus E
(
e−⟨ÊR

t ,φ⟩)

= E
(

exp

{
− (1 + o(1))αγ√2(φ) ×

∫ R
√
t

1
R

√
t

∑

u∈N1
s

(
√

2s−Xu(s))

t
e
√
2(Xu(s)−

√
2s)e−

(Xu(s)−
√

2s)2

2t ds

})

= E
(

exp

{
− (1 + o(1))αγ√2(φ)

∫ R

1
R

W(λ, λ
√
t) dλ

})
, (3.2)

where

W(λ, t) :=
∑

u∈N1
t

λ
(√

2 − Xu(t)
t

)
e−

λ2

2
(
√
2−Xu(t)

t
)2e

√
2(Xu(t)−

√
2t).

Recall that ({Xu(t)}u∈N1
t
,P) has the same distribution as ({ σ√

β
Xu(βt)}u∈Nβt

,P). Applying Propo-

sition 2.5, we have, for each λ > 0,

lim
t→∞

W(λ, t) =
√

2λ(1 − σ2)e−(1−σ2)2λ2
W (I)

∞ (
√

2) in L1(P),

Then by the dominated convergence theorem, we have, as t → ∞,

E

∣∣∣∣∣

∫ R

1/R
W(λ, λ

√
t) dλ−

√
2

∫ R

1/R
λ(1 − σ2)e−(1−σ2)2λ2

W (I)
∞ (

√
2) dλ

∣∣∣∣∣

≤
∫ R

1/R
E
∣∣∣W(λ, λ

√
t) −

√
2λ(1 − σ2)e−(1−σ2)2λ2

W (I)
∞ (

√
2)
∣∣∣ dλ → 0.
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Here dominated functions exist since E[W(λ, λ
√
t)], E[

√
2λ(1 − σ2)e−(1−σ2)2λ2

W
(I)
∞ (

√
2)] are both

bouned by maxx≥0 xe
−x2/2. Letting t → ∞ in (3.2), we have

lim
t→∞

E
(
e−⟨ÊR

t ,φ⟩) = E
(

exp

{
− αγ√2(φ)W (I)

∞ (
√

2)

∫ R

1
R

√
2λ(1 − σ2)e−(1−σ2)2λ2

dλ

})
.

Then letting R → ∞, combining (3.1), we obtain

lim
t→∞

E
(
e−⟨Êt,φ⟩

)
= lim

R→∞
lim
t→∞

E
(
e−⟨ÊR

t ,φ⟩) = E
(

exp

{
− αW

(I)
∞ (

√
2)√

2(1 − σ2)
γ√2(φ)

})
,

which is the Laplace functional of DPPP
(

αC⋆√
2(1−σ2)

√
2W

(I)
∞ (

√
2)e−

√
2x dx,D

√
2
)

. Using [14, Lemma

4.4], we complete the proof of Theorem 1.1.

Now it suffices to show Lemma 3.1. First we give prior estimates for the type transformation times
Tu for particles u ∈ N2

t with positions higher than m2.3
t .

Lemma 3.2. For any A > 0 we have

lim sup
t→∞

P
(
∃u ∈ N2

t : Tu >
√
t log t,Xu(t) ≥ m2,3

t −A
)

= 0. (3.3)

Proof. Let Y A
t :=

∑
u∈N2

t
1{Tu>

√
t log t,Xu(t)≥m2,3

t −A}. By Markov’s inequality, the probability in (3.3)

is bounded by E
(
Y A
t

)
. It suffices to show that E

(
Y A
t

)
→ 0 as t → ∞.

Using Lemma 2.10(i) and then the tail probability of Gaussian random variable (
∫∞
x e−y2/2 dy ≤

1
xe

−x2/2 for x > 0), we have

E
(
Y A
t

)
= α

∫ t

√
t log t

eβs+t−sP
(
σBs + (Bt −Bs) ≥ m2,3

t −A
)

ds

≲α

∫ t

√
t log t

eβs+(t−s)

√
σ2s + t− s

m2,3
t −A

e
− (m

2,3
t −A)2

2(σ2s+t−s) ds

≲A,α,β,σ2 t−1/2

∫ t

√
t log t

e
βs+(t−s)− t2

(σ2s+t−s) e
t log t

2(σ2s+t−s) ds.

Set φ : u 7→ βu + (1 − u) − 1
(σ2u+1−u)

. Making a change of variable s = ut, we have

E
(
Y A
t

)
≲ t1/2

∫ 1

log t√
t

exp

{
tφ(u) +

log t

2 (σ2u + 1 − u)

}
du ≤ t

1
2
+ 1

2σ2

∫ 1

log t√
t

etφ(u) du.

Since φ′(u) = β−1− 1−σ2

(σ2u+1−u)2
< 0 and φ′′(u) = − 2(1−σ2)

2

(σ2u+1−u)3
< 0, φ is concave, and takes maximum

φ(0) = 0 at point u = 0. By Taylor’s expansion, there exists a constant δ > 0 (depending only on σ2)
such that φ(u) ≤ −δu2 for all u ∈ [0, 1]. Thus

E
(
Y A
t

)
≲ t

1
2
+ 1

2σ2

∫ 1

log t√
t

e−δu2t du ≤ t
1

2σ2

∫ ∞

log t
e−δz2 dz

t→∞−→ 0,

which gives the desired result.
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Proof of Lemma 3.1. Fix A,K, t ≥ 0 and R > 1. Set IRt :=
[
0, 1

R

√
t
)
∪
(
R
√
t,
√
t log t

]
, and

Yt(A,R,K) =
∑

u∈B
1{Tu∈IRt }1{|Xu(Tu)|≤vTu+K}1{Mu

t ≥m2,3
t −A},

where Mu
t is the maximal position of the descendants at time t of the individual u. In other words,

Yt(A,R,K) is the number of type 2 particles that are born from a type 1 particle during the time
interval IRt and have a descendant at time t above m2,3

t −A. By Markov’s inequality,

P
(
∃u ∈ N2

t : Tu /∈
[

1

R

√
t, R

√
t

]
, Xu(t) ≥ m2,3

t −A

)

≤P
(
∃s ≤ t, u ∈ N1

s : |Xu(s)| ≥ vs + K
)

+ P
(
∃u ∈ N2

t : Tu ≥
√
t log t,Xu(t) ≥ m2,3

t −A
)

+ E (Yt(A,R,K)) .

By (2.4) and Lemma 3.2, it suffices to show that lim
R→∞

lim sup
t→∞

E (Yt(A,R,K)) = 0.

Let Ft(r, x) := P(x + Mr ≥ m2,3
t − A), where Mr = max

u∈Nr

Xu(r). Applying the branching property

and Lemma 2.10(i), we have

E (Yt(A,R,K)) = E

(∑

u∈B
1{Tu∈IRt }1{|Xu(Tu)|≤vTu+K}Ft (t− Tu, Xu(Tu))

)

= α

∫

IRt

eβsE
(
Ft (t− s, σBs) 1{|σBs|≤vs+K}

)
ds

= α

∫

IRt

E
(
e−θσBsFt (t− s, σBs + vs)

)
1{−2vs−K≤σBs≤+K} ds,

(3.4)

where in the last equality we replaced σBs by σBs + vs by Girsanov’s theorem. Moreover, since
log t− log(t− s) = o(1) for s ≤

√
t log t, we have for large t,

Ft(t− s, vs + z) = P

(
Mt−s ≥

√
2t− 1

2
√

2
log t−A− vs− z

)

≤ P

(
Mt−s ≥

√
2(t− s) − 3

2
√

2
log(t− s) + (

√
2 − v)s +

1√
2

log t− z − 2A

)
.

For z ∈ [−2vs−K,K] and s ≤
√
t log t, we have 1 < (

√
2− v)s+ 1√

2
log t− z− 2A ≲

√
t log t for large

t. Applying Lemma 2.3, we have

F (t− s, vs + z) ≲A,β,σ2

s + log t + |z|
t

e−
√
2(
√
2−v)s+

√
2ze−

(
√
2−v)2s2

2t , (3.5)

where we used the fact that − 1
2(t−s)

[
(
√

2−v)s+ 1√
2

log t−z−2A
]2 ≤ − (

√
2−v)2s2

2t for large t. Replacing

z by σBs in (3.5) and then substituting (3.5) into (3.4), we obtain

E (Yt(A,R,K)) ≲α,A,β,σ2

∫

IRt

E

(
s + log t + |σBs|

t
e−(θ−

√
2)σBs−

√
2(
√
2−v)s

)
e−

(
√
2−v)2s2

2t ds

=

∫

IRt

E

(
s + log t + |σBs − (θ −

√
2)σ2s|

t

)
e−

(
√
2−v)2s2

2t ds

≲
∫

[0, 1
R
)∪(R,log t]

(
λ +

log t + E|Bλ
√
t|√

t

)
e−

(
√
2−v)2λ2

2 dλ,

where in the equality we used the Girsanov’s theorem and the fact that 1
2(θ −

√
2)2σ2 =

√
2(
√

2 − v)
when β + σ2 = 2, and in the last ≲ we made a change of variable s =

√
tλ. Then the desired results

follows from a simple computation.
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4 Boundary between CI and CIII

In this section we always assume that (β, σ2) ∈ BI,III , i.e., β > 1, 1
β + 1

σ2 = 2. Recall that m1,3
t :=

vt− 1
2θ log t, where v =

√
2βσ2 and θ =

√
2β/σ2.

Firstly, we describe the paths of extremal particles. It turns out that for a type 2 particle u ∈ N2
t

above level m1,3
t at time t, it’s type transformation time Tu should be s = t−Θ(

√
t), and it’s position

x at time s should belong to the set

ΓR
s,t :=

{
x : |δ(x; s, t)| ≤ R

√
t− s

}
, where δ(x; s, t) := x− vs + (θ − v)(t− s).

Lemma 4.1. For any A > 0, we have

lim
R→∞

lim sup
t→∞

P
(
∃u ∈ N2

t : t− Tu /∈ [
1

R

√
t, R

√
t], Xu(t) ≥ m1,3

t −A

)
= 0, (4.1)

and
lim

R→∞
lim sup
t→∞

P
(
∃u ∈ N2

t : Xu(t) ≥ m1,3
t −A,Xu(Tu) /∈ ΓR

Tu,t

)
= 0. (4.2)

We will postpone the proof of Lemma 4.1 to the end of this section and show Theorem 1.2 first.
For simplicity, let ΩR

t = {(s, x) : t− s ∈ [ 1R
√
t, R

√
t], x ∈ ΓR

s,t}.

Proof of Theorem 1.2. In this proof, we set Êt :=
∑

u∈N2
t
δ
Xu(t)−m1,3

t
, and for R > 0,

ÊR
t :=

∑

u∈N2
t

1{(Tu,Xu(Tu))∈ΩR
t }δXu(t)−m1,3

t
.

Take A > 0 satisfying supp(φ) ⊂ [−A,∞). For all φ ∈ T , we have
∣∣∣E
(
e−⟨ÊR

t ,φ⟩)− E
(
e−⟨Êt,φ⟩

)∣∣∣ ≤ P
(
∃u ∈ N2

t , Xu(t) ≥ m1,3
t −A, (Tu, Xu(Tu)) /∈ ΩR

t

)
.

Thus by Lemma 4.1 we have

lim
R→∞

lim sup
t→∞

∣∣∣E
(
e−⟨ÊR

t ,φ⟩)− E
(
e−⟨Êt,φ⟩

)∣∣∣ = 0. (4.3)

We now show the convergence of ÊR
t first as t and then R goes to ∞. Recall that u′ ≽ u means

that u′ is a descendant of u. We rewrite ⟨ÊR
t , φ⟩ as

∑
u∈B

(Tu,Xu(Tu))∈ΩR
t

∑
u′∈N2

t
u′≽u

φ(Xu′(t) −Xu(Tu) − θ(t− Tu) + δ(Xu(Tu);Tu, t) +
1

2θ
log t).

Let f(r, x) := E
(
exp{−∑u∈Nr

φ(Xu(r) − θr + x)}
)

and F := 1 − f . Using the branching property
first and then applying Lemma 2.10(iii), we have

E
(
e−⟨ÊR

t ,φ⟩) = E
[∏

u∈B
(Tu,Xu(Tu))∈ΩR

t

f

(
t− Tu, δ(Xu(Tu);Tu, t) +

1

2θ
log t

)]

= E
(

exp

{
− α

∫ t− 1
R

√
t

t−R
√
t

∑

u∈N1
s

F

(
t− s, δ(Xu(s); s, t) +

1

2θ
log t

)
1{Xu(s)∈ΓR

s,t} ds

})
.

Additionally, by Lemma 2.4 (ii), uniformly in s ∈ t − [ 1R
√
t, R

√
t] and in Xu(s) ∈ ΓR

s,t, the function

F
(
t− s, δ(Xu(s); s, t) + 1

2θ log t
)

∼ γθ(φ)
e−( θ

2

2
−1)(t−s)

√
t− s

eθ[Xu(s)−v(s)+(θ−v)(t−s)+ 1
2θ

log t]e
−

[Xu(s)−v(s)+(θ−v)(t−s)+ 1
2θ

log t]2

2(t−s)

∼ γθ(φ)

√
t

t− s
eθ[Xu(s)−v(s)]e

− [Xu(s)−v(s)+(θ−v)(t−s)]2

2(t−s) , as t → ∞
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where in the last “∼” we used the fact that θ2 − θv − ( θ
2

2 − 1) = β
σ2 − 2β + 1 = 0. Therefore, by

making a change of variable r = t− s, we have E
(
e−⟨ÊR

t ,φ⟩)

= E
(

exp

{
− (1 + o(1))αγθ(φ)

∫ R
√
t

1
R

√
t

√
t

r

∑

u∈N1
s

Xu(t−r)∈ΓR
t−r,t

eθ[Xu(t−r)−v(t−r)]e−
[Xu(t−r)−v(t−r)+(θ−v)r]2

2r dr

})

= E
(

exp

{
− (1 + o(1))αγθ(φ)

∫ R

1
R

t
√
rλ,t

WG (t− rλ,t, rλ,t) dλ

})
, (4.4)

where in (4.4) we substitute r by rλ,t = λ
√
t, and

WG(t, r) :=
∑

u∈N1
t

e−θ[vt−Xu(t)]G

(
vt−Xu(t) − (θ − v)r√

r

)
, G(x) = e−

x2

2 1{|x|≤R}.

Recall that ({Xu(t)}u∈N1
t
,P) has the same distribution as ({ σ√

β
Xu(βt)}u∈Nβt

,P). Applying Propo-

sition 2.6, we have, for fixed λ > 0 and rλ,t = λ
√
t,

lim
t→∞

t
√
rλ,t

WG(t− rλ,t, rλ,t) = Z(I)
∞

√
2

π

(θ − v)

σ3
λ e−

(θ−v)2

2σ2 λ2
∫

R
e−

x2

2 1{|x|≤R} dy

in probability, and the integral of t√
rλ,t

WG(t − rλ,t, rλ,t) with respect to λ over the interval [1/R,R]

converges in probability to the integral of right hand side. By (4.4) and the dominated convergence

theorem, we have lim
t→∞

E
(
e−⟨ÊR

t ,φ⟩) =

E
(

exp

{
− αγθ(φ)Z(I)

∞

√
2

π

∫ R

1
R

(θ − v)λ

σ3
e−

(θ−v)2

2σ2 λ2

dλ

∫

R
e−

x2

2 1{|x|≤R} dy

})
.

Letting R → ∞, combining (4.3), we have

lim
t→∞

E
(
e−⟨Êt,φ⟩

)
= lim

R→∞
lim
t→∞

E
(
e−⟨ÊR

t ,φ⟩) = E
(

exp
{
− γθ(φ)Z(I)

∞
α

σ(θ − v)

})
,

which is the Laplace functional of DPPP
(

ασC(θ)√
2πβ(1−σ2)

θZ
(I)
∞ e−θx dx,Dθ

)
. Using [14, Lemma 4.4], we

complete the proof of Theorem 1.2.

Before proving Lemma 4.1, we show a weaker result first.

Lemma 4.2. For any A > 0 we have

lim sup
t→∞

P
(
∃u ∈ N2

t : Tu ≤ t−
√
t log t,Xu(t) ≥ m1,3

t −A
)

= 0.

Proof. For A > 0, we compute the mean of Y A
t :=

∑
u∈N2

t
1{Tu≤t−

√
t log t,Xu(t)≥m1,3

t −A}. Applying

Lemma 2.10(i) and Gaussian tail bounds, we have

E
(
Y A
t

)
= α

∫ t−
√
t log t

0
eβs+t−sP

(
σBs + (Bt −Bs) ≥ m1,3

t −A
)

ds

≲
∫ t−

√
t log t

0
eβs+(t−s)

√
σ2s + t− s

m1,3
t −A

e
− (m

1,3
t −A)2

2(σ2s+t−s) ds

≲A t−1/2

∫ t

√
t log t

e
β(t−u)+u− v2t2

2(σ2(t−u)+u) e
vt log t

θ(σ2(t−u)+u) du.
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Set φ : λ 7→ β(1 − λ) + λ− βσ2

σ2+(1−σ2)λ
. Making a change of variable u = tλ, we get

E
(
Y A
t

)
≲A t

1
2
+ v

θσ2

∫ 1

log t√
t

etφ(λ) dλ.

As φ′(λ) = 1− β + βσ2 1−σ2

(σ2+(1−σ2)λ)2
< 0 and φ′′(u) = −βσ2 2(1−σ2)

2

(σ2+(1−σ2)λ)3
< 0, φ is concave, and takes

maximum φ(0) = 0 at point λ = 0. By Taylor’s expansion, there is a constant δ > 0 (depending only
on σ2) such that φ(λ) ≤ −δλ2 for all λ ∈ [0, 1]. Hence

E
(
Y A
t

)
≲ t

1
2
+ v

θσ2

∫ 1

log t√
t

e−δλ2t dλ ≤ t
v

θσ2

∫ ∞

log t
e−δz2 dz

t→∞−→ 0,

which gives the desired result.

Proof of Lemma 4.1. Step 1. We first prove (4.1). As shown in the proof of Lemma 3.1, it suffices
to bound the mean of

Yt(A,K,R) :=
∑

u∈N2
t

1{t−Tu∈IRt }1{Xu(r)≤vr+K,∀r≤Tu}1{Xu(t)≥m1,3
t −A},

where A,R,K ≥ 0 and IRt := [0, 1
R

√
t) ∪ (R

√
t,
√
t log t]. Applying Lemma 2.10(i), we have

E[Yt(A,K,R)] = α

∫

t−IRt

eβs+(t−s)P

(
σBs + Bt −Bs ≥ m1,3

t −A,
σBr ≤ vr + K,∀r ≤ s

)
ds

≲
∫

t−IRt

∫ ∞

−A
eβs+(t−s)P

(
σBr ≤ vr + K,

∀r ≤ s

∣∣∣∣
σBs + Bt −Bs

= m1,3
t + x

)
e
− (m

1,3
t +x)2

2(σ2s+t−s)
ds dx√

t

≲
∫ ∞

−A
dx

∫

IRt

u + log t + |x|
t

eβ(t−u)+ue
− (m

1,3
t +x)2

2(σ2t+(1−σ2)u)
du√
t
, (4.5)

where in the third line we used Lemma 2.2 and we substitute t − s by u in the integral. Note that
1

2σ2t
(m1,3

t +x)2 ≥ 1
2σ2t

[v2t2−2vt( 1
2θ log t−x)] = (βt− 1

2 log t+θx). Then uniformly in u ∈ [0,
√
t log t],

we have 1 − σ2t
σ2t+(1−σ2)u

= O( log t√
t

), and hence

β(t− u) + u− (m1,3
t + x)2

2(σ2t + (1 − σ2)u)
= β(t− u) + u− (m1,3

t + x)2

2σ2t

σ2t

σ2t + (1 − σ2)u

≤ −(β − 1)u +
1

2
log t + βt

(1 − σ2)u

σ2t + (1 − σ2)u
− [θ − o(1)]x + o(1). (4.6)

Substituting (4.6) into (4.5), we have

E[Yt(A,K,R)] ≲
∫ ∞

−A
dx e−θx/2

∫

IRt

u + log t + |x|
t

e
(1−σ2)t

σ2t+(1−σ2)u
βu−(β−1)u

du

=

∫ ∞

−A
dx e−θx/2

∫

IRt

u + log t + |x|
t

e
− (β−1)(1−σ2)u2

σ2t+(1−σ2)u du,

where in the equality we used the fact (1−σ2)t
σ2t+(1−σ2)u

βu− (β − 1)u = −(β−1)(1−σ2)u2

σ2t+(1−σ2)u
, which follows from

the assumption 1
σ2 + 1

β = 2. Making a change of variable u = λ
√
t, we get

E[Yt(A,K,R)] ≲
∫ ∞

−A
dx e−θx/2

∫

[0, 1
R
)∪(R,∞)

λ
√
t + log t + |x|√

t
e
− (β−1)(1−σ2)λ2

σ2+(1−σ2)/
√
t dλ.
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By the dominated convergence theorem, we get lim
R→∞

lim sup
t→∞

E[Yt(A,K,R)] = 0 as desired.

Setp 2. Now we prove (4.2) by showing that for fixed A,K, ϵ > 0, the expectation of

Yt(A,K, ϵ,R) :=
∑

u∈N2
t

1{t−Tu∈[ϵ
√
t,ϵ−1

√
t],Xu(r)≤vr+K,∀r≤Tu}1{Xu(Tu)/∈ΓR

Tu,t}
1{Xu(t)≥m1,3

t −A}

vanishes as first t → ∞ then R → ∞. Thanks to Lemma 2.10(i),

E[Yt(A,K, ϵ,R)] = α

∫ t−ϵ
√
t

t− 1
ϵ

√
t
eβs+(t−s)P

( σBs + Bt −Bs ≥ m1,3
t −A,

|σBs − vs− (θ − v)(t− s)| > R
√
t− s,

σBr ≤ vr + K,∀r ≤ s

)
ds. (4.7)

Then conditioned on σBs = vs − (θ − v)(t − s) + x, by the Markov property, and noting that
m1,3

t − [vs− (θ − v)(t− s) + x] = θ(t− s) − x− 1
2θ log t,

P

( σBs + Bt −Bs ≥ m1,3
t −A,

|σBs − vs− (θ − v)(t− s)| > R
√
t− s,

σBr ≤ vr + K,∀r ≤ s

)

≲
∫

|x|>R
√
t−s

x≤(θ−v)(t−s)+K

dx√
s
e−

(vs−(θ−v)(t−s)+x)2

2σ2s P(Bt−s > θ(t− s) − x− 1

2θ
log t−A)

×P(σBu ≤ vu + K,∀u ≤ s|σBs = vs− (θ − v)(t− s) + x)

≲
e−βs+( θ

2

2
−θv)(t−s)

√
t− s

∫

|x|>R
√
t−s

t− s + |x|
t

e−
((θ−v)(t−s)−x)2

2σ2s e
−

(x+
log t
2θ

+A)2

2(t−s) dx, (4.8)

where the last inequality follows from the following three items:

• exp
{
− (vs−(θ−v)(t−s)+x)2

2σ2s

}
= e−βs+(θ2−θv)(t−s)e−θx exp

{
− ((θ−v)(t−s)−x)2

2σ2s

}
.

• Gaussian tail bounds yield that for s ∈ [t− ϵ−1
√
t, t− ϵ

√
t] and x ≤ (θ − v)(t− s) + K,

P(Bt−s > θ(t− s) − x− log t

2θ
−A) ≲A

√
t√

t− s
e−

θ2

2
(t−s)eθx exp

{
− (x + log t

2θ + A)2

2(t− s)

}
.

• Lemma 2.1 implies that for s ∈ [t− ϵ−1
√
t, t− ϵ

√
t] and x ≤ (θ − v)(t− s) + K,

P(σBu ≤ vu + K,∀u ≤ s|σBs = vs− (θ − v)(t− s) + x) ≲ (t− s + |x|)/t.

Substituting (4.8) into (4.7), noting that θ2

2 −θv+1 = β
σ2 −2β+1 = 0 and making change of variables

t− s = λ
√
t, y = x/

√
t− s, we get

E[Yt(A,K, ϵ,R)] ≲
∫ t−ϵ

√
t

t−ϵ−1
√
t
ds

∫

|x|>R
√
t−s

t− s + |x|
t

e−
((θ−v)(t−s)−x)2

2σ2s e
−

(x+
log t
2θ

+A)2

2(t−s)
dx√
t− s

=

∫ ϵ−1

ϵ
dλ

∫

|y|>R

λ
√
t + t1/4λ1/2|y|√

t
e
− [(θ−v)λ−yλ1/2t−1/4]2

2σ2(1−λt−1/2) e
− 1

2

(
y+

log t/(2θ)+A

λ1/2t1/4

)2

dy.

Letting t → ∞, we have lim sup
t→∞

E[Yt(A,K, ϵ,R)] ≲
∫ ϵ−1

ϵ λe−
(θ−v)2λ2

2σ2 dλ
∫
|y|>R e−

1
2
y2 dy by the domi-

nated convergence theorem. Then letting R → ∞, the desired result follows.
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5 Boundary between CI and CII

In this section we always assume that (β, σ2) ∈ BI,II , i.e., β < 1 and βσ2 = 1. Recall that m1,2
t =

mt =
√

2t− 3
2
√
2

log t. As we have remarked, the driven mechanism of the asymptotic behavior of the

extremal particles in this setting is the same as the case (β, σ2) ∈ CII . The outline of the proof is
very similar to that of [13, Theorem 1.2], but more careful estimations are needed.

Firstly we show that each particle u ∈ N2
t above level m1,2

t at time t should satisfy Tu = O(1).

Lemma 5.1. For any A > 0, we have

lim
R→∞

lim sup
t→∞

P
(
∃u ∈ N2

t : Tu ≥ R,Xu(t) ≥ m1,2
t −A

)
= 0.

We postpone the proof of Lemma 5.1 in the end of this section. Lemma 5.1 implies that we can
approximate Êt :=

∑
u∈N2

t
δ
Xu(t)−m1,2

t
by ÊR

t :=
∑

u∈N2
t

1{Tu≤R}δXu(t)−m1,2
t

. Indeed we have

lim
R→∞

lim sup
t→∞

∣∣∣E
(
e−⟨ÊR

t ,φ⟩)− E
(
e−⟨Êt,φ⟩

)∣∣∣ = 0.

By the results in [3, 9], a simple computation gives the convergence of ÊR
t as t to ∞. We only restate

the results here, see [13, Lemma 5.2] for a proof.

Lemma 5.2. For any φ ∈ T , we have limt→∞⟨ÊR
t , φ⟩ = ⟨ÊR

∞, φ⟩ in law, where

ÊR
∞ = DPPP

(
C⋆Z̄R

√
2e−

√
2x dx,D

√
2
)
.

Here Z̄R is defined as follows. Firstly, for each u ∈ B, the convergence of derivative martingale for
the standard BBM and the branching property implies the convergence of

Z
(u)
t :=

∑

u′∈N2
t

u′≽u

(√
2t−Xu′(t)

)
e
√
2(Xu′ (t)−

√
2t).

Let Z
(u)
∞ := lim inf

t→∞
Z

(u)
t . Then Z̄R :=

∑
u∈B 1{Tu≤R}Z

(u)
∞ . The main ingredient is to show that ÊR

∞

converges in law as R → ∞, which is done as follows.

Lemma 5.3. For all φ ∈ T , we have limR→∞⟨ÊR
∞, φ⟩ = ⟨Ê∞, φ⟩ in law, where

ÊR
∞ = DPPP

(
C⋆Z̄∞

√
2e−

√
2x dx,D

√
2
)
,

and Z̄∞ := lim
R→∞

Z̄R =
∑

u∈B Z
(u)
∞ < ∞ a.s..

Proof. As shown in the proof of [13, Lemma 5.3], it is sufficient to prove that

Y :=
∑

u∈B

(
1 +

(√
2Tu −Xu(Tu)

)
+

)
e
√
2Xu(Tu)−2Tu < ∞ P-a.s.

We claim that it is enough to show that for each K ∈ N,

YK =
∑

u∈B
Xu(s)≤

√
2s+σK,s≤Tu

(1 + [
√

2Tu −Xu(Tu)]+)e
√
2Xu(Tu)−2Tu < ∞ P-a.s.
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In fact, as βσ2 = 1, by (2.4) we have P
(
∪K∈N{∀ t ≥ 0, u ∈ N1

t , Xu(t) ≤
√

2t + σK}
)

= 1. Then for
almost every realization ω, we can find K = K(ω) ∈ N large enough so that

Xu(t) ≤
√

2t + σK , ∀t ≥ 0, u ∈ N1
t .

As a consequence we have Y (ω) = YK(ω)(ω) < ∞ for almost all ω.
Next we compute E(YK) for fixed K ∈ N. Applying Lemma 2.10(ii), we have

E(YK) = α

∫ ∞

0
eβsE

(
1{σBu≤

√
2u+σK,u≤s}[1 + (

√
2s− σBs)+]e

√
2(σBs−

√
2s)
)

ds.

By Girsanov’s theorem, we replace (σBu −
√

2u)u≤s by (σBu)u≤s (noting βσ2 = 1) and get

E(YK) ≤ α

∫ ∞

0
E
(

1{Bu≤K,u≤s}(1 + σ|Bs|)e
√
2(σ−

√
β)Bs

)
ds

≤ α

∫ ∞

0
E


∑

n≥0

1{Bu≤K,u≤s;Bs−K∈[−n−1,−n]}(1 + |Bs|)e
√
2(σ−

√
β)Bs


 ds.

Thanks to the Brownian estimate (2.1) and noticing that σ = 1√
β
>

√
β, we have

E(YK) ≲ α

∫ ∞

0

K

(1 + s)3/2

∑

n≥0

(1 + K + n)2e
√
2(σ−

√
β)(K−n) ds < ∞,

which implies YK < ∞, P-a.s. We complete the proof.

Now it suffices to show Lemma 5.1. In the proof we write ε(t) = (log t)3.

Proof of Lemma 5.1. The proof consists of two step. Firstly we show that

lim sup
t→∞

P
(
∃u ∈ N2

t : Tu ≥ t− ε(t), Xu(t) ≥ m1,2
t −A

)
= 0; (5.1)

and secondly, we prove

lim
R→∞

lim sup
t→∞

P
(
∃u ∈ N2

t : Tu ∈ [R, t− ε(t)], Xu(t) ≥ m1,2
t −A

)
= 0. (5.2)

Step 1 (Proof of (5.1)). Recall that at = 3
2θ log(t + 1), t ≥ 0. As shown in the proof of Lemma

3.1, thanks to the inequality (2.3), it suffices to show that for each K ≥ 1, the mean of

Yt(K) :=
∑

u∈N2
t

1{Xu(t)≥m1,2
t −A}1{Tu>t−ε(t)}1{Xu(r)≤

√
2r−at+at−r+K, r≤Tu}

vanishes as t → ∞. Applying Lemma 2.10(i) and the Markov property for Brownian motion,

E[Yt(K)] = α

∫ t

t−ε(t)
eβs+t−sP

(
σBs + Bt −Bs ≥ m1,2

t −A

σBr ≤
√

2r − at + at−r + K, r ≤ s

)
ds

= α

∫ t

t−ε(t)
eβsE

(
F (t− s, σBs −

√
2s +

3

2
√

2
log t + A)1{σBr≤

√
2r−at+at−r+K,r≤s}

)
ds,

where F (r, x) = erP(Br ≥
√

2r−x). By Markov’s inequality, F (r, x) ≤ e
√
2x. By Girsanov’s theorem,

we replace σBs −
√

2s by σBs, and then the integral above equals to

∫ t

t−ε(t)
E

(
e−

√
2βBsF (t− s, σBs +

3

2
√

2
log t + A)1{σBr≤at−r−at+K,r≤s}

)
ds.
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Thus

E[Yt(K)] ≲A,α t3/2
∫ t

t−ε(t)
E
(
e
√
2(σ−

√
β)Bs1{σBr≤at−r−at+K,r≤s}

)
ds.

By inequality (6.3) in [13] with λ =
√

2 − θ (or making a change of measure to Bessel-3 process), we
have

E
(
e
√
2(σ−

√
β)Bs1{σBr≤at−r−at+K, r≤s}

)
≤ Ce(

√
2−θ)K

(
t− s + 1

t + 1

) 3(
√
2−θ)
2θ

(s + 1)−
3
2 .

Since now θ <
√

2, a simple computation yields

E[Yt(K)] ≲A,α,K t3/2
∫ t

t−ε(t)

(
t− s + 1

t + 1

) 3(
√
2−θ)
2θ

(s + 1)−
3
2 ds

t→∞−→ 0.

Step 2 (Proof of (5.2)). As in Step 1, it suffices to show that for each A,R,K > 0, the expectation
of

Yt(A,R,K) :=
∑

u∈B
1{Tu∈[R,t−ε(t)]}1{Mu

t ≥m1,2
t −A}1{Xu(r)≤

√
2r+σK,r≤Tu}

converges to 0 as first t → ∞ then R → ∞. Let Ft(r, x) := P(x + Mr > m1,2
t − A), where Mr is the

maximum at time r of a standard BBM. By the branching Markov property, Lemma 2.10(ii), and
Girsanov’s theorem

E[Yt(A,R,K)] = E

[∑

u∈B
1{Tu∈[R,t−ε(t)]}1{Xu(r)≤

√
2r+σK,r≤Tu}Ft(t− Tu, Xu(Tu))

]

= α

∫ t−ε(t)

R
eβsE

[
Ft(t− s, σBs)1{Br≤

√
2βr+K,r≤s}

]
ds

= α

∫ t−ε(t)

R
E
[
e−

√
2βBsFt(t− s, σBs +

√
2s)1{Br≤K,r≤s}

]
ds.

Applying (2.5), we have for all s ≤ t− ε(t) and x ∈ R,

Ft(t− s, x) = P

(
Mt−s ≥ m1,2

t−s +
√

2s +
3

2
√

2
log

t− s

t
−A− x

)

≲A

(
t

t− s

) 3
2
(

1 + |
√

2s− x| + log
t

t− s

)
e−

√
2(
√
2s−x),

We now get upper bound the expectation:

E[Yt(A,R,K)] ≲A α

∫ t−ε(t)

R

(
t

t− s

) 3
2

E

[(
1 + |Bs| + log

t

t− s

)
e
√
2(σ−

√
β)Bs1{Br≤K,r≤s}

]
ds .

Applying (2.1), we have

P

[(
1 + |Bs| + log

t

t− s

)
e
√
2(σ−

√
β)Bs1{Br≤K,r≤s}

]

≤
∑

n≥0

(
2 + K + n + log

t

t− s

)
e
√
2(σ−

√
β)(K−n)CKn

s3/2
≲β,K

(1 + log t
t−s)

s3/2
.
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Thus

E[Yt(A,R,K)] ≲α,β,A,K

∫ t−ε(t)

R

(
t

t− s

) 3
2 (1 + log t

t−s)

s3/2
ds

=

(∫ t/2

R
+

∫ t−ε(t)

t/2

)(
t

t− s

) 3
2 (1 + log t

t−s)

s3/2
ds =: (I) + (II).

For (I), since t
t−s ≤ 2 when s ∈ [R, t/2], we have

∫ t/2

R

(
t

t− s

) 3
2 (1 + log t

t−s)

s3/2
ds ≤ 100

∫ ∞

R

1

s3/2
ds

R→∞−→ 0.

For (II), making a change of variable t− s = λt, we have

∫ t−ε(t)

t/2

(
t

t− s

) 3
2 (1 + log t

t−s)

s3/2
ds =

1√
t

∫ 1/2

ε(t)/t

1

λ3/2

(
1 + log

1

λ

)
1

(1 − λ)3/2
dλ

≲
1 + log t√

t

∫ 1/2

ε(t)/t

1

λ3/2
dλ ≲

1 + log t√
t

√
t

ε(t)

t→∞−→ 0.

We now complete the proof.

6 Spine decomposition and Proofs of Propositions 2.5 and 2.6

6.1 Proof of Proposition 2.5

Proof. It is well-known that, for η ∈ [0,
√

2), the additive martingale

Wt(η) =
∑

u∈Nt

eηXu(t)−(η2/2+1)t

is uniformly integrable and converges to a non-trivial limit W∞(η) as t → ∞. Moreover, using this
martingale to make a change of measure, we get a “spine decomposition” of the BBM (see for example
[38]): Let Ft be the σ-algebra generated by the BBM up to time t, i.e., Ft = σ({Xu(s) : s ≤ t, u ∈ Nt}).
Let P̂ be the probability measure such that

dP̂|Ft = Wt(η) dP|Ft

We can identify distinguished genealogical lines of descent from the initial ancestor and shall be
referred to as a spine. More precisely, the process (Xu(t) : u ∈ Nt)t≥0 under P̂ corresponds to the
law of a non-homogeneous branching diffusion with distinguished and randomized spine having the
following properties:

(i) the diffusion along the spine begins from the origin of space at time 0 and moves according to a
Brownian motion with drift η,

(ii) points of fission along the spine are independent of its motion and occur with rate 2,

(iii) at each fission time of the spine, the spine gives birth to 2 offspring, and the spine is chosen
randomly so that at each fission point, the next individual to represent the spine is chosen with
uniform probability from the two offsprings,

(iv) offspring of individuals on the spine which are not part of the spine initiate P-branching Brownian
motions at their space-time point of creation.
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We write ξt for the individual in spine at time t, then

P̂(ξt = u|Ft) =
eηXu(t)−(η2/2+1)t

Wt(η)
1{u∈Nt},

Then write Ξ(t) := Xξt(t), i.e., Ξt is the position of the individual on the spine at time t. We now
have, for every t ≥ 0 and measurable function f ,

Ê

[
f

(
Ξ(t)

t

) ∣∣Ft

]
= Ê


∑

u∈Nt

f

(
Xu(t)

t

)
1{ξt=u}

∣∣Ft




=
∑

u∈Nt

f

(
Xu(t)

t

)
eηXu(t)−(η2/2+1)t

Wt(η)
=

W f
t (η)

Wt(η)
.

Since under P̂, Ξ is a Brownian motion with drift η, and the function x 7→ f(x) is bounded continuous,

f(Ξ(t)t ) converges to f(η) in L1(P̂). Thanks to the Jensen’s inequality we have

lim
t→∞

W f
t (η)

Wt(η)
= lim

t→∞
Ê

[
f

(
Ξ(t)

t

) ∣∣∣Ft

]
→ f(η) in L1(P̂),

Thus

E
[
|W f

t (η) − f(η)Wt(η)|
]

= Ê

[∣∣∣∣
W f

t (η)

Wt(η)
− f(η)

∣∣∣∣
]
→ 0,

yielding the desired result.

6.2 Proof of Proposition 2.6

The proof is inspired by [4]. Fix an arbitrarily K > 0. Define the truncated derivative martingale

D
(K)
t as the following:

D
(K)
t :=

∑

u∈Nt

(
√

2t− Xu(t) + K)e−
√
2(
√
2t−Xu(t))1{

√
2s−Xu(s)≥−K,∀s≤t}. (6.1)

It’s well-known that (D
(K)
t )t>0 is a L1-martingale and lim

t→∞
D
(K)
t = Z∞ on the event {Xu(t) ≤

√
2t+K,∀t ≥ 0, u ∈ Nt}, whose probability tends to 1 when K → ∞. Moreover, using this martingale

to do a change of measure, we can also get a “spine decomposition” of the BBM (see for example
[38]): Let Ft be the σ-algebra generated by the branching Brownian motion up to time t. Let Q(K)

be the probability measure such that

dQ(K)|Ft =
D
(K)
t

K
· dP|Ft . (6.2)

Similar to the spine decomposition in Subsection 6.1, we can identify distinguished genealogical lines
of descent from the initial ancestor each of which shall be referred to as a spine. Denoting by ξt the
individual belonging to the spine, and by Ξ(t) = Xξt(t) the position of this individual. The process
(Xu(t) : u ∈ Nt)t≥0 under Q(K) has similar properties as in Subsection 6.1 with (i) changed to (i’)
below and other items (ii) to (iv) unchanged:

(i’) The spatial motion (Ξ(t))t≥0 of the spine is such that RK(t) :=
√

2t−Ξ(t)+K is a 3-dim Bessel
process started at K.
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For any t > 0 and any u ∈ Nt, we have

Q(K)(ξt = u|Ft) =
(
√

2t− Xu(t) + K)e−
√
2(
√
2t−Xu(t))

D
(K)
t

1{
√
2s−Xu(s)≥−K,∀s≤t}. (6.3)

Throughout this section, we use (Rt,P
Bes
x ) to denote a Bessel-3 process starting from x. The

expectation with respect to PBes
x is denoted as EBes

x . We truncate WFt
t (

√
2) as in (6.1), that is to say,

we define

W
(K),Ft

t (
√

2) :=
∑

u∈Nt

Ft

(√
2t− Xu(t)√

t

)
e−

√
2(
√
2t−Xu(t))1{

√
2s−Xu(s)≥−K,∀s≤t}.

Proposition 6.1. For each fixed K ∈ N and λ > 0,

EQ(K)

∣∣∣∣
√
t

⟨Ft, µ⟩
W

(K),Ft

t (
√

2)

D
(K)
t

−
√

2

π

∣∣∣∣→ 0, as t → ∞. (6.4)

Proposition 2.6 is an easy consequence of Proposition 6.1.

Proof of Proposition 2.6 admitting Proposition 6.1. (i) Applying (6.2) and (6.4), we have

E

∣∣∣∣
√
t

⟨Ft, µ⟩
W

(K),Ft

t (
√

2) −
√

2

π
D
(K)
t

∣∣∣∣ = K EQ(K)

∣∣∣∣
√
t

⟨Ft, µ⟩
W

(K),Ft

t (
√

2)

D
(K)
t

−
√

2

π

∣∣∣∣→ 0.

Since D
(K)
t is a L1(P) martingale, writing D

(K)
∞ := limtD

(K)
t , we have D

(K)
t → D

(K)
∞ in L1(P). Com-

bined with the equation above, we have

E

[∣∣∣∣
√
t

⟨Ft, µ⟩
W

(K),Ft

t (
√

2) −
√

2

π
D(K)
∞

∣∣∣∣

]
→ 0. (6.5)

On the event {Xu(t) ≤
√

2t + K,∀ t ≥ 0, u ∈ Nt}, which has high probability when K is large (see

(2.4)), we have W
(K),Ft

t (
√

2) = WFt
t (

√
2) and D

(K)
∞ = Z∞. Therefore,

√
t

⟨Ft,µ⟩W
Ft
t (

√
2) converges to√

2
πZ∞ in probability P as t → ∞.

(ii) We now prove (2.7). Note that for Ft,λ = G((z − λ)t1/4), ⟨Ft,λ, µ⟩ ∼ Cλt
−1/4 uniformly in

λ ∈ I, where Cλ = λe−
λ2

2

∫
G(y) dy, thus

E

∣∣∣∣
∫

I
t3/4W

Ft,λ

t (
√

2) −
√

2

π
CλD

(K)
∞ dλ

∣∣∣∣ ≤
∫

I
E

∣∣∣∣t3/4W
Ft,λ

t (
√

2) −
√

2

π
CλD

(K)
∞

∣∣∣∣ dλ → 0

as t → ∞, where the convergence follows from (6.5) and the dominated convergence theorem. In fact,

(6.7) below implies that E
[ √

t
⟨Ft,µ⟩W

(K),Ft

t (
√

2)
]
≤ 1 for all λ ∈ I and for large t, which guarantees the

existence of a dominating function. Then the argument in the end of (i) yields that we can remove

the truncation in W
(K),Ft

t (
√

2) and D
(K)
∞ and get the desired convergence in probability result.

The remaining part is devoted to proving Proposition 6.1. To simplify notation, W
(K),Ft

t (
√

2) is

abbreviated as W
(K),F
t for the remainder of this section, and the parameter K is always fixed.

Lemma 6.2. For each t > 0, we have

W
(K),F
t

D
(K)
t

= EQ(K)

[
1

RK(t)
Ft

(
RK(t) −K√

t

) ∣∣Ft

]
. (6.6)
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Proof. Recall that RK(t) =
√

2t− Ξ(t) + K. By (6.3), we have

EQ(K)

[
1

RK(t)
Ft

(
RK(t) −K√

t

) ∣∣Ft

]
=
∑

u∈Nt

Q(K)[ξt = u|Ft]
Ft([

√
2t− Xu(t)]/

√
t)√

2t− Xu(t) + K

=
1

D
(K)
t

∑

u∈Nt

Ft

(√
2t− Xu(t)√

t

)
e−

√
2(
√
2t−Xu(t))1{

√
2s−Xu(s)≥−K,∀s≤t} =

W
(K),F
t

D
(K)
t

.

Lemma 6.3. (1)

lim
t→∞

EQ(K)

[ √
t

⟨Ft, µ⟩
W

(K),F
t

D
(K)
t

]
= lim

t→∞
EBes

K

[ √
t

⟨Ft, µ⟩
1

Rt
Ft

(
Rt −K√

t

)]
=

√
2

π
. (6.7)

(2) For p ∈ [1, 2], define

Ip(t) := EQ(K)

[( √
t

⟨Ft, µ⟩
W

(K),F
t

D
(K)
t

)p]
. (6.8)

Then (i) Ip(t) ≲ (r2t ht)
1−p, (ii) If for some p ∈ (1, 2], lim sup

t→∞
Ip(t) ≤ ( 2

π )
p
2 , then (6.4) holds.

Proof. Noticing that (RK(t),Q(K)) is a Bessel-3 process starting from K, by (6.6), we have

EQ(K)

( √
t

⟨Ft, µ⟩
W

(K),F
t

D
(K)
t

)
= EBes

K

( √
t

⟨Ft, µ⟩
1

Rt
Ft

(
Rt −K√

t

))
. (6.9)

Since x 7→ xp is convex, by Jensen’s inequality,

EQ(K)

([ √
t

⟨Ft, µ⟩
W

(K),F
t

D
(K)
t

]p)
≤ EBes

K

([ √
t

⟨Ft, µ⟩
1

Rt
Ft

(
Rt −K√

t

)]p)
. (6.10)

Recall that Ft(z) = G([z − rt]h
−1
t ). Simple computation yields that

⟨Ft, µ⟩ =

∫ ∞

0
G

(
z − rt
ht

)
ze−

z2

2 dz = ht

∫

R
G(y)(rt + yht)e

− (rt+yht)
2

2 dy = Θ(rtht). (6.11)

We claim that, for p ∈ [1, 2] and any ϵ0 > 0,

EBes
u

([√
t

Rt
Ft

(
Rt −K√

t

)]p)
∼
√

2

π
ht

∫

R
G(y)p(rt + yht)

2−pe−
(rt+yht)

2

2 dy = Θ(r2−p
t ht) (6.12)

uniformly for u ∈ (0, t
1
2
−ϵ0 ]. Then taking p = 1 in (6.12) and combining (6.9), (6.11), we get (6.7).

Taking p ∈ (1, 2] in (6.12) and using (6.10), (6.11), we get I(t) ≲ (r2t ht)
1−p.

Now we show the claim. Suppose G is supported on [−A,A] for some constant A > 0. First recall
that

PBes
x (Rs ∈ dz) =

√
2

π
z2e−

(z−x)2

2s
1 − e−

2xz
s

2xz
√
s

dz, for x, z > 0. (6.13)

Using the scaling property for Bessel process, the left-hand side in (6.12) equals

EBes
u√
t

[
1

Rp
1

Ft

(
R1 −K/

√
t
)p]

=

√
2

π

∫

|z−rt−K/
√
t|≤Aht

G

(
z − rt −K/

√
t

ht

)p

z2−pe−
(z−u/

√
t)2

2s
1 − e−2zu/

√
t

2zu/
√
t

dz

= ht

√
2

π

∫ A

−A
G(y)pz2−p

y e
− 1

2
(zy− u√

t
)2 1 − e−2zyu/

√
t

2zyu/
√
t

dy,
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where in the last equality, we substituted z by zy = rt + K/
√
t + yht. By the dominated convergence

theorem, we get that, for any ϵ0 > 0,

∫ A

−A
G(y)pz2−p

y e
− 1

2
(zy− u√

t
)2 1 − e−2zyu/

√
t

2zyu/
√
t

dy ∼
∫ A

−A
G(y)p(rt + yht)

2−pe−
(rt+yht)

2

2 dy

uniformly for u ∈ (0, t
1
2
−ϵ0 ] as t → ∞, and (6.12) follows.

Finally, we show that if for some p ∈ (1, 2], lim sup
t→∞

Ip(t) ≤ ( 2
π )

p
2 , then (6.4) holds. Indeed, by

Jensen’s inequality and (6.7), we have lim inf
t→∞

Ip(t) ≥ lim inf
t→∞

I1(t)
p = ( 2

π )
p
2 . Thus Ip(t) → ( 2

π )
p
2 .

Applying [31, Exercise 3.2.16], we get that
√
t

⟨Ft,µ⟩
W

(K),F
t

D
(K)
t

converges in probability to
√

2
π . Moreover,

since Ip(t) is bounded in t, by [31, Theorem 4.6.2],
√
t

⟨Ft,µ⟩
W

(K),F
t

D
(K)
t

are uniformly integrable in t. Hence

it converges in L1 by [31, Theorem 4.6.3].

The naive bound Ip(t) ≲ (r2t ht)
1−p in part (2)(i) of Lemma 6.3 is not good enough. As pointed in

part (2)(ii), in order to show Proposition 6.1, we need that lim sup
t→∞

Ip(t) ≤ ( 2
π )

p
2 . To this end, we are

going to to compute the p-th moment on a good typical event, as Aı̈dékon and Shi did in [4].
Let Gt be a good event to be defined in (6.15) below such that Q(K)(Gt) → 1 as t → ∞. Thanks

to (6.6), we can rewrite Ip(t) as

Ip(t) =

( √
t

⟨Ft, µ⟩

)p

EQ(K)



(
W

(K),F
t

D
(K)
t

)p−1
1

RK(t)
Ft

(
RK(t) −K√

t

)
 .

We expect that if we integrate (
W

(K),F
t

D
(K)
t

)p−1 1
RK(t)Ft

(
RK(t)−K√

t

)
on the good event Gt, part (ii) of the

Lemma 6.3 holds, i.e., as t → ∞,

Jp(t) :=

( √
t

⟨Ft, µ⟩

)p

EQ(K)



(
W

(K),F
t

D
(K)
t

)p−1
1

RK(t)
Ft

(
RK(t) −K√

t

)
1Gt


→

(
2

π

)p−1

.

Then we show that error term

∆p(t) := Ip(t) − Jp(t) =

( √
t

⟨Ft, µ⟩

)p

EQ(K)



(
W

(K),F
t

D
(K)
t

)p−1
1

RK(t)
Ft

(
RK(t) −K√

t

)
1Gc

t


 (6.14)

is very small, i.e., ∆p(t) = o(1).

Recall that ξs represent the individual on the spine at time s. We write Nξs
t as the descendants of

ξs at time t. The points of fission along the spine form a Poisson process with rate 2, which is denoted
by Λ(ds). We then define, for a interval [c1, c2] ⊂ [0, t],

D
(K),[c1,c2]
t :=

∫

[c1,c2]

∑

u∈Nξs
t

(
√

2t− Xu(t) + K)e−
√
2(
√
2t−Xu(t))1{

√
2s−Xu(s)≥−K,∀s≤t}Λ(ds) ,

which is the contribution for the martingale D
(K)
t of particles who are descendants of individual on

spine at time interval [c1, c2]. Then D
(K)
t = D

(K),[0,t]
t = D

(K),[0,c1)
t + D

(K),[c1,t]
t . Similarly, we define

W
(K),F,[c1,c2]
t :=

∫

[c1,c2]

∑

u∈Nξs
t

e−
√
2(
√
2t−Xu(t))Ft

(√
2t− Xu(t)√

t

)
1{

√
2s−Xu(s)≥−K,∀s≤t}Λ(ds).
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Put kt = tγ for some γ ∈ (0, 1), and for 0 < a < 1
2 < b < 1, let

G1
t :=

{
kat ≤ RK(kt) ≤ kbt

}
∩
{
RK(s) ≥ log3 t, s ∈ [kt, t]

}

G2
t :=

{
D
(K),[kt,t]
t ≤ e− log2 t

}
.

We define
Gt := G1

t ∩G2
t . (6.15)

Lemma 6.4. Let kt = tγ for some γ ∈ (0, 1), and let 0 < a < 1
2 < b < 1 such that kbt ≤ t

1
2
−ϵ0 for

some ϵ0 > 0. For any fixed A > 0, the following assertions hold.

(i) lim
t→∞

Q(K)(Gt) = 1 and lim
t→∞

inf
u∈[kat ,kbt ]

Q(K)(Gt|RK(kt) = u) = 1.

(ii) Q(K)
({

|RK(t) − rt
√
t| ≤ A

√
tht
}
∩Gc

t

)
≲ (r2t ht) log3 t

(
(rt

√
t)−1 + k

−1/2
t + k

−3( 1
2
−a)

t

)
.

Based on Lemma 6.4, whose proof is postpone to the end of this section, we can get the upper
bound for Ip(t). Recall that our assumptions imply that rt

√
t ≥ tϵ for some small ϵ > 0.

Lemma 6.5. Let kt = t1−ϵ, a = 1/4 and b = 1+ϵ
2 so that kbt = t

1−ϵ2

2 ≪ t
1
2 . For p ∈ (1, 1 + ϵ

2 ], the
following assertions hold.

(i) [∆p(t)]
p ≲ [Ip(t)]

p−1t−
ϵ
4 .

(ii) lim sup
t→∞

Jp(t) ≤ ( 2
π )

p
2 . As a consequence, ∆p(t) = o(1) and lim sup

t→∞
Ip(t) ≤ ( 2

π )
p
2 .

Proof. (i) By the definition of ∆p(t) and Hölder’s inequality,

∆p(t) ≤
( √

t

⟨Ft, µ⟩

)p

EQ(K)

[(
W

(K),F
t

D
(K)
t

)p] p−1
p

EQ(K)

[
1

RK(t)p
Ft

(
RK(t) −K√

t

)p

1Gc
t

] 1
p

= [Ip(t)]
p−1
p

√
t

⟨Ft, µ⟩
EQ(K)

[
1

RK(t)p
Ft

(
RK(t) −K√

t

)p

1Gc
t

] 1
p

.

When Ft

(
RK(t)−K√

t

)
> 0, using the assumption that rt + yht = Θ(rt) uniformly in y ∈ supp(G), we

have RK(t) = Θ(rt
√
t). Since Ft is bounded and rt ≥ t−

1
2
+ϵ, applying (6.11) and Lemma 6.4 (ii),

[∆p(t)]
p ≲β,σ2,r̄,G [Ip(t)]

p−1

( √
t

⟨Ft, µ⟩

)p
1

(rt
√
t)p

Q(K)
({

|RK(t) − rt
√
t| ≤ 2A

√
tht

}
∩Gc

t

)

≲ [Ip(t)]
p−1 1

(r2t ht)
p

(r2t ht) log3 t

(
1

rt
√
t

+
1

k
1/2
t

+
1

k
3/4
t

)
.

Since ϵ is small, k
1/2
t = t(1−ϵ)/2 ≥ tϵ. Using ht ≲ rt ≤ t1/2, we get, for p ∈ (1, 1 + ϵ

2),

[∆p(t)]
p ≲ [Ip(t)]

p−1(r2t ht)
1−pt−ϵ log3(t) ≤ [Ip(t)]

p−1t3(1−p)/2−ϵ log3(t) ≲ [Ip(t)]
p−1t−ϵ/4,

which gives the desired result in part (i).
(ii) Suppose lim sup

t→∞
Jp(t) ≤ ( 2

π )
p
2 . Noticing that [Ip(t)]

p−1 = [Jp(t) + ∆p(t)]
p−1 ≤ [Jp(t)]

p−1 +

[∆p(t)]
p−1, by the result in part (i), we have

[∆p(t)]
p ≲ t−

ϵ
4 [Jp(t)]

p−1 + t−
ϵ
4 [∆p(t)]

p−1 ≲ t−
ϵ
4 + t−

ϵ
4 [∆p(t)]

p−1. (6.16)
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Since we have a prior bound ∆p(t) ≤ Ip(t) ≲ (r2t ht)
1−p ≲ t3(p−1)/2 (Lemma 6.3 (2)(i)), after a finite

number of iterations we can get that ∆p(t) = o(1), and hence lim sup
t→∞

Ip(t) ≤ ( 2
π )

p
2 .

Now it suffices to show that lim sup
t→∞

Jp(t) ≤ ( 2
π )

p
2 , which is done in the following four steps.

• We claim that J
(1)
p (t) :=

( √
t

⟨Ft,µ⟩

)p
EQ(K)

[(
W

(K),F,[kt,t]
t

D
(K)
t

)p−1
1

RK(t)Ft

(
RK(t)−K√

t

)
1Gt

]
= o(1).

Since Ft

(√
2t−Xu(t)√

t

)
> 0 only if

√
2t−Xu(t) = Θ(rt

√
t), we have W

(K),F,[c1,c2]
t ≤ D

(K),[c1,c2]
t . So

on Gt, we have W
(K),F,[kt,t]
t ≤ D

(K),[kt,t]
t ≤ e− log2 t, and 1

RK(t)Ft(
RK(t)−K√

t
) ≤ 1. Hence by (6.11)

and (6.2), J
(1)
p (t) ≤ (

√
tr−1

t h−1
t )2e−(p−1) log2 tE

[
D
(K)
t

]2−p
= o(1) by (6.11).

• Let J
(2)
p (t) =

( √
t

⟨Ft,µ⟩

)p
EQ(K)

[(
W

(K),F,[0,kt)
t

D
(K),[0,kt)
t

)p−1
1

RK(t)Ft

(
RK(t)−K√

t

)
1Gt

]
. Using the inequality

(x + y)p−1 ≤ xp−1 + yp−1 for all x, y > 0 and noting that 1

D
(K)
t

≤ 1

D
(K),[0,kt)
t

, we have Jp(t) ≤

J
(1)
p (t) + J

(2)
p (t). Then by the branching Markov property, we get

J (2)
p (t) ≤

( √
t

⟨Ft, µ⟩

)p

EQ(K)



(
W

(K),F,[0,kt)
t

D
(K),[0,kt)
t

)p−1

1{RK(kt)∈[kat ,kbt ]}


 sup

u∈[kat ,kbt ]
EBes

u


Ft(

Rt−kt
−K√
t

)

Rt−kt


 .

Since uniformly in u ∈ [kat , k
b
t ], E

Bes
u

[
Ft(

Rt−kt
−K

√
t

)

Rt−kt

]
∼ EBes

u

[
Ft(

Rt−K√
t

)

Rt

]
∼
√

2
π

⟨Ft,µ⟩√
t

, where the

second equivalence follows from the estimate (6.12) for p = 1 and (6.11), we have

lim sup
t→∞

Jp(t) ≤
√

2

π
lim sup
t→∞

EQ(K)



( √

t

⟨Ft, µ⟩
W

(K),F,[0,kt)
t

D
(K),[0,kt)
t

)p−1

1{RK(kt)∈[kat ,kbt ]}


 . (6.17)

• We claim that

lim sup
t→∞

Jp(t) ≤
√

2

π
lim sup
t→∞

EQ(K)



( √

t

⟨Ft, µ⟩
W

(K),F,[0,kt)
t

D
(K),[0,kt)
t

)p−1

1Gt


 . (6.18)

To see this, using the branching Markov property and part (i) of Lemma 6.4, we have

EQ(K)



(
W

(K),F,[0,kt)
t

D
(K),[0,kt)
t

)p−1

1Gt




≥ EQ(K)



(
W

(K),F,[0,kt)
t

D
(K),[0,kt)
t

)p−1

1{RK(kt)∈[kat ,kbt ]}


 inf

u∈[kat ,kbt ]
Q(K)(Gt|RK(kt) = u)

= (1 − o(1))EQ(K)



(
W

(K),F,[0,kt)
t

D
(K),[0,kt)
t

)p−1

1{RK(kt)∈[kat ,kbt ]}


 .

Substituting into (6.17), the inequality (6.18) follows.
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• Combining (6.18) with Hölder’s inequality, we have lim sup
t→∞

Jp(t) ≤
√

2
π lim sup

t→∞
[J (3)(t)]p−1,

where

J (3)(t) :=

√
t

⟨Ft, µ⟩
EQ(K)

[
W

(K),F,[0,kt)
t

D
(K),[0,kt)
t

1Gt

]
.

So it suffices to show that J (3)(t) = (1 + o(1))
√

2
π . Note that

J (3)(t) ≤
√
t

⟨Ft, µ⟩
EQ(K)

[
W

(K),F,[0,kt)
t

D
(K),[0,kt)
t

1
Gt∩{D(K)

t ≥1/t2}

]
+

√
t

⟨Ft, µ⟩
Q(K)(D

(K)
t < 1/t2). (6.19)

On the one hand, the Markov inequality and (6.11) yields

√
t

⟨Ft, µ⟩
Q(K)(D

(K)
t < 1/t2) =

√
t

⟨Ft, µ⟩
Q(K)

(
1

D
(K)
t

> t2

)
≲

t3/2

rtht
EQ(K)

(
1

D
(K)
t

)
= o(1). (6.20)

On the other hand, on Gt ∩ {D(K)
t ≥ 1/t2}, we have D

(K),[kt,t]
t ≤ e− log2 t ≤ 1

tD
(K)
t . Then

D
(K),[0,kt)
t ≥ (1 − t−1)D

(K)
t and hence

√
t

⟨Ft, µ⟩
EQ(K)

[
W

(K),F,[0,kt)
t

D
(K),[0,kt)
t

1
Gt∩{D(K)

t ≥1/t}

]
≤ 1

1 − 1
t

EQ(K)

[ √
t

⟨Ft, µ⟩
W

(K),F.[0,kt)
t

D
(K)
t

]

≤ 1

1 − 1
t

EQ(K)

[ √
t

⟨Ft, µ⟩
W

(K),F
t

D
(K)
t

]
= (1 + o(1))

√
2

π
,

(6.21)

where the last equality follows from (6.7). Combining (6.19), (6.20) and (6.21), we finally get

J (3)(t) = (1 + o(1))
√

2
π .

We now complete the proof.

Proof of Lemma 6.4. Firstly, we show that lim
t→∞

Q(K)(G1
t ) = 1. In fact, by the Markov property,

Q(K)(G1
t ) ≥ PBes

K

(
RK(kt) ∈ [kat , k

b
t ]
)

inf
u∈[kat ,kbt ]

PBes
u

(
R(s) ≥ log3 t, ∀s ∈ [0, t− kt]

)
.

The following estimates (6.22) and (6.23) tell us that lim
t→∞

PBes
K

(
RK(kt) ∈ [kat , k

b
t ]
)

= 1. Then com-

bining with (6.24) below, we get lim
t→∞

Q(K)(G1
t ) = 1.

• Given some small constant ϵ0, for fixed a < 1
2 < b, using (6.13) and the fact 1 − e−y ≤ y for all

y > 0, we have uniformly for x ≤ s
1
2
−ϵ0 ,

PBes
x (Rs ≤ sa) = PBes

x/
√
s(R1 ≤ sa−1/2) ≲

∫ sa−
1
2

0
e−

(z−x/
√

s)2

2 z2 dz ≲ Θ(s−3( 1
2
−a)); (6.22)

and

PBes
x (Rs ≥ sb) = PBes

x/
√
s(R1 ≥ sb−1/2) ≲

∫ ∞

sb−
1
2

e−
(z−x/

√
s)2

2 z2 dz = s−g1(s), (6.23)

where g1 satisfies that lims→∞ g1(s) = ∞.
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• For u ∈ [kat , k
b
t ], let τ = inf{s > 0 : Rs < log3 t}. By the hitting probability of 3-dim Brownian

motion (see e.g. [31, (9.1.5)]), we have

PBes
u

(
R(s) ≥ log3 t,∀s ∈ [0, t]

)
≥ PBes

u (τ = ∞) = 1 − log3 t

u
. (6.24)

Secondly, we show that Q(K)(G1
t \G2

t ) → 0. Let G∞ be the sigma-algebra generated by the geneal-
ogy along the spine (Ξ(t))t≥0, the spacial motion of the spine (Ξ(t))t≥0 and the Poisson point process Λ
which represents the birth times along the spine. We know that, under Q(K), given G∞, the processes(
{Xu(t) : u ∈ Nξs

t , t ≥ s}, s ∈ supp(Λ)
)

are independent BBMs starting from Ξ(s). Therefore,

EQ(K) [D
(K),[kt,t]
t |G∞] ≤

∫

[kt,t]
EQ(K)

[ ∑

u∈Nξs
t

(
√

2t− Xu(t) + K)e−
√
2(
√
2t−Xu(t))|G∞

]
Λ(ds)

=

∫

[kt,t]
(
√

2s− Ξ(s) + K)e−
√
2(
√
2s−Ξ(s))Λ(ds).

By the definition of G1
t , we have EQ(K) [D

(K),[kt,t]
t |G∞]1G1

t
≤ e−

√
2(log3 t−K)

∫ t
kt
RK(s)Λ(ds). By the

Markov inequality, we get

Q(K)
(
G1

t ∩ {D(K),F,[kt,t]
t ≥ e− log2 t}

)
≤ EQ(K)

[
elog

2 tD
(K),F,[kt,t]
t 1G1

t

]

= elog
2 tEQ(K)

(
EQ(K) [D

(K),F,[kt,t]
t |G∞]1G1

t

)
≲ e−

√
2 log3 t+log2 tEQ(K)

[∫ t

kt

RK(s) ds

]
= t−g2(t),

(6.25)

where g2 satisfies that limt→∞ g2(t) = ∞, and we used the fact that Λ and RK are independent under
Q(K), and EQ(K) [

∫ t
kt
RK(s)Λ(ds)] = 2EQ(K) [

∫ t
kt
RK(s) ds]. Therefore, Q(K)(G1

t \G2
t ) → 0, and then

limt→∞Q(K)(Gt) = 1.
Thirdly, the same computations as in (6.25) yields

Q(K)(G1
t \G2

t |RK(kt) = u) = Q(K)
(
G1

t ∩ {D(K),F,[kt,t]
t ≥ e− log2 t}|RK(kt) = u

)

≤ e−
√
2 log3 t+log2 tEQ(K)

[∫ t

kt

RK(s) ds|R(kt) = u

]
→ 0 , uniformly in u ≤ kbt .

Also (6.24) implies that inf
u∈[kat ,kbt ]

Q(K)(G1
t |RK(kt) = u) → 1. Thus Lemma 6.4(i) follows.

Finally, we give the upper bound of Q(K)
({

|RK(t) − rt
√
t| ≤ A

√
tht
}
\Gt

)
. Recall that in (6.25)

we have shown that Q(K)(G1
t \G2

t ) = t−g2(t) with g2(t) → ∞. So in the following we only need to deal
with Q(K)
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|RK(t) − rt

√
t| ≤ A

√
tht
}
\G1

t

)
.

• The estimates (6.22) and (6.23) imply that

Q(K)
(
RK(kt) /∈ [kat , k

b
t ], |RK(t) − rt

√
t| ≤ A

√
tht

)

≤ PBes
K (R(kt) ≤ kat ) sup

u≤kat

PBes
u

(
|R(t) − rt

√
t| ≤ A

√
tht

)
+ PBes

K

(
R(kt) ≥ kbt

)

≲ PBes
K (R(kt) ≤ kat ) sup

x≤kat /
√
t

PBes
x (|R1 − rt| ≤ Aht) + k

−g1(kt)
t ≲ k

−3( 1
2
−a)

t (r2t ht).

(6.26)

• Note that by the Markov property,

Q(K)
(
{RK(kt) ∈ [kat , k

b
t ], |RK(t) − rt

√
t| ≤ A

√
tht}\G1

t

)

=

∫ kbt

kat

PBes
K (R(kt) ∈ du)PBes

u

(
τ < t− kt; |Rt−kt − rt

√
t| ≤ A

√
tht

)
,
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where τ = inf{s > 0 : Rs < log3 t}. It is known that (τ,PBes
u ) has a probability density function

(see e.g., [20, Page 339, 2.0.2])

pτ (s;u) =
log3 t

u

(u− log3 t)√
2πs3/2

exp

{
−(u− log3 t)2

2s

}
ds ≲

log3 t

s3/2
exp

{
−u2

4s

}
ds.

Let t′ = t− kt. Using the strong Markov property, PBes
u

(
τ < t′; |Rt′ − rt

√
t| ≤ A

√
tht
)

equals

∫ t′

0
PBes

log3 t

(∣∣∣Rs − rt
√
t
∣∣∣ ≤ Aht

√
t
)
pτ (t′ − s;u) ds

≲
∫ t′

0
r2t

t

s
e−cr2t

t′
s ht

√
t

s

log3 t

(t′ − s)3/2
e
− u2

4(t′−s) ds

≲ (r2t ht)
log3 t√

t

∫ 1

0

1

[λ(1 − λ)3/2]
e−cr2t

1
λ e−

u2

4t′
1

1−λ dλ ≲ r2t ht log3 t

(
1

rt
√
t

+
1

u

)
,

where in the first inequality we used the domination e−(rt
√
t−Aht

√
t−log3 t)2/2s ≤ e−cr2t t

′/s with c >
0 being some constant and in the third inequality we used the domination

∫ 1
0 λ−3/2e−cr2t /λ dλ ≤∫∞

0
1

rt
√
ηe

−cη dη ≲ 1
rt

. Thus

Q(K)
({

RK(kt) ∈ [kat , k
b
t ], |RK(t) − rt

√
t| ≤ A

√
tht

}
\G1

t

)

≲ r2t ht log3 t

∫ kbt

kat

(
1

rt
√
t

+
1

u

)
PBes

K (Rkt ∈ du) ≤ r2t ht log3 t

(
1

rt
√
t

+
1

k
1/2
t

)
.

(6.27)

Combining (6.26) and (6.27), we get Lemma 6.4(ii).

A Proof of Lemma 2.2

Proof. Denote by Pr the probability in the left hand side of (2.2). Noting that the Gaussian process

(σBr − σ2r
σ2s+t−s

[σBs +Bt−Bs])r∈[0,s] is independent to σBs +Bt−Bs (checking their covariance), we
have

Pr = P

(
σBr −

σ2r

σ2s + t− s
(σBs + Bt −Bs) ≤ vr − σ2r

σ2s + (t− s)
(m̃t + x) + K , ∀r ≤ s

)

= P

(
σBr −

r

s
σBs ≤ Z̄ + vr − σ2r

σ2s + (t− s)
(m̃t + x) + K , ∀r ≤ s

)
,

where Z̄ := σ2r
σ2s+t−s

(σBs + Bt − Bs) − r
sσBs. Simple computation yields vr − σ2r

σ2s+(t−s)
(m̃t + x) =

(1−σ2)(t−s)v+σ2(wt−x)
σ2s+(t−s)

r. Let Z := σ2s+(t−s)
r Z̄ = σ2(Bt −Bs) − t−s

s σBs. We now have

Pr = P

(
σBr −

r

s
σBs ≤

Z + (1 − σ2)(t− s)v + σ2(wt − x)

σ2s + (t− s)
r + K , ∀r ≤ s

)
.

We bound the probability that Z is large. Observe that Z is a Gaussian and Var(Z) = σ2(t −
s)(σ2 + t−s

s ) ≤ 2(t − s) as σ2 ≤ 1. Applying the Gaussian tail bound, we have for large t, P(|Z| >
10(t − s + log t)) ≤ 1

t2
for all s ∈ [t −

√
t log t, t]. Moreover, Z is independent to the Brownian

bridge (Br − r
sBs)r≤s. By formula of total probability with partition {Z ≤ 10(t− s + log t)} and its

complement, using again σ ≤ 1, we have

Pr ≤P

(
σBr −

r

s
σBs ≤

(10 + v)(t− s + wt + |x|)
σ2s + (t− s)

r + K , ∀r ≤ s

)
+

1

t2

≤2

[
(10 + v)(t− s + wt + |x|)s

σ(σ2s + (t− s))
+

K

σ

]
K

σ
+

1

t2
≲K,β,σ

t− s + wt + |x|
t

,
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where in the second inequality we used Lemma 2.1.
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