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A B S T R A C T

Let 𝑋𝐼
𝑛 be the coalescence time of two particles picked at random from the 𝑛th generation of

a critical Galton–Watson process with immigration, and let 𝐴𝐼
𝑛 be the coalescence time of the

whole population in the 𝑛th generation. In this paper, we study the limiting behaviors of 𝑋𝐼
𝑛

and 𝐴𝐼
𝑛 as 𝑛 → ∞.

1. Introduction and main results

Suppose (𝑌𝑛)𝑛≥0 is a Galton–Watson process with offspring distribution (𝑝𝑗 )𝑗≥0 and initial size 𝑌0 = 1. For 𝑛 ≥ 1, conditional on
{𝑌𝑛 ≥ 2}, pick 2 distinct particles uniformly from the 𝑛th generation and trace their lines of descent backward in time. The common
nodes in the two lines are called the common ancestors of the two particles. Let 𝑋𝑛 denote the generation of their most recent
common ancestor, which is called the pairwise coalescence time. Next, for 𝑛 ≥ 1, conditional on {𝑌𝑛 ≥ 1}, we trace the lines of descent
of all particles in generation 𝑛 backward in time. The common nodes in the 𝑌𝑛 lines of descent are called the common ancestors of
all the particles in generation 𝑛. Define the total coalescence time 𝐴𝑛 as the generation of the most recent common ancestor of all the
particles in generation 𝑛. When 𝑚 ∶=

∑∞
𝑛=0 𝑗𝑝𝑗 = 1 (critical case), 𝑝1 < 1 and 𝜎2 ∶=

∑∞
𝑛=0 𝑗

2𝑝𝑗 − 1 < ∞, Athreya (2012a) proved that
for 𝑢 ∈ (0, 1),

lim
𝑛→∞

𝑃
(

𝑋𝑛
𝑛

≥ 𝑢||
|

𝑌𝑛 ≥ 2
)

= 𝐸
⎡

⎢

⎢

⎣

∑𝑁𝑢
𝑖=1 𝜂

2
𝑖

(
∑𝑁𝑢

𝑖=1 𝜂𝑖)
2

⎤

⎥

⎥

⎦

, (1.1)

where (𝜂𝑖)𝑖≥1 are independent and identically distributed exponential random variables with mean 𝜎2∕2, and 𝑁𝑢 is independent of
(𝜂𝑖)𝑖≥1 and is a geometric random variable of parameter 1 − 𝑢 (i.e., 𝑃 (𝑁𝑢 = 𝑘) = (1 − 𝑢)𝑢𝑘−1, 𝑘 ≥ 1). Athreya (2012a) also proved the
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following conditional limit result:

lim
𝑛→∞

𝑃
(

𝐴𝑛
𝑛

> 𝑢||
|

𝑌𝑛 ≥ 1
)

= 1 − 𝑢, for 𝑢 ∈ (0, 1).

The genealogy of branching processes has been widely studied. Athreya (2010, 2012b), Durrett (1978), Zubkov (1975) also
investigated the distributional properties of the coalescence times for Galton–Watson processes. Kersting (2022) gave the genealogy
structure of branching processes in random environment. Harris et al. (2020), Johnston (2019) and Le (2014) investigated the
coalescent structure of continuous time Galton–Watson processes. Hong (2016) studied the corresponding results for multitype
branching processes.

Suppose (𝑝𝑗 )𝑗≥0 and (𝑏𝑗 )𝑗≥0 are probability distributions on the set N of nonnegative integers. Let (𝜉𝑛,𝑖; 𝑛 ∈ N, 𝑖 ∈ N) be a doubly
infinite family of independent random variables with common distribution (𝑝𝑗 )𝑗≥0, and let (𝐼𝑛)𝑛≥0 be a sequence of independent
random variables with common distribution (𝑏𝑗 )𝑗≥0 which are independent of (𝜉𝑛,𝑖; 𝑛 ∈ N, 𝑖 ∈ N) as well. Let (𝑍𝑛)𝑛≥0 be a
Galton–Watson process with immigration (GWPI for short) defined by

𝑍0 = 𝐼0, 𝑍𝑛+1 =
𝑍𝑛
∑

𝑖=1
𝜉𝑛,𝑖 + 𝐼𝑛+1, 𝑛 = 0, 1,… . (1.2)

Here 𝑍𝑛 is the population size in generation 𝑛, and 𝐼𝑛 is the number of immigrants in generation 𝑛. For each 1 ≤ 𝑖 ≤ 𝑍𝑛, 𝜉𝑛,𝑖
denotes the number of children of the 𝑖th particle in generation 𝑛. We assume that all the immigrants have different ancestors. Set

= 𝐸𝜉0,1 =
∑∞

𝑗=0 𝑗𝑝𝑗 . Then (𝑍𝑛)𝑛≥0 is called supercritical, critical or subcritical according to 𝑚 > 1, 𝑚 = 1 or 𝑚 < 1, respectively.
WPI was first considered by Heathcote (1965). Recently, Wang, Li and Yao (Wang et al., 2019) found that the pairwise coalescence

ime 𝑋𝑛 for some supercritical GWPI converges in distribution to a (0,∞]-valued random variable as 𝑛 → ∞.
In this paper, we consider the coalescence times for critical GWPI (𝑍𝑛)𝑛≥0. Unlike the case of a Galton–Watson process starting

ith one particle, two randomly picked distinct particles (all particles) from generation 𝑛 of a GWPI may not have a common
ncestor. Conditional on {𝑍𝑛 > 1}, we pick two distinct particles, say v1 and v2, uniformly from the 𝑛th generation and trace their
ines of descent backward in time. Define the pairwise coalescence time for GWPI

𝑋𝐼
𝑛 =

{

|v|, if the most recent common ancestor of v1 and v2 is v,
∞, otherwise, (1.3)

here |v| is the generation of v. Note that even if v1 and v2 are descendants of two distinct particles immigrated to the system at
he same time, we do not say they have a common ancestor. Similarly, conditional on {𝑍𝑛 > 0}, define the total coalescence time for

GWPI

𝐴𝐼
𝑛 =

{

|v|, if the most recent common ancestor of all particles alive at 𝑛 is v,
∞, otherwise. (1.4)

We will study the asymptotic behaviors of the distribution of 𝑋𝐼
𝑛 conditioned on {𝑍𝑛 > 1} and the distribution of 𝐴𝐼

𝑛 conditioned on
{𝑍𝑛 > 0}. We will explore the effect of the immigrations on the coalescence times. Throughout this paper we suppose the following
assumption holds.

Assumption 1. 0 < 𝑝0 + 𝑝1 < 1, 𝑚 = 1, 𝜎2 = ∑

𝑗 (𝑗2 − 1)𝑝𝑗 < ∞. 𝑏0 < 1 and 𝛽 =
∑

𝑗 𝑗𝑏𝑗 < ∞.

We use ⟨𝑔, 𝜇⟩ to denote the integral of a function 𝑔 with respect to a Radon measure 𝜇 whenever this integral makes sense.

Theorem 1.1. Suppose Assumption 1 holds. Let 𝛾 = 2𝛽∕𝜎2. Define

𝜙(𝑗, 𝜇) = 𝐸
[

∑𝑗
𝑖=1 𝜔

2
𝑖 + ⟨𝑓 2, 𝜇⟩

(
∑𝑗

𝑖=1 𝜔𝑖 + ⟨𝑓, 𝜇⟩)2

]

, (1.5)

where 𝑓 (𝑟) = 𝑟, 𝑟 > 0, and (𝜔𝑖)𝑖≥1 are independent exponential random variables with parameter 2
𝜎2
.

(1) For 0 < 𝑢 < 1,

lim
𝑛→∞,𝑘∕𝑛→𝑢

𝑃
(

𝑘 ≤ 𝑋𝐼
𝑛 < 𝑛||

|

𝑍𝑛 > 1
)

= 𝐸𝜙(𝑁𝐼
𝑢 ,𝑊 ),

where 𝑁𝐼
𝑢 is a negative binomial random variable with law

𝑃 (𝑁𝐼
𝑢 = 𝑘) =

(−𝛾)(−𝛾 − 1)⋯ (−𝛾 − 𝑘 + 1)
𝑘!

(1 − 𝑢)𝛾 (−𝑢)𝑘, 𝑘 = 0, 1, 2,… , (1.6)

with the convention (−𝛾)(−𝛾−1)⋯(−𝛾−𝑘+1)
𝑘! = 1 when 𝑘 = 0, 𝑊 is a Poisson random measure on (0,∞) with intensity 𝛾

𝑟 𝑒
− 2

𝜎2
𝑟𝑑𝑟, and 𝑁𝐼

𝑢
and 𝑊 are independent.

(2)

lim 𝑃
(

𝑋𝐼
𝑛 < ∞|

|𝑍𝑛 > 1
)

= 𝐸
[

⟨𝑓 2,𝑊 ⟩

]

.

2

𝑛→∞ |

⟨𝑓,𝑊 ⟩

2
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Note that 𝑁𝑢 in (1.1) for a critical Galton–Watson process only takes positive integer values, while 𝑁𝐼
𝑢 in Theorem 1.1 can take

value 0 with positive probability. In the special case 𝛾 = 1, the random number 𝑁𝐼
𝑢 + 1 and 𝑁𝑢 have the same distribution.

We conclude from Pakes (1971b, Theorem 3) (see Lemma 2.2) that 𝑍𝑛 diverges to infinity in probability as 𝑛 → ∞. Our second
result says that as 𝑛 → ∞, the probability that all the particles of generation 𝑛 have a common ancestor goes to 0.

Theorem 1.2. Suppose Assumption 1 holds. Then

lim
𝑛→∞

𝑃 (𝐴𝐼
𝑛 < ∞|𝑍𝑛 > 0) = 0.

2. Some preliminary results

Recall that (𝑌𝑛)𝑛≥0 is a critical Galton–Watson process with offspring distribution (𝑝𝑗 )𝑗≥0 starting with 𝑌0 = 1. The following result
was proved in Athreya and Ney (1972).

Lemma 2.1. When 𝑚 = 1, 𝑝1 < 1, 𝜎2 = ∑

𝑗 (𝑗2 − 𝑗)𝑝𝑗 < ∞,

lim
𝑛→∞

𝑛𝑃 (𝑌𝑛 > 0) = 2
𝜎2

, (2.1)

nd for any 𝑡 > 0,

lim
𝑛→∞

𝑃
(

𝑌𝑛
𝑛

> 𝑡||
|

𝑌𝑛 > 0
)

= 𝑒−
2𝑡
𝜎2 . (2.2)

The following result for critical GWPI is from Pakes (1971b, Theorem 3).

emma 2.2. Suppose Assumption 1 holds. Put 𝛾 = 2𝛽
𝜎2
. Then, as 𝑛 → ∞, 𝑍𝑛

𝑛 converges in distribution to a Gamma random variable with
parameters (2∕𝜎2, 𝛾), whose density function is

ℎ(𝑡) = 2
𝜎2𝛤 (𝛾)

(

2𝑡
𝜎2

)𝛾−1
𝑒−

2𝑡
𝜎2 , 𝑡 > 0. (2.3)

The above lemma implies that lim𝑛→∞ 𝑃 (𝑍𝑛 > 0) = 1. The rate that 1 − 𝑃 (𝑍𝑛 > 0) converges to 0 was investigated in Pakes
(1971a).

From the construction (1.2) of the GWPI (𝑍𝑛)𝑛≥0, for any 0 ≤ 𝑘 < 𝑛, 𝑍𝑛 can be rewritten as

𝑍𝑛 =
𝑍𝑘
∑

𝑖=1
𝑌𝑛,𝑘,𝑖 +

𝑛
∑

𝑗=𝑘+1

𝐼𝑗
∑

𝑙=1
𝑌 (𝑗)
𝑛−𝑗,𝑙 , (2.4)

where 𝑌𝑛,𝑘,𝑖, 𝑖 = 1, 2,…, are independent and have the same distribution as 𝑌𝑛−𝑘, and for 0 ≤ 𝑗 ≤ 𝑛, 𝑌 (𝑗)
𝑛−𝑗,𝑙 , 𝑙 = 1, 2…, are independent

and have the same distribution as 𝑌𝑛−𝑗 . Note that 𝑌𝑛,𝑘,𝑖 represents the number of descendants in generation 𝑛 of the 𝑖th particle in
generation 𝑘, and 𝑌 (𝑗)

𝑛−𝑗,𝑙 represents the number of descendants in generation 𝑛 of the 𝑙th particle in the 𝐼𝑗 immigrants in generation
𝑗. For any non-negative integer 𝑚, set (𝑚)2 = 𝑚(𝑚− 1). Notice that (𝑚)2 = 0 when 𝑚 = 0 or 1. Starting from the representation (2.4),
the distribution of the pairwise coalescence time 𝑋𝐼

𝑛 , given {𝑍𝑛 > 1}, has the following expression.

Lemma 2.3. For any 0 ≤ 𝑘 < 𝑛,

𝑃
(

𝑘 ≤ 𝑋𝐼
𝑛 < 𝑛||

|

𝑍𝑛 > 1
)

= 𝐸
[

∑𝑍𝑘
𝑖=1

(

𝑌𝑛,𝑘,𝑖
)

2 +
∑𝑛−1

𝑗=1+𝑘
∑𝐼𝑗

𝑙=1
(

𝑌 (𝑗)
𝑛−𝑗,𝑙

)

2

(𝑍𝑛)2
|

|

|

𝑍𝑛 > 1
]

,

with the convention that the second term in the numerator equals 0 when 𝑘 > 𝑛 − 2. In particular,

𝑃
(

𝑋𝐼
𝑛 < ∞|𝑍𝑛 > 1

)

= 𝐸
[

∑𝑛−1
𝑗=0

∑𝐼𝑗
𝑙=1

(

𝑌 (𝑗)
𝑛−𝑗,𝑙

)

2

(𝑍𝑛)2
|

|

|

𝑍𝑛 > 1
]

.

Proof. For 0 ≤ 𝑘 < 𝑛, the event {𝑘 ≤ 𝑋𝐼
𝑛 < 𝑛} occurs if and only if either the two randomly picked particles from generation

𝑛 are both descendants of a particle in the 𝑘th generation, or they are both descendants of a particle immigrated into the system
between generation 𝑘+1 and generation 𝑛−1. The number of choices of the two particles from the descendants of the 𝑖th particle in
generation 𝑘 is (𝑌𝑛,𝑘,𝑖)2, and therefore the total number is ∑𝑍𝑘

𝑖=1(𝑌𝑛,𝑘,𝑖)2 with the convention that the sum is 0 if 𝑍𝑘 = 0. The number
of choices of the two particles from the descendants of the 𝑙th particle immigrated into the system in generation 𝑗 for 𝑘+1 ≤ 𝑗 < 𝑛 is
(𝑌 (𝑗)

𝑛−𝑗,𝑙)2, and the total number is ∑𝑛−1
𝑗=𝑘+1

∑𝐼𝑗
𝑙=1(𝑌

(𝑗)
𝑛−𝑗,𝑙)2. Also, the total number of choices of the two particles from the 𝑛th generation

is (𝑍𝑛)2. Thus for any 𝑛 ≥ 1 and 0 ≤ 𝑘 < 𝑛, conditional on {𝑍𝑛 > 1}, the probability of {𝑘 ≤ 𝑋𝐼
𝑛 < 𝑛} is given by

𝑃 (𝑘 ≤ 𝑋𝐼 < 𝑛|𝑍𝑛 > 1) = 𝐸
[

∑𝑍𝑘
𝑖=1(𝑌𝑛,𝑘,𝑖)2 +

∑𝑛−1
𝑗=𝑘+1

∑𝐼𝑗
𝑙=1(𝑌

(𝑗)
𝑛−𝑗,𝑙)2

|

|𝑍𝑛 > 1
]

.

3

𝑛 (𝑍𝑛)2 |
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Since 𝑍0 = 𝐼0, we have 𝑌𝑛,0,𝑖 = 𝑌 (0)
𝑛,𝑖 , 𝑖 = 1,… , 𝐼0. Taking 𝑘 = 0 in the above identity, we obtain

𝑃 (𝑋𝐼
𝑛 < ∞|𝑍𝑛 > 1) = 𝑃 (𝑋𝐼

𝑛 < 𝑛|𝑍𝑛 > 1) = 𝐸
[

∑𝑛−1
𝑗=0

∑𝐼𝑗
𝑙=1(𝑌

(𝑗)
𝑛−𝑗,𝑙)2

(𝑍𝑛)2
|

|

|

𝑍𝑛 > 1
]

. □

Let  be the space of finite measures on [0,∞) equipped with the topology of weak convergence. Let 𝐶𝑏[0,∞)(𝐶+
𝑏 [0,∞)) be

the space of bounded continuous (nonnegative bounded continuous) functions on [0,∞). Then for any 𝑔 ∈ 𝐶𝑏[0,∞), the map
𝜋𝑔 ∶ 𝜇 → ⟨𝑔, 𝜇⟩ on  is continuous. For random measures 𝜂𝑛, 𝜂 ∈ , 𝑛 = 1, 2,…, 𝜂𝑛 converges to 𝜂 in distribution as 𝑛 → ∞

is equivalent to ⟨𝑔, 𝜂𝑛⟩
𝑑
→ ⟨𝑔, 𝜂⟩ for all 𝑔 ∈ 𝐶+

𝑏 [0,∞). We refer the readers to Kallenberg (2017, p.109) for more details. Let 𝑘 be the
𝜎-algebra generated by 𝜉𝑖,𝑗 , 𝑖 < 𝑘, 𝑗 = 1, 2,…, and 𝐼𝑗 , 𝑗 = 0, 1,… , 𝑘. Then 𝑘 contains all information up to generation 𝑘. For 𝑘 ≥ 0,
given 𝑘, (𝑌𝑛,𝑘,𝑖)𝑛≥𝑘, 𝑖 = 1, 2,…, are independent critical Galton–Watson processes with initial value 1 at generation 𝑘.

emma 2.4. Suppose Assumption 1 holds. If 𝑘
𝑛 → 𝑢 as 𝑛 → ∞ for some 𝑢 ∈ (0, 1), then as 𝑛 → ∞, the random measure

𝑉𝑛,𝑘(⋅) =
𝑍𝑘
∑

𝑖=1
I{𝑌𝑛,𝑘,𝑖>0}𝛿 𝑌𝑛,𝑘,𝑖

𝑛−𝑘
(⋅) ∈ 

converges in distribution to the random measure 𝑉𝑢 ∶=
∑𝑁𝐼

𝑢
𝑖=1 𝛿𝜔𝑖

(⋅) ∈  with the convention that 𝑉𝑢 = 0 when 𝑁𝐼
𝑢 = 0, where (𝜔𝑖)𝑖≥1 are

ndependent exponential random variables with parameter 2
𝜎2
, and 𝑁𝐼

𝑢 ∈ N is independent of (𝜔𝑖)𝑖≥1 with the law given by (1.6).

Proof. Suppose 𝑔 ∈ 𝐶+
𝑏 [0,∞). For any 0 ≤ 𝑘 < 𝑛, let

𝐿𝑛,𝑘(𝑔) = exp
{

−⟨𝑔, 𝑉𝑛,𝑘⟩
}

= exp
{

−
𝑍𝑘
∑

𝑖=1
𝑔
( 𝑌𝑛,𝑘,𝑖
𝑛 − 𝑘

)

I{𝑌𝑛,𝑘,𝑖>0}
}

,

nd set 𝑆𝑛,𝑘𝑔 = 𝐸
(

exp
{

−𝑔
( 𝑌𝑛−𝑘
𝑛−𝑘

)

I{𝑌𝑛−𝑘>0}
}

)

. Then we have

𝐸[𝐿𝑛,𝑘(𝑔)|𝑘] = 𝐸[𝐿𝑛,𝑘(𝑔)|𝑍𝑘] =
[

𝐸
(

exp
{

−𝑔
( 𝑌𝑛−𝑘
𝑛 − 𝑘

)

I{𝑌𝑛−𝑘>0}
}

)]𝑍𝑘
= (𝑆𝑛,𝑘𝑔)𝑍𝑘 .

Let 𝑞𝑛 = 𝑃 (𝑌𝑛 > 0) be the survival probability of the process (𝑌𝑘)𝑘≥0 in generation 𝑛. Then we have

𝑆𝑛,𝑘𝑔 = 𝐸
[

exp
{

−𝑔
( 𝑌𝑛−𝑘
𝑛 − 𝑘

)}

|

|

|

𝑌𝑛−𝑘 > 0
]

𝑞𝑛−𝑘 + (1 − 𝑞𝑛−𝑘)

= 1 − 𝑞𝑛−𝑘
[

1 − 𝐸
(

exp
{

−𝑔
( 𝑌𝑛−𝑘
𝑛 − 𝑘

)}

|

|

|

𝑌𝑛−𝑘 > 0
)]

.

t follows from (2.2) that for any 𝑔 ∈ 𝐶+
𝑏 [0,∞) and 𝑢 ∈ (0, 1),

lim
𝑛→∞,𝑘∕𝑛→𝑢

𝐸
[

exp
{

−𝑔
( 𝑌𝑛−𝑘
𝑛 − 𝑘

)}

|

|

|

𝑌𝑛−𝑘 > 0
]

= 2
𝜎2 ∫

∞

0
𝑒−𝑔(𝑟)𝑒−

2𝑟
𝜎2 𝑑𝑟 =∶ 𝐿(𝑔).

rom these we derive that

lim
𝑛→∞,𝑘∕𝑛→𝑢

ln𝑆𝑛,𝑘𝑔
𝑞𝑛−𝑘

= −(1 − 𝐿(𝑔)). (2.5)

eanwhile, using (2.1) and Lemma 2.2, we obtain that 𝑍𝑘𝑞𝑛−𝑘 converges to 𝜉𝑢 weakly as 𝑛 → ∞, 𝑘∕𝑛 → 𝑢 for 𝑢 ∈ (0, 1), where 𝜉𝑢 is a
random variable having Gamma distribution with parameters

( 1 − 𝑢
𝑢

, 𝛾
)

. As a result, −𝑍𝑘 ln(𝑆𝑛,𝑘𝑔) converges weakly to 𝜉𝑢(1−𝐿(𝑔)).
ince 𝑒−𝑥 is a bounded continuous function for 𝑥 ∈ [0,∞), we have

lim
𝑛→∞,𝑘∕𝑛→𝑢

𝐸
[

exp
{

−⟨𝑔, 𝑉𝑛,𝑘⟩
}]

= lim
𝑛→∞,𝑘∕𝑛→𝑢

𝐸
[

𝐸
(

𝐿𝑛,𝑘(𝑔)|𝑘
)]

= lim
𝑛→∞,𝑘∕𝑛→𝑢

𝐸
[

(𝑆𝑛,𝑘𝑔)𝑍𝑘
]

= lim
𝑛→∞,𝑘∕𝑛→𝑢

𝐸
[

exp
{

−(−𝑍𝑘 ln(𝑆𝑛,𝑘𝑔))
}]

(2.6)

= 𝐸[exp{−𝜉𝑢(1 − 𝐿(𝑔))}].

The Laplace transform of 𝜉𝑢 is given by (c.f. Sato (2014, Example 2.15))

𝐿𝜉𝑢 (𝜆) = 𝐸𝑒−𝜆𝜉𝑢 =
(

1 + 𝑢𝜆
1 − 𝑢

)−𝛾
, 𝜆 > 0.

Therefore,

𝐸
[

exp
{

−𝜉𝑢(1 − 𝐿(𝑔))
}]

=
[

1 + 𝑢
1 − 𝑢

(1 − 𝐿(𝑔))
]−𝛾

= (1 − 𝑢)𝛾 [1 − 𝑢𝐿(𝑔)]−𝛾

=
∞
∑

𝑘=0

(−𝛾)(−𝛾 − 1)⋯ (−𝛾 − 𝑘 + 1)
𝑘!

(1 − 𝑢)𝛾 (−𝑢)𝑘𝐿(𝑔)𝑘

= 𝐸𝑒−
∑𝑁𝐼

𝑢
𝑗=1 𝑔(𝑤𝑗 ) = 𝐸

[

𝑒−⟨𝑔,𝑉𝑢⟩
]

.

4

In conclusion, 𝑉𝑛,𝑘 converges to 𝑉𝑢 in distribution as 𝑛 → ∞, 𝑘∕𝑛 → 𝑢. □
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For 𝑟 > 0, put

𝑓 (𝑟) = 𝑟, 𝑔1(𝑟) = 𝑟 ∧ 𝑟−1, 𝑔2(𝑟) = 1 ∧ 𝑟2. (2.7)

emark 2.5. Using the same argument as in the proof of Lemma 2.4 for the random measure

𝑉𝑛,𝑘(⋅) ∶=
𝑍𝑘
∑

𝑖=1
I{𝑌𝑛,𝑘,𝑖>0}

(

1 ∨
( 𝑌𝑛,𝑘,𝑖
𝑛 − 𝑘

)2)
𝛿 𝑌𝑛,𝑘,𝑖

𝑛−𝑘
(⋅),

and using the fact that ℎ(𝑟) ∶= (1 ∨ 𝑟2) is a continuous function on [0,∞), we obtain that

𝑉𝑛,𝑘(𝑑𝑟)
𝑑
→ (1 ∨ 𝑟2)𝑉𝑢(𝑑𝑟) =∶ 𝑉𝑢(𝑑𝑟) in .

Since 𝑔1, 𝑔2 ∈ 𝐶+
𝑏 [0,∞), ⟨𝑔1, 𝑉𝑛,𝑘⟩ = ⟨𝑓, 𝑉𝑛,𝑘⟩ and ⟨𝑔2, 𝑉𝑛,𝑘⟩ = ⟨𝑓 2, 𝑉𝑛,𝑘⟩, we have

(⟨𝑓, 𝑉𝑛,𝑘⟩, ⟨𝑓 2, 𝑉𝑛,𝑘⟩) = (⟨𝑔1, 𝑉𝑛,𝑘⟩, ⟨𝑔2, 𝑉𝑛,𝑘⟩)

𝑑
→ (⟨𝑔1, 𝑉𝑢⟩, ⟨𝑔2, 𝑉𝑢⟩) = (⟨𝑓, 𝑉𝑢⟩, ⟨𝑓 2, 𝑉𝑢⟩) =

(

𝑁𝐼
𝑢

∑

𝑘=1
𝜔𝑘,

𝑁𝐼
𝑢

∑

𝑘=1
𝜔2
𝑘

)

, (2.8)

as 𝑛 → ∞, 𝑘∕𝑛 → 𝑢 with 𝑢 ∈ (0, 1).

Define the birth time 𝜏𝑛 of the oldest clan in generation 𝑛 by

𝜏𝑛 = inf
{

0 ≤ 𝑗 ≤ 𝑛;
𝐼𝑗
∑

𝑙=1
𝑌 (𝑗)
𝑛−𝑗,𝑙 > 0

}

with the convention inf ∅ = +∞. The birth time of the oldest clan for stationary continuous state branching processes is studied
in Chen and Delmas (2012, Corollary 4.2). Using Lemma 2.4, it is easy to get the limit distribution of 𝜏𝑛. Recall that 𝛾 = 2𝛽∕𝜎2.

Corollary 2.6. Suppose Assumption 1 holds. We have

lim
𝑛→∞,𝑘∕𝑛→𝑢

𝑃 (𝜏𝑛 > 𝑘) = 𝑃 (𝑁𝐼
𝑢 = 0) = (1 − 𝑢)𝛾 , 0 < 𝑢 < 1.

Proof. The event {𝜏𝑛 > 𝑘} can be written as {𝑉𝑛,𝑘(1) = 0}. Thus

lim
𝑛→∞,𝑘∕𝑛→𝑢

𝑃 (𝜏𝑛 > 𝑘) = lim
𝑛→∞,𝑘∕𝑛→𝑢

𝑃 (𝑉𝑛,𝑘(1) = 0) = 𝑃 (𝑁𝐼
𝑢 = 0) = (1 − 𝑢)𝛾 . □

Define a function 𝑤 by

𝑤(𝑟) = 𝑟 ∨ 𝑟2, 𝑟 ∈ (0,∞). (2.9)

We next consider the following random measures related to immigrations after generation 𝑘,

𝑊𝑛,𝑘(⋅) ∶=
𝑛
∑

𝑗=𝑘+1

𝐼𝑗
∑

𝑙=1
I{

𝑌 (𝑗)
𝑛−𝑗,𝑙>0

}𝑤
(𝑌 (𝑗)

𝑛−𝑗,𝑙

𝑛 − 𝑘

)

𝛿
𝑌 (𝑗)𝑛−𝑗,𝑙
𝑛−𝑘

(⋅), 𝑛 > 𝑘.

For each (𝑛, 𝑘) with 𝑘 < 𝑛, thanks to (2.4), we see that 𝑊𝑛,𝑘(⋅) has the same distribution as the random measure

𝑊𝑛−𝑘(⋅) ∶=
𝑛−𝑘−1
∑

𝑗=0

𝐼𝑗
∑

𝑙=1
I{

𝑌𝑗,𝑙>0
}𝑤

( 𝑌𝑗,𝑙
𝑛 − 𝑘

)

𝛿 𝑌𝑗,𝑙
𝑛−𝑘

(⋅), (2.10)

here 𝑌𝑗,𝑙 , 𝑗 ∈ N, 𝑙 = 1, 2,…, are independent and for each 𝑗, 𝑌𝑗,𝑙 , 𝑙 = 1, 2,…, are identically distributed as 𝑌𝑗 , and where (𝑌𝑗,𝑙)𝑗≥0,𝑙≥1
are independent of the immigration process (𝐼𝑗 )𝑗≥0. By an argument very similar to that used in the proof of Lemma 2.4, we get the
following convergence in distribution result for the random measures (𝑊𝑛,𝑘)𝑛≥𝑘.

Lemma 2.7. Suppose Assumption 1 holds. Let 𝜁 be the random measure defined by

𝜁 (𝑑𝑟) = 𝑤(𝑟)𝑊 (𝑑𝑟),

where 𝑊 is a Poisson random measure with intensity 𝛾
𝑟 𝑒

− 2𝑟
𝜎2 𝑑𝑟 on (0,∞) and 𝑤 is the function defined in (2.9). Then 𝑊𝑛,𝑘

𝑑
→ 𝜁 in  as

𝑛 − 𝑘 → ∞.

roof. Since 𝑊𝑛,𝑘
𝑑
= 𝑊𝑛−𝑘, we have for 𝑔 ∈ 𝐶+

𝑏 [0,∞),

𝐸
[

exp
{

−⟨𝑔,𝑊 ⟩

}]

= 𝐸
[

exp
{

−⟨𝑔,𝑊 ⟩

}

]

, (2.11)
5

𝑛,𝑘 𝑛−𝑘
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which means that we only need to consider the limit of the Laplace functional of 𝑊𝑛 as 𝑛 → ∞. For any 𝑔 ∈ 𝐶+
𝑏 [0,∞), put

𝑇𝑛,𝑗 (𝑔) = 𝐸
[

exp
{

−𝑤
(𝑌𝑗

𝑛

)

𝑔
(𝑌𝑗

𝑛

)

I{𝑌𝑗>0}
}]

, 𝑗 = 0, 1,… , 𝑛 − 1.

Then 0 < 𝑇𝑛,𝑗 (𝑔) < 1. By the definition (2.10) of 𝑊𝑛,

exp
{

−⟨𝑔,𝑊𝑛⟩
}

= exp
{

−
𝑛−1
∑

𝑗=0

𝐼𝑗
∑

𝑙=1
𝑤
(𝑌𝑗,𝑙

𝑛

)

𝑔
(𝑌𝑗,𝑙

𝑛

)

I{𝑌𝑗,𝑙>0}
}

.

he Laplace transform of 𝑊𝑛 can be written as

𝐸
[

exp
{

−⟨𝑔,𝑊𝑛⟩
}]

=
𝑛−1
∏

𝑗=0
𝐸
[

𝑇𝑛,𝑗 (𝑔)
𝐼𝑗
]

=
𝑛−1
∏

𝑗=0
𝐵
(

𝑇𝑛,𝑗 (𝑔)
)

= exp
{

𝑛−1
∑

𝑗=0
ln𝐵

(

𝑇𝑛,𝑗 (𝑔)
)

}

, (2.12)

where 𝐵(𝑠) =
∑

𝑗 𝑏𝑗𝑠
𝑗 , |𝑠| < 1, is the probability generating function of 𝐼𝑘, 𝑘 ≥ 0. We claim that

lim
𝑛→∞

𝑛−1
∑

𝑗=0
ln𝐵

(

𝑇𝑛,𝑗 (𝑔)
)

= 𝛾 ∫

∞

0

(

𝑒−𝑤(𝑟)𝑔(𝑟) − 1
)1
𝑟
𝑒−

2𝑟
𝜎2 𝑑𝑟. (2.13)

uppose for the moment the claim is true. Then by (2.12), for any 𝑔 ∈ 𝐶+
𝑏 [0,∞),

lim
𝑛→∞

𝐸
[

exp
{

−⟨𝑔,𝑊𝑛⟩
}]

= exp
{

𝛾 ∫

∞

0

(

𝑒−𝑤(𝑟)𝑔(𝑟) − 1
)1
𝑟
𝑒−

2𝑟
𝜎2 𝑑𝑟

}

.

And then using (2.11), we have

lim
𝑛−𝑘→∞

𝐸
[

exp
{

−⟨𝑔,𝑊𝑛,𝑘⟩
}]

= exp
{

𝛾 ∫

∞

0

(

𝑒−𝑤(𝑟)𝑔(𝑟) − 1
)1
𝑟
𝑒−

2𝑟
𝜎2 𝑑𝑟

}

.

Since ∫ ∞
0 (𝑤(𝑟)∧1) 1𝑟 𝑒

− 2𝑟
𝜎2 𝑑𝑟 < ∞, it follows from Kallenberg (2017, Theorem 3.20) that there is an infinitely divisible random measure

𝜁 ∈  represented as 𝜁 (𝑑𝑟) = 𝑤(𝑟)𝑊 (𝑑𝑟), 𝑟 > 0, where 𝑊 is a Poisson random measure with intensity I{𝑟>0}
𝛾
𝑟 𝑒

− 2𝑟
𝜎2 𝑑𝑟. The Laplace

functional of 𝜁 is given by

𝐸
[

exp{−⟨𝑔, 𝜁⟩}
]

= exp
{

𝛾 ∫

∞

0

(

𝑒−𝑤(𝑟)𝑔(𝑟) − 1
) 1
𝑟
𝑒−

2𝑟
𝜎2 𝑑𝑟

}

, ∀𝑔 ∈ 𝐶+
𝑏 [0,∞).

Thus 𝑊𝑛,𝑘
𝑑
→ 𝜁 as 𝑛 − 𝑘 → ∞.

Now we prove the claim (2.13). By the mean value theorem, there exists 𝜉𝑛,𝑗 ∈ (𝑇𝑛,𝑗 (𝑔), 1) such that

𝐵
(

𝑇𝑛,𝑗 (𝑔)
)

− 1 = 𝐵′(𝜉𝑛,𝑗 )
(

𝑇𝑛,𝑗 (𝑔) − 1
)

= 𝛽
(

𝑇𝑛,𝑗 (𝑔) − 1
)

+ (𝐵′(𝜉𝑛,𝑗 ) − 𝛽)
(

𝑇𝑛,𝑗 (𝑔) − 1
)

. (2.14)

Thanks to the inequality 0 < 1 − 𝑒−𝑥 ≤ 𝑥 for 𝑥 > 0 and the fact that Var(𝑌𝑗 ) = 𝑗𝜎2 (see Athreya and Ney (1972, Section 𝐼.2)), we
have that for 0 ≤ 𝑗 ≤ 𝑛 − 1,

0 ≤ 1 − 𝑇𝑛,𝑗 (𝑔) ≤ ‖𝑔‖∞𝐸
[

𝑤
(
𝑌𝑗
𝑛
)

]

≤ ‖𝑔‖∞𝐸
[𝑌𝑗
𝑛

+
(𝑌𝑗

𝑛

)2
]

≤
𝑎‖𝑔‖∞

𝑛
, (2.15)

or some constant 𝑎 > 0. Thus 𝑛(1 − 𝑇𝑛,𝑗 (𝑔)) is bounded for 𝑛 > 0 and 𝑗 ≤ 𝑛. Moreover from (2.1) and (2.2), it follows that for any
< 𝑡 < 1,

lim
𝑛→∞

𝑛[1 − 𝑇𝑛,[𝑛𝑡](𝑔)] = lim
𝑛→∞

𝑛𝑃 (𝑌[𝑛𝑡] > 0)𝐸
[

1 − exp
{

−𝑤
(𝑌[𝑛𝑡]

𝑛
)

𝑔
(𝑌[𝑛𝑡]

𝑛
)

}

|

|

|

𝑌[𝑛𝑡] > 0
]

= 4
(𝜎2)2𝑡 ∫

∞

0

(

1 − 𝑒−𝑤(𝑟𝑡)𝑔(𝑟𝑡)) 𝑒−
2𝑟
𝜎2 𝑑𝑟.

hen by the dominated convergence theorem,

lim
𝑛→∞

𝑛−1
∑

𝑗=0
(𝑇𝑛,𝑗 (𝑔) − 1) = lim

𝑛→∞∫

1

0
𝑛(𝑇𝑛,[𝑛𝑡](𝑔) − 1)𝑑𝑡

= ∫

1

0

4
(𝜎2)2𝑡

𝑑𝑡∫

∞

0

(

𝑒−𝑤(𝑟𝑡)𝑔(𝑟𝑡) − 1
)

𝑒−
2𝑟
𝜎2 𝑑𝑟 (2.16)

= 2
𝜎2 ∫

∞

0

(

𝑒−𝑤(𝑟)𝑔(𝑟) − 1
)1
𝑟
𝑒−

2𝑟
𝜎2 𝑑𝑟.

Using (2.15) and the continuity of 𝐵′(𝑠) on [0, 1], we get that 𝐵′(𝜉𝑛,𝑗 ) − 𝛽 converges to 0 uniformly for 0 ≤ 𝑗 ≤ 𝑛, as 𝑛 → ∞. It has
been shown in (2.16) that ∑𝑛−1 |𝑇 (𝑔) − 1| converges. Therefore, ∑𝑛−1(𝐵′(𝜉 ) − 𝛽)

(

𝑇 (𝑔) − 1
)

converges to 0. Thus, by (2.14),
6

𝑗=0 |
|

𝑛,𝑗 |

|

𝑗=0 𝑛,𝑗 𝑛,𝑗
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∑𝑛−1
𝑗=0

(

𝐵
(

𝑇𝑛,𝑗 (𝑔)
)

− 1
)

and 𝛽
∑𝑛−1

𝑗=0
(

𝑇𝑛,𝑗 (𝑔) − 1
)

have the same limit. More precisely, from (2.16), it follows that

lim
𝑛→∞

𝑛−1
∑

𝑗=0
(𝐵

(

𝑇𝑛,𝑗 (𝑔)
)

− 1) = lim
𝑛→∞

𝛽
𝑛−1
∑

𝑗=0

(

𝑇𝑛,𝑗 (𝑔) − 1
)

= 𝛾 ∫

∞

0

(

𝑒−𝑤(𝑟)𝑔(𝑟) − 1
) 1
𝑟
𝑒−

2𝑟
𝜎2 𝑑𝑟.

Meanwhile, since −𝑥 ≥ ln(1 − 𝑥) ≥ −𝑥 − 𝑥2

1 − 𝑥
for 0 < 𝑥 < 1, if

lim
𝑛→∞

𝑛−1
∑

𝑗=0

[

𝐵
(

𝑇𝑛,𝑗 (𝑔)
)

− 1
]2

𝐵
(

𝑇𝑛,𝑗 (𝑔)
) = 0, (2.17)

then ∑𝑛−1
𝑗=0 ln𝐵

(

𝑇𝑛,𝑗 (𝑔)
)

and 𝛽
∑𝑛−1

𝑗=0
(

𝑇𝑛,𝑗 (𝑔) − 1
)

have the same limit as 𝑛 → ∞, and thus the claim is true. Now we prove (2.17). By
(2.15), for any 1∕2 < 𝛿 < 1, there is 𝑁 > 0, such that for any 𝑛 > 𝑁, 0 < 𝑗 ≤ 𝑛, 𝑇𝑛,𝑗 (𝑔) > 𝛿. Since 𝐵(𝑠) is an increasing continuous
function on [0, 1] and 𝐵(1) = 1, for any 𝜀 > 0, we can choose 𝛿 above such that when 1 > 𝑠 > 𝛿, 𝐵(𝑠) > 1 − 𝜀. Therefore when 𝑛 > 𝑁 ,

0 ≤
𝑛−1
∑

𝑗=0

[

𝐵
(

𝑇𝑛,𝑗 (𝑔)
)

− 1
]2

𝐵
(

𝑇𝑛,𝑗 (𝑔)
) ≤ 𝜀

𝐵( 12 )

𝑛−1
∑

𝑗=0

[

1 − 𝐵
(

𝑇𝑛,𝑗 (𝑔)
)]

.

Then (2.17) follows from the convergence of ∑𝑛−1
𝑗=0

[

1 − 𝐵
(

𝑇𝑛,𝑗 (𝑔)
)]

and the arbitrariness of 𝜀. □

emark 2.8. (1) Let �̃�1(𝑟) = 1 ∧ 𝑟−1, 𝑟 > 0 and �̃�2(𝑟) = 1 ∧ 𝑟, 𝑟 > 0. Then �̃�1, �̃�2 ∈ 𝐶+
𝑏 [0,∞). Thanks to Lemma 2.7 and the facts

̃1(𝑟)𝑤(𝑟) = 𝑟 = 𝑓 (𝑟) and �̃�2(𝑟)𝑤(𝑟) = 𝑟2 = 𝑓 2(𝑟) for 𝑟 > 0, we get that
(

⟨�̃�1,𝑊𝑛,𝑘⟩, ⟨�̃�2,𝑊𝑛,𝑘⟩
) 𝑑
→

(

⟨�̃�1, 𝜁⟩, ⟨�̃�2, 𝜁⟩
)

=
(

⟨𝑓,𝑊 ⟩, ⟨𝑓 2,𝑊 ⟩

)

, as 𝑛 − 𝑘 → ∞.

(2) We observe that
𝑛 − 𝑘
𝑛

[

⟨𝑓, 𝑉𝑛,𝑘⟩ + ⟨�̃�1,𝑊𝑛,𝑘⟩
]

=
𝑍𝑛
𝑛

,

here 𝑓 and �̃�1 are defined as above. Since 𝑉𝑛,𝑘 and 𝑊𝑛,𝑘 are independent, from Lemmas 2.4 and 2.7, it follows that for any 𝜆 > 0.

lim
𝑛→∞

𝐸
[

exp
{

−𝜆
𝑍𝑛
𝑛

}]

= lim
𝑛→∞,𝑘∕𝑛→𝑢

𝐸 exp
{

−𝜆𝑛 − 𝑘
𝑛

(⟨𝑓, 𝑉𝑛,𝑘⟩ + ⟨�̃�1,𝑊𝑛,𝑘⟩)
}

= lim
𝑛→∞,𝑘∕𝑛→𝑢

𝐸
[

exp
{

−𝜆𝑛 − 𝑘
𝑛

⟨𝑓, 𝑉𝑛,𝑘⟩
}

]

lim
𝑛→∞,𝑘∕𝑛→𝑢

𝐸
[

exp
{

−𝜆𝑛 − 𝑘
𝑛

⟨�̃�1,𝑊𝑛,𝑘⟩
}

]

= 𝐸[exp{−𝜆(1 − 𝑢)⟨𝑓, 𝑉𝑢⟩}]𝐸[exp{−𝜆(1 − 𝑢)⟨𝑓,𝑊 ⟩}]

=
( 𝜆 + 2

𝜎2

𝜆(1 − 𝑢) + 2
𝜎2

)−𝛾(𝜆(1 − 𝑢) + 2
𝜎2

2
𝜎2

)−𝛾
=
(

1 + 𝜆
2
𝜎2

)−𝛾
,

where the last term is the Laplace transform of the Gamma distribution with parameters ( 2
𝜎2
, 𝛾). This is consistent with Lemma 2.2.

. Proofs of the main results

roof of Theorem 1.1. Let 𝑓 be the function defined in (2.7), and let �̃�1, �̃�2 be the functions defined in Remark 2.8(1). The random
ariable in Lemma 2.3 can be expressed in terms of the random measures defined in Section 2, and then we have

∑𝑍𝑘
𝑖=1

(

𝑌𝑛,𝑘,𝑖
)

2 +
∑𝑛−1

𝑗=1+𝑘
∑𝐼𝑗

𝑙=1
(

𝑌 (𝑗)
𝑛−𝑗,𝑙

)

2

(𝑍𝑛)2
=

⟨𝑓 2, 𝑉𝑛,𝑘⟩ −
1

𝑛−𝑘 ⟨𝑓, 𝑉𝑛,𝑘⟩ + ⟨�̃�2,𝑊𝑛,𝑘⟩ −
1

𝑛−𝑘 ⟨�̃�1,𝑊𝑛,𝑘⟩

[

⟨𝑓, 𝑉𝑛,𝑘⟩ + ⟨�̃�1,𝑊𝑛,𝑘⟩
]2 − 1

𝑛−𝑘

[

⟨𝑓, 𝑉𝑛,𝑘⟩ + ⟨�̃�1,𝑊𝑛,𝑘⟩
]

.

ince (𝑉𝑛,𝑘)𝑛>𝑘 and (𝑊𝑛,𝑘)𝑛>𝑘 are independent and 0 <

∑𝑍𝑘
𝑖=1

(

𝑌𝑛,𝑘,𝑖
)

2 +
∑𝑛

𝑗=1+𝑘
∑𝐼𝑗

𝑙=1
(

𝑌
(𝐼𝑗 )
𝑛−𝑗,𝑙

)

2

(𝑍𝑛)2
≤ 1 is a bounded continuous function of

⟨𝑓, 𝑉𝑛,𝑘⟩, ⟨𝑓 2, 𝑉𝑛,𝑘⟩, ⟨�̃�1,𝑊𝑛,𝑘⟩, ⟨�̃�2,𝑊𝑛,𝑘⟩), according to Remark 2.5 and Remark 2.8, for 𝑢 ∈ (0, 1),

lim
𝑛→∞,𝑘∕𝑛→𝑢

⟨𝑓 2, 𝑉𝑛,𝑘⟩ −
1

𝑛−𝑘 ⟨𝑓, 𝑉𝑛,𝑘⟩ + ⟨�̃�2,𝑊𝑛,𝑘⟩ −
1

𝑛−𝑘 ⟨�̃�1,𝑊𝑛,𝑘⟩

[

⟨𝑓, 𝑉𝑛,𝑘⟩ + ⟨�̃�1,𝑊𝑛,𝑘⟩
]2 − 1

𝑛−𝑘

[

⟨𝑓, 𝑉𝑛,𝑘⟩ + ⟨�̃�1,𝑊𝑛,𝑘⟩
]

=
⟨𝑓 2, 𝑉𝑢⟩ + ⟨𝑓 2,𝑊 ⟩

[

⟨𝑓, 𝑉𝑢⟩ + ⟨𝑓,𝑊 ⟩

]2

n distribution. It follows from Lemma 2.2 that lim𝑛→∞ 𝑃 (𝑍𝑛 > 1) = 1. The results of this theorem follow from Lemma 2.3.

roof of Theorem 1.2. If all the particles in generation 𝑛 have the same ancestor, then they must be descendants of one immigrant
before generation 𝑛. Thus

{ 𝐼 } { (𝑗) = 0 for all but one pair (𝑗, 𝑙), 0 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑙 ≤ 𝐼
}

7

𝐴𝑛 < ∞, 𝑍𝑛 > 0 ⊂ 𝑌𝑛−𝑗,𝑙 𝑗 .
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𝑎

𝐵

T
t

S

f

S

T

Then we only need to prove that the probability of the event on the right hand side converges to 0. Recall that 𝑞𝑛 = 𝑃 (𝑌𝑛 > 0). Set
𝑛 = 1 − 𝑞𝑛 = 𝑃 (𝑌𝑛 = 0). Then

𝑃
(

𝑌 (𝑗)
𝑛−𝑗,𝑙 = 0 for all but one pair(𝑗, 𝑙), 0 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑙 ≤ 𝐼𝑗

)

= 𝐸
[

𝑛
∑

𝑗=0

∏

𝑘≠𝑗
𝑃 (𝑌𝑛−𝑘 = 0)𝐼𝑘𝐼𝑗𝑃 (𝑌𝑛−𝑗 = 0)𝐼𝑗−1𝑃 (𝑌𝑛−𝑗 > 0)

]

=
[

𝑛
∏

𝑘=0
𝐵(𝑎𝑘)

][

𝑛
∑

𝑗=0

𝐵′(𝑎𝑗 )
𝐵(𝑎𝑗 )

𝑞𝑗
]

, (3.1)

where 𝐵(𝑎0) = 𝐵(0) = 𝑏0 and 𝐵′(𝑎0) = 𝐵′(0) = 𝑏1. From (2.1), we know 𝑞𝑘 = 1 − 𝑎𝑘 ∼ 2
𝜎2𝑘

as 𝑘 → ∞. In addition, since
(𝑠) = 1 + 𝛽(𝑠 − 1) + 𝑜(1 − 𝑠) as 𝑠 → 1−,

lim
𝑗→∞

𝑗(1 − 𝐵(𝑎𝑗 )) = lim
𝑗→∞

𝛽𝑗(1 − 𝑎𝑗 ) + 𝑜(𝑗(1 − 𝑎𝑗 )) = 𝛾 > 0. (3.2)

herefore, there exists some 𝑁 ∈ N, such that when 𝑘 ≥ 𝑁 , 𝑘(1−𝐵(𝑎𝑘)) > 𝛾∕2, which implies that 𝐵(𝑎𝑘) < 1− 𝛾
2𝑘 for 𝑘 ≥ 𝑁 . Noticing

hat 𝐵(𝑎𝑘) ≤ 1, the first factor on the right-hand side of (3.1) can be estimated as follows:
𝑛
∏

𝑗=0
𝐵(𝑎𝑗 ) ≤

𝑛
∏

𝑗=𝑁
𝐵(𝑎𝑗 ) ≤

𝑛
∏

𝑗=𝑁

(

1 −
𝛾
2𝑗

)

= exp
{

𝑛
∑

𝑗=𝑁
ln(1 −

𝛾
2𝑗

)
}

, 𝑛 > 𝑁.

ince ln(1 − 𝑥) < −𝑥 for 0 < 𝑥 < 1, we have
𝑛
∑

𝑘=𝑁
ln(1 −

𝛾
2𝑘

) ≤ −
𝑛
∑

𝑘=𝑁

𝛾
2𝑘

≤ −𝐿(ln 𝑛 − ln𝑁),

or some constant 𝐿 > 0. As a result, there exists 𝐶1 > 0, such that
𝑛
∏

𝑘=0
𝐵(𝑎𝑘) ≤ 𝐶1 ⋅ 𝑛

−𝐿. (3.3)

ince 𝑎𝑘 is nondecreasing in 𝑘 and converges to 1 as 𝑘 → ∞, and 𝐵′(𝑠) is a continuous function on [0, 1],

lim
𝑗→∞

𝐵′(𝑎𝑗 )
𝐵(𝑎𝑗 )

= 𝐵′(1) = 𝛽.

he second factor on the right-hand side of (3.1) has the following upper bound:
𝑛
∑

𝑗=1

𝐵′(𝑎𝑗 )
𝐵(𝑎𝑗 )

𝑞𝑗 ≤ 𝐶2

𝑛
∑

𝑗=1
𝑞𝑗 ≤ 𝐶3

𝑛
∑

𝑗=1

1
𝑗
≤ 𝐶3(1 + ln 𝑛), (3.4)

for some positive constants 𝐶2 and 𝐶3. Combining (3.3) and (3.4), we obtain

lim
𝑛→∞

𝑃
(

𝑌 (𝑗)
𝑛−𝑗,𝑙 = 0 for all but one pair (𝑗, 𝑙), 0 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑙 ≤ 𝐼𝑗

)

= 0.

We finish the proof. □
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