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Abstract

Recently Ren et al. [Stoch. Proc. Appl., 137 (2021)] have proved that the extremal
process of the super-Brownian motion converges in distribution in the limit of large
times. Their techniques rely heavily on the study of the convergence of solutions to
the Kolmogorov-Petrovsky-Piscounov equation along the lines of [M. Bramson, Mem.
Amer. Math. Soc., 44 (1983)]. In this paper we take a different approach. Our
approach is based on the skeleton decomposition of super-Brownian motion. The
skeleton may be interpreted as immortal particles that determine the large time
behaviour of the process. We exploit this fact and carry asymptotic properties from
the skeleton over to the super-Brownian motion. Some new results concerning the
probabilistic representations of the limiting process are obtained, which cannot be
directly obtained through the results of [Y.-X. Ren et al., Stoch. Proc. Appl., 137
(2021)]. Apart from the results, our approach offers insights into the driving force
behind the limiting process for super-Brownian motions.
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The extremal process of super-Brownian motion

1 Introduction

1.1 Super-Brownian motion

Throughout this paper, we use “:=” as a way of definition. We use Bb(R) (respectively,
B+(R)) to denote the space of bounded (respectively, nonnegative) Borel functions on R.
The space of continuous (and compactly supported) functions on R will be denoted as
C(R) (and Cc(R) resp.). LetM(R) be the space of all Radon measures on R equipped
with the vague topology. SupposeMF (R) (resp. Mc(R)) is the set of finite (resp. finite
and compactly supported) measures on R. We use the notation 〈f, µ〉 :=

∫
R
f(x)µ(dx)

and ‖µ‖ := 〈1, µ〉. A random variable taking values inM(R) is called a random Radon
measure on R. A sequence of random Radon measures {ξn : n ≥ 1} is said to converge
in distribution to ξ if and only if the random variables 〈f, ξn〉 converges in distribution to
〈f, ξ〉 for any f ∈ C+

c (R).
The main process of interest in this paper is an MF (R)-valued Markov process

X = {Xt : t ≥ 0} with evolution depending on two quantities Pt and ψ. Here Pt is the
semigroup of the standard Brownian motion {((Bt)t≥0,Πx) : x ∈ R} and ψ is the so-called
branching mechanism, which is specified by the Lévy-Khintchine formula

ψ(λ) = −αλ+ βλ2 +

∫
(0,∞)

(
e−λy − 1 + λy

)
π(dy) for λ ≥ 0, (1.1)

where α > 0, β ≥ 0 and π(dy) is a measure on (0,∞) such that
∫

(0,+∞)

(
y ∧ y2

)
π(dy) <

+∞. The distribution of X is denoted by Pµ if it is started at µ ∈MF (R) at t = 0. With
abuse of notation, we also use Pµ to denote the expectation with respect to Pµ. X is
called a (supercritical) (Pt, ψ)-superprocess or super-Brownian motion with branching
mechanism ψ if X is anMF (R)-valued process such that for any µ ∈MF (R), f ∈ B+

b (R)

and t ≥ 0,

Pµ

[
e−〈f,Xt〉

]
= e−〈uf (t,·),µ〉, (1.2)

where
uf (t, x) := − log Pδx

(
e−〈f,Xt〉

)
(1.3)

is the unique nonnegative locally bounded solution to the following integral equation:

uf (t, x) = Ptf(x)−
∫ t

0

Ps (ψ(uf (t− s, ·))) (x)ds for any x ∈ R and t ≥ 0.

We note that uf (t, x) is also a solution to the partial differential equation

∂

∂t
u(t, x) =

1

2

∂2

∂x2
u(t, x)− ψ(u(t, x)) (1.4)

with initial condition u(0, x) = f(x). Moreover, if f is a nonnegative bounded continuous
function on R, limt→0 uf (t, x) = f(x) for x ∈ R. We will refer to (1.4) as the Kolmogorov-
Petrovsky-Piscounov (K-P-P) equation. The existence of such a process X is established
by [12]. Moreover, the super-Brownian motion X has a Hunt realization inMF (R) (see,
for example, [20, Theorem 5.12]) such that t 7→ 〈f,Xt〉 is almost surely right continuous
for any bounded continuous functions f . We shall always work with this version.

Super-Brownian motion is a stochastic model describing the evolution of a random
cloud of Brownian molecules in space. A closely related model is branching Brownian
motion (BBM), in which particles move in space according to the law of a standard
Brownian motion and reproduce at a constant branching rate. It is well-known that
a super-Brownian motion can be constructed as the high density limit of a sequence
of BBMs. Another link between super-Brownian motion and BBM is provided by the
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The extremal process of super-Brownian motion

so-called skeleton decomposition, which is developed in [7, 11, 13, 19]. A detailed review
of the skeleton decomposition is given in Section 2.1. There has been great interest in
the asymptotic behavior of the extremal configurations of BBM. We refer the reader to
[1, 2, 3, 4, 9, 21, 25] and the references therein. We assume that the splitting time of a
particle is exponentially distributed with rate 1, the particle splits into two new particles
at the splitting time, and each of these two particles independently mimics the parent’s
behavior from its place of birth. Let Mt be the maximal displacement of BBM at time
t. It is proved that, if m(t) =

√
2t− 3

2
√

2
log t, then, as t→ +∞, Mt −m(t) converges in

distribution. Recently, the full statistics of the extremal configurations has been studied
in [1, 4]. We use n(t) to denote the number of particles alive at time t and xj(t) to denote
the spatial position of the jth particle. It is proved in [1, 4] that for a BBM, the extremal
process, namely the random point measure

n(t)∑
j=1

δxj(t)−m(t)

converges in distribution to a limiting process as t→ +∞. Recently, Ren et al. [23] have
obtained the corresponding results for super-Brownian motions by analytic methods. In
this paper we shall re-establish some results of [23], with improvements, by appealing to
the skeleton decomposition. This decomposition provides a path-wise description of the
super-Brownian motion in terms of immigration along a BBM, the skeleton. We shall use
it to make a connection between the spatial asymptotic behavior of a BBM and that of a
super-Brownian motion.

In analogy to the case of BBM, We call the random measure Et := Xt −m(t), with
some centering term m(t), the extremal process of the super-Brownian motion, which is
simply the super-Brownain motion seen from the position m(t). Our aim is to show that
Et converges in distribution as t→ +∞ and give an explicit construction of the limiting
process.

1.2 Preview of main results and ideas of proofs

One of our main purpose is to use skeleton decomposition to show that the extremal
process Et converges in distribution as t→ +∞. This relies on the convergence of the log-
Laplace functional of the extremal process. So we start with a theorem which establishes
an integral representation of uφ(t, x−m(t)) in the large time limit (Theorem 2.8). This
is a fundamental result and will be used extensively in our paper. Results of this type
have been proved in Ren et al. [23] by analytic methods. Here we take a different
approach. The core of our argument is the skeleton decomposition that represents the
supercritical super-Brownian motion as the sum of a subcritical super-Brownian motion
X∗ and an immigration process I along a BBM Z, called the skeleton. Then our proof of
Theorem 2.8 follows two main steps: The first step is to show that the Laplace functional
of the extremal process of the skeleton BBM (or, in other words, the solution to the K-P-P
equation corresponding to a certain class of [0, 1]-valued initial conditions) converges as
t→∞ and give an integral representation for the limit. This is done by Proposition 2.5,
for which we take an approach similar to [4]: first, establish the convergence for the
Laplace functionals of the skeleton BBM which are truncated by a certain cutoff, and
then show the convergence still holds when the cutoff is lifted. The second step is to
establish the convergence of the log-Laplace functionals of the extremal process of the
full process X. Our main idea is as follows: Using the tree structure of the skeleton, we
can represent the log-Laplace functional uφ(t, x) of X as follows (eq. (3.16)):

uφ(t, x) = u∗φ(t, x) + 1− Vφ(t, x), ∀t ≥ 0, x ∈ R,

EJP 29 (2024), paper 23.
Page 3/41

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1084
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The extremal process of super-Brownian motion

where u∗φ(t, x) is the log-Laplace functional of the subcritical super-Brownian motion X∗

and Vφ(t, x) is the Laplace functional of the immigration process I. On the other hand, it
follows from the Markov property and spatial homogeneity of super-Brownian motion
that for t, s > 0 and x ∈ R,

uφ(t+ s, x−m(t+ s)) = uuφ(s,·−
√

2s)(t, x−m(t) +Os(t)),

where for each s > 0, Os(t) → 0 as t → +∞. Then using the comparison lemma
(Lemma 3.1) we get two-sided bounds for uφ(t, x−m(t)) given by

u1−Vφ(s,·−
√

2s)(t, x−m(t) +Os(t)) ≤ uφ(t+ s, x−m(t+ s))

≤ u1−Vφ(s,·−
√

2s)(t, x−m(t) +Os(t)) + uu∗φ(s,·−
√

2s)(t, x−m(t) +Os(t)).

An advantage of the above representation is that both u1−Vφ(s,·−
√

2s)(t, x−m(t) +Os(t))

and uu∗φ(s,·−
√

2s)(t, x − m(t) + Os(t)) (for large s) have [0, 1]-valued initial conditions

satisfying the assumptions of Proposition 2.5. So the convergence results obtained
there can be applied directly. We thus finish our proof of Theorem 2.8 by showing
that uu∗φ(s,·−

√
2s)(t, x−m(t) +Os(t)) converges to 0 and u1−Vφ(s,·−

√
2s)(t, x−m(t) +Os(t))

converges to the desired limit as t→ +∞ and s→ +∞.
Following Theorem 2.8, we obtain in Theorem 2.10 the joint convergence of the

extremal processes of the super-Brownian motion and the skeleton. The joint limiting
process (E∞, EZ∞) is distributed in such a way that given E∞, EZ∞ has the law of Poisson
random measure with random intensity determined by E∞. This is essentially a con-
sequence of the weak bi-continuity of the Cox process (cf. [16, Lemma 4.17]), given
the fact that, on the skeleton space, the skeleton Zt has the law of a Poisson random
measure with intensity determined by the full process Xt for each t > 0.

In this paper we are also concerned with the construction of the limiting extremal
process. Results of [1, 4] show that the limiting extremal process of BBM is a (randomly
shifted) Poisson cluster process, also called a decorated Poisson point process, where
the positions of the cluster form a Poisson point process with an exponential intensity
measure and the law of the individual clusters is characterized as a BBM conditioned to
perform unusually large displacements. A similar result is obtained in [23] for super-
Brownian motion with branching mechanism being bounded from below by a stable
branching mechanism. More precisely, for a super-Brownian motion with branching
mechanism satisfying Assumption 2.15, [23] shows that the limiting extremal process
is a decorated Poisson random measure, where the Poisson random measure has an
exponential intensity, each atom is decorated by an independent copy of an auxiliary
random measure, and the law of this auxiliary measure is characterized as a super-
Brownian motion conditioned on the supremum of support being unusually large.

It is natural to wonder if one can give an explicit construction of the limiting extremal
process for super-Brownian motions with more general branching mechanisms. To
answer this, Theorem 2.10 provides an integral representation for the Laplace func-
tional of the limiting extremal process, and more importantly, its proof tells us that,
even though the immigration process I is a subprocess of X, the convergence for the
Laplace functional of the extremal process of the full process X follows when that of the
subprocess converges to the claimed limit. In fact, this key observation is formulated
by Lemma 3.10 in terms of the corresponding convergence of the function C of initial
conditions (see, (2.22) below, for the definition of the function C). This allows us to
construct E∞ as a limit from the random point measure EZ∞ to which, at each atom, is
attached an independent random measure with the same law as Is−

√
2s (Theorem 2.12).

On the other hand, since EZ∞ itself is a Poisson cluster process, we can also construct E∞
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from the limit of a Poisson point process in which each atom is decorated by independent
copy of an auxiliary random measure (Proposition 2.13). The decoration laws needed
for our analysis are obtained by using again the tree structure of the skeleton. To be
more specific, by splitting the immigration that occurs after time t according to different
branches of the skeleton at time t, we can represent the conditional expectation at time
t for the immigration after time t as functionals of the skeleton at time t, and thus can
investigate the joint conditional laws of the super-Brownian motion, the immigration
process and the skeleton. Based on the above results, we prove that E∞ is an infinitely
divisible random measure. We then give a cluster representation of E∞ and characterize
its canonical measures in Theorem 2.14. Finally we discuss the special case where the
branching mechanism satisfies Assumption 2.15 and give the explicit construction of
(E∞, EZ∞) in Theorem 2.16.

Parts of our results (Theorem 2.8, Theorem 2.10 and Theorem 2.16) concerning
the existence and construction of the limiting extremal process of super-Brownian
motion overlap with the results obtained in Ren et al. [23]. Compared with [23], the
present work takes a different approach, focuses on the sample paths, provides a self-
contained proof of the stated results, as well as obtains new results concerning the
probabilistic representation of the limiting process (Theorem 2.12, Proposition 2.13 and
Theorem 2.14). Apart from the result itself, the idea of our proof provides structural
insights into the driving force behind the spatial asymptotic behavior for super-Brownian
motions. We believe that our idea, based on the skeleton decomposition, is (under
certain assumption) feasible also for super-Brownian motions with spatially-dependent
branching mechanisms. In fact, in the recent work [24], the authors use this idea to
study the limiting distributions for super-Brownian motions with compactly supported
branching mechanisms.

The rest of this paper is organized as follows. Section 2 collects the definition of
skeleton decomposition, basic properties of the skeleton process and main results of this
paper: In Subsection 2.1 we give a detailed description of the skeleton decomposition.
In Subsection 2.2 we start with an introduction of the derivative martingale of the
skeleton BBM. Then we review some facts about the convergence of the solutions to
the K-P-P equation with applications to the skeleton BBM. At the end of this subsection,
we compare the limit of derivative martingale of the skeleton BBM with that of the
super-Brownian motion. In Subsection 2.3 we present our main results. The subsequent
sections are devoted to the proofs of the results presented in Section 2. Some minor
statements needed along the way are proved in the Appendix.

2 Preliminaries and results

2.1 The skeleton decomposition of super-Brownian motion

The skeleton decomposition makes a connection between superprocesses and branch-
ing Markov processes. This decomposition provides a path-wise description of a super-
processes in terms of immigrations along a branching Markov process called the skeleton.
Recall that (X,Pµ) is a (Pt, ψ)-superprocess. The following condition is fundamental for
the skeleton construction.

Assumption 2.1. ψ(+∞) = +∞.

Assumption 2.1 implies that there exists some λ∗ ∈ (0,+∞) such that ψ(λ∗) = 0. The
key property of λ∗ used in the skeleton construction is that

Pµ

(
lim

t→+∞
‖Xt‖ = 0

)
= e−λ

∗‖µ‖ ∀µ ∈MF (R),

and so λ∗ gives rise to the multiplicative Pµ-martingale (e−λ
∗‖Xt‖)t≥0. A more detailed
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description of skeleton construction is given in Proposition 2.2.

Proposition 2.2 (Kyrianou et al. [19]). Suppose Assumption 2.1 holds. For every
µ ∈ MF (R) and every finite point measure ν on R, there exists a probability space
with probability measure Pµ,ν , called the skeleton space, that carries three processes:
Z = (Zt)t≥0, I = (It)t≥0 and X∗ = (X∗t )t≥0, where (Z,Pµ,ν) is a BBM with branching
rate q > 0 and offspring distribution {pk : k ≥ 2} uniquely determined by

q(F (s)− s) =
1

λ∗
ψ(λ∗(1− s)) ∀s ∈ [0, 1], (2.1)

here F (s) :=
∑+∞
k=2 pks

k, and Pµ,ν(Z0 = ν) = 1; (X∗,Pµ,ν) is a subcritical super-Brownian
motion with branching mechanism ψ∗(λ) = ψ(λ+ λ∗) and Pµ,ν(X∗0 = µ) = 1; (I,Pµ,ν) is
anMF (R)-valued process with Pµ,ν (I0 = 0) = 1 such that the following holds.

(i) Pµ,
∑
i δxi

[
e−〈f,It〉

]
=
∏
iPµ,δxi

[
e−〈f,It〉

]
for all µ ∈MF (R), t ≥ 0, countable xi ∈ R

and f ∈ B+(R). Moreover, the distribution of I under Pµ,ν does not dependent on
µ, and under Pµ,ν , both Z and I are independent of X∗.

(ii) ((X∗ + I, Z),Pµ,ν) is a Markov process.

(iii) If Pµ denotes the measure Pµ,ν with ν replaced by a Poisson random measure

with intensity λ∗µ(dx), then
(
X̂ := X∗ + I;Pµ

)
is Markovian and has the same

distribution as (X; Pµ).

(iv) under Pµ, given X̂t, the measure Zt is a Poisson random measure with intensity

λ∗X̂t(dx).

Since (X̂;Pµ) is equal in distribution to the (Pt, ψ)-superprocess (X; Pµ), we may
work on this skeleton space whenever it is convenient. For notational simplification, we
will abuse the notation and denote X̂ by X. We will refer to Z and I, respectively, as
the skeleton BBM (skeleton) and the immigration process (immigration) of X. Since the
distribution of X∗ (resp. I) under Pµ,ν does not depend on ν (resp. µ), we sometimes
write Pµ,· (resp. P·,ν) for Pµ,ν .

We observe that up to a space-time scaling transform, the branching mechanism ψ

can be assumed to satisfy that

ψ′(0+) = −1 and λ∗ = 1. (2.2)

In fact, if u(t, x) is a solution to (1.4) then u(α−1t, α−1/2x)/λ∗ is a solution to (1.4) with ψ
replaced by ψ̃ where ψ̃(λ) = ψ(λ∗λ)/αλ∗ satisfies that ψ̃′(0+) = −1 and ψ̃(1) = 0. This
implies that for a (Pt, ψ)-superprocess (Xt)t≥0, if we define the random measures X̃t by

〈f, X̃t〉 = λ∗〈f(α1/2·), Xα−1t〉 ∀t ≥ 0, f ∈ B+
b (R), (2.3)

then (X̃t)t≥0 is a (Pt, ψ̃)-superprocess. It thus suffices to study the long time behavior
of X̃t. In the rest of this paper the branching mechanism ψ is assumed to satisfy (2.2),
which will simplify computations and notations later on.

2.2 The extremal process of the skeleton and facts

2.2.1 Derivative martingales for the skeleton

In this and the next two subsections we assume Assumption 2.1 and (2.2) hold. Additional
conditions used are stated explicitly. Recall that u ∈ Zt and zu(t) denote, respectively, a
particle of the skeleton BBM which is alive at time t and its spatial location at t. Define
for t ≥ 0,

∂Mt :=
∑
u∈Zt

(√
2t− zu(t)

)
e
√

2(zu(t)−
√

2t).
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It is known that ((∂Mt)t≥0,P·,ν) is a signed martingale for every compactly supported
finite point measure ν on R, which is referred to as the derivative martingale of the
skeleton BBM (Zt)t≥0. This martingale is deeply related to the travelling wave solutions
to the K-P-P equation and plays an important role in the limit theory of the skeleton
BBM. [17] proved that the martingale ((∂Mt)t≥0,P·,δ0) has an almost sure nonnegative
limit, and later [27] established the sufficient and necessary condition for the limit to be
non-degenerate. We give the statement below which reproduces the same results in the
setting of skeleton space.

Proposition 2.3. Suppose µ ∈ Mc(R). The limit ∂M∞ = limt→+∞ ∂Mt exists and is
nonnegative Pµ-a.s. Moreover, if the Lévy measure π of ψ satisfies∫

(1,+∞)

x(log x)2π(dx) < +∞, (2.4)

then

Pµ (∂M∞ = 0) = e−‖µ‖.

If (2.4) fails, then ∂M∞ = 0 Pµ-a.s.

Proof. By decomposing ∂Mt into contributions derived from the population at time
s ∈ [0, t), one has

∂Mt =
∑
u∈Zs

∑
v∈Zt,u≺v

(√
2t− zv(t)

)
e
√

2(zv(t)−
√

2t).

Here u ≺ v means that u is an ancestor of v. We use z(u)
v (t− s) to denote zv(t)− zu(s).

Then we have

∂Mt

=
∑
u∈Zs

∑
v∈Zt,u≺v

(√
2s− zu(s) +

√
2(t− s)− z(u)

v (t− s)
)

e
√

2(zu(s)−
√

2s+z(u)
v (t−s)−

√
2(t−s))

=
∑
u∈Zs

e
√

2(zu(s)−
√

2s)

 ∑
v∈Zt,u≺v

(√
2(t− s)− z(u)

v (t− s)
)

e
√

2(z(u)
v (t−s)−

√
2(t−s))


+
∑
u∈Zs

(√
2s− zu(s)

)
e
√

2(zu(s)−
√

2s)

 ∑
v∈Zt,u≺v

e
√

2(z(u)
v (t−s)−

√
2(t−s))


=:

∑
u∈Zs

e
√

2(zu(s)−
√

2s)∂M
(u)
t−s +

∑
u∈Zs

(
√

2s− zu(s))e
√

2(zu(s)−
√

2s)M
(u)
t−s.

In particular by setting s = 0, we have

∂Mt =
∑
u∈Z0

e
√

2zu(0)∂M
(u)
t −

∑
u∈Z0

zu(0)e
√

2zu(0)M
(u)
t . (2.5)

Define for t ≥ 0,

Mt :=
∑
u∈Zt

e
√

2(zu(t)−
√

2t).

It is easy to see that for u ∈ Z0, ∂M (u)
t and M (u)

t are independent copies of (∂Mt,P·,δ0)

and (Mt,P·,δ0), respectively. By [17] one has P·,δ0 (limt→+∞ ∂Mt ∈ [0,+∞)) = 1 and
P·,δ0 (limt→+∞Mt = 0) = 1. We also note that Z0 is a Poisson random measure with
compactly supported intensity µ. So each of the sums on the right hand side of (2.5)
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contains finite terms almost surely. These facts together with (2.5) imply that the limit
∂M∞ = limt→+∞ ∂Mt exists and is nonnegative Pµ-a.s. for every µ ∈Mc(R).

By letting t→ +∞ in (2.5), we have

∂M∞
d
=
∑
u∈Z0

e
√

2zu(0)∂M (u)
∞ . (2.6)

where for u ∈ Zs, ∂M (u)
∞ are independent copies of (∂M∞,P·,δ0). Recall that (Z0,Pµ) is a

Poisson random measure with intensity µ(dx). Using the Poisson computations, we get
by (2.6) that

Pµ
[
e−λ∂M∞

]
= exp

{
−
∫
R

(
1− P·,δ0

[
e−λe

√
2x∂M∞

])
µ(dx)

}
, ∀λ > 0. (2.7)

By letting λ→ +∞ we have

Pµ (∂M∞ = 0) = e−(1−P·,δ0 (∂M∞=0))‖µ‖. (2.8)

By [27] P·,δ0(∂M∞ = 0) = 1 if
∑
k k(log k)2pk = +∞, and otherwise P·,δ0(∂M∞ =

0) = 0. On the other hand by Lemma A.1
∑
k k(log k)2pk is finite if and only if so is∫

(1,+∞)
x(log x)2π(dx). Thus it follows by (2.8) that Pµ (∂M∞ = 0) = 1 if and only if∫

(1,+∞)
x(log x)2π(dx) = +∞, and otherwise Pµ (∂M∞ = 0) = e−‖µ‖.

2.2.2 The extremal process of the skeleton

For x ∈ R and a function f on R, we define the shift operator Tx by Txf(y) := f(x+ y) for
all y ∈ R. For µ ∈M(R), we use µ+x and sometimes Txµ to denote the measure induced
by Tx, that is,

∫
R
f(y)Txµ(dy) =

∫
R
f(y)(µ+ x)(dy) =

∫
R
Txf(y)µ(dy) for all f ∈ B+(R).

Given (2.2), (2.1) can be written as

q(F (s)− s) = ψ(1− s), ∀s ∈ [0, 1], (2.9)

where F (s) =
∑+∞
k=2 pks

k. Let f : R → [0, 1] be a Borel function. It is known that the
function (t, x) 7→ P·,δx

[∏
u∈Zt f(zu(t))

]
is a solution of the equation

∂

∂t
u(t, x) =

1

2

∂2

∂x2
u(t, x) + q(F (u(t, x))− u(t, x)).

with initial condition u(0, x) = f(x). Then (t, x) 7→ 1 − P·,δx
[∏

u∈Zt(1− f(zu(t)))
]

is a
solution to the equation (1.4) with initial condition u(0, x) = f(x).

Recall the definition of uf (t, x) for f ∈ B+
b (R) given in (1.3). We note that uf (t, x)

is the unique nonnegative solution to (1.4) with initial condition f . In particular, if
‖f‖∞ ≤ 1,

uf (t, x) = 1− P·,δx

[ ∏
u∈Zt

(1− f(zu(t)))

]
, (2.10)

where (Zt)t≥0 is the skeleton BBM.
Bramson [10] studied the asymptotic behavior of the solution to the K-P-P equa-

tion (1.4) with initial condition u(0, x) taking values in [0, 1]. Actually in [10], the nonlinear
function −ψ can be any function on [0, 1] satisfying that

ψ ∈ C1[0, 1], ψ(0) = ψ(1) = 0, −ψ(u) > 0 for u ∈ (0, 1),

ψ′(0) = −1, −ψ′(u) ≤ 1 for 0 < u ≤ 1.
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The extremal process of super-Brownian motion

Bramson [10] showed in particular that if ψ also satisfies that

1 + ψ′(u) = O(uρ) as u→ 0 (2.11)

for some ρ > 0, then when the initial condition u(0, x) satisfies a certain integrability
condition, it holds that

u(t, x−m(t))→ w(−x) uniformly in x ∈ R, as t→ +∞.

where

m(t) :=
√

2t− 3

2
√

2
log t, (2.12)

and w(x) is a travelling wave solution with speed
√

2, that is, w(x) is the unique (up to
translations) solution to the ordinary differential equation

1

2
w′′(x) +

√
2w′(x)− ψ(w(x)) = 0, (2.13)

with 1− w(x) being a distribution function on R. The integral representation of w(x) is
established in Lalley and Sellke [21] (see also, [17, 27]): When ∂M∞ is nondegenerate,
one has

w(x) = 1− P·,δ0
[
exp{−C∂M∞e−

√
2x}
]

(2.14)

for some constant C > 0. Moreover, it holds that

lim
x→+∞

w(x)

xe−
√

2x
= C. (2.15)

Later [4] recovered the above representation of the form (2.14) and provided an expres-
sion for the constant C as a function of the initial condition. As a result [4] established the
convergence in distribution of the extremal process of BBM. To apply the aforementioned
results directly to the skeleton BBM, we assume the following condition holds.

Assumption 2.4. For the Lévy measure π of ψ, there exists β ∈ (0, 1) such that∫
(1,+∞)

y1+βπ(dy) < +∞.

It is easy to see from Proposition 2.3 that Assumption 2.4 is sufficient for ∂M∞ to be
nondegenerate. Besides, Assumption 2.4 is also sufficient for (2.11). This is because, by
Lemma A.2, Assumption 2.4 holds if and only if

∫ 1

0
(1 + ψ′(s))s−(1+β)ds < +∞, and the

latter implies that 1 + ψ′(s) = O(sβ).
Define

H1 :=

{
φ ∈ B+

b (R) : ‖φ‖∞ ≤ 1 and

∫ +∞

0

ye
√

2yφ(−y)dy < +∞
}
.

The following proposition establishes a Lalley-Sellke type representation for the Laplace
functional of the extremal process of the skeleton BBM in the limit of large times. The
proof is deferred to Section 3.1.

Proposition 2.5. Suppose Assumption 2.4 holds. For every φ ∈ H1, the limit

C(φ) := lim
r→+∞

√
2

π

∫ +∞

0

ye
√

2yuφ(r,−y −
√

2r)dy

exists and is finite. Moreover,

uφ(t, x−m(t))→ 1−P·,δ0
[
exp{−C(φ)∂M∞e

√
2x}
]

locally uniformly in x ∈ R, as t→ +∞.
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We remark here that Proposition 2.5 refines [4, Lemma 4.10], where the convergence
is obtained for continuous and compactly supported functions in H1.

Taking φ = 1− e−g for some g ∈ C+
c (R), one can rewrite uφ(t, x) as 1−P·,δx

[
e−〈g,Zt〉

]
by (2.10), where (Zt)t≥0 is the skeleton BBM. Then the above result yields that

P·,δ0

[
e−〈g,Zt−m(t)〉

]
→ P·,δ0 [exp{−C(φ)∂M∞}] as t→ +∞. (2.16)

This implies that under P·,δ0 , the extremal process of Z, defined by

EZt := Zt −m(t), ∀t ≥ 0,

converges in distribution as t → +∞. Furthermore, by applying the results of [1, 4],
one can deduce that (EZt ,P·,δ0) converges in distribution, as t→∞, to a random point

measure EZ∞, which is a decorated Poisson point process with intensity c∗∂M∞
√

2e−
√

2zdz

and decoration law 4Z , where

c∗ := C(1(0,+∞)) = lim
r→+∞

√
2

π

∫ +∞

0

ze
√

2zu1(0,+∞)
(r,−z −

√
2r)dz ∈ (0,+∞), (2.17)

and 4Z is a random point measure supported on (−∞, 0], with an atom at 0, which
satisfies that

E
[
e−〈φ,4

Z〉
]

= lim
t→+∞

P·,δ0

[
e−〈φ,Zt−maxZt〉|maxZt >

√
2t
]
, ∀φ ∈ C+

c (R). (2.18)

Here maxZt := max{zu(t) : u ∈ Zt}. We denote EZ∞ by DPPP(c∗∂M∞
√

2e−
√

2zdz, 4Z).
The limiting extremal process EZ∞ can be constructed as follows. Given ∂M∞, let

{ei : i ≥ 1} be the atoms of a Poisson point process on R with intensity c∗∂M∞
√

2e−
√

2zdz

and {4Zi : i ≥ 1} be a sequence of i.i.d. point measures with the same law as 4Z , then

EZ∞
d
=
∑
i≥1

Tei4Zi .

Here Tei4Zi denotes the point measure obtained from 4Zi shifted by ei.
Recall that maxZt is the maximal displacement of the skeleton BBM. Then

u1(0,+∞)
(t, x) = P·,δx (maxZt > 0) = P·,δ0 (maxZt + x > 0)

is a solution to (1.4) with initial condition 1(0,+∞)(x). Proposition 2.5 yields that for any
x ∈ R,

P·,δ0 (maxZt −m(t) ≤ x)→ P·,δ0

[
exp{−c∗∂M∞e−

√
2x}
]

as t→ +∞.

This implies that under the assumptions of Proposition 2.5, the maximal displacement
of the skeleton BBM centered by m(t) converges in distribution to a randomly shifted
Gumbel distribution. In fact, Proposition 2.5 implies the joint convergence of (EZt ,max EZt )

in distribution, see, for example, [6, Lemma 4.4].

2.2.3 Relation between the limits of the derivative martingales of
super-Brownian motion and its skeleton

Define for t ≥ 0,
∂Wt := 〈(

√
2t− ·)e

√
2(·−
√

2t), Xt〉.

By [18] for every µ ∈ Mc(R), ((∂Wt)t≥0,Pµ) is a martingale which is usually called
the derivative martingale of the super-Brownian motion. Obviously (∂Wt)t≥0 is the
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counterpart of (∂Mt)t≥0 in the setting of superprocess. Interest of this martingale is
stimulated by its close connection with the travelling wave solutions to the K-P-P equation
(see, for example, [18] and the references therein). Note that ((∂Wt)t≥0,Pµ) is a signed
martingale which does not necessarily converge almost surely. To study its convergence,
[18] imposed the following condition on ψ:∫ +∞

z

1√∫ y
1
ψ(u)du

dy < +∞ ∀z > 1. (2.19)

The following result is from [18, Theorem 2.4].

Lemma 2.6. Assume (2.19) holds. Then for every µ ∈ Mc(R), the limit ∂W∞ =

limt→+∞ ∂Wt exists and is nonnegative Pµ-a.s. Moreover, ∂W∞ is non-degenerate if and
only if (2.4) holds.

Proposition 2.7. Assume (2.19) holds. Then one has (∂W∞,Pµ)
d
= (∂M∞,Pµ) for any

µ ∈Mc(R).

Proof. Fix an arbitrary µ ∈Mc(R). If (2.4) fails, then by Proposition 2.3 and Lemma 2.6,
one has ∂W∞ = ∂M∞ = 0 Pµ-a.s. Now we assume (2.4) holds. Let w(x) be the travelling
wave solution to the K-P-P equation with speed

√
2. It follows by [18, Theorem 2.4 and

Theorem 2.6] that under (2.19) and (2.4), w(x) is given by

w(x) = − logPδ0

[
exp{−C∂W∞e−

√
2x}
]

for some constant C > 0 satisfying that limx→+∞
w(x)

xe−
√

2x
= C. Hence by (2.14) one has

− logPδ0

[
exp{−C∂W∞e−

√
2x}
]

= 1− P·,δ0
[
exp{−C∂M∞e−

√
2x}
]

(2.20)

for all C > 0 and x ∈ R. We observe that for every x ∈ R, the process ((Xt)t≥0,Pδx) is

equal in law to ((Xt + x)t≥0,Pδ0). It follows that (∂Wt,Pδx)
d
= (e

√
2x∂Wt − xe

√
2xWt,Pδ0)

for any t ≥ 0 where Wt := 〈e
√

2(·−
√

2t), Xt〉. Since by [18, Theorem 2.4(i)] limt→+∞Wt = 0

Pδ0 -a.s., one gets that

(∂W∞,Pδx)
d
= (e

√
2x∂W∞,Pδ0).

Using this and the branching property of superprocesses, one has for any λ > 0,

Pµ
[
e−λ∂W∞

]
= exp

{∫
R

logPδx
[
e−λ∂W∞

]
µ(dx)

}
= exp

{∫
R

logPδ0

[
e−λ∂W∞e

√
2x
]
µ(dx)

}
.

Hence by (2.20) and (2.7) one gets Pµ
[
e−λ∂W∞

]
= Pµ

[
e−λ∂M∞

]
for all λ > 0 and so

(∂W∞,Pµ)
d
= (∂M∞,Pµ).

2.3 Statement of main results

In what follows and for the remainder of this paper we assume Assumptions 2.1, 2.4
and (2.2) hold. Additional conditions used are stated explicitly.

Define

H :=

{
φ ∈ B+

b (R) :

∫ +∞

0

ye
√

2yφ(−y)dy < +∞
}
. (2.21)
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Theorem 2.8. Suppose φ ∈ H. The limit

C(φ) := lim
r→+∞

∫ +∞

0

ye
√

2yuφ(r,−y −
√

2r)dy (2.22)

exists and is finite. Moreover, as t→ +∞,

uφ(t, x−m(t))→ − logPδx [exp{−C(φ)∂M∞}] locally uniformly in x ∈ R. (2.23)

Remark 2.9. (i) We want to point out that the integral representation on the right
hand side of (2.23) depends on ∂M∞, the limit of the derivative martingale of the
skeleton BBM. Assuming in addition that (2.19) holds, then by Proposition 2.7,
∂M∞ is equal in distribution to ∂W∞, and one has

uφ(t, x−m(t))→ − logPδx [exp{−C(φ)∂W∞}] locally uniformly in x ∈ R, (2.24)

as t → +∞. This result is obtained independently in [23, Proposition 1.3(1)].
In fact, the constant C(φ) given in (2.22) is the same as the one given in [23,
Proposition 1.3]. This is because our uφ(t, x) is the solution to (1.4) with initial
condition u(0, x) = φ(x), while Uφ(t, x) defined in [23] is the solution to (1.4) with
initial condition u(0, x) = φ(−x). It holds that Uφ(t, x) = uφ(t,−x). Comparing the
definitions of C(φ) in (2.22) and the one in [23, Proposition 1.3], we see that they are
the same. We also note that the “locally uniform convergence” is slightly stronger
than [23, Proposition 1.3(1)], where the convergence of (2.24) is established for
each fixed x ∈ R.

(ii) Let maxXt denote the supremum of the support of Xt, i.e., maxXt := inf{x ∈
R : Xt(x,+∞) = 0}. Here we take the convention that inf ∅ = +∞. Unlike for
the skeleton BBM, Theorem 2.8 does not imply the growth order of maxXt is
m(t). In fact, the asymptotic behavior of maxXt depends heavily on the branching
mechanism ψ(λ) and it may grow much faster than m(t). We give such examples in
Remark 3.12.

Theorem 2.8 yields the joint convergence of the extremal processes of super-Brownian
motion and skeleton.

Theorem 2.10. For t ≥ 0, set

Et := Xt −m(t) and EZt := Zt −m(t).

Then for every x ∈ R, the process ((Et, EZt )t≥0,Pδx) converges in distribution to a limit
(E∞, EZ∞) as t→ +∞, where E∞ is a random Radon measure and EZ∞ is a random point
measure satisfying that

E
[
e−〈f,E∞〉−〈g,E

Z
∞〉
]

= Pδx
[
exp{−C

(
f + 1− e−g

)
∂M∞}

]
(2.25)

for all f ∈ H and g ∈ B+(R) with 1 − e−g ∈ H. Here C(·) is a function of the initial
condition as defined in (2.22). Moreover, given E∞, EZ∞ is a Poisson random measure on
R with intensity E∞(dx).

In the above statement and for the remainder of this paper, when we talk about the
distributional limit, we do not specify the probability space where the limit is defined, just
use P to denote the probability measure, and E to denote the corresponding expectation.
We remark that the distribution of (E∞, EZ∞) depends on x since it is the distributional
limit of ((Et, EZt )t≥0,Pδx). We will not remark this dependence in similar situation later
in this paper.

In the following proposition, we establish a dichotomy on the finiteness of the supre-
mum of the support for the limiting process.
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Proposition 2.11. Suppose x ∈ R and E∞ is the limit of ((Et)t≥0,Pδx) in distribution.
Let max E∞ be the supremum of the support of E∞. Then max E∞ is a.s. finite if and only
if

sup
λ
C
(
λ1(0,+∞)

)
< +∞. (2.26)

Otherwise if (2.26) fails, then P (max E∞ < +∞) = Pδx (∂M∞ = 0) = e−1.

We obtain some new results on the probabilistic representations for the limiting
process. Recall that I = (It)t≥0 is the immigration process on the skeleton space. For

u ∈ Zt, denote by I(u)
s the immigration at time t+s that occurred along the subtree of the

skeleton rooted at u with location zu(t). Lemma 4.4 below shows that under Pδx , for every

s > 0, conditioned on {maxZt −
√

2t > 0},
(∑

u∈Zt I
(u)
s −

√
2s−maxZt, Zt −maxZt

)
converges in distribution to a limit

(
4I,s,4Z

)
as t→ +∞, and that the law of the limit(

4I,s,4Z
)

does not depend on x.

Theorem 2.12. Suppose x ∈ R and (E∞, EZ∞) is the limit of ((Et, EZt )t≥0,Pδx) in distribu-

tion. Then EZ∞ is a DPPP(c∗∂M∞
√

2e−
√

2ydy, 4Z), here c∗ = C(1(0,+∞)). Let {di : i ≥ 1}
be the atoms of EZ∞, and for every s > 0, let {4si : i ≥ 1} be an independent sequence of
i.i.d. random measures with the same law as (Is −

√
2s,P·,δ0), then

E∞
d
= lim
s→+∞

∑
i≥1

Tdi4si . (2.27)

The limit in (2.27) can not be put into the summation. In fact, for each i ≥ 1, 4si
converges in distribution to the null measure as s → +∞, see Remark 4.7 below. The
following result gives an alternative description of E∞.

Proposition 2.13. Suppose the assumptions of Theorem 2.12 hold. Given (∂M∞,Pδx),

let {ei : i ≥ 1} be the atoms of a Poisson point process with intensity c∗∂M∞
√

2e−
√

2xdx,
and for every s > 0, let {4I,si : i ≥ 1} be an independent sequence of i.i.d random
measures with the same law as 4I,s, then

E∞
d
= lim
s→+∞

∑
i≥1

Tei4
I,s
i .

For every s > 0,
∑
i≥1 Tei4

I,s
i is a Poisson random measure with exponential intensity,

in which each atom is decorated by an independent copy of an auxiliary measure.
However, their distributional limit E∞ may not inherit such a structure. This is revealed
by the following theorem.

Theorem 2.14. Suppose x ∈ R and E∞ is the limit of ((Et)t≥0,Pδx) in distribution. There
exist a constant ι ≥ 0 and a measure Λ onM(R) \ {0} satisfying that∫ +∞

−∞
e−
√

2xdx

∫
M(R)\{0}

(1 ∧ Txµ(A)) Λ(dµ) < +∞, ∀ bounded Borel set A ⊂ R,

such that

E∞
d
= ι ∂M∞ϑ+

∫
M(R)\{0}

µη(dµ),

where ϑ(dx) := e−
√

2xdx is the (non-random) measure on R and given (∂M∞,Pδx), η is a

Poisson random measure onM(R) \ {0} with intensity c∗∂M∞
∫ +∞
−∞
√

2e−
√

2xTxΛ(dµ)dx.
Moreover, ι and Λ(dµ) satisfy (4.27) and (4.28) of Lemma 4.10, respectively.

The constant ι may not be 0 in general. The argument of Remark 4.11 shows that
ι = 0 if the following condition holds:
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Assumption 2.15. There are constants a, b > 0 and 0 < γ ≤ 1 such that

ψ(λ) ≥ −aλ+ bλ1+γ , ∀λ > 0.

When Assumption 2.15 is satisfied, E∞ is equal in law to a Poisson random measure
on M(R) with intensity c∗∂M∞

∫ +∞
−∞
√

2e−
√

2xTxΛ(dµ)dx. Furthermore, Theorem 2.16

below shows that Λ(dµ) = c̃0
c∗

P
(
4̃X ∈ dµ

)
, where c̃0 is a constant given by (3.38) with

φ = 0, and 4̃X is the limit of Xt−maxXt conditioned on {maxXt−
√

2t > 0}. In fact, it is
proved in Lemma 4.13 that under Assumption 2.15, conditioned on {maxXt −

√
2t > 0},

the random measures (Xt −maxXt, Zt −maxXt) converges, as t→ +∞, in distribution
to a limit (4̃X , 4̃Z), and that given 4̃X , 4̃Z is a Poisson random measure with intensity
4̃X .

Theorem 2.16. Assume in addition that Assumption 2.15 holds. Suppose x ∈ R and
(E∞, EZ∞) is the limit of ((Et, EZt )t≥0, Pδx) in distribution. Let c̃0 be given by (3.38) with
φ = 0. Given (∂M∞,Pδx), let {ẽi : i ≥ 1} be the atoms of a Poisson point process with

intensity c̃0∂M∞
√

2e−
√

2ydy and {(4̃Xi , 4̃Zi ) : i ≥ 1} be an independent sequence of i.i.d.
random measures with the same law as (4̃X , 4̃Z). Then we have

(
E∞, EZ∞

) d
=

∑
i≥1

Tẽi4̃Xi ,
∑
i≥1

Tẽi4̃Zi

 .

Remark 2.17. It is easy to see that Assumption 2.15 implies both Assumption 2.1
and (2.19). So by Proposition 2.7 one can replace ∂M∞ by ∂W∞ in the statement of
Theorem 2.16. This type of representation for E∞ is due to [23, Theorem 1.6].

Remark 2.18. Assume that Assumptions 2.4, 2.15 and (2.2) hold. Theorem 2.16 im-
plies that EZ∞ is a DPPP(c̃0∂M∞

√
2e−
√

2ydy, 4̃Z), while Theorem 2.12 says that EZ∞ is a
DPPP(c∗∂M∞

√
2e−
√

2ydy, 4Z). These two theorems give two interpretations of EZ∞ as a
decorated Poisson point process. Though the two interpretations are equal in law, they
have different intensities and then different decoration laws. To see this, we only need
to show that c∗ < c̃0. Using Pδx(∂M∞ > 0) > 0 and Theorem 2.12, one has

Pδx (E∞(0,+∞) = 0) = Pδx (max E∞ ≤ 0) ≤ Pδx
(
max EZ∞ ≤ 0

)
= Pδx [exp{−c∗∂M∞}] < 1.

Then we have, for λ > 1,

Pδx

[
e−C(λ1(0,+∞))∂M∞

]
= E

[
e−λE∞(0,∞)

]
< E

[
e−E∞(0,∞)

]
= Pδx

[
e−C(1(0,+∞))∂M∞

]
.

Using Pδx(∂M∞ > 0) > 0 again, we get c∗ = C(1(0,+∞)) < C(λ1(0,+∞)) ≤ c̃0.

3 Convergence of the extremal process of super-Brownian mo-
tion

3.1 Proof of Proposition 2.5

Recall that ((Bt)t≥0,Πx) is a standard Brownian motion starting at x, and that uf (t, x)

is the unique nonnegative solution to (1.4) with initial condition f . We start this section
with a comparison lemma.

Lemma 3.1. Suppose f, f1, f2 ∈ B+
b (R), s, t ≥ 0 and x, y ∈ R. Then

(1) uf (t, x) ≤ etPtf(x) ≤ et‖f‖∞.
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The extremal process of super-Brownian motion

(2) For any M ≥ 1, uMf (t, x) ≤Muf (t, x).

(3) uf1
(t, x) ∨ uf2

(t, x) ≤ uf1+f2
(t, x) ≤ uf1

(t, x) + uf2
(t, x).

(4) uf (t+ s, x+ y) = uTyuf (s,·)(t, x). In particular, uf (t, x+ y) = uTyf (t, x).

Proof. (1) and (2) follow from Jensen’s inequality. In fact, one has

uf (t, x) = − logPδx

[
e−〈f,Xt〉

]
≤ − log e−Pδx [〈f,Xt〉] = Pδx [〈f,Xt〉] = etPtf(x),

and

uMf (t, x) = − logPδx

[
e−M〈f,Xt〉

]
≤ − log

(
Pδx

[
e−〈f,Xt〉

])M
= Muf (t, x).

(3) follows directly from [23, Lemma 2.3(2)].
(4) Fix s ≥ 0 and y ∈ R. Let v(t, x) := uf (t + s, x + y) for all t ≥ 0 and x ∈ R. It is

easy to verify that v is the unique nonnegative solution to (1.4) with initial condition
v(0, x) = uf (s, x+ y) = Tyuf (s, ·)(x). Hence we get v(t, x) = uTyuf (s,·)(t, x). In particular
by setting s = 0 we get that uf (t, x+ y) = uTyuf (0,·)(t, x) = uTyf (t, x).

We need the following lemmas, which are refinements of [4, Proposition 4.4 and
Lemma 4.9]. In fact, Arguin et al. [4] proved the same results for [0, 1]-valued func-
tions with support bounded on the left. We extend their results to all functions of H1.
Though the idea of our proofs is similar to [4], we give the details here for the reader’s
convenience.

Lemma 3.2. Suppose φ ∈ H1. Then for all r > 0,

Cr(φ) :=

√
2

π

∫ +∞

0

ye
√

2yuφ(r,−y −
√

2r)dy

exists and is finite. Moreover, the limit

C(φ) := lim
r→+∞

Cr(φ)

exists and is finite, and for every x ∈ R,

lim
t→+∞

t3/2

3
2
√

2
log t

e−
√

2xuφ(t, x−
√

2t) = C(φ).

Proof. By Lemma 3.1(1),

uφ(t,−x) ≤ etPtφ(−x) ∀t ≥ 0, x ∈ R.

Then

Cr(φ) ≤
√

2

π
er
∫ +∞

−∞
|y|e
√

2yPrφ(−y −
√

2r)dy. (3.1)

By Fubini’s theorem and change of variables we have∫ +∞

−∞
|y|e
√

2yPrφ(−y −
√

2r)dy

=
1√
2πr

∫ +∞

−∞
|y|e
√

2ydy

∫ +∞

−∞
e−

(z−y−
√

2r)2

2r φ(−z)dz

= e−r
1√
2πr

∫ +∞

−∞
φ(−z)e

√
2zdz

∫ +∞

−∞
|y|e−

(z−y)2

2r dy

= e−r
1√
2π

∫ +∞

−∞
φ(−z)e

√
2zdz

∫ +∞

−∞
|
√
rx+ z|e− x

2

2 dx

≤ e−r
1√
2π

∫ +∞

−∞
φ(−z)e

√
2z(
√
rΠ0(|B1|) + |z|)dz. (3.2)

EJP 29 (2024), paper 23.
Page 15/41

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1084
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The extremal process of super-Brownian motion

We get by (3.1) and (3.2) that

Cr(φ) ≤ c1
∫ +∞

−∞
φ(−z)e

√
2z (|z|+ 1) dz

for some constant c1 = c1(r) > 0. The fact that φ ∈ H1 implies that the integral on the
right hand side is finite. Thus we get that Cr(φ) < +∞.

Let u(t, x) := uφ(t,−x) for t ≥ 0 and x ∈ R. Then u is a solution to (1.4) with initial
condition u(0, x) = φ(−x) satisfying that∫ +∞

0

ye
√

2yu(0, y)dy < +∞.

It then follows by [4, Proposition 4.3] that for r large enough, t ≥ 8r and x ≥ 8r− 3
2
√

2
log t,

γ−1(r)Ψ(r, t, x+
√

2t) ≤ u(t, x+
√

2t) ≤ γ(r)Ψ(r, t, x+
√

2t), (3.3)

where γ(r) ↓ 1 as r → +∞ and

Ψ(r, t, x+
√

2t) =
e−
√

2x√
2π(t− r)

∫ +∞

0

u(r, y +
√

2r)e
√

2ye−
(y−x)2

2(t−r)

(
1− e−2y

(
x+ 3

2
√

2
log t

)
t−r

)
dy.

We may rewrite Ψ(r, t, x+
√

2t) as follows:

Ψ(r, t, x+
√

2t)

= e−
√

2x
x+ 3

2
√

2
log t

(t− r)3/2

√
2

π

∫ +∞

0

ye
√

2yu(r, y +
√

2r)e−
(y−x)2

2(t−r) G

2y
(
x+ 3

2
√

2
log t

)
t− r

 dy,

where G(z) := (1− e−z) /z. Using the fact that G(z) ∈ [0, 1] for all z > 0 and G(z) ∼ 1 as
z → 0, we get by the bounded convergence theorem that

lim
t→+∞

t3/2

3
2
√

2
log t

e
√

2xΨ(r, t, x+
√

2t) = Cr(φ), ∀x ∈ R.

Consequently by letting t→ +∞ in (3.3), we have

0 ≤ γ−1(r)Cr(φ) ≤ lim inf
t→+∞

t3/2

3
2
√

2
log t

e
√

2xu(t, x+
√

2t)

≤ lim sup
t→+∞

t3/2

3
2
√

2
log t

e
√

2xu(t, x+
√

2t) ≤ γ(r)Cr(φ) < +∞.

Then by letting r → +∞, we have

0 ≤ lim sup
r→+∞

Cr(φ) ≤ lim inf
t→+∞

t3/2

3
2
√

2
log t

e
√

2xu(t, x+
√

2t)

≤ lim sup
t→+∞

t3/2

3
2
√

2
log t

e
√

2xu(t, x+
√

2t) ≤ lim inf
r→+∞

Cr(φ) < +∞.

This implies that the limit limr→+∞ Cr(φ) exists and is finite, and is equal to

lim
t→+∞

t3/2

3
2
√

2
log t

e
√

2xu(t, x+
√

2t).

Therefore we complete the proof.
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Corollary 3.3. For all φ ∈ H1 and x ∈ R,

C(Txφ) = e
√

2xC(φ).

Moreover, limδ→+∞ C(1[δ,+∞)) = 0.

Proof. It follows by Lemma 3.2 and Lemma 3.1(4) that

C(Txφ) = lim
t→+∞

t3/2

3
2
√

2
log t

e−
√

2yuTxφ(t, y −
√

2t)

= lim
t→+∞

t3/2

3
2
√

2
log t

e−
√

2yuφ(t, x+ y −
√

2t)

= e
√

2x lim
t→+∞

t3/2

3
2
√

2
log t

e−
√

2(x+y)uφ(t, x+ y −
√

2t) = e
√

2xC(φ).

We observe that 1[δ,+∞)(x) = T−δ1[0,+∞)(x) for all δ, x ∈ R. Thus

C(1[δ,+∞)) = C(T−δ1[0,+∞)) = e−
√

2δC(1[0,+∞))→ 0 as δ → +∞.

For φ ∈ H1 and δ ∈ R, put

φδ(x) := φ(x)1(−∞,δ)(x) + 1[δ,+∞)(x). (3.4)

Note that φδ ∈ H1 and

uφδ(t, x) = 1− P·,δx

[ ∏
u∈Zt

(1− φ(zu(t))) 1{zu(t)<δ}

]
, ∀t ≥ 0, x ∈ R.

The following lemma establishes an integral representation for uφδ(t, x −m(t)) in the
limit of large times.

Lemma 3.4. Suppose φ ∈ H1 and δ ∈ R. Then

uφδ(t, x−m(t))→ 1− P·,δ0
[
exp{−C(φδ)∂M∞e

√
2x}
]

uniformly in x ∈ R, as t→ +∞,

where m(t) is defined by (2.12).

Proof. Let vδφ(t, x) := uφδ(t,−x) for t ≥ 0 and x ∈ R. Then vδφ(t, x) is a solution to (1.4)

with initial condition vδφ(0, x) = φ(−x)1(−δ,+∞)(x) + 1(−∞,−δ](x). Using the fact that

φ ∈ H1, one can easily verify that vδφ(0, x) satisfies conditions (8.1) and (1.17) of [10].
Hence by [10, Theorem 8.3], one has

vδφ(t, x+m(t))→ w(x) uniformly in x ∈ R as t→ +∞,

where w is the unique (up to translations) travelling wave solution with speed
√

2. It is
established in [17] that

w(x) = 1− P·,δ0
[
exp{−C∂M∞e−

√
2x}
]

for some constant C > 0 which is determined by C = limx→+∞
w(x)

xe−
√

2x
. Hence to prove

this lemma, it suffices to show that C = C(φδ), or equivalently,

lim
x→+∞

lim
t→+∞

vδφ(t, x+m(t))

xe−
√

2x
= C(φδ). (3.5)
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By (3.3), for r large enough and t, x ≥ 8r, we have the bounds

γ(r)−1Ψ(r, t, x+m(t)) ≤ vδφ(t, x+m(t)) ≤ γ(r)Ψ(r, t, x+m(t)), (3.6)

where γ(r) ↓ 1 as r → +∞ and

Ψ(r, t, x+m(t))

=

√
2

π

t3/2

(t− r)3/2
xe−

√
2x

∫ +∞

0

ye
√

2yvδφ(r, y +
√

2r)e−

(
y−x+ 3

2
√

2
log t

)2

2(t−r)
1− e−

2xy
t−r

2xy/(t− r)
dy.

It follows by the bounded convergence theorem and Lemma 3.2 that

lim
t→+∞

Ψ(r, t, x+m(t)) = xe−
√

2xCr(φ
δ).

This together with (3.6) yields that for r large enough and x ≥ 8r,

γ(r)−1Cr(φ
δ) ≤ lim

t→+∞

vδφ(t, x+m(t))

xe−
√

2x
≤ γ(r)Cr(φ

δ). (3.7)

Since γ(r) → 1 and Cr(φ
δ) → C(φδ) as r → +∞, we get (3.5) by letting r → +∞

in (3.7).

Corollary 3.5. Suppose φ ∈ H1. Then C(φ) = limδ→+∞ C(φδ).

Proof. We note that for every δ ∈ R,

φ(x) ≤ φδ(x) ≤ φ(x) + 1[δ,+∞)(x), ∀x ∈ R.

Thus by Lemma 3.1(3), we have

uφ(t, x) ≤ uφδ(t, x) ≤ uφ(t, x) + u1[δ,+∞)
(t, x), ∀t ≥ 0, x ∈ R, (3.8)

which implies that C(φ) ≤ C(φδ) ≤ C(φ) + C(1[δ,+∞)). Since limδ→+∞ C(1[δ,+∞)) = 0 by
Corollary 3.3, it follows that limδ→+∞ C(φδ) = C(φ).

Proof of Proposition 2.5. The first part of this proposition follows from Lemma 3.2. We
only need to show the second part. For c > 0 and x ∈ R, let

wc(x) := 1− P·,δ0
[
exp{−c∂M∞e−

√
2x}
]
.

By the uniqueness (up to translations) of the travelling wave solution, one has wc(x) =

w1(x− ln c/
√

2) for all x ∈ R. We need to show that

uφ(t, x−m(t))→ wC(φ)(−x) locally uniformly in x ∈ R, as t→ +∞. (3.9)

For δ ≥ 0, by (3.8) we have that

uφ(t, x−m(t))− wC(φ)(−x)

≤
(
uφδ(t, x−m(t))− wC(φδ)(−x)

)
+
(
wC(φδ)(−x)− wC(φ)(−x)

)
(3.10)

and

uφ(t, x−m(t))− wC(φ)(−x)

≥
(
uφδ(t, x−m(t))− wC(φδ)(−x)

)
−
(
u1[δ,+∞)

(t, x)− wC(1[δ,+∞))(−x)
)

+
(
wC(φδ)(−x)− wC(φ)(−x)

)
− wC(1[δ,+∞)

(−x). (3.11)

EJP 29 (2024), paper 23.
Page 18/41

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1084
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The extremal process of super-Brownian motion

We note that

wC(φδ)(−x)− wC(φ)(−x) = w1(−x− lnC(φδ)√
2

)− w1(−x− lnC(φ)√
2

), (3.12)

and

wC(1[δ,+∞))(−x) = w1(−x−
lnC(1[δ,+∞))√

2
). (3.13)

By Corollary 3.5, C(φδ)→ C(φ) and C(1[δ,+∞))→ 0 as δ → +∞. Then by the continuity
of w1 we get from (3.12) and (3.13) that

wC(φδ)(−x)− wC(φ)(−x)→ 0, and wC(1[δ,+∞))(−x)→ 0 locally uniformly in x ∈ R,

as δ → +∞. On the other hand, by Lemma 3.4 we have for δ ≥ 0,

uφδ(t, x−m(t))− wC(φδ)(−x)→ 0, and u1[δ,+∞)
(t, x−m(t))− wC(1[δ,+∞))(−x)→ 0

uniformly in x ∈ R, as t → +∞. Hence we get (3.9) by letting first t → +∞ and then
δ → +∞ in both (3.10) and (3.11).

3.2 Proof of Theorem 2.8

First of all, we introduce notation to refer to the different parts of the skeleton
decomposition which will be used later in the computation. For t ≥ 0, let Ft denote
the σ-filed generated by Z, X∗ and I up to time t. Denote by I∗,ts the immigration at

time t+ s that occurred along the skeleton before time t. For u ∈ Zt, denote by I(u)
s the

immigration at time t + s that occurred along the subtree of the skeleton rooted at u
with location zu(t). We have

Xs+t = X∗s+t + I∗,ts +
∑
u∈Zt

I(u)
s for all s, t ≥ 0. (3.14)

It is known (see, e.g., [11]) that given Ft, (X∗s+t + I∗,ts )s≥0 is equal in distribution to

((X∗s )s≥0;PXt) and I(u) := (I
(u)
s )s≥0 is equal in distribution to (I;P·,δzu(t)

). Moreover,

given Ft, the processes {I(u) : u ∈ Zt} are mutually independent and are independent
of (X∗s+t)s≥0. For f ∈ B+

b (R), t ≥ 0 and x ∈ R, define

u∗f (t, x) := − logPδx,·

[
e−〈f,X

∗
t 〉
]
,

and
Vf (t, x) := P·,δx

[
e−〈f,It〉

]
. (3.15)

Since Xt = X∗t +
∑
u∈Z0

I
(u)
t , we have

uf (t, x) = − logPδx

[
e−〈f,Xt〉

]
= − logPδx

[
e−〈f,X

∗
t 〉
]
− logPδx

[ ∏
u∈Z0

e−〈f,I
(u)
t 〉

]

= u∗f (t, x)− logPδx

[ ∏
u∈Z0

Vf (t, zu(0))

]
= u∗f (t, x)− logPδx

[
e〈lnVf (t,·),Z0〉

]
.

Using the fact that (Z0,Pδx) is a Poisson random measure with intensity δx(dy), one has

uf (t, x) = u∗f (t, x) + 1− Vf (t, x). (3.16)

In this section we will make extensive use of (3.16), mostly when we deal with uf (t, x−√
2t) for large t, in which case, u∗f (t, x−

√
2t) becomes relatively easy to handle.

Recall the definition of φδ given in (3.4). The following lemma gives an upperbound
for the constant C(φ0) which will be used later.
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Lemma 3.6. There exists a constant c > 0 such that for any φ ∈ H1,

C
(
φ0
)
≤ c

(∫ +∞

1

xe
√

2xφ(−x)dx+ 1

)
. (3.17)

Proof. Let v(t, x) := uφ0(t,−x) for t ≥ 0 and x ∈ R. It follows by (2.14), (2.15) and
Proposition 2.5 that

C
(
φ0
)

= lim
x→+∞

lim
t→+∞

v(t, x+m(t))

xe−
√

2x
. (3.18)

Let k(s, y) := −ψ(v(s, y))/v(s, y) for s ≥ 0 and y ∈ R. By the Feyman-Kac formula

v(t, x) = Πx

[
e
∫ t
0
k(t−s,Bs)dsv(0, Bt)

]
=

∫ +∞

−∞
v(0, y)

1√
2πt

e−
(y−x)2

2t E
[
e
∫ t
0
k(t−s,ζtx,y(s))ds

]
dy. (3.19)

Here {ζ(t)
x,y(s) : 0 ≤ s ≤ t} denotes a Brownian bridge of length t starting at x and ending

at y. Let vH(t, x) be the solution to (1.4) with heaviside initial condition vH(0, x) = 1{x≤0}
and let kH(s, y) := −ψ(vH(s, y))/vH(s, y) for s ≥ 0 and y ∈ R. Define mH

1/2(t) := sup{x ∈
R : vH(t, x) ≥ 1/2} for t ≥ 0. By [10, Proposition 8.1 and Proposition 8.2], there are
constants CH1 and CH2 (CH1 < CH2 ) such that for t large enough,

m(t) + CH1 ≤ mH
1/2(t) ≤ m(t) + CH2 . (3.20)

Moreover, it is established in [10, equation (8.21)] that there are constants CH3 > 0 and
r >> 1 such that for all t ≥ 3r, x ≥ mH

1/2(t) + 1 and all y ∈ R,

E
[
e
∫ t
0
kH(t−s,ζtx,y(s))ds

]
≤ 2CH3 re

t
(

1− e−
2ŷz̄
t

)
where ŷ := y ∨ 1 and z̄ := x − (m(t) + CH1 ). Since v(0, y) = 1 for y ∈ (−∞, 0] and
so v(s, y) ≥ vH(s, y) for all s ≥ 0 and y ∈ R, it follows by the convexity of ψ that
k(s, y) ≤ kH(s, y) for all s ≥ 0 and y ∈ R. Hence one has

E
[
e
∫ t
0
k(t−s,ζtx,y(s))ds

]
≤ C4et

(
1− e−

2ŷz̄
t

)
for C4 = 2CH3 r. Putting this back in (3.19) one gets that for t ≥ 3r and x ≥ mH

1/2(t) + 1,

v(t, x) ≤ C4et
∫ +∞

−∞
v(0, y)

1√
2πt

e−
(x−y)2

2t

(
1− e−

2ŷz̄
t

)
dy

≤ C4et√
2πt

[∫ +∞

1

φ(−y)e−
(x−y)2

2t

(
1− e−

2yz̄
t

)
dy +

(
1− e−

2z̄
t

)∫ 1

−∞
e−

(x−y)2

2t dy

]
≤ C4

√
2

π

et

t3/2
z̄

[∫ +∞

1

φ(−y)ye−
(x−y)2

2t dy +

∫ 1

−∞
e−

(x−y)2

2t dy

]
.

The last inequality is from the fact that 1−e−x ≤ x for all x ≥ 0. This together with (3.20)
yields that for t ≥ 3r and x ≥ CH2 + 1,

v(t, x+m(t))

≤ C4

√
2

π

et

t3/2
(x− CH1 )

[∫ +∞

1

φ(−y)ye−
(x+m(t)−y)2

2t dy +

∫ 1

−∞
e−

(x+m(t)−y)2

2t dy

]
= C4

√
2

π
(x− CH1 )e

−
(√

2− 3
2
√

2

log t
t

)
x− 9

16
log2 t
t

[ ∫ +∞

1

φ(−y)ye−
(x−y)2

2t e

(√
2− 3

2
√

2

log t
t

)
y
dy

+

∫ 1

−∞
e−

(x−y)2

2t e

(√
2− 3

2
√

2

log t
t

)
y
dy
]
.
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By letting t→ +∞, we have

lim
t→+∞

v(t, x+m(t)) ≤ C4

√
2

π
(x− CH1 )e−

√
2x

[∫ +∞

1

ye
√

2yφ(−y)dy +
1√
2

e
√

2

]
for x ≥ CH2 + 1. Putting this back in (3.23), one gets that

C
(
φ0
)
≤ C4

√
2

π

[∫ +∞

1

ye
√

2yφ(−y)dy +
1√
2

e
√

2

]
.

Hence we complete the proof.

Lemma 3.7. Suppose {φs(x) : s ≥ 0} is a sequence of functions in H1. If φs(x) → 0 as

s→ +∞ for all x ∈ R, and
∫ +∞
−∞ |x|e

√
2xφs(−x)dx→ 0 as s→ +∞, then lims→+∞ C(φs) =

0.

Proof. Suppose α(s) ≥ 0 for all s > 0. (The explicit value of α(s) will be given later.) By
Lemma 3.1(3), one has

C(φs) ≤ C
(
φs1(−∞,α(s)) + 1[α(s),+∞)

)
, ∀s ≥ 0.

So it suffices to prove that

lim
s→+∞

C
(
φs1(−∞,α(s)) + 1[α(s),+∞)

)
= 0. (3.21)

We note that φs(x)1(−∞,α(s))(x) + 1[α(s),+∞)(x) = T−α(s)

(
Tα(s)φs · 1(−∞,0) + 1[0,+∞)

)
(x)

for all x ∈ R. By Corollary 3.3 and Lemma 3.6, we have

C
(
φs1(−∞,α(s)) + 1[α(s),+∞)

)
= e−

√
2α(s)C

(
Tαsφs · 1(−∞,0) + 1[0,+∞)

)
≤ e−

√
2α(s)c

[∫ +∞

1

xe
√

2xTα(s)φs(−x)dx+ 1

]
= e−

√
2α(s)c

[∫ +∞

1−α(s)

(y + α(s))e
√

2(y+α(s))φs(−y)dy + 1

]

≤ c

∫ +∞

−∞
(|y|+ α(s))e

√
2yφs(−y)dy + ce−

√
2α(s). (3.22)

Let α(s) := s ∧
(∫ +∞
−∞ φs(−y)e

√
2ydy

)−1/2

. Then the right hand side of (3.22) is no larger

than

c

[∫ +∞

−∞
|y|e
√

2yφs(−y)dy + α(s)−1 + e−
√

2α(s)

]
. (3.23)

Note that∫ +∞

−∞
φs(−y)e

√
2ydy ≤

∫
|y|≤1

φs(−y)e
√

2ydy +

∫
|y|>1

φs(−y)|y|e
√

2ydy < +∞.

Both integrals on the right hand side converge to 0 as s→ +∞ given that φs(x)→ 0 as

s → ∞ for all x ∈ R and
∫ +∞
−∞ φs(−y)|y|e

√
2ydy → 0 as s → ∞. This implies α(s) → +∞

as s→ +∞. Thus (3.23) converges to 0 as s→ +∞ and so we prove (3.21).

We recall the definition of H given in (2.21).

Lemma 3.8. For all φ ∈ H and s ≥ 0, the functions uφ(s, · −
√

2s), u∗φ(s, · −
√

2s) and

1− Vφ(s, · −
√

2s) ∈ H.
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Proof. Fix an arbitrary φ ∈ H and s ≥ 0. Since 0 ≤ u∗φ(s, x−
√

2s), 1− Vφ(s, x−
√

2s) ≤
uφ(s, x−

√
2s) for all x ∈ R, it suffices to prove that

uφ(s, · −
√

2s) ∈ H. (3.24)

Let M := ‖φ‖∞. If M ≤ 1, then φ ∈ H1 and (3.24) follows directly from the first
conclusion of Lemma 3.2. Now suppose M > 1. Let φ1 = φ/M . Then by Lemma 3.1(2),
one has uφ(s, x −

√
2s) ≤ Muφ1

(s, x −
√

2s) for all x ∈ R, where uφ1
(s, · −

√
2s) ∈ H by

Lemma 3.2. This implies that uφ(s, · −
√

2s) ∈ H.

Lemma 3.9. Suppose φ ∈ H. Then u∗φ(s, · −
√

2s) ∈ H1 for s large enough. Moreover,

lim
s→+∞

C(u∗φ(s, · −
√

2s)) = 0.

Proof. It follows by Jensen’s inequality that

u∗φ(s, x) = − logPδx

[
e−〈φ,X

∗
s 〉
]
≤ Pδx [〈φ,X∗s 〉] = eα

∗sPsφ(x) ≤ eα
∗s‖φ‖∞.

Since α∗ = −ψ′(1) < 0, we have u∗φ(s, x) → 0 as s → +∞ for all x ∈ R and ‖u∗φ(s, · −√
2s)‖∞ ≤ 1 for s large enough. Hence u∗φ(s, · −

√
2s) ∈ H1 by Lemma 3.8. We note that

u∗φ(s,−x−
√

2s) ≤ eα
∗sPsφ(−x−

√
2s).

Thus by (3.2) we have∫ +∞

−∞
e
√

2x|x|u∗φ(s,−x−
√

2s)dx ≤ eα
∗s

∫ +∞

−∞
e
√

2x|x|Psφ(−x−
√

2s)dx

≤ e(α∗−1)s

∫ +∞

−∞
φ(−y)e

√
2y
(
|y|+

√
sΠ0 [|B1|]

)
dy.

The assumption that φ ∈ H implies that
∫ +∞
−∞ φ(−y)e

√
2y|y|dy <∞. Since α∗ < 0, we get

by the above inequality that∫ +∞

−∞
e
√

2x|x|u∗φ(s,−x−
√

2s)dx→ 0 as s→ +∞,

and thus by Lemma 3.7 C(u∗φ(s, · −
√

2s))→ 0 as s→ +∞.

The following lemma extends the result of Lemma 3.2 to all functions of H.

Lemma 3.10. Suppose φ ∈ H. Then for any r > 0,

Cr(φ) :=

√
2

π

∫ +∞

0

ye
√

2yuφ(r,−y −
√

2r)dy

exists and is finite. The limit

C(φ) := lim
r→+∞

Cr(φ)

exists and is finite. Moreover, for every x ∈ R,

C(φ) = lim
t→+∞

t3/2

3
2
√

2
log t

e−
√

2xuφ(t, x−
√

2t) = lim
s→+∞

C
(

1− Vφ(s, · −
√

2s)
)
. (3.25)
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Proof. Without loss of generality we assume φ ∈ H \ H1. Let M := ‖φ‖∞ and φ1 = φ/M .
Then φ1 ∈ H1. The finiteness of Cr(φ) is immediate since by Lemma 3.1(2) uφ(r,−y −√

2r) ≤Muφ1
(r,−y−

√
2r) for all r ≥ 0 and y ∈ R and so Cr(φ) ≤MCr(φ1) < +∞. Since

uφ(t, x) = u∗φ(t, x) + 1− Vφ(t, x), ∀t ≥ 0, x ∈ R,

we get by Lemma 3.1(3)(4) that

u1−Vφ(s,·−
√

2s)(r, x−
√

2r)

≤ uuφ(s,·−
√

2s)(r, x−
√

2r)

= uφ(s+ r, x−
√

2(s+ r))

≤ uu∗φ(s,·−
√

2s)(r, x−
√

2r) + u1−Vφ(s,·−
√

2s)(r, x−
√

2r). (3.26)

This implies that

Cr

(
1− Vφ(s, · −

√
2s)
)
≤ Cr+s (φ)

≤ Cr

(
u∗φ(s, · −

√
2s)
)

+ Cr

(
1− Vφ(s, · −

√
2s)
)

(3.27)

for all r > 0. Since 1− Vφ(s, · −
√

2s) ∈ H1 and u∗φ(s, · −
√

2s) ∈ H1 for s large enough, we
get by (3.27) and Proposition 2.5 that

C
(

1− Vφ(s, · −
√

2s)
)
≤ lim inf

r→+∞
Cr(φ)

≤ lim sup
r→+∞

Cr(φ) ≤ C
(
u∗φ(s, · −

√
2s)
)

+ C
(

1− Vφ(s, · −
√

2s)
)
.

Since lims→+∞ C(u∗φ(s, · −
√

2s)) = 0, we have

lim sup
s→+∞

C
(

1− Vφ(s, · −
√

2s)
)
≤ lim inf

r→+∞
Cr(φ)

≤ lim sup
r→+∞

Cr(φ) ≤ lim inf
s→+∞

C
(

1− Vφ(s, · −
√

2s)
)
.

Since the Cr(φ) ≤ MCr(φ1) for all r > 0 and the latter is bounded in r, the above
inequalities imply that the limit C(φ) = limr→+∞ Cr(φ) exists and is finite, and satisfies
that

C(φ) = lim
s→+∞

C
(

1− Vφ(s, · −
√

2s)
)
. (3.28)

On the other hand, it follows from Lemma 3.2 and (3.26) that

C
(

1− Vφ(s, · −
√

2s)
)

= lim
t→+∞

t3/2

3
2
√

2
log t

e−
√

2xu1−Vφ(s,·−
√

2s)(t, x−
√

2t)

≤ lim inf
t→+∞

t3/2

3
2
√

2
log t

e−
√

2xuφ(t, x−
√

2t)

≤ lim sup
t→+∞

t3/2

3
2
√

2
log t

e−
√

2xuφ(t, x−
√

2t)

≤ lim
t→+∞

t3/2

3
2
√

2
log t

e−
√

2xuu∗φ(s,·−
√

2s)(t, x−
√

2t)

+ lim
t→+∞

t3/2

3
2
√

2
log t

e−
√

2xu1−Vφ(s,·−
√

2s)(t, x−
√

2t)

= C
(
u∗φ(s, · −

√
2s)
)

+ C
(

1− Vφ(s, · −
√

2s)
)
.
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Letting s→ +∞, we get by (3.28) and Lemma 3.9 that

C(φ) = lim
t→+∞

t3/2

3
2
√

2
log t

e−
√

2xuφ(t, x−
√

2t).

Corollary 3.11. For f, f1, f2 ∈ H and M ≥ 1,

C(f) = C(uf (s, · −
√

2s)), ∀s ≥ 0,

C(Mf) ≤MC(f),

C(f1) ∨ C(f2) ≤ C(f1 + f2) ≤ C(f1) + C(f2).

Proof. This result follows directly from Lemma 3.10 and Lemma 3.1.

Proof of Theorem 2.8. We first suppose that φ ∈ H1. Then by Proposition 2.5 we have

uφ(t, x−m(t))→ 1− P·,δ0
[
exp{−C(φ)e

√
2x∂M∞}

]
locally uniformly in x ∈ R, (3.29)

as t→ +∞. By (2.7) we have

Pδx [exp{−C(φ)∂M∞}] = exp
{
−
(

1− P·,δ0
[
exp{−C(φ)e

√
2x∂M∞}

])}
. (3.30)

Putting this back in (3.29), we get that

uφ(t, x−m(t))→ − logPδx [exp{−C(φ)∂M∞}] locally uniformly in x ∈ R, as t→ +∞.

Now we suppose φ ∈ H \H1. For any r, s > 0 and x ∈ R, one can rewrite uφ(r+ s, x−
m(r + s)) as

uuφ(s,·−
√

2s)(r, x−m(r) +Os(r)),

where Os(r) := 3
2
√

2
log r+s

r . Note that for s > 0, Os(r) → 0 as r → +∞. In view of this
and (3.16) we get by Lemma 3.1(4) that

u1−Vφ(s,·−
√

2s)(r, x−m(r) +Os(r))

≤ uφ(r + s, x−m(r + s))

≤ u1−Vφ(s,·−
√

2s)(r, x−m(r) +Os(r)) + uu∗φ(s,·−
√

2s)(r, x−m(r) +Os(r)). (3.31)

It follows that∣∣uφ(r + s, x−m(r + s))−
(
− logPδx

[
exp{−C(φ)∂M∞}

])∣∣
≤

∣∣u1−Vφ(s,·−
√

2s)(r, x−m(r) +Os(r))

−
(
− logPδx

[
exp{−C(1− Vφ(s, · −

√
2s))∂M∞}

])∣∣
+
∣∣uu∗φ(s,·−

√
2s)(r, x−m(r) +Os(r))−

(
− logPδx

[
exp{−C(u∗φ(s, · −

√
2s))∂M∞}

])∣∣
+
∣∣ logPδx

[
exp{−C(φ)∂M∞}

]
− logPδx

[
exp{−C(1− Vφ(s, · −

√
2s))∂M∞}

]∣∣
+
∣∣ logPδx

[
exp{−C(u∗φ(s, · −

√
2s))∂M∞}

]∣∣. (3.32)

We have proved in the first part that the first two terms of (3.32) converge to 0 locally
uniformly in x ∈ R as r → +∞. On the other hand we have by (3.30)∣∣∣logPδx [exp{−C(φ)∂M∞}]− logPδx

[
exp{−C(1− Vφ(s, · −

√
2s))∂M∞}

]∣∣∣
=

∣∣∣P·,δ0 [exp{−C(φ)e
√

2x∂M∞}
]
− P·,δ0

[
exp{−C(1− Vφ(s, · −

√
2s))e

√
2x∂M∞}

]∣∣∣
≤

∣∣∣C(φ)− C(1− Vφ(s, · −
√

2s))
∣∣∣ e√2xP·,δ0 [∂M∞] , (3.33)
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where in the lase inequality we use the fact that |e−x1−e−x2 | ≤ |x1−x2|, for all x1, x2 ≥ 0.
Since C(φ)− C(1− Vφ(s, · −

√
2s))→ 0 as s→ +∞, we get by (3.33) that

logPδx [exp{−C(φ)∂M∞}]− logPδx

[
exp{−C(1− Vφ(s, · −

√
2s))∂M∞}

]
→ 0

locally uniformly in x ∈ R, as s→ +∞. Similarly one can prove that

logPδx

[
exp{−C(u∗φ(s, · −

√
2s))∂M∞}

]
→ 0 locally uniformly in x ∈ R, as s→ +∞.

Therefore we complete the proof.

3.3 Proofs of Theorem 2.10 and Proposition 2.11

Proof of Theorem 2.10. Fix an arbitrary x ∈ R and functions f, g satisfying our assump-
tions. We have

Pδx

[
e−〈f,Et〉−〈g,E

Z
t 〉
]

= Pδx

[
e〈T−m(t)f,Xt〉Pδx

[
e−〈T−m(t)g,Zt〉|Xt

]]
= Pδx

[
e−〈T−m(t)f+1−e

−T−m(t)g,Xt〉
]

= e
−uT−m(t)(f+1−e−g)(t,x)

= e−uf+1−e−g (t,x−m(t)).

The second equality follows from the fact that given Xt, Zt is a Poisson random measure
with intensity Xt(dx). Note that f + 1 − e−g ∈ H by our assumptions. We get by
Theorem 2.8 that

lim
t→+∞

Pδx

[
e−〈f,Et〉−〈g,E

Z
t 〉
]

= Pδx
[
exp{−C(f + 1− e−g)∂M∞}

]
.

The above identity holds in particular for all f, g ∈ C+
c (R). On the other hand, it is easy to

verify that the assumptions of Lemma 3.7 are satisfied by φs(x) := φ(x)/s for every φ ∈
C+
c (R). This implies that limλ→0 C(λφ) = 0 for all φ ∈ C+

c (R). Since C(λ1f + 1− e−λ2g) ≤
C(λ1f) + C(λ2g) for λ1, λ2 > 0, we have limλ1,λ2→0+ C(λ1f + 1 − e−λ2g) = 0. Hence by
[16, Chapter 4] we get the weak convergence of (Et, EZt ), and consequently (2.25) holds
for all f, g ∈ C+

c (R). Using the monotone convergence theorem and Lemma 3.7, one
can show by standard approximation that (2.25) holds for all f ∈ H and g ∈ B+(R) with
1− e−g ∈ H. Also, (2.25) yields that

E
[
e−〈f,E∞〉E

[
e−〈g,E

Z
∞〉 | E∞

]]
= Pδx

[
exp{−C

(
f + 1− e−g

)
∂M∞}

]
= E

[
e−〈f,E∞〉e−〈1−e−g,E∞〉

]
.

Thus we get E
[
e−〈g,E

Z
∞〉 | E∞

]
= e−〈1−e−g,E∞〉 a.s., and the second conclusion follows

immediately.

Proof of Proposition 2.11. Suppose M ∈ R. We have

P (max E∞ ≤M) = P
(
〈1(M,+∞), E∞〉 = 0

)
= lim
λ→+∞

E
[
e−λ〈1(M,+∞),E∞〉

]
= lim

λ→+∞
Pδx

[
exp{−∂M∞C

(
λ1(M,+∞)

)
}
]

= Pδx

[
exp{−∂M∞ lim

λ→+∞
C
(
λ1(M,+∞)

)
}
]
.

The third equality follows from Theorem 2.10. Thus we have

P (max E∞ < +∞) = lim
M→+∞

P (max E∞ ≤M)

= Pδx

[
exp{−∂M∞ lim

M→+∞
lim

λ→+∞
C
(
λ1(M,+∞)

)
}
]
. (3.34)

EJP 29 (2024), paper 23.
Page 25/41

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1084
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The extremal process of super-Brownian motion

Note that

C
(
λ1(M,+∞)

)
= C

(
T−Mλ1(0,+∞)

)
= e−

√
2MC

(
λ1(0,+∞)

)
.

It follows that

lim
M→+∞

lim
λ→+∞

C
(
λ1(M,+∞)

)
= lim
M→+∞

e−
√

2M

(
lim

λ→+∞
C
(
λ1(0,+∞)

))
= 0 or +∞

corresponding to supλ C
(
λ1(0,+∞)

)
< +∞ or +∞. Hence by (3.34), P (max E∞ < +∞) =

1 if and only if supλ C
(
λ1(0,+∞)

)
< +∞.

Remark 3.12. Recall that maxXt denotes the supremum of the support of Xt. Unlike
for the skeleton BBM, Theorem 2.8 does not imply the growth order of maxXt is m(t).
We make a short discussion here.

For φ ∈ B+
b (R), define

ũφ(t, x) := − logPδx

[
e−〈φ,Xt〉; maxXt ≤ 0

]
, ∀t ≥ 0, x ∈ R. (3.35)

Then one has

ũφ(t, x) = lim
λ→+∞

uφ1(−∞,0]+λ1(0,+∞)
(t, x), ∀t ≥ 0, x ∈ R. (3.36)

In fact,

e−ũφ(t,x) = Pδx

[
e−〈φ1(−∞,0],Xt〉; 〈1(0,+∞), Xt〉 = 0

]
= lim

λ→+∞
Pδx

[
e−〈φ1(−∞,0]+λ1(0,+∞),Xt〉

]
= e
− limλ→+∞ uφ1(−∞,0]+λ1(0,+∞)

(t,x)
.

By (3.36) and the monotone convergence theorem, one has for t, r ≥ 0 and x ∈ R,

ũφ(t+ r, x) = lim
λ→+∞

uφ1(−∞,0]+λ1(0,+∞)
(t+ r, x)

= lim
λ→+∞

uuφ1(−∞,0]+λ1(0,+∞)
(r,·)(t, x) = uũφ(r,·)(t, x). (3.37)

If we assume in addition that Assumption 2.15 holds, then by [23, Corollary 3.2] for all
φ ∈ H and r > 0, ũφ(r, ·) ∈ B+

b (R). So by (3.37), for every φ ∈ H, ũφ(t, x) can be viewed as
a solution to (1.4) with initial condition u(0, x) = φ(x)1(−∞,0](x)+∞1(0,+∞)(x). Moreover,

by [23, Lemma 2.1 and Corollary 3.2], for all φ ∈ H and r > 0, ũφ(r, · −
√

2r) ∈ H. Hence
applying Theorem 2.8 to the function ũφ(t+ r, x−

√
2r) = uũφ(r,·−

√
2r)(t, x), one gets that

for all φ ∈ H, the limit

C̃(φ) := lim
t→+∞

√
2

π

∫ +∞

0

ye
√

2yũφ(t,−y −
√

2t)dy (3.38)

exists and is finite, and for all x ∈ R,

Pδ0

[
e−〈φ,Xt−m(t)−x〉; maxXt −m(t) ≤ x

]
→ Pδ0

[
e−C̃(φ)∂M∞e−

√
2x
]

as t→ +∞.

Taking φ = 0, one gets that

Pδ0 (maxXt −m(t) ≤ x)→ Pδ0

[
exp{−c̃0∂M∞e−

√
2x}
]

as t→ +∞, (3.39)

where c̃0 is the constant C̃(φ) with φ = 0.
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The extremal process of super-Brownian motion

On the other hand, if Assumption 2.15 fails, (3.39) may not be true as it is. For
instance, we take the triplet (α, β, π(dy)) of ψ(λ) to be (1, 0, δy0

(dy)) where y0 > 1 satisfies
that e−y0 = 2− y0. In this case

ψ(λ) = (y0 − 1)λ−
(
1− e−λy0

)
, ∀λ > 0. (3.40)

Let kλ(s, y) := −ψ(uλ1(0,+∞)
(s, y))/uλ1(0,+∞)

(s, y) for s ≥ 0 and y ∈ R. Then by Feynman-
Kac formula, one has

uλ1(0,+∞)
(t, x) = Πx

[
e
∫ t
0
kλ(t−s,Bs)dsuλ1(0,+∞)

(0, Bt)
]

= λe−(y0−1)tΠx

[
exp

{∫ t

0

1− e
−y0uλ1(0,+∞)

(t−s,Bs)

uλ1(0,+∞)
(t− s,Bs)

ds

}
; Bt > 0

]
≥ λe−(y0−1)tΠx (Bt > 0) .

Since Πx (Bt > 0) > 0 for all t > 0 and x ∈ R, one has ũ0(t, x) = limλ→+∞ uλ1(0,+∞)
(t, x) =

+∞. This implies that Pδ0 (maxXt ≤ x) = Pδ−x (maxXt ≤ 0) = e−ũ0(t,−x) = 0 for all t > 0

and x ∈ R, and so by letting x→ +∞, Pδ0 (maxXt = +∞) = 1− Pδ0 (maxXt < +∞) = 1

for all t > 0. The branching mechanism given by (3.40) satisfies in particular that∫ +∞

z

1

ψ(y)
dy = +∞ ∀z > 1 and

∫ 1

0

yπ(dy) < +∞. (3.41)

In fact, [26, Theorem 4.4] shows that for a super-Brownian motion with branching
mechanism ψ satisfying (3.41), it holds that Pµ (suppXt = R) = 1 for all t > 0.

4 Probabilistic representation of the limiting process

4.1 Laws of decorations

For the proofs of Theorem 2.12 and Proposition 2.13 we need to show the existence of
the limit for (Zt−maxZt,

∑
u∈Zt I

(u)
s −

√
2s−maxZt) conditioned on {maxZt−

√
2t > 0}.

This is completed by the following lemmas.

Lemma 4.1. For any f, g ∈ B+
b (R), x, z ∈ R and t, y ≥ 0, we have

Pδx

[
e−〈f,Xt−

√
2t−z〉−〈g,Zt−

√
2t−z〉1{maxZt−

√
2t−z>y} | maxZt −

√
2t− z > 0

]
=

e
−uf+(1−e−g)(t,x−

√
2t−z) − e

−uf+(1−e−g)1(−∞,y]+1(y,+∞)
(t,x−

√
2t−z)

1− e
−u1(0,+∞)

(t,x−
√

2t−z)
. (4.1)

Proof. We have

Pδx

[
e−〈f,Xt−

√
2t−z〉−〈g,Zt−

√
2t−z〉1{maxZt−

√
2t−z>y}

]
= Pδx

[
e−〈f,Xt−

√
2t−z〉Pδx

[
e−〈g,Zt−

√
2t−z〉1{maxZt−

√
2t−z>y}|Xt

]]
. (4.2)

Recall that given Xt, Zt is a Poisson random measure with intensity Xt(dx). Using
Poisson computations, we have

Pδx

[
e−〈g,Zt−

√
2t−z〉1{maxZt−

√
2t−z>y}|Xt

]
= Pδx

[
e−〈g,Zt−

√
2t−z〉

(
1− 1{maxZt−

√
2t−z≤y}

)
|Xt

]
= Pδx

[
e−〈g,Zt−

√
2t−z〉|Xt

]
− Pδx

[
e−〈g,Zt−

√
2t−z〉1{〈1(y,+∞),Zt−

√
2t−z〉=0}|Xt

]
= e−〈1−e−g,Xt−

√
2t−z〉 − e−〈(1−e−g)1(−∞,y]+1(y,+∞),Xt−

√
2t−z〉.
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Putting this back in (4.2) we get that

Pδx

[
e−〈f,Xt−

√
2t−z〉−〈g,Zt−

√
2t−z〉1{maxZt−

√
2t−z>y}

]
= Pδx

[
e−〈f+(1−e−g),Xt−

√
2t−z〉

]
−Pδx

[
e−〈f+(1−e−g)1(−∞,y]+1(y,+∞),Xt−

√
2t−z〉

]
= e

−uf+(1−e−g)(t,x−
√

2t−z) − e
−uf+(1−e−g)1(−∞,y]+1(y,+∞)

(t,x−
√

2t−z)
. (4.3)

In particular by setting f = g = 0 and y = 0 in the above formula, we get that

Pδx

(
maxZt −

√
2t− z > 0

)
= 1− e

−u1(0,+∞)
(t,x−

√
2t−z)

. (4.4)

Hence (4.1) follows by (4.3)/ (4.4).

Lemma 4.2. For any f, g ∈ B+
b (R), x, z ∈ R, t ≥ 0 and λ > 0,

Pδx

[
e−〈f,Xt−

√
2t−z〉−〈g,Zt−

√
2t−z〉−λ(maxZt−

√
2t−z)

∣∣∣maxZt −
√

2t− z > 0
]

=
(

1− exp
{
−u1(0,+∞)

(t, x−
√

2t− z)
})−1

·[ ∫ +∞

0

e−y exp
{
−uf+(1−e−g)1(−∞, y

λ
]+1(

y
λ
,+∞)

(t, x−
√

2t− z)
}
dy

− exp
{
−uf+(1−e−g)1(−∞,0]+1(0,+∞)

(t, x−
√

2t− z)
}]

. (4.5)

Proof. We rewrite the left hand side of (4.5) as I − II where

I := Pδx

[
e−〈f,Xt−

√
2t−z〉−〈g,Zt−

√
2t−z〉 | maxZt −

√
2t− z > 0

]
,

and

II := Pδx

[
e−〈f,Xt−

√
2t−z〉−〈g,Zt−

√
2t−z〉

·
(

1− e−λ(maxZt−
√

2t−z)
) ∣∣ maxZt −

√
2t− z > 0

]
.

By Lemma 4.1,

I =
e
−uf+(1−e−g)(t,x−

√
2t−z) − e

−uf+(1−e−g)1(−∞,0]+1(0,+∞)
(t,x−

√
2t−z)

1− e
−u1(0,+∞)

(t,x−
√

2t−z)
. (4.6)

On the other hand, by Fubini’s theorem and Lemma 4.1 we have

II = Pδx

[
e−〈f,Xt−

√
2t−z〉−〈g,Zt−

√
2t−z〉

∫ λ(maxZt−
√

2t−z)

0

e−ydy
∣∣ maxZt −

√
2t− z > 0

]

=

∫ +∞

0

e−yPδx
[
e−〈f,Xt−

√
2t−z〉−〈g,Zt−

√
2t−z〉

·1{maxZt−
√

2t−z> y
λ}
∣∣ maxZt −

√
2t− z > 0

]
dy

=
(

1− exp
{
−u1(0,+∞)

(t, x−
√

2t− z)
})−1 [

exp
{
−uf+(1−e−g)(t, x−

√
2t− z)

}
−
∫ +∞

0

e−y exp
{
−uf+(1−e−g)1(−∞, y

λ
]+1(

y
λ
,+∞)

(t, x−
√

2t− z)
}
dy
]
. (4.7)

Hence we get (4.5) by letting (4.6)− (4.7).
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Lemma 4.3. Suppose x, z ∈ R and s > 0. Under Pδx , conditioned on {maxZt −
√

2t −
z > 0},

(
Xt −

√
2t− z,

∑
u∈Zt I

(u)
s −

√
2(s+ t)− z, Zt −

√
2t− z,maxZt −

√
2t− z

)
con-

verges, as t → +∞, in distribution to a limit
(
ĒX∞, ĒI,s∞ , ĒZ∞, Y

)
, where the limit is inde-

pendent of x and z, and Y is an exponential random variable with mean 1/
√

2. Moreover,
we have for any f, h ∈ H, g ∈ B+(R) with 1− e−g ∈ H1 and λ ≥ 0,

E
[
exp{−〈f, ĒX∞〉 − 〈h, ĒI,s∞ 〉 − 〈g, ĒZ∞〉 − λY }

]
= lim

t→+∞
Pδx

[
exp{−〈f,Xt −

√
2t− z〉 − 〈h,

∑
u∈Zt

I(u)
s −

√
2(s+ t)− z〉

−〈g, Zt −
√

2t− z〉 − λ(maxZt −
√

2t− z)} | maxZt −
√

2t− z > 0
]

=
1

c∗

[
C
(
f +

(
1− e−gVh(s, · −

√
2s)
)

1(−∞,0] + 1(0,+∞)

)
−
∫ +∞

0

e−yC
(
f +

(
1− e−gVh(s, · −

√
2s)
)

1(−∞, yλ ] + 1( yλ ,+∞)

)
dy
]
, (4.8)

where c∗ = C(1(0,+∞)).

Proof. In view of (4.4) we have for any x, z ∈ R and y ≥ 0,

lim
t→+∞

Pδx

(
maxZt −

√
2t− z > y | maxZt −

√
2t− z > 0

)
= lim

t→+∞

Pδx
(
maxZt −

√
2t− z > y

)
Pδx

(
maxZt −

√
2t− z > 0

)
= lim

t→+∞

1− exp{−u1(0,+∞)
(t, x−

√
2t− z − y)}

1− exp{−u1(0,+∞)
(t, x−

√
2t− z)}

= lim
t→+∞

u1(0,+∞)
(t, x−

√
2t− z − y)

u1(0,+∞)
(t, x−

√
2t− z)

= e−
√

2y.

The final equality follows from Lemma 3.2. This implies that, conditioned on {maxZt −√
2t− z > 0}, maxZt −

√
2t− z converges in distribution to an exponentially distributed

random variable with mean 1/
√

2. Suppose f, h, g are functions satisfying our assump-
tions. Recall that Ft is the σ-filed generated by Z, X∗ and I up to time t, and given Ft,
I

(u)
s

d
= (Is,P·,δzu(t)

) for u ∈ Zt. We have

Pδx

[
e−〈h,

∑
u∈Zt

I(u)
s −

√
2(t+s)−z〉

∣∣∣Ft] =
∏
u∈Zt

P·,δzu(t)

[
e−〈h,Is−

√
2(s+t)−z〉

]
=

∏
u∈Zt

Vh(s, zu(t)−
√

2(s+ t)− z)

= e〈lnVh(s,·−
√

2s),Zt−
√

2t−z〉, (4.9)

where Vh is defined by (3.15) with f replaced by h. Thus we have

Pδx
[

exp{−〈f,Xt −
√

2t− z〉 − 〈h,
∑
u∈Zt

I(u)
s −

√
2(s+ t)− z〉

−〈g, Zt −
√

2t− z〉 − λ
(

maxZt −
√

2t− z
)
} | maxZt −

√
2t− z > 0

]
= Pδx

[
exp{−〈f,Xt −

√
2t− z〉 − 〈g, Zt −

√
2t− z〉 − λ

(
maxZt −

√
2t− z

)
}

·Pδx
[

exp{−〈h,
∑
u∈Zt

I(u)
s −

√
2(t+ s)− z〉} | Ft

] ∣∣ maxZt −
√

2t− z > 0
]

= Pδx
[

exp{−〈f,Xt −
√

2t− z〉 − 〈g − lnVh(s, · −
√

2s), Zt −
√

2t− z〉
−λ
(

maxZt −
√

2t− z
)
}
∣∣ maxZt −

√
2t− z > 0

]
. (4.10)
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By Lemma 4.2 the right hand side of (4.10) equals(
1− e

−u1(0,+∞)
(t,x−

√
2t−z))−1

·
[ ∫ +∞

0

e−y exp
{
− u

f+
(

1−e−gVh(s,·−
√

2s)
)

1(−∞, y
λ

]+1(
y
λ
,+∞)

(t, x−
√

2t− z)
}
dy

− exp
{
− u

f+
(

1−e−gVh(s,·−
√

2s)
)

1(−∞,0]+1(0,+∞)

(t, x−
√

2t− z)
}]

=
(
1− e

−u1(0,+∞)
(t,x−

√
2t−z))−1

·
[
−
∫ +∞

0

e−y
(
1− e

−u
f+

(
1−e−gVh(s,·−

√
2s)

)
1
(−∞, y

λ
]
+1

(
y
λ
,+∞)

(t,x−
√

2t−z))
dy

+
(
1− e

−u
f+

(
1−e−gVh(s,·−

√
2s)

)
1(−∞,0]+1(0,+∞)

(t,x−
√

2t−z))]
. (4.11)

We observe that 1 − e−gVh(s, · −
√

2s) = e−g
(
1− Vh(s, · −

√
2s)
)

+ (1 − e−g) ∈ H1 since
1− Vh(s, · −

√
2s), 1− e−g ∈ H1 by the assumptions. Using the facts that 1− e−x ∼ x as

x→ 0 and that

lim
t→+∞

t3/2

3
2
√

2
log t

e−
√

2xuφ(t, x−
√

2t) = C(φ) ∀φ ∈ H,

one can show by the bounded convergence theorem that the right hand side of (4.11)
converges to

1

c∗

[
C
(
f +

(
1− e−gVh(s, · −

√
2s)
)

1(−∞,0] + 1(0,+∞)

)
−
∫ +∞

0

e−yC
(
f +

(
1− e−gVh(s, · −

√
2s)
)

1(−∞, yλ ] + 1( yλ ,+∞)

)
dy
]

as t→ +∞. In particular, for any λi > 0, i = 1, 2, 3, 4 and f, h, g ∈ C+
c (R), one has

lim
t→+∞

Pδx

[
exp{−λ1〈f,Xt −

√
2t− z〉 − λ2〈h,

∑
u∈Zt

I(u)
s −

√
2(s+ t)− z〉

−λ3〈g, Zt −
√

2t− z〉 − λ4

(
maxZt −

√
2t− z

)
}
∣∣ maxZt −

√
2t− z > 0

]
=

1

c∗

[
C
(
λ1f +

(
1− e−λ3gVλ2h(s, · −

√
2s)
)

1(−∞,0] + 1(0,+∞)

)
−
∫ +∞

0

e−yC
(
λ1f +

(
1− e−λ3gVλ2h(s, · −

√
2s)
)

1(−∞, yλ4
] + 1( y

λ4
,+∞)

)
dy
]
.

(4.12)

To show the convergence in distribution, it suffices to show the right hand side of (4.12)
converges to 1 as λi → 0, i = 1, 2, 3, 4. By Corollary 3.11 and Lemma 3.7 we have

C(1− Vλ2h(s, · −
√

2s)) ≤ C(uλ2h(s, · −
√

2s)) = C(λ2h)→ 0 as λ2 → 0,

and
C(1− e−λ3g) ≤ C(λ3g)→ 0, as λ3 → 0.

Thus one has

C(1− e−λ3gVλ2h(s, · −
√

2s)) ≤ C
(

e−λ3g
(

1− Vλ2h(s, · −
√

2s)
))

+ C(1− e−λ3g)

≤ C
(

1− Vλ2h(s, · −
√

2s)
)

+ C(1− e−λ3g)

→ 0, as λ2, λ3 → 0. (4.13)
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On the other hand by Corollary 3.11 we have for any δ ∈ R

C(1(δ,+∞)) ≤ C(λ1f +
(

1− e−λ3gVλ2h(s, · −
√

2s)
)

1(−∞,δ] + 1(δ,+∞))

≤ C(λ1f) + C
(

1− e−λ3gVλ2h(s, · −
√

2s)
)

+ C(1(δ,+∞)), (4.14)

Using (4.13) and the fact that limλ1→0 C(λ1f) = 0 we get by (4.14) that

lim
λ1,λ2,λ3→0

C(λ1f +
(

1− e−λ3gVλ2h(s, · −
√

2s)
)

1(−∞,δ] + 1(δ,+∞)) = C(1(δ,+∞)).

This implies that

lim
λ1,λ2,λ3→0

C(λ1f +
(

1− e−λ3gVλ2h(s, · −
√

2s)
)

1(−∞,0] + 1(0,+∞)) = C(1(0,+∞)), (4.15)

and that for every y ∈ R,

lim
λ1,λ2,λ3,λ4→0

C(λ1f +
(

1− e−λ3gVλ2h(s, · −
√

2s)
)

1(−∞, yλ4
] + 1( y

λ4
,+∞))

= lim
λ4→0

C(1( y
λ4
,+∞)) = 0. (4.16)

In view of (4.15) and (4.16), one can use the bounded convergence theorem to show that
the right hand side of (4.12) converges to 1 as λi → 0, i = 1, 2, 3, 4. Hence we complete
the proof.

Lemma 4.4. Suppose x, z ∈ R and s > 0. Under Pδx , conditioned on {maxZt−
√

2t−z >
0},
(
Xt −maxZt,

∑
u∈Zt I

(u)
s −

√
2s−maxZt, Zt −maxZt,maxZt −

√
2t− z

)
converges,

as t→ +∞, in distribution to a limit
(
4X ,4I,s,4Z , Y

)
:=
(
ĒX∞ − Y, ĒI,s∞ − Y, ĒZ∞ − Y, Y

)
,

which is independent of x and z. Moreover
(
4X ,4I,s,4Z

)
is independent of Y .

Proof. The first conclusion is a direct result of Lemma 4.3 and [4, Lemma 4.13]. We only
need to show the independence. Suppose f, g, h ∈ C+

c (R) and y ≥ 0. We have

E
[
e−〈f,4

X〉−〈g,4I,s〉−〈h,4Z〉1{Y >y}

]
= lim

t→+∞
Pδ0
[
e−〈f,Xt−maxZt〉−〈g,

∑
u∈Zt

I(u)
s −

√
2s−maxZt〉−〈h,Zt−maxZt〉

·1{maxZt−
√

2t>y}|maxZt −
√

2t > 0
]

= lim
t→+∞

Pδ0
[
e−〈f,Xt−maxZt〉−〈g,

∑
u∈Zt

I(u)
s −

√
2s−maxZt〉−〈h,Zt−maxZt〉

∣∣maxZt −
√

2t > y
]

·Pδ0
(

maxZt −
√

2t > y|maxZt −
√

2t > 0
)

= E
[
e−〈f,4

X〉−〈g,4I,s〉−〈h,4Z〉
]
· P(Y > y).

This yields the independence.

Remark 4.5. We have by (2.10) that for all g ∈ C+
c (R) and y ≥ 0,

P·,δ0

[
e−〈g,Zt−

√
2t〉; maxZt −

√
2t > y

]
= u(1−e−g)1(−∞,y]+1(y,+∞)

(t,−
√

2t)− u1−e−g (t,−
√

2t).
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Thus by Lemma 4.1 with f = 0 we have

Pδ0

[
e−〈g,Zt−

√
2t〉; maxZt −

√
2t > y

∣∣ maxZt −
√

2t > 0
]

=
e−u1−e−g (t,−

√
2t) − e

−u(1−e−g)1(−∞,y]+1(y,+∞)
(t,−
√

2t)

1− e
−u1(0,+∞)

(t,−
√

2t)

∼
u(1−e−g)1(−∞,y]+1(y,+∞)

(t,−
√

2t)− u1−e−g (t,−
√

2t)

u1(0,+∞)
(t,−
√

2t)

= P·,δ0

[
e−〈g,Zt−

√
2t〉; maxZt −

√
2t > y

∣∣ maxZt −
√

2t > 0
]
, as t→ +∞.

This implies that the limit of (Zt−
√

2t,maxZt−
√

2t) under Pδ0
(
·|maxZt −

√
2t > 0

)
and

that under P·,δ0(·|maxZt −
√

2t > 0) are equal in distribution. Therefore the definition of
4Z given in Lemma 4.4 coincides with that given in (2.18).

4.2 Proof of Theorem 2.12

In the following lemma, we establish an integral representation of C(φ) for φ ∈ H1. It
characterises the limiting extremal process of the skeleton BBM as a decorated Poisson
point process.

Lemma 4.6. For φ ∈ H1,

C(φ) = c∗

∫ +∞

−∞

√
2e−
√

2yE
[
1− e〈ln(1−φ),4Z+y〉

]
dy. (4.17)

Here 4Z is defined in Lemma 4.4, and c∗ = C(1(0,+∞)).

Proof. First we suppose φ ∈ H1 is a compactly supported continuous function with
‖φ‖∞ < 1. Let g(x) := − ln(1 − φ(x)) for x ∈ R. The argument below Proposition 2.5
implies that

E
[
e−〈g,E

Z
∞〉
]

= lim
t→+∞

P·,δ0

[
e−〈g,E

Z
t 〉
]

= P·,δ0

[
e−C(φ)∂M∞

]
, (4.18)

where EZ∞ is the limit of ((EZt )t≥0,P·,δ0) in distribution. It is known that EZ∞ is a

DPPP(c∗∂M∞
√

2e
√

2ydy, 4Z) where 4Z is the distributional limit of Zt − maxZt un-
der P·,δ0

(
·|maxZt −

√
2t > 0

)
(and hence equal in law to 4Z defined in Lemma 4.4).

Using Poisson computations one has

E
[
e−〈g,E

Z
∞〉
]

= P·,δ0

[
exp{−c∗∂M∞

∫ +∞

−∞

√
2e−
√

2yE
[
1− e−〈g,4

Z+y〉
]
dy}
]
.

We note that under our assumptions, P·,δ0 [∂M∞ > 0] > 0. Hence (4.17) follows, other-
wise there would be a contradiction.

For a general φ ∈ H1, one can find a nondecreasing sequence of functions {φn : n ≥
1} ⊂ H1 ∩ C+

c (R), such that ‖φn‖∞ < 1 and φn(x) ↑ φ(x) for all x ∈ R as n→ +∞. Then
by Corollary 3.11,

C(φn) ≤ C(φ) ≤ C(φn) + C(φ− φn).

Note that by the dominated convergence theorem
∫ +∞
−∞ |x|e

√
2x (φ(−x)− φn(−x)) dx→ 0

as n→ +∞. Thus by Lemma 3.7 C(φ−φn)→ 0 as n→ +∞. So we get that C(φn) ↑ C(φ)

as n→ +∞, and (4.17) follows immediately by the monotone convergence theorem.
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Proof of Theorem 2.12. It follows from Theorem 2.10 and Lemma 4.6 that for all g ∈
B+(R) with 1− e−g ∈ H,

E
[
e−〈g,E

Z
∞〉
]

= Pδx

[
e−C(1−e−g)∂M∞

]
(4.19)

= Pδx

[
exp{−c∗∂M∞

∫ +∞

−∞

√
2e−
√

2yE
[
1− e−〈g,4

Z+y〉
]
dy}
]
.

The above equations hold in particular for all g ∈ C+
c (R). This implies that EZ∞ is a

decorated Poisson point process with intensity c∗∂M∞
√

2e−
√

2ydy and decoration law
4Z .

We have for all φ ∈ C+
c (R),

E
[
e−〈φ,

∑
i≥1 Tdi4

s
i 〉
]

= E

∏
i≥1

P·,δ0

[
e−〈Tdiφ,Is−

√
2s〉
] = E

∏
i≥1

VTdiφ(s,−
√

2s)


= E

[
e〈lnVφ(s,·−

√
2s),EZ∞〉

]
= Pδx

[
e−C(1−Vφ(s,·−

√
2s))∂M∞

]
.

The final equality follows from (4.19). Since lims→+∞ C(1− Vφ(s, · −
√

2s)) = C(φ), we
get by the above equality that

lim
s→+∞

E
[
e−〈φ,

∑
i≥1 Tdi4

s
i 〉
]

= Pδx

[
e−C(φ)∂M∞

]
= E

[
e−〈φ,E∞〉

]
for all φ ∈ C+

c (R). Hence we prove (2.27).

Remark 4.7. We claim that for for each i ≥ 1, 4si converges in distribution to the null
measure as s→ +∞. This is because, by (3.16) for all φ ∈ C+

c (R),

E
[
e−〈φ,4

s
i 〉
]

= P·,δ0

[
e−〈φ,Is−

√
2s〉
]

= Vφ(s,−
√

2s) = 1−
(
uφ(s,−

√
2s)− u∗φ(s,−

√
2s)
)
.

Noticing that 0 ≤ u∗φ(s, x−
√

2s) ≤ uφ(s, x−
√

2s), (3.25) implies that

lim
s→+∞

uφ(s,−
√

2s) = lim
s→+∞

u∗φ(s,−
√

2s) = 0.

Then we have

E
[
e−〈φ,4

s
i 〉
]
→ 1, as s→ +∞.

4.3 Proof of Proposition 2.13

Lemma 4.8. Suppose φ ∈ H. Then for all s > 0 and y ∈ R,

E
[
e〈lnVφ(s,·−

√
2s),4Z+y〉

]
= E

[
e−〈φ,4

I,s+y〉
]
. (4.20)

Proof. Recall the definition of (ĒZ∞, Y ) in Lemma 4.3. We use xj ∈ ĒZ∞ to denote an atom
of the random point measure ĒZ∞. For any s > 0, define random measure Θs by

Θs :=
∑

xj∈ĒZ∞

Txj (Ijs −
√

2s),

where Ij , j ≥ 1 are i.i.d. copies of (I,P·,δ0), and are independent of (ĒZ∞, Y ). Recall the
Laplace functional of Is given in (3.15). It follows from Lemma 4.3 that, for all f ∈ H,
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s > 0 and λ > 0

E
[
e−〈f,Θs〉−λY

]
= E

[
e〈log Vf (s,·−

√
2s),ĒZ∞〉−λY

]
=

1

c∗

[
C
((

1− Vf (s, · −
√

2s)
)

1(−∞,0] + 1(0,+∞)

)
−
∫ +∞

0

e−yC
((

1− Vf (s, · −
√

2s)
)

1(−∞,y/λ] + 1(y/λ,+∞)

)
dy

]
= E

[
e−〈f,Ē

I,s
∞ 〉−λY

]
.

This implies that (Θs, Y )
d
= (ĒI,s∞ , Y ). Therefore, we obtain that

4I,s = ĒI,s∞ − Y
d
= Θs − Y =

∑
xj∈4Z

Txj (Ijs −
√

2s),

which implies that, for all φ ∈ H and y ∈ R,

E
[
e−〈φ,4

I,s+y〉
]

= E

[
e
−〈φ,

∑
xj∈4Z

Txj (Ijs−
√

2s)+y〉
]

= E
[
e〈lnVφ(s,·−

√
2s),4Z+y〉

]
.

Now we finish the proof.

Proof of Proposition 2.13. It is easy to get by Poisson computations that

E
[
e−〈φ,

∑
i≥1 Tei4

I,s
i 〉
]

= Pδx

[
exp

{
−c∗∂M∞

∫ +∞

−∞

√
2e−
√

2yE
[
1− e−〈φ,4

I,s+y〉
]
dy

}]
(4.21)

for all φ ∈ C+
c (R). It follows from Lemma 3.10, Lemma 4.6 and Lemma 4.8 that for all

φ ∈ C+
c (R),

C(φ) = lim
s→+∞

C(1− Vφ(s, · −
√

2s))

= lim
s→+∞

c∗

∫ +∞

−∞

√
2e−
√

2yE
[
1− e〈lnVφ(s,·−

√
2s),4Z+y〉

]
dy

= lim
s→+∞

c∗

∫ +∞

−∞

√
2e−
√

2yE
[
1− e−〈φ,4

I,s+y〉
]
dy. (4.22)

This together with (4.21) and Theorem 2.10 yields that

lim
s→+∞

E
[
e−〈φ,

∑
i≥1 Tei4

I,s
i 〉
]

= Pδx

[
e−C(φ)∂M∞

]
= E

[
e−〈φ,E∞〉

]
, ∀φ ∈ C+

c (R).

Hence we complete the proof.

4.4 Proof of Theorem 2.14

We prove Theorem 2.14 in this section. First we relate C(φ) to the Laplace functional
of a certain random Radon measure. Then we observe that this random measure is
infinitely divisible and thus get an expression for C(φ) which leads to the probabilistic
interpretation presented in Theorem 2.14. Our observation on C(φ) is inspired by the
work of [22].

EJP 29 (2024), paper 23.
Page 34/41

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1084
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The extremal process of super-Brownian motion

Lemma 4.9. Let {ei : i ≥ 1} be the atoms of a Poisson point process with intensity

c∗
√

2e−
√

2ydy and for every s > 0, {4I,si : i ≥ 1} be an independent sequence of i.i.d.
random measures with the same law as 4I,s. Set

Ds :=
∑
i≥1

Tei4
I,s
i .

Then as s→ +∞, the random measures Ds converges in distribution to a random Radon
measure D∞. Moreover, we have for any φ ∈ H,

E
[
e−〈φ,D∞〉

]
= lim
s→+∞

E
[
e−〈φ,Ds〉

]
= e−C(φ). (4.23)

Proof. By the definition of Ds, one can use simple Poisson computations to get that

E
[
e−〈f,Ds〉

]
= exp

{
−c∗

∫ +∞

−∞

√
2e−
√

2yE
[
1− e−〈f,4

I,s+y〉
]
dy

}
, ∀f ∈ B+(R). (4.24)

Combining (4.24) and (4.22) we get that

lim
s→+∞

E
[
e−〈φ,Ds〉

]
= e−C(φ), ∀φ ∈ H. (4.25)

The above identity holds in particular for φ ∈ C+
c (R). Moreover one has by Lemma 3.7

that limλ→0+ C(λφ) = 0 for φ ∈ C+
c (R). This implies the existence of the limit D∞,

and (4.23) follows immediately from (4.25).

A random measure µ is said to be exp-
√

2-stable if for any a, b satisfying e
√

2a+e
√

2b = 1,

it holds that Taµ+ Tbµ̂
d
= µ, where µ̂ is an independent copy of µ. It is easy to see that

an exp-
√

2-stable random measure is infinitely divisible. By (4.23) and the fact that
C(Taφ) = e

√
2aC(φ) for all a ∈ R and φ ∈ H, one can easily show that D∞ is an exp-

√
2-

stable random measure on R.

Lemma 4.10. There exist some constant ι ≥ 0 and some measure Λ on M(R) \ {0}
satisfying that∫ +∞

−∞
e−
√

2xdx

∫
M(R)\{0}

(1 ∧ Txµ(A)) Λ(dµ) < +∞, ∀ bounded Borel set A ⊂ R,

such that

C(φ) = ι

∫ +∞

−∞
φ(x)e−

√
2xdx+ c∗

∫ +∞

−∞

√
2e−
√

2xdx

∫
M(R)\{0}

(
1− e−〈φ,Txµ〉

)
Λ(dµ),

(4.26)
for every φ ∈ C+

c (R). Moreover, it holds that

ι =
2c∗

1− e−
√

2
lim
ε→0+

limsis→+∞

∫ +∞

−∞
e−
√

2xE
[
〈1(0,1), Tx4I,s〉; 〈1(0,1), Tx4I,s〉 < ε

]
dx,

(4.27)
where “limsi” is supposed to hold with both lim inf and lim sup, and∫ +∞

−∞
e−
√

2xdx

∫
M(R)\{0}

f (Txµ(A1), · · · , Txµ(An)) Λ(dµ)

= lim
s→+∞

∫ +∞

−∞
e−
√

2xE
[
f
(
Tx4I,s(A1), · · · , Tx4I,s(An)

)]
dx (4.28)

for any n ≥ 1, f ∈ Cc
(
R̄n \ {0}

)
and any bounded open sets A1, · · · , An ⊂ R.
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Proof. Since D∞ is an exp-
√

2-stable random measure, (4.26) is a direct result of [22,
Theorem 3.1]. We note that Ds converges in distribution to D∞ and that the exponent of
the Laplace functional of Ds is given by

− ln E
[
e−〈φ,D

s〉
]

= C
(

1− Vφ(s, · −
√

2s)
)

= c∗

∫ +∞

−∞

√
2e−
√

2xE
[
1− e−〈φ,Tx4

I,s〉
]
dx

for all φ ∈ C+
c (R). (4.27) and (4.28) follow immediately from [15, Exercise 6.4].

Lemma 4.10 yields a short proof for Theorem 2.14.

Proof of Theorem 2.14. We have that

E
[
e−〈φ,E∞〉

]
= Pδx

[
e−∂M∞C(φ)

]
, ∀φ ∈ C+

c (R)

where C(φ) can be represented by (4.26). This yields the result of this theorem.

Remark 4.11. It follows by (4.26) that for all λ > 0 and φ ∈ C+
c (R),

C(λφ)

λ
= ι

∫ +∞

−∞
φ(x)e−

√
2xdx+ c∗

∫ +∞

−∞

√
2e−
√

2xdx

∫
M(R)\{0}

1− e−λ〈φ,Txµ〉

λ
Λ(dµ).

(4.29)
Note that∫ +∞

−∞
e−
√

2xdx

∫
M(R)\{0}

1− e−λ〈φ,Txµ〉

λ
Λ(dµ)≤

∫ +∞

−∞
e−
√

2xdx

∫
M(R)\{0}

1

λ
∧〈φ, Txµ〉Λ(dµ).

Thus by the dominated convergence theorem, the second term of (4.29) converges to 0

as λ→ +∞. Consequently we get that

ι

∫ +∞

−∞
φ(x)e−

√
2xdx = lim

λ→+∞

C(λφ)

λ
, ∀φ ∈ C+

c (R). (4.30)

So a sufficient condition for the constant ι to be 0 is that

sup
λ
C(λφ) < +∞ for some φ ∈ C+

c (R).

This is true if the branching mechanism ψ satisfies Assumption 2.15, where one has
supλ C(λ1(0,+∞)) ≤ c̃0 < +∞. In this case, E∞ is equal in law to a Poisson random

measure onM(R) with intensity c∗∂M∞
∫ +∞
−∞
√

2e−
√

2xTxΛ(dµ)dx. We shall discuss this
special case in detail in the next section.

4.5 Special case where Assumption 2.15 is satisfied and proof of Theorem 2.16

In this section we assume in addition that Assumption 2.15 is satisfied. Recall the
definition of ũφ(t, x) given in (3.35). It is shown in the argument of Remark 3.12 that
when Assumption 2.15 holds, ũφ(r, · −

√
2r) ∈ H for all φ ∈ H and r > 0. Applying

Lemma 3.10 to the function uũφ(r,·−
√

2r)(t, x) = ũφ(t + r, x −
√

2r), one gets that for all
x ∈ R and φ ∈ H,

lim
t→+∞

t3/2

3
2
√

2
log t

e−
√

2xũφ(t, x−
√

2t) = C̃(φ),

where C̃(φ) is defined in (3.38). In particular by taking φ = 0, one gets that

lim
t→+∞

t3/2

3
2
√

2
log t

e−
√

2xPδx

(
maxXt −

√
2t > 0

)
= c̃0, (4.31)

where c̃0 = C̃(0).
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Lemma 4.12. Suppose x, z ∈ R. Under Pδx , conditioned on {maxXt −
√

2t− z > 0}, the
random elements

(
Xt −

√
2t− z, Zt −

√
2t− z,maxXt −

√
2t− z

)
converges, as t→ +∞,

in distribution to a limit
(
ẼX∞, ẼZ∞, Y

)
, where the limit is independent of x and z, and Y

is an exponential random variable with mean 1/
√

2. Moreover, given
(
ẼX∞, Y

)
, ẼZ∞ is a

Poisson random measure with intensity ẼX∞.

Proof. Fix x, z ∈ R. It has been proved in [23, Proposition 3.4] that conditioned on
{maxXt −

√
2t − z > 0},

(
Xt −

√
2t− z,maxXt −

√
2t− z

)
converges, as t → +∞, in

distribution to a limit
(
ẼX∞, Y

)
, where the limit is independent of x and z, and Y is an

exponential random variable with mean 1/
√

2. We note that for all f, g ∈ C+
c (R) and

λi ≥ 0, i = 1, 2, 3,

Pδx

[
e−λ1〈f,Xt−

√
2t−z〉−λ2〈g,Zt−

√
2t−z〉−λ3(maxXt−

√
2t−z) | maxXt −

√
2t− z > 0

]
= Pδx

[
e−λ1〈f,Xt−

√
2t−z〉−λ3(maxXt−

√
2t−z)

·Pδx
[
e−λ2〈g,Zt−

√
2t−z〉 |Xt

]
| maxXt −

√
2t− z > 0

]
= Pδx

[
e−〈λ1f+1−e−λ2g,Xt−

√
2t−z〉−λ3(maxXt−

√
2t−z) | maxXt −

√
2t− z > 0

]
→ E

[
e−〈λ1f+1−e−λ2g,ẼX∞〉−λ3Y

]
, as t→ +∞. (4.32)

Obviously the right hand side of (4.32) converges to 1 as λi → 0, i = 1, 2, 3. Hence
conditioned on {maxXt −

√
2t − z > 0},

(
Xt −

√
2t− z, Zt −

√
2t− z,maxXt −

√
2t− z

)
converges in distribution to a limit

(
ẼX∞, ẼZ∞, Y

)
with Y being an exponential random

variable with mean 1/
√

2. Moreover, it holds that

E
[
e−〈f,Ẽ

X
∞〉−〈g,Ẽ

Z
∞〉−λY

]
= E

[
e−〈f+1−e−g,ẼX∞〉−λY

]
for all f, g ∈ C+

c (R) and λ ≥ 0. In particular one has

E
[
e−〈f,Ẽ

X
∞〉−λY E

[
e−〈g,Ẽ

Z
∞〉 | ẼX∞, Y

]]
= E

[
e−〈f,Ẽ

X
∞〉−λY · e−〈1−e−g,ẼX∞〉

]
.

This implies that E
[
e−〈g,Ẽ

Z
∞〉 | ẼX∞, Y

]
= e−〈1−e−g,ẼX∞〉 P-a.s. So we prove the second

conclusion of this lemma.

Lemma 4.13. Suppose x, z ∈ R. Under Pδx , conditioned on {maxXt −
√

2t− z > 0}, the
random elements (Xt−maxXt, Zt−maxXt,maxXt−

√
2t− z) converges, as t→ +∞, in

distribution to a limit (4̃X , 4̃Z , Y ) := (ẼX∞−Y, ẼZ∞−Y, Y ), where the limit is independent
of x and z, and (4̃X , 4̃Z) is independent of Y . Moreover, given 4̃X , 4̃Z is a Poisson
random measure with intensity 4̃X .

Proof. The first conclusion follows from Lemma 4.12 (in place of Lemma 4.3) in the same
way as Lemma 4.4. We only need to show the second conclusion.

Since
(
4̃X , 4̃Z

)
is independent of Y , we have for all f ∈ C+

c (R),

E
[
e−〈f,4̃

Z〉 | 4̃X
]

= E
[
e−〈f,4̃

Z〉 | 4̃X , Y
]

= E
[
e−〈f,Ẽ

Z
∞−Y 〉 | ẼX∞, Y

]
= e−〈1−e−f ,ẼX∞−Y 〉 = e−〈1−e−f ,4̃X〉.

The third equality follows from the second conclusion of Lemma 4.12. Hence we prove
the second conclusion.

EJP 29 (2024), paper 23.
Page 37/41

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1084
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The extremal process of super-Brownian motion

Lemma 4.14. For any f, g ∈ C+
c (R),

C
(
f + 1− e−g

)
= c̃0

∫ +∞

−∞

√
2e−
√

2yE
[
1− e−〈f,4̃

X+y〉−〈g,4̃Z+y〉
]
dy.

Proof. Fix arbitrary f, g ∈ C+
c (R). It follows by [23, (3.12)] that

C
(
f + 1− e−g

)
= c̃0

∫ +∞

−∞

√
2e−
√

2yE
[
1− e−〈f+1−e−g,4̃X+y〉

]
dy.

By Lemma 4.13, we have that

E
[
1− e−〈f,4̃

X+y〉−〈g,4̃Z+y〉
]

= E
[
1− e−〈f+1−e−g,4̃X+y〉

]
.

Now the desired result follows immediately.

Proof of Theorem 2.16. Using computation on Poisson point process, we have for all
f, g ∈ C+

c (R),

E
[
e−〈f,

∑
i≥1 Tẽi4̃

X
i 〉−〈g,

∑
i≥1 Tẽi4̃

Z
i 〉
]

= E

[
e

〈
ln E

[
e
−〈f,4̃X+·〉−〈g,4̃Z+·〉],∑i≥1 δẽi

〉]

= Pδx

[
e
−c̃0∂M∞

∫+∞
−∞
√

2e−
√

2yE

[
1−e

−〈f,4̃X+y〉−〈g,4̃Z+y〉]dy]
.

This together with Theorem 2.10 and Lemma 4.14 yields that

E
[
e−〈f,E∞〉−〈g,E

Z
∞〉
]

= E
[
e−〈f,

∑
i≥1 Tẽi4̃

X
i 〉−〈g,

∑
i≥1 Tẽi4̃

Z
i 〉
]
, ∀f, g ∈ C+

c (R).

Hence we complete the proof.

A Appendix

Lemma A.1. Let L be the integer-valued random variable with distribution {pk : k ≥ 2}
as defined in Proposition 2.2. Suppose f : [0,+∞) → [0,+∞) satisfies the following
conditions: There exist some constants c, κ ≥ 0 such that

(1) f is bounded in [0, c) and convex on [c,+∞).

(2) f(xy) ≤ κf(x)f(y) for all x, y ∈ [c,+∞).

Then the following statements are equivalent.

(i) E [f(L)] < +∞.

(ii) P·,kδ0 [f(‖Zt‖)] <∞ for all t > 0 and k ∈ N.

(iii) Pµ [f(‖Zt‖)] <∞ for all t > 0 and µ ∈Mc(R).

(iv) Pµ [f(‖Xt‖)] <∞ for all t > 0 and µ ∈Mc(R).

(v)
∫

(1,+∞)
f(x)π(dx) < +∞.

Proof. Without loss of generality we may and do assume that the function f : [0,+∞) 7→
[0,+∞) satisfies that there is some κ > 0 such that
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(1’) f is convex on [0,+∞);

(2’) f(xy) ≤ κf(x)f(y) for all x, y ∈ [0,+∞);

(3’) f is nondecreasing on [0,+∞) and f(x) > 1 for all x ≥ 0.

In fact, [5, Chapter IV, Lemma 1] shows that for any function f which satisfies the
original hypothesis, there is a function f̃ satisfying (1’)-(3’) such that for any probability
measure µ on [0,+∞),

∫
[0,+∞)

f(x)µ(dx) is finite if and only if
∫

[0,+∞)
f̃(x)µ(dx) is finite.

That (i)⇔ (ii) is established in [5, Chapter III, Theorem 2]. We note that (‖Xt‖)t≥0

is a continuous-state branching process. Thus (iv) ⇔ (v) follows directly from [14,
Theorem 2.1].

(ii)⇔ (iii): Since the branching rate and offspring distribution of (Zt)t≥0 is spatially-
independent, (‖Zt‖)t≥0 is a continuous-time Galton-Watson branching process. Thus we
have for any nontrivial µ ∈Mc(R),

Pµ [f(‖Zt‖)] = Pµ [Pµ [f(‖Zt‖)|Z0]] = Pµ
[
P·,‖Z0‖δ0 [f(‖Zt‖)]

]
.

Note that (‖Z0‖,Pµ) is a Poinsson random variable with parameter ‖µ‖. Thus we have

Pµ [f(‖Zt‖)] =

+∞∑
k=0

‖µ‖k

k!
e−‖µ‖P·,kδ0 [f(‖Zt‖)] . (A.1)

Hence Pµ [f(‖Zt‖)] < +∞ if and only if P·,kδ0 [f(‖Zt‖)] < +∞ for all k ∈ N.
(iii) ⇒ (iv): Fix t > 0 and a nontrivial µ ∈ Mc(R). Suppose that Pµ [f(‖Zt‖)] < +∞.

Recall that given Xt, Zt is a Poisson random measure with intensity Xt(dx), and so ‖Zt‖
is a Poisson random variable with parameter ‖Xt‖. Thus we get

Pµ [‖Zt‖|Xt] = ‖Xt‖ Pµ-a.s.

Since f in convex on [0,+∞), it follows by Jensen’s inequality that

Pµ [f(‖Xt‖)] = Pµ [f (Pµ [‖Zt‖|Xt])] ≤ Pµ [Pµ [f(‖Zt‖)|Xt]] = Pµ [f(‖Zt‖)] < +∞.

(iv)⇒ (iii): Fix t, s > 0 and a nontrivial µ ∈Mc(R). Suppose Pµ [f(‖Xt+s‖)] < +∞. It
follows by (3.14) that

‖Xt+s‖ = ‖X∗t+s‖+ ‖I∗,ts ‖+
∑
u∈Zt

‖I(u)
s ‖.

We have

Pµ [f(‖Xt+s‖)] ≥ Pµ

[
f

(∑
u∈Zt

‖I(u)
s ‖

)]
= Pµ

[
Pµ

[
f

(∑
u∈Zt

‖I(u)
s ‖

)
|Zt

]]

≥ Pµ

[
f

(
Pµ

[∑
u∈Zt

‖I(u)
s ‖|Zt

])]
= Pµ

[
f

(∑
u∈Zt

P·,δzu(t)
[‖Is‖]

)]
.

The first inequality follows from condition (3’), the second inequality from Jensen’s
inequality. We observe that the distribution of ‖Is‖ under P·,δx is independent of the
starting location x. If we define g(s) := P·,δx [‖Is‖] for all s > 0, then we get from the
above argument that

Pµ [f (g(s)‖Zt‖)] = Pµ

[
f

(∑
u∈Zt

g(s)

)]
≤ Pµ [f(‖Xt+s‖)] < +∞.
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Thus by (2’) we have

Pµ [f(‖Zt‖)] = Pµ
[
f(g(s)g(s)−1‖Zt‖)

]
≤ κf(g(s)−1)Pµ [f(g(s)‖Zt‖)] < +∞.

Therefore we complete the proof.

Lemma A.2. Assumption 2.4 holds for some 0 < β < 1 if and only if∫ 1

0

(1 + ψ′(s)) s−(1+β)ds < +∞. (A.2)

Proof. Let L be the integer-valued random variable with distribution {pk : k ≥ 2}. It
follows from Lemma A.1 that Assumption 2.4 holds if and only if

E
[
L1+β

]
< +∞. (A.3)

Let ϕ(s) be the Laplace transform of L, that is, ϕ(s) := E
[
e−sL

]
for all s ≥ 0. Then by [8,

Theorem B], (A.3) is equivalent to that∫ 1

0

f1(s)s−(2+β)ds < +∞, (A.4)

where f1(s) := ϕ(s)− 1−ϕ′(0)s. We use F (s) to denote the generating function of L, i.e.,
F (s) = E

[
sL
]

for s ∈ [0, 1]. Since ϕ(s) = F (e−s) for all s ≥ 0, setting u = 1− e−s we have

ϕ′′(s) = F ′′(1− u)(1− u)2 + F ′(1− u)(1− u).

Since u ∼ s as s→ 0, one has

f1(s) ∼ s2

2
ϕ′′(s) ∼ u2

2

[
F ′′(1− u)(1− u)2 + F ′(1− u)(1− u)

]
∼ c1u2F ′′(1− u) as s→ 0,

(A.5)
for some constant c1 > 0. On the other hand, in view of (2.1), one has qF ′′(1−u) = ψ′′(u).
This together with (A.5) implies that

f1(s) ∼ c2u2ψ′′(u) ∼ c2u (ψ′(u)− ψ′(0)) = c2u (ψ′(u) + 1) as s→ 0,

for some constant c2 > 0. Hence we have f1(s)s−(2+β) ∼ c2u
−(1+β)(ψ′(u) + 1) as s → 0.

So (A.4) holds if and only if (A.2) holds.
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