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Weak convergence of the extremes of branching Lévy
processes with regularly varying tails
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Abstract

In this paper, we study the weak convergence of the extremes of supercritical
branching Lévy processes {X;,¢ > 0} whose spatial motions are Lévy processes with
regularly varying tails. The result is drastically different from the case of branching
Brownian motions. We prove that, when properly renormalized, X; converges weakly.
As a consequence, we obtain a limit theorem for the order statistics of X;.
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1 Introduction

We consider a supercritical branching Lévy process. At time 0, we start with a single particle
which moves according to a Lévy process {&, P,} with Lévy exponent ¢(6) = log E(e?).
The lifetime of each particle is exponentially distributed with parameter 5, then it splits into
k new particles with probability px, £ > 0. Once born, each particle will independently move
(according to the same Lévy process) and split (according to the same offspring distribution).
We use P, to denote the law of the branching Lévy process when the initial particle starts
at position x. The expectation with respect to P, and P, will be denoted by E, and E,.,
respectively. We write P := Py, E :=E;, P := Py and E := E,.

In this paper, we use “:=" as a way of definition. For a,b € R, a A b := min{a,b}. We
will label each particle using the classical Ulam-Harris system. We write T for the set of all
the particles in the tree, o for the root of the tree. For each particle u, we introduce some
notation.

e b, and o,: the birth time and death time of u respectively.
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{&" - t € [by,0,]}: the spatial trajectory of u.

e 7, == 0, — b, is the life length of v and 7,; :== o, At — b, At is the life length of u
between [0, t].

o Fli=0o{b,Nt,o, ANt :u€cT}

o X, ==& —& and X, = &\, — & - Note that given F, X,,,u € T, are
independent, and
d
Xuvt = gTu,t’

e [,: the set of all the ancestors of v, including v itself.
e 1} : the number of particles in I, \ {o}.

e [, is the set of all particles alive at time ¢ and Z; is the number of particles alive at
time .

For t > 0, define X; := > . dex. The measure-valued process {X;, > 0} is called a
branching Lévy process.

It is well known that {Z;;¢ > 0} is a continuous time branching process. In this paper,
we consider the supercritical case, that is, m := >, kp;, > 1. Then P(S) > 0, where S is
the event of survival. The extinction probability P(S¢) is the smallest root in (0, 1) of the
equation Y, prs® = s, see, for instance, [5, Section III. 4]. The family {e=*Z;,¢ > 0}, where
A = fB(m — 1), is a non-negative martingale and hence

lim e 7, = W exists a.s.
t—00

For any two functions f and g on [0,00), f ~ ¢g as s — 0, means that limg Lo — .

g(s)
Similarly, f ~ g as s — 0o means that lim,_,., % = 1. Throughout this paper we assume

the following two conditions hold. The first condition is on the offspring distribution:

(H1) Zkzl(k log k)pr < 0.

Condition (H1) ensures that 1 is non-degenerate with P(W > 0) = P(S). For more details,
see [, Section II1.7]. The second condition is on the spatial motion:

(H2) There exist a complex constant ¢, with R(c,) > 0, a € (0,2) and a function L(z) :
R, — R, slowly varying at oo such that

V(0) ~ —c, 0°L(O7), 60— 0.
Since e?® = E(e1), we have R(1) < 0 and 1(—0) = ¢(#). Thus
W(0) ~ 0" L(0]7T), 0 — 0.
Under condition (H2), one can prove that (see Remark 23] below)
P(|¢| > x) ~ esx™L(x), z — oo,
that is, || has regularly varying tails.
An important example satisfying (H2) is the strictly stable process.
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Example 1.1 (Stable process.) Let £ be a strictly a-stable process, a € (0,2), on R with
Lévy measure

n(dy) = clx_(Ha)l(om) (r)dz + 02|x\_(1+°‘)1(_0070) (z)dx,

where ¢1,¢0 >0, ¢c1+cy >0, andif a =1, ¢; = co = c. Fora € (1,2), by [35, Lemma 14.11,
(14.19)] and the fact I'(—a) = —al'(1 — «v), we obtain that, for 6 > 0,

/ (e — 1 —ify)n(dy) = —cral (1 — a)e™ /29>,
0

and taking conjugate on both sides of [38, Lemma 14.11 (14.19)], we have that

0
/ (e — 1 —ify)n(dy) = —coal(1 — a)e™ /29~

Thus the Lévy exponent of £ is given by: for 6 > 0,
V(0) = / (e — 1 —ify)n(dy) = —al'(1 — a)(cre™ ™2 4 cpei™/2) 9, (1.1)

Similarly, by [35, Lemma 14.11 (14.18),(114.20)], we have for 6 > 0,

[ =iy @€ (0,1

(o) = (1.2)
/( 0 — 1 — 0yl <1)n(dy) +iad, a=1
[ —al(1 = @) (e ™2 4 e ™) 0%, o e (0,1);
N { —cmf + iab, 1 =1, (1.3)

where a € R is a constant. It is clear that 1) satisfies (H2). For more details about the stable
processes, we refer the readers to [35, Section 1/).

In Section M, we will give more examples satisfying condition (H2). Note that the non-
symmetric 1-stable process does not satisfy (H2). However, in Example [L3] we will show
that our main result still holds for the non-symmetric 1-stable process.

The maximal position M; of a branching Brownian motion has been studied intensively.
Assume that f =1, pp = 0 and m = 2. In the seminal paper [2§8], Kolmogorov, Petrovskii
and Piskounov proved that M/t — /2 in probability as ¢ — co. Bramson proved in [I4]
(see also [I5]) that, under some moment conditions, P(M; —m(t) < xz) — 1 —w(x) ast — oo
for all z € R, where m(t) = /2t — %logt and w(x) is a traveling wave solution. For
more works on M;, see [I8], 19 29| [34]. For inhomogeneous branching Brownian motions,
many papers discussed the growth rate of the maximal position, see Bocharov and Harris
[12, 13] and Bocharov [I] for the case with catalytic branching at the origin, Shiozawa [36],
Nishimori et al. [33], Lalley and Sellke [30] [31] for the case with some general branching
mechanisms.



Recently, the full statistics of the extremal configuration of branching Brownian motion
were studied. Arguin et al. [3) [4] studied the limit property of the extremal process of
branching Brownian motion. They proved that the random measure defined by

E =) Ser-mi

ueLy

converges weakly, and the limiting process is a (randomly shifted) Poisson cluster process.
Almost at the same time, Aidékon et al. [2] proved similar results using a totally different
method.

For branching random walks, several authors have studied similar problems under an
exponential moment assumption on the displacements of the offspring from the parent, see
Aidékon [I], Carmona and Hu [I7], Hu and Shi [26], and Madaule [32]. When the displace-
ments of the offspring from the parents are i.i.d. and have regularly varying tails, Durrett
[22] studied the limit property of its maximum displacement M,,. More precisely, Durrett
proved that a;'M, converges weakly, where a, = m™*Lo(m") and Ly is slowly varying at
00. Recently, the extremal processes of the branching random walks with regularly varying
steps were studied by Bhattacharya et al. [8 ©]. In [8, @], it was proved that the point
random measures Z‘U‘:n 04-1g,,» where S, is the position of v, converges weakly to a Cox
cluster process, which are quite different from the case with exponential moments. See also
[10), 24] for related works on branching random walks with heavy-tailed displacements.

Shiozawa [37] studied branching symmetric stable processes with branching rate p being
a measure on R in a Kato class and offspring distribution {p,(z),n > 0} being spatially
dependent. Under some conditions on p and {p,(z),n > 0}, Shiozawa [37] proved that
the growth rate of the maximal displacement is exponential with rate given by the principal
eigenvalue of the mean semigroup of the branching symmetric stable processes. In this paper,
we study the extremes of branching Lévy processes with constant branching rate 5 and spatial
motion having regularly varying tails (see condition (H2)). Since our branching rate 3 is not
compactly supported, one can not get the growth rate of the maximal displacement from
Shiozawa [37]. As a corollary of our extreme limit result, we get the growth rate of the
maximal displacement, see Corollary below.

The key idea of the proof in this paper is the “one large jump principle” which was inspired
by [8, O, 22]. Along the discrete times nd, the branching Lévy processes {X,s,n > 1} is a
branching random walk and the displacements from parents has the same law as X;. It is
natural to think that one may get the results of this paper from the results for branching
random walks directly. However we can not apply the results for branching random walks in
[8, @, B2] to {X,5,n > 1}. First, under condition (H2), the exponential moment assumption
in [32] is not satisfied. Secondly, [§] assumes that the displacements are i.i.d., while the
atoms of the random measure Xy are not independent. Lastly, although the displacements
of offspring coming from the same parent are allowed to be dependent in [9], Assumption 2.5
in [9], where the displacements from parents are given by a special form (see [9, (2.9) and
(2.10)]), seems to be very difficult to check for Xj.

Branching Lévy processes are closely related to the Fisher-KPP equation when the classi-
cal Laplacian A is replaced by the infinitesimal generator of the corresponding Lévy process.



For any g € C;J(R), define u,(t,z) = E, (e”/9@*d)) By the Markov property and
branching property, we have that

ug(t,x) = B, (7)) + E, /Ot plug(t = 5,€5))ds,

where ¢(s) = 3 (3, s*pr — s). Then 1 — u, is a mild solution to
Ou— Au = —p(1 —u), (1.4)

with initial data u(0,2) = 1 — 9% where A is the infinitesimal generator of &. In [16],
Cabré and Roquejoffre proved that, under the assumption that the density of £ is comparable
to that of a symmetric a-stable process, the front position of 1 — u is exponential in time.

Using our main result, we give another proof of [16, Theorem 1.5] and also partially generalize
it, see Remark

1.1 Main results

Put Ry = (—o00,00) \ {0}, and Ry = [—00, 0] \ {0}. Let CP(R) be the set of all bounded
continuous functions vanishing in a neighborhood of 0. Let CF(Ry) be the set of all non-
negative continuous functions on Ry such that g = 0 on (—6,0) U (0,6) for some & > 0.
It is clear that if ¢ € CS(Ry), then g*(z) = 1g,(2)g(z) € CY(R). Denote by M(Ry)
the set of all Radon measures endowed with the topology of vague convergence (denoted
by ). Then M(Ry) is a metrizable space. For any g € B, (Ry), p € M(Ry), we write

wu(g) = f@o g(x)p(dzx). A sequence of random elements v, in M(Ry) converges weakly to v,

denoted as v, 5 v, if and only if for all g € CH(Ry), vu(g) converges weakly to v(g). Note
that, for any a > 0, [a, 00| and [—o0, —a] are compact subsets of Ry.
We claim that there exists a non-decreasing function h; with h; T oo such that

lim eMh;*L(h;) = 1. (1.5)

t—o0

In fact, using [7, Theorem 1.5.4], there exists a non-increasing function g such that g(z) ~
x~*L(x), as © — oo. Then g(z) — 0 as x — 0o. Define

hy == inf{z > 0: g(z) < e M}

It is clear that h; is non-decreasing and h; T co. By the definition of h;, one has that, for
any € > 0,
g(he/(1+€)) > e > g(hy(1 + €)),

which implies that

= €)" Y lim —L<ht> = lim —g(ht)
A D - (D)

< liminf eMg(h,) < limsup eg(hy)
t—ro0 t—00



< lim g(ht)

_— = €)* lim L)
TR IS R

gy~ A

Since € is arbitrary, we get

lim eMh; “L(h;) = lim eMg(hy) = 1.
—00

t—o0
In particular, h; = e/ if L = 1. In Lemma 1], we will prove that
MP(h7 Y € 4) S sua(Y),
where
Va(dz) = 127 7L (0 00) () dx + go]z]| T T Lo 0y () da,

with ¢; and ¢y being nonnegative numbers, uniquely determined by the following equation:
ifa #1
c, = af‘(l . Oé) (qle—iﬂa/2 + q2ez7ra/2) ’

and if a =1

¢ = g2 = R(c) /.

Now we are ready to state our main result. Define a renormalized version of X; by
N, = Z Oty (1.6)
vEL

In this paper we will investigate the limit of NV, as t — oo.
Theorem 1.2 Under P, N, converges weakly to a random measure Now € M(Ry), defined

on some extension (2, G, P) of the probability space on which the branching Lévy process is
defined, with Laplace transform given by

E(eN=@) = E (eXp {—W/OOO e /RO E(1 — e—ZW))va(dx)dr}) . g€ CHRy). (1.7)

Moreover, Ny = Zj Tjdc,, where given W, Zj de; 15 a Poisson random measure with inten-
sity IW v, (dz), {1},j > 1} is a sequence of i.i.d. random variables with common law:

P(T; = k) = 19‘1/ e NP(Z, = k)dr, k> 1,
0

where 9 = [ e P(Z, > 0)dr, and >.; 0, and {T},j > 1} are independent.

Remark 1.3 Write Dy for the set of discontinuity points of the function f. Then by The-

orem [.Z, we have that Ny(f) LN Nuo(f) for any bounded measurable function f on Ry with
compact support satisfying Noo(Dy) = 0 P-a.s. Furthermore, for any k > 1,

(N B1), Ni(Ba), -+ Ni(Br)) = (Nao(B1), Noo(Ba), -+, Nao( Bi)) ,

where {B;} are relatively compact subsets of Ry satisfying No(0B;) = 0, j = 1,--- ,k,
P-a.s. See [27, Theorem 4.4] for a proof.



Now we list the positions of all particles alive at time ¢ in a decreasing order:
My > Mo > - M, 7,

and for n > Z;, define M, ,, :== —oo. In particular, M; ; = max,c, § is the rightmost position
of the particles alive at time . We also order the atoms of N as My > Mgy > -+ >
My > ---. Note that on the set S, the number of the atoms of N, is infinite, and thus
My, k > 1, are well defined. On the set S¢, N is null, then we define My, = —oo for
k>1.

Define P*(-) := P(:|S) (P*(:) := P(+|S)) and let E*(E*) be the corresponding expectation.

Corollary 1.4 For anyn > 1,
_ _ _ « d «
(h't lMtJ, h’t lMt’Q, cey h’t lMt,n; P ) — (M(l), M(Q), R M(n); P ) .
Moreover, My > 0,k > 1, P*-a.s.
We write I, := M;; = maxyeg, &/ -

Corollary 1.5
(h "R B7) 5 (My; P7)
where the law of (Mny; P*) is given by

* —a g 9Wa—« .
P*(M(l)gx): E(e >, x> 0;
0, xz < 0.
Proof: Using Corollary [[L4, we get that (h[lRt;P*) LN (M(l);P*) , and Mgy > 0 P*-as.
For any x > 0, we have that

P (M(l) Sx) =pP* (N (SL’ OO (Zlmoo 6] —0)
—F* (e—ﬁan(m,oo)) — E* (6—(1 tgroWa™ O‘) )
The proof is now complete. o

Remark 1.6 Similarly, we can order the particles alive at time t in an increasing or-

der: Ly < Lyg < -+ < Lyz. Then we can get the corresponding weak convergence of
(Lt,17 Lt,27 R Lt,n)'

The rest of the paper is organized as follows. In Section 2, we introduce the one large
jump principle and give the proof of Theorem based on Proposition 2.6] which will be
proved in Subsection 2.3. The proof of Corollary [[.4] will be given in Section 3. In Section 4,
we will give more examples satisfying condition (H2) and conditions which are weaker than
(H2), but sufficient for the main result of this paper. We will discuss the front position of
the Fisher-KPP equation (L) in Section 5.



2 Proof of Theorem

2.1 Preliminaries

Recall that h; is a function satisfying (L.H]).

Lemma 2.1 For any g € CY and s > 0,

tlg& ME (g(h'€s)) = s/ g(z)ve(dx). (2.1)

Ro

Proof: Let v, be the law of h;'¢,. Then by (H2), we have that, as ¢ — oo,

exp {e’\t /R(ew:” - 1)Vt(dl’)} = exp {e’\t (esd’(h;lg) - 1)} — exp {512(9)} , (2.2)

where

~ —c, 0%, 0> 0;

v = { —|0]~, 6 <o.
Note that the left side of (2.2)) is the characteristic function of an infinitely divisible random
variable Y; with Lévy measure eMy;, and by ([L2), e*¥? is the characteristic function of a
strictly a-stable random variable Y with Lévy measure sv,(dx). Thus Y; weakly converges
to Y. The desired result (2.I)) follows immediately from [35, Theorem 8.7 (1)]. O

It is well known (see [7, Theorem 1.5.6] for instance) that, for any ¢ > 0, there exists

a. > 0 such that for any y > a. and = > «a.,

% < (1 — E)_l maX{(y/:L')E’ (y/x)—e} (23)

Lemma 2.2 There exists cg > 0 such that for any s > 0 and x > 2 + 2aq5,
Gs(x) :=P(|&]| > ) < cpsz™*L(x).

Proof: By [23] (3.3.1)], we have that, for any z > 2,

221

Pllg >a) <5 [ (=)

_2:071

<t / ) o= s / l(6/)]] a8,

2 2x—1

where in the last equality, we use the symmetry of ||[¢)(6)||. By (H2), it is clear that there
exists ¢; > 0 such that
[0 < 6L, 0] < 1.

Thus, for z > 2 4 2ag 5, using (Z3]) with € = 0.5, we get that
2 2
P& > 7) < cysa / 0°L(x/0) A0 < 2¢52~L(x) / 6612 + 6V/2) d.
0 0

The proof is now complete. O



Remark 2.3 It follows from Lemma[21 that

Y 1T Qe
Jim *P(jg.| = by) = 2L (24

which implies that

P(l&s| = x)

~ DT st “L(x), x— o0. (2.5)
a

Now we recall the many-to-one formula which is useful in computing expectations. Here
we only list some special cases which will be used in our paper. See [25, Theorem 8.5] for
general cases.

Lemma 2.4 (Many-to-one formula) Let {n;} be a Poisson process with parameter [ on
some probability space (0, G, P). Then for any g € B, (R),

E <Z g<n§>) — B (g(ny).,

vELt

and for any 0 < s < t,

E (Z 1vat—S> = €AtP (nt — Nt_g = O) = eAte_ﬁs.

veELy

2.2 Proof of the Theorem

Recall that, on some extension (2, G, P) of the probability space on which the branching Lévy
process is defined, given W, > ;0c; is a Poisson random measure with intensity JWov,(dz),
{T},j > 1} is a sequence of i.i.d. random variables with common law

P(T; =k) = 19—1/ e NP(Z, = k)dr, k>1,
0
where ¥ = fooo e MP(Z, > 0)dr, and Zj d.; and {Tj,j > 1} are independent.

Lemma 2.5 Let Noo = 3, Tj0.,. Then, Now € M(Ryg) and the Laplace transform of Ny, is
given by

E(e—Noo(g)) —F <exp {—W/ e—Ar/ E(1 — 6—ng(x))va(dx) dr}) , g€ Cj(ﬁg).
0 Ro

Proof: First note that for any a > 0, 9Wu,([—00, —a] U [a,o0]) < oco. Thus, given W,
i Lie;jza 18 Poisson distributed with parameter JWwv,([—o0, —a] U [a, 00]), which implies
that >, 1jc;j>a < 00, a.s. Thus by the definition of N,

P(Ny([—00, —a] U [a,o0]) < 00) = P (Z Liej[za < oo) =1

9



So Ny € M(Ry). Note that
b(0) = F (D) =91 e / eNP(Z, = k) dr
0

k>1
o0

= 19_1/ e VE (6_92*, Ly > 0) dr

Thus, for any g € CF(Ry),

E(eN=W) = B (e XTo)) = (H ¢(9(€j))>

o (e—ﬂw Jog (1=0(g(@))va (dx))

E <exp {—W/Ooo e /RO E(1 — e % 9@y, (dx) dr}) .

The proof is now complete. O

To prove Theorem [[2] we use the idea of “one large jump”, which has been used in [22]
and [8, 9] for branching random walks. “One large jump” means that with large probability,
for all v € £;, at most one of the random variables {|X,.| : v € I,} is bigger than h,0/t
(@ > 0). Thus to investigate the limit property of N, defined by (L), we will consider

another point process: N
RSP DI

vEL uEl,

Proposition 2.6 Under P, ast — oo,
N S N

The proof of this proposition is postponed to the next subsection. The following lemma
formalizes the well-known one large jump principle (see, e.g., Steps 3 and 4 in Section 2 of
[22]) at the level of point processes. Because of Lemma 2.7 below, it is enough to investigate
the weak convergence of ./’\7;5, which is much easier compared to that of N,.

Lemma 2.7 Assume g € C(Ry). For any € > 0,
lim B (INi(g) ~ Ai(g)| > €) = 0.

Proof: Since g € CF(Ry), we have Supp(g) C {z : |z| > &} for some § > 0 .
Step 1: For any 6 > 0, let A;(6) denote the event that for all v € £, at most one of the
random variables {| X, | : uw € I,} is bigger than h,0/t. We claim that

P(A,(6)¢) — 0. (2.6)

10



Note that

P (A(0)1F) < 3P <Z L{1Xual>hi0/t} 2 2|]:T) (2.7)
veLy uely,
By Lemma 22l and (2Z3]) with € = 0.5, we have that for h,0/t > 2 4 2a95 and h; > ag s,

< 2c0f "t b, O‘L(ht)[(ﬁ/t)l/2 +(0/t)7V% .= p,. (2.8)

P (|Xos| > MO/t FF) =P (1] > hif/t) amrs < coTushi 1207 L(h,0)1)

Recall that the number of elements in I, is n? 4+ 1. Since conditioned on F', {X,,u € I,}
are independent, by (2.8]), we get that

ny +1\
(o) < (7 Y- (1)

uely,
f 1

ny —1
<P Z nt—|—1<tm )p;n

m=

= ;’(nt + 1)1+ p)"
Thus by (27) and the many-to-one formula (Lemma [Z7]), we get that
P(A:(0)°) = E (P(A:(0)F))) < eMDIE (ne(ne + 1) (1 +p)™ ")
= NP (28 + (14 p)B%)e™, (2.9)

where n; is a Poisson process with parameter § on some probability space (€2, G, P). Since
eMh;*L(hy) — 1, ([Z8) follows from (28] and ([Z9) immediately.

Step 2: Let o > f+ 1 to be chosen later. Let B;(p) be the event that for all v € L,
ny < pt. Using the many-to-one formula, we have that

P(Bt( ) < E Z 1n >gt = 6 P(nt > Qt) < €>\t inf e” TQtE( Tnt)

r>0
veELy
. T_ — —
= M 11qge((e Dp=ro)t _ At ,—(o(log o=log f)—o+B)t
>

Choose o large enough so that o(log o —log ) — o+ 8 > A, then
Jim B(Bi (o)) = 0.

Step 3: Since g € CF(Ry), ¢ is uniformly continuous, that is for any a > 0, there exists
n > 0 such that |g(z1) — g(2z2)| < a whenever |x; — xo| < 7.

Now consider # small enough such that of < n A (§/2). Let v' € I, be such that
| Xy ¢| = maxyer, {| Xus|}. We note that, on the event A,(0), | X, < 0hy/t < h6/2 for any
uwe l,\ {v'} and t > 1, and thus g(X,./h:) = 0, which implies that

Z Z ut/ht = Z g(Xv’,t/ht)-

vEL uEl, veLy
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Thus it follows that, on the event A,(6),

Ni(g) = Na@)l = | 3 [9(/he) = 9(Xova/ )]

vELt

(2.10)

Since § = ), Xuy, on the event Ay(6) N By(g), we have that

W6y — Xl =t | ) Xug| <07y < 0 <A (5/2).
uel,\{v'}

Note that if | X, ¢/hi| < /2, then [&|/hy < §, which implies that (&} /h) — (X +/hi) = 0.
Thus we get that
19(&/he) — 9(Xor 2/ Be)| = |9(& /) — 9(Xor /1) | Lqix,, o2y < algx,, shisj2y- (2.11)
It follows from (ZI0) and (Z.I1]) that, on the event A;(0) N By(p),
Ni(g) — Nl(gﬂ <a Z Lix, J>ho/2y < @ Z Z 11X e >hed/2}

veLy vEL uEl,

— aN; {[—00, —6/2) U (§/2, 0]} .
Let f € CH(Ry) satisfy f(z) =1, for |z| > §/2. Then
Ni(g) = Ni(g)| < aN(f)).

Combining the three steps above, we get that

limsup® (Wi(9) ~ Ni(9)] > )

t—o00

< limsup P (4,(0)°) + P (By(0)°) + P (/\N/t(h) > a_le>

t—o00

= limsup P (X/;(f) > a_le> =P (Nu(f)>a'e),

t—o00

where the final equality follows from Proposition (the proof of Proposition does not

use the result in this lemma). Then letting a — 0, we get the desired result. O
Proof of Theorem [1.2k Using Lemma 2.5 Proposition 2.0l and Lemma 2.7] the results
of Theorem follow immediately. O

2.3 Proof of Proposition

To prove the weak convergence of /\7t, we first cut the tree at time ¢t — s. We divide the
particles born before time t into two parts: the particles born before time ¢t — s and after

t — 5. Define B
-/V‘s,t = Z Z 6h;1Xu,t'

VELE UE L by >t—s
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Lemma 2.8 For any e >0 and g € CH(Ry),

lim lim sup P (|N}(g) — /\~/.St(g)| > e) =0.

5—00 {00

Proof: Since g € CF(Ry), We have Supp(g) C { : |z| > 6} for some § >0 . N
Let J,; be the event that for all u with b, < t—s, | X, < hd/2. On Jey, Ni(9)—Nsi(g) =
0, thus we only need to show that

lim limsup P(Jg,) = 0. (2.12)

SO0t 300

Recall that G4(x) := P(|¢s] > z). By Lemma 2:2] we have that, for ¢ large enough so that
ht5/2 2 2 + 2(1,0,5,

P(Jsct> =1- P(']st) =1-E ( H (1 - GTu,t(hté/z)))

by, <t—s

<B( Y Gu.(hif2))

by, <t—s

< coh;“(d/Q)‘aL(hté/Q)E( 3 Tuvt). (2.13)

u:by <t—s

In the first inequality above, we used the inequality 1 —[]", (1 —a;)) < > 2, @; € (0,1).
By the definition of 7,4,

t
Z Tu,t = Z /Ol(bu,gu)(r)dr

u:by <t—s u:by <t—s
t—s +
= / Z 1(bu70u)(r> dr + / Z lbu<t—s,cru>7" dr-
0 m t—s

For the first part, noting that r € (b,, 0,) is equivalent to u € L,., we get

t—s t—s s
E/ Y Lpuon(r)dr= E/ Zydr = / N dr = AN (M) — 1),
0 u 0 0

For the second part, using the many-to-one formula, we have that

ueLly
Thus,
t t e—ﬁs o e—)\s
K / > Lyctmsousrdr = / e ) dp = N —————
t—s ., t—s A— ﬁ
Combining all the above, we get that
6—53 _ e—)\s
P(JS;) < co(6/2) e hy *L(ld/2) (A + W> (2.14)

13



Now first letting ¢t — oo, and then s — oo, we get (ZI2) immediately. The proof is now
complete. O

Now we consider the weak convergence of /Vs,t. Forw e L, g, let LV :={veL,:weEl}
be the set of all the offspring of w at time ¢t. We rewrite ./\Nfs,t as follows:

Nu= > MY, (2.15)

weﬁt K]

w . .
where M, := Zveﬁgj D el busts Op-1x,, are Lid. with common law

Mui= ) D i, = D Z0ix,

veLs uel,\{o} u€Ds

where Z¥ is the number of the offspring of u at time s, and Dy = {u : b, < s} \ {o}.

Lemma 2.9 For any j = 1,---,n, let v;(t) be a (0, 1]-valued function on (0,00). Suppose
a is a positive function with lim, o a; = 0o such that lim,_,o a;(1 —7;(t)) — ¢; < co. Then

tli)rgoat (1 - 1_[1fyj(t)> — Zlcj.
i= =

Proof: Note that

1—H%(t):ZHvk (1 —().

Since 7;(t) — 1, thus we get that, as ¢t — oo,

at (1 - ij@)) =3 [Tt —20) = e

j=1 k=1
O
Proof of Proposition 2.6t By Lemma 2.8 we only need to consider the convergence

of N.;. Assume that Supp(g) C {x : || > 6} for some § > 0. Using the Markov property
and the decomposition of N, in (2.I5]), we have that
E(e @) = B ([(e e @)]#-) (2.16)

We claim that
: _ —Ms,t(g)
thm (1—E(e ) e /

By the definition of Mj,, we have that

(1 _ E(e—Ms,t(g)|f;]r)) M Mt (1 _ H E(e—zgg(hglxu,s) ]_—;Jr)) .
ueDg

> sl —e % 1‘1 Ve (dz). (2.17)

ueDg
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Note that, given FT, X, 2 &r...- Thus by Lemma Tl (with s replaced by 7, and g replaced
by 1 — e=%:9)) we get that

M (1 — Efe~Z¥o(h Xu) f}]) T / 1 — e~ %9y, (dx),
R,

0

as t — o0o. Hence it follows from Lemma that

lim e* (1 — E[e M*@|FT]) = / D sl = e H IOy (da). (2.18)
R

t—o00

Moreover, for h;d > 2 + 2ay 5,

N (1 —Ele™9|FT]) < B (Myu(9)|FY) < lgllwe™ D 220G, (hed)

u€Dg

< collglloed ™M hy “L(1d) Y | s Z

ueDg

<C DY msZl (2.19)

ueDg

where C'is a constant not depending on t. The third inequality follows from Lemma 2] and
the final inequality from the fact e*h; *L(h,0) — 1. Since Ty = [; 1,0, (r) dr, we have

that
E(ZTWZQ —/ (Z 1(py o) (7 )dr

uEDs uEDs
:/ E Z ZY | dr < / E(Z,) dr = se™ < oo.
0 ueL,—{o} 0

Thus by ([218)), (Z.19) and the dominated convergence theorem, the claim (2I7) holds.
By ([2I7) and the fact that lim;_,o e MZ;_, = e W, we have

lim [E (e_MSvt(g))}ZH = exp —e‘ASW/ E[ Z Tu,s(1 — e_Zgg(w))}va(dx) .
fro0 RO UEDS

Thus by (2I6) and the bounded convergence theorem, we get that
lim E (e‘ﬁsvt(g)) =E [ exp —e_’\SW/ E[ Z Tu,s(1 — e_Zgg(x))] vo(dzx) ¢ ] .
fmroo Ro ueDg

By the definition of 7, s, we have that

Z Tus (1 — e 259y Z / 1y (1) dr (1 — e~ 2400 = / Z (1 — e 249@) gy,
0

15



Using the Markov property, and the branching property, Z¥, u € L, are i.i.d. with the same
distribution as Z,_,, and independent with £,. Thus,

E Z Tu,s (1 _ e—Z;‘g(m)) — / E (ZT - 1{0657-}) E (1 . e—ZS,T.g(m)) dr
0

u€Dg
= / (e —e ) E (1 — e %) dr, (2.20)
0
which implies that
e ME Z Tu,s (1 - e‘Zgg(w)) — / e VE (1 - e_ZTg(m)) dr,
u€Dg 0

and

6_>\5E Z Tuss (1 o e—Z;‘g(x)) < / e—)\rE (1 . e—ng(I)) dr < )\_11{\x\>6}'

ueDg 0

The final inequality follows from the fact that Supp(g) C {z : x| > 0}. Since va(1{z>sy) <
00, using the dominated convergence theorem we get that

lim e_’\s/ E[ Z Tu,s(1 — e_Zgg(w))] Vo (dzx) = / e_’\T/ E(1- e_ZTg(m)) Vo (dx) dr,
5—00 Ro weD, 0 Ro

which implies that

sli_{glo tlg?oE (e_NS’f(g)> =E <exp {—W/O e /RO E(1- e_ZTg(m)) Vo (dx) dr}) :

By Lemmas 2.8 and 2.5, we get that

t—o00

lim E (e‘ﬁt(g)) =F (e‘Nw(g)) .

The proof is now complete. O

3 Joint convergence of the order statistics

Proof of Corollary 1.4k First, we will show that My, > 0, a.s.. Recall that, given W,
_; 0e; is a Poisson random measure with intensity dWv,. Since v4(0, 00) = 0o, we have that
P (Z] Lo,c)(e;) = oo) = 1, which implies that P* (N (0,00) = c0) = 1. Thus M) > 0,
Pr-as.

Note that, for any z € Ry, Noo({z}) = 0, a.s.. Since {M;;, < bz} = {Ni(z,00) <
k — 1} for any x > 0, by Remark with By = (2, 00), we have that for any n > 1 and
L1, Lo, T3, , Ly > 0,

P(My < hyxy, Mo < hywo, My g < hyxs, -+, My, < hyxy,)

16



=P (N;((x,00) <k—1,k=1,---,n)
—PNyo((zp,0)) <k—1,k=1,--- n)
=P(Mquy <o, Mgy < a9, Mgy < xs,-+- , My < x,) ast — o0.

Thus, as t — o0,

P* (M1 < hyxy, Mo < hyao, -+ -y My < hyay,)
:P(S)_l [P(Mt’k S htflfk, k= 1, cee ,n) - P(Mt’k S htflfk, k= 1, e, n, SC)]
—P(S) ' P(Myy <z, k=1, ,n) — P(8)]

:P*(M(k) S:L’k,k‘:L--- ,n), (31)

where in the final equality, we used the fact that on the event of extinction, M) = —oo,
kE>1.

Now we consider the case z1,---,z, € R with z; < 0 for some ¢, and z; > 0, j # i. By

B0, we get that, for any € > 0

limsup P* (M1 < hywq, Myo < hyxo, -+, My, < hyxy)

t—o0

< lim P*(M,; < hyxy,j # i, M;,; < he)

t—o00
:P*(M(j) <z, #1, M(Z-) < 6).
The right hand side of the display above tends to 0 as € — 0 since M) > 0 a.s.. Thus

t—o00

Similarly, we can get ([3.2)) holds for any zq,--- ,x, € R.
The proof is now complete. o

4 Examples and an extension
In this section, we first give more examples satisfying (H2).

Lemma 4.1 Assume that L* is a positive function on (0,00) slowly varying at oo such that
le(w) = Supyeo, YL (y) < oo for any € > 0 and x > 0. Then, for any € > 0, there exist
ce, Cc > 0 such that for any y > 0 and a > c,,

L*(ay)
L*(a)

< Culy +y7). (4.1)

Proof: By [7, Theorem 1.5.6], for any € > 0, there exists ¢, > 0 such that for any a > ¢,
and y > a"'c,,

< (1 —e) "max{y,y~}. (4.2)
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Thus for any a > ¢,

L*(ce) -1
< (1- )€, 4.3
e < (1= 9 a/e) (4.3
Hence for a > ¢, and 0 < y < a”'c., we have that
L*(ay) _ le(ee) _
<l(c. /L*(a) < ‘. 4.4
A <) L) < e (1.4)
Combining (4.2)) and (4.4]), there exists C. > 0 such that for any y > 0 and a > ¢,
L*(ay) _
< CE € €y
Tra) = W +y )
O

Example 4.2 Let

n(dy) = ez L (2) 10,00y (2)dw + colz| T L (|2]) 1 (_oo0y (2)de,
where a € (0,2),¢1,¢9 >0, ¢1+c2 > 0 and L* is a positive function on (0,00) slowly varying
at 0o such that sup,e o,y L*(y) < oo for any € >0 and x > 0.
(1) For a € (0,1), assume that the Lévy exponent of & has the following form:

V(0) = iab — b*0* + / (e — 1)n(dy),

where a € R, b > 0. Using Lemma[f. 1 with € € (0, (1—a)Aa), we have that, by the dominated
convergence theorem, as 6 — 04,

/0 (@™~ Dn(dy) = 6° / T - Dyt (0 y) dy

~ 7L (07 / (€% — 1)y~ dy = —al(1 — a)e" /202 L* (971,
0

and

/_ (€ — Dyn(dy) = 6° / Tl 1)y (07 y) dy

~ 9“L*(9_1)/ (e — 1)y '"dy = —al'(1 — a)e™/20°L*(p71).
0
Thus as 6 — 0,

¢(9) ~ —af‘(l . a)(e—iwa/2cl + €iﬂa/262)9aL*(9_1).

(2) For a € (1,2), assume that the Lévy exponent of & has the following form:
Y(0) = —b*0* + / (e — 1 —ify)n(dy),

18



where b > 0. Using Lemmal[f. 1 with € € (0, (2—a) A (a—1)), we have that, by the dominated
convergence theorem, as 6 — 0.,

/ (e — 1 — ify)n(dy) = 6° / (¥ —1—iy)y "L (07 y) dy
0 0

~ 0L (07 / (e — 1 +iy)y " dy
0
= —al'(1 —a)e ™29 (p7Y),

and

/_ (e — 1 —ify)n(dy) = 6° / OO( W1 +iy)y L0 y) dy

[e.e]

~ 0“L*(6 /OO — 14ay)y " dy
=—al'(1 a)oe”O‘/QHQL*( h.
Thus as 6 — 0,
() ~ —al'(1 — a)(e ™ 2¢;) 4 ™/ 2e)) 02 L7 (071).

(8) For a = 1, assume that ¢c; = co and the Lévy exponent of & has the following form:

V(0) = iah — b?0* + /(ewy — 1 — byl <1)n(dy),

where a € R, b > 0. Since ¢; = c9, we have

/ (e —1— iyl <1)n(dy) = —2019/ (1 — cosy)y >L*(07'y) dy.
B 0

[e.9]

Using Lemma[{.1 with € € (0,1), we have that, by the dominated convergence theorem,

lim L*(0~)~! / (1 — cosy)y L* (0 'y) dy = / (1 — cosy)y 2 dy = /2,
0 0

00
which implies that as @ — 0,
V(0) ~ —(e1m —ia)L*(07).
O

Remark 4.3 (An extension) Checking the proof of Theorem[L2, we see that Theorem[I.2
holds for more general branching Lévy processes with spatial motions satisfying the following
assumptions:

(A1) There exist a non-increasing function hy with hy T oo and a measure w(dz) €
M(Ry) such that

Jim Blg(0 ') = s [ gla)m(da), g€ C )
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(A2) eMp? — 0, where p, == sup,, P(|&] > 0/1).
(A3) For any 6 > 0,

supsup s 'eMP(|&| > hif) < .
t>1 s<t

First, (H2) implies (A1)-(A3). Next we explain that Theorem L2 holds under Assump-
tions (A1)-(A3). Checking the proof of Lemma [2.7, we see that Lemma [2.7 holds under
conditions (A1)-(A3). In fact, we may replace Lemma 22 by (A2) to get (2.0) (see (2.8

and (29)). For the proof of Lemmal28, using (A3), we get that

P(JS,) < Ce™E Y 7o,

by <t—s

which says that 2I3) holds. Thus 2I2) holds using the same arguments in Lemma [Z.8
Replacing Lemmal21] by (A1), we see that Proposition 2.8 holds with v, replaced by w(dx).

So under (A1)-(A3), Theorem[L.2 holds with v, replaced by w(dx).

An easy example which satisfies (A1)-(A8), but does not satisfy (H2) is the non-symmetric

1-stable process. Assume & is a non-symmetric 1-stable process with Lévy measure

n(dz) = 127 1o 00)(2)dz + o] 2| *1(_ 00 0)(7)d,

where c1,c0 >0, ¢y + ¢ > 0, and ¢y # co. The Lévy exponent of € is given by, for 8 >0

P(0) = —g(cl + )0 —i(cy — c2)0log O + ia(cy — c2)0 ~ —i(cy — c2)01og b,

0 — 0+,

where a is constant. Thus ¢, = i(c; — ¢3). So ¥(0) does not satisfy (H2) since R(c,) = 0.

By [6, Section 1.5, Ezercise 1], we have that
1 v
;P(ft €)= n(dz), ast—0.

Since e NE, L Esort + (c1 — co)sAte™ for s, t > 0, we have that
MP(eME, € ) B sn(dx), ast — oo.
So (A1) holds with hy = e. We claim that, for any x >0 and s > 0,
P(|&| > ) < c(sz™' + s*272 + s*27 % (log 2)?),

where ¢ is a constant. Thus it is easy to prove that (A2) and (A3) hold.
In fact, for any x >0

T 21

Plle >0 <5 [

2x—1

Note that
1 —R(eVO) =1 — RO cos[sS(14(0))]

20

2z~ 1
(1—ev®)dp = x/ (1 —R(e*®)) db.
0

(4.5)



_ 1 — WO 4 o TO) (1 _ cos[sS(1b(6))))
< —sR((0)) + 2 [S((9))]?

_ 2.2 22
= —(¢ :
;T(c + )80 + (¢ — c2)*s*(a — log 0)°60

Thus we have that

P(|&] > 2) < mler + co)sa™ + (e — ¢2) / (a —log 0 + log 2)%6* d@
0

2

<7(er+c)sz™t +2(c) — e)?sa? / a —log6)* + (log x)*]6* d@
0

< c(sot + 2272 + s’z % (log x)?),

which proves the claim (A.5l).

5 Front position of Fisher-KPP equation

Recall that uy(t,z) = Es, (@) =E <e_ Lvesy g(gzj”)). Then 1 —uy(t, x) is a mild solution
to (L4). For 8 € (0,1), the level set {z € R: 1—uy(t,x) = 0} is also called the front of 1 —u,.
The evolution of the front of 1 — u, as time goes to oo is of considerable interest. Using
analytic method, [16, Theorem 1.5] proved that if the density of £ is comparable to that of
a symmetric a-stable process, the front position is exponential in time, which is in contrast
with branching Brownian motion where it is linear in time. In this paper, we provide a
probabilistic proof of [I6, Theorem 1.5] using Corollary [T and also partially generalize it.

Proposition 5.1 (1) Assume that a, satisfies a;/hy — o0 as t — oo, and that g is a
non-negative function satisfying

M osup g(z) =0, ast— oo (5.1)
x<—a/2
Then
lim sup (1 —wu,(t,z)) = 0.
=00 p<—ay

(2) Assume that ¢; satisfies ¢;/hy — 0 as t — oo, and that g is a non-negative function
satisfying ap := liminf, , g(x) > 0. Then

lim sup |ug(t,z) —P(S%)] =0

t—o0 x>—ct

Proof: (1) Let g*(x) = sup,<_, g(y). Note that, for x < —a,

1 —uy(t,z) =E <1 —e Zveﬁtg(ft“rx))

<P(R, > ar/2) + E (1 e Tuee, 906+ B o at/2)
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<P (R, > ap/2) + E(1 — e79 (@/22)
<P(Ry > a;/2) + 6)‘tg*(at/2)a (5.2)

where in the second inequality, we use the fact that, on the event {R;, < a;/2}, & + 2 <
ai/2 — a; = —a;/2 and g(&¥ + x) < g*(a;/2). By the assumption (&), e*g*(a;/2) — 0. By
Corollary [LH one has that P*(R; > a;/2) — 0. Thus

P(R; > a;/2) < P (Ry > a;/2)P(S) + P(|| X¢|| > 0,8°) — 0,
as t — oo. Thus by (5.2)),
lim sup (1 —wu,(t,z)) = 0.

t—o00 r<—ay

(2) Note that
lug(t,z) —P(S°)| <E <e_ 2vec, 9(E ), 8) +E <1 — e~ 2ver, IEFT), SC) : (5.3)
Noticing that on the event Z; =0, 1 —e” Soer 9EFT) — 0 we get that , for any z € R
E (1 ¢ Toer, 906+, 30) <P(Z, > 0,8 — 0,

as t — 00. Let g,(x) = inf,>, g(y). Since ¢;/hy — 0, for any € > 0, there exists t. > 0 such
that ¢; < eh; for t > t.. For any t > t. and x > —c¢;, we have that

E <€— Zvegtg(ﬁfﬂn); S) <E <e—g*(0t)zvect 15g>2ct;8>
<E <e—g*(0t)zuegt 1§g>2eht;8>
— E (e_g*(cf)-/\/t(zevoo); 8) .

Thus
limsup sup |uy(t,z) —P(S°)| < E (e‘“ON""(ze’o"),S) . (5.4)

t—oo  x>—ct

Since on the event S, ¥Ww, (0, 00) = oo, thus Ny (0,00) = oo. Now letting ¢ — 0 in (5.4)),
we get the desired result. O

Remark 5.2 Proposition [21 is a slight generalization of [16, Theorem 1.5]. Assume that
po = 0, which ensures that P(S¢) = 0. If L = 1, then hy = eM/®, and we have the following
results:

(1) Let g be a non-negative measurable function satisfying
g(x) < Clz|™™, =z <0. (5.5)
Then for any v > A\«
Mgt (—e™/2) < C2%eMe™ " = 0.
Thus by Proposition [21], we have that

lim sup (1 —w,(t,z)) =0.

t—o0 :ES—@'Vt
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(2) Assume that g is a non-negative function satisfying ag := liminf, ., g(z) > 0. For
any v < A a, by Proposition [, we have that

lim sup wuy(t,z) = 0.
t—o0 z>—ert

Note that in the notation of [16], o** = N/ «, and our condition (5.0) is equivalent to
1—e9@ < COlz|™, 2 <0, (5.6)

for some constant C. If g is nondecreasing, it is clear that liminf, . g(z) > 0. Thus
when the Lévy process & satisfies (H2) with L = 1, we can get that the conclusion of [10,
Theorem 1.5] holds from Proposition[51. Note that the independent sum of Brownian motion
and a symmetric a-stable process satisfies (H2) with L = 1, but its transition density is
not comparable with that of the symmetric a-stable process, see [21, [38]. Note also that
the independent sum of a symmetric a-stable process and a symmetric B-stable process,
0 < a<f <2, also satisfies (H2) with L = 1, but its transition density is not comparable
with that of the symmetric a-stable process, see [20]. Note that in this paper we do not need
to assume that g is nondecreasing. Thus Proposition [51] partially generalizes [16, Theorem
1.5].
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