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Abstract. We first study the convergence of solutions of a system of F-KPP equations related
to irreducible multi-type branching Brownian motions with Heaviside-type initial conditions to
traveling wave solutions. Then we apply this convergence result to prove that the extremal process
of an irreducible multi-type branching Brownian motion converges weakly to a cluster point process.

1. Introduction and notation

1.1. Background. A binary branching Brownian motion (BBM) is a continuous-time Markov process
which can be defined as follows. Initially, there is a particle at the origin and the particle moves
according to a standard Brownian motion. After an exponential time with parameter 1, this particle
dies and splits into 2 particles. The offspring move independently according to standard Brownian
motion from the place they are born and obey the same branching mechanism as their parent. We
denote the law of this branching Brownian motion by P.

The binary branching Brownian motion is related to the F-KPP equation. Let M; be the right-
most position among all the particles alive at time ¢. McKean (1975) proved that the function

u(t,z) =P(M; <z), t>0,z€R,
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solves the F-KPP equation

1
U = ium—i-u2 —u (1.1)

with the Heaviside initial condition u(0,z) = 1jp o) (). Equation (1.1) was first studied by Fisher
(1937) and Kolmogorov et al. (1937). Later, Bramson (1983, Theorems A, B and Example 2) studied
the asymptotic behaviors of solutions of (1.1) for a class of more general initial conditions. Let u
be a solution of (1.1) and v = 1 — u. Bramson proved that, under some conditions on v(0, z),

3
v <t, V2t — WG logt + :U) — 1 —w(z), uniformly in z as t — oo,

here w is the unique solution (up to translation) of

1
5w"+\/§w'—|—w2—w20

and w is called a traveling wave solution. In the Heaviside case, a probabilistic representation of the
limit w(z) was given by Lalley and Sellke (1987). For different proofs of this result, see Bramson
et al. (2016); Roberts (2013).

The extremal point process of branching Brownian motion has also been widely studied. Aidékon
et al. (2013) and Arguin et al. (2013) studied this extremal point process using different methods.
Suppose that the set of the positions of all particles alive at time ¢ is given by {X,(t) : u € Z(t)},
where Z(t) is the set of particles alive at time ¢. It is known that

D=3 (\@t—XU(t)> VX2 4>

uE Lt

is a martingale and has (non-negative) limit Dy, as t — co. As t — oo, the extremal point process

0 s
uezZ%t) Xu(t)—(\/it—mlogt>
converges in distribution to a decorated Poisson point process DPPP(CDOOe*‘/E’”dx,DO), in the
sense of vague topology, where Dy is a point process. More precisely, this limit has the following
description: Given Dy, let P = >, 0, be a Poisson point process with intensity CDOOe*‘/E’”dx
and let D*) = >on d \v) be iid copies of Dy, then

d
Z 5Xu(t)—(\@t—%logt> = kz: 5bk+A£f>

in the sense of vague topology. For the case of branching random walks, see Aidékon (2013); Hu
and Shi (2009); Madaule (2017). For the case of d-dimensional branching Brownian motions, see
Berestycki et al. (2024). For the case of super-Brownian motions, see Ren et al. (2021) and Ren
et al. (2024).

In this paper, we consider (irreducible) multit-ype branching Brownian motions. Let S =
{1,...,d} be the set of all types and i — {pk(i) : k = (ki,...,kq)T € N9} be the offspring dis-
tribution of type ¢ particles, here N = {0,1,...}. Let a; > 0,7 € S, be the branching rate of type
1 particles. A multi-type branching Brownian motion can be defined as follows: Initially, there
is a particle of type i at site z and it moves according a standard Brownian motion. After an
exponential time with parameter a;, it dies and splits into k; offspring of type 1, ko offspring of
type 2, ..., kq offspring of type d with probability py(i), where k = (ky,...,kq)T. The offspring
evolve independently, each moves according to a standard Brownian motion and each type j particle
reproduces with law {pk(j) : k € N¢} after an exponential distributed lifetime with parameter a;.
This procedure goes on. We denote the law of this process by P(, ;). We use E(, ;) to denote the
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expectation with respect to P, ;). The multi-type branching Brownian motion is related to the
following system of F-KPP equations:

W= e+ A () ), (12
where
u(t,z) == (u1(t, ), ...,ud(t,x))T, A :=diag{ay, ...,aq},
d
Y(u) := (P1(u), ..., vg())’,  i(u) = Z i (4) H“fj
keNd j=1
Let

pig = Y peli)kj < oo, i,j €S,
keNd
be the mean number of type j offspring given birth by a type ¢ particle. Assume that the mean
matrix M = (y; ;)i jes is irreducible, i.e., there exists no permutation matrix S such that S~19S
is block triangular. We use N;(t) to denote the number of type i particles alive at time t. Assume
that 1,5 (t) = Ko (N;(t)) < oo. Then M(¢) := (pi,;(1)); ;eq satisties (see the paragraph below Ren
and Yang (2014, (2)))

00 An B '
gﬁ(t) = Z Ft y with A := (aivj)i,jes and a; 5 = Qj (Ni,j - 51'7]') . (13)
n=0

For any u = (u1,---ug)” and v = (v1,---vg)T, define (u,v) := Zle u;v;. According to the Perron-
Frobenius theorem, the matrix A admits a unique simple eigenvalue A\* > 0, which is larger than
the real part of any other eigenvalue, such that the associated left eigenvector g = (g1, ..., 94)” and
right eigenvector h = (hq, ..., hg)? can be chosen to have all positive coordinates. We normalize g
and h so that (g, h) = (g,1) = 1, where 1 = (1, ..., 1)T. We assume that po(i) = 0 for all i € S, here
0 := (0,..., O)T, so the system survives with probability 1. We further assume that the offspring
distribution pg(7) satisfies the following moment condition: there exists ag € (0, 1] such that

> (kT < oo, VijeES. (1.4)

keNd
Define

(V) = 1— (1 —v).
If u is a solution of (1.2) and v := 1 — u, then v satisfies
1 1
Vi = §Vmc+A(1_V_w(1_v)) = §Vxx+A(90(v)_v)' (1‘5)

Using the relationship between (1.2) and (1.5), by Ren and Yang (2014, Lemma 5)(or Champneys
et al. (1995, (1.36)) for two-type irreducible branching Brownian motion), if v solves (1.5), then for
alli € S;t >0,z € R, v;(t,x) has the following probabilistic representation

vilt, ) =1=Egy | [] (1000, Xu®) | - (1.6)

u€eZ(t)

Here Z(t) is the set of all the particles alive at time ¢t and for u € Z(t), I,,(t) is the type of u and
Xu(t) is the position of uw. For duality relations between general branching Markov process and
F-KPP equations, one can refer to Ikeda et al. (1968a,b, 1969).

In addition, we assume that for all i € S,

Yi(u) = i () + (1 — pi) el (), (1.7)
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where p; € [0,1), ¥F(u) = Y52 gl (i)ul is a probability generating function for local branching,

and
. k;
rw= Y @]
keNd:k; =0 JF#i
a probability generating function for non-local branching. This means that for all i € S, on each

branching event for a particle with type i, there is at most two cases among all the children— either
all the children are type i or all the children are not type i. Also, by (1.7), it holds that

k(i) = Piqlé(i)l{kpo,kj:o for all j=i} + (1 - Pi)QﬁVL(i)l{kizop k € Nd7 i€S.

This is a technical assumption that will be used in proving the Feynman-Kac formula (and thus
following Bramson’s method). We believe that this assumption is not essential since this is the
only place where it is used. We mention in passing that the branching Brownian motion studied in
Champneys et al. (1995) satisfies condition (1.7).

Define
e Z hi) VR (Xu(s)+V2Ns) oS ) (1.8)
u€Z(s)
and
v ( Z hr,(s) ( (s) + 2)\*3) efm(x“(sHms), s>0. (1.9)
ueZ(s)

It is proved in Ren and Yang (2014) that {W 55=(s), s > 0} and {M 55=(s), s > 0} are martingales,
called the additive and derivative martingales of multit-ype branching Brownian motion, respec-
tively. Note that the assumption (1.4) implies that Y e pe(i)k;(log, k;)? < co. By Ren and
Yang (2014, Theorem 3),

lim W\/W( ) 0, ]P’(mji)—a.s. (1.10)

S§—00

According to Ren and Yang (2014, Lemma 10, Theorem 5), there is a nonnegative and non-
degenerate random variable M /55=(c0) such that

sli{go M\/W(S) = M\/W(OO), IP’(W)—as (111)

1.2. Main results. Our first main result is on the convergence of v to the traveling wave solution
for a class of initial value conditions. Our second main result is about the characterization of the
extremal process of multi-type branching Brownian motion.

For the initial value of v, we assume that there exist N7 < Ny and ig € S such that

vi(0,2) < 1_onp)(w), forallie S and v;(0,7) > 1o np)(T) (1.12)

Let m(t) := V2 \*t — \/W logt for t > 0.

Theorem 1.1. Suppose that v solves (1.5) with initial value satisfying (1.12), then it holds that for
any i € S and z € R,

im (1= w(t:m(t) + ) = B0 (exp { ~Cu(0)Mygre(oa)e ™V )

t—o00

where M s5=(00) is given in (1.11) and Cy(c0) is defined by

Cy( = lim \/7/ yeV2Ay Zg]vj r,y + V2 *r) | dy € (0, 00). (1.13)

r—00
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In the case of single-type branching Brownian motions, a formula similar to (1.13) for the constant
Cy(o0) can be found in Arguin et al. (2013, (3.3)), based on the analysis of the F-KPP equation
given in Bramson (1983). Let v;(0,2) = 1(_o 0)(®), then by (1.6) we have

u€Z(t)

where M; := max,ez () X, (t) and we used the symmetry of Brownian motion in the last equality.
Using this, we get the following corollary of Theorem 1.1:

Corollary 1.2. For anyi € S and x € R,
. —V2X\*z
tliglo Py (My <m(t) +z) = Eq (exp {—CooMm(oo)e }) ,

where

Cr = lim \/7/ eV Zgj (0.) (M > \/2)\*7“+y> dy. (1.14)

r—00

Corollary 1.2 says that My — m(t), under P(,i), converges to a random shift of the Gumbel
distribution (shifted by —Coo M 557(00)).
For j € S, define

Mtj = max  X,(t).
u€Z(t):Iy(t)=j

Fix iy € S. Taking v;, (0, 2) = 1(_s0,0)(®), v;(0,2) = 0 for j # 41, then by (1.6) we have

vi(t,z) =1 - Ky H (1 = 1{x, (u)<0})
wEZ(t), L (t) =i

— ) ; _ ' i1
= Pla) <u€Z(tI)I,lIIi1(t):i1 Xi(u) < 0> Po,) (Mt > w) :

Then we get the following corollary of Theorem 1.1:
Corollary 1.3. Fizi; € S. Foranyi € S and x € R,

lim P ;) (MtZl <mf(t) + x) =E,) (exp {_Cc(g)Mm(oo)e_ 2)\*90}) 7

t—o0

where
C) = lim \/7/ yeV X ZQJ (0.9) (M“ > ‘2)‘*T+y) dy € (0, 00).

Corollary 1.3 says that Mti1 — m(t), under P ;), converges to a random shift of the Gumbel
distribution (shifted by —C$) M Vo (00) ).
Theorem 1.4. Define

Z O(Xu(t)—Mi,Lu(t)), =0
ueZ(t)

Under P(q 4 ( ‘Mt > V2\* 4 z) (Dt, My — V2X\* — z) converges in distribution to some (D,Y) as

t — oo, where Y is an exponential random variable with parameter /2 *, D does not depend on
1€S and z € R, and D and Y are independent.
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Now we consider the point measure of the particles’ spatial positions, seen from m(t), and types.

Define
&= Z O (6) (1), Lu ()"
ueZ(t)

We call {&;,t > 0} the extremal point process of the multit-ype branching Brownian motion.

Let CH(R x S) be the set of all functions ¢ : R x S — R, such that for any j € S, ¢(-,5) is a
non-negative continuous function of compact support. The following result gives a description of
the limit £y, of & as t — oo.
Theorem 1.5. Given M s55(00), let P = ) cn0p, be a Poisson point process with intensity
CooM 5z(00) V2N e 2Vede, and let {DW) : k € N} be iid copies of D defined in Theorem 1./. If
D) .— Y oneN 5(&?,@&“)’ then for any i € S, under P, & converges in distribution to

d
oo = Zé(bk—kAg),c,(Lk)) ast — 00
k.n

For iy € S, define
&) = > S -m)

u€Z(t): Iy (t)=i1
As a consequence of Theorem 1.5, we have the following corollary:

Corollary 1.6. &:(i1) converges in distribution to

.\ d
Exclit) =) D 6, A ast— oo,

F e

where by, Agf) and q(bk) are defined in Theorem 1.).

Remark 1.7. Champneys et al. (1995) studied a two-type irreducible branching Brownian motion
where the diffusion coefficients can be different. They considered the F-KPP equations

8U1 o2 952
_ 01 9%u1 r1 2 0q1 _

88t =3 T(nt+oq) (n—l—@ql UL T g 2 u1> ’
U2 _ 03 9uy T2 2 b2

ot T2 007 (TQ T HQQ) ro+60g2 up + ro+0g2 ur —u2 ),

In this case, they proved that (see Champneys et al. (1995, (1.41))) when the speed c¢ is larger
than the minimal speed ¢(6)(which is equal to v/2\* in our model), under suitable initial condition
different from (1.12), 1 —v;(t,ct+x) ~ E(m)(e_wk(oo)) as t — oo, where A = A(c) is a deterministic
value. They also studied the convergence of the associated martingales (Champneys et al. (1995,
(1.39))), the existence and the uniqueness of the traveling wave solution (Champneys et al. (1995,
(1.30))) and the speed of the minimal position of branching Brownian motion(Champneys et al.
(1995, (1.44))).

These results are generalized in Ren and Yang (2014) although the diffusion coefficients of all
types are assumed to be 1. In this paper and for our model, Theorem 1.1 studies the convergence to
traveling wave solution where the speed c is equal to the minimal speed. We also study the extremal

process of multi-type branching Brownian motion, see Theorem 1.5.

Remark 1.8. The asymptotic behavior above for irreducible multi-type branching Brownian motions
is similar to the one obtained in Atdékon et al. (2013); Arguin et al. (2013) for single-type branching
Brownian motions. Belloum and Mallein (2021), Belloum (2022) and Ma and Ren (2023a,b) con-
sidered a 2-type reducible branching Brownian motion and their results are quite different. In their
model, particles of type 1 move as a Brownian motion with diffusion coefficient o2, reproduce with
branching rate 3 + a and offspring distribution {py(1)} satisfying p20)(1) = B%y,p(l’l)(l) = 233
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Particles of type 2 evolve as a standard branching Brownian motion with branching rate 1 and
binary branching. In the special case when 02 = 1, 8 = 1 and A\* = 1, their results show that the
corresponding front m(t) is v/2t — ﬁ log t, which is quite different from the irreducible case where

the corresponding front for \* = 1 is /2t — % logt.

1.3. A comparison to standard F-KPP equation. The goal of this paper is to study the asymptotic
behavior of extremal processes of irreducible multi-type branching Brownian motions following the
general strategy of Bramson (1983). Our results are similar to those for single-type branching
Brownian motions. However, to adapt Bramson’s idea to the multi-type case, there are quite a few
difficulties. For standard F-KPP equation (1.1), let v =1 — u. The idea in Bramson (1983) can be
roughly divided to two parts:

e First, by the Feynman-Kac formula, for 0 < r < t,

o(t, ) = E, (exp {/Ot (1—o(t—s,By)) ds} o(r, Bt_r)>
S i RN S -
~E, <eXp {/Ot (1—v*(t -1 — s, By)) ds} v (0, Bt_T)> , (1.15)

where v*(0, ) = v(r, )1 {z>_10gr} and 1 —v*(s, ) solves (1.1) with initial value 1—v*(0, z).
Note that the Feynman-Kac formula still holds in the non-local case, see Section 3. A
difficulty appears in the last comparability due to non-local branching. In fact, the last
comparability in (1.15) used the fact that f(v)/v = 1 — v is decreasing, which does not
always hold when f is a multi-variable concave function. This part is discussed in Lemma
5.2.

e Second, define a suitable event B,,,;4 as in (5.6) below. This event consists all trajectories B.
such that Bs > n,(t — s) for all s € [0, — 7], where n;,(-) is defined as in (5.7). Also, for
each y > —logr, under P, (:|B;—, = y), on the event B,,;q, v*(t —r — s, By) is very close to
0, while on (Byiq)¢, v*(t —r — s, By) is far away to 0. Then by properties of Brownian bridge
and Kolmogorov et al’s convergence theorem (see Kolmogorov et al. (1937)) for v(¢, x) with

v(0,7) = 1(_ 0)(x), it holds that

0o o—(z=y)?/(2(t-r))

v(t,x) ~et™" v*(0,9)Ez (Bmid|Bi—r = y) d
e [ e—(z=1)?/(2(t=r))

~e

- \/m ’U(T‘, y)E:E (Bmid‘Bth = ?J) dy (116)
Related to the above, there are two main challenges in the multi-type case. First, for multi-
type branching Brownian motions, counterpart to Kolmogorov et al’s convergence theorem
is not yet available. So we need to give sharp estimates for v;(t,z) with Heaviside initial
condition, and this is done in Section 4 using the moment method. Another difficulty is
that for the nonlinear term f(v) = v — v? in the standard F-KPP equation, the fact that
f/(04+) > 0 is crucial to obtain the first equality in (1.16), while for multi-variable function
f(v), it does not necessarily hold that infi<;<40f(0)/0v; > 0. We deal with this difficulty
in Lemma 7.1 and Lemma 7.2.

We should mention that the assumption that the diffusion coefficients for all types are the same
is very important for this paper. This ensures that, in the spine motion (X, I;), X; is independent
of I; and has the same law as a Brownian motion. For the case where the diffusion coefficients are
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different, it seems quite difficult to get the sharp order of moment and even harder to adapt the
ideas of Bramson (1983).

The organization of the paper is as follows. In Section 2, we gives some basic facts on the spine
decomposition and a version of the many-to-one formula. In Section 3, we present the non-local
Feynman-Kac formula for solutions of (1.5). In Section 4, we first get some upper and lower bounds

for P ;) (Mt“ > m(t) + y) and P ;) (M > m(t) +y), and then use these bounds to obtain the

tightness for (Mt —m(t), t> 1,P(0,i)) and (Mtzl —m(t), t> I,P(Oﬂ-)> for any 7,7 € S. The proof

of Theorem 1.1 is given in Section 5. Since some of the technical results used in the proof are similar

to the corresponding results in Bramson (1983), we postpone their proofs to the end of the paper.

In Section 6, we prove Theorems 1.4 and 1.5 by adapting the ideas of Arguin et al. (2013). In

Section 7, we prove technical results whose proofs are postponed to make the paper more readable.
In the remainder of this paper, for a set F, the notation

fx) Sg(x), zekE

means that there exists some constant C' independent of x € E such that f(z) < Cg(z) holds for
all z € E. Also, the notation f < g,z € F, means f Sg,x € Eand g < f,x € E.

2. Many-to-one formula and spine decomposition

Let Ny := (Ny(t), ..., Ng(t))T and let {F;} be the natural filtration of the multi-type branching
Brownian motion. By Athreya (1968, Proposition 2), under P, ;), e »"t(Ny, h) is a mean h; positive
martingale with respect to {F;}. Define I/P\’(m) by

d@(%l) e_A*t<Nt7 h>

= ) (2.1)
AP i) | 7, hi

According to Ren and Yang (2014, p. 224), the multi-type branching Brownian motion under @(w,i)
has the following spine decomposition:

(i) Initially there is a marked particle £, called the spine, of type i at site x.

(ii) After an exponential time (¢ with parameter a; + A*, this marked particle dies and produces
Ay := Ai(i) offspring of type 1, ..., Ay := Ay(i) offspring of type d with probability pa (i) :=

%, where A = (A1, ... A44)T. Randomly choose one of these (A, 1) particles to continue as

the spine, with each type j particle being chosen with probability h;/(A, h).

(iii) The (A, 1) offspring particles evolve independently, with the marked (spine) particle repeat-
ing step (ii) with law P(Xg(CE) Ie(¢e)) and each unmarked particle of type j, 7 € S, evolving as a
multi-type branching Brownian motion with law Pxece)): The process then goes on.

If we only consider the spine process (X¢(t), I¢(t)), then, under IP’(M), X¢ is a standard Brownian
motion starting from x, I¢ is an S-valued Markov chain with generator

e « fi il iftijhj
G (gl])SXS Wlth g’L] (a/’L + )\ ) <(1_i_)\i/;/)h — 7]> = %

and X¢ is independent of I¢(t). According to Ren and Yang (2014, (12)), we have

- (ai + )\*)51"]'

P
(N, h) {uez(t)}-

Using (2.2), we give a stronger version of the many-to-one formula in Ren and Yang (2014, Propo-
sition 1). For the case of branching Brownian motions, one can refer to Maillard and Pain (2019,
Proposition 4.1) (In Maillard and Pain (2019), there is also a change-of-measure for the spinal
movement).

Pl (& = ulF) = (2.2)
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Proposition 2.1. For anyt > 0 and u € Z(t), let H(u,t) be a non-negative F¢-measurable random
variable. Then

E(x,z) Z H(“? t) = 6>\ tE(z,i) (H(gh t) h ) :

u€Z(t) Ie(t)

Proof: By (2.1) and (2.2),

RN h
A i
Ez ) E H(u,t) | =M By N, b E H(u,1)

uEZ(t) ueZ(t)

* g h h L ey =~
A Z Tu(?) i A
= B Ny 1 D | =€ B > Pl (& =ulF) H(u,t)
wez(t) © u(t) ueZ(t)

=e tE(:):,i) H(fht)hi Z 1{§t=u} =eV'E < (& 1) ) .

16 W7 hrg(t)

hr. )

It is easy to deduce from Ah = A*h and gTA = \*g”T that

a; +)\ .
Zumh =2 = Z,uﬂa]g] (a;i + X)gi, i=1,2,....d.
7j=1

Let v; := hjg; and v = (v, ...,v4)T, then we see that v; solves the equation

vi(aj + %) ZVZ Nm g J=1,...d,

and (1,v) = 1, which implies that v is an invariant measure for I¢(¢) under I/P\’(m).

3. Non-local Feynman-Kac formula

Throughout this paper, (Xy,¢t > 0;P,) is a standard Brownian motion starting from z. The
Feynman-Kac formula plays an important role in the probabilistic treatment of the F-KPP equation
(1.1). The classical Feynman-Kac formula says that a solution of the linear equation

1
Ut = S laa + k(t,x)u
can be given by
u(t,z) = Ey (eff}5 k(t_S’Xs)dsu(O,Xt)> . (3.1)

If u is a solution to equation (1.1), the (3.1) holds with k(s,y) = (uili_u)(s,y) = u(s,y) — 1. For

our multi-type branching Brownian motion, we will give a similar representation for a solution v of
(1.5) using a non-local Feynman-Kac formula.
By (1.7), we have

pi(v) = pi (L= 9f (1= v)) + (1= pi) (1 =91 = v)) =2 piof (v) + (1 = pi) i (v). (3.2)

First note that (1.5) is equivalent to

vi(t,x) = By (v;(0, Xy)) + E, (/0 a; (i (v(t — s, X)) — vi(t — s,XS))ds> , 1€l
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Let n; := Z;lzl pij and pij = pu;j/(ni — pii)lgizjy. Since po(i) = 0 and 9 is irreducible by
assumption, we have n; > 1 and n; > p;; for all i € S. Rewrite A given in (1.3) as

A =diag{ai(n; —1),a2(n2 — 1),...,aq(ng — 1)} + A%, (3.3)
where A* := (a] ;) and a; ; = a;(n; — pi;i)(pij — 6i,j). Define
. (1 a2 1 d? .

Let I; be a continuous time Markov chain, independent of X, with generator A*. We use P, ;
to denote the law of (Xy, I;) and use E(, ;) to denote the corresponding expectation. Then (1.5) is
equivalent to

vi=Av+A(p(v) —v)— A%,

which in turn, by (3.2), is equivalent to

t
vi(t,x) = Eg ) (vr, (0, X¢)) + Eg </0 ar, (o1, (v(t — s, X)) — v, (t — 5, X5)) ds>
t d
—E@ / Z ay, jvi(t — s, Xs)ds
0 4
7j=1

¢ L
prer (vt — 5, X5))
B, X)) + By — g g+ P —1 _ s X
(@) (v1, (0, X)) + Eqy 5 (/0 ar, (TL[S B, I, or (1 —5.X2) v, (t — s, X,)ds

t d
+E@. / ar, | (1= pr)er " (v(t = s, Xo)) = (n1, — pur,.1,) Y pr,gvi(t— 5, Xs) | ds | (3.5)
0 -
J=1

We will simplify the formula above using the non-local Feynman-Kac formula introduced below.
Define a Feynman-Kac semigroup (¢ by

t
Qif(7,7) = By <f(Xt,It)exp {/0 ar, (ng, — 1) ds}) ,

then (see, for instance, Harris et al. (2022, Lemma 2.1)), Q¢ is the mean semigroup of a non-local
branching Markov process with spatial motion (X, ), branching rate function §(x,i) = a; and
non-local probability distribution F'((x,%),-), on the space M(R x S) of finite measures on R x S,
defined for all (z,7) € R x S by

F ((2,4), {0z x (k161 + ... + kada)}) = pk(i), ke N
Put
z(t,x) = (z1(t, ), ..., 2q(t,x))T  with z(t, ) := Qi f(x,1).
Then z solves the linear equation
z; = Az + diag {ai1(n1 — 1),a2(na — 1),...,a4(ng — 1)}z, xz€Ri€S.
By (3.4) and (3.3), we see that z solves the equation

. [1 a2 1 d?
7y = dlag{2dx2,...,2dx2}z—|—AZ. (36)
Let H(s) = s and

J((x,k),d(y, ) == 6(x — y)ar(ng — pixr) (Pre — Ok,0) Ly dydl.
Define
Dyi={t| (X¢—, L) # (X¢, 1)} = {t| - # I} .
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It is easy to check that for any non-negative Borel function f on (R x S)? vanishing on the diagonal
and any z € R,i € S,

Equo | >, f(( Is-), (X5, 15))

seDjy,s<t

_E,, ( [ ] s mo J((XS,IS),d(y,E))ds> |

and thus (J, H) is a Lévy system for (X, I). Note that the integrand in the second term of (3.5) is
equal to

d
s (]‘_plg)(ng (V(t_'S’XS)) nIs /’LIQ,IS Zpls ]U] 5)

ar

(1= pr)ep" (v(t = 5, Xy))
= . - 1 CL[S('n[S _IU’ISJS) pIsva(t_SV‘X )
( 2t P (t— 5, Xs) ; 7 ’

Applying Chen et al. (2019, Lemma A.1), similar to Chen et al. (2019, (4.8)), (3.5) can be written

1- NE(v(t — s, X
”i(t7$):E<x,i><exp{ > 1og<(zms)“”f (v ))))

s€D,s<t AL Hs3 Vi (t -

+ /Ot ag, (nls = g1, + plsifgzgs X,) )) ) ds}vft(o Xt)) (3.7)

For any bounded non-negative function f and 6 > 0, by (1.6),

(7 (t, :E, 9) = E(I,l) H e_ef(Xu(t)vlu(t))
ueZ(t)

solves equation (1.2). By taking derivative with respect to § and letting 6 | 0, it is easy to see that

zi(t, ) = E(w,l) Z f(X u(t))

u€eZ(t

also solves equation (3.6). Therefore, @Q; is also the mean-semigroup of the multi-type branching
Brownian motion, i.e., for every bounded measurable function f,

Qtf(mv 7’) = E(m,z) Z f(Xu(t)v Iu(t))

u€eZ(t)

(For two-type irreducible branching Brownian motion, see Champneys et al. (1995, (4.6)).) It follows
from Proposition 2.1 that for ¢(z,i) = h;,

Qiop(x,i) = e p(x, i) (3.8)
Using the definition of @; and (3.8), we can easily see that

t
. h
e exp {/ ar, (ng, — 1)d3} o
0 hr,
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is a non-negative martingale of mean 1 under P, ;). Now we define

t
* h/
= e Mlexp {/ ar, (nr, — 1) ds} I
(XI5 5<t) 0 hi,

Then by the definition of (¢, we have

Quf (i) = B (f(Xt, L) )
Iy

h
dP(I7i)

Combining this with Proposition 2.1, we get that

(0. Ply) & ((Xe o) By

Now (3.7) can be rewritten as

1- vt t— 7XS
vi(t, ) =eN'th; E(x | exp Z log ( pls)SDIS (v(it—s )
s€Dy,s<t Zj#Ls Mls’jvj(t D XS)

t L
pr.er (vt — s, X)) v, (0, Xy)
- - : ds p——=|. 3.9
/0 ag, (MIS,IS o (t — 5, X5) S I (3.9)

Define for 0 < r <t < tq,

Ry, ((r,t];v) :—exp{ Z log <(1Z_: ,018)90?;’? (‘V(tl__ S’XS))>

seDomesst i1, 11,50 (b — 5, X)
t L
pr.e7,(v(t — s, Xs))
— | ar, | pr,,1, — 2 ds 3.10
/(] (M U], (tl — S, Xs) ( )

Ry, (t;v) == R, ((0,t];v), R((r,t];v) :== R ((r,t];v), R(t;v) := R((0,t];v). (3.11)

and

Now for 0 < r < t, by the Markov property, we get from (3.9) that

* 7X .
vi(t,z) = N UIREL, ) <Rt(t - r;v)vfﬂ(rt)>

h’Itfr
-5 >?
— M), _e < M‘X > d 3.12
—e v r= .
NCOET El, ) ) By [ =)y (3.12)

The above representation (3. 12) of v; will play an important role in this paper.

For any ¢ € S, by Bernoulli’s inequality,
d

d
gp()—l—wz(l—v—l—Zpk Hl—v J<1—Zpk 1—2]{1)] Zﬂi,jvj-
j=1

keNd Jj=1 keNd
Thus, PZE §a-S-, for any 0 <r <t and t; > t, Ry, ((r,t];v) <O0.
The assumption (1.4) implies the following estimate on p;F(v) and (1 — p;)pNL(v) :
Lemma 3.1. It holds uniformly for alli € S and v € [0,1]? that

i E(v a 1—p; fVL v o
Pl _ o o(ve) ana LZPIPTM) g gy, (3.13)
Vi Dot i gV
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The proof is postponed to Subsection 7.1.
In the remainder of this paper, when we consider the spine process (X¢,I¢) under Pz, we

sometimes use <(X 1), P! )) to denote the law of the spine process for simplicity.

(z,8

4. Estimates in the case of Heaviside initial conditions

In this section, we consider two kinds of initial conditions. The first kind is
vi(0,7) = 1_0)(x), forallies. (4.1)

Fix ¢/ € S. The second kind of initial condition is

vir(0,2) = 1_oo0y(x), ©j(0,2) =0, fori#i (4.2)
Note that if v solves (1.5) with initial condition (4.1), then

vi(t, ) = Py 4 < min X;(u) < 0> =P,y (My > z);
u€Z(t)
and that if v solves (1.5) with initial condition (4.2), then
vi(t, ) = Py <uez(g71}£1(t):i, Xi(u) < 0) =P, (MZ > :c) .

Recall that m(t) = V2 *t— 5 \/?;T log t. The first goal of this section is to get estimates on solutions
v(t,z) of (1.5) with Heaviside initial conditions (4.1) or (4.2), and with x = m(t) + y, that is to say,

we want to get some upper and lower bounds for P ;) (M; > m(t) +y) and P ;) (Mtl/ > m(t) + y)

with y > 0. See Proposition 4.2 below for the upper bound and Proposition 4.3 for the lower bound.
Next, we use Propositions 4.2 and 4.3 to prove that for any ¢ € S, (Mt —m(t), t > 1;}?(071-)) is
tight, and that, for any 4,7’ € S, (Mtl/ —m(t), t> l;IP’(OJ»)) is tight. Counterparts of some of the
estimates used to prove tightness can be found in Bramson (1978); Mallein (2015b).

In Bramson’s argument, sharp estimates for P(o;) (M > m(t) +y) and P (Mtzl > m(t) + y>
played essential roles. To get these estimates, Bramson used a convergence result of Kolmogorov
et al. (1937). However, counterpart to the convergence result of Kolmogorov et al. (1937) is not yet
available in the multi-type case. We need to overcome this difficulty.

We first give an estimate on the path of Brownian motion, whose proof is postponed to Subsection
7.2.

Lemma 4.1. Let K >0, a < 1/2 and t > 1. For any function f satisfying
t —
ap (L), O 1) _

s<t 5% (t—s)>

there exists a constant I'y depending only on K and o such that

Vt)(z A V)

AVE
Po(Bs = —y+ f(s),s <, Bt+y—f(t)€[z,2+1])§F1(y 1372 .Yz

?
where (By,t > 0;P,) is a standard Brownian motion starting from x.
Fix y,t > 0, we define for s € [0, ],

Ly .
i =

3 t+1 " .

1 — Y= V2 *s — hyY.
S (L) e
Then f{¥ = V2\*t — 2\/?;? log (t+1) +y < m(t) +yand fo¥ =y > 0.

The following result gives the upper bound.
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Proposition 4.2. There exists a positive constant Cqy such that for any y,t > 1 and i,i' € S,
Po,1) (Mtil > m(t) + y) < Posy (My > m(t) +y) < Coly AVi)e VA,

Proof: The first inequality is trivial since M} < M,. Now we prove the second inequality. Let [z]
be the largest integer less than or equal to . Then

Plo,g) (Me = m(t) +y) < Py (Mt > ftt’y>

g
SO B0 | D0 Nawmcpgnng X207} Hxu2 7,05k
k=0 weZ((k+1)At)

[] [t]
- Z E(O’i) Z 1{SUPse[k,(k+1)At] Xu(S)Zf;i’y} 1{Xu(3)§fst’y,8§k} = Z Dg. (4'3)
k=1 ueZ((k+1)At) k=1

Since all components of h are positive, we have by Proposition 2.1 that

Dy < e)‘*(k+1)@(07i) sup  Xe(s) > f,i’y, Xe(s) < fi¥ s <k|. (4.4)
s€lk,(k+1)At]
Note that, under @(OJ), X¢(t) is a standard Brownian motion. Thus,
P(o,) ( sup  Xe(s) 2 f, Xe(s) < fi¥,s < k) (4.5)
s€lk,(k+1)At]

— t7y t,y
= Eo <PO (Bk 2 f’f —,Bs < fo¥,s < k> ‘w:supse[k,(kﬂ)m] Bs—Bk> '

For any A € R, define
dP)

o ABi—2X% 4
P, =e 2 (4.6)

o(Bs,s<t)

then under P(}, B; is a Brownian motion with drift A. Using this change of measure, we get that
PO (Bk 2 f’i,y -, Bs S f?y, s S k) — EOVQ)\* (e_\/2)\*Bk+)\*k’1{Bszl?y_m’BSstt’y’sgk})

< VIR (I -a)+xkp, (Bk +VINE > fY — 2 B+ V2Ms < fIY s < k;)

— ¢ VN —e) ) kpy (Bk <z +htY By > hbY s < k)

IN

VUL Ry (B > W s <k, By - BT € Lo+ 1))
_. e—m(f;’y—w)ﬁ*’fﬂgy ([1,z+1]). 47
Let

3 t+1
f(s) = 2mlog<t_s+l>.

Note that, since log(1 + z) < z'/4,2 > 0, we have for all s < k and all 1 < k <,

O R~ f)] _ 1 ; | s
ST =)/ ~ e\ +(k—s)1/410g R
<log(1+s) 10g(1+k:—5)<1‘
= gl/4 (k—s)i/d ™
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Therefore, applying Lemma 4.1 to the function f above with v = 1/4, y replaced by y + 1 and
z=1,.,[z] + 1, we get
[x]+1
F (L, z+1]) ZF’yzz+ 1))

[a:]—i—l
1 VAN ANRYA
sl +k3/2 vk Z Ak S ykg/\{(x+ 1?2, y>1la>0,1<k<[t].  (48)

Plugging this upper bound into (4.7), we get that
_ * tyy * y /\ \/Z‘
Py (By > fi¥ — 2. By < fi¥,s < k) S e VAV (7)) @+ (4.9)
Note that 0 < supyep (k+1)ag Bs — Be < Supgefikt1) Bs — Bi which is equal in law to W :=
Supgepo,1] Bs under Po. Combining this with (4.5) and (4.9), we get that for ally > 1,1 <k < Vi,

@(O,i) ( sup  Xe(s) > f, Xe(s) < fi¥,s < k)
elk,(k+1)AY

_ ¥t « y/\\/i m _ = £t y/\\/i
<e \/WfkuAlc( o )Eo( WW(Wle)) V2N fy y+/\k< o > (4.10)

Combining (4.3), (4.4) and (4.10), we finally get that

(. e (A
P (My > m(t) +y) S ZeA (k+1) o= V2" [V +2"k ()

— k3/2
[t] 3/2
= Dy t+1 1 S
Note that for all ¢t > 1,
% t+1 \¥2 1 <§: +2 \¥2 1
e \t—k+1 k3/2—k:1 [t] —k+1 k3/2
([t]/2]+1 3/2 3/2 [[t]/2]+1
3[t] 1 3[t] > 1
<2 <2 7
<2 ) (is) we =i 2
3]\~ 1 312
< -
<2 (ir24) 2 =2 Z !
Therefore, for all y > 1,t > 1 and 7 € S,
Pl (Mi 2 m(t) +y) S (y A VeV,
which is the desired result. O

Next, we are going to get a lower bound for Py ;) (M; > m(t) +y). For i’ € S, let
AW(i) = # {u € Z(t): L(t) =17 and Vs < t, Xu(s) < f1¥, Xu(t) > f2¥ — 4} .
The following display is used for getting a lower bound of P ;) (M; > m(t) + y):
Eo) (AW(i) 2 (y = 3)e VN W) > 4oV il e g t>1, 4<y<4vi (411)
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To prove the above, we will adapt some ideas from Bramson et al. (2016). The proof will be given
in Subsection 7.3.
Here is our result for the lower bound.

Proposition 4.3. Let By := 4 + 2\/?;? log2. There exists a positive constant Ky such that for any
t > (Bo/3)2,y € [1,V/t] and i,i' € S,

Proof: The first inequality is trivial, so we only need to prove the second inequality. It is easy to
see that for allt > 1,y > 1,

P(0,) (Mti' >m(t) +y — ﬁo) > P (AY(i) > 1).
If we can prove that for all t > 1,y € [4,4/t] and 7,7’ € S,
P(oi) (A™(i') 2 1) Z ye V2V, (4.12)

then for any ¢ > (8p/3)? (which is equivalent to 3v/t > o) and 1 <y < v/t, we have 4 < y + By <
4+/t, and thus

Proy (M = m() +y) =Py (MY = m() +y+ o — Bo) = P (A7) > 1)
2 (y+ o) e VNI 2 yem VN,

which completes the proof. To prove (4.12), we use the trivial inequality E (|Y|'Te0)E(14)%
E(|Y]14)" to get that for all t > 1,4 < y < 4/t and 4,7’ € S,

A\

1/a0

. 1+

(B, (A™(i)))

Eq, ((A0()' )
If we can prove that for all y,¢t > 1 and 7,7/ € S,

Eo. (A1) < (y AvEe VY, (4.13)

then using (4.11), we get (4.12). Now we prove (4.13).
Step 1 For u € Z(t), define

P, (A™() > 1) >

T(u) := {Xu(s) < Y s <t Xy (t) > f1Y — 4}.

We first estimate E ;) ((A"(i’))!T*0) from above. Define A“Y := Z?:l ABY(5). Tt follows from
Proposition 2.1 that

Eo,i) (A% (i)1120) <Ko ((A™)' ) =By Z (AM) %1y

u€Z(t)

1 e .
1T(£)> S B ((A™Y)™ 1ye) - (4.14)

hfg(t)

= e B, ((At’y)o‘o

Recall that {I¢(t),t > 0} is the type of spine. Let 7 be the k-th time that I¢(s—) # I¢(s) and
let Ky :=sup{k: 7 <t}. Forall t > (80/3)% y € [1,v/t] and i € S, we have the following upper
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bound for ]E(O,i) ((At’y)ao 1T(§)):

B ((A")* 1T(£>) < (y A Ve N eV

t/2>71>1 1t2 Tr<t—1
(1 +Z < - 3/‘j H+ Et/fégg/z} T <y + 1{7@1})) - (415)

The proof of (4.15) is technical and we postpone it to Subsection 7.4. Combining (4.14) and (4.15),
we get

(o, ((A™(i"))'F)

Ky

(y AVE) = Lijosr>1y  lygj2<n<t—1)

S vy B (TR T g e F ey | ) (116)
/=1 l

Step 2 Let 0 < a <@ be such that
0 < a < min(a; + A*) < max(a; + \*) < a.
€S i€S
Recall that Dy := {t : I¢(t—) # I¢(t)}. We can define two processes I and I with the same
jumping probability as I¢(t) and with constant jump rates a and @ respectively. Similarly, we define
D% and D? to be the jumping times of I;* and If. We can construct a coupling of (I¢(t), I, I}")
such that the embedded chain of the three processes are the same and the jump times

Dy={th,:0<t;<ty<..}, DE={t2:0<t{<ty<..}, D*={t2:0<t{ <t§<.}(4.17)

satisfy t& < t,, < t for every n. More precisely, let {Y,, : n = 0,1,...} be the embedded chain of
I¢(t) with Yy = I¢(0). Let Ty := t; and T}, := typ41 — ty, for n > 1. Then by the strong Markov
property, given Y;,0 < j < n, T}, is an exponential distribution with parameter ay, + A*. Let
TS = (ay, + \)T,/a < T, < (ay, + \)T,,/a =: Ty. Then we see that given Y;,0 < j < n, T%
and Ty are exponential distribution with parameter @ and a respectively. Now for n > 1, define
9 = Z?:_& T and ty, := 2?2—01 T} Define Ki' := sup{n : t, < t}, K" :=sup{n : tn <t}, I := Yy
and I} := Yth. Then (I¢(t), I{*, I{) is the desired coupling. Therefore, for any non-negative and
non-increasing function f,

Kt K Ky
ST Fs) =Y flt) <D SR <D S = f<s>, (4.18)
seD j:s<t n=1 n=1 i=1 DT

here K; < # {D"N[0,t]} = K;* by the coupling. Applying (1.18) to f(s) = 1{S<1}+s 3/2 Lisep,e/2))
and f(s) = 1ys<1y, by the Markov property at time ¢t — 1, we get that

) (1 + Z ( {t/i/;pl} T <y + 1{TeZt—1}>)

= Litj2>r>1 =~ <
]E OZ <]_ ( {t/2§/§ } 1{TZS1}>> + SupE(OJ) <Z 1
JES —1

a

IN

o

| /\

Ka
+E (77) 3/2 Lyjosrgsny +lgzay | TE Zl
=1

(=1

t 1
= /0 <1{s<1} + 572 1{36(1t 1]}) ds+a/0 1ds < 1. (4.19)
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For 7y € (t/2,t — 1], note that
K [t—1]—1

Lig1>m>t/2) Lik<rp<(ky1)}
Z (t—T)3/2 < Z (t_k_1)3/2’
=1 t k=I[t/2]

where [t — 1] is the smallest integer larger than or equal to ¢t — 1. For each k, using the Markov
property at time k, and using (4.18), we have

Ky [t—1]-1
ES Lt 1>r>t/2) 1
Eo,5 (Z (t — 74)3/2 < Z (t—k—1)3/2 ¢ SUPE (0.9) Z 1

=1 k:[t/Q}
Mt—1]—1 . M—1]-1 .
< _— < - <
< ) = 3/2 21 S D> (t—k—1)3/2N1' (4.20)
k=[t/2] k=[t/2]
Combining (4.16), (4.19) and (4.20), we get (4.13). The proof is now complete. O

Remark 4.4. As a consequence of (4.18), we have the following useful inequality: for any r < ¢t and
any decreasing non-negative function f on [r,t],

Eop [expq— D flo)p] > }ggﬁ(o,z) expd— > fls+r)
seD jir<s<t seD j:s<t—r
t—r
> l}nf E(O o |expq — Z f(s+r) = exp {—a/ (1 —e” (s”)) ds} (4.21)
es = 0
seDa:s<t—r

Using the fact that # {D; N [0,t]} > # {D%N0,t]}, we also have that for any 6 > 0,

IE(OJ-) exp{ —6 Z 1 Ssupﬁ(o,g) exp{ —6 Z 1

seDjir<s<t tes seD&:s<t—r

t—r
= exp {a/ (1 — e—‘)) ds} — alt-r)(1—e7%)
0

Using Propositions 4.2 and 4.3, we can get the following result:

Theorem 4.5. For anyi € S, (Mt —m(t), t > 1,IP’(071~)) is tight. Also, (Mtll —m(t), t > 1,}?(0’@-))
is tight for any i,7’ € S.
Proof: Fix i € S. For any € > 0, choose y > 4 and ¢ small so that Koye V2A'Y > §, where Kj is

the constant in Proposition 4.3. Now choose L large so that E(q ;) ((1 — 5)<NL71>) < /2. Indeed, we
can find a large n such that (1 — §)" < /4, therefore,

€
E (0,1 ((1 - 5)<NL’1>) <zt P4 (N, 1) <n),

which is less than €/2 for large L since (N,1) — 400 P(g;)-a.s. Let b > 0 be a constant such that

€

P in X,(L)<-=b)<_.

(0.0) (uénzl(“m u(L) ) 5
By Proposition 4.3, for ¢ large enough so that ¢t — L > max{ﬁg,yz} where (j is the constant in

Proposition 4.3,

lnfs P, (MtZLL >m(t— L)+ y) > Koye VY > 6.
i4'e
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Thus,

P(O,i) (Mt < m(t — L) —b+ y) < ]P)(O,i) (MZ/ < m(t - L) —b+ y)

g ,L'l g
< 5 + E(O,i) H P(O,Iu(L)) (Mt—L < m(t — L) + y) < B + E(O,i) <(1 — 5)<NL,1>> <e.
ueZ(L)

From this one can easily see that there exists y > 0 such that for all ¢ large

Py (My <m(t) —y) <Py (Mfl <m(t) — g) <e.

Also, by Proposition 4.2, there exists y* large enough such that for all ¢ > 1
P0,) <Mti/ > ml(t) + ?J*> < Py (My > m(t) +y*) < Coy'e VAV < e, (4.22)

Thus there exists 7 > 1 such that (M; —m(t), t > T,P ;) and (Mt’, —m(t), t > T, P(O’i)> are

tight. Since minj<;<7 Mti/ is finite P(g ;)-a.s., for y* large enough we also have for 1 <¢ < T,

P (My > m(t) —y*) > P4 (Mti/ >m(t) — y*)
> ]P)(OJ) <121SI1T (Mt — m(t)) > =y ) >1—c.
Combining this with (4.22), we get
Pio,iy (4" < My —m(t) <y") =Pop) (My —m(t) > —y*) = Pogy (My —m(t) > y") > 1 -2

and
P, (—y* < Mtil —m(t) < y*) =Py, (Mt’/ —m(t) > —y*> — P (MZI —m(t) > y*> >1—2e.
This completes the proof. O

5. Proof of Theorem 1.1

The main idea of our proof of Theorem 1.1 is similar to that of the corresponding result in
Bramson (1983) for single-type branching Brownian motions. However, some parts are much more
complicated in the multi-type case. To keep the flow of the argument, we postpone the proofs of
some technical results to the appendix.

5.1. Upper bound for v. In this subsection, we first give some estimates involving R(t;v) defined
in (3.11) and then use these estimates to get some upper bound for solutions of (1.5) with initial
condition satisfying (1.12). We roughly follow the arguments of Bramson (1983, Sections 6-8).
However, some of the arguments in Bramson (1983) do not work in the multi-type case. We will
explain these later in this section.

Let 6 € (0,1/2) and K > 2+ v/2\* be fixed constants. If L is a function on [0,], for ¢ > 4r > 0,

as in Bramson (1983, (6.11), p. 88), we define

é _ \0 0 AT _
9T,toL(s)::{L(S+S At —38)) +Ks®A(t—s), r<s<t-—2r

L(s), otherwise.
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We define 9;7,&1 to be the inverse of ;. Similar to Bramson (1983, (7.6), p. 99, (6.13), p. 88, and
(6.14), p. 89), we define

s t—s
Lra(s) 1= m(s) = Smit) ~ =~ Zafr),
Ly y(5) := 071 0 Lyg(s),
Lyi(s) == (0r 0 Lya(s )V Ly y(s)V Lry(s),
and similar to Bramson (1983, (7.44), p. 111) or Ren et al. (2021, (2.11)), we define

7.t S t

t —
L (s) = Lnt(S)JFgm(t)Jr 804(7“)7 4+ <s <t -2
—0, otherwise,

where the function «(r) is either taken to be —logr or taken to be identically 0. Let
Bup = {Xs > M, ,(t —s) forall s € [0,t — 7]} .
Note that when s € [0,2r) U [t —r — 1°,¢], M} ,(t — s) = —o0, therefore,
(Bup)© = {EI s € [2r,t —r — 1°] such that X, < M, (t — s)} .
Similar to Bramson (1983, (7.19)—(7.20), p.102-103), we define
Stirt) = sup {s:2r <s<t/2, X <M, (t—s)},
S2(rt) == inf {s:t/2<s<t—r, Xe <M, ,(t—s)},
S(r,t) == S'(r, )1 s1 )52yt + 57 (1 181 () 52(rt) <t} -

We use the convention that S*(r,t) = 0 if X, > M. ,(t —s) for all s € [2r,t/2] and that S5*(r,t) =t
if Xy > M ,(t—s) forall s € [t/2,t—7]. Next, similar to Bramson (1983, (7.21), p.103), we define
for ry € [r, t/2]

(ByL) :={r1 < S(r,t) <t —r1} = {I s e[r1V(2r),t —r1] such that Xy < M (t —s)}.

Let j1 be the integer such that j; < t/2 < j; + 1. Define G; = [j,j+1)U(t—j—1,t—j],j =
0,---,j1 —1and Gj, = [j1,t — j1]. Similar to Bramson (1983, (7.23)—(7.24), p. 103), we define for
j = 07 U 7j17

Aj(r,t) :=={S(r,t) € Gj},

t—
A]l(r, t):=A;(r,t)N {Xs > —(sA(t—s))+ gy + Tsm for all s € G]}
and A?(r, t) =A;(r,t)\ A} (r,t). The following result is Bramson (1983, Lemma 7.1, p. 104).

Lemma 5.1. For large r, t > 4r and 1 € [r,t/2], for any y > —logr and x > m(t),
r
(BT1 ‘Xt - y) S %P:c (Bup‘Xt = y) .

Recall that by the definitions (3.10)

Ry (t—r;v —exp{ Z <(1_p15)(‘0£% (.V(t__ 57X5>)>

s€Dy,s<t—r Z#Isﬂls,gvj(t s, Xs)

N . (DN
0 S vr, (t — 5, X) '




Extremal MBBM 1437

If v solves (1.5) with initial value satisfying (1.12), then by (1.6), for any i € S,

u€Z(t):I(t)=io

=1—-E,) I1 Lixu@+axny | =1 =Ko, 11 LX) <e—N1}
weZ(t): L (t)=io weZ(t):1y (t)=io

= P(O,i) (Mtio > — Nl) . (51)

By induction, for any 0 < g, yr < 1 with o +yr < 1 for all 1 < k < n, it holds that

1—H(1—$k—ykz)§{1—H(1—$k)}+{1—n(1—yk)}- (5.2)
k=1

k=1 k=1

Indeed, it is easy to see that (5.2) holds for n = 1. If (5.2) holds for n and 0 < xp, yx, zr + yr < 1
with 1 < k < n, then

n+1 n
1= JTO =2k =) = (1= @ng1 = ynt) (1 [ == - yk)) + Tpt1 + Ynt1

k=1 k=1
<(1—2pt1 — Ynt1) ({1 - H(l - l“k:)} + {1 - 11— yk)}) + Tnt1 + Ynt1
k=1 k=1
< (1 —wpy1) {1 - H(l - xk)} + (1 — Ynt1) {1 -] - yk)} + Tttt Ynt
ntl T n+1 o
= {1— H(l—xk)} + {1— H(l—yk)},
k=1 k=1

which implies (5.2).
Suppose that v satisfies (1.5) and (1.12). Forr > 1andt > r, define v}(0,z) := v;(r, 2)1(z> 108}
for all j € S and

it =ra) =1-Egy [ T (1= vh0n©Xult=r)) |- (5.3)
ueZ(t—r)
The next lemma is slightly different from Bramson (1983, Proposition 8.3 (b), p. 136). In
Bramson (1983) (see the argument Bramson (1983, from (8.44) to (8.46), p.137)), Bramson used
the Feynman-Kac formula to get

_ (m®)+a—y)?
e 2(t—r)

o(t, m(t) + z) = /Rv(r,y)%(t_r)Em(t)H <exp {/OH k(o(t — 7 — s,Xs))ds} %, = y> dy,

where k(z) = f(x)/x. Then he separated the integral into f:olsgr + [ log s For the f:olng part (see
Bramson (1983, (8.45), p. 137) ), he used the fact that if f : [0,1] — [0,00) is a concave function
with f(0) = 0 (which is obviously the case for f(z) = 1 — Y2 qpe(1 — 2)* with {px : & > 1}
a distribution with finite mean), then k(x) = f(x)/z is decreasing in (0,1]. But when f is a
multi-variable function like ¢;, it no longer holds that

v 1)
ORARI0NA

if 1 >wv; >v; >0forall jeb.
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To avoid this difficulty, we deal with the part | __olsgr by first using probabilistic representation (1.6),
Propositions 4.2 and 4.3, and then using the Feynman-Kac formula. This is accomplished in the
following lemma.

Lemma 5.2. Suppose that v satisfies (1.5) and (1.12). If r is large enough, then there exists a
positive function C(r) with lim, . C(r) = 1 such that for all r < x < /1,

vi(t,m(t) +x) < C(r)v; (t —r,m(t) + x)

_ (m)+z—y)?

* (4 & 2(t=7) (% P (Ta y)
= C(r)eMEp, £~ g -<Rt—r;v* —tr ‘X_T: )d.
( ) Clogr /27T(t _771) (m(t)+x,1) ( ) hIt—r t Yy Yy

Proof: The equality in the lemma follows from the Feynman-Kac formula (3.12), so we only prove
the inequality. Note that 1 > v7(0,2) + 1{z<_10g,} = vj(r,2), by (1.6) and (5.2), we have

Ui(t, m(t) + x) S U;-k(t -, m(t) + x) + 1-— E(m(t)+m,i) H (1 — 1{Xu(t—r)§—logr})
ueZ(t—r)

= v (t —r,m(t) + ) + P4 (Me—r > m(t) + z + logr) . (5.4)
By (5.1), Propositions 4.2 and 4.3, for all » < = < /¢, if r is large enough so that r — Ny > 5 and
V22X — 1 < m(t) — m(t — r) < V/2M*r, then
P o5 (Mi—r > m(t) +x + logr) - P o5 (Mi—r > m(t) +x + logr)
vi(t,m(t) + x) B Po,1) (MZO >m(t) + o — N1>

(m(t) —m(t —r) 4+ x + log T‘)e_m(m(t)—m(t—r)-i-x-l-logr)
(x — Nl) e_m(fﬂ—Nl)

< (V2Xr 4+ = + log r)e*m( V2A*r+logr) < o V2N (VEN T Hlog)

S

~ (l‘ — Nl)
where in the last inequality we used the fact that for z > r and r — Ny > r/2,
(V2 *r +x +logr) - (V2X* 4+ 14+ 1)z <1
(x — N1) - .CI}/Q ~

Therefore, if T' is a constant such that for large r and r < = < V/1,

P(O,i) (Mtfr > m(t) +x+ log 7") < De— /QA*(\/WT-HOgT) < 1’
vi(t, m(t) + x)

we can choose C(r) to be

Ofr) = (1~ VP

0

The next proposition is similar to Bramson (1983, Proposition 7.3, p. 108). However, many new
difficulties and challenges appear in the multi-type case. We will give the proof and some detailed
discussions about it in Subsection 7.5.

Proposition 5.3. Let v be the solution of (1.5) with initial value satisfying (1.12). Then for r large
enough, t > 4r, y > —logr and x > m(t), it holds that

v - T?:y C 1 % —r T’y
E’(lm-) <R((r,t — r];v*)M; (Bup)©| Xy = Z/) < ﬁE?x ) (It()> P?w,i) (Bup| Xt =) -
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We now give an upper bound for v;(t, m(t) + z):

Proposition 5.4. Suppose that v satisfies (1.5) and (1.12). Let r be large enough, then for all
r<x< \/{f, it holds that

00 (m(;z:w )y)2 d
*(t—p e r
’Ui(t> m(t) + $) < Cup(r)eA (¢ )hi \/m m(t)+x,i) (Bup Xt = y) Zgjvj (’I", y)dy,

—logr j=1

where Cyp(r) L 1 as r — oo.

Proof: By Lemma 5.2, Proposition 5.3, and the independence of X and I, we have
(C(rhi) e it m(t) + @)

_ (m®)te—y)?
oo e 2(t—r)

v
R _t/rr 77
—logr / 27T (m(t)—f—x ) < ( hltfr

_ (m®) e «/)2
oo 6 2(t—r)

’UIt T (7' y)

—logr / 277' t— T (m(t)—f—z ) < hIt r

_ (m®)+z—y)2
0 e 2(t—r)

+ Bl (t)+.) (R(t - ”*)ﬁ5 (BUP)C‘Xt—T = y) dy

—logr \/27r t—r)

_ (m®)+a—y)?

s Bup

Xt r—y>dy

o0 e 2(t—r) h /UIz_r(T7 y)
<[ o=y * Ploosen (Bl =) Bl (522

_(m®W)ta—y)?

T2 1 h vy, (r, y)) W )
+ — | P Bup| Xi—r = d
—logr \/27'('7 < t)+a.1) < h[t_r (m(t)+,i) ( p‘ t y) Y

_ (m@®)+z—y)?
1 e 2@ vy, (r,y)
-(1+5) g R ) i) (B =) Bl (557 0
Note that lim,_, P(x’l.) (I, = j) = vj = gjh; = lim, 0 SUp;~,, P(x 0 (Iy = 7). Letting

Cup(r) :=C(r 1—|—> sup sup ————
o(r) (r) ( 2) esisr b

Y

we get the assertion of the proposition. O

5.2. Lower bound for v. Similar to Bramson (1983, (7.42), p. 111 and (7.9), p. 99) or Ren et al.
(2021, (2.10)), we define

_ Lyi(s)+ 3m(t) — S5 logr, 0<s<t-—2r,
/\/lf,t(s) = { z ' '

§+m(t), t—2r <s<t,

where fr,t is defined in the beginning of Subsection 5.1. Define
Biow = { X > ﬂf,t(t —5), s€0,t—r]}.
Proposition 5.5. When r is large enough, it holds that for all t,x > 8r and all i € S,

M
e 2(t—r)

oy Finrse (B

vi(t, m(t) + x) > Cron(r)e* T,

Xt T Z/) Zgjvj T, y)dy,
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where Cloy(r) T1 as r — oo.

The proof is similar to that of Bramson (1983, Proposition 8.3(a)) and is given in Subsection 7.6
below.

5.3. Proof of Theorem 1.1.

Proof of Theorem 1.1: Define

— (mli)s )y)Q d
6 ™
Biow | Xi—r = v;(r,y)d
t)+x z)( low | A t—r y) Zgj J y)ay,
\/271' t—r) 4

(m<t>+z v)?
2(t—r)

(rit,z) =N T,

low

d
i r €
Vip(rit,z) == N, X Ph ) ta.i) (Bup Xty = y) Zgjvj(r, y)dy.

\/27Tt—1" ]

By Propositions 5.5 and 5.4, for all 87 < x < v/,

Cup(r)\I/Zp(r;t,x) > vi(t, ) > Crow(r)Vh,, (r;t, )

with Cio (1) T 1, Cyp(r) L 1. Note that the proof of Bramson (1983, Proposition 8.3 (c)) only uses
probabilities of Brownian bridge. Using the same argument, we get that for all i € S,

vl (rit, @)

1< — "~ K
T AL

low
with y(r) | 1 as r — oo. Define

_(m®)+a—y)?

d
U(rit,z) = X /R 62;((;_:)T)P?m(t)+a:,i) (Bm,-d X, = y) jz;gjvj(r, y)dy  (5.5)
with
Bia = {Xs > ny(t —s) for all s € [0,¢ — 7]} (5.6)
and
nr(s) :==m(t ) 2)\* € [r,t]. (5.7)

t—r
Then by Bramson (1983, (8.61), p. 144) or Ren et al. (2021, (2.26)),
—/r,t(t —8) <yt —s) < ﬂit(t —s), forse[0,t—r]
when r and x are large enough. This yields that (see Bramson (1983, (8.62), p. 144))
1 - vi(t,m(t) + x)
V) T (it @)

for » > r1,8r < x </t with r; fixed. Therefore, to find the limit of v;(¢,m(t) + x) as t — oo, we
first get the limit of Wi . (r;t,z) as t — oo.

Step 1: In thls step we study the limit of \I/mzd(r;t,x) as t — oco. Letting y1 = y — vV2M\*r
and 1 = o — 2@ log t, using Bramson (1983, Lemma 2.2 (a), p. 15), similar to Bramson (1983,

<(r) (5.8)
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(8.63) and (8.64), pp. 144-145), we have that

)2

_(m®)tz—y d
(it ) = e, /OO c (1 — 6_2xy1/(t_r)> Zg-v(r y)dy
mi Vo 2t —r1) = 7
- _<z1—y1;ﬁ(t—r>>2 d
— A=), € o ( _ e 2wy /(t— T)) NI
=e x (1 g;v(ryy1 + V2 *r)dyy
“Jo V2r(t—r) ; 7
7(101*91)2
oo e 2(t—r)

d
=h; e VIV (@y) o (1 — e~ 2oyn/(t- T)> Zggvj (ryy1 + V2X*r)dyy

0o \2m(t—r) =

t3 _ * > *
e V2A xhz 6\/2)\ Y1
0

27(t —r)3
d _@y-w)?
Zgjvj(r, Y1+ V2X\ir) | e 20T x (t—r1) (1 - 67221’1/(“”) dy1 (5.9)
j=1

=: C!(r;t, x)ze VT,

Therefore, for r > 1 and 8r < x < V/,

1 . * > *
ﬂC;(r;t,:c)xe_ T < it m(t) + ) < A(r)Cl(rit, z)ze” VAT, (5.10)
~(r

Now we fix r first and replace x by z(t) and suppose that x(t) — = as t — oco. Let x1(t) =
x(t) — 2@ logt. Then we can easily see that for any fixed yj,

(e (®-yp)?

e 2 (t—7) (1 — e_%(t)yl/(t_?")) — 2xy1, ast— oo,

(z1(t)—y1)?

and that e” 207 (¢ —r) (1 — e~ 2t )yl/(t_T)) < 2z(t)y1 < (2sup,x(t)) y1. Note that, for any
j €S, by (3.9) and Markov’s inequality,

- . X VaNy L Nry mh v, (0, Xr)
/0 yie Yoj(r,y1 + Vo) dy S/O e P xeThy E(yﬁmm) < hy dyn

o0
S 6)‘ r/o y16\/2)\*y1pyl+mr (X'r < N2) dy1
o
e / gV up, (XT < No—y1 — 2)\*r) dyr
0

< e)\*r /OO yle\/2>\*y1 « e—?\/?)x*(yl'i'\/?)\*’r—Ng)EO (6—2\/2>\*B,~) dy1 < 0. (511)
0

Therefore, using the dominated convergence theorem, letting t — oo in (5.9), we get that when
z(t) — x,

hm Wl (it x(t) \/>:1:e ‘2>‘*xh/ yreV v Zg]v] (ryy1 + V2X*r) | dyy
7j=1

=: hiCy(r)ze VN2,
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or equivalently, by the definition of C(r;t, x),

tlim Ch(rit,z(t)) — hiCy(r), (5.12)
—00
where
5 d
Cy(r) = - yleV”‘ v z:g]vJ r,y1 + V2X*r) | dys. (5.13)
0
7j=1

Step 2:  In this step we use the limit of U? . (r;t,x) as t — oo to get the limit of v; (¢, m(t) +z)
as t — oo. It is easy to see that for any r» > 0, Cy(r) € (0,00). Indeed, Cy(r) < oo follows from
(5.11). On the other hand, by (5.1),

Uj(?“, Y1 + V2A*r) > P(O,j) (MTZ:O > Y1+ V2 — N1> > 0,

which implies that C,(r) > 0.
Therefore, for any r» > ry and z(t) > 8r with x(t) — z, by (5.10) and (5.12), we get that as
t — 00,

1 < lim inf; o v; (¢, m(t) + x(t)) < lim sup,_, . v; (t, m(t) + x(t))
y(r) — hiCy(r)ze—V2A'e a hiCy(r)ze=V2A*z

Now letting = — oo in (5.14), we get

< (7). (5.14)

lim inf; o0 v; (¢, m(t) + x(t)) lim inf; o v; (¢, m(t) + x(t))

0< Cu(r) < liminf < lim sup

v(r) T—$00 hize—V2\'@ T—00 hjze—V2A\"®
< lim inf lim sup,_, . v (¢, m(t) + x(t))
T—00 h;ze~ 2 \*x
li i (T t t
< lim sup o Pt vi (t, m{t) + () < Cy(r)y(r) < oo. (5.15)
T—00 h;xe—V2Arx

Letting r — oo, using the facts that y(r) — 1 and that the 4 quantities between C,(r)/v(r) and
Cy(r)y(r) in (5.15) are independent of r, we get

lim Cy(r) = lim 2ifroeo vi (Em(t) + 2())
T—00 T—00 hixe— N
_ iy ImSUPe, o0 Vi (8, m(t) + (1))
= T—00 hi&?e_ 2N* 1

=: Cy(0) € (0,00),

which implies that (1.13) holds. Now let r» = [z]/8 and
Cy(r) . Cy(o0)
Y] = \%
0) = (o v o) 2o,

Yo(t;n) :=2 (sup (xe_ 2””)) x supsup {|C}(r;t,2) — hiCy(r)| : z € [n,n+1)}.

x>0 €S

Let ng > 8r; be large enough such that ~([z]/8) < 2 for all z > ng, then by (5.10), for any n > ng
and = € [n,n + 1), we have

vi(t,m(t) + ) < y(r)Ci(r;t, z)ze V2T
Y(r) (Ch(rst, x) — hiCy(r)) me™ V2™ 4 hyy(r) Oy (r)me™ V2™
< hin(oo)xefmxH (x) + Ya(t;n)
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and similarly,

foxe, 1
(t,m(t > h,C, —V2A\rx — Ys(t;n).
vi(t,m(t) +x) > h;Cy(00)xe Vi) 2(t;n)
Note that uniformly for all ¢ € S, it holds that
Yi(z) = 1, asz — oo, Ya(t;n) — 0, ast — oo. (5.16)

In conclusion, for all n > ng, x € [n,n+1),t> (n+1)> and all i € S,

1
i —V2\*x — Y, (t: < ;
hiCy(0c0)ze Vo) @ 2(t;n) < wvi(t,m(t) + )
< hiCy(00)xe V2 TY | (2) + Ya(t;n) (5.17)

with Yi(x), Ya(t;n) satisfying (5.16).
Fix s > 0,z € R, let

3 S
x(t,s) ::m(t—l—s)—m(t)%—x—\/ﬁs:m—Wlog(l—i—;).

Then m(t + s) + x = m(t) + z(t, s) + V2A*s and

L—vi(t+s,m(t+s) +2) = Epngs)4a) | 1 — H (1 —wr,(s) (8, Xu(s)))
u€Z(s)

—Eoy [1- ] (1 —Up(s) (t,Xu(s) + V2M*s + m(t) + x(t, s)))

u€Z(s)
For any 1 > 6 > 0, let € > 0 be sufficient small such that for all x € (0, ¢),
e~ (0T <1 4 < ®,

For this € > 0, let ng be sufficient large such that when x > ng, we have

hiCy(o0)ze V2T < E, and

: Y(lx), Y(z) € [1—6,1+ 4],

which implies that
* ].
hiCy(00)ze™ V2 max {Y(:C),Y(x)} <e.
Thus, for any § > 0, there exists ng such that when z > ng,

L Cyp(00)re™ e L
mx)SeXp{‘hZc”( ) Y1<x>}

< exp {—(1 — 6)hiCy(c0)xe™ 2/\*33} ,

1 — hiCy(co)ze V2N'®

1-— hiC’U(oo)me_m””Yl(m) > exp {—(1 + 5)hiCU(oo)xe_mzY1(x)}
> exp {—(1 +6)2h;Cy(o0)ze™ 2/\*””} .

Since Mg + V2A*s := min,e z(5) Xu(s) + V2A*s — 0o (see Ren and Yang (2014, Theorem 4)), there
exists s(w) such that for t > s > s(w),

Au(s,t) 1 = Xyu(s) + V2M*s + (L, s)

> Xu(s) + V2\ts+x —

log2 > ng, Yue€ Z(s).

3
2V2\*
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It follows from (5.17) that when t > s > s(w),

1= vg, () (8 Auls, ) +m(t)) > 1= Ay, (5 Co(00) Ay(s, e VX BNV (A (5,1)) — Ya(t; [Au(s, 1))

> exp{ —(146)2h; 50y (00)A, s,te*mA“(s’t) —Y5(¢t; [Au(s, t)]),
{ ( u(s)

and
1—vg,(6) (& Auls,t) +m(t) < 1= Ry, (Co(00) Au(s, t)e VX AuEDY (A (s, 1)) + Ya(t; [Au(s, 1)])
< exp {—(1 — 81, () Co(00) A (s, t)e_mA“(s’t)} Yo (t; [Au(s, 1))

Therefore, on the event that {M; + V2X*s+x(t,s) > no}, it holds that

[T (exo{=(1 = ), Colo) s, eV 2D E — 3 (15 [A (5,1)]) )

ueZ(s)

> 1] (1 — (t,Xu(s) +V2X\*s +m(t) + x(t, s)))
ueZ(s)

>

> T (exp{=(+8)?hr,Cu(00)Auls, )e VAL — W (15 [A (s, 1)])) . (5.18)
u€eZ(s)

Since z(s,t) — = as t — 0o, we have A, (

s,t) = Xu(s) + V2X\*s +z as t — oco. Letting ¢ — oo in
(5.18), we get from (5.16) that

limsup (1 — v (¢, m(t) + x)) = limsup (1 — v;(t + s,m(t + s) + x))

t—o00 t—o00

<P (M; V2 s b < n0>

+Eo (exp {~(1 = 9)Cu(00) (eW, () + Mygs () V2 h 11 e ey )
and

liminf (1 — v; (¢, m(t) + z))

t—o00

> B (exp { ~(1+8)°Co(00) (aWyg5s(s) + Myzze()) € VTN vy )

where {W 5=(s),s > 0} is the additive martingale defined by (1.8), and {M s55=(s),s > 0} is
the derivative martingale defined by (1.9). By (1.10) and (1.11), letting s — oo and noting that
) (MS_ + V2A*s+x > ng) — 1 for every fixed z and ngy, we get that

E . (exp {_(1 — 8)Cy(00) M m(oo)}) > limsup (1~ vi(t m(t) +x))
> litrgglf (1 —v;(t,m(t) + z))

> B (exp {—(1 1 6)2C, (c0) M. m(oo)}) .

Letting 6 — 0, we get the desired convergence.
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6. Extremal Process for multi-type branching Brownian motion

In this section, we study the asymptotic behavior of the extremal process of multi-type branching

Brownian motion and prove Theorems 1.4 and 1.5.

Proposition 6.1. For any ¢ € CJ(R x S) and z € R,

Jim g, (eXP {—/¢(y - x,j)gt(dydj)}> = E,) (eXP {—C(QS)M\/W(OO)e— 2A*m}> ’

where

2)\y *
Tlggo\/*/ yeV Zgjv]ry+ 2X*r) | dy € (0, 00)

with v a solution of (1.5) with initial value v;(0,y) = 1 — e~®(=¥:7),

Proof: For L € R, define
’I)J(O,y, L) =1- <€_¢(_y’j)1{_y§L}> s
then

vilt,i; L) = 1= B [ J] (1= vr,0(0, Xu(t); L))
ueZ(t)

=1-Eqy |expq— > ¢(X L) ¢ Limi<erry
u€eZ(t)

For any fixed L, v;(0,y; L) satisfies (1.12). Therefore, by Theorem 1.1

)

lim (1 —wv; (t,m(t) + 25 L)) = E(y) (eXP {—C(¢; L)M /55+(c0)e™ 2)‘*“?}) ,

t—o00

with C(¢; L) defined by

C(¢; L) = lim \/7/ yemy Zgjvj oy + V2 ;L) | dy.

Since

0 <wj(t,xz; L) — v;(t, )

=Eq,j | expq — Z ¢ (Xu(t) — 2, Lu(t) ¢ Yingysavry | S Py (Me >z + L),

u€eZ(t)

(6.3)

(6.5)
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we get that

d
2 [
Hi(r;L) — Hy(r; L) := \/; yeV2A Zgjvj(r,y + V2Xr; L) | dy
0 -
J=1

d
2 [ Vaxy | *
\/;/0 ve > 9Py (Mr >y 4+ V2N + L) dy

j=1

d
2 [ e
< \/> yeV2 E gjvi(r,y + V2X*r) | dy =: H(r)
m™Jo -
J=1

d

2 [ /5w
<4/-— ye 2\y givi(r,y + V2A*r; L) | dy = Hq(r; L).
jUj
T 0 X
Jj=1

Therefore,
Hy(r; L) — Ho(r; L) < H(r) < Hy(r; L). (6.6)
Note that

d
* 2 e * r—oo _ *
Hy(r; L) < e” V2 L\/>/ yeV? Y " giPo ) (Mr>y+\/2/\*r) dy =3 e VPO,
™ Jo

j=1
with Cy given in Corollary 1.2. Thus
lim limsup Hy(r; L) = 0.

L—+00 r—oo

Also note that lim,_,o, Hi(r; L) = C(¢; L). Since C(¢; L) is positive and decreasing in L, letting
r — oo and then L — oo in (6.6), we have

C(¢) := lim C(¢;L) <liminf H(r) < limsup H(r) < lim C(¢; L),
L—o0 r—o0 L—o0

T—00

which implies that lim,_,oc H(r) = C(¢).
Next, for any ¢ € CF(R) with ¢ # 0, there exist ¢y € S, ag, < by, and cg > 0 such that
¢(y,Lo) > co for all y € [ag,, by,]. Thus,

oo (o0 {— [otnieitanai) }) < B (M~ mie) € s b))

(1= P (M = m(t) € [azy,biy) ) )
It follows immediately from Corollary 1.3 that
. ‘
tlilgo P(O,i) (Mto — m(t) S [azo,bg0)> > 0.

Thus C(¢) > 0. Hence we have shown that C(¢) > 0 when ¢ € CF(R x S) and ¢ # 0.
For any = € R, when L is large enough so that x + L > 1, by Proposition 4.2, there exists a
constant Cj such that

1—wv(t,m(t)+ ;L) <1—w (t,m(t) + x)
<1 —wi(t,m(t) + ;L) + Py (Mg >m(t) +z+ L)
<1—wv; (t,m(t) + ;L) + Co(x + L)e VA @+L),



Extremal MBBM 1447

Letting t — oo, we get

E(o,5) (exp {—C’((ﬁ; L)M j55=(o0)e” 2’\*9”}) < liminf (1 — v; (¢, m(t) + z))

t—o0
< limsup (1 — v; (£, m(t) + z))
t—00

< Ew,) (eXp {—C(gb; L)M j35=(c0)e™ ”\*r}) + Colz + L)e—\/ﬁ(r—o—L)'
Next, letting L — oo, we get the desired result. 0

Corollary 6.2. The point process & converges in distribution to a random measure E, where the
Laplace transform of Ex is given by

Eo,i) <exp {—/¢(y+x,j)goo(dydj)}> =E 0, <exp {—C(é)Mm(oo)e‘ 2,\*:1:})
with C(¢) given in (6.1).

Proof: Without loss of generality, we assume x = 0, otherwise we may consider $(, j) = o(x+-,7).
It suffices to prove the tightness for &, which is equivalent to the tightness for [ ¢(y, j)&(dydj).
By Proposition 6.1, it suffices to show that limg o C(6¢) = 0. Choose my so that ¢(y, j) = 0 for all
y <mgand j€S. Let |60 = SUP,er,jes [#(@, )|, then

Egos) (exp {— / eas(y,j)et(dydj)}) > E(0s) (xp {—0]¢llocEs (mr 0) x S)})
> e Pl NP ) (& (g, 00) x S) < N).

First letting ¢ — 0o, next § — 0 and then N — oo, we only need to prove that for all ¢ € S,
lim limsup P(g ;) (& ((mg,00) x S) > N) = 0. (6.7)

N—oo  too
Suppose that under {& ((mg,00) x S) > N}, ur,...,uny € {u € Z(t), Xyu(t) — m(t) > my}, then
Py (& ((mg,00) x §) > N, M1 —m(t +1) <n)

< P, (& ((mg,00) x 8) > N, max M + X, (t) —m(t +1) )
<

SP(O,i) <8t((m¢,oo) XS) >N,1£nna§xNMf"+m( )+m¢— (t+1> )

N
< (sup Py (M1 +m(t) +mg —m(t+1) < n)) .
JjeS

By Proposition 4.2, we have

P(o,i) (& ((mg, 00) x §) > N)

N
<P (Myy1 —m(t+1)>n)+ (sup P, (My+m(t) +mg —m(t+1) < n))
jes

<ne VAT 4 (Py (By +m(t) + mg —m(t+1) <n)N, nt, N >1. (6.8)
For every n > 1, letting ¢t — oo first and then N — oo in (6.8), we get that

lim limsup P ;) (& ((mg,00) x §) > N) S ne” 2

N—oo  t—so00

Letting n — oo, we get (6.7) and thus & converges in distribution to a random point process Eo,. [
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Recall the definition of ¥*

¢ iq(rit,x) defined in (5.5) , we have

log / \/QA* ac+ logt / V2NY
27r t— r

d 2
_(e=y)” — 3 _
> gy -+ VT | € T x (1 - 1) (1—e 2tz ¢ ”) dy
j=1
— 1 €_v2>\*xhi /OO e\/2)\*y
2r(t —r)

‘lii(r;t,x) = \If,md (T;t,a: +

d 2
_(z=y) — _3 _
Zgjvj(r,y—l— 20*r) | e 27 <1 —e 2(I+'NW logt>y/(t ”) dy.
=1

It follows from (5.8) that

1 vi(t, V2X*t + x)

< : < 6.9
TG CTR R (09
holds for r > ry,8r — \/W logt <o <+t — \/?;7 logt with rq fixed.
Lemma 6.3. Let v solve (1.5) with initial value satisfying (1.12). Then for any fived x € R,
tlim ﬁ@i(r;t,x) = h;Cy(r)e” r
—00 N Ogt

where Cy(r) is given by (5.13).

Proof: The proof is very similar to that of Arguin et al. (2013, Lemma 4.5) and we omit the
details. 0

Let v solve (1.5) with initial value satisfying (1.12). By Lemma 6.3 and (6.9), we have for every
z €R,

£5/2 :
tlim —5———;i(t, V2\*t + x) = h;Cy(00)e” e (6.10)
Voo log
where C,(00) = lim, o Cy(7), given by (1.13). Hence for every z € R,
. t3/2 —V2\*x
lim Pio.y (M > V2t + ) = hiCoce , (6.11)
t00 —3 logt ’
2V2)*

with Cy defined in (1.14). Now we extend (6.10) to the case v;(0,y) = 1 — e~ ?(=¥:2):
Lemma 6.4. For any ¢ € CH(R x S), let v solve (1.5) with v;(0,y) = 1 — e~ ?(=%7)  then

#3/2 -
lim —5———;(t, V2X*t +2) = hiC(p)e” 2w
t—o00 N log

with C(¢) defined in (6.1).
Proof: Let v;(t,z; L) solves (1.5) with initial value (6.2). By (6.10),

$3/2 :
vilt, V2X\t 4 2 L) = hiC(¢; L)e V2"
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with C'(¢; L) defined in (6.4). By (6.5) and Proposition 4.2, we have
0 < wi(t, V2A*t + x; L) — vi(t, V2 \*t + x)

3 —V2\* ( log t+m+L>
P i(M >\/2A*t+x+L)§( 10t+x+L>e VA (2var
O\ Wan
Note that C(¢) = limy, oo C(¢; L). Letting ¢ — oo first and then L — 400, we arrive at the desired
conclusion. t
Define

&y = Z 5Xu —VIN L (1)) Er—z:= Z 5Xu V2N t—2, I, (1))

u€eZ(t ueZ(t

Proposition 6.5. For any z € R and i € S, under P(q; (‘Mt > V2Nt 4+ z) ,
(?t —z, My — V2 ¥t — z)

converges in distribution to a limit (Es,Y ) independent of z and i, where € is a point process, Y
is an exponential random variable with parameter v/2\* and

C , T C
E0,1) (eXp{ /cb Y, J dydj)};Y>x> = (qu5 ) _ c@’ (6.12)
where C(¢) is given by (6.1), Cx is given by (1.13), and
d
~ 2 [ *
Clona) = lim /2 [ " e/ (S gy(wn)sry+VEXT) | dy (6.13)
j=1

with vi being a solution of (1.5) with initial value
(Ul)i(o, y) =1- 67¢>(7y,i)1{7y§$}7 i€ 8.
The proof is similar to Ren et al. (2021, Proposition 3.4) and is postponed to Subsection.

Proof of Theorem 1./: Define D := €., — Y. By Proposition 6.5 and Arguin et al. (2013, Lemma
4.13), also note that D, = (Et — z) — (Mt — V2Nt — z) we get that under P (0,0) < }Mt > V2N + z)
D; converges in distribution to D. Also, for all > 0,

E(o,) <exp {— / qb(y,j)Dt(dydj)} s My > V2Nt + 2+ 2| My > V2Nt + z)

=E0,) <exp {—/¢(y — My + V2Nt + 2+ x,j)é’t(dydj)} ‘Mt > VNt A+ 2+ x)
X Py (M > V2Xt+ 2+ 2| My > VEXE + 2)

= Eo.) <e><p {— / Py — Y,j)é’oo(dydj)}> P (Y > )

=K@ <exp {—/qﬁ(y,j)D(dydj)}) Py (Y > ).

The desired result follows. O
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Proof of Theorem 1.5: By Proposition 6.1 and Corollary 6.2. We only need to show that for any
¢ € CHR x 9),

E 0, (exp{—C(QS)M\/W(OO)}) E. <exp{ 3 6o+ AP, ))})

k,n

Note that by Campbell’s formula,

E(OZ (exp{ Zgb bk—i-A ),§T(L))})
_E(OZ exp Z/Qb b +y,7) (dydj)})

=E0,5 <H E(O,i) exp —/<Z5 (z+y,4)D (dydj)}) |Z:bk)
k
=B (exo{~ [ (1B (exo{ -~ [ 6+ 0.0) D (i) }) ) Coc e (0)VaNE VPV ).

It suffices to show that for every ¢ € C (R x S),
C(¢) = C’OO/ <1 —Eq,) (exp {— / ¢(z+vy,j)D (dydj)})) V2Xre V2V, (6.14)
R

Suppose that ¢(y,j) = 0 for all y < my and j € S. Recalling that Y is an exponential random
variable with parameter v2\* and £, = D + Y, we get that

/R<1 —Eq, <exp{—/¢(z+y,j)D(dydj)}>> VIV 2

_ /ﬂ: (1 —Egy) <exp{—/¢(z+y,j)®(dydj)}>> Idre V2N,

— o~ V2Nmy / (1 —Eq,) (exp { / ¢(z+y+my,j)D (dydj)})) Vorre VP,

0

— V2 my (1 —E.) <exp {— / (Y +y+my,j)D (dydj)}>>
= eV (1 — E,s) (eXp {—/¢ (y+ Mg, J) Eco (dydj)}>) : (6.15)

Applying Proposition 6.5 with z = mg, we get

e~ V2N mg <1 —Eq (exp {_/¢(y+m¢’j)g°° (dydj)}>>

= V2V Jim (1 —E(o,i) <6Xp {—/¢ (y +mg,5) (E¢c —my) (dydj)} ‘Mt > V2ZAt m¢>)

t—o00

S E0,3) (1 — exp {— Jo(y,5)E (dydj)} s My > V204t + m¢>

t—00 ]P)(O ) (Mt > V2Nt + m¢>)
1— dyd
— o V2Xms i B, (1 —exp{=[¢(y,5) € (dy ])}) (6.16)

t=o0 p(o,,.)( f mt+m¢)
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By (6.11),
P ( M V2 ¥t
67\/2)\*7)’% lim (0.4) < t > )
t=o0 P(O,i) (Mt > 2\t + m¢>

Therefore, by the probabilistic representation of (v2);(t, vV2A*t) given by (1.6), we continue (6.16)

to obtain

Eq: (1 —exp{— [ (y.4) & (dydj)})

=1

— lim
f=roo P(O,i) (Mt >V 2)\*15)
1
— lim (o2)it, VEXt) = SO (6.17)
TPy (M > V2 Coo

where vy solves (1.5) whose initial value is defined in (7.37) and in the last equality above we used
(7.38). Combining (6.15) and (6.17), we get (6.14). The proof is now complete. O

7. Proofs of auxiliary results

7.1. Proof of Lemma 5.1.

Proof of Lemma 5.1: We only prove the case for (1 — p;)pNL. For any v € [0,1]%, let F(r) :=
(1= pi))NE(rv) for r € [0, 1], then there exists § € [0, 1] such that
(1= pi)elF(v) = F(1) = F(0) = F'() = (1= pi) Ve (0v) - v

Let J(i) == {j € S:j #i,u;; > 0}, then for any j ¢ J(i), pk(i) = 0 for any k € N¢ with k; > 0.
Therefore, by the trivial inequalities
1=]Jz <> (-2, a€l0,1),5#i
J#i j#i
and
1—(1—2)f <koz Ek>1,2€[0,1],

we have

(1= pi) | (0v) =9 (0) v <D v | > ko) [J(1 = 00)557%¢ — iy

¢#i |keNdik;=0 J#i
= > u| D> k()= D k(i) [J(1 - 0vy)f e
ted()  \keNdik;=0 KENd:k;—0 i
< S o S k@ [ 1-T[A-00)% | < 3 0 S k()Y (1 (- euj)kf>
LeJ(i) keN:k;=0 J#i teJj(i) keNd ];éi
< Z Uy Z kgpk Zk?ov;yo < —F Z i eVe Z kfpk Zk(‘lo : HVHQO

min
ee(i kend i LeJ(i ,Uz Y4

= I ) (1= pi)vei(0) - v) [[v]|*°,
where we used (1.4) at the end of the display above. Thus (3.13) is valid. O

LeJ(i) keNd j=1
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7.2. Proof of Lemma /J.1.

Proof of Lemma /.1: Using (infs<; Bs, Po) 4 (—|Bt|, Po), we can easily get

AVE
Po<Bsz—y,ssw:Po(\Bt\swsyﬂ .yt >0 (7.1)

Next, we prove that, for any K; € R and « € (0,1/2), it holds that

ANRVA
Po(Bs > —y+ K1s%, s<t) < Y \[, y,t > 1. (7.2)
Vit
If K7 > 0, then by (7.1),
ANRVA%
Py (Bs > —y + K15, s <t) <Pg(Bs > —v, SSt)Sy\/;[, y,t > 1.

When y > /t, we use the trivial upper bound 1.
Now we prove the desired result. When ¢ < 3, we use the trivial upper-bound 1. When ¢ > 3, by
the Markov property at time t/3 and (7.2),

PO(BS > —y+f($),8§t, Bt+y_f(t) € [Z,Z—I—l])

t
<Py (BSZ—Q—KSQ,SS?))-

t 2t
sup P, (BS > —y+f<s+3> 8 < —, Byyz+y—f(t) € [z,z+1]>

zeR 3
ANVT t 2t
S.;y \['SHpPaf(Bsz_y—’—f(S—’_)aSS? B2t/3+y_f(t)€['z?z+1]>7 yazzl‘
\/E z€R 3 3
For any = € R,

t 2t
P, (Bsz—y+f(8+3>,5§3, th/3+y—f(t)6[z,z+1]>
t t
<P, <Bs—B2t/32_(2+1)+f<3+3>_f(t)’gﬁsﬁ

=Py <§sZ_(Z"—l)"—f(t—S)—f(t),SS
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with h = x4y — 2z — f(t) and B, := By /35 — By /3 being still a Brownian motion starting from 0.
By the Markov property of B at time ¢/3 and (7.2), we get that
- t o~
Po (B (4 1)+ £ (=)~ f(0.5 < 3. Bugs < ln- 1))
z’'eR

(4 D) AVE B o —a)?/(t/3)
_— . Sup

. T

\/{f z’eR Jh—1 \/27[‘75/3 4
(22) AV 1 < ZAVE
Vi Vont/3 Tt '

Therefore, the desired result is valid. ]

- t -
<Py <BS >—(z+1)—Ks% s < 3) - sup Py (Bt/g €[h— 1,h]>

S

<

7.3. Lower bound for E ;) (.At’y 4 )) In this subsection, we adapt some ideas from Bramson et al.
(2016) to prove (4.11).

Proof of (4.11): Since limy_, HA»(Oﬂ') (Ie(t) = i'") = girhy > 0 for all 4,7' € S, we have
. f . f@ ) I t — -/ ‘
i,lipes %r>l1 (0,2) ( e(t) 2) >0

Therefore, for ¢t > 1, by Proposition 2.1, and the independence of Iz and X¢, we get that

(5 A i
Eq (A1) = " Eo) (hI PRREACETARE Xg(t)>ff’y4}1{1§(t)=i’}>
13

> NPy (BS < f.s<t, B> fiY - 4) : (7.3)
We first show that for all 4/t — 3 > y>1,t>1,
NP (Bs <y-+ im(t), s<t, Br>y+m(t)— 1> > ye‘my. (7.4)
Let g; := m(t)/t. Taking A = ¢; in (4.6), we get that for all t,y > 1,

NPy (BS <y-+ im(t), s<t, Br>y+m(t)— 1)
=N EY (e_thtJrqgt/z; Bs <y+qs, s<t, B:>y+qt— 1)
> MNlemt W) 2py (B > —y, s<t, By < —y+1)
> e_myt:)’/QPg (Bs>—ys<t; Bi<—-y+1)= e_myt?’/zEQy <lzt;Rt < 1) ,

where (R;,Qy) is a Bessel-3 process starting from y, and in the last equation we use the following
well-known change-of-measure

dQ,
aP,

B +y
= L{B,1y>0, s<t}s
o(Bs,s<t) Y

here (B; +y, Q) is equal in law to (R, Q). The density of Ry under Q, is given by

Y @y)? @) (] p2wy/t
y\/27rte ( ¢ )

1{:):>0}‘
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8, and that 0 < 2zy/t < 8V/t/t < 8 and (x — y)?/(2t) <
<y<4vt—3<4ytandt > 1. Thus,

~

Note that 1 —e™® 2 2,0 < z <
(4vt)?/(2t) S1forall0 <z < 1,1

1
—\/2)\*yt3/2E <13%/ R, < 1) _ ye—\/2>\*yt3/2/ e—(w—y)z/(%)(l — e 2/ qy
t

0o yYv2rt
1
= 1 2zy
> ye— V22 yt3/2/ _ - M
Y 0o yvamt t

1
Zye_‘Q’\*y/ zdz > ye VY 1<y <4Vt—3, t>1.
0

Thus (7.4) is true.
Since, for fixed ¢,

“mt)+y— (fiY+3) = 2\/% <log (ifjl_—{l—l> - jlogt) —3=:G(s),

3 1 logt t
G'(s) = . 0 = s=t4+1-———
) = van (t—s+1 t ) S v

Since G(0) =0, G'(0) < 0 and G'(t) > 0, t > e, we have for t > e and s < t,
G(s) <G(t) = -3 5 lo (1 + 1) <0
- N t) =

{BS <y+ %m(t), s < t} C{B.<f+3, s<t}. (7.5)

we see that

Thus

On the other hand, since

3 1
—|—mt—1—<t’y+3—4): o <1+>>0,
y +m(t) : Wtk .

(B, >y+m(t)—1} C {Bt > f§’y+3—4}. (7.6)

we have that

Combining (7.5) and (7.6), and noting that fov 4 3= f;’“g, we get that

Po (By <y+ mlt), s<t, Bizy+m(t)—1) <P (B < [V s <t, B> iV - 1),

(7.7)
By (7.3), (7.4), and (7.7),

Eq (A™(1) 2 (y = 3)e VU™ > e VAW e S, t>1, 4<y<4vt,
which implies (4.11). O

7.4. Upper bound for E(OJ) ((.At’y)ao 1'{(5)). In this subsection, we prove (4.15). The proof is divided
into two steps.

Proof of (4.15): Step (i) Let G; := 0 (X¢(s), I¢(s),s < t) and let

A (Ie(rg—)) = (A1 (TIe(r0=)) 5 oons Ag (Te(7e—)))
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By the trivial inequality <Zj LT ) < ZJ 1 757, on the event Y(§),

Ky d oo

E(O,z’) ((At’y)ao |Qt M (A (IE(Tg—)) A< Kt)> <1l+ Z Z (A] (Iﬁ(Tg—)) — 5j,fg(Tz)) (78)

=1 j=1
aQ
$ B (#{u € Z(t—7) s Vs <t =m0, Xu(s) < Sl Xult —70) = [V =4} )}
Let z = X¢(1y) < le 2= fﬁf —z>0and r =t — 7y, then
B (# {u € Z(r): Vs <1, Xu(s) < fol, Xu(r) > f} —4})
< TPy (B <<, BTzft’y—zl—z)

— )\*TE\/W G_WBT"')‘*Tl t
0 {Bs<f s+T —2,5<r, Bp>fi¥—4—z}

< e*m(ff’y*‘lfz)*”‘*rPo (Bs >hl¥ s <r, B, <4+ h;’zl) : (7.9)

Recall that h%Y =

2@ log (tf‘;j_1> —y. It follows from Lemma 4.1 that for r > 1,

!/

/ / , , 1

Po <BS > hg* s <, Br<4+h:’z> <Py (Bs>h’;’z Ls<r, Br<3+h$’z+1) S < 3/2 )
r

For r < 1, we use the trivial bound 1. Plugging these into (7.9), together with (7.8), we conclude
that on the event Y (&),

) ((A")™ G N (A (Ie(m—)) £ < Ky)) S 1+ ZZ (Ie(e—))) (7.10)
/=1 j=1
ty Qo
VI (f1 2 X () + 2000 (t—p) | e — Xe(me) +1)
X e 0V2A" (f—2-Xe( e))+2 0" (t=7¢) ( ¢ = Tg)3/2 1{1%7@21} + 1{t77z§1} :

Note that the distribution of the number of offspring A(j) of a spine particle of type j is given by

Pi(j)(k, h)

W =: ﬁk(j)-

@(O,i) (A(j) =k) =

Thus, given Gy, the law of A (IE(Tg—)) is equal to @(O,i) ( ‘Alg(Tz) (Ig(Tg—)) >1, IE(Tg—), IE(Tg)> since
there must be at least one particle of type I¢(7;) among the A (I¢(7,—)) offspring. So for any k € N,
N Po0,i) (A (e(re—)) =k, Are(ry) Te(Te—)) 2 1‘15(76—)7I£(Té)>

Pio (A Ue(re=) =k|Gi) = R
Po,i) (Alg(n) (Le(re—)) = 1‘I§(Tf—)7I§(T£)>
_ 1

ZkeNd:kQ(Tﬁ)zl Pi(Le(me—

))ﬁk(I£<T€_))1{kI£<TZ>21}-
Define

S:={ () €SxS: > Pulj) >0
kENd:k‘j221
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There exists a constant ¢; € (0,1] such that for all (j1,j2) € S, ZkeNd:kmzlﬁk(jl) > ¢;1. Note that
ZkENdiklé(v)Zl ﬁk(Ig(Tg—)) > 0. Therefore, (Ig(Tg—),Ig(Te)) € S and

d
G ! Z > beIe(r) -k

ZkeNd g (rg) 21 P(Ie(Te—

J=1 J LkeNky, (- =1
1 d
< ;Z Pr(Le(re)—)k;° < SUPZ > Bl
! j=1 kend b5 j=1 kend
d
pk > [a)) aQ
= sup ek < sup pr(0)kgk:
tes ; o (1 >\*/ ag)he 7 ™ g qes k%;d !
L ltao a0k1+040
< sup pe(0) | 2 + —2 <1, (7.11)
£,5,q€S k%d 1 + (&%) 1 + (&%)

where in the last inequality we used the assumption (1.4). By (7.10) and (7.11), on the event Y(¢),

K
IE(EM') (A |G) S 1+ zt: o~ 0VIN (f{ =2 X (re) ) +200 A" (t—7¢)
=1

(fr! — Xe(me) + 1) @0
’ ( o Meren +le-nsy

Step (ii) Note that 7, is measurable with respect to o(l¢(s) : s > 0), which means that 7 is
independent of X¢. For the Brownian motion B, define

T:= {Bs < fst’yv s<t,B> f:’y —4} .
Then
Bl ((A™)™ g |re: £21) SPo (Bo < f1%, s <t B, > f* —4)

S VIR (5B, )b 20on (1) [ PR — Br, +1 "
+ Y B | e ooV B ) 200\ (tom) —ft—m%/? Limr>1y + lp—r<y | v

= L1+ Ly(0). (7.12)

For Lj, note that the argument leading to (4.9) also works when k is not an integer. Letting
k=tand x =4 in (4.9), we get

* ) * 1 /\ t * *
Ly <e V2 (fr¥=4)+x tW x 25 < e My AViE)e VY, (7.13)
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Note that 7, can be regarded as a constant with respect to Eg. For Ly(¢), we deal with two cases
separately. We first deal with the case t — 7, > 1. Set r := 74. By the Markov property,

t,y @0
e oxiiem [ Y =B, +1
Ly(0) = Eo (e oV (Y =By ) +2a0A" (¢ )<(t—7“)3/2> 1T>

o
. —aoV2A* (fPY—Br)+200 N * (t— r Br+1
_ EO (e aQ (ft ) aoA*(t—r) ((t_rp)?)/? I{Bsgﬁ,y’ sgr}

x Pp, (B < f+r, s<t—r, Bi_, > ff’y—4>>. (7.14)

For z < fbY, set 2/ := f¥ — z. Using (4.6), the fact that f Ve — 2 = V2 s — h?’“’z’ and (4.8)
(which is still valid when k = ¢ is not an integer) with Fi_"* ([1,5]) defined in (1.7), we get that

P. (B < s<t-r Bt_rsz’y—éL)

_ V2N (V2N By A (t—T)
= Eg € 1{Bs<fty —z, s<t—r, By_y>f/V—4-z}

* * _ /
<e” 2>\(f +)\t'rPO B< ht TZ,SSt—T,Bt_TZ—Zl—hi_:’Z)

e VIV (I =2) X (=) p (Bs e s <t—r By < 4+h§:7,)
VIV ()X () p ( > 14+h T s <t—r By <54 MH)
* ’ * +1
< VI (FIY=2) A% (t-) 27 . T15
N (t —1r)3/2 o

Combining (7.14) and (7.15), we get that

< —(14+ao) V2N (fY =B, ) +(14200) A" (t—7¢) 7 = Br +1 ’
Eo | e ! ‘ (t — Te)3/2 1{BsSf§’y, s<m}

1 -1+« N fEY 4 (142000 ) A% (t—T
::(t—73)3(1+a0)/26 (14a0) V2N f ¥ +(14200) A" (¢ z)Eo (Gl{BSng,y’ SSTe})’ (7.16)

where G 1= ¢(F@0)V2A" Bry (fl¥ _ g 4 1)1+ Next, using (4.6) with A = v/20*, and noticing that
(Bs, Py 2 4 (Bs + V2X*s,P) and that fbv = \/2x%s — kLY, we get that

o0
Eo (Gl{BSSfﬁ’y, sgm}) - ZEO (Gl{Bsgfé*y, ssre}1{BTfife[fk71,fk]})
k=0

M8

< §7 oV (7)) (1 4 9)l+ao <€\/2,\*

B-
”{Bssﬁ*y, sgn}l{BTe — 7 Eel—k— 1—k}}>

e
i

0

00
— ea0\/2)\*f.,t-2y+)\*~r£ Ze—am/2)\*k(k + 2)1+a0P0 (Bs < 7h1;,y7 s < TKaBTg + hs_,ey c [7(k+ 1)’7]{]) .
k=0
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When 7, > 1, by Lemma 4.1, we have for all £ > 0,

Py (Bs < —h%Y, s <14, By, + hiY € [-(k + 1), —k])
=Py (Bs > hyY, s <79, By, — hiY € [k, (k +1)])

<Py (Bs>hiv™, s<7, By —hbY" e k+1,k+2))
(D) Aymk+1)  GAVD(E+T)

~ -3/2 ~ 2372
Te Te

(7.17)

When 7, < 1, we use the trivial upper bound 1. Therefore, using the fact that y p- e~V AR (ke +
2)1+a0(k 4 1) < 0o, we conclude that

Eo (Gl{Bssﬁ’y, s@})

* £1, * - * 1
< QORI N N gm0V () . 9)Lao <(y - \[:a)/(zk in + 1{%1})
Te

k=0

* £t * 1
g (y/\ \/%) eoz()\/?)x R N ( 373 1{Te>1} + 1{7’[<1}> (718)
Te

Combining (7.16) and (7.18), we get that in the case when ¢t — 7y > 1,

< Vi o~ (14a0)V2N* £ +(14200) A" (t—7) aox/ﬁfwyﬂw 1
L) 5 (y A t) (t — 74)3(1+a0)/2 3/2 Lrz1y + Lm<yy
v 7
_ Y A (R M U Ve 'l
N <y A \/i> ¢ ! (t — 74)3(1+0a0)/2 ¢ Tml{Tezl} + 1<y
Ty
Vaxy (t+1) KA |
S (y A ﬁ) X (t—m)pp2° ?1{@1} + lm<yy
* 1 1
—VZNTy —A*t
S (y A \/i) eV e ( Sty t T e Hyacnsen 1{%1}) - (7.19)

Now we deal with the case t — 7, < 1. For z = B,,,

P, (B <Y s <t—14,Bys > ff’y—4> <P, (Bt,n > ff’y—4—z)

_ EO\/2>\¥ (67\/2)\;&_%“\*(#”)1{Bt,72f§’y—4—z}) < 67\/2»(ftf’y,4fz)+)\*(t7-rg),
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which implies that for all y,¢ > 1 and ¢ with t — 7, < 1,

La(¢)

_ —ag V2N (fY =B, ) 4200 2% (t—T70)
=Eo (6 (7 2 1{Bssﬁ’y, s<t,Bi>f; Y —4}

* ty *® (4
< B, (6—(1+a0)\/2)\ (f1Y =Bz, )+(14+200)3* (t TZ)l{Bssﬁ’y, 5§T£}>

o0
— o~ (14+00) VZXF [1V+ (14200)A* (t=7) ZEO (e(1+a0)\/zr*
k=0

BT@I ty )
{Bs<fo ,8<Tz} {Br,— 1Y e[~ (k+1),~ k] }

< 67(1+a0)\/2)\*ftt Y4 (14+200) X (t— Tg) ag V2 * fqt-ey A1y

30 VKB (B, < 0, 5 < 7, By — 17 € [+ 1), —H)
k=0

< o= (1+a0) VIR £V (14200) A" (t=7¢) yao VIR £17 A71y Z p—aovaxk (Y A Vi) (k+1)
N 372 ’
Ty
where in the last inequality we used (7.17). Therefore, when t — 7y < 1,

L2(£) 5 e—(1+o¢0)\/2>\*ftt’y+(l+2ao)>\*(t—7'g)eao\/QA*fife)\*rg (y A \/E)
S <y A \/Z> e N lem VY, (7.20)

Using (7.12), (7.13), (7.19) and (7.20), taking expectation with respect to IP’(O i), We get

E. ((A")™ 1r¢) S Eq (Ll + ZL2 )

v _JoE (t/2>7>1)  ltja<r<i—1)
S AVDe e VPR <1+Z< 3/5 R +1{Te§1}+1{w2t—1}>)'

Then we get (4.15). O

7.5. Proof of Proposition 5.5. In this subsection, we will give the proof of Proposition 5.3. To prove
Proposition 5.3, we will need a lemma (Lemma 7.4), which is similar to Bramson (1983, Lemma
7.2, p. 105). A key step in the proof of Lemma 7.4 is the inequality (7.27). In Bramson’s argument
for the analog of (7.27) (see Bramson (1983, (7.32) on p. 107, Proposition 7.1 on p. 97)), the
Kolmogorov-Petrovsky-Piscounov theorem (see Bramson (1983, p. 34)) was used, see Bramson
(1983, Proposition 3.4 on p. 47 and (3.71) on p. 49). In the multi-type case, the analog of the
Kolmogorov-Petrovsky-Piscounov theorem has not been proved yet. So we have to overcome this
difficulty.

Lemma 7.1 below is the key to (7.27), which is different from Bramson (1983, (7.32)). Roughly
speaking, since v} (0,y) = vi(r,y)1{y>—10g,} 18 Very close to 1 when |y| < logr, by representation
(1.6) for v} (t,y), it suffices to show that, under P(, ;), the probability of the event that there is at
least one particle locating in [— log r, log r] is close to 1 when 7 is large enough. This is easy to prove
since we know the behavior of the maximal position M; very well by Theorem 4.5. Using this, we
can get Lemma 7.1 below.
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Recall the definition (5.3) of v*, where v is a solution to (1.5) with initial value satisfying (1.12).
Define

m4 (t) := max { V2 \*t — log, t,0
+() { m g+ }

Lemma 7.1. For any € > 0, there exists N = N(e) such that when r > N,
vi(t,y) >1—e, forallt>0,1€S, yel0,my(t).
Proof: We first prove that for any €1 > 0, there exists N* = N*(e1) such that when r > N*
Pogy (#{ue Z(t): |Xu()| <1} =0)<e, i€85,t>0. (7.21)
Using Theorem 4.5 and symmetry, we get that, for any 1 > 0, there exists N7 such that

supsup}P’(OZ ([My —m(t)| > N1) = supsup P(g ;) (|M7 4+ my(t)] > N1) < 5 (7.22)
t>0 €S t>0 ieS

Here M, := inf ¢ z(;) Xu(t) is the leftmost position among all the particles. By the Markov property
and branching property at time ¢/2, we have

Proy (#{u € Z(t) : |Xu(t)] < 2N1} = 0)

€1
<5+ P,y (|Myj2 — my(t/2)] < Ny, #{u € Z(t) : |Xu(t)] < 2N1} =0)
< &1 sup sup P, (| t/2| > 2N1>
2 z—my(t/2)|<N; jeS
g
<o sup  supP., (| s T (t/2)] > 2Ny — |z m+(t/2)y)
2 emma(t/2)|<N: jES
£
< 21 +sup P, (] t/2 +my(t/2)] > N1> < £1.
JjES

Therefore, (7.21) holds with N* = 2Nj.
Next, we prove that, for any 5 > 0, there exists N = N’(e2) such that when r > N’

Py (#Flue Z(t): [Xu(t)]| <7} =0)<ez, i€8,t>0,y€[0,my(t)]. (7.23)
Let to > 1 be a constant such that my(t) = m(¢t) for all t > tg. When ¢t < ¢, we use the trivial
upper-bound
Py (#{u e Z(t) : [ Xu(®)] <7} =0) <Py (|Bi] >7)
and the tail probability of normal random variables; when y < m(ty), we use the bound
Pl F#{ue Z(t) : [Xu(@)] <7} =0) <Py (#{ue Z(t) : [Xu(t)] <7 —m(to)} =0)

)
and (7.21). So we only deal with the case when t > ¢y and y € [m(to), my(t)] = [m(to), m(t)].
Suppose that y = m(s) for some ty < s < t. Let &1 = €3/2, Using (7.21), (7.22) and the fact that
Poy (IMg~ +m(s)| > N1) = Py ) ([Ms [ > Na),

yi ) (#{ue Z(@) - [Xu(t)] < N1+ N7} =0)

§5+IP (M <Ny, #{ue Z(t—s): |Xu(t—s)| < Ni+N*}=0)
<2y sup sup}P’(ZJ)(#{ueZ(t—s) | Xu(t—s)| < Nt +N*}=0)

4 Lz<n jes
§Z+Sup[?0] (#{ue Z(t—s): |Xu(t—s)|§N*}:0)<%2+%2<62,

which implies (7.23).
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For any € > 0, by (5.1) and Theorem 4.5, when r is large enough, we have for all z € [—logr, log r|
and any 7 € S,

vi(r,x) > P, (MﬁO > — Nl) > P, (Mﬁo —m(r) > logr —m(r) — Nl) >1-— g

Taking e = § in (7.23), we get that for any i € S,t > 0 and y € [0,m4(t)], as long as logr > N’ &
N/
r>e" =N,

vity) =1=Eg | TT (10,00 Xu®))

u€eZ(t)

>1-Eyn | [T (=m0 Xu®)lgx,m<osr})

u€eZ(t)
€
>1=Eyy H (1 - (1 - 5) 1{\Xu(t)lﬁlogr})
u€Z(t)
21— = =Py (#{u€ Z(t) : [Xu() < logr} =0) > 1 —e.
This completes the proof. |

For single-type BBM, the assumption pg = 0,p; # 1 implies that the offspring mean is strictly
larger than 1. This fact is used in the inequality k(v(t —s,34,4(s))) < 1/2 above (7.34) on page
107 of Bramson (1983) to prove the exponential decay in Bramson (1983, Lemma 7.2), where 3,
is the Brownian bridge starting at x and ending at y. But for multi-type BBM, there are two cases
that will contribute exponential decay: (i) p;; = 0 for all 4+ € S. In this case, the assumptions
po(i) = 0 for all ¢ € S and A* > 0 imply that there exists jo € S such that nj, — pj,,j, > 1, which
will play a role in getting the exponential decay in Lemma 7.4 below. In Lemma 7.2 below, we
give an estimate which will replace the role of the inequality k(v(t — s, 342,4(5))) < 1/2 of Bramson
(1983) in the multi-type case. (ii) Another case is that there exists j; such that p;, ;, > 0. In this
case, we can also get the exponential decay in Lemma 7.4 by using Lemma 7.3 below.

Lemma 7.2. Suppose that nj, — pj, i, > 1. Then for any 0 > 0, there exist Cyg > 0 and e = g9 > 0
such that for all t > 0,

sup E?x,i) exp{ —0 Z Lr,—jo} < Cge™ e,
zeR,i€5 seD j:s<t

Proof: Since I and X are independent, we only consider the case x = 0. Let {Y,, : n =0,1,...} be
the embedded chain of I; under P ;. We first prove that there exist C1,4; > 0 such that

ey Plosy (Yo # jo, -+, Yo # jo) < Cre ™M™, (7.24)
1€
Since {Y,,} is irreducible, for each ¢ € S, there exists L; € N such that P’(lO i)(YLi # jo) < 1. Let
L := max;cg L;. Then

sup Py (Yo # Jo, -+, Y1 # jo) < sup Pl (YL, # jo) =: €~

€S €S
Therefore, for n > L, we have

sup Py (Yo 7 jos -+ Yo 7 o) < €™ supPly ) (Yo # o s Yor 7 o)
S 1€

which implies (7.24) with Cy := €', 8, := ¢ /L.
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Next, define Uj, := inf{t € Dy, I; = jo}. We prove that there exists d > 0 such that

sup E?O,i) (eéQUfO) =: Cy < 0. (7.25)
€S
To this end, it suffices to show that there exist constants C3,e9 > 0 such that for ¢ large enough,
sup P?O,’i) (Uj, > t) < Cze ="

€S
Recall that in the paragraph containing (4.17), we defined a coupling (I3, I}*) so that the embedded
chain of I and I% are the same, and the jump times Dy = {t,, : 0 < t; <ty < ...} of I and the jumps
times D% = {0 < ¢} < t5 < ...} of I% satisfy ¢, < ¢y for all n > 1. Let UjgO = inf{t € D, I} = jo},
then Uj, < U]%. For n € N, on the event that the first hitting time of jy by the embedded chain is
larger than n, by (7.24) we can bound P?Oﬂ.) (Uj, > t) from above by C1e~%1". On the event that the
first hitting time of jo by the embedded chain is less than or equal to n, we bound Pf”o ) (Ujy > 1)
from above by

n

sup Y Pl (Vi + .. + Y > 1) <ne”®sup (E?U,i) (egn&/z))n = ne S22
€S €S

Taking n = [eat] for 0 < exlog2 < a/2, we get

sup P?O ) (Uj, > 1) < Cre™01e2t] 4 [gpp]emat/2plos 2leat]
i€S ’
which implies (7.25).
Define VJE :=inf {t € Dy, I, = jo} and Vi = inf {t eDy:t> ij_l I :jo} for n > 2. Set
Ujlo = VJ%) and Uj = V" — Vj’g_l. By the strong Markov property, {U;é : n > 1} are indepen-
dent. Define S; := ZseDJ:sgt L1,—jo} = Sup {n: P Ui < t}, then for any n, {S; =n} C

{2%111 ue > t}. Thus, by (7.25) and the strong Markov property,

sup E?x,z') (e’est> <e0ny sup ZP](LM) (St =1)

z€R,icS z€R,icS -1
n /+1 n+1
<e 4 sup P! . Ur>t|<e+n sup P . Um >t
xER,iES; (@) mzzjl 70 z€R,iES (@) mzzzl 70

n+1 m ntl

<e ' 4 ne %2t sup E?O ) <e§2 Xm= Ujo) < e 4 pe %t H sup E?O ) (e52U10>
ies ’ — i€S ’
m=
_ e—en +7’L€(n+1)62_62t.
Taking n = [t/2], we get the conclusion of the lemma. O

Lemma 7.3. Suppose that i, j, > 0. Then for any 0 > 0, there exist Cj > 0 and €* = e, > 0 such
that for all t > 0,

t

h * —e*t

sup E/ . <exp{—0/ Ler— ds}) < Cpe©t.
veR.ieS (24) 0 {Is=5} 0
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Proof: We continue the notation in the proof of Lemma 7.2. By Lemma 7.2 with jy replaced by j;
and the fact that fo Lir,—jyds > Zst ! Ujl', we get that for any fixed small > 0,

t Si—1
E?x,i) (exp {—9/0 I{IS:jl}ds}) ( (exp{ —0 Z })

[mt] -1
< P(w z)(St [ ]) + El(la:,z) exp { —0 Z Ujy

s, [nt]—2
< e E Bl () + (Bloyy (exp {~0U2}))

t—3
< Cle_(81_77) (E?O 7o) (exp {_QU]?I}))W .

Taking 1 < €1, we get the desired result. O

Our goal is to get the upper bound for v;(t, m(t)+x) for large r and r < z < v/t in Proposition 5.4.

Lemma 5.2 implies that the upper bound is related to E?x,i) <R(t -] v*)%ﬁ’y) Xir = y> for
m(t)+r <z <m(t)++vtandy > —logr. In Lemma 7.4 and Proposition 5.3 below, we will estimate

E’(Lm 0 R(t —r; v*)vlth’f (T’y); (Bup)c‘Xt_r = y> under the condition z > m(t) and y > —logr.
’ t—r

Recall that j; is the integer such that j; < ¢/2 < j; + 1.

Lemma 7.4. Let v be a solution to (1.5) with initial value satisfying (1.12) and let v, be given by
(5.3). Then for r large enough, t > 4r and j; > j > [r + 1°], it holds that

B, (R((r,t o) YY) g x, = y)
hltf'r

for ally > —logr,z > m(t) and some constant C.

Proof: First note that j; > j > [r 4 9] implies that r < j —j%/2 < j<t—randr <t—j <
t—j+44°/2 <t—r. When r is large enough, we have

B (Rt o) 2= alx, )
< B (Rt—v"((f — 3%/2, ) o) AL 1), S(r 1) = 81 ()| X = y)

v r,
+E(1‘z) <RtT((t _jvt —j—l—j(s/Q];U*)M;A}(T,t),S(T,t) = SQ(rvt)‘Xt = y) .

Itf'r

For the first term, when s € [2r,¢/2], by Bramson (1983, (7.30), p. 106),
—m(t
M, (t = 5) = m(s1) — (K n M) & +ou(1), (7.26)

where 51 =t — 5 — 5 + 03(1) and 01(1),02(1) — 0 as r — oo. Since K > 2 + v/2)\*, for r large
enough, we have for any s € [2r,¢/2],t > 4r and ¢’ € [2r,t/2] N [s,s + 1),

M, (t—s') <m(s1) — 25°.
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Now we first prove that, for any € > 0, there exists N(g) such that for all r > N(¢),i € S,t > 4r,
s €[2r,t/2] and 0 <y < M, (t — §') +25° < m(s1) with some s’ € [2r,¢/2] N [s,s+ 1),

vit—r—sy)>1-¢. (7.27)
When ' € [0,m(t —r — s)], by Lemma 7.1, we can find Nj(e) such that for r > Ny (),
vit—r—s9)>1-¢. (7.28)

Combining the above with (7.26) we get (7.27) when m4 (t—r—s) > m(s1). fmy(t—r—s) < m(s1),
then for y' € [my(t —r — s),m(s1)], by (5.1) and (5.4),

U:(t —-r—==: y,) > Uz(t - S, y,) - P(O,i) (Mtfrfs > y/ + log T)
> P(O,i) (MZES > y/ — N1> — P(O,i) (Mt—r—s > y’ + log 7’)
> P (M2, > m(s1) = Ni) =Py (Mg > my(t =7 —s) +logr),  (7.29)

where ig € S is the type fixed in (1.12). Note that t —s —s1 = 8% — 03(1) and m/(s) > v/A* for large
s, when 7 is large enough,

*

VA
m(t —s) —m(s1) + N1 > VA (t —s—s1)+ Ny > Ts‘s—i—Nl — +00.
Therefore, by Theorem 4.5, there exists Na(e) such that for r > Na(e),

Py (Mi2, —m(t = s) > m(si) = m(t —s) = M) = 1 -

| ™

Py (My—r—s —my(t —7 —s) >logr) < %

)
7)

Putting these inequalities back to (7.29), we have that v} (t —r —s,y
y' € [my(t —r — s),m(s1)], which, together with (7.28), implies (7.2
On the event A}(r, t)yN{S(r,t) = St(r,t) € [, + 1)}, set

>1—¢ when r > Na(e) and

Ej = { Xy = Xoro <2/° Vselj—j7/2,5 1)},
Then on Ajl(r, )N {S(r,t) = SY(r,t) € [4,j + 1)} N Ej}, it holds that
X <25° + Xar(py = 2§° + M., (t— S (r,1)).
By (7.27), uniformly for i € S, on Aj(r,t) N {S(r,t) = S'(r,t)} N E,
Vit —s,Xs)>1—e, forselj—75°/2,4]
This implies that on Ajl- (r,t) N {S(r,t) = St(r,t)} N E;, for s € [j — 5°/2, ],
(1= pr) el (v (t — 5, X,) |
> jrr, 1,V (t— 8, X5) = (1 —¢e)(nr; — pr, 1

For the case I; = jo, we have nj, — 1, j, > 1 by assumption. Choose an € > 0 sufficient small and
an appropriate n < 1 so that

) 1{1j:jo} + 1{1j¢jo}'

1
(1 - E)(njo - :ujOJO)
By Bramson (1983, (7.36)), under the assumption y > —logr and x > m(t), for r large enough, we
have

<n<l

Px (E;}A;(Tv t)a S(T, t) = Sl(’f‘, t),Xt = y) < 6*j5/4
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Using the independence of X and I, we get

v T,
Bl (Reor( = 3°/2000 2520 4300, 5(0) = 5101 X: =)

t—r

v r, .
S E?x,l) < It];;( y)anaA;(ra t),S(T, t) = Sl(r, t)‘Xt = y)
t—r

VI, (’l“, y)
S i loan T By A0, S(n ) = 81 0)| X, = )
s€D;,j—j%/2<s<] e

- v t—r T7 y
<cIEL, (()> Pl ;) (A)(r.), (1) = 5'(r.t)| X: = y)

>t o} VR (430,500 = 510 X =),

€D;,j—j0/2<s<] e

By Lemma 7.2, and the fact that inf,cginf,>1 454, P( ) (l4—r = j) > ¢ > 0, we have

vy, (1,9)
Ef, | exp > Lt =joy logm o ===
s€Dy,j—j°/2<s<] fe—r
d vi(r,y d
SZ J sup E(zf) exp Z ]'{Is:jO}lOgn Z —6]
J=1 7 aeRteS s€D <40 /2 =1

S CnEh ' (vlt_,«(r,y)) 678]'5/2.

o i)

Combining the two displays above, we get

hr

t—r

<El., (”“hr S y)> Pl o (Abr 1), S(r,t) = S' ()| X, = ) (e—j% + 077@—6]‘6/2>
k) It , 2

C

v T,
E}, (Rt_r«j _ 2, 4l v Per 1Y), Al(r,1), S(r,t) = SY(r 1) X, = y)

. % r,
ST (I(y)> Pl ;) (A](1).5(r.t) = (1, 1)| X, = )

C:max{4,2}.
€

The second term can be treated similarly. Note that the case that ju;, ;, > 0 is similar by Lemma
7.3. Thus the assertion of the lemma is valid. g

with

Now we are ready to prove Proposition 5.3.

Proof: Proof of Proposition 5.3: Note that

(Bup)© C U Aj(r,t) U Aty U A2 ().

j=[r+re] j=[r+r°] j=[r+re]
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By Lemma 7.4, and the independence of X and I, for large r, when y > —logr and x > m(t),

v t—r 7", y c
Bl (R«r, £ =0 =Y g vel, — y)

hltf'r
& h Ti—r (T’ y) 1
< Z E(x ) R((Tvt T];U*) hr 7A] (Ta t)‘Xt =Y
j=[r+r] e
+ f: Eh UL, (Tv y) A2( t)lX
(CU,Z) h[t77‘ ) j T) t — y
j=[r+r]

j=lr+r°] -
2 Eh UIt—r(Tvy) Ph A2 X, —
2 By (T (o) (A5(r, )| Xi = )
j=[r+r?] -

Note that the estimates of the probabilities of A1 (r,t) and AQ(’F t) only relies on the path of Brownian
bridge, using Lemma 5.1 and the argument on Bmmson (l‘)?%% p. 109), we get

J1 71
Z eijé/CP?:c,z’) (AY(r, )| X = y) S Z e—ja/CPl(z (BIY X: = v)
j=lr+r] j=[r+r9]
J 5109+ 1 1 > 5
S Z /0= P(a: %) ( “p‘Xt = y) < ;P?x,z) (BUP‘Xt = y) X Z (] + 1)6_] /C’
J=lr+r9] j=[r+rd]
and
J1 J1
Y. PlLy@n]Xi=y) < Y ePPL, (BIX =)
j=[r+r°] j=[r+r]
1 s . iy
S ;P?Ji,’b) (Bup’Xt == y) X Z (] + 1)6 ‘7/2.
j=[r+rd]
Therefore, we conclude that
vr,_,.(ry .
E,) <R((r,t —1];04) Ithl( );(Bup) | X = > (7.30)
t—r

vr,_ (1Y 1 = . _4é > . s
S E?z,i) (th[()) X ;P?z,i) (Bup| Xt = y) x Z (j+1)e /9 + Z (j+1)e 9/
o j=[r+r9] j=[r+r?]

I

As r — 00, the last term of (7.30) decays faster than r~!, thus the assertion of the proposition is
valid. ]
7.6. Proof of Proposition 5.5.

Proof of Proposition 5.5: When s € [0,2r], on the set By, for t,x > 8r and r large enough, we
have

Xs >Mf’t(t—s) >m(t) +4r > m(t —s) +4r + V2 \*s + O(1) > m(t — s) +r + Na,
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where Ny is the constant in (1.12). Note that for any y > m(t — s) +r + Na, by (1.12), (1.6) and
Proposition 4.2,

vilt—5,9) =Ega (1= JI (1= 05090, Xult — 5)))
ueZ(t—s)

<SEup (1= [ (1= Loony(Xult —5))
u€Z(t—s)

=P (Mi—s >y — N2) < Poi)(Mi—s > m(t —s)+71) re VAT,

Using (3.13) and noting that logz ~ = — 1 as © — 1, we get that when r is large enough, on By,

1-— NL (vt — s, X -
Z lOg (( Z pIs)SOIS v((i — ;))) 2 _ Z Taoe—ozo\/Q)\ T_. —F{VL(O,QT’)(731)
seDj,s<2r J#1s PIs,5Y5 VS s€Dj,s<2r

and

2r L 2r
pr,er, (v(t — s, X)) / o L
_ _ s ds > — Qo0 "ds =: —T 2r). (7.32

A ar, <M157Is vy, (t — s, Xs) s 0 re S 1 (07 T) (7 3 )

Now we deal with the case s € [2r,t—r|. Similar as above, when r is large enough, for all s € [2r, t—7]
and y > m(s + s° A (t — 5)?),

Ui(s,y) < P(O,i) (Ms >y — N2) < P(O,i) (Ms — m(g) > m(S + O A (t N 8)6) . m(s) _ N2>
=P, (Ms —m(s) > V2\* (s‘s At — s)5> + 0(1)) < <56 At — 5)5) o2 (5 A (t=5)°)

S e—)\* (s‘s/\(t—s)‘s) )

In this case, when r is large enough (see the display below Ren et al. (2021, (2.14))),

M) =m(s+ s A(t—9))+ " A(t—s) <K - mt(t) N 1057«

) >m(s+ s A(t—s)°)
since K > v/2A*. Therefore, on By,,, when r is large enough,

NL
Z log (1- PIS)SOIS (v(t —s,Xs)) > _ Z ef)\*(s‘s/\(tfs)‘s)
D1, v (E— s, Xo)

s€D j2r<s<t—r s€D j,2r<s<t—r

= —INE(2r t —7). (7.33)

Similarly,

t—r L o0
PI.PT (v(t —s,Xs)) / 2 (s°A(t—s)?)
o o s d > o S S d
/2 o (““S o (t-5%) )~ € i

= —TL(2r, o0). (7.34)
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Note that By, is independent of D ;. By (7.31), (7.32), (7.33) and (7.34), there exists a constant ¢
such that

_ (m@®)+z—y)?
e 2(t—r)

R \/2m(t — )

vi(t,m(t) +x) > eA*(t_T)hi

v T,

X El(lm(t)—l-x,i) <6Xp {_CF1(07 2T) - CF2(2T7 l— 7’)} It;L;( y) s Blow| Xt—r = y) dy

t—r
(m(t)+a—y)?
_ M), e Sy o« ph . <Bl X, , = y) echlL(O,Qr)chQL(QT',OO)
'k /27t — ) (m(t)+=z,) \“low T

v _.\"Y

X E?m(t)Jr:):,i) (exp {—CF{VL(O, or) — YL (2r,t — r)} h[()> dy.

Since when r is large enough, PZE 0 (,_,=4£)>c¢ >0forallt >8rand il eS, weget that

E?m(t)—&-x ) <exp {—CF{VL(O, 2r) — YL (2r,t — r)} W) dy
' Itf'r
_wh _ _ Qo ,—aoV2A*r _ —\*(sPA(t—s)?) g, (1, 9)
= E(n(t)4.0) <<1 eXp{ ¢ Z . ¢ Z c }) hr,_
s€Dj,s<2r s€Dj2r<s<t—r r
. Eh M( t) UIt—'r(/r7y) < d Uj(ra y) Eh (M( t))
— H e \ YT T ]S > Ry (m®+) D
. =
1 v, (1, y) h
< B (t)+.) <th1t E(n@)as (M(r,t)).
Therefore,
h _ Qo ,—agV2Nr _ —2*(OA(t—s)°) vr,_, (1,y)
E(m(th) (exp{ c Z r0e= 0 c Z e } T,
seDj,s<2r seDj 2r<s<t—r r

h vr,_,(1,9) 1
= E(m(t)'i'l",i) ( th[t > X <1 o E(m(t)—i—w,i) (M(r, t))) :

C/

By the Markov property, we see that

E?m(t)—i—ac,z) (exp{ —C Z raoe—aﬂ\/ﬁ’f‘ —c Z e_)\* (Sé/\(t—s)&) })

s€D j,s<2r s€D j2r<s<t—r
h ag —ogV 2\ r
Z Bl () 4a.i) (exp{ —c D>, e })
s€D j,s<2r

x inf E?m(t)—&-x,j) (exp{—c Z o~ (s+2r) })

jeSs
s€D j,8<—2r+t/2

X inf E?m(t)-m,e) <exp{—c Z e (t/2=5)" }) . (7.35)

les
s€Dy,s<t/2—r
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By (4.21), the product of the first two terms on the right-hand side of (7.35) is bounded from below

by
2r o _ao\/wr s —)\*36
exp{_a/ <1_efcr e )ds_a/ <1_ece )ds} = Fl(T’).
0 2r

For the last term of the right-hand side of (7.35), let [z] be the smaller integer larger than z, then
by the Markov property and (4.21),

ok _s 5
E?m(t)ﬂw) exp { —c¢ Z e N (t/2=5)
s€Dj,s<t/2—r
[t/2—r] ]
> Bl an [P D © > e N
k=1 s€D g, k—1<s<kA(t/2—T)
[t/2—7] " )6
: h —\*(t/2—k
> I jof Bl | oxp § —¢ > ¢
k=1 s€D j,s<IN(t/2—r—k+1)
[t/2—r] 1A(t/2—r—k+1) - 5
> H exp {_a/ (1 e NT/2R) >ds}
k=1 0
[t/2—r] EA(t/2—7) « 5
= H exp —a/ <1 e R )ds
k=1 k—1

t/2—7" —)\*(t/2fs+1)5 o0 —a*sd
> exp —a/ (1 —e % ) ds p > exp {—a/ <1 —e ) ds} =: Fy(r).
0 r41

By the definition of M(r,t), we conclude that for large r and ¢ > 8r,

E?m(t)—&-x,z’) (M(r,t)) <1—= Fi(r)Fa(r).

Since limy_yoo P?m)(ft = j) = lim, o infys, P?x,i) (I; = j) = gjh;, we have

e*CFf (0,2r)—cl'L (27,00)

_ - A sOA(t—s) | VL (TH Y
expl—c 3 eV §Y oAy i (1Y)

s€Dj,s<2r s€Dj2r<s<t—r

h
X B (1) 4a,0)
Pt (I; = 7) d
s (z,0)\ 7 J —cIl'f(0,2r)—cl'% (2r,00) 1
> P Sk A ) ) - _ ny .
> jlgggf oh© 1 2 -7 (1= Fi(r)Fa(r)) ;gﬂg (7, )
It is easy to see that Cjyy(r) 11 as r — oo. The proof is now complete. ]

7.7. Proof of Proposition 0.5.
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Proof of Proposition 0.5: By (6.11), for any = > 0,
Jim P (M = V2N~ 2 > oM, > VXL + 2)
— 00

PP (My > VNt + 3+ 2)

logt *
= lim 22 = o VNz, (7.36)
tmoo IR P oo (M > V2N + 2
logt (0,9)
2v2A*

Then we have under P ;) ( }Mt > 2\ + z) , My — v/2X*t — z converges in distribution to Y, an
exponential random variable with parameter v2\*. For any ¢ € CI (R x S) and = > 0,

E.) <exp {—/¢(y,j) (& - 2) (dydj)} s My > V2Nt + 2 + 3| My > V2Nt + z)

1 /o3
= Eo,i) H e~ P(Xu(t)=V2A tfz’lu(t)); My > V2Nt + 242
]P(O,i) (Mt > V2Nt + Z) u€Z(t)
_ 1 1—Eq, H e O(Xu(t)=V2Xt—2,Lu(t)). M, < fONtE+ 2+
- (0,%)
]P(O,Z') (Mt > V 2)\ t + Z) ’U,EZ
_ 1 H o~ B(Xu(t) VAN 2,1, (1))
Po,i) (Mt > V2ATt + Z) ueZ(t
1 1
=: (v1)i(t, V2Nt + 2) — (v2)i(t, V2N t + z)
Py (Mi > V2N + 2) Py (Mi > V2Nt + 2)
where vi and vy solve (1.5) with
(0)i(0,5) =1— e ¥ (02)i(0,y) =1—€e?¥) ie§ (7.37)
according to (6.3). Using Lemma 6.4 and (6.11), it is easy to see that
1 1
lim (v1)i(t, V2X*t + z) — lim (v2)i(t, V2A*t + 2)
TPy (My> V2Nt + 2) P (My> VIV + 2)
Clgx)  C(9)
— _ 7.38
e o (7.38)

with C(¢, z) being defined by (6.13), and the right-hand side of (7.3%) is independent of z € R and
i€S. Let x =0 in (7.38), then

Jim B (exp { / o(y,5) (€ — 2) (dydj)} ‘Mt > V2Nt + z> = égi;o) - C;fi) (7.39)

Note that (Et — z) under P ;) (|Mt > V2Nt 4+ z) is still a point process. We now prove the

convergence of (£; — z) in distribution under P (0,0) ( | M > V2 *t + z) By (7.39), it suffices to
prove that

_[C(09,0) C(09))
191%1( o oL >_1. (7.40)
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By Corollary 6.2, we have limg o C(6¢) = 0. Note that the initial value of vy in (7.37) with z =0
satisfies condition (1.12), it follows from Theorem 1.1 that

lim B | [ e @m0 ag, < me) + 2
—00
u€eZ(t)

— Eqo) (exp { ~C(06,0)M 55 (00)e VP2 )
and by Corollary 1.2,

lim P ;) (My < m(t) +2) = Eq) (exp {—CooMm(oo)ef

t—o00

Also note that

)

Py (My <m(t) +2) =B | [[ e @7mO==0O) 0 <m(t) + 2
u€eZ(t)

<1-Eq, <exp {—9 [otu- z,j>€t<dydy’>}> .

Letting t — oo, we get that
’]E(Oﬂ-) (exp {—CooMm(oo)e*mz}> —E0,5 (exp {—C~'(G¢,O)Mm(oo)e*mz}>’
<1-Eqy (exp {—C(ng)Mm(oo)emz}) .

Let 6 | 0, we get that limg g C(06,0) = Cso, which implies (7.40). Combining (7.36), (7.38), (7.40)
and the fact that the process (X¢,Y;) is tight if X; and Y; are both tight, which follows from the
inequality

i < < > 1 < i < —

inf P (|1 X| < K, [Vi] < K) 2 inf P (|X¢| < K) +inf P([Yy] < K) — 1,

we get that under P ;),
(Et — 2, My — 2\t — Z) YRSV

converges joint in distribution to (£, Y), where the joint law is given in (6.12) and is independent
ofze€ Randiec S. O
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