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Weak convergence of the extremes of branching Lévy

processes with regularly varying tails

Yan-Xia Ren∗ Renming Song† and Rui Zhang‡

Abstract

In this paper, we study the weak convergence of the extremes of supercritical
branching Lévy processes {Xt, t ≥ 0} whose spatial motions are Lévy processes with
regularly varying tails. The result is drastically different from the case of branching
Brownian motions. We prove that, when properly renormalized, Xt converges weakly.
As a consequence, we obtain a limit theorem for the order statistics of Xt.
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Keywords and Phrases: Branching Lévy process, extremal process, regularly varying,
rightmost position.

1 Introduction

We consider a supercritical branching Lévy process. At time 0, we start with a single particle

which moves according to a Lévy process {ξt,Px} with Lévy exponent ψ(θ) = log E(eiθξ1).
The lifetime of each particle is exponentially distributed with parameter β, then it splits into

k new particles with probability pk, k ≥ 0. Once born, each particle will independently move
(according to the same Lévy process) and split (according to the same offspring distribution).

We use Px to denote the law of the branching Lévy process when the initial particle starts
at position x. The expectation with respect to Px and Px will be denoted by Ex and Ex.,

respectively. We write P := P0, E := E0, P := P0 and E := E0.
In this paper, we use “:=” as a way of definition. For a, b ∈ R, a ∧ b := min{a, b}. We

will label each particle using the classical Ulam-Harris system. We write T for the set of all
the particles in the tree, o for the root of the tree. For each particle u, we introduce some

notation.

• bu and σu: the birth time and death time of u respectively.
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2020YFA0712900) and NSFC (Grant Nos. 12071011 and 11731009).
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Beijing Municipal Natural Science Foundation(Grant No. 1202004), and Academy for Multidisciplinary
Studies, Capital Normal University.
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• {ξut : t ∈ [bu, σu]}: the spatial trajectory of u.

• τu := σu − bu is the life length of u and τu,t := σu ∧ t − bu ∧ t is the life length of u

between [0, t].

• FT

t := σ{bu ∧ t, σu ∧ t : u ∈ T}.

• Xu := ξuσu − ξubu and Xu,t := ξuσu∧t − ξubu∧t. Note that given FT

t , Xu,t, u ∈ T, are
independent, and

Xu,t
d
= ξτu,t.

• Iv: the set of all the ancestors of v, including v itself.

• nvt : the number of particles in Iv \ {o}.

• Lt is the set of all particles alive at time t and Zt is the number of particles alive at
time t.

For t ≥ 0, define Xt :=
∑

u∈Lt
δξut . The measure-valued process {Xt, t ≥ 0} is called a

branching Lévy process.

It is well known that {Zt; t ≥ 0} is a continuous time branching process. In this paper,
we consider the supercritical case, that is, m :=

∑
k kpk > 1. Then P(S) > 0, where S is

the event of survival. The extinction probability P(Sc) is the smallest root in (0, 1) of the
equation

∑
k pks

k = s, see, for instance, [5, Section III. 4]. The family {e−λtZt, t ≥ 0}, where
λ = β(m− 1), is a non-negative martingale and hence

lim
t→∞

e−λtZt =:W exists a.s.

For any two functions f and g on [0,∞), f ∼ g as s → 0+ means that lims↓0
f(s)
g(s)

= 1.

Similarly, f ∼ g as s → ∞ means that lims→∞
f(s)
g(s)

= 1. Throughout this paper we assume
the following two conditions hold. The first condition is on the offspring distribution:

(H1)
∑

k≥1(k log k)pk <∞.

Condition (H1) ensures that W is non-degenerate with P(W > 0) = P(S). For more details,

see [5, Section III.7]. The second condition is on the spatial motion:

(H2) There exist a complex constant c∗ with ℜ(c∗) > 0, α ∈ (0, 2) and a function L(x) :
R+ → R+ slowly varying at ∞ such that

ψ(θ) ∼ −c∗θαL(θ−1), θ → 0+.

Since eψ(θ) = E(eiθξ1), we have ℜ(ψ) ≤ 0 and ψ(−θ) = ψ(θ). Thus

ψ(θ) ∼ −c∗|θ|αL(|θ|−1), θ → 0−.

Under condition (H2), one can prove that (see Remark 2.3 below)

P(|ξs| ≥ x) ∼ csx−αL(x), x→ ∞,

that is, |ξs| has regularly varying tails.
An important example satisfying (H2) is the strictly stable process.
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Example 1.1 (Stable process.) Let ξ be a strictly α-stable process, α ∈ (0, 2), on R with
Lévy measure

n(dy) = c1x
−(1+α)1(0,∞)(x)dx+ c2|x|−(1+α)1(−∞,0)(x)dx,

where c1, c2 ≥ 0, c1+ c2 > 0, and if α = 1, c1 = c2 = c. For α ∈ (1, 2), by [35, Lemma 14.11,
(14.19)] and the fact Γ(−α) = −αΓ(1− α), we obtain that, for θ > 0,

∫ ∞

0

(eiθy − 1− iθy)n(dy) = −c1αΓ(1− α)e−iπα/2θα,

and taking conjugate on both sides of [35, Lemma 14.11 (14.19)], we have that

∫ 0

−∞
(eiθy − 1− iθy)n(dy) = −c2αΓ(1− α)eiπα/2θα.

Thus the Lévy exponent of ξ is given by: for θ > 0,

ψ(θ) =

∫
(eiθy − 1− iθy)n(dy) = −αΓ(1− α)(c1e

−iπα/2 + c2e
iπα/2)θα. (1.1)

Similarly, by [35, Lemma 14.11 (14.18),(114.20)], we have for θ > 0,

ψ(θ) =






∫
(eiθy − 1)n(dy) α ∈ (0, 1);

∫
(eiθy − 1− iθy1|y|≤1)n(dy) + iaθ, α = 1

(1.2)

=

{
−αΓ(1− α)(c1e

−iπα/2 + c2e
iπα/2)θα, α ∈ (0, 1);

−cπθ + iaθ, α = 1,
(1.3)

where a ∈ R is a constant. It is clear that ψ satisfies (H2). For more details about the stable
processes, we refer the readers to [35, Section 14].

In Section 4, we will give more examples satisfying condition (H2). Note that the non-
symmetric 1-stable process does not satisfy (H2). However, in Example 4.3, we will show

that our main result still holds for the non-symmetric 1-stable process.
The maximal position Mt of a branching Brownian motion has been studied intensively.

Assume that β = 1, p0 = 0 and m = 2. In the seminal paper [28], Kolmogorov, Petrovskii
and Piskounov proved that Mt/t →

√
2 in probability as t → ∞. Bramson proved in [14]

(see also [15]) that, under some moment conditions, P(Mt−m(t) ≤ x) → 1−w(x) as t→ ∞
for all x ∈ R, where m(t) =

√
2t − 3

2
√
2
log t and w(x) is a traveling wave solution. For

more works on Mt, see [18, 19, 29, 34]. For inhomogeneous branching Brownian motions,
many papers discussed the growth rate of the maximal position, see Bocharov and Harris

[12, 13] and Bocharov [11] for the case with catalytic branching at the origin, Shiozawa [36],

Nishimori et al. [33], Lalley and Sellke [30, 31] for the case with some general branching
mechanisms.
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Recently, the full statistics of the extremal configuration of branching Brownian motion
were studied. Arguin et al. [3, 4] studied the limit property of the extremal process of

branching Brownian motion. They proved that the random measure defined by

Et :=
∑

u∈Lt

δξut −m(t)

converges weakly, and the limiting process is a (randomly shifted) Poisson cluster process.
Almost at the same time, Äıdékon et al. [2] proved similar results using a totally different

method.
For branching random walks, several authors have studied similar problems under an

exponential moment assumption on the displacements of the offspring from the parent, see
Äıdékon [1], Carmona and Hu [17], Hu and Shi [26], and Madaule [32]. When the displace-

ments of the offspring from the parents are i.i.d. and have regularly varying tails, Durrett
[22] studied the limit property of its maximum displacement Mn. More precisely, Durrett

proved that a−1
n Mn converges weakly, where an = mn/αL0(m

n) and L0 is slowly varying at

∞. Recently, the extremal processes of the branching random walks with regularly varying
steps were studied by Bhattacharya et al. [8, 9]. In [8, 9], it was proved that the point

random measures
∑

|v|=n δa−1
n Sv

, where Sv is the position of v, converges weakly to a Cox
cluster process, which are quite different from the case with exponential moments. See also

[10, 24] for related works on branching random walks with heavy-tailed displacements.
Shiozawa [37] studied branching symmetric stable processes with branching rate µ being

a measure on R in a Kato class and offspring distribution {pn(x), n ≥ 0} being spatially
dependent. Under some conditions on µ and {pn(x), n ≥ 0}, Shiozawa [37] proved that

the growth rate of the maximal displacement is exponential with rate given by the principal
eigenvalue of the mean semigroup of the branching symmetric stable processes. In this paper,

we study the extremes of branching Lévy processes with constant branching rate β and spatial
motion having regularly varying tails (see condition (H2)). Since our branching rate β is not

compactly supported, one can not get the growth rate of the maximal displacement from
Shiozawa [37]. As a corollary of our extreme limit result, we get the growth rate of the

maximal displacement, see Corollary 1.5 below.

The key idea of the proof in this paper is the “one large jump principle” which was inspired
by [8, 9, 22]. Along the discrete times nδ, the branching Lévy processes {Xnδ, n ≥ 1} is a

branching random walk and the displacements from parents has the same law as Xδ. It is
natural to think that one may get the results of this paper from the results for branching

random walks directly. However we can not apply the results for branching random walks in
[8, 9, 32] to {Xnδ, n ≥ 1}. First, under condition (H2), the exponential moment assumption

in [32] is not satisfied. Secondly, [8] assumes that the displacements are i.i.d., while the
atoms of the random measure Xδ are not independent. Lastly, although the displacements

of offspring coming from the same parent are allowed to be dependent in [9], Assumption 2.5
in [9], where the displacements from parents are given by a special form (see [9, (2.9) and

(2.10)]), seems to be very difficult to check for Xδ.
Branching Lévy processes are closely related to the Fisher-KPP equation when the classi-

cal Laplacian ∆ is replaced by the infinitesimal generator of the corresponding Lévy process.
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For any g ∈ C+
b (R), define ug(t, x) = Ex

(
e−

∫
g(y)Xt(dy)

)
. By the Markov property and

branching property, we have that

ug(t, x) = Ex
(
e−g(ξt)

)
+ Ex

∫ t

0

ϕ(ug(t− s, ξs))ds,

where ϕ(s) = β
(∑

k s
kpk − s

)
. Then 1− ug is a mild solution to

∂tu−Au = −ϕ(1− u), (1.4)

with initial data u(0, x) = 1 − e−g(x), where A is the infinitesimal generator of ξ. In [16],
Cabré and Roquejoffre proved that, under the assumption that the density of ξ is comparable

to that of a symmetric α-stable process, the front position of 1 − u is exponential in time.
Using our main result, we give another proof of [16, Theorem 1.5] and also partially generalize

it, see Remark 5.2.

1.1 Main results

Put R0 = (−∞,∞) \ {0}, and R0 = [−∞,∞] \ {0}. Let C0
b (R) be the set of all bounded

continuous functions vanishing in a neighborhood of 0. Let C+
c (R0) be the set of all non-

negative continuous functions on R0 such that g = 0 on (−δ, 0) ∪ (0, δ) for some δ > 0.
It is clear that if g ∈ C+

c (R0), then g∗(x) := 1R0
(x)g(x) ∈ C0

b (R). Denote by M(R0)

the set of all Radon measures endowed with the topology of vague convergence (denoted
by

v→). Then M(R0) is a metrizable space. For any g ∈ B+
b (R0), µ ∈ M(R0), we write

µ(g) :=
∫
R0
g(x)µ(dx). A sequence of random elements νn in M(R0) converges weakly to ν,

denoted as νn
d→ ν, if and only if for all g ∈ C+

c (R0), νn(g) converges weakly to ν(g). Note

that, for any a > 0, [a,∞] and [−∞,−a] are compact subsets of R0.
We claim that there exists a non-decreasing function ht with ht ↑ ∞ such that

lim
t→∞

eλth−αt L(ht) = 1. (1.5)

In fact, using [7, Theorem 1.5.4], there exists a non-increasing function g such that g(x) ∼
x−αL(x), as x→ ∞. Then g(x) → 0 as x→ ∞. Define

ht := inf{x > 0 : g(x) ≤ e−λt}.

It is clear that ht is non-decreasing and ht ↑ ∞. By the definition of ht, one has that, for
any ǫ > 0,

g(ht/(1 + ǫ)) ≥ e−λt ≥ g(ht(1 + ǫ)),

which implies that

(1 + ǫ)−α = (1 + ǫ)−α lim
t→∞

L(ht)

L(ht/(1 + ǫ))
= lim

t→∞
g(ht)

g(ht/(1 + ǫ))

≤ lim inf
t→∞

eλtg(ht) ≤ lim sup
t→∞

eλtg(ht)
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≤ lim
t→∞

g(ht)

g(ht(1 + ǫ))
= (1 + ǫ)α lim

t→∞
L(ht)

L(ht(1 + ǫ))
= (1 + ǫ)α.

Since ǫ is arbitrary, we get

lim
t→∞

eλth−αt L(ht) = lim
t→∞

eλtg(ht) = 1.

In particular, ht = eλt/α if L = 1. In Lemma 2.1, we will prove that

eλtP(h−1
t ξs ∈ ·) v→ svα(·),

where
vα(dx) = q1x

−1−α1(0,∞)(x)dx+ q2|x|−1−α1(−∞,0)(x)dx,

with q1 and q2 being nonnegative numbers, uniquely determined by the following equation:

if α 6= 1
c∗ = αΓ(1− α)

(
q1e

−iπα/2 + q2e
iπα/2

)
,

and if α = 1
q1 = q2 = ℜ(c∗)/π.

Now we are ready to state our main result. Define a renormalized version of Xt by

Nt :=
∑

v∈Lt

δh−1
t ξvt

. (1.6)

In this paper we will investigate the limit of Nt as t→ ∞.

Theorem 1.2 Under P, Nt converges weakly to a random measure N∞ ∈ M(R0), defined
on some extension (Ω,G, P ) of the probability space on which the branching Lévy process is

defined, with Laplace transform given by

E(e−N∞(g)) = E

(
exp

{
−W

∫ ∞

0

e−λr
∫

R0

E(1− e−Zrg(x))vα(dx)dr

})
, g ∈ C+

c (R0). (1.7)

Moreover, N∞ =
∑

j Tjδej , where given W ,
∑

j δej is a Poisson random measure with inten-
sity ϑWvα(dx), {Tj, j ≥ 1} is a sequence of i.i.d. random variables with common law:

P (Tj = k) = ϑ−1

∫ ∞

0

e−λrP(Zr = k)dr, k ≥ 1,

where ϑ =
∫∞
0
e−λrP(Zr > 0)dr, and

∑
j δej and {Tj , j ≥ 1} are independent.

Remark 1.3 Write Df for the set of discontinuity points of the function f . Then by The-

orem 1.2, we have that Nt(f)
d→ N∞(f) for any bounded measurable function f on R0 with

compact support satisfying N∞(Df) = 0 P -a.s. Furthermore, for any k ≥ 1,

(Nt(B1),Nt(B2), · · · ,Nt(Bk))
d→ (N∞(B1),N∞(B2), · · · ,N∞(Bk)) ,

where {Bj} are relatively compact subsets of R0 satisfying N∞(∂Bj) = 0, j = 1, · · · , k,
P -a.s. See [27, Theorem 4.4] for a proof.
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Now we list the positions of all particles alive at time t in a decreasing order:

Mt,1 ≥Mt,2 ≥ · · ·Mt,Zt
,

and for n > Zt, defineMt,n := −∞. In particular,Mt,1 = maxv∈Lt
ξvt is the rightmost position

of the particles alive at time t. We also order the atoms of N∞ as M(1) ≥ M(2) ≥ · · · ≥
M(k) ≥ · · · . Note that on the set S, the number of the atoms of N∞ is infinite, and thus
M(k), k ≥ 1, are well defined. On the set Sc, N∞ is null, then we define M(k) = −∞ for

k ≥ 1.
Define P∗(·) := P(·|S) (P ∗(·) := P (·|S)) and let E∗(E∗) be the corresponding expectation.

Corollary 1.4 For any n ≥ 1,

(
h−1
t Mt,1, h

−1
t Mt,2, . . . , h

−1
t Mt,n;P

∗) d→
(
M(1),M(2), . . . ,M(n);P

∗) .

Moreover, M(k) > 0, k ≥ 1, P ∗-a.s.

We write Rt :=Mt,1 = maxv∈Lt
ξvt .

Corollary 1.5 (
h−1
t Rt;P

∗) d→
(
M(1);P

∗) ,
where the law of (M(1);P

∗) is given by

P ∗ (M(1) ≤ x
)
=

{
E
∗
(
e−α

−1q1ϑWx−α
)
, x > 0;

0, x ≤ 0.

Proof: Using Corollary 1.4, we get that
(
h−1
t Rt;P

∗) d→
(
M(1);P

∗) , and M(1) > 0 P ∗-a.s.
For any x > 0, we have that

P ∗ (M(1) ≤ x
)
=P ∗ (N∞(x,∞) = 0) = P ∗

(
∑

j

1(x,∞)(ej) = 0

)

=E
∗ (e−ϑWvα(x,∞)

)
= E

∗
(
e−α

−1q1ϑWx−α
)
.

The proof is now complete. ✷

Remark 1.6 Similarly, we can order the particles alive at time t in an increasing or-
der: Lt,1 ≤ Lt,2 ≤ · · · ≤ Lt,Zt

. Then we can get the corresponding weak convergence of

(Lt,1, Lt,2, · · · , Lt,n).

The rest of the paper is organized as follows. In Section 2, we introduce the one large
jump principle and give the proof of Theorem 1.2 based on Proposition 2.6, which will be

proved in Subsection 2.3. The proof of Corollary 1.4 will be given in Section 3. In Section 4,
we will give more examples satisfying condition (H2) and conditions which are weaker than

(H2), but sufficient for the main result of this paper. We will discuss the front position of
the Fisher-KPP equation (1.4) in Section 5.
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2 Proof of Theorem 1.2

2.1 Preliminaries

Recall that ht is a function satisfying (1.5).

Lemma 2.1 For any g ∈ C0
b and s > 0,

lim
t→∞

eλtE
(
g(h−1

t ξs)
)
= s

∫

R0

g(x)vα(dx). (2.1)

Proof: Let νt be the law of h−1
t ξs. Then by (H2), we have that, as t→ ∞,

exp

{
eλt
∫

R

(eiθx − 1)νt(dx)

}
= exp

{
eλt
(
esψ(h

−1
t θ) − 1

)}
→ exp

{
sψ̃(θ)

}
, (2.2)

where

ψ̃(θ) =

{
−c∗θα, θ > 0;
−c∗|θ|α, θ ≤ 0.

Note that the left side of (2.2) is the characteristic function of an infinitely divisible random

variable Yt with Lévy measure eλtνt, and by (1.2), esψ̃(θ) is the characteristic function of a
strictly α-stable random variable Y with Lévy measure svα(dx). Thus Yt weakly converges

to Y . The desired result (2.1) follows immediately from [35, Theorem 8.7 (1)]. ✷

It is well known (see [7, Theorem 1.5.6] for instance) that, for any ǫ > 0, there exists

aǫ > 0 such that for any y > aǫ and x > aǫ,

L(y)

L(x)
≤ (1− ǫ)−1max{(y/x)ǫ, (y/x)−ǫ}. (2.3)

Lemma 2.2 There exists c0 > 0 such that for any s > 0 and x > 2 + 2a0.5,

Gs(x) := P(|ξs| > x) ≤ c0sx
−αL(x).

Proof: By [23, (3.3.1)], we have that, for any x > 2,

P(|ξs| > x) ≤ x

2

∫ 2x−1

−2x−1

(1− esψ(θ)) dθ

≤ s
x

2

∫ 2x−1

−2x−1

‖ψ(θ)‖ dθ = s

∫ 2

0

‖ψ(θ/x)‖ dθ,

where in the last equality, we use the symmetry of ‖ψ(θ)‖. By (H2), it is clear that there
exists c1 > 0 such that

‖ψ(θ)‖ ≤ c1θ
αL(θ−1), |θ| ≤ 1.

Thus, for x > 2 + 2a0.5, using (2.3) with ǫ = 0.5, we get that

P(|ξs| > x) ≤ c1sx
−α
∫ 2

0

θαL(x/θ) dθ ≤ 2c1sx
−αL(x)

∫ 2

0

θα(θ−1/2 + θ1/2) dθ.

The proof is now complete. ✷
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Remark 2.3 It follows from Lemma 2.1 that

lim
t→∞

eλtP(|ξs| ≥ ht) = s
q1 + q2
α

, (2.4)

which implies that

P(|ξs| ≥ x) ∼ q1 + q2
α

s x−αL(x), x→ ∞. (2.5)

Now we recall the many-to-one formula which is useful in computing expectations. Here

we only list some special cases which will be used in our paper. See [25, Theorem 8.5] for
general cases.

Lemma 2.4 (Many-to-one formula) Let {nt} be a Poisson process with parameter β on

some probability space (Ω,G, P ). Then for any g ∈ B+
b (R),

E

(
∑

v∈Lt

g(nvt )

)
= eλtE (g(nt)) ,

and for any 0 ≤ s < t,

E

(
∑

v∈Lt

1bv≤t−s

)
= eλtP (nt − nt−s = 0) = eλte−βs.

2.2 Proof of the Theorem 1.2

Recall that, on some extension (Ω,G, P ) of the probability space on which the branching Lévy

process is defined, given W ,
∑

j δej is a Poisson random measure with intensity ϑWvα(dx),
{Tj , j ≥ 1} is a sequence of i.i.d. random variables with common law

P (Tj = k) = ϑ−1

∫ ∞

0

e−λrP(Zr = k) dr, k ≥ 1,

where ϑ =
∫∞
0
e−λrP(Zr > 0) dr, and

∑
j δej and {Tj, j ≥ 1} are independent.

Lemma 2.5 Let N∞ =
∑

j Tjδej . Then, N∞ ∈ M(R0) and the Laplace transform of N∞ is

given by

E(e−N∞(g)) = E

(
exp

{
−W

∫ ∞

0

e−λr
∫

R0

E(1 − e−Zrg(x))vα(dx) dr

})
, g ∈ C+

c (R0).

Proof: First note that for any a > 0, ϑWvα([−∞,−a] ∪ [a,∞]) < ∞. Thus, given W ,∑
j 1|ej |≥a is Poisson distributed with parameter ϑWvα([−∞,−a] ∪ [a,∞]), which implies

that
∑

j 1|ej |≥a <∞, a.s. Thus by the definition of N∞,

P (N∞([−∞,−a] ∪ [a,∞]) <∞) = P

(
∑

j

1|ej |≥a <∞
)

= 1.
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So N∞ ∈ M(R0). Note that

φ(θ) := E
(
e−θTj

)
= ϑ−1

∑

k≥1

e−θk
∫ ∞

0

e−λrP(Zr = k) dr

= ϑ−1

∫ ∞

0

e−λrE
(
e−θZr , Zr > 0

)
dr

= 1− ϑ−1

∫ ∞

0

e−λrE
(
1− e−θZr

)
dr.

Thus, for any g ∈ C+
c (R0),

E
(
e−N∞(g)

)
= E

(
e−

∑
j Tjg(ej)

)
= E

(
∏

j

φ(g(ej))

)

= E

(
e
−ϑW

∫
R0

(1−φ(g(x)))vα(dx)
)

= E

(
exp

{
−W

∫ ∞

0

e−λr
∫

R0

E(1− e−Zrg(x))vα(dx) dr

})
.

The proof is now complete. ✷

To prove Theorem 1.2, we use the idea of “one large jump”, which has been used in [22]

and [8, 9] for branching random walks. “One large jump” means that with large probability,
for all v ∈ Lt, at most one of the random variables {|Xu,t| : u ∈ Iv} is bigger than htθ/t

(θ > 0). Thus to investigate the limit property of Nt, defined by (1.6), we will consider
another point process:

Ñt :=
∑

v∈Lt

∑

u∈Iv
δh−1

t Xu,t
.

Proposition 2.6 Under P, as t→ ∞,

Ñt
d→ N∞.

The proof of this proposition is postponed to the next subsection. The following lemma
formalizes the well-known one large jump principle (see, e.g., Steps 3 and 4 in Section 2 of

[22]) at the level of point processes. Because of Lemma 2.7 below, it is enough to investigate
the weak convergence of Ñt, which is much easier compared to that of Nt.

Lemma 2.7 Assume g ∈ C+
c (R0). For any ǫ > 0,

lim
t→∞

P

(
|Nt(g)− Ñt(g)| > ǫ

)
= 0.

Proof: Since g ∈ C+
c (R0), we have Supp(g) ⊂ {x : |x| > δ} for some δ > 0 .

Step 1: For any θ > 0, let At(θ) denote the event that for all v ∈ Lt, at most one of the

random variables {|Xu,t| : u ∈ Iv} is bigger than htθ/t. We claim that

P(At(θ)
c) → 0. (2.6)
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Note that

P
(
At(θ)

c|FT

t

)
≤
∑

v∈Lt

P

(
∑

u∈Iv
1{|Xu,t|>htθ/t} ≥ 2|FT

t

)
. (2.7)

By Lemma 2.2 and (2.3) with ǫ = 0.5, we have that for htθ/t > 2 + 2a0.5 and ht > a0.5,

P
(
|Xu,t| > htθ/t|FT

t

)
= P (|ξs| > htθ/t) |s=τu,t ≤ c0τu,th

−α
t tαθ−αL(htθ/t)

≤ 2c0θ
−αt1+αh−αt L(ht)[(θ/t)

1/2 + (θ/t)−1/2] := pt. (2.8)

Recall that the number of elements in Iv is nvt + 1. Since conditioned on FT

t , {Xu,t, u ∈ Iv}
are independent, by (2.8), we get that

P

(
∑

u∈Iv
1{|Xu,t|>htθ/t} ≥ 2|FT

t

)
≤

nv
t+1∑

m=2

(
nvt + 1

m

)
pmt = p2t

nv
t−1∑

m=0

(
nvt + 1

m+ 2

)
pmt

≤ p2t

nv
t−1∑

m=0

nvt (n
v
t + 1)

(
nvt − 1

m

)
pmt

= p2tn
v
t (n

v
t + 1)(1 + pt)

nv
t−1.

Thus by (2.7) and the many-to-one formula (Lemma 2.4), we get that

P(At(θ)
c) = E

(
P(At(θ)

c|FT

t )
)
≤ eλtp2tE

(
nt(nt + 1)(1 + pt)

nt−1
)

= eλtp2t (2β + (1 + pt)β
2)eβpt , (2.9)

where nt is a Poisson process with parameter β on some probability space (Ω,G, P ). Since
eλth−αt L(ht) → 1, (2.6) follows from (2.8) and (2.9) immediately.

Step 2: Let ̺ > β + 1 to be chosen later. Let Bt(̺) be the event that for all v ∈ Lt,
nvt ≤ ̺t. Using the many-to-one formula, we have that

P(Bt(̺)
c) ≤ E(

∑

v∈Lt

1nv
t>̺t

) = eλtP (nt > ̺t) ≤ eλt inf
r>0

e−r̺tE(ernt)

= eλt inf
r>0

e((e
r−1)β−r̺)t = eλte−(̺(log ̺−log β)−̺+β)t.

Choose ̺ large enough so that ̺(log ̺− log β)− ̺+ β > λ, then

lim
t→∞

P(Bt(̺)
c) = 0.

Step 3: Since g ∈ C+
c (R0), g is uniformly continuous, that is for any a > 0, there exists

η > 0 such that |g(x1)− g(x2)| ≤ a whenever |x1 − x2| < η.
Now consider θ small enough such that ̺θ < η ∧ (δ/2). Let v′ ∈ Iv be such that

|Xv′,t| = maxu∈Iv{|Xu,t|}. We note that, on the event At(θ), |Xu,t| ≤ θht/t ≤ htδ/2 for any
u ∈ Iv \ {v′} and t > 1, and thus g(Xu,t/ht) = 0, which implies that

Ñt(g) =
∑

v∈Lt

∑

u∈Iv
g(Xu,t/ht) =

∑

v∈Lt

g(Xv′,t/ht).
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Thus it follows that, on the event At(θ),

|Nt(g)− Ñt(g)| =
∣∣∣∣∣
∑

v∈Lt

[
g(ξvt /ht)− g(Xv′,t/ht)

]∣∣∣∣∣ (2.10)

Since ξvt =
∑

u∈Iv Xu,t, on the event At(θ) ∩ Bt(̺), we have that

h−1
t |ξvt −Xv′,t| = h−1

t

∣∣∣∣∣∣

∑

u∈Iv\{v′}
Xu,t

∣∣∣∣∣∣
≤ θt−1nvt ≤ ̺θ < η ∧ (δ/2).

Note that if |Xv′,t/ht| ≤ δ/2, then |ξvt |/ht < δ, which implies that g(ξvt /ht)− g(Xv′,t/ht) = 0.

Thus we get that

|g(ξvt /ht)− g(Xv′,t/ht)| = |g(ξvt /ht)− g(Xv′,t/ht)|1{|Xv′,t|>htδ/2} ≤ a1{|Xv′,t|>htδ/2}. (2.11)

It follows from (2.10) and (2.11) that, on the event At(θ) ∩Bt(̺),

|Nt(g)− Ñt(g)| ≤ a
∑

v∈Lt

1{|Xv′,t|>htδ/2} ≤ a
∑

v∈Lt

∑

u∈Iv
1{|Xu,t|>htδ/2}

= aÑt {[−∞,−δ/2) ∪ (δ/2,∞]} .

Let f ∈ C+
c (R0) satisfy f(x) = 1, for |x| ≥ δ/2. Then

|Nt(g)− Ñt(g)| ≤ aÑt(f)).

Combining the three steps above, we get that

lim sup
t→∞

P

(
|Nt(g)− Ñt(g)| > ǫ

)

≤ lim sup
t→∞

P (At(θ)
c) + P (Bt(̺)

c) + P

(
Ñt(h) > a−1ǫ

)

= lim sup
t→∞

P

(
Ñt(f) > a−1ǫ

)
= P

(
N∞(f) > a−1ǫ

)
,

where the final equality follows from Proposition 2.6 (the proof of Proposition 2.6 does not
use the result in this lemma). Then letting a→ 0, we get the desired result. ✷

Proof of Theorem 1.2: Using Lemma 2.5, Proposition 2.6 and Lemma 2.7, the results
of Theorem 1.2 follow immediately. ✷

2.3 Proof of Proposition 2.6

To prove the weak convergence of Ñt, we first cut the tree at time t − s. We divide the

particles born before time t into two parts: the particles born before time t − s and after
t− s. Define

Ñs,t :=
∑

v∈Lt

∑

u∈Iv,bu>t−s
δh−1

t Xu,t
.
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Lemma 2.8 For any ǫ > 0 and g ∈ C+
c (R0),

lim
s→∞

lim sup
t→∞

P

(
|Ñt(g)− Ñs,t(g)| > ǫ

)
= 0.

Proof: Since g ∈ C+
c (R0), We have Supp(g) ⊂ {x : |x| > δ} for some δ > 0 .

Let Js,t be the event that for all u with bu ≤ t−s, |Xu,t| ≤ htδ/2. On Js,t, Ñt(g)−Ñs,t(g) =

0, thus we only need to show that

lim
s→∞

lim sup
t→∞

P(Jcs.t) = 0. (2.12)

Recall that Gs(x) := P(|ξs| > x). By Lemma 2.2, we have that, for t large enough so that

htδ/2 ≥ 2 + 2a0.5,

P(Jcs.t) = 1− P(Js.t) = 1− E

(
∏

u:bu≤t−s
(1−Gτu,t(htδ/2))

)

≤ E

( ∑

u:bu≤t−s
Gτu,t(htδ/2)

)

≤ c0h
−α
t (δ/2)−αL(htδ/2)E

( ∑

u:bu≤t−s
τu,t

)
. (2.13)

In the first inequality above, we used the inequality 1−∏n
i=1((1−xi)) ≤

∑n
i=1 xi, xi ∈ (0, 1).

By the definition of τu,t,

∑

u:bu≤t−s
τu,t =

∑

u:bu≤t−s

∫ t

0

1(bu,σu)(r) dr

=

∫ t−s

0

∑

u

1(bu,σu)(r) dr +

∫ t

t−s

∑

u

1bu<t−s,σu>r dr.

For the first part, noting that r ∈ (bu, σu) is equivalent to u ∈ Lr, we get

E

∫ t−s

0

∑

u

1(bu,σu)(r) dr = E

∫ t−s

0

Zr dr =

∫ t−s

0

eλr dr = λ−1(eλ(t−s) − 1).

For the second part, using the many-to-one formula, we have that

E

(
∑

u

1bu<t−s,σu>r

)
= E

(
∑

u∈Lr

1bu<t−s

)
= eλre−β(r+s−t).

Thus,

E

∫ t

t−s

∑

u

1bu<t−s,σu>r dr =

∫ t

t−s
eλre−β(r−t+s) dr = eλt

e−βs − e−λs

λ− β
.

Combining all the above, we get that

P(Jcs.t) ≤ c0(δ/2)
−αeλth−αt L(htδ/2)

(
λ−1e−λs +

e−βs − e−λs

λ− β

)
. (2.14)
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Now first letting t → ∞, and then s → ∞, we get (2.12) immediately. The proof is now
complete. ✷

Now we consider the weak convergence of Ñs,t. For w ∈ Lt−s, let Lwt := {v ∈ Lt : w ∈ Iv}
be the set of all the offspring of w at time t. We rewrite Ñs,t as follows:

Ñs,t =
∑

w∈Lt−s

Mw
s,t, (2.15)

where Mw
s,t :=

∑
v∈Lw

t

∑
u∈Iv,bu>t−s δh−1

t Xu,t
are i.i.d. with common law

Ms,t :=
∑

v∈Ls

∑

u∈Iv\{o}
δh−1

t Xu,s
=
∑

u∈Ds

Zu
s δh−1

t Xu,s
,

where Zu
s is the number of the offspring of u at time s, and Ds = {u : bu ≤ s} \ {o}.

Lemma 2.9 For any j = 1, · · · , n, let γj(t) be a (0, 1]-valued function on (0,∞). Suppose
at is a positive function with limt→∞ at = ∞ such that limt→∞ at(1− γj(t)) → cj <∞. Then

lim
t→∞

at

(
1−

n∏

j=1

γj(t)

)
→

n∑

j=1

cj .

Proof: Note that

1−
n∏

j=1

γj(t) =
n∑

j=1

j−1∏

k=1

γk(t)(1− γj(t)).

Since γj(t) → 1, thus we get that, as t→ ∞,

at

(
1−

n∏

j=1

γj(t)

)
=

n∑

j=1

j−1∏

k=1

γk(t)at(1− γj(t)) →
n∑

j=1

cj .

✷

Proof of Proposition 2.6: By Lemma 2.8, we only need to consider the convergence
of Ñs,t. Assume that Supp(g) ⊂ {x : |x| > δ} for some δ > 0. Using the Markov property

and the decomposition of Ñs,t in (2.15), we have that

E

(
e−Ñs,t(g)

)
= E

(
[E(e−Ms,t(g))]Zt−s

)
. (2.16)

We claim that

lim
t→∞

(
1− E(e−Ms,t(g))

)
eλt =

∫

R0

E

[
∑

u∈Ds

τu,s1− e−Z
u
s g(x)

]
vα(dx). (2.17)

By the definition of Ms,t, we have that

(
1− E(e−Ms,t(g)|FT

s )
)
eλt = eλt

(
1−

∏

u∈Ds

E(e−Z
u
s g(h

−1
t Xu,s)|FT

s )

)
.
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Note that, given FT

s , Xu,s
d
= ξτu,s. Thus by Lemma 2.1 (with s replaced by τu,s and g replaced

by 1− e−Z
u
s g(x)) we get that

eλt
(
1− E[e−Z

u
s g(h

−1
t Xu,s)|FT

s ]
)
→ τu,s

∫

R0

1− e−Z
u
s g(x)vα(dx),

as t→ ∞. Hence it follows from Lemma 2.9 that

lim
t→∞

eλt
(
1− E[e−Ms,t(g)|FT

s ]
)
=

∫

R0

∑

u∈Ds

τu,s[1− e−Z
u
s g(x)]vα(dx). (2.18)

Moreover, for htδ ≥ 2 + 2a0.5,

eλt
(
1− E[e−Ms,t(g)|FT

s ]
)
≤ eλtE

(
Ms,t(g)|FT

s

)
≤ ‖g‖∞eλt

∑

u∈Ds

Zu
sGτu,s(htδ)

≤ c0‖g‖∞δ−αeλth−αt L(htδ)
∑

u∈Ds

τu,sZ
u
s

≤ C
∑

u∈Ds

τu,sZ
u
s , (2.19)

where C is a constant not depending on t. The third inequality follows from Lemma 2.2 and
the final inequality from the fact eλth−αt L(htδ) → 1. Since τu,s =

∫ s
0
1(bu,σu)(r) dr, we have

that

E

(
∑

u∈Ds

τu,sZ
u
s

)
=

∫ s

0

E

(
∑

u∈Ds

1(bu,σu)(r)Z
u
s

)
dr

=

∫ s

0

E




∑

u∈Lr−{o}
Zu
s



 dr ≤
∫ s

0

E(Zs) dr = seλs <∞.

Thus by (2.18), (2.19) and the dominated convergence theorem, the claim (2.17) holds.

By (2.17) and the fact that limt→∞ e−λtZt−s = e−λsW , we have

lim
t→∞

[
E
(
e−Ms,t(g)

)]Zt−s
= exp

{
−e−λsW

∫

R0

E

[ ∑

u∈Ds

τu,s(1− e−Z
u
s g(x))

]
vα(dx)

}
.

Thus by (2.16) and the bounded convergence theorem, we get that

lim
t→∞

E

(
e−Ñs,t(g)

)
= E

(
exp

{
−e−λsW

∫

R0

E

[ ∑

u∈Ds

τu,s(1− e−Z
u
s g(x))

]
vα(dx)

})
.

By the definition of τu,s, we have that

∑

u∈Ds

τu,s
(
1− e−Z

u
s g(x)

)
=
∑

u∈Ds

∫ s

0

1(bu,σu)(r) dr
(
1− e−Z

u
s g(x)

)
=

∫ s

0

∑

u∈Lr\{o}

(
1− e−Z

u
s g(x)

)
dr.
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Using the Markov property, and the branching property, Zu
s , u ∈ Lr are i.i.d. with the same

distribution as Zs−r, and independent with Lr. Thus,

E

∑

u∈Ds

τu,s
(
1− e−Z

u
s g(x)

)
=

∫ s

0

E
(
Zr − 1{o∈Lr}

)
E
(
1− e−Zs−rg(x)

)
dr

=

∫ s

0

(
eλr − e−βr

)
E
(
1− e−Zs−rg(x)

)
dr, (2.20)

which implies that

e−λsE
∑

u∈Ds

τu,s
(
1− e−Z

u
s g(x)

)
→
∫ ∞

0

e−λrE
(
1− e−Zrg(x)

)
dr,

and

e−λsE
∑

u∈Ds

τu,s
(
1− e−Z

u
s g(x)

)
≤
∫ ∞

0

e−λrE
(
1− e−Zrg(x)

)
dr ≤ λ−11{|x|>δ}.

The final inequality follows from the fact that Supp(g) ⊂ {x : |x| > δ}. Since vα(1{|x|>δ}) <
∞, using the dominated convergence theorem we get that

lim
s→∞

e−λs
∫

R0

E

[ ∑

u∈Ds

τu,s(1− e−Z
u
s g(x))

]
vα(dx) =

∫ ∞

0

e−λr
∫

R0

E
(
1− e−Zrg(x)

)
vα(dx) dr,

which implies that

lim
s→∞

lim
t→∞

E

(
e−Ñs,t(g)

)
= E

(
exp

{
−W

∫ ∞

0

e−λr
∫

R0

E
(
1− e−Zrg(x)

)
vα(dx) dr

})
.

By Lemmas 2.8 and 2.5, we get that

lim
t→∞

E

(
e−Ñt(g)

)
= E

(
e−N∞(g)

)
.

The proof is now complete. ✷

3 Joint convergence of the order statistics

Proof of Corollary 1.4: First, we will show that M(k) > 0, a.s.. Recall that, given W ,∑
j δej is a Poisson random measure with intensity ϑWvα. Since vα(0,∞) = ∞, we have that

P ∗
(∑

j 1(0,∞)(ej) = ∞
)
= 1, which implies that P ∗ (N∞(0,∞) = ∞) = 1. Thus M(k) > 0,

P ∗-a.s.
Note that, for any x ∈ R0, N∞({x}) = 0, a.s.. Since {Mt,k ≤ htx} = {Nt(x,∞) ≤

k − 1} for any x > 0, by Remark 1.3 with Bk = (xk,∞), we have that for any n ≥ 1 and

x1, x2, x3, · · · , xn > 0,

P (Mt,1 ≤ htx1,Mt,2 ≤ htx2,Mt,3 ≤ htx3, · · · ,Mt,n ≤ htxn)
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=P (Nt((xk,∞) ≤ k − 1, k = 1, · · · , n)
→P (N∞((xk,∞)) ≤ k − 1, k = 1, · · · , n)
=P (M(1) ≤ x1,M(2) ≤ x2,M(3) ≤ x3, · · · ,M(n) ≤ xn) as t→ ∞.

Thus, as t→ ∞,

P
∗ (Mt,1 ≤ htx1,Mt,2 ≤ htx2, · · · ,Mt,n ≤ htxn)

=P(S)−1 [P(Mt,k ≤ htxk, k = 1, · · · , n)− P(Mt,k ≤ htxk, k = 1, · · · , n,Sc)]
→P(S)−1[P (M(k) ≤ xk, k = 1, · · · , n)− P(Sc)]
=P ∗(M(k) ≤ xk, k = 1, · · · , n), (3.1)

where in the final equality, we used the fact that on the event of extinction, M(k) = −∞,
k ≥ 1.

Now we consider the case x1, · · · , xn ∈ R with xi ≤ 0 for some i, and xj > 0, j 6= i. By
(3.1), we get that, for any ǫ > 0

lim sup
t→∞

P
∗(Mt,1 ≤ htx1,Mt,2 ≤ htx2, · · · ,Mt,n ≤ htxn)

≤ lim
t→∞

P
∗(Mt,j ≤ htxj , j 6= i,Mt,i ≤ htǫ)

=P ∗(M(j) ≤ xj , j 6= i,M(i) ≤ ǫ).

The right hand side of the display above tends to 0 as ǫ→ 0 since M(i) > 0 a.s.. Thus

lim
t→∞

P
∗(Mt,k ≤ htxk, k = 1, · · · , n) = 0 = P ∗(M(k) ≤ xk, k = 1, · · · , n). (3.2)

Similarly, we can get (3.2) holds for any x1, · · · , xn ∈ R.
The proof is now complete. ✷

4 Examples and an extension

In this section, we first give more examples satisfying (H2).

Lemma 4.1 Assume that L∗ is a positive function on (0,∞) slowly varying at ∞ such that

lǫ(x) := supy∈(0,x] y
ǫL∗(y) < ∞ for any ǫ > 0 and x > 0. Then, for any ǫ > 0, there exist

cǫ, Cǫ > 0 such that for any y > 0 and a > cǫ,

L∗(ay)

L∗(a)
≤ Cǫ(y

ǫ + y−ǫ). (4.1)

Proof: By [7, Theorem 1.5.6], for any ǫ > 0, there exists cǫ > 0 such that for any a ≥ cǫ
and y ≥ a−1cǫ,

L∗(ay)

L∗(a)
≤ (1− ǫ)−1 max{yǫ, y−ǫ}. (4.2)
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Thus for any a > cǫ,

L∗(cǫ)

L∗(a)
≤ (1− ǫ)−1(a/cǫ)

ǫ. (4.3)

Hence for a > cǫ and 0 < y ≤ a−1cǫ, we have that

L∗(ay)

L∗(a)
≤ lǫ(cǫ)(ay)

−ǫ/L∗(a) ≤ lǫ(cǫ)

L∗(cǫ)(1− ǫ)cǫǫ
y−ǫ. (4.4)

Combining (4.2) and (4.4), there exists Cǫ > 0 such that for any y > 0 and a > cǫ,

L∗(ay)

L∗(a)
≤ Cǫ(y

ǫ + y−ǫ).

✷

Example 4.2 Let

n(dy) = c1x
−(1+α)L∗(x)1(0,∞)(x)dx+ c2|x|−(1+α)L∗(|x|)1(−∞,0)(x)dx,

where α ∈ (0, 2), c1, c2 ≥ 0, c1+c2 > 0 and L∗ is a positive function on (0,∞) slowly varying

at ∞ such that supy∈(0,x] y
ǫL∗(y) <∞ for any ǫ > 0 and x > 0.

(1) For α ∈ (0, 1), assume that the Lévy exponent of ξ has the following form:

ψ(θ) = iaθ − b2θ2 +

∫
(eiθy − 1)n(dy),

where a ∈ R, b ≥ 0. Using Lemma 4.1 with ǫ ∈ (0, (1−α)∧α), we have that, by the dominated

convergence theorem, as θ → 0+,
∫ ∞

0

(eiθy − 1)n(dy) = θα
∫ ∞

0

(eiy − 1)y−1−αL∗(θ−1y) dy

∼ θαL∗(θ−1)

∫ ∞

0

(eiy − 1)y−1−α dy = −αΓ(1− α)e−iπα/2θαL∗(θ−1),

and
∫ 0

−∞
(eiθy − 1)n(dy) = θα

∫ ∞

0

(e−iy − 1)y−1−αL∗(θ−1y) dy

∼ θαL∗(θ−1)

∫ ∞

0

(e−iy − 1)y−1−α dy = −αΓ(1− α)eiπα/2θαL∗(θ−1).

Thus as θ → 0+,

ψ(θ) ∼ −αΓ(1− α)(e−iπα/2c1 + eiπα/2c2)θ
αL∗(θ−1).

(2) For α ∈ (1, 2), assume that the Lévy exponent of ξ has the following form:

ψ(θ) = −b2θ2 +
∫

(eiθy − 1− iθy)n(dy),
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where b ≥ 0. Using Lemma 4.1 with ǫ ∈ (0, (2−α)∧ (α−1)), we have that, by the dominated
convergence theorem, as θ → 0+,

∫ ∞

0

(eiθy − 1− iθy)n(dy) = θα
∫ ∞

0

(eiy − 1− iy)y−1−αL∗(θ−1y) dy

∼ θαL∗(θ−1)

∫ ∞

0

(eiy − 1 + iy)y−1−α dy

= −αΓ(1− α)e−iπα/2θαL∗(θ−1),

and
∫ 0

−∞
(eiθy − 1− iθy)n(dy) = θα

∫ ∞

0

(e−iy − 1 + iy)y−1−αL∗(θ−1y) dy

∼ θαL∗(θ−1)

∫ ∞

0

(e−iy − 1 + iy)y−1−α dy

= −αΓ(1− α)eiπα/2θαL∗(θ−1).

Thus as θ → 0+,

ψ(θ) ∼ −αΓ(1− α)(e−iπα/2c1 + eiπα/2c2)θ
αL∗(θ−1).

(3) For α = 1, assume that c1 = c2 and the Lévy exponent of ξ has the following form:

ψ(θ) = iaθ − b2θ2 +

∫
(eiθy − 1− iθy1|y|≤1)n(dy),

where a ∈ R, b ≥ 0. Since c1 = c2, we have
∫ ∞

−∞
(eiθy − 1− iθy1|y|≤1)n(dy) = −2c1θ

∫ ∞

0

(1− cosy)y−2L∗(θ−1y) dy.

Using Lemma 4.1 with ǫ ∈ (0, 1), we have that, by the dominated convergence theorem,

lim
θ→0+

L∗(θ−1)−1

∫ ∞

0

(1− cosy)y−2L∗(θ−1y) dy =

∫ ∞

0

(1− cosy)y−2 dy = π/2,

which implies that as θ → 0+,

ψ(θ) ∼ −(c1π − ia)θL∗(θ−1).

✷

Remark 4.3 (An extension) Checking the proof of Theorem 1.2, we see that Theorem 1.2
holds for more general branching Lévy processes with spatial motions satisfying the following

assumptions:
(A1) There exist a non-increasing function ht with ht ↑ ∞ and a measure π(dx) ∈

M(R0) such that

lim
t→∞

eλtE(g(h−1
t ξs)) = s

∫

R0

g(x)π(dx), g ∈ C+
c (R0).
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(A2) eλtp2t → 0, where pt := sups≤t P(|ξs| > htθ/t).
(A3) For any θ > 0,

sup
t>1

sup
s≤t

s−1eλtP(|ξs| > htθ) <∞.

First, (H2) implies (A1)-(A3). Next we explain that Theorem 1.2 holds under Assump-

tions (A1)-(A3). Checking the proof of Lemma 2.7, we see that Lemma 2.7 holds under
conditions (A1)-(A3). In fact, we may replace Lemma 2.2 by (A2) to get (2.6) (see (2.8)

and (2.9)). For the proof of Lemma 2.8, using (A3), we get that

P(Jcs,t) ≤ Ce−λtE
∑

u:bu≤t−s
τu,t,

which says that (2.13) holds. Thus (2.12) holds using the same arguments in Lemma 2.8.
Replacing Lemma 2.1 by (A1), we see that Proposition 2.6 holds with vα replaced by π(dx).

So under (A1)-(A3), Theorem 1.2 holds with vα replaced by π(dx).

An easy example which satisfies (A1)-(A3), but does not satisfy (H2) is the non-symmetric
1-stable process. Assume ξ is a non-symmetric 1-stable process with Lévy measure

n(dx) = c1x
−21(0,∞)(x)dx+ c2|x|−21(−∞,0)(x)dx,

where c1, c2 ≥ 0, c1 + c2 > 0, and c1 6= c2. The Lévy exponent of ξ is given by, for θ > 0

ψ(θ) = −π
2
(c1 + c2)θ − i(c1 − c2)θ log θ + ia(c1 − c2)θ ∼ −i(c1 − c2)θ log θ, θ → 0+,

where a is constant. Thus c∗ = i(c1 − c2). So ψ(θ) does not satisfy (H2) since ℜ(c∗) = 0.
By [6, Section 1.5, Exercise 1], we have that

1

t
P(ξt ∈ ·) v→ n(dx), as t→ 0.

Since e−λtξs
d
= ξse−λt + (c1 − c2)sλte

−λt for s, t > 0, we have that

eλtP(e−λtξs ∈ ·) v→ s n(dx), as t→ ∞.

So (A1) holds with ht = eλt. We claim that, for any x > 0 and s > 0,

P(|ξs| > x) ≤ c(sx−1 + s2x−2 + s2x−2(log x)2), (4.5)

where c is a constant. Thus it is easy to prove that (A2) and (A3) hold.
In fact, for any x > 0

P(|ξs| > x) ≤ x

2

∫ 2x−1

−2x−1

(1− esψ(θ)) dθ = x

∫ 2x−1

0

(1− ℜ(esψ(θ))) dθ.

Note that

1−ℜ(esψ(θ)) = 1− esℜ(ψ(θ)) cos[sℑ(ψ(θ))]
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= 1− esℜ(ψ(θ)) + esℜ(ψ(θ))(1− cos[sℑ(ψ(θ))])
≤ −sℜ(ψ(θ)) + s2[ℑ(ψ(θ))]2

=
π

2
(c1 + c2)sθ + (c1 − c2)

2s2(a− log θ)2θ2.

Thus we have that

P(|ξs| > x) ≤ π(c1 + c2)s x
−1 + (c1 − c2)

2s2x−2

∫ 2

0

(a− log θ + log x)2θ2 dθ

≤ π(c1 + c2)s x
−1 + 2(c1 − c2)

2s2x−2

∫ 2

0

[(a− log θ)2 + (log x)2]θ2 dθ

≤ c(sx−1 + s2x−2 + s2x−2(log x)2),

which proves the claim (4.5).

5 Front position of Fisher-KPP equation

Recall that ug(t, x) = Eδx

(
e−Xt(g)

)
= E

(
e−

∑
v∈Lt

g(ξvt +x)
)
. Then 1−ug(t, x) is a mild solution

to (1.4). For θ ∈ (0, 1), the level set {x ∈ R : 1−ug(t, x) = θ} is also called the front of 1−ug.
The evolution of the front of 1 − ug as time goes to ∞ is of considerable interest. Using
analytic method, [16, Theorem 1.5] proved that if the density of ξ is comparable to that of

a symmetric α-stable process, the front position is exponential in time, which is in contrast
with branching Brownian motion where it is linear in time. In this paper, we provide a

probabilistic proof of [16, Theorem 1.5] using Corollary 1.5, and also partially generalize it.

Proposition 5.1 (1) Assume that at satisfies at/ht → ∞ as t → ∞, and that g is a

non-negative function satisfying

eλt sup
x≤−at/2

g(x) → 0, as t→ ∞. (5.1)

Then

lim
t→∞

sup
x≤−at

(1− ug(t, x)) = 0.

(2) Assume that ct satisfies ct/ht → 0 as t → ∞, and that g is a non-negative function

satisfying a0 := lim infx→∞ g(x) > 0. Then

lim
t→∞

sup
x≥−ct

|ug(t, x)− P(Sc)| = 0.

Proof: (1) Let g∗(x) = supy≤−x g(y). Note that, for x ≤ −at,

1− ug(t, x) = E

(
1− e−

∑
v∈Lt

g(ξvt +x)
)

≤ P(Rt ≥ at/2) + E

(
1− e−

∑
v∈Lt

g(ξvt +x);Rt < at/2
)
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≤ P
(
Rt ≥ at/2) + E(1 − e−g

∗(at/2)Zt
)

≤ P(Rt ≥ at/2) + eλtg∗(at/2), (5.2)

where in the second inequality, we use the fact that, on the event {Rt < at/2}, ξvt + x <
at/2− at = −at/2 and g(ξvt + x) ≤ g∗(at/2). By the assumption (5.1), eλtg∗(at/2) → 0. By

Corollary 1.5, one has that P∗(Rt ≥ at/2) → 0. Thus

P(Rt ≥ at/2) ≤ P
∗(Rt ≥ at/2)P(S) + P(‖Xt‖ > 0,Sc) → 0,

as t→ ∞. Thus by (5.2),
lim
t→∞

sup
x≤−at

(1− ug(t, x)) = 0.

(2) Note that

|ug(t, x)− P(Sc)| ≤ E

(
e−

∑
v∈Lt

g(ξvt +x);S
)
+ E

(
1− e−

∑
v∈Lt

g(ξvt +x);Sc
)
. (5.3)

Noticing that on the event Zt = 0, 1− e−
∑

v∈Lt
g(ξvt +x) = 0, we get that , for any x ∈ R

E

(
1− e−

∑
v∈Lt

g(ξvt +x);Sc
)
≤ P(Zt > 0,Sc) → 0,

as t → ∞. Let g∗(x) = infy≥x g(y). Since ct/ht → 0, for any ǫ > 0, there exists tǫ > 0 such
that ct ≤ ǫht for t > tǫ. For any t > tǫ and x ≥ −ct, we have that

E

(
e−

∑
v∈Lt

g(ξvt +x);S
)
≤ E

(
e−g∗(ct)

∑
v∈Lt

1ξv
t
>2ct ;S

)

≤ E

(
e
−g∗(ct)

∑
v∈Lt

1ξv
t
>2ǫht ;S

)

= E
(
e−g∗(ct)Nt(2ǫ,∞);S

)
.

Thus

lim sup
t→∞

sup
x≥−ct

|ug(t, x)− P(Sc)| ≤ E
(
e−a0N∞(2ǫ,∞),S

)
. (5.4)

Since on the event S, ϑWvα(0,∞) = ∞, thus N∞(0,∞) = ∞. Now letting ǫ → 0 in (5.4),
we get the desired result. ✷

Remark 5.2 Proposition 5.1 is a slight generalization of [16, Theorem 1.5]. Assume that

p0 = 0, which ensures that P(Sc) = 0. If L = 1, then ht = eλt/α, and we have the following
results:

(1) Let g be a non-negative measurable function satisfying

g(x) ≤ C|x|−α, x < 0. (5.5)

Then for any γ > λ/α

eλtg∗(−eγt/2) ≤ C2αeλte−αγt → 0.

Thus by Proposition 5.1, we have that

lim
t→∞

sup
x≤−eγt

(1− ug(t, x)) = 0.
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(2) Assume that g is a non-negative function satisfying a0 := lim infx→∞ g(x) > 0. For
any γ < λ/α, by Proposition 5.1, we have that

lim
t→∞

sup
x≥−eγt

ug(t, x) = 0.

Note that in the notation of [16], σ∗∗ = λ/α, and our condition (5.5) is equivalent to

1− e−g(x) ≤ C|x|−α, x < 0, (5.6)

for some constant C. If g is nondecreasing, it is clear that lim infx→∞ g(x) > 0. Thus
when the Lévy process ξ satisfies (H2) with L = 1, we can get that the conclusion of [16,

Theorem 1.5] holds from Proposition 5.1. Note that the independent sum of Brownian motion

and a symmetric α-stable process satisfies (H2) with L = 1, but its transition density is
not comparable with that of the symmetric α-stable process, see [21, 38]. Note also that

the independent sum of a symmetric α-stable process and a symmetric β-stable process,
0 < α < β < 2, also satisfies (H2) with L = 1, but its transition density is not comparable

with that of the symmetric α-stable process, see [20]. Note that in this paper we do not need
to assume that g is nondecreasing. Thus Proposition 5.1 partially generalizes [16, Theorem

1.5].
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