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Abstract

We study the asymptotic behavior of the supremum M, of the support of a supercritical
super-Brownian motion. In our recent paper (Ren et al. in Stoch Proc Appl 137:1-34,
2021), we showed that, under some conditions, M; —m(t) converges in distribution to
arandomly shifted Gumbel random variable, where m (t) = cot — c1 log ¢. In the same
paper, we also studied the upper large deviation of M,, i.e., the asymptotic behavior of
P(M; > Scot) for § > 1. In this paper, we study the lower large deviation of M,, i.e.,
the asymptotic behavior of P(M; < §cot|S) for § < 1, where S is the survival event.
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1 Introduction
1.1 Super-Brownian Motion

Let i be a function of the form

Y(A) = —ah + BA% + /OO (e =1+ ry)n(dy), *»=0,
0

where ¢ € R, 8 > 0 and n is a o -finite measure satisfying

/O (O A Yn(dy) < oc.

Y is called a branching mechanism. We will always assume that lim; _, oo ¥ (1) = o0.
Let {B;,t > 0; P, } be a standard Brownian motion starting from x € R, and let E, be
the corresponding expectation. We write P = Py and E = Ey. In this paper, we will
consider a super-Brownian motion X on R with branching mechanism .

Let BT (R) (resp. B; (IR)) be the space of nonnegative (resp. bounded nonnegative)
Borel functions on R, and let M (R) be the space of finite measures on R, equipped
with the topology of weak convergence. A super-Brownian motion X = {X;,t > 0}
with branching mechanism v is a Markov process taking values in M g (R). For any
w € Mp(R), we denote the law of X with initial configuration p by P,,, and the
corresponding expectation by [E,,. We write P = P, and E = Ej,. As usual, we use
the notation (f, u) = fR f(x)u(dx) and |||l := (1, w). Then for all f € B;(]R)
and u € Mpr(R),

—log B, (" X0) = (v, (t, 9, 1), 120, (L)

where V¢ (t, x) is the unique positive solution to the equation

t
Ve, x) + Ex/ Y(Vy(t —s, By))ds =E, f(By), t>0. (1.2)
0

The existence of such superprocesses is well-known, see, for instance, [8, 11] or [17].
It is well-known that || X;|| is a continuous state branching process with branching
mechanism i and that

P ( lim || X, ] = 0) — e,
=00

where A* € [0, 00) is the largest root of the equation ¥ (1) = 0. It is known that
A* > 0if and only if « = —¢'(0+) > 0. X is called a supercritical (critical,
subcritical) super-Brownian motion if @ > 0 (= 0, < 0). In this paper, we only deal
with the supercritical case, that is, we assume « > 0. Let M; be the supremum of the
support of X;. More precisely, we define the rightmost point M (u) of u € Mg(R)
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by M(w) := sup{x : u(x,00) > 0}. Here we use the convention that sup = —oo.
Then M; is simply M (X;). Recently, in [18], we studied the asymptotic behavior of
M; under the following two assumptions:

(H1) There exists y > 0 such that

o0
/ y(log y)**"n(dy) < oco.
1

(H2) There exist ¥ € (0, 1]and a > 0, b > 0 such that
YA > —ar+ oA A >o0.

Itis clear thatif 8 > O orn(dy) > y~'=? dy, then (H2) holds. Condition (H2) implies
that the following Grey condition holds:

© 1
—— dA < o0. (1.3)
Y (d)
It is well known that under the above Grey condition, lim, . P, (|| X/]| = 0) =

e M1l Denote S := (V¢ > 0, | X;| > 0}. It is clear that P(S) € (0, 1). Define, for
t >0,

D, = ((@z - ) e V21—, X,>.

It has been proven in [16] that {D;, t > 0} is a martingale, which is called the deriva-
tive martingale of the super-Brownian motion X;, and that D, has an almost sure
nonnegative limit Dy, as ¢t — o0o. Assumption (H2) also implies that

o 1
/ VS5 ) du

Under (H1) and (1.4), D is non-degenerate and

dé < oo. (1.4)

M,
7’ — V2a, P-as.onS, (1.5)

see [16, Theorem 2.4 and Corollary 3.2].
For any f € B (R), put

us(t,x) :=—logE (e_fR FO=0X @) pp, < x) , (1.6)

Note that u ; only depends on the value of f on (—o0, 0]. Let H be the space of all
the nonnegative bounded Borel functions f on (—oo, 0] satisfying

/OOO ye¥?@ f(—y)dy < cc. 1.7

@ Springer



1082 Journal of Theoretical Probability (2024) 37:1079-1123

It has been proved in [18, Theorem 1.3] that under (H1)-(H2), for any f € H, we
have that

tlggouf(t,mz +x) = wy(x), (1.8)
where
my = V20t — 3 logt (1.9)
a Waa e '

and w s is a traveling wave solution of the F-KPP equation, that is, a solution of
1
Ew” + V20w, — ¥ (w) = 0.

Moreover, wy is given by w(x) = —logE [exp{—é(f)Dooe’mx}], with

C’(f) = lim \/g/ uf(r,mr—i—y)yemydy € (0, 00).
0

r—>o0

In the remainder of this paper, we write u(¢, x) and w(x) for u (¢, x) and w7 (x),
respectively, when f = 0.

1.2 Main Results

In [18, Theorem 1.2], we proved the following upper large deviation results for M,
under conditions (H1)-(H2):

(1) Foré > 1,
lim 7e*@=D'P(M, > 2as1) € (0, 00);
11— 00
32
) lim 3—HD(M; > +/2at) € (0, 00).
1—>00 —— logt
e 08

However, using the methods in [18], we could not get the asymptotic behavior of the
lower large deviation probability P(M, < +/2a8t|S) for § < 1. The purpose of this
paper is to study the asymptotic behavior of the lower large deviation probability. To
accomplish this, we use the skeleton decomposition of super-Brownian motion and
adapt some ideas from [7] used in the study of lower larger deviations of the maximum
of branching Brownian motion.

For branching Brownian motion, the asymptotic behavior of the maximal position,
also denoted by M;, of the particles alive at time ¢ has been intensively studied. To
simplify notation, we consider a standard binary branching Brownian motionin R, i.e.,
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the lifetime of a particle is an exponential random variable of parameter 1 and when it
dies, it gives birth to 2 children at the position of its death. Bramson proved in [4] that
PM;—m(t) <x) > 1—w(x)ast — oo, wherem(t) = V2i— ﬁj log t and w(x) is
a traveling wave solution. For the large deviation of M;, [5, 6] studied the convergence
rate of P(M; > ﬁ(St) for § > 1. Recently, Derrida and Shi [9, 10] studied the
lower large deviation of M;, i.e, the asymptotic behavior of % log P(M; < /28t) for

8 < 1, and found that the rate function has a phase transition at 1 — /2. Chen et al.
[7] studied the limiting property of P(M; < +/28t) for § < 1. For more results on
extremal processes of branching Brownian motions, we refer our readers to [1, 2].
To maximize the possibility of M; < /28t for § < 1, a good strategy is to make
the first branching time 7 as large as possible. It was shown in [7] that, conditioned
on {M, < V/28t}), T ~ %t + O()/twhend € (1 —+2,1);t ~t— O/t

when§ =1 —+/2and t ~ t — O(1) when § < 1 — +/2. The asymptotic behaviors of
P(M; < ﬁ(St) are different in these three different cases.

The intuition above also works for super-Brownian motion, but we need to use the
first branching time of the skeleton process, which is a branching Brownian motion.

Put
7(A*
g :=9%' (") >0, p:=‘/1+1/f( ):/14_2.
o o

We also use 7 to denote the first branching time of the skeleton process of the super-
Brownian motion. We will prove that, conditioned on {M; < V2ast, S },ast — o0,
T €E [l%‘st—(log DT, lp%‘st—}—(log H)+/tlwhend € (1—p, 1);7 € t—\/f[t_l/4, log t]
whend =1—pandt €[t — O(1),t] when § < 1 — p. The asymptotic behavior of
P(M; < /2a8t|S) exhibits a phase transitionat § = 1 — p.

Now we state our main results.

Theorem 1.1 Assume that (HI) and (H2) hold. If § € (1 — p, 1), then for any [ € H,

lim 22(o=D(1=8)1;=3(p=D)/2 (e—fR FO=V2ODX @) M1 < 2asi] 5)

— o0
3(p—1)/2
A ag foo —V2a(p—1)z
= —0 e e A(wy(z))dz,
6)‘ —1 «/20['0 —00 /

3

where ag = 1 — % and

1 , A
AR = Flﬂ(k) + 9" <1 - F) >0, A>0.
Theorem 1.2 Assume that (H1) and (H2) hold. Then for any f € H,

Tim 0D/ =D (o e SO0, b, < a1 - pyfS)
—00
_ )\*)\‘* 1 /oo s3(p—1)/26—ap252ds foo e_m(p_l)zA(Wf(Z))dZ-
e — 127 Jo —o0
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Theorem 1.3 Assume that (H1) and (H2) hold. If § < 1 — p, then forany f € B;'(R),

tlim \/;e(fﬁwsz)tE (e*fIR f(yﬂ/ﬁét)xz(dy); M, < «/2a8t|8)
—00

A* 1 1 © 2

_ (g—ad)s V2adz

" + e ds/ e Gr(s,z dz],
eM —1 [2«/710(|3| V27 Jo R 766

where
1
G r(tx) = [y x) =Y G5 +up.0) |+ qus0). (110)

with vy, u"} being defined in (2.7) and (2.6).

The reason that we assume f € H in Theorems 1.1 and 1.2 is that (1.8) plays an
important role in the proofs of Lemmas 3.2 and 3.7. Lemma 3.2 is used in the proof
of Theorem 1.1 and Lemma 3.7 is used in the proof of Theorem 1.2.

Let C.(R)(CI(R)) be the space of all the (nonnegative) continuous functions
with compact support. Let Mg (R) be the space of all the Radon measures on R
equipped with the vague topology, see [14, p.111]. Recall that for random measures
we, p € Mg(R), u; converges in distribution to w is equivalent to { f, ;) converges
in distribution to (f, u) for any f € CF(R). See [14, p.119] for more details.

As a consequence of Theorems 1.1-1.3, we have the following corollary.

Corollary 1.4 Assume that (H1) and (H2) hold. Conditioned on {M; < ~/2adt, S},
X; — ~2adt converges in distribution to a random measure Es. Moreover, for any

feCi®),ifsell—p, 1),

—2a(p—1)
( fRf(y)ua(dy)> o r ZA(wf(Z))dZ

1.11
f_ —V20(p=Dz A (w(z))dz (1.11)

andif§ <1 —p,

% 4= gy [ eV2G (s, 7) dz

E (e—fR f(y)Ea(dy)) MW + Jo 7
JE|§| —|— /0 e(Q*O{SZ)S ds fR emSZG(S’ Z) dz

where G g is defined in (1.10) and G(t, x) := Go(t, x).

Proof We consider the case of § € [1 — p, 1) first. For any f € H and 6 > 0, by
Theorems 1.1-1.2,

~V2(0=1)2 A (wy £ (2))dz
V212 A(w(z))dz

t—00

lim ]E( 0 Jp fOy— «/ﬁ&)xr(d)’”M <«/_5t S) ffoo
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It has been proved in [18, Lemma 3.3] that limg_, ¢ C @f) = C (0), which implies
that wg £ (x) — w(x). Note that A(A) is decreasing on (0, 1*) and 0 < wg r(z) < A™.
Thus, using the monotone convergence theorem we get that

. > V2= A (wy £ (2))dz 1
00 [ e=V2(-12A(w(2))dz

Thus, conditioned on {M; < 2aét, S}, fR fly— V2a8t) X, (dy) converges in dis-
tribution for any f € C(R), which implies that X, — V28t converges in distribution
to a random measure 25 with Laplace transform given by (1.11).

Similarly, using Theorem 1.3, we can get the result for § < 1 — p. O

Throughout this paper, we use C to denote a positive constant whose value may
change from one appearance to another. For any two positive functions f and g on

[0, 00), f ~ g as s — oo means that lim,_, oo g((j)) =1.

2 Preliminaries
2.1 Skeleton Decomposition

Denote by P, the law of X with initial configuration x conditioned on extinction.
It has been proved in [3, Lemma 2] that (X, P*) is a super-Brownian motion with
branching mechanism ¥*(A) = ¥ (A + A*). Note that (¢*)'(0+) = ¥’ (A*) = ¢ > 0.
So (X, P*) is subcritical.

Let D([0, 0c0), M (R)) be the space of all the right continuous functions w :
[0, c0) > ME(R), and ]D)(‘)Ir be the space of right continuous functions from (0, co)
to M r(R) having zero as a trap. It has been proved in [12] that there is a family of
measures {N,, x € R} on ]Da' associated with the probability measures {IF’:;V :x € R}
such that

fw (1 _ e (fown )N*(dw) —log P}, ( (. Xﬁ), .1
0

forall f € B+(R) and ¢t > 0. The branching property of X implies that, under IED* ,
X, is an infinitely divisible measure, so (2.1) is a Lévy—Khinchine formula in which

N7 plays the role of Lévy measure. By the spatial homogeneity of Brownian motion,
one can check that

P} (e*<ant>) =P} (;ff(xﬂ)xt(dy)) ,NE (1 _ e*(.fywt)) =N (1 - efff<x+y>w;(dy>) ,
It was shown in [3] that the skeleton of the super-Brownian motion X; is a branching

Brownian motion Z, with branching rate ¢ = ¥'(1*) and an offspring distribution
{pn : n > 2} such that its generating function ¢ satisfies

1
q(p(s) —s) = Fl/f()»*(l — ).
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We label the particles in Z using the classical Ulam-Harris notation. Let 7 be the set
of all the particles. We write @ for the root. For each particle u € 7, we write b, and
oy for its birth and death time, respectively, N,, for the number of offspring of u#, and
{zu(r) : r € [by, 0,] for its spatial trajectory. v < u means that v is an ancestor of u.
Now we introduce the three kinds of immigrations along the skeleton Z as follows.

1. Continuous immigration The process [ N* is defined by

=30 Y Lyawi—rp,

ueT (rj,w;)eDy

where, given Z, independently for each u € 7, Dy, = {(rj,wj) : j = 1} are
the atoms of a Poisson point process on (b,,, o,,] X ]D)g' with rate 28dr x dNZ )"

2. Discontinuous immigration The processes [ P* is defined by

=" 0 Lqwit—r)),

ueT (rj,Wj)Epz_L,

where given Z, independently for each u € 7, D, , := {(rj, w;) : j > 1} are
the atoms of a Poisson point process on (b, g,] x D([0, 00), M g (R)) with rate

_a*
dr x fye(o’oo) ye yn(dy)dIF’;Szu(r).

3. Branching point-biased immigration The process 1" is defined by

3,
Itn = Z IO'MSIX[(_;E
uel

where, given Z, independently for eachu € 7, X G §s an independent copy of
the canonical process X issued at time o, with law IP’*;,M 52y ton) where, given u has

Zulou

n(> 2) offspring, Y;, is an independent random variable with distribution

Ma(dy) = {ﬁ(k*)z(So(dy)l{n—z} + (k*)”%emn(dy)} -

Pnr*q
Now we define another M g (R)-valued process I = {I; : t > 0} by
=1V + 1" 4 (2.2)

where 1N = {I,N* 1t >0}, 7 = {IIP* :t>0}and I7 = {I,'7 : t > 0}, conditioned
on Z, are independent of each other. For any integer-valued measure v, we denote by
P, the law of (Z, I) when the initial configuration of Z is v. We write P for Pj,,.

For any u € MFp(R), let Z be a branching Brownian motion with Z being a
Poisson random measure with intensity measure A* and  be the immigration process
along Z. Let X be an independent copy of X under Pz, also independent of /. Then
we define a measure-valued process A = {A; : t > 0} by

A=X+1. 2.3)
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We denote the law of A by Q. In particular, under Qs,, Zo = Ndy, where N is a
Poisson random variable with parameter A*. We write Q for Qs,. In the rest of the
paper, we use E, E* and Eq to denote the expectations with respect to P, P* and Q,
respectively. The following result is proved in [3].

Proposition 2.1 For any u € Mp(R?), the process (A, Q) is Markovian and has
the same law as (X, P,).

Recall that M; is the supremum of the support of X;. Denote the supremum of
As 1y, Zy, and X, by M2, M, M7, and M, respectively. By (1.1), for any f €
B*(R),

Vi(t,x) = —logE;s, (e_flR f(y)X’(dy)> , x eR.
By the spatial homogeneity of X, we have

Vil —x) = —logE (e Ja [0m0X@0) |y e . 2.4)

Setting fo := f + 01(0,00), We get
up(t,x) = gli)ngo Vi@, —x), xeR. 2.5)
For any f € B*(R), put
vp(t,x) ==K (e—,/iR TO=DB@),; Ml < x), (2.6)
W51, x) 1= —log B (7 00X g, < ). @7

For f = 0, we write v(¢, x) and u*(¢, x) for vy (¢, x) and u"}(t, x), respectively.
The relation among u ¢, u; and vy is given by the following lemma.

Lemma 2.2 Forany f € BT(R),t > 0andx € R,
up(t,x) = u?(t,x) + 2% (1 - vr(t, X)).

Proof Recall that under Q, Zy = N§p, where N is Poisson distributed with parameter
A*. By the definition of A, we get that, forany r > 0, x € R,

g—uf(t,x) _E <g_./iR f(y_x)X,(dy); M, < x) — EQ (e—fR f(y—x)Af(dy); MtA < x)

= Eq (e*fR Fo=0Xi@y), X < x) Eq (e* Jr fO=01 @)yl < x)

= E* (e—fR FO=0Xi@), b, < x) EqQ <[E(e_ﬁR Fomol@n, pl < X]N)
7uj»(l,x)e)\*(vf(t,x)—l).

=e
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Thus, u ¢ (z, x) :u?(t,x)—i—)»*(l —vr(t, x)). O
Now we give some basic relations among M zZ MtA, Mtl and M;.

Lemma 2.3 Under Q, given A;, Z, is a Poisson random measure with intensity J* A,
which implies that MtZ < M,A, Q-a.s.

Proof We refer the readers to the display above [3, (3.14)] for a proof. O
Lemma 2.4 Under P, MtZ < Mtl, a.s.

Proof First we claim that Q(MtZ < M,I) = 1. In fact, for any x, by Lemma 2.3, we
have

O:Q(Mtz >xz MM =Q(MF > x, Ml < x, MY <x)
:Q(Mtz >x,M,1 §x)Q(M,X §x).
Using the fact that Q(M,’? < x) > 0, we get Q(M? > x, M < x) = 0. Since x is
arbitrary, the claim is true.

Recall that under Q, Zg = N§p, where N is Poisson distributed with parameter A*.
Thus,

O:Q(Mtz > M,’) zQ[MtZ > M!|N = 1]Q(N= 1)=P(Mtz > Mf)e_)‘*,

which implies that P(M? > M) = 0. O

The following lemma implies that, to prove our main results, we only need to study
the limiting behavior of v ¢ (z, v/2a6t).

Lemma2.5 Forany f € BtT(R) and § < 1,

i E (eff]R f(y*m&)xr(dy); Mt < /2a5t|8> A% (2 8)
im = — ) )
1—00 vy (t, v/208t) M —1

Proof We also use S to denote the survival event of A. It is clear that, under Q,
SC{N>11andQ(S) = QN > 1) = 1 — e™*". It follows that S = {N > 1},
Q-a.s. Then, by Proposition 2.1,

E <g—,/]’R FO=0Xi@y). pp < x|5> =Eg (e—/iR JO=OM@) YA < x|N > 1)

= Eq (e—fR FO=0%idn, X < x) Eq (e—f]R FO=0L@), pl < y|N > 1)

Mop(t,x) _ 1

= e T OBoup (e )N N > 1) = e 0 E S 2.9)
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Since (X, IP*) is subcritical, we have, for any §,

TN S prIX, = 0) > 1, 1 — oo,

7u”}(t,«/2a8t)

which implies that e — 1,ast — oo. By (1.5), we have for any 6 < 1,

E (e*fne FO=V280Xi ). pp < x/2a8t|8) < P(M, < v2a8t|S) — 0.

Thus, by (2.9), vr(t, ~/2adt) — 0 for any § < 1. The desired result follows
immediately. O

To study the behavior of v (¢, +/2adt) as t — oo, the following decomposition of
v plays a fundamental role.

Proposition 2.6 Forany f € BT(R), t > 0 and x € R,
vp(t.x) = Uy (t, x) + Us, £(t, 2), (2.10)
where
Uy p(t.x) = E[e_ o v a—ra=B)dr g x], 2.11)

t S ok * A
Uy f(t, x) = E/ oo VRGBT G s x — By)ds,  (2.12)
0
with éf(t, x) being defined by

éf(t, X) — )\‘i* I:,B()»*)zvf(t’x)z + fw <e)\*vf(l,x)y —1—= )\.*Uf'(t, x)y)
0
e—(k*+u’}(t,x))}' n(dy) i|
1
= F[w(uf(t, X)) — (A + Wi, )+ (A + wit, ) *vp(t, x)i|.
(2.13)

Proof Let t be the first splitting time of Z, that is T = 0. By considering the cases
T > t and T < ¢ separately, we get

vt x) =E (e*fR FO=0h@, yl < x)
—E (e—fR FO=0n@), pl < 7 > ,) +E (e—fm SO=0L@), T <y 7 < t)
=: Uy, 5(t,x) + Uz (2, x). (2.14)
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By Lemma 2.4, Uy ¢(t,x) =E <e‘fR SO=01Ldy). Mtl <x, Ml‘Z <x,T> t). By

the decomposition of [ in (2.2), on the event {t > ¢}, we have that I; = ItN* + ItP*.
Thus, using [3, Lemma 3], we have that, on the event {t > ¢}, for any x € R,

E (e— Je FO=01W@), pl < ) ftZ) — lim E (e— Jalf =0+610,00) =01 (dY) ft2>
60— 00

t
= exp {—/0 <¢>(u>}(t — 5, X — ~)), Zs)ds} ,

where {]—',Z , t > 0} is the natural filtration of Z and

o0 *
S =Y (A + A5 — Y () =281+ f (1 — e *)xe ™ *n(dx). (2.15)
0

Note that, on the event {t > t}, Z; = 6,5 and {zg(s), s <t} 4 {Bs,s < t}. Thus,

Uy s(t.x) = e—qu[exp { — /Ot $(ui(t —r.x — By)) dr}; B < x]

:E[exp{ - /Ot W’(A* +u’}(t —r,x — Br))dr}; B, < x]. (2.16)

On the event {tr < ¢}, the immigration process I has the following expression:

Ng
3, .
I; = Z wj(t—rj)+ Z u)j(t—rj)-l—Xt(_?)—i-ZI;_r
i=1

(rj,wj)GDLg (rj,wj)EDLg
=N+ i+ T3+ Tas, (2.17)
where, given Z, I'i=1,...,Ng,are i.i.d copies of I under P, ;). Since, given

]—"tz, Jit. i =1,2,3,4, are independent, we have
U2,f([,.x) —E [E (e*fRf(y*x)h(dy); Mt] < X|-7:,Z> T < t:l
=E [Hl,tHz,tH3,tH4,t§ T < t] , (2.18)
where

Hi =B (el 107070 7, (v, 00) = 01FF) i =1,2,3,4,

Put fy = f + 01(p,). By the bounded convergence theorem, we have

Hiyp = lim E ("o h0=0T@0 £2) 2.19)

4=
60— 00
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By the definition of D; & and (2.19), we have that, on the event {t < t},
T
_ 1 = Jr Jo(y—x)w;—r(dy)
Hy ;= glinéoexp {—2,3/0 A;)g (1 — e~ IR foy—x)wi—r(dy )Njg(r)(dw)dr} )
(2.20)

Using (2.1), we get that
Jim - (1 —e e fﬂ(ny)wtfr(dy)) N*(dw) = Jim_ —log Ej. [e* Jr fs(ny)Xzfr(dy)]
= —logIE§Z [e7 Jr FO=0)Xi—r (@), M;_, < x] = u?(t —r,x —2).
Thus, we have that
H =exp{—2ﬂ /Of u?-(t—r,x—zg(r))dr}. (2.21)
For H , on the event {t < ¢}, we have that

T o
= 1 _ =¥y * — o SR fo—0)Xi—r(dy)
Hj, elimooexp{ /O drfo ye n(dy)IEyazg(r)(l e Jr )dr}.
(2.22)

It follows from the branching property of X that

lim P, (e"fiR -fé(y_x)"ffr(dy)) = lim [}P’j; (e—fRfe(y—wX:fr(dy))]y
Yoz 2

60— 00 60— 00

*
_ e—uf(t—r,x—z)y’

which implies that

T o0 % "
Hy, = exp {—/ / y [1 — e_“f(t_r’x_z’z’(r))y] e Vn(dy) dr} ) (2.23)
0o Jo
Combining the definition of ¢ in (2.15) with (2.21) and (2.23), we get that
T
Hy Hy; = exp {— / ¢(u*}(t —r,x — Zg(}’))) dr} . (2.24)
0

By the definition of X (3.2 on the event {t < t}, we have that

Hy = lim E (P;@ 5 (e—fR fe(y—x)XH(dw) | ﬁz) lsmrymz (0)

—E (e—u’}(t—r,x—zg )Yz |le>

1 0 (p* Ng e .
= e (ﬁ(x*ﬂm@—ﬁ /0 s Ny;, e T e )’n(dy>>.
. |
(2.25)
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It follows from the branching property that on the event {t < ¢},

N
Hy: = [P(Szg(r) (e_fR f(y—x)X,,S(dy); M[CS < x)] Z _ Vet — T, X — zz(l’))NQ.
s=t
(2.26)

Note that
o0
E(Hs Hi 1 <17, {z5(),0<r <t}) =Y E(H3 Hay;it <1, Ng =n|t, 25(7))
n=2

)»* n —u . B
—1r<prn (ﬁ()» Pl + f GO prujtt-ea—za o, “n(dy))
Pnh 0

!
vi(t —T,x — 25(1))"
o [(ﬂm vl = 7,5 = 2(7)?
o0 *
+/ (e)‘ vpt—tx—zg(@)y _ | _ vt —T.x — Zz(l’))y)
0
e*(l*ﬂt’}(rfr,xfzg(T)))yn(dy):l

= q_lé_f(t —1,x — 2g(1) 1 <. 2.27)

Combining (2.18),(2.24) and (2.27), we get that

Uz f(t,x) =E[Hi Hy E(H3 Hap; T < |7, {2(r),0 <1 < 7})]

= q*]P <exp {—/T d)(u’;(t —r,x — Zz(r))) dr} Gf(t —7,x —zg(D)); T < t)
0 }

' 5
:E/ exp{—/ (q—l—qﬁ(u}?(t—r,x—B,))) dr}CA}f(t—s,x—Bs)ds,
0 0

where in the last equality, we use the fact that t is exponentially distributed with
parameter g and {zx (r) : r > 0} is a standard Brownian motion. Note thatg +¢ (1) =
¥’ (M* 4+ X). The proof is now compete. O

X_1_ k=2, . . . ) )
Note that < x% L =32, X is increasing in x on (0, 00). So * U (¥Y — ] —

AMur(t,x)y <vy(t, x)z(e**y — 1 — A*y), which implies that
A 1 o0 * *
Grt,x) < = [(ﬁ(/\*)z + / (€Y —1—=21%y)e™ >’n<dy)>} vyt x)?
0
= (') = /W) v, x) = qup(t, x)? < qu(t,x).  (2.28)
Here in the last inequality, we use the fact that v ¢ (2, x) < v(z, x).
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2.2 Some Useful Estimates

In this subsection, we give some useful estimates for u? (t,x)and vy (z, x). Recall that
g=vy')and p =1+q/a.
Lemma 2.7 (1) Forany f e BT(R) and t > 0,x € R,

u?(r,x) < k(t) := —logP*(X, = 0),

and t — e1'k(t) is decreasing on (0, 00).
(2) If (H2) holds, then there exists a positive constant ¢y such that

| 1/9
<] om0 (229)

and for any f € Bzr (R), there exists a positive constant c3 such that

wi(t, x) < c3(l+x727)e@T g x> 0. (2.30)

Proof Since E* (e’fR JO=0XiWdy). pp, < x) > P*(X; =0) forany t > 0,x € R,
we have u’} (t, x) < k(t). By the branching property and Markov property, we get that

P*(I|X; || = 0) = E* (p;tﬁ(”xsn = ())) — E* (e—km)llXHn) '

Put u}(t) := —log E* (¢ /IXllr). Then k(z) = uj (s (t = ). Under P*, || X, || is a con-
tinuous state branching process with branching mechanism v (A*+21). Then according
to [15, Theorem 10.1], we have

K(t) = —y (A* Ul — s)) — O k). 2.31)
Since ¥ (A*) = 0 and v is increasing on (0, 00), ¥ (A* + 1) > ¥'(A*)A = gAi. Thus,
k'(t) < —qk(t). Using this, one can check that (e9"k(¢))’ < 0. The proof of (1) is
complete.
Assume that (H2) holds. Then there exists ¢p > 0 such that ¢ (A* + 1) > (A +
A1), Thus, by (2.31), we have that
K (1) < —co(k(t) + k()7

which implies that

! k' (s) —1 ot —1 9
—C2t2/0 stzylog(l'f’k(s) )|O:?10g(1+k(t) )

Hence, (2.29) follows immediately.
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Since u*f‘.(t, x) < uy(t, x), it suffices to show that (2.30) is true for u ¢ (¢, x). By
[18, Lemma 2.3(2)], we have that

Vi, x) S Vi, x) + Vi (t, x).
By (2.5),
up(t,x) = ean;o Vi, —x) < Ve(t, —x) + glergo Vo1(0.00) (F, =) = V¢ (1, —x) +u(t, x),
where fy = f + 01(9,00). By (2.4) and Jensen’s inequality, we have that
Vit —x) = ~logE (¢~ e f0-0%@0) < g ( /R fly— x)X:(dy))
= " E(f(B: — x)) < | fI.

By [18, Lemma 4.2 and 4.3] (with A being replaced by x, and x there replaced by 0),
we get that there exists a positive constant C such that

u(t,x) < C(l +x_2/0)em, t,x > 0.
Combining the two displays above, we get that
up(t,x) < I f+C(L+x"20)e < (CHIFID(L+a727)elet o,

Now (2.30) follows immediately. O

Lemma 2.8 Assume that (HI) and (H2) hold. For any A > 0 and € > 0,

A
/ @ (k(s))s€ds < oo.
0
Proof Note that, by (2.31),
K'(s) == k(s) +1%), K'(s) = =y (k(s) + 15K (s).

Thus, using (2.15), we have

o o K'e K" (s)
0= pkis) =¥ (k) +4") —q = 55 —q < 55

It follows that

A A k”(s) A
[ ¢ (k(s))s€ds < / ; s€ds = / 5€ d(—log(—k'(5)))
0 0o —k'(s) 0
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A
= —log(—K'(A) A + lim s log(—'(s)) +e/ log(—k'(s))s " ds.
S—> 0
(2.32)

Note that for A > 0, ¥” (A4 A*) exists and is decreasing. By Taylor’s expansion, since
¥ (A*) = 0, we have that

Y+ A5 <Y OO+ WA, A > 0.
By (2.29), we have that k(s) < Cs~!/?. Thus, we get that

—K'(s) = Y (k(s) + 1) < ¥ (WHk(s) + ¥ (Wk(s)?
<C(sV 457 <0577, s €0, Al
Now the desired result follows immediately from (2.32). O
Now we give some upper estimates of v(z, x).

Lemma 2.9 (1) Forany t > Q,

v(t,x) < P(B; <x), x eR, (2.33)
and
v(t,x) <P(B; <x)< Vi 67% x <0 (2.34)
B T T ' '

(2) There exist tg > 1 and ¢ > 0 such that for any t > to,

v(t, V20t — 1) < P(MF < V20t — /i)

<ct { 2_;1?:?221_9”’ ‘ f; BEABI LD
Proof (1) By Proposition 2.6, we have
v(t, x) = E[e‘f5 YOSt —rx=B))dr g x]
+ E/t e VOt =rx=B)dr G _ g x — Bo)ds,
0
which is equivalent to
v(t, x) = E, [effg YOSt - B dr s 0]
+E, /Ot e~ o VIRt BYdr Gy _ g By ds, (2.36)
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where G is the G ¢ defined in Proposition 2.6 with f = 0. Thus, by [11, Lemma 1.5,
page 1211], the integral equation (2.36) implies that

t
v(t, x) +Ey / Y 4 u*(t — s, Bs)v(t — s, By)ds
0
t ~
= PX[B, > o] +Ex/ Gt — s, By)ds. (2.37)
0

Here we remark that since ¥/ (A* + u*(¢ — s, 7)) may not be bounded as a function of
(s, z), we cannot use [11, Lemma 1.5, page 1211] directly. However, since ' (A* +
u*(t—s, z)) > 0,theargument of [11, Lemma 1.5, page 1211] still works in the present
case. Note that the right-hand side of (2.37) is finite, and thus we have E, fé Y (A* +

u*(t —s, By))v(t —s, Bg)ds < oco. Combining (2.37) with the definition of G, we get
1 1
v(t.x) = Py B = 0| + - E, /0 [ (s, Bios) = W (&* +u*(s, B—y))] ds.
Note that (1) < 0 for A € (0, 1*), (1) > 0 for A > A* and ¥ is increasing on
(A*, 00). Thus, for any A9 > A™,

sup y(A) = sup Y(A) =¥ (o).

0<A<Ao ME<A<Ao

Since u(s, z) < A* + u*(s, z), using the above property with Ag = A* + u™(s, B;—s),
we get that ¥ (u(s, B;—s)) — W (A* + u*(s, B;—s)) < 0. Therefore, we have that

v(t, x) < PX[B, > o] :P[B, < x], x eR.

Forx <O,

l o
P[Bi = x| =P[B1 = x| = _/ 24y
27 Jxpi-1/2

Y e‘y2/2dy<—\/; e/,
T A 27|x|

1 o
S JRE—
21 Jixpi-12 x|t~ 1/2

(2.38)

Thus, (2.34) follows.
(2) We claim that there exists #p > 0 such that for any ¢ > #p and x,
P(M? <z) < (2qt + 1) sup e %P (31 < (z—2a(t —s)+ \/;)/\/5) . (2.39)

0<s<t

It is shown in [10] (see the discussion below [10, Lemma 3]) that the claim is true
when p» = 1 and ¢ = 1. Using similar arguments, we see that it is also true for the
general case. We omit the proof here.

Put a(r) := +/2a(1 — 0)z. By (2.39), for t > 19,

P(M? < V2a60t — 1) < 2qt + 1) sup e P(By < (vV2as —a(1))//5).

0<s<t
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Note that by (2.38), P(B; < —y) < ﬁy—le—yz/z for all y > 0. Thus, if v2as <
a(t), we have

e P (B] < (\/_s — a(t))/«/—) Vs ! e_qse_(ms_“(’))2/2s

V2w a(t) — A/ 2as
— \/E 1 e«/ﬁa(t)efapzsf% .
2w a(t) — A 2as
(2.40)
It is clear that
s+ 8 > V2apal(t), (2.41)

and is decreasing on (0, jz%)p ). We now prove the desired result in four cases.

(1) Ifa(t) > ~2apt (thatis, 8 < 1 — p), then ~/2as < a(t) for s € [0, ¢] and thus
by (2.40) we have that

1 al(r 2
sup e 4P (31 < (V2as —a(t))/f) Liem"(’)e”’pzh%

0<s<t V2w a(t) — +/2at
_ Vi 1 (@’ +a(1-6)2 =20 (1-0))1 1 1 o+t
V2w a(t) — 2at T V21 V2a(p — DA/t

(i) If «/Za%t < a(t) < «2apt (thatis, 1 —p < 0 < (1 — p)/2), then
v 2as < a(t) for s € [0, ], and thus by (2.40) and (2.41) we have that

2
sup e 4P (B < (V2as —a(t ) ¢~ V2a(p=Da(®)
05}; 1= (V2 )V V27 a(p — l)f
1 2 o2 (p=1)(1-0)t

= V2 2alp — i

p+1 . _ 1
(i) If 1 < a(r) < ~2a55~1 (thatis, (1 — p)/2 <8 < 1 _«/Et)’ then

sup e °P (Bl < (\/ﬁs - a(t))/ﬁ)

0<s<t
_ 2
< Sup e I°P (Bl < (V2as — a(z))/ﬁ) + e 1 *?
0=s= 73en f( @
< sup ! ‘/E eﬂ/@(pfl)a(t) _i_e*m(pfl)a(t)
B 0<s< a(t) V2 a(t) — 2as

**f(

- ! L ~Vaa(p-1aw) | —v2ap=Dat)
= ]
V2am(p+1) (£+1)«/a(t)
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< ( ptL 1 1) o 2(p=1)(1-0)t

V2am p—1

Here in the second inequality, we used (2.40), (2.41) and the fact that

2 2a(p? —1)
q = = \/20{(,0 — 1)
N20(p+1) J2a(p+1)
(iv) Finally, if 0 < a(¢) < 1 (thatis, 1 — ﬁ <6 < 1), then

P (M,Z < V2abt — J;) <1 < ¢V2000=D) =V2a(p=Da®) _ ,V2u(p=1) ,=2a(p=1)(1=O)1

The proof is now complete. O

Recall that m; = +/2at — %ﬁ log t. The next lemma gives another estimate of
v(t, z). The proof will be given in Appendix.

Lemma 2.10 For any € € (0, v/2a(p — 1)), there exist cc > 1 and T¢ > 1 such that

v(t,m;—z) <P (MIZ <m— z) <cee VTV s T 250,

3 Proofs of the Main Results
Put ¢p(t, x) := ' (A" + uj‘,(t, x)). Itis clear that £ ¢ (1, x) > ¢¥'(A*) = q.

Lemma3.1 Forany f € Bt (R),

e 9", §>0;
Uy, r(t, V2aét) < L —1/2,—@q+asD 5
2J7als] ’ :

Proof Since {r(r, x) > ¥'(A*) = g, by (2.11), we have that
Uty (t,v/2abt) = E (=l &rtmra/28=bdss g, < \agr) < e™'P[ B < Vb1,

Thus, the desired result follows easily from (2.38) with x = +/2a6¢. O

Note that by the change of variables s — ¢ — s, we have

t
Uz, f(t,x) = Ef eI Errx=B=r)dr G (s, x — By—_s) ds.
0
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3.1 Proof of Theorem1.1: 6 € (1 — p, 1)

It follows from Lemma 2.5 that, to prove Theorem 1.1, we only need to consider the
limiting property of v (¢, ~/2adt). Note that

g+as? —2a(p—1(1 =8 =a(p—1+8)>, (3.1
and
2(p — D1 —=96) <2a(p—1) < ot(,o2 —1=gq, §€[0,1). 3.2)
It follows from Lemma 3.1 that for any § € (1 — p, 1),

2= (1=8)1

tl—l>Igo WUl’f(t’ V2aét) = 0.

Thus, by the decomposition (2.10), to prove the desired result, it suffices to show that

2a(p—1)(1-8)t 300-1)/2 oo
m & _ % —V2a(p—1)z
tgrgo YR Us, ¢ (t, V2ut) = N /700 e A(ws(z))dz,

where ag = 1 — 1%“ and A(A) = Ly Q) + ¥/ (W) (1 — A/A%).
The result above follows from Lemmas 3.2 and 3.3 below. In Lemma 3.3, we will
show that for§ € (1 — p, 1),

eZa(p—l)(l—(S)t
30-D/2

1-6 1-6
P(M[ < V2ast, 1 ¢ [—z — (log )1, — 1 + (1ogt)ﬁ]) =0
P o
Thus, on the event [M,’ <+ 2adt }, with large probability, the first branching time of
the skeleton happens in the interval [%t — (log 1)/, lp%‘st + (log t)ﬁ] )

Lemma3.2 Let§ € (1 — p, 1) and T, = [ast — (log 1)/7, ast + (log 1)v/T] N [0, 1],
Then for any f € H,

20(p—1)(1=8)t R
lim & E [ e Kot Z“SI_B’*’)erf(s, V28t — B,,S) ds
t—>oo  t3p—1)/2 I
3(p=1/2 0o
s f —V2a(p—1)z
== e A(wr(z))dz.
kY4 20(,0 —00 !

Proof In this proof, we always assume that ¢ > 1 is large enough such that ast/2 <
ast — (log 1)/t < ast + (logt)+/t < (1 + as)t/2. Since ¥’ is increasing and /" is
decreasing, it follows that, for any A > 0

g=v'0") <Y’ A +1) <qg+y"(WHr
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Thus, we have, for any s € Z;,
t t
gt —s) < f ¢r(r, V208t — Bi—p)dr < q(t —s) + w”(x*)/ Wi (r, v/2a81 — Bi—p) dr
S S
< q(t —s) + " OWF)tk(ast — (log1)/1).

Here the last inequality follows from Lemma 2.7(1) and the fact that the function k
is decreasing. By Lemma 2.7(1), sup,. | e?’k(¢) < oo, which implies that rk(ast —
(logt)y/t) = 0 ast — oo. Thus, as t — o0,

E/ e_f; gf(r,«/ﬁ&—Br—r)dréf(s, v 2a6t — Bt—s) ds

N / e 1UIE[G ¢ (s, V2ast — B;_)] ds. (3.3)
It

Recall the definition of m; in (1.9). By the change of variables s = s(u) := ast +u+/1,
we get that

/ e IUIE[G 4 (s, V2abt — Bi—y)] ds

1

= / efq(lfs)E[Gf(S, ms + (@(St —ms — BI—S))] ds
T

/ —q(t=9)q / 1 _MG ( +od
= e das —_— T—s s, m z z
I R V27 (t — 5) A
/logt e 00 (mgyti—v2asn?
=/t ————du e =) Gr(s(u), myq) + z)dz.
—logr 27 (t — s(u)) o f s(u)
(3.4)
For u € (—logt, logt), we have that
3 2
(o +2 = VEit” = (m(% = 8+ 2aui - 3y 08t + /) + Z)
o

= 2a(as — 8)%1% + 2au’t + da(as — 8)ut~/t — 3(as — 8)t log(ast)
+ 2V 2a(as — 8)zt + Ri(t, u, z)

=2a(as — 8)%1% + 4a(as — 8)ur®? — 3(as — 8)t log1
+[2au2 + 2@(05 —38)z —3(as — §) logaslt + R1(t, u, 2),

2
where Ri(t,u,z) = (—ﬁﬁlog(a,gt—i—u\/?) +Z) — 3us/tlog(ast + u/t) +
22au~/tz — 3(as — 8)tlog(l + u/(as+/t)). Using this, one can check that for
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lu| <logt,

Ri(t,u,2) > —=3|u|/tlog(ast + |u|v/7) — 2V3alulTIz] = 3(as — 8y~

8\/_
—3(log 1)’V — 2/ 2a(log )1z — )«/_logt (3.5)

v

Using the Taylor expansion of (1 — x)~!, we obtain that
1 B 1 1
20t —sw))  2(1 —as)t 1 —u/[(1 — as)/1]
2

1 u u
= 1
2(1 — ag)t ( + (1-— a(;)\/? + (11— aa)zt + Rt u)> ’

where

[R2(t, u)| =

- logr 1" 2 3,232
=2 [(1 —as)f] a3 g0

n=3

i[(l _%MT

hereweusedthefactthatlogt/[(l—a(;)\/?] <1/2,andfor0 <x <1/2, ZZO:3 x" =

3 . .
= < 2x3. Using the above estimates, we get that for u € (—logz, log?),

(3.6)

(Msw) + 7 — 2a81)?

2(t — s(u))
a(as — 8)> ( u u? ) 4a(as — S)u ( u )
= t+ Vit + Vi+
1—as (1 —as) (1 —as)? 2(1 — as) (I —as)
3(as — &) 2au® — 3(as — 8) log(as) + 2+ 2a(as — 8)z
mlogt—l— 2(1—(15) +R3(I,M,Z)
- D21 -8 3(p—1
=%t+qu«ﬁ—¥lgt+l u? +v2a(p — 1)z
3
- z(p — 1) log(as) + R3(t, u, z), 3.7
where
_da(as—Ou  u? 3(as — 8) u u?
Bl D = ey U—mpvi 20 —ap ((1—aa>ﬁ+ (1—05)2t)
4 20u? — 3(as — 8) log(as) + 2+ 20 (as — 8)z ( u . u? )
2(1 — as) (1 —as)v/t (1 —as)’t

+ (Za(ag —8)%% 4+ 4a(as — Out’’? — 3(as — S)tlogt

Ra(t, u) Ri(t,u,z)
2(1 — ag)t 2(t —s(u))’

1 [20u? + 2v2a(as — 8)z — 3(as — 8) log a,g]t)
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Then it follows from (3.5) and (3.6) that lim;_, o R3(¢, u,z) = 0 and for any u € (—logt, logt),

B 20 (as — 8) 3172 3(as — 8) logt (log1)? )
R3(t, u, z)_i(l 5 (logt)’t +2(1 a,;)lOgt<(1—a5)ﬁ+(1—a5)2t
2a(10gt)2 + 3(as — 8) log(as) + 2+/2a(as — 8)|z| ( logt (log1)? )
2(1 — as) (1 —as)/t (1 —ap)’t

+ (20:(a5 — )22 + da(as — 8)(og 1)r3/? + 3(as — 8)tlogt

+ [2a(log1)? + 2v/2a(as — 8)|z| + 3(as — 8) log ag]t) (log )3t/

1
2((1 — as)t — (logt) /1)

(1 —as)*
(3(1ogz)2f+2@(1ogt)le|+ )fl gt>

Thus, there exists a positive function r(-) with lim;_, o 7(#) = 0 such that for any
u € (—logt,logt),

—R3(t,u,z) <r(®)(1+|z]). (3.8)

For any € > 0, choose f, such that r(¢) < € for any ¢t > 7.. Noticing that ¢(1 — as) +
2
w =2a(p — 1)(1 — 8), by (3.3), (3.4) and (3.7), we get that

o2(p—1)(1=8)t

: — [l ¢(r,V208t—B,—) dr A N
Am —3G E/,te Gs(s, V2adt = By—) ds

_ logt ¢ a® 2
:ag’(" b/2 lim/ Vi =

—————T -5 du
—logt /27 (t — s(u))

—0o0

S ~
/ e V202 R3C1D G (5(), gy + 2)dz. (3.9)
o

Note that u* (¢, m; + x) < —logP*(X; = 0) — 0, as t — oo. Then it follows from
(1.8) and Lemma 2.2 that

wr(z)
Ax

lim ve(t,m; +2)=1-
11— 00
Recall the definition of G in (2.13). It follows that
lim G past /i g+ 2) = i Gy, + 2
1
= (Y (wr @) +q(A* —wr(2) = A(ws(2). (3.10)

Thus, as t — oo, the limit of the integrand in (3.9) is

2072 P
—8_751'4 TVl ‘A wr(Z
27 (1 —ap) (ws@).
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By (3.8), (2.28) and Lemma 2.10, we have that, for  small enough, there exist T;, > 1
and ¢, > O such that, for t > T}, + ., the integrand in (3.9) is smaller than

3(0-1)/2 e
- o R Ta(p- Dz eIz o | AV g <0
V(= as) 1, z>0,

which is integrable over R x R if we choose € < +/2a(p — 1) and —21n + v2a(p —
1) — € > 0. Thus, using the dominated convergence theorem in (3.9), we have that

Q2= (1=8)1

im ————7>— — 1 ¢p(r V2a8t—B,—) dr A
o 0P E/z,e G ;(s, V2ast — B,_;) ds

3(ﬂ /2 00 3 00
ap” 2 oy
e 13! du/ e V2=Dz Ay o (2))dz
—Zn(l = . (wy(2))
ag(p /2 2o 1)
=-° e VHPTITA(wr(2))dz.
V2ap \/;oo !

m}

Lemma3.3 For§ € (1 — p, 1), it holds that for § € (1 — p, 1), it holds that for any
f e BT(®),

Q2e(p—1)(1=8)r

Jim o= E /[0 g & B OPBRNG (s, V2abt = Bios) ds =

Since ¢¢(t,x) > g, using (2.28) and the fact that vy (¢, x) < v(z, x), to prove
Lemma 3.3, we only need to show that

S2e(p—1)(1=d)1

E/ e 112 (s, V2a8t — B_y)ds = 0. (3.11)
[0.:1\Z;

e T B0-D/2
Note that

[0, 11\ T, <10, er] U (I(as — €)1, ast — (log)/r]) Ulast + (log V7, (as + €)r])
U ([et, (as — €)t] U [(as + €)t, t]) .

In the following three lemmas, we handle the integral in (3.11) over [0, €t], [(as —

)t, ast — (log 1)y/t]1U [ast + (log 1)+/1, (as + €)t] and [et, (as — €)1] U [(as + €)1, 1]
separately.

Lemma3.4 Lets € (1 — p, 1). For € > 0 small enough,

Q2 (p—1)(1=8)t

et
lim —E/ e_q(’_s)vz(s, V2ast — B;_y)ds = 0.
0

t—oo  3(p—D/2

@ Springer



1104 Journal of Theoretical Probability (2024) 37:1079-1123

Proof By (2.33), we have that
v(s, 206t — Bt,S) <Pp,_, (Bs < v2a8t) = P[B, < A2aétloc(By :r <t — s)].
Thus, it follows that

E(? (s, V2ast — B,_S)) <E (v(s, V2ast — B,_S)> < P(B, < V2ast). (3.12)

Hence, for any € > 0,

€t
E/ e 1002 (s, V2ast — Bi_y) ds < g~ 'e?'e"1"P(B, < v 2ast)

0
1 get e_qt’ 6= 0;

<q e x 1 172 —(g+asd)t (3.13)
2\/7W|5|t 2e=(q+ad?t 5 - (),

where in the last inequality we used (2.38). Using (3.1) and (3.2), we can choose €
small enough so that

6> 0;

—_ — q’
2a(p — (1 3)+‘16<{q+a82, se(l—p,0),

which implies the desired result. O

Lemma3.5 Let 6 € (1 — p, 1). For € > 0 small enough,

e2e(p=DH(1=8)t ast—(log 1)/t (as+e)t
i —q(t—s)
lim ———>—E / + / e
oo 12 (as—e)t ast+(log 1)/t

vz(s, V2adt — Bt,S) ds =0.
Proof Put S; := (as — €, a5 — (logt)//1) U (as + (logt)/+/t, as + €). Recall the
definition of m, given by (1.9). By the change of variables s = rt, applying Lemma

2.10 for z > 0 and the fact v < 1 for z < 0, we get that, for n small enough, there
exists ¢, > 1 such that for ¢ large enough,

ast—(log 1)/t (as+e)t
E f +/ ey (s, V2081 — B,_y) ds
( a

as—e)t st+logt/1

ast—(log 1)/t (as+e)t
—E </ +/ ) e q=5),2 (S’ mg — (my — /28t + BH)) ds
a

(as—e)t st+logt/1

< C%,/ =111 [e—z(JE(p—l)—n)(mm—szaatwufr),) A 1] dr.
s,

We claim that for any b1 > by > 0,

B (e A1) < L, i) LT (3.14)

1
V2 (bl —by b
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Indeed, the left-hand side of (3.14) can be written as
E (71280 By 4+ by > 0) + E(By + b2 < 0).

By (2.38), we have that

E(B) + by <0) = E(B; > by) < RN =)
> .
1 2 = 1 ) = \/2_b26

By the Girsanov theorem, we have

E (e—”1<”2+31); Bl +by > 0) = e M2 P2E(B) — by 4 by > 0)

LR S ATy o) e S SN S /Y

<
T 27 b1 —b 27 by —

Now (3.14) follows immediately.

We will use (3.14) with b = 2(\/20[(,0 -1 - n)m and by = mn(f}«{?;&t.

Fore € (0 93— T A (1= a(g)), we have forany r € S; C (a5 — €, a5 + €),

’2,0
V2o(as + € — 8)ﬁ>b V2a(as — € — 8) - #27,, log
Jlwm-0 V7" T-wto JO—a—0 Vi

and

bt — by = 2(V3a(o — 1) — )T —ay ey — Y22 e D) g

V({1 —as —e€)
2 2
=%[2(0—1)(1—aa)—(as—S)—(Zp—l)é—J%(l—aa—E)]ﬁ
V20 2n
2 |:a5—8—(2p—1)e—E:|«/;,

where in the final inequality, we used (o — 1)(1 — as) = (as — 8). So if we choose
0 € (o, V2alas — 8 — 2p — 1)6]/2), and then for 7 large enough, by > by > 0.
Thus, using (3.14), we have that, for ¢ large enough and r € S;,

g — 2
E [e—z(JE(p—l)—e)(mm—m5z+3(1_,>,) A 1} < Ct‘l/ze*%

) a(r—8)~ 52 ¢

3(1-48
<Cct 12 me a=-n L. (3.15)
Here in the last inequality we used the following facts: r < as + ¢ < 1 and

_ (mnfmﬁt)z 3(r=8 _ oz(r—S)2 ‘ 3(1-8) _ az(r—é)2
e 2(1—r)t S (rt) 2(I-n ¢ 1-r) E tz(l—a(;—f) e (I-r)

t
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For any x € (0, 1) and ¢ € R, one can prove that

o2 _
g1 = x) + % > 2a(p — 1)(1 — ¢) +ap2<1 _ % —x)z. (3.16)

For a proof of the above inequality, see Lemma A.2 in the Appendix. Using the
inequality above, we get that, for r € Sy,

2
gl —r)+ % > 2a(p — (1 = 8) + ap’(as — r)?
2
> 2a(p — 1)(1 - 8) +ap2®%”-

Thus, there exists 0 such that

2a(p—1)(1-8)t ast—logt/t (as+e)t

e

—E(f +/ )e—q@—w( V2ast — B;_)ds
( a

3p=h/2 as—e)t st+logta/t

) 2
< Ctle@ 10gD)” 0 ast — oo.

Lemma3.6 Lets € (1 — p, 1). For € > 0 small enough,

20(p—1)(1=8)t (as—e)t t
lim sup ¢  _E (/ —i—/ ) e_q(t_s)vz(s, 28t — B,,S) ds =0.
€

1»oo  13(PD/2 t (as+e)t

Proof SetZ = (¢,as — €) U (as + €, 1). By the change of variables r = s/t, we get

that
(ag—e)t t
E / —i—/ e_q(’_s)vz(s, V2adt — B,,S) ds
€t (as+e€)t

= tE/ 90112 (rt, V28t — B,,,,) dr
A

1 _ (z=v2asn)?
:tE/ et dr/ ¢ - v2(rt, 7)dz
T R /27 (1 —r)t

2
(vaaari—yri—vaasi)
—q(1=r)t ,= PI{ET;

_ 2 r
—@t /Idr/Rme
V2(rt, N2a0rt — \/rt) do

w0

a(erf o

) ‘
o e 2(rt V2a0rt — J_) do
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Ja

=: ﬁ(ll (1) + L) + I3(1)).

For I;(¢), by Lemma 2.9(2) with ¢ replaced by r¢, we have that for ez > #y and
0 <1-—p,

2
v(rt, N2a0rt — rt) < crie e

Then by the change of variables 6 — —6 in I1(¢), we get that for t > 1y/e,

)
0 Or + +6
2 7/2[ / _ ( 20 2
I1(t) < c°t ex 14+r)+ + 2a0%r |t dO
1M =c = p[ [q( r) T-n o r]]
< 2112 p—a(1+0)t —ab?t / ridr o 20671 g
TVl —r J-
3
_ 2,7/2,~q( ) y—ast rdr < B edet y—(atas
=c“t'“e / Yt ST r< e e .
Since g + a8% > 2a(p — 1)(1 — §), it holds that
Q20(p—D(1-d)t
A, a0 =0

For I>(t), by Lemma 2.9(2) and the change of variables 6 —
for et > tg, I>(¢t) is less than or equal to

\/2171 — 0, we get that
ar

_ Y
i exp{ - [q(l -+ W +4a(p — D)1 fe)ere

2 7/2/ r
c°t dr
Tl —r
a(fr—3)
=c t7/2/ / «/211: [q(l r)+7+4a(p—1)(1—9)r]tezm(p_l)ﬁde
ZVl—r 1

< C11/2e2V20(p=1V1 = 1nf,€Iv(,<1H(9,,)r’

where H(6, ) := g(1 — ) + “<(91’_—;§>2 +4a(p — 1)(1 — 6)r. We claim that

inf  H@,r) > 2a(p — (1 —8). (3.17)
reZ,0<1

Then it follows that
2 (o= (1)1
lim 3(—12(t) =0.

t—oo  3p=1)/2

Now we prove (3.17). Note that
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H@,r)=

ar? (9 8+ 2p =D =1)

r

2
) —alp—DBp— DA —r)

1—r

+da(p— (1 —8).
For r* := ‘szp(—’_)?) <r<l (thatisw <1)and @ < 1,

H@®.r) = —a(p — DGp — DL —r") +4a(p — DA —9)
alp = D*(1 = 9)

=20(p— 1A -6+ 2 —1

Forr € [0,r*]NZ and 6 < 1, since w > 1, we have that

a(r — 8)2
(1—r)
> 2a(p — (1 — &) + ap®(as — r)?

> 2a(p — 1)(1 — 8) + ap’e?,

HO,r)>H{,r)=q(1 —r)+

where in the second inequality we used (3.16). Thus, (3.17) is valid.
Finally, we deal with I5(¢). Since v(¢, x) < 1, we have

NG 2
00 o Hrfﬁfs t
13(t)5t3/2/ % ef%*‘I(l*r)ldO
A1l —r

e~ 4(1=1)1 ,=2°/2 dz

1 o0
= —1 / dr /
V2at(r—8)—/r
J2a JT NEET

ﬁ/ S V2at(r —8) — 1
=] PBiz = dr. (3.18)

Ifr§8+\/%,then

J—r =

29
_ E—Z(x(p—1)(1—8)te—a(p—l)2(l—5)te\/271\/;. (3.19)

e~4U0-"tp (Bl > V2eat(r =) = 1) < 9=t < e—q(l—a)ze%«ﬁ

If6 + \/% < r < 1, then —Vzo”\/(lrf:f)_l > 1, and thus by (2.38),
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2
e~9U-nip (31 > V2ai(r —8) - 1) < ! Vi-r e_q(l_’)’e_M

J1=7 = V27 V2at(r —8) — 1

< e U=t~ ——mp

It follows from (3.16) that for r € Z,

1 2
a(r—(S—m)

(I—r)

220{(,0—1)(1—8—

gl —r)+

) o (o )
+ as—r+
20{t> P ’ /20t

2
> 20(p — 1)(1 — §) + ap? (e— \/%) —V2a(p — D12,

2(1-r)

(3.20)

Then we continue the estimates in (3.20) to get that, if § + \/% < r < 1, then

e—a0-np (B, > V2at(r —68) —1
=T s

2
< o219y~ (= ) V=D Vi

Combining (3.18), (3.19) and (3.21), we get

2= (1=d)1

ng(t) == O

lim sup
t—0o0

The proof is now complete.

(3.21)

O

Proofof Lemma 3.3 By Lemmas 3.4-3.6, we have (3.11) holds. Hence, by the

paragraph above Lemma 3.4, the assertion of Lemma 3.3 follows.

3.2 Proof of Theorem1.2:6 =1—p

O

It follows from Lemma 2.5 that, to prove Theorem 1.2, we only need to consider the
limiting property of v ¢ (¢, /2cdt). It follows from Lemma 3.1 that for§ = 1 —p < 0,

lim ¢3¢~ D/4eate0=p1 1 (¢ 2a(1 — p)t) = 0.

t—>0o0

Thus, by the decomposition (2.10), to prove the desired result, it suffices to show that
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lim 30~ D/ teo=021) (¢t \a(p — 1))

t—0o0

$3P=D/2g=a0’ g / T VRO g )z

—00

The display above follows from Lemmas 3.7 and 3.8 below. In Lemma 3.8, we will
show that

f3<f’*‘>/4e<q+a<‘*P>2>fP(M} < V2a(l — p)t, T ¢ [t — (log )i, 1 — ;1/4]) 0.

Thus, on the event {M,’ < A 2a(l — p)t}, with large probability, the first branching

time of the skeleton should happen in the interval [t — (log)/1,t —tV/ 4].

Lemma 3.7 It holds that for any f € H,

(logt)y/1
lim t73(p71)/4e(q+01(17p)2)tE./ eff_j ¢p(rV2a(1—p)t—B,—y) dr
t

—00 1/4

G ¢ (s, vV2a(1 — p)t — B,_y) ds

§3(P=D/2 =ap?s? 4 /OO e_M(p_l)zA(wf(z))dZ'

1 o0
- V2 -/0 —00
Proof In this proof, we always assume that ¢ > 1 is large enough such thatlog ¢t < /7.
Using an argument similar to that in the first paragraph of the proof of Lemma 3.2, we
get that, as t — oo,

(log /7 A
E/ e B e VBB G (5 \2a(1 = p)t = By ) ds
t

1/4

(log N1 R
~ Ef eI Gy <s, V2a(l - p)t — B,_s) ds
t

1/4

logt  ,—q(t—u/1) _ (’”uﬁ“*m“’*”’)z N
- J;f ——du | e W Gy (w?, m, i +z) dz.
=14 2wt —ut)  JR
(3.22)
Foru € (t’1/4, log t), we have that
3 2
(m, i + 2+ V2a(p — Di)* = <«/E(p — Dt + V2au/t — Wir log(u~/1) +z>
o

=2a(p — 1)212 + 2au’t + 4o (p — Dut/t —3(p — Dt log(uﬁ)
+ 2420 (p — 1)zt + R4(t, u, z),
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where

2
R4(t,u,z) = (—% log(u\/;) + z> — 3u\/flog(u\/;) + Zmu\/;z

—3(log 1)*v/1 — 2+ 2a(log H)v/1]z.

v

Using the Taylor expansion of (1 — x)’], we obtain that, for u € (t’]/ 4, log1),

! b1 1<1+”+”2+R(t ))
= = = = e - 7u ’
2 —uyi) 21—u/Si 2 N

where |Rs5(t, u)| < 2(log)3t=3/2. Thus,

D)

+ 2+ V2a(p — D1)? —
(m, ;i +z a(p — 1)r) =oz(,0—1)2t+qu«/;—3(p4 log

2t — ui)
+ap?® + V3o — 1)z — %(p — 1) log(w) + Re(t, u, 2).

Here lim;_ o R¢(t,u,z) = 0 and there is a positive function r*(-) with
1im;_, o0 7*(t) = 0 such that —Rg(t, u, z) < r*(t)(1 + |z|) for all u € (+=/4, logt).
Now, using (3.22), we get that

(log 1)/t
lim ,—3<p—1>/4e<q+a<1—p>2>tE/ o L Lpr 2R (= p)— By dr
t

11— o0 1/4
éf (s, V2a(l — p)t — B,_S) ds
1
i [ Vit u3<p—1>/ze_ap2u2dM/ o—V2a(p—1)z ,Re(t.10.2)
1200 Jy=1/4 /27 (t — u/1) R
éf (u«/;, my ji +z) dz.

Using an arguments similar to those in the proof of Lemma 3.2, the desired result
follows from the dominated convergence theorem. O

Lemma 3.8 It holds that for any f € BT (R),

lim ¢=30— /4@ +a(-prg f

00 (041,14, (og ) V)
e J ff(r’m“*p)tfg’*")dréf(s, V2a(l — p)t — B,_s) ds
=0.

Proof We only need to show that

ela+al—p)Hi
lim

—E/ e~ =9y2 (5, V20 (1 — p)t — By_s)ds = 0.
t—>oo t3(p—1)/4 0,0\ /4, (log 1)v/D) ( Y)
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We prove the above result in three steps.
Step 1 By (3.12), we have that

E (v2(s, Vaa(l — pyt — B,_S)) <p (B, < V2a(l — ,O)t)
1
< - —©¢
T 2ymalp — D/t

—a(p—1)%t

Thus, for any 7 > 0,

ela+alp—i
3(p=D/4

T
Ef e 1192 (5, V2a(1 — p)t — B,—y) ds
0

<

r 1 1
< e?% ds 73
0 2 /ma(p — 1)/t 3=/

— 0, ast— oo. (3.23)

Step 2 Using arguments similar to those in the proofs of Lemmas 3.5 and 3.6, we
get that,

elata(p=D>r et
1‘3(0—1)/4E/ e_q(t_s)vz(s, R Y% 20[(1 — ,O)t — Bl’—S) ds — O, ast — oQ.
N Jtlogt

Step 3 Note that there exists Tp such thatmg > Oforalls > Tj. Using Lemma 2.10, we
get that, for n small enough, there exist ¢, > 1 and 7), > 1 such that for T > T, + T,

11/4

E/ e_q(’_‘v)vz(s, V2a(l — p)t — Btﬂ-) ds
T
/4
= E/ e*q(tfs)vz(s, m(s) — (m(s) + V2a(p — Dt + B,_S)) ds
T

1174

< / T [62(@@1>")<m<f>+@<p‘>f+3f—s> A 1} ds. (3.24)
T

Similar to (3.15), we have that, for T < s < t1/4,

E |:e—2(m(p—1)—77)('"(S)+«/27¥(p—1)t+3rs) o 1}

12— me)tya=1n?
< Cf_ / e 2(t—s)

< 112 gmap=Di—gs (3.25)

with C being a positive constant. Here in the last inequality, we used the fact that
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(m(s) + V3o — Dy (V2aps — 55 logs +/2a(p — 1)t — $)’
2(t — 5) B 2(t — 5)

>a(p— D2t —s)+V2a(p — 1) (@ps —

3
——logs
2/ 2a g)

3
=a(p — 1)2t +qgs — E(p —1)logs.

Putting (3.25) back to (3.24), we get that

(qra(o=DHr  pe'/ 30
e 3(p=1)
WE/ efq(’fs)vz(s, V2a(l — p)t — Bt_s) ds < ct 1% — 0,
T
ast — 0o.
Now the proof is complete. O

3.3 Proof of Theorem1.3:6 <1 —p

Note that, by Proposition 2.6, we have

[N *
Uf(t, x) = E[e*f() (oS +Mf(t7r,)6*3r))dr’ B, < x:|

! S gk * A
+E/ o Jo VWU =B G gy — By)ds.
0

Using the same arguments as those in [11, Lemma 1.5, page 1211] or [17, Proposition
2.9], the above integral equation implies that

t
vp(t, x) = e*qu[B[ < x] + E/ e G p(s, x — B_y)ds, (3.26)
0

where

Grt,x):=Grlt,x) — (WO +uh(t, %) — Qus(t, %)

1
— F[w(x* (%) = g (1 X)) = YOS+ w0 |+ qus ).
(3.27)

It follows from Lemma 2.5 that, to prove Theorem 1.3, we only need to consider
the limiting property of v (¢, +/2adt). Using L’Hospital’s rule, one has that

00 _y2/2
limP(Bl>x)_ | fxe3/dy_ 1

x—00 y—lg—x2/2 - mxli{%o x—le—x%/2 = \/E (3.28)
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It follows that

lim \/_e(‘”“‘szt —4'g [B, <2 St]

t—0o0

= lim \/;e(q'“"az)te_q'E[Bl > \/20l|5|\/;] =

—>00

1

Hence, by (3.26), to prove the desired result, we only need to prove that
1
Tim \/;e(q+a82>zE/0 G 1 (s, /208t — By_y)ds

o
_ (q—ozsz)s f V2adz
= e ds | e G(s,z)dz,
N2 /0 R !

which will follow from Lemmas 3.9 and 3.10 below. In Lemma 3.10, we will show
that, for any 7 > 0,

ﬁe(q+a52)fp<Mf < ~2adt,t €[0,1 — T]) — 0.

Thus, on the event {Mtl <V 2a8t}, with large probability, the first branching of the
skeleton happens in the interval [t — T, t].

Lemma3.9 If§ < 1 — p, then for any f € BZ‘(R) and any T > 0, it holds that

—>0o0

(q—ad )‘ds/ ezt (s, z)dz.
\/271 / R /

(=T
lim \/;e(‘ﬁ'“‘sz)tE/ e_q(’_‘Y)Gf(s, V2adt — B,,s) ds
0

Proof Note that

t—T
Jie @ eNg / e 179G p (s, V2a8t — Bi_y) ds

0
t—T \/_ (7\/@63‘)2
— / (q —as? )s / m& WGf(S, 2) dz.
0 2w (t — S) '

The absolute value of the integrand above is less than \/%7«/1 + s/ Tela—ad))s gV2asz
|G 7 (s, z)|, thus by the dominated convergence theorem, it suffices to show that

o0 > r
f Vs + Teld—5)s ds/ eV G 1 (s, 2)| dz < oo. (3.30)
0 R

By (3.27), (2.28) and the fact that vy (z, x) < v(t, x), we have that
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|G y(s, 2] < @u(s, 2)vys(s, 2) + Gr(s,2) < ¢y (s, D)v(s, 2) + qus, 2%
(3.31)
We will prove (3.30) in two steps. Recall that k() = —log P*(|| X;|| = 0).
Step I: First we consider the integral over s € (0, A), where A > 0 is a constant.
Since ¢ is increasing, by Lemma 2.7(1), ¢(u”}(s, 7)) < ¢(k(s)). By lemma 2.9(1),
v(s,z) < P(By < z) =P(B; < z/+/s). Thus, we have for0 < s < A,

0 0
/ e«/mzmu»}(& Dvls, 2)dz < ¢>(k(s))/ eV203p(By < 2/ /5)dz

= \/E(/’(k(s))/ooemla‘ﬁZP(Bl > 7)dz < \/§¢(k(s)>/ooemW~/XZP(Bl > 2)dz.
0 0

Since P(B] > z) ~ «/%71716712/2 as z — oo, we have [;° eV2BIVAIp(B, >
z)dz < o0. Thus,

0
/ V22 (u (5, 2))u(s, 2) dz < C/s(k(s)). (3.32)

For any € > 0, since v(s, z) < 1, we have

[ em‘squ(u’;(s, (s, 2)dz < 5S¢ (k(s)). (3.33)
0

By (3.32), (3.33) and Lemma 2.8, for any € > 0,
A ) s€
f Vs F Teld—a? ”/ V282 (u* (s, 2))u(s, 2) dzds < . (3.34)
0 —0

Since ¢'(1) = " (A* + 1) is decreasing and ¢ (0) = 0, we have
() < ¢'(0)A. (3.35)
Thus, by (2.30),
¢W(5,2)) <P Ouf(s,2) < C(A+27")e @5, 2> 0.

Since v(s,z) < 1,wehave for0 <s < A,

o0 oo
/ E\/ZTHSZ(P(M?(S, Z))U(S, Z) dz < Ce(a-H){)s / e—\/ﬁ|5|2(1 + Z—Z/ﬁ)dz
s N

€ €

A€ 00
< Celetr] (1+z‘2/1’)dz+f eI 4 2727z |
A

SE €

< C(1 +s°U072/7)y,
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Now we choose € small enough such that €(2/9% — 1) < 1. Thus,

A ) 00
f Vs F Teld—a8s / V2852 (u (s, 2))u(s, 2) dzds < oo (3.36)
0 s€

Combining (3.34) and (3.36), we obtain that

A 2 00
/ Vs + Teld8 )“/ em‘szqﬁ(u’}(s, (s, z) dzds < oo. (3.37)
0

—00

Step 2: By Lemma 2.7(1), sup,. 4 e?°k(s) = e94k(A) < oo. Hence, we have for
s> A,

P (s, 2)) < ¢ Ol (s,2) < ¢/ (O)k(s) < ¢'(0)e? k(A)e™ .
Thus, we get that, for s > A,

/ em‘sij(u*}(s, (s, z2)dz < Ce_‘”/ em‘szv(s, z)dz
R R

=Cv 2ase_qse_m5ﬁ/ 24959y (s, V2a0s — \/s) d6. (3.38)
R

We will divide the above integral into three parts: [ + [/ ,t 177, We deal with
them one by one. Using Lemma 2.9(2), we have that for A > fp and s > A,

o0 o0
1
20856 —2a|8|s6 _ —2al8|s
e v(s, vV2als — /s)do < / e dd = ——e ,
./; 1 2|8
1 1
/ 259y (s, V2005 — \/5)dO < cs/ 22050 ,=2a(p=1)(1=0)s 4g
1—p 1-p

< cspe—Za(p—l)(pH)s,

and

1—p 1-p
f 259y (s, V2005 — \/5)dO < cs/ 20850 ;= (a+a0%)s 4g
— —00

o0
]_
_ Cse(fq+oz82)s/ pefas(efs)zdg < Cs‘/ze(*““‘sz)s.
—00
For § < 1 — p, one can check that
208 < —2a(p — D)(p +8) < —q + ad>.
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Thus, fors > A,
> 2
/ 2359y (5, V2005 — \/3)dO < Cse 791283 (3.39)
—0o0
It follows from (3.38) and (3.39) that

/ Vs + Teld—a8%)s ds/ em‘squ(u*(s,z))v(s,z) dz
A R

o
< C/ Vs + Ts2e~ e V25 (5 < oo,
A
Combining the two steps above, we get
(0.¢] 2 \/7
/ Vs + Teld=e8)s ds/ e za‘szqﬁ(u?(s, (s, z)dz < oo.
0 R

Similarly, one can prove that

o0 5 \/7
/ Vs + Ted=%)s ds/ V2% (s, 2)% dz < oo.
0 R

Hence, (3.30) holds and the desired result follows immediately. m]

Lemma3.10 If§ < 1 — p, then forany f € By (R) and T > 0,

—>00

t
lim /et )IE / e 1 G p(s, V2ast — B,_s)ds = 0.
t—T
Proof Note that
t T
E/ e_q(’_s)|Gf(s, V2adt — Bi_y)|ds = f e TE|G s (t — 5, 2a8t — By)|ds
t—T 0
T
= / e PE[|G s (t — s, V28t — By)|; By < —(et — +/1)]ds
0
T
+f CHE(G (1t — 5, V2ast — By)l; By = —(et — V)] ds,
0

where € < 1 — p — § is a small constant.

By (3.35) and Lemma 2.7(1), supl>l¢(u*}(t,x)) < ¢'(0) supt>1u’;(t,x) <
¢’ (0)k(1) < oo. Since v(t, x) < 1, we have sup,. | sup, |G r(t,x)| < +o0. Hence
we have, for ¢ > 1 large enough, and s € (0, T'),

E [|Gf(t —5,v2ast — By)|; By < —(et — ft)] <cp (Bs > (et — ﬁ))
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Vs —(et—/D)?/(25) vT —(et—/D)?/(2T)
<C e <C e ,
€t — /1 €t — /1

where in the second inequality, we used (2.38).
Thus, for any € > 0, as t — oo,

T
\/l_‘e(q+a82)t/ e E [|Gf(t — 5,V 2a8t — By)|; Bs < —(et — «/;)] ds — 0.
0

Note that if B; > — (et — /1), then
V28t — By < V2a(8 + )t — 1 < V2a(8 +€)(t —s) — T — 5.
Using Lemma 2.92) withd =5 +€ <1 —p,fort >ty + T ands € (0, T),

v(t —5,v2a8t — By) < v(t — 5, V20 (8 + €)(t —s) — /T —5)

< cte—91=5) p=a(d+e)*(1—s)

By Lemma 2.7(1), we have that fort >ty + T and s € (0, T),

¢ (t — 5,28t + 2)) < ¢' (O’ (t — 5, V28t + 2)
< ¢/ (O)k(t — 5) < ¢'(0)ek(t)e ™4~

Thus, by (3.31), we get that, if By > —(et — V1),

G f(t — 5, v2adt — By)| < Ctle™240=9) =G +0% (=)
< Cequea(5+e)2st2e—2qte—a52te—2a66t. (3.40)

It follows that, as t — oo,

T
Jrelaad f ¢ PE[|G s (t — 5. V2abt — By)|; By = —(et — V/1)]ds
0

T
< CtS/Ze—(q+2a86)t/ P15+ g¢ < 04512~ H 2 () (341
0

if we choose € small enough such that g + 2aée > 0. The proof is now complete. O
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A Appendix
LemmaA.1 Fork > 1,
P(|Z/| < k) < ke 9.

Proof Let Z; be a continuous time branching process with branching rate ¢, and when
a particle dies, it splits into two particles. Then Z; is a pure birth process, and the
distribution of Z; is given by

P(Z, <k)=1— (1 —e 1)k

According to the definition of Z;, each particle splits into at least two children (pg =
p1 = 0), then we get that

P(IZl <k) <P(Z, <k)=1— (1 —e 9 < ke™4".

O

Proof of Lemma 2.10 Since v(f, m; — z) < 1, itis clear that the desired result is valid
for z < 1. In the following, we only need to consider the case z > 1. Put a* =
V2a(p —1)/q. Assume that € (0, a*/2) and t > 1.

(i) First we deal with the case z > %ﬁ Since for any 6,

q+e6® —2a(p— (1 —0)=a(p—1+6)* >0,
which implies that
g +ab?>2a(p — (1 —0). (A.1)

Then by Lemma 2.9(2), one has that there exist fo > 1 and ¢ > 0 such that, for any
t>tgpand 6 < 1,

v(t, V20t — V1) < P(MF < V20t — /1) < cte™ 2= DU=01 (A 2)

where in the last inequality we used (A.1) to get an uniform upper bound for the two
Z—A/1

2t

cases in Lemma 2.9(2). Thus, using the above inequality with§ = 1 — <1, we

get that for any ¢ > 1y,
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P(M? <m; —z) <P(M? < V2at —z) = P(M} < V20t — /1)
< cteV2p=DE=VD) < (22,~V2a(p=Dzqnz (A3)

where in the final inequality, we use the fact that t < (é%z)2 < zZ2andV2a(p— 1)1 =

qa*t < qnz.
(ii) Now we consider the case z € [1, “7\/?] Put K := [a*/n]. Note that K > 1.

Define s, = nzn. In the following, we always assume that ¢ is large enough such that
sk < t. Note that

K
P(M7 < mi —2) < P(1Zo | = 22)+ 3P (1Z0, 1l =22 < 124 M7 < mi—2).
=1
(A4)
By Lemma A.1, we have that

P Zs || < 2%) < e 0K = 2 91KT < 2¢m2mV20(0- 12, (A.5)

Now we deal with the second part of the right-hand side of (A.4). For any s > 0, let
L be the set of all particles of Z alive at time s. Suppose 1 </ < K. Note that for any
e Ly, zuls) Y ~ NQO,s). Let M = maxyer, u<v Zv(?) — zu(s7), for any
u € Ly,. By the branching property of Z, given o (|| Zs||, s € [0, s/]), {MtZ’”, ueLly)
arei.i.d. with the same distribution as (M,%sl, P), and independent of {z, (s;), u € L}.
It is clear that

M7 = max [zu(sl) + Mf’”].

uely

It follows from [13, Lemma 5.1] that
P (M7 <mi—z[o(1Z,s € 10,5])

<P (Y+ max M <m, -z ‘G(IIZSII,S € [0, Sl]))

uely,

Since Y is independent of o (|| Zs||, s € [0, s;], we continue the above estimation:

P (M7 <m —zlo(Zl,5 € [0,51D)
MEL:S[

=PY =mi—mi_g—2)+P (max M < mi_glo(1Zsl. s €10, Sz]))

[1Zs |l
=P(Y <m —m_gy—2)+ [P(M,{sl < mt,s,)] "
Thus,
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P (1Zg 1l < 2 < 1Zy ]l M7 < m; —2)

2

Z
<P (IZs | =22 < 1 ZoDPCY < me—miy —2) + [P (ME, = miy)]

*\2
Sincet—s; > t—sg >t—a*z > t—u\/f — ooast — ooandlimlﬁooP(MtZ <
my) € (0, 1), there exist #(n) > 1 and cg > 0 such that for all # > ¢(n),

2

[P (M7, =miy)] e (A.6)

Asm; —m;_g —z < —z(1 —~/2anl) and vV2anl < V2anK < w = # <1,
we have by Lemma A.1,

P(1Zs sl =22 < 1Z 1) P(Y = mi—mi—y, —2)
< ZZe—q(l—l)UZP <B.Y] < _Z(l _ /20“71)>

= 2e~4(=Dnzp <31 e (\/% - @Jﬁ))

v

L 5 _ga- ( 1 >1 (L ez
= 32 ,—qU-Dmnz [~/ AW "
< 77/ %e 2004/l e I Vil
N2 nl 7
1 1 -1
<—|— - v2aVa*) 32607 g 20(p =)z A7)
V2 («/a* (

Here in the second inequality we used (2.38), and in the final inequality we used the
facts that n/ < nK < a* and %(\/Lﬂ —V2anD?+gnl = (a+q)nl + ﬁ — 20 >

V2a(p —1).
Combining (A.3)—(A.7), we get that for any n € (0,a*/2), there exist #, and
co, C > Osuch thatfort > t;, +#andz > 1,

P(MIZ <m; — Z) < C (zzeq’ﬁe—«/ﬁ(p—l)z + 6—6012) )

*

2
(qa 0) , thus

Since 7% < 2(gn)~2e9"?, and coz?® > qa*z — e

(ga*)?
P(M{ <m;—2)<C (2(417)‘2 +e %o )ezqnze_m@—l)z.

The proof is now complete. O

LemmaA.2 Foranyx € (0, 1) and c € R,

(x —0)?
X

o 1—c¢ 2
g(1—x)+ > 2a(p — 1)(1 —c)+ot,02<l - —x) .
1 - P
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2
Proof Note that the function (0, 00) 3 x — g(x) = a12x + i—z achieves its minimum
2ajay at the point x = a3 /aj and for any x > 0,

2
a
g0 =2amar + L (x —ar/ar)’. (A8)
Then we have that for any x € (0, 1)
o(x —c)2 a(l —c)2
q(l—x)+T = (a+q)(l—x)+ﬁ—2a(l—c)
1— 2
=« |:,02(1 —x)+ (l—c) -271 —c):|
02 1—c 2
=a|2(p—DA—-c)+ 1-— —x
1—x 0
5 1—c¢ 2
> 2a(p — (1 =) +ap?(1- —= = x),
0
where in the third equality we used (A.8). O
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