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Limiting distributions for a class of super-Brownian
motions with spatially dependent branching

mechanisms *

Yan-Xia Ren! Ting Yang?

Abstract

In this paper we consider a large class of super-Brownian motions in R with spatially de-
pendent branching mechanisms. We establish the almost sure growth rate of the mass lo-
cated outside a time-dependent interval (—dt,dt) for 6 > 0. The growth rate is given in terms
of the principal eigenvalue A\; of the Schodinger type operator associated with the branching
mechanism. From this result we see the existence of phase transition for the growth order at
6= \/m We further show that the super-Brownian motion shifted by Mt converges in

distribution to a random measure with random density mixed by a martingale limit.
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1 Introduction and main results

1.1 Super-Brownian motions

Let M(R) (resp. M.(R)) denote the set of finite (resp. finite and compactly supported) measures on
R. When p is a measure on R and f is a measurable function, define (f, fR wu(dz) whenever
the right hand side makes sense. Sometimes we also write u(f) for (f, > Let ((Bt)tzo, II;,z € R)
be a standard Brownian motion on R with II, (Bp = 2) = 1. The main process of interest in
this paper is an M(R)-valued Markov process X = {X; : ¢ > 0} with evolution depending on
two quantities P, and 1. Here P is the semigroup of ((Bt)t>0,1l;, 2 € R) and 1 is the so-called
branching mechanism, which takes the form

7/}(‘% )‘) = —B(a:))\ -+ a(x))\2 + /

(e—)\u —1 + )\’LL) 7-(-(1'7du) T € R, )\ 2 07 (11)
(0,400)
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where 8 € C.(R), 0 # a € CF(R), and 7 is a kernel from R to (0, +00) such that
/ u?n(z,du) € C(R).
(0,400)

The distribution of X is denoted by P, if it is started at p € M(R) at ¢ = 0. X is called a
(B¢, 1)-superprocess or super-Brownian motion with branching mechanism ¢ if for all u € M(R),

nonnegative bounded measurable function f and ¢ > 0,

P, [e—<f,xt>} _ e fur ) (1.2)
where uf(t,z) = —logPs, (e_<f Xt) ) is the unique nonnegative locally bounded solution to the
following integral equation:

t
upltn) = Pef(@) ~ [ Po@louglt = 5.) (0)ds Vo € R, £ 0 (1.3)
0

The existence of such a process X is established in [I1]. A closely related M(R)-valued process
is branching Brownian motion with the branching rate given by either a compactly supported
measure or a function decaying sufficiently fast at infinity (see, e.g., [6, [7, 28, 29 23], 22] and

references therein).

1.2 Notation and some facts

“

Throughout this paper we use “:=” to denote a definition. For functions f and g on R, || f|e :=
sup,er | f(2)] and (f,g) = fj;o f(x)g(x)dzx. For positive functions f(x) and g(x) on (0,+00),
we write f(z) ~ g(z)(z — 4o0) if limy 100 f(2)/g(x) = 1. For a,b € R, a Ab := min{a,b},
aVb:=max{a,b}. The letters ¢ and C' (with subscript) denote finite positive constants which may
vary from place to place.

Let M;,.(R) denote the space of locally finite Borel measures on R with vague topology, which is
generated by the integration maps 7y : = u(f) for all compactly supported bounded continuous
functions f on R. A random variable taking values in M;,.(R) is called a random measure on R.
We say random measures &, converges in distribution to £ if E[F(§,,)] — E[F(£)] for every bounded
continuous function F' on M;,.(R). [18, Theorem 4.11] proves that &, converges in distribution to
¢ if and only if the random variables (f,&,) converges in distribution to (f, ) for every f € CH(R).

For a measurable function f, we set

t
ef(t) :=exp {/ f({s)ds} , t>0,
0
whenever it is well defined. We define the Feynman-Kac semigroup Ptﬁ by

Pl f(x) =1L, [es(t) f(&)] for f € B (R).

Define
y(z) == alz) + —/ w n(z,du), x€R. (1.4)
(0,400)



It is known (cf. [II]) that for every u € M(R) and f € B, (R), the first two moments of (f, X)

exist and can be expressed as
Py (£, X0)) = (P f. ), (15)

and

Var, (7:0) = [ 0 (22 (P2)") s (16)

The spectrum of the operator £ = %A + 3, denoted by o(L), consists of (—o0,0] and at
most a finite number of nonnegative eigenvalues. Throughout this paper, we make the following

assumption:

A1 :=sup(o(L)) > 0. (A1)

Then A; is simple and the corresponding eigenfunction (ground state) h can be taken to be strictly
positive, bounded and continuous. We choose h that is normalized with f_Jr;o h%(z)dr = 1. We
remark here that [AJl) is automatically satisfied when 8 > 0 is a nontrivial function.

One has (see, for example, [23, Lemma 3.1])
—+00
h(z) = G, (2,9)B(y)h(y)dy. (1.7)

—00

where G, (z,y) denotes the A\j-potential density of Brownian motion. Using the fact that

1
G, (z,y) ~ \/TTle_V”‘l'm_y' as |z —y| = +o0, (1.8)

one can easily show that

h(z) ~ Cye VAl a5 2 5 400, (1.9)
where N
1 o0
Cri=—e | ey, (1.10)

Since e_)‘ltPtB h = h for all ¢ > 0, one can show by the Markov property that
WHX) :=e M h, X)), Vt>0

is a nonnegative P,-martingale for every u € M(R). Let W/ (X) be the martingale limit. It then
follows by [24, Theorem 3.2] that for every nontrivial u € M.(R),

lim W/(X)=W2L(X) P,-as. and in L*(P,).

t——+o00

Hence W (X) is non-degenerate in the sense that P, (W (X) > 0) > 0.

1.3 Main results

For any R > 0, define
X = (1_g Ry, Xo)-



Theorem 1.1. For any 6 > \/A1/2 and p € M.(R),

lim Xt =0 Py-as.

t——+o00
For any 0 <6 < \/A1/2 and p € M.(R),
1 X5t
tlg)_a 8% _ A —V2M0 Pu-a.s. on {WD(X) > 0}.

According to Theorem [L] for § < m, the mass outside (—dt,dt) at time ¢ grows exponen-
tially with a positive rate A\; — v/2A\1d, while for 6 > m, it converges to 0. In the latter case,
Proposition below shows that the upper bound of the mass outside (—dt, dt) decreases expo-
nentially with a negative rate. The version of Theorem [[LT] has been proved recently for branching
Brownian motions with branching rate given by a compactly supported measure in [7, 28, 29]. The
idea of our proof is similar to that of [29]: The upper bound and the lower bound of Xt& are con-
sidered separately and the proofs for convergence follow two main steps. The first step is to obtain
the limit along lattice times. This is done via a Borel-Cantelli argument and thus requires the
asymptotics of the expectation of X (Lemma 1] below). The second step is to extend the limits
to all times. For the aforementioned class of branching Brownian motions, a key fact used in the
proofs is that the particles alive at time ¢ located in (—dt, §t)¢ are the children of the particles alive
at time |t]. However, this kind of property fails for the super-Brownian motions. We overcome
this difficulty by appealing to a stochastic integral representation of super-Brownian motions (eq.
B7) below). This representation enables us to decompose the super-Brownian motion in terms of
martingale measures and hence providing useful structural properties of super-Brownian motions.
Let us mention that the result, which corresponds to Theorem [I.1] for the aforementioned class of
branching Brownian motions, implies that the supremum of the support of the process, denoted by

Ry, grows linearly with rate /A1/2 as t — 400 a.s. on the survival event. It is further shown in

[23] that
A
Rt=\/§t+1@,

where the conditional distribution of Y; on the survival event is convergent. However, this property
no longer holds for the super-Brownian motions. As we show in Remark [0l below, for the (B, )-
superprocess, the conditional distributions of R; — \/T/2t are not even tight.

The growth order of XP* undergoes the phase transition at 6 = \/T/2 We further obtain the
limiting distributions of the super-Brownian motion at the critical phase in Theorem below.
For v € Mj,(R) and z € R, we use v + x to denote the measure induced by the shift operator
y — x4y, that is, [, f(y)(v+2)(dy) = [z f(y + x)v(dy) for all f € BT(R).

Theorem 1.2. For every u € M(R), ((X;=£1/A1/2t)1>0,P,) converges in distribution to W2 (X)ny (dx),
where n+(dz) are (non-random) measures on R defined by n+(dz) = CLe™V2MTdy with C1 being

defined by (LI0).

For branching Markov processes, results of the type of Theorem have been established in

recent years for various models. See, e.g., [2, B, 5] for spatially-homogeneous branching Brownian



motions, [T, 16l 21] for branching random walks, [26] for branching Lévy processes, [4l [15] for mul-
titype branching Brownian motions, and [0, 22] for spatially-inhomogeneous branching Brownian
motions. On contrast, there is much less work for superprocesses. Very recently, Ren et al. [25]
shows that super-Brownian motion with a spatially-independent branching mechanism translated
by a centered term converges in distribution. Later, Ren et al. [27] represents the limiting process
as the limit of a sequence of Poisson random measures in which each atom is decorated by an
independent copy of an auxiliary measure. As far as the authors know, there are no references
on the vague convergence for superprocesses with spatially-dependent branching mechanisms. To
prove Theorem [[.2] we appeal to the skeleton techniques for superprocesses. Intuitively, under
suitable assumptions, for a given superprocess (X;);>o there exists a related branching Markov
process (Z;)i>0, called the skeleton, such that at each fixed time ¢ > 0, the law of Z; may be cou-
pled to the law of X; in such a way that given X;, Z; has the law of a Poisson point process with
random intensity determined by X;. We exploit this fact and carry the long time behavior from
the skeleton to the superprocess. Our idea is partly inspired by [27] where the skeleton techniques
have been used successfully to establish the limiting distribution for super-Brownian motions with
spatially-independent branching mechanisms.

Theorem yields the following result on the convergence of the mass at the critical phase.

Theor:m 1.3. For § = \/A\1/2 and p € M(R), (X, P,) converges in distribution to \/%Tl(CJF +
COWL(X).

The rest of this paper is organized as follows. In Section [2] we derive the long time asymptotic
properties of Feynman-Kac functionals related to the first and second moments of superprocesses.
Section Bl is devoted to the proof of Theorem [Tl The proofs of Theorems and [[3] are given in
Section [l

2 Estimates on the Feynman-Kac functionals

In this section, we show two lemmas related to the Feynman-Kac functionals of Brownian motions,
which will be used in the proofs of the main results.

Let a(t) be a function on [0, +00) with a(t) = o(t) ast — 4+o00. For 6 > 0, define R(t) := dt+a(t).
Let A be a Borel set of R with inf A > —oco. Let b : [0,4+00) — [0, 4+00) be a function with b(t) = o(t)
as t — +o00. For r € R and © C {£1}, define Cg(r,A) := {z € R: Oz € r + A for some 0 € O}.

Lemma 2.1. Suppose 6 € (0,v/2\1).

(i) For any a € <0, 1- %), there exist constants Cy, Ty > 0 such that for t > Ty, s € [0, at]

Non

and |x| < b(t),

‘Hx [es(t — s), Bi_s € Co(R(t), A)] — M=) p(z) / h(y)dy| < e~ Crteri(t=s)=V2AR(D),
Co(R(t),A)

(2.1)



(ii) There exist constants Cy > 0 and Ty > 1 such that for t > Ty, s € [0,t — 1] and |x| < b(t),

11, [/t s’y(Br)eg(r)HBT [eg(t —s—1),Bi_s_ € Co(R(t), A)]zdr < C2ez>\1(t—s)—2\/ﬁ}2(t)7
" (2.2)

where 7y is defined by (LA4]).
We remark here that for the special case where © = {+1}, A = (0,+00) (correspondingly
Co(R(t),A) = {y € R: |y > R(t)}) and b(t) = b for some constant b > 0, the above two
inequalities follow, respectively, from Lemma 3.8 and Lemma 3.9 of [23]. Here we show the results

for more general case where A can be any left-bounded Borel set and b(t) = o(t). Our proofs are
based on [23, Section 3.3].

Proof of Lemma 2.1t (i) Let p?(t,2,y) and p(t,z,y) be the transition densities of P’ and P,
respectively. Let q;(z,y) := p?(t,z,y) — p(t,z,y) — eM*h(z)h(y). We have

I, [es(t — ), Brs € Co(R(t), A)] — M h(z) / h(y)dy
Co(R(t),A)

=1L (By_s € Co(R(1), A)) + / dos(,y)dy.
Col(R(®).A)

We note that for R > 0 large enough such that R+inf A > 0, Co(R,A) C {y € R: |y| > R+inf A}.
Thus for ¢ sufficiently large such that R(t) — b(t) +inf A > 0 and |z| < b(¢),

11, (Bt—s € C@(R(t)v A)) = HO (Bt—s +x €< C@(R(t)7 A)) < HO (|Bt—8| > R(t) - b(t) — inf A) .
(2.3)
On the other hand, it follows similarly as [23], equation (3.19)] that for any ¢ > 1 and z € R,

/C@(R,A) a(z.y)dy = /01 (/Rpf(%z)ﬂz(Bt—s € Co(R, A))B(z)dz)ds
+ [ { /R (P2 (2, 2) — M *h(z)h(2)) 1L, (B € C’@(R,A))ﬁ(z)dz} ds
—eMth(x) /::O e—Als</Rh(z)6(z)Hz (Bs € Co(R, A))dz)ds.

Thus we have

< (I)+ (1) + (I11),

/ at(z,y)dy
C@(RvA)

where
() = /01 (/Rpé(w,z)HZ(\Bt_s\ > R+ian)/3(z)dz)ds,
(11) = /lt [/R (P2 (z,2) — e *h(z)h(2)) 1L (| Bi—s| > R—i—ian)B(z)dz} ds,

(I1I) = eMh(x) /tj:oe_’\ls(/Rh(z)ﬂ(z)Hz (|Bs| > R+ inf A) dz)ds.



The upper bounds for (I), (II),(III) are established through Lemmas 3.5-3.7 of [23]. These yield
that if suppss C [—k, k| for some k € (0, +00), then there exist constants ¢, C' > 0 such that for all
r€R,t>1and R+ inf A > 2k,

/ wle.)dy| < Clh@)y (B > R+nf A~ )
Co(R,A)

+1.(t, R+ inf A) + h(z)J(t, R + inf A)|. (2.4)

Here I, and J are defined by (3.15) and (3.16) of [23] respectively. Using (23] and (24]), one can
apply similar argument of [23] Lemma 3.8] to prove (2.I). We omit the details here.

(ii) Noting that for ¢ large enough such that R(t) +inf A > 0, Co(R(t),A) C{y € R: |y| >
R(t) + inf A}, we have

I1, [/0 s v(By)es(r)llp, [es(t — s — 1), Bi—s—y € C@(R(t),A)]zdr]
< I, [ /0 (Ba)es(p, [es(t — 5 — 1), |Biss] > R(t) +inf AJ? dr} R

Using the argument of [23] Lemma 3.9] with minor modifications, one can prove (L4]). We omit
the details. O

Lemma 2.2. Suppose the assumptions of Lemma[21)(i) hold. Then there exist T > 0 and 04 (t)
such that fort > T, s € [0,at] and |z| < b(t),

0 (t) - 1L, [EB(t — 8), B;_s € C@(R(t), A)]

< < 64(t), 2.6
ol oy = .

where 4 (t) - 1 ast — +oo and Co = C_, Cy and (C1 + C_) accordingly as © = {1}, {—1} and
{£1}.

Proof. Without loss of generality we assume in addition that b(t) — 400 as t — +o00. Noting (L),

“+o00
/ )iy = | ( GM(y,z)ﬂ(z)h(z)dz) dy.
C@ (R(t)vA) C@ (R(t)7A) —00

Using (L8]) and the fact that 5 is compactly supported, one can easily show by elementary calcu-
lation that

we have

/ h(y)dy ~ C’@?](A)e_mR(t) as t — 400,
Co(R(t),A)

where n(A) = [, eV 2MYdy. Tt then follows from Lemma [Z.I)(i) that there exist constants c1, Ty > 0
such that for t > Ty, s € [0, at] and |z| < b(t),

T, [65 (t—s),Bi—s € Co(R(t) + A)} f(j@(R(t),A) h(y)dy et
J— < .
Con(A)h(z)er (=) VI R(t) Con(A)e—VEARD | ~ Con(A)h(x)

2.7)




By ([3), there is a constant ¢ > 0 such that h(z) > cpe™ V2Nl for all € R. So one has
inf\x\gb(t) h(z) > coe™V 2Mb(1) | Thus

—c1t

e /o
<z VAN 0 ast— o0
Con(A)h(x) =™
h(y)d
Hence we obtain (2.6 by setting 04(t) = Jog rw. MW + czeCrttV2Aib(t) O

- C@’I](A)Oid2>\1 R(t)

3 Proof of Theorem [I1.1]

3.1 Estimates on the first moment

Put
mf(x) ==, [es(t);|Bs| > R], t>0,2€R.

In this section we derive some estimates for 7/*(x), which will be used in the proof of Theorem [l

For any § > 0, we define

—A1 +V2)\0 if 0 <9 < +v/2M,
& if § > 2N,

Obviously, As < 0, A; =0 and As > 0 accordingly as 0 < § < \/A1/2, d = \/A1/2 and § > /\1/2.

Lemma 3.1. Suppose § > 0. For any compact set K C R,

As = (3.1)

1 ot
lim sup ———= = lim inf m

— Ay (3.2)
t—=+00 ek t t—+oo ye K t

Proof. For 6 > +/2X\1, (B2) is proved by [29 Lemmas 4.4-4.5]. For 0 < § < /2A1, noting that
() = I, [es(t), By € Cayy(6t, (0,+00))], we get by Lemma 22 that for every compact set K,

when ¢ is sufficiently large,
0_(t)cle>\1t—\/2)\16t < W?t(y) < 0+(t)cle)\1t—\/2)\16t Vy €K,

where ¢y = (CL +C-) f0+oo e V2MYdy and 04 (t) — 1 as t — 4o00. Thus [32) follows immediately.

O
Remark 3.2. We remark here that for any compact set K C R and « € R,
log 79 log 7!
lim sup log ™ (y) = lim logm; () =\ (3.3)
t=+00 yc t t—+o00 t

The second equality follows immediately by [29, Theorem A.2]. We shall show the first equality.
Let € > 0. It follows by [29, Lemma 4.3] that there is p* > 1 such that for all p € (1,p*),

c(p) = b Hor [ sup e Pt Ye 5(t) | < 4o,
Yy =



By this and Jensen’s inequality, we have
w0 (y) = Ty [es(t)] < T, [es()]'/? = X+, [e7P (Aﬁe)tepﬁ(t)] < e (p) /Pt

for every t > 0 and y € R. Thus

log 77 (y)

lim sup sup <A +e

t—+oo yeK

This implies the first identity of ([B.3)).

Lemma 3.3. (i) For every o > 0, there exists a constant C3 = C3(0) > 0, such that for any
0<0<d< oo,

2,2
O a) < Oy (0t) e 2, Vs e (0,0], |z| < (5 — O,
when t is sufficiently large.

(ii) For every 6 > 0 and o > 0, there exists a constant Cy = Cy(8,0) > 0 such that for any
s€ (0,0], t > s and |x| > §(t — s),
() > Cy.

(iii) If 6 > \/M\1/2, then x +— f0+oo 798 (x)ds is a locally bounded function on R.

Proof. (i) Note that for every s > 0,

a(5) =1+ [ ear)p(Br)ar

We have
n(z) = Ialep(s);|Bs| = 6]
= (B2 00 +10 | [ esr)BB L msndr
= I(z,s,t) +1I(z,s,t).
For R > 0, let

2 [T 2
G(R) =Tl (|B1| > R) = ;/ ey,
R

Then for s € (0,0] and |z| < (6 — 0)t,
I(x,s,t) =Ily (|Bs + x| > 6t) < g (| Bs| > 0t — |z[) < 1T |B|>ﬁ =G ot (3.4)
x787 - 0 S ':U_ — 0 S| = x — 0 1 _\/E - \/E . .

Suppose suppfS C [—k, k] for some k € (0,4+00). By Markov property, we have for x € R and
s € (0,0,

te.s.0) = 1L | [ es()B s, (B, 2 50

9



=11, [/0 es(r)B(Br) 1y B, |<i B, (|Bs—r| > dt) dr]

<11, | [ ear)s (B (1Bucr| 2 8t - 1) ar|

7 ot —k
< [ Bt lery g+ 000( >dr
/ 18 1 (=

< oG <5t\;€ > (3.5)

for some ¢; = ¢;(0) > 0. Note that for t > k/(0 —0), G((6t — k)//o) < G(0t/+/0). It follows from
B4) and @B5) that for t > k/(6 — ), |x| < (§ — 6)t and s € (0, o],

o z) < (1+ )G (%) .

Thus (i) follows by the fact that G(R) ~ \/2/tR™'e R*/2 as R — +00.
(ii) We have

! () = 1L, [eg(s); | Bs| = 6] = e IF 7 IoT1, (B[ > 6t) .
Note that for x > §(t — s),

IL, (|Bs| > 6t) > I, (Bs > 6t) = 1lo (Bs > 6t — ) > Iy (Bs > ds) = Il (B > 6/s) .
Similarly one can show that II, (|Bs| > dt) > Iy (B; < —d+/s) for © < —0(t — s). Hence we get (ii)
by setting Cy = e~ 187?11y (B > §,/7).

(iii) By Lemma B1] for § > \/T/Z and any compact set K C R,

log 7" (x)

lim sup =—As <0.

t——+o0 zeK

So there is some T > 0 such that for all s > T, sup,c; 79°(2) < exp{—Ass/2}. We also note that
7% (2) =11, [eg(s); | Bs| > ds] < ellBTllees for all 2 € K and s > 0. Hence

+o0 T n 400
sup/ 7% (z)ds < / el8llees g —l—/ e M5/2(s < 4o0.
zeK Jo 0 T

3.2 The upper bound of X}

For t > 0, let F; denote the o-field generated by {Xs : 0 < s < t}. It follows immediately from
Lemma [3.3](ii) that for any n € N and ¢ € [no, (n + 1)0),

T (@) > Ca, V]a| > ot

Thus for t € [no, (n + 1)0) and p € M(R),

n+1l)o n+1)o
X = (U spanes Xo) < CTHmTY X0 = OB, (XTI IR Puas. (3.6)

Here the last equality follows by the Markov property of X;. Hence to get an upper bound for Xt&

we only need to compute P, Xéﬁ_ﬁ—l |]:t]

10



Lemma 3.4. For any 6 >0, 0 > 0 and p € M.(R),

) lo X(Sna
lim sup 6o < —A; Py-as.
n——+o0o no

Proof. Let € > 0. We have

1 X(Sna
]P)u < 0g Ay > —A5 + 6) — ]P;M <XT(E(1;LO' > e(—A5+€)ncr)

no

< el (i )

no_(log(Trncr ) +A5 6)
= e .

Since p is compactly supported, Lemma Bl and (B3] imply that

1 ono
lim sup “08ne M)
n—~+o0o no

Thus when n is large enough, we have

1 Xéncr
]P)u ( Ogn;J 2 _A(5 _|_€> S e—eno7

log x3n
no

which in turn implies that :;i% P, ( > —As+ e) < 400. Hence this lemma follows imme-

diately by Borel-Cantelli lemma. O

It follows from [I4], Corollary 2.18] that for any f € By(R), t > 0 and p € M(R),
t +o0
(f, Xe) = (PP f, X0) —1—/ / PP f(z)M(ds,dz) P,-a.s. (3.7)
0 J—o0

where for every T > 0, [0,T] >t — fo f+°° PB Jf(z)M(ds,dx) is a square-integrable Fi-martingale
with quadratic variation ¢ — fo 27( Ptﬁ_ ) X)ds.

Lemma 3.5. Suppose 6 >0, 0 >0 and p € M.(R). Then for any e > 0,

lim e(38—€)(n+1)o sup
n—+4o0 te[no,(n+1)o]

B, [r15] - p, [0

=0 Py-as.

Proof. By [B.1), we have

(n+1)o
d(n+1)o o(n+1)o 6(n+1
X(TL—l—l) < (TL—l—l o 7X0 / / (TL—l—l o—s )M(ds, df]f),

where [0, (n + 1)o] > t — fo f+°° pontle (x)M (ds,dx) is a square-integrable P,-martingale with

(n+1)o—s
quadratic variation ¢ +— fo 27( W?ﬁj)lig_s)z,X s)ds. Thus
n+1)o o(n+1)o
Py {X n+J1r ’]:t] - |:X(rf+—f ‘fmf}
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(n+1)o 5(n+1 (n+1)o S(nt1)o
=Py / / Tn+1)o—s )M(ds,d:z:)‘]:t - / / n+10 s )M(ds,d:n)‘]:m
+o00
/ / w7 ()M (ds, dz).

By this and the L?-maximum inequality for martingales, we have

B[] - p, [0

2
P, sup
te[no,(n—l—l)cr]

(n+l)o  ptoo 6(n+1 2
<A4P, / / Tt 1)o—s (x)M(ds,dz)

(n+1)o 2
o(n
= 4P, / <27< (7<L++1)13f 8) ,Xs>ds]

g

(n+1)o
< 8llyfoce!" 1=, [/ <w?£’i+1§3”_s,xs>ds]

g

o 6(n
= 81y loce!? 1=l ). (3.8)

The second inequality is because wfy(lit)lio_s(x) <IL[eg((n+1)o —s)] < elATllee((ntD)o=s) et K

be the compact support of u. Lemma [B1] implies that for any € > 0, there is T > 0 such that
sup 70 (z) < e(TAeF > T
zeK
Thus one has
6(n+1)o _
(w0 ) < eShatalmtog )

for n sufficiently large. Putting this back to (B.8]), one gets

]PM e(%A(g—e)(n—l-l)o sup
te[no,(n+1)o]

< c1e(A5_26)("+1)0<7T?r(zi)lc)ra7M> < cre (L py,

w (XTI = P |2

)

for some constant ¢; = ¢1(0) > 0. This implies that

2
T O L el Vo1 I A P i ot < +c0.
> {( e [ [ - m )
The lemma follows by Borel-Cantelli lemma. O

Lemma 3.6. Suppose o > 0 and pn € M (R). There is a constant Cs = Cs(c) > 0 such that for
any 0 < 0 <6 < +oo and € > 0 the following inequality holds P, -a.s. for n sufficiently large.

n — —ﬁna —0))no — €)no
Fy [FA 7] G ey e e T e )4 o

12



Proof. Fix arbitrary o > 0 and u € M.(R). By Markov property, we have for any 0 < 6 < § < +o0,

Py X(nj-—{l |‘7:m7] =( fr(n+1)onn0>

- (Fg(nﬂ) S(n+1)

7 1(—(6—9)710,(6—6)710) ) XTLU> + <7TO'
=:1(n,d,0) + 11(n, 4, 0).

7 1(—(6—0)710,(6—6)710)0 ) Xna>

It follows from Lemma [3.3](i) that when n is sufficiently large,
2
7000 (1) < Co(B(n + 1)o)Le~ T D Yz < (6 — O)no

where C5 = C3(0) > 0. Thus we have

2

1 - n2,
I(n,6,0) < C3(0(n + 1)o) '™ 2™ “(L(_(5_0)no.(6-0)mo) s Xno)

2 h
< C30(n+1)o —lg=GnPohing e AN » Xno
3(0( )o) < 1Hf|m|<(5—9)no h(x) >

-1
2
= C5(0(n + 1)o) e~ Tniothne <|| (i?fe) h@;)) Wl (X). (3.9)
x|<(0—0)no

The continuity of h and ([LI) imply that inf|, < 5_g)ne h(z) > cre~V2M=0no for p sufficiently
large. Thus we get by (3] that P,-a.s.

2
I(n,,6) < ca(6ng) ‘e TtV G- 0noyyh (X (3.10)

for n sufficiently large, where co = ca2(0) > 0. On the other hand, by Lemma B4 we have

lim sup,, , ;. log XT(L(Z— 9 m/na < —As_g P,-a.s. Thus for any € > 0,

P, (X,(Lg_a)"" < elmhe—0tn9 o1 p sufficiently large) =1.

Note that by definition II(n,d,0) < Hﬂg("H [l oo Xn X070 < BT lleco 070N g every n € N. We
get that
P, <H(n, 5,0) < cgel~Mo-0FIT for p sufficiently large) =1 (3.11)

for c5 = ellf =7 This lemma follows immediately by combining (3I0) and @II). O

Lemma 3.7. For any 6 >0, 0 > 0 and p € M.(R),

log P, [x (nt+1)o |}"M]

lim sup

< —As; Py-as.
n—-+400 no

Proof. First we consider 6 > 0. It follows by Lemma [3.6] that for any 0 < § < ¢ and € > 0, P-a.s.

2
eA‘SnUPu [Xfrfi—fl ‘fna} < 05( )|:(9n0’)_le_%n20+(A6+A1+M(6_0))nUWZLLU(X)

+elA 6—A670+5)W] (3.12)
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for n sufficiently large. Since § — Aj is nondecreasing and continuous on (0,+o00) and that
P, (WOhO(X) < +00) = 1, one can choose 6 so small that As — As_y < e. We also note that
for fixed 0 and 6, the first term on the right hand side of (3I12)) converges to 0 P,-a.s. as n — +o0.
Thus we get by (8.12]) that

P, <eA5"°]P’u [ngf{l \fm} < 2e% for n sufficiently large) =1.
Hence we prove this lemma for § > 0. Now we suppose § = 0. By Markov property, we have

oo
]PN |:X(On+1)o"fn0:| = <7T27Xn0'> S e”B loo XT(L)U'

It follows by Lemma [3.4] that

logP, [ o | F no:| log X0
lim sup () < lim sup 08 "o < —-Ay Pjas.
n—-+oo no n——4o0o no
Hence we complete the proof. O

Proposition 3.8. Suppose u € M.(R). For any 6 > \/\1/2,

log Xt 1
lim sup BT < ——As Pu-as., (3.13)
t——+00 2
and for any 0 < 6 < \/\1/2,
1 Xét
lim sup 08 2t < —A; Pu-as. (3.14)
t—+o00

Proof. Let 0 > 0. By ([3.0)), we have for any n € N and ¢ € [no, (n + 1)0),

SR ens MR Rl I R (3.15)
One can decompose P, [X(nffl ’-B] as I(n,o0,t) +11(n, o), where
I - 5(n+1)o (n+1)o . (n+1)o
(m,0,) i= By [ X007 17| = By [ X000 1 P | and TH(n, ) = B [ X011 Foo |

It follows by Lemma [3.7] that for any € > 0,
P, (II(n, o) < eTAHI for n sufficiently large> =1. (3.16)

On the other hand, by Lemma [3.5] we have

P, < sup I(n,o,t) < ee(—2hs (4o g1 sufficiently large) =1 (3.17)
te[no,(n+1)o)

Combining B.15)-(B.IT), we get

P, sup X< ot <e(_A‘5+€)”U + ee(_%A”E)(”H)") for n sufficiently large | = 1.
te[no,(n+1)o)
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It follows immediately that

ot
lim sup IOtht < (—=As) Vv <—%A5> P,-a.s. (3.18)

t—+o00

If 0 <60 < /A1/2, then —As > —A;/2 > 0, and (BI4]) follows directly from (BI8]). Otherwise if
§ > \/A1/2, then —As < —1A; < 0, and hence BI3) follows. O

3.3 The lower bound of &
Let p”(t,z,y) be the transition density of Ptﬁ . It is easy to see that

18- +

e I ltp(t 2, y) < pP(t,2,y) < elPTltpt ay) V>0, 2,y €R. (3.19)
Here p(t,z,y) is the transition density of a Brownian motion on R. Let P/ be the semigroup

obtained from Ptﬁ through Doob’s h-transform, that is,

Pl f(z) = %Pf(hf)(m) Vt >0, r €R, f<€BT(R). (3.20)

Then P} has a transition density with respect to the measure h?(y)dy, which is given by

e MipP(t, x,y)
h(z)h(y)

It is proved in [8] that there exists a constant a > 0 such that

ph(t,m,y) = vt >0, x,y € R. (3.21)

Pt 2) — 1| < e L) 1Ly )2 VES 1wy € R,
This together with (819]) and (32I]) implies that there is some constant ¢; > 0 such that

‘ph(t,:n,y) - 1‘ <cre ®h(z) th(y)"t Vt>1, z,y eR. (3.22)

Lemma 3.9. Suppose p € M(R) and o > 0. For any f € B (R) such that f/h is bounded from
above and that f_Jr;o f(z)h(x)dx > 0, we have

1 Xno
lim og(f, Xno)

n—+oo no

=M Py-a.s. on {WE(X) >0}
Proof. Without loss of generality we assume 0 # p € M(R). It follows by Proposition that

lo X,
lim sup M < lim sup
n—+4oo no n——4o00 no

log | flloo + 08 X5 _
<h Pras

Hence we only need to show that

n—-+4o00 no

>\ Pyas. on {WE(X) >0},
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or equivalently, for any ¢ > 0,
P, <e_)‘1”0(f, X,o) > e for n sufficiently large | W (X) > 0) =1 (3.23)
For any n € N and o > 0, we have
e M F X)) = I(n,0) 4+ T(n, o) + IT1(n, o),

where

(n,0) = €M (f, Xog) = B [N, X))

(1, 0) = By [ (f, Ko Foyo] — (s YW (),

M(n,0) = (£, W)W ().

Since lim¢_, oo W/H(X) = WA (X) P,-a.s., we have

P, <III(n, o) > =(f,h)W(X) > 0 for n sufficiently large | W/ (X) > O) =1. (3.24)

N |

Let ¢(z) := f(x)/h(x) for x € R. By Markov property and ([3.:20) we have

(n,0) = e " (P2 (8h), X)) — (Shy B)e 2N (B, X, /o)

no/2
—5A1N0 —L\ino
Al <thJ/2(¢) Xna/2> - (¢h7 h)e 2 M <h‘7X7LO'/2>
b () / P"(n0/2,,y) = 1) 6 ()dy, X2 ).

It follows by [322]) that for n € N with no > 1,

—+00

[I(n, )] < e~ 3977 (1 /

—00

—ano -1 no
‘ph(n(j/zv “ y) - 1‘ ¢(y)h2(y)dya chr/2> < cie /2(¢7 h)e 24 XT?O’/2
This together with (BI4]) yields that

P, (ngrfoo 1I(n, o) = o> = 1. (3.25)
By B.7) we have
—+o0
NN (f X,0) = (WPL 6, Xo) / / e h() Pl (x) M (ds, d).

Here [0,n0] > t — fg fj;o e MSh(z)Ph . #(x)M(ds,dzx) is a square-integrable martingale with
quadratic variation t — fot (2ve=2Msp? (PR _ s¢)2 , Xs)ds. Hence

+oo
I(n,o) / / e Mh(z) P! p(x)M(ds, dx).
no/2
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Moreover, by ([B:20) we have

P, [I(n,0)2] =P, [ / T (oye i <P30_3¢>2,X8>ds]
no/2

< 2l ool il [

no/2

o2, [<hp,ﬁ,_s¢, Xs>] ds

= C2 / e_2)\18<PsB <hPr}LLU—s¢> 7lu’>d8
no/2

= / e MS(WP b, p)ds
no/2

no

< callllooths 1) / et

= C2H¢||oo<h,,u>)\l_le_>‘1no/2 (1 _ e—)\1ncr/2) ‘

Immediately > > P, [I(n,0)?] < +oc0. Hence by Borel-Cantelli lemma,

P, <n11£r_100 |I(n,o)| = 0) =1

This together with ([3:24]) and (B:25]) yields ([B.23]). Hence we complete the proof. O

Lemma 3.10. Suppose 0 < 6 < \/A1/2 and o > 0. For any nontrivial p € M.(R),

. log Xxono
lim inf 08 Fng
n——+o0o no

> —A; Py-a.s. on {W2E(X) > 0}.
Proof. We define a quadratic branching mechanism ¢ by
72)(337 )‘) = _5($))‘ + 7(@)\2, V€ R,A >0,

where 7 is defined in (IT4). Let ((X;)i>0,Ps,) be a (By,1)-superprocess started from Dirac mea-
sure at z. For any R,t > 0 and x € R, let a%(¢,z) := —logPs, [e_X((_RvR)C)] and ufi(t,z) :=

—log Ps, [e‘XtR}. Noting that ¢ < ¢, we have by [20, Corollary 5.18] that
u(t,x) > afl(t,x) Vi, R >0,z € R. (3.26)

It is known that (¢, ) — @/ (¢, 2) is the unique nonnegative locally bounded solution to the following

integral equation.
t
ﬁR(tax) = Hx (‘Bt‘ > R) + H:c |:/ B(Bs)ﬁR(t -5, Bs) - ’Y(Bs)ﬁR(t - S, Bs)2d3:| :
0
By [20, Proposition 2.9], @ (¢, z) also satisfies that
t
af(t,z) =11, [exp {/0 (B(Bs) — v(Bs)a(t — s, B)) ds} 1{|Bt>R}] . (3.27)
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Immediately we have
a(t,x) < T, [ep(t), |Be| > R] = nli(x) Vax €R, t>0. (3.28)

Let ¢ € (0,1) and p =1 — ¢. By (B21) and (3:28]) one has for all n € N and x € R,

[ (580 =B (05— 5,8) ds} 10|
(8(82) 2Bt (B) ds | 1, 0|

3 (ngo—s)

B(BS) - ’Y(Bs)ﬂ-rzqa—s (Bs)> ds} 1{Bnq025ncr}:|

r nqo 5,
= 1I; |exp {_/0 ’Y(Bnqa—r)ﬂ';’] (Bnqa—r)dr} eﬁ(nqa)l{Bnqo>6na}:| . (329)

The final equality follows from the changes of variables. By choosing ¢ € (0,d/v/2A1), we have
d/q > +/2\1. Since ~ is compactly supported, it follows from Lemma B.3|(iii) that

oo s
€1 := sup y(x)/ g (z)ds < +o0.
x€RC 0

Putting this back to ([3:29]), one gets

é ‘nqgo

ﬂéna(nqa x) > e I, [eg(nqa)l{‘gnqa‘z(gm}] =e e (). (3.30)

Let K be a compact set of R with [, h(z)dy > 0. Since 2 ;> V21, we have by Lemma [3.1] that

log w019 (g 52
lim e BTy O
n—toozeK  nqo q 2¢>

Let € € (0, —As/8). The above equation combined with ([3:26) and ([3:30]) implies that there is some
constant ¢y > 0 such that

52 1
Jnf u" (nqo, x) > cae” 2" 72N (3.31)

for n sufficiently large. By the Markov property, we have
P (A7 < o83, X, (1) > 3o
— 735 no
o o 2 o]

< exp{el M3 YR, [on (I X0n ) X (K) > e(h—%e)’“’”}

2
< explel 4737 gy TR NI, [ (1) > oMb
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2
= exp {_e(—A(g—%E)’ﬂo <C2ena<\/2)\16+e—)\1q_g(l> _ 1> } ]P)H [ano(K) > e()q—%e)npo] ]

The first and second inequalities follow from Chebyshev’s inequality and (B.31), respectively. We
choose ¢ € << 0_ 4 oV 62;;21 2)‘1&) V0, \/571> then v2M0 + € — A\iqg — # 5 0. Note that

V2h %
—As — 3¢ > —13A5/16 > 0 for 0 < § < /A;/2 and € € (0,—As/8). The above inequality
implies that PP, (nga < e(_A‘S_%E)m; Xopo (K) > e(Al_%e)”pC’) decreases faster than exponentially
as n — +oo. Thus

+00
SR, (A0 < o(AmiI X (K) > e < o,
n=0

and by Borel-Cantelli lemma,

log xJne 1 log Xppo(K 1
P, <0g7m > —As — —eor 108 Xnpo (K) < A1 — =—¢ for n sufficiently 1arge> =1. (3.32)
no npo 2
Note that by Lemma

0g X upor (K
108 Xrpo (1) ):Al‘Wfo(X)>0>:1.

n—+o0o npo

P, < lim
We get by (332) that
1 Xéncr 1
P, <mgnio'm > —As — 3¢ for n sufficiently large ‘W&(X) > 0> = 1.

This lemma follows by letting € | 0. O

Proposition 3.11. For 0 <0 < \/A1/2 and p € M.(R),

log X2

> —As; Pu-a.s. on {W2(X) >0}

lim inf
t——4o00

Proof. First we consider § = 0. Since
W{H(X) = e MR, Xo) < [[hlloce™ 1A,

we have

log &P _ logW(X) _ log lhlloc
t - t t
Since W/H(X) — W (X) P,-a.s., we get that

+ A1.

> A =—-Ag P,-as. on (Wl (X) > 0}.

Now suppose 0 < § < \/A1/2. Let o > 0. We take # > 0 small such that dg := 3 +6 < \/A\1/2.

By (B.6]) we have

dg(n+1)o
Py [X(rf—i-l)a

fm} > ¢ X%ome
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for some constant ¢; = ¢1(0,0) > 0. It then follows by Lemma .10l that

logP, [X(‘jfi?;—i—l yf,w]

. _ h _
P, lﬁgl_ilrgg e Asy W (X) >0 1. (3.33)
Let 0 < e < —A;,/4. We have
sup 6A56t ]P;M |:X(5:+Ti+1 ‘-Ft:| . |:X(59 (n+1)o ’fno-:|
te[no,(n+1)o)
S Sup 6A56 no ]P)“ |:X(5:_,::LL+1 |]_—t:| o |:X(59 n+1 |]:n0—:|
te[no,(n+1)o)
it o, [27] e, [).

te[no,(n+1)o)

By Lemma B.6] the final term in the right hand side converges to 0 as n — +o00. Thus we get

lim sup et P, x0T Bl _p, a0t E 0 Pas. 3.34
=9 1o (n 1 1)0) [ (i) | t} [ (i) | } " (3:34)
Note that for any t € [no, (n + 1)0),
eAagtPM X((Syf.(y.nl—i_l ’f] > eAag(n—l—l)oPu [Xf:iri-‘rl ‘fna]
As, t dg(n+1)o dg(n+1)o
— sup e P, Xn 7\ F| — Xn 7| Fro
teno,(n+1)o) [ (n+1)o } [ (nt+1)o }
Hence by ([3.33) and [B334) we get that
6g(n+1
P, | liminf ki [X("“ IE] > —As, [WE(X)>0] =1. (3.35)
il RS t - o

By Markov property, for any ¢ € [no, (n + 1)o),

dg(n+1)o o dg(n+1l)o
P, [200717] = (o0, o).

So we have

dg(n dg(n dg(n
1(d, t) := (m0ot D7 1 st.500, Xt) = Py, [X ot e |ft] — (rolmtDe 1st.50), Xt)

(n+1)o—t (n+1)o (n—i—l)a t
=P, [X(ffﬁ* Yo \ft} —11(p, 1) (3.36)

Lemma [33)(i) implies that there is a constant co > 0 independent of Jp and 6 such that
2
7007 (y) < e2(0(n + 1)o) L T i€ [, (n+ 1)0), |y| < o,

when n is sufficiently large. Hence we get that for ¢ € [no, (n + 1)0),

92
I(dg,t) < ca(8(n + 1)o) Lz FV (15 50 Xy
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62(9(71 + 1)0)—le—§(n+1)20+)\1t
inf|y| <5(n+1)0 P(Y)
co(B(n + 1)0)—1e—§(n+1)2o+>\1t

inf|y| <5(n+1)0 P(Y)

<e_/\1th1(—6t,6t) , Xt)

< W (X).

By (L9), there is a constant ¢z > 0 such that when n is sufficiently large,
2
11(3p,t) < c3(0(n + 1)o)~te~ T D o+ tVINO) (Do ywh 2y v € [no, (n + 1)0)

This implies that

lim sup  eMotTI(dp,1) =0 P,-as. (3.37)
n—+00 te[no,(n+1)o) g

Note that by (B3.36))
eA69t1(59, t) _ et(logl(ég,t)/t-ﬁ-Age)

_ HomBu [} |R) fens)  caytngs, o)

This together with (335]) and (B37) implies that

log I(dg, t
P, <liminf M > —As,

t——+o0

wh(x) > 0) =1. (3.38)
Note that by definition
1(69,t) < [Jn22 D7 || &Pt < el e 0ty 1
o:t) < |7 Tille X < e i Vte[no, (n+1)o).

(n+1)o

By [B38]), we have

. log &Y h
> — =
P, (ltlglgof > —As, [W(X) >0 1.
]
Proof of Theorem [I1: Theorem [[] follows immediately from Propositions 3.8 and B.11] O

4 Proofs of Theorem and Theorem

4.1 Skeleton decomposition

It is well-known that the (By,)-superprocess can be constructed as the high density limit of
a sequence of branching Markov processes. Another link between superprocesses and branching
Markov processes is provided by the so-called skeleton decomposition, which is developed by [9]
[12 19]. The skeleton decomposition provides a pathwise description of a superprocesses in terms
of immigrations along a branching Markov process called the skeleton. The following condition is

fundamental for the skeleton construction.
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There is a locally bounded function w > 0 on R satisfying that

P, [e_<w’X’5>] = e~ vy e M(R). (A2)

This locally bounded martingale function w assures that ( (By) exp{— [, ! %ds}) is a
IT,-(super)martingale. Thus one can define a family of (sub)probability measures {II¥, z € R} by

_ wiB) exp{—/ot —w(B;’(gifs))ds} Wt > 0. (4.1)

o(Basclog)  W(@)

dIry

T

dll,

We denote the process ((Bt)i>0, 1Y, 2 € R) by (B}")i>0-

An integer-valued locally finite random measure £ on R is called a point process. If there is a
locally finite measure A on R such that {(B) is Poisson distributed with mean A(B) for any Borel
set B, and that {(By), - ,&(By,) are independent for any disjoint Borel sets By,--- , By, n > 2,
then ¢ is called Poisson point process with intensity A. If we randomize by replacing the fixed
measure A by a random measure A on R, then we get a Cox process directed by A. More precisely,

given A, ¢ is conditionally Poisson with intensity A almost surely.

Proposition 4.1. Assume (A2) holds. For every u € M(R) there exists a probability space with
probability measure P, that carries two processes (Zy)i>o and (Xt)tzo satisfying the following con-

ditions.

(1) ((Z4)i>0,P ) is branching Markov process with Zy being a Poisson point process with intensity

w(x)p(dz), in which each particle moves independently as a copy of (B{")t>0, and a particle at

location x dies at rate q(x) and is replaced by a random number of offspring with distribution
{pr(x) : k > 2} uniquely identified by

G(z,s) Zpk (sF —s)

(i) ((X't)tzo,Pu) has the same distribution as (X,P,).
(iii) For everyt >0, Z; is a Cox process directed by wX,.

We show in the next proposition that the martingale function w in ([(A2]) exists for the (By,))-
superprocess.

Proposition 4.2. Let £ := {WI(X) = 0} and w(z) := —logPs, (£) for x € R. Then w is a
bounded positive function satisfying [(A2)). Moreover w'(x) = 0 for |z| sufficiently large.

Proof. Since W/ (X) is nondegenerate under Ps_, w(z) = —logPs, (€) takes values in (0, +-0c]. We
only need to show that w is a bounded function on R since the second assertion is a direct result
of Lemma[A.Jl and the boundedness of w.
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Let Eept == {||X¢|| = 0 for ¢ sufficiently large} and wegi(z) := —logPs, (Eext) for x € R. Since
V(@ \) > —B(x)A + a(x)A2 =: (z, \) for € R and A > 0, it follows by [20, Corollary 5.18] that

~

the extinction probability of the (By, 1))-superprocess is larger than that of the (By, 1))-superprocess.
Let ey be the log-Laplace exponent of the (B, 1))-superprocess. Let § # O := {z € R : a(z) >
0}. By [13, Lemma 7.1], Weyt(x) is a locally bounded function on O. Since &y C &, one has
W(T) < Wegt(T) < Wegt() < +o00 for all x € O. In the remaining of this proof, we fix an arbitrary
c € O and zp € R\ O. Without loss of generality, we assume zy > c.

For t € (0,400), let Q; := (0,t) x (c,+00) be the time-space open set. Let X be the
exit measure from @Q;. Then for any initial measure p with support contained in (¢, +-00), X%
is a finite random measure supported on the boundary of @);. Let H be the set of nonnegative
bounded functions on [0, +00) x R satisfying that there is some S such that f(s,y) = 0 for all
(s,y) € [S,4+00) x R. For f € H, let Us(t,z) := —logPs, [exp{—(f, X9)}] for t > 0 and = € R.
Then Uy(t,x) satisfies the following integral equation.

TeAt

Ug(t,z) + 11, [ : (B, Up(t — 5,By))| = Uy [f(7e At, Broad)] (4.2)

where 7. denotes the first exit time of (B;);>0 from (c, +00). Let X£(A) := X9t ({t} x (AN (¢, +0)))
for any A C R. This definition implies that X{ is the projection of X9t on {t} x (¢, +0o0). Let
ug(t,z) == —logPs, lexp{—(g, X{)}] for g € B (R), t > 0 and = € R. By [{2), u§(t,z) satisfies the

following integral equation.

u(t,z) + 11, [ | oz~ s Bas| = lo(5).
0

where (Bf)¢>0 denotes the Brownian motion killed outside (¢, +00). This implies that (Xf);>0 is a

(Bf,1)-superprocess. Note that
Ps,, [e_’\1t<h, Xg>} = ML, [es(t)h(By);t < 7]
= Il (t<m). (4.3)
Here Hgo is the probability measure defined by

i,
dIl,,

=
=
~—

= e Mes(t)
o(Bs:s<t)

It is known that ((By)i>o,11%,) is a recurrent diffusion on R. So I (¢ < 7.) — 0 as t — +oc. This
implies that e=*1*(h, X¢) converges to 0 in Ll(IP)(;xo), and so there is a subsequence of e~ (h, X¢)
which converges to 0 Ps, -a.s.

On the other hand, we note that || X9t ((0,+0c) x {c}) || denotes the total mass of the projection
of X@ on (0,t]x{c}. For A\,¢t > Oandy € R, let v§(t,y) := — log Ps, [exp{—A[| X ((0,+00) x {c})[]}].
It follows by (2] that

Te At
v§(t,x) = Ml (1. <t)—1I, [ ; P(Bs, v§(t — s, Bs))ds
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AL [es(ro A )T < ] — T, [ /OTCAteﬁ(s)wo(Bs,vi(t—s,Bs))ds L4

where ¥g(z,A) = ¢¥(z,A) + f(xz)A. The second equation follows from [I2, Lemma A.1]. Let
| X{eH| be the limit of the nondecreasing sequence {|[X@¢((0,400) x {c})|| : t > 0} and v§(z) :=
—logPs, [exp{—A|X{|}] = limy 4o v§(t,2) for A > 0 and = > c. By (&), one has v§(t,z) <
M1, [eg(1e); 7o < t], and so v§(z) < Al [eg(7e)]. Since B is compactly supported, by [10, Theorem
9.22] « — II, [eg(7c)] is a bounded function on [¢,+00). Thus for every A > 0, z — v§(z) is a
bounded function on [¢, +00).

We note that & = {W (X) = 0} = {3 t, — +oo such that e M (h, X, ) — 0}. We have

e Py, (€) = Ps, [Pa, (£1X%)]

> Ps,, [P”X{c}”(sc (5ext):|

= P [e—wwt(can{c}lq = o Vear (@),
o

Thus one gets w(xg) < U;em(c) (o) and so w is a bounded function on [¢, +00). O

4.2 Limiting distributions for the skeleton

Since ()/f ;PL) is equal in distribution to the (By,1)-superprocess, we may work on this skeleton
space whenever it is convenient. For notational simplification, we will abuse the notation and
denote X by X. We will refer to (Z¢)t>0 as the skeleton branching diffusion (skeleton) of X. We
use u € Z; to denote a particle of the skeleton which is alive at time t, and z,(t) for its spatial
location. We use || Z;|| to denote the total number of particles alive at time ¢.

In this section we shall show that the skeleton branching diffusion Z; shifted by /A1/2¢ con-
verges in distribution to a Cox process directed by a random measure which has a random intensity
mixed by the limit of an additive martingale (see Proposition L7 below). Our proof follows the same
approach as [0] (see, also [22]): First, we represent the population moments in terms of Feynman-
Kac functionals associated to Brownian motions, see (3] and (L) below. Using the estimates
established in Section 2l we show in Lemma [.3] that the second order moment is asymptotically
the same as the first order moment. Combining this with the Chebyshev and Payley-Zigmund
inequalities, we compute the asymptotic behavior of the distributions of particles near \/A1/2¢ in
Lemma [£4l We can then follow the argument of [6] to establish Proposition

Recall that w’(z) = 0 when |z| is large. So we assume that there are constants M, wy > 0 such
that w(x) = w_ for x > M and w(z) = wy for z < —M.

In what follows we always assume the following:

(1) R(t) = 6t + a(t) where 6 € (0,4/2)1) and a(t) = o(t) as t — +o0.
(2) For some a € <0, 1— \/2LT1>’ 0 < s(t) < at for all t > 0 and s(t) = o(t) as t — +oo.
(3) b(t) > 0 for all t > 0 and b(t) = o(t) as t — +o0.
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(4) z(+) : [0, +00) — R satisfies |z(t)| < b(t) for all large t > 0.
(5) A is a Borel set of R with inf A > —oo0.

We use P, to denote the probability measure where the branching Markov process (Z;)i>0
started from the integer-valued measure v. For every « € R, the fist two moments of ((Z¢)¢>0,Ps,)

can be expressed by the spatial motion and the branching rate : For f € B;' (R),

P (2] = T2 [oll OB ()| — P (o) (15)
P, [(f.2)%] =I@Kﬂzm+Hﬂ%¥ﬂ%ﬂ%wggmmnwmAma4Ww
- P+ s [ e ()| s (4.6)
One can easily show by @) that
Wl(z) = e‘“%, Z), >0, (4.7)

is a nonnegative Ps -martingale for every z € R, and a nonnegative P, ,-martingale for every
e M(R). We use W/ “(Z) to denote the martingale limit. It is proved by [12, Proposition 1.1]
that

W (Z)=Wh(X) P,-as. (4.8)

for all p € M(R).
Lemma 4.3. (i) There exist Ty > 0 and 6;(t) (i =1,2) such that for t > T,

0.(t) < Ps, [Zi—s)(A+ R(1))]

T won (A)mED X (t-s(1)—VINIR()

w(x(t

< 6a(t), (4.9)

where n_(dz) = C_e V2M%dx and fori=1,2, 6;(t) — 1 as t — +oo.

(ii) There exist To,C > 0 such that for t > Ts,

Ps, ) [Zi-say(A+ R(t))] < Ps, ) [Zi-sy(A+ R(1))]

h(x(t _s(t))—
< P5x(t) [Zt—s(t)(A +R(t))] +011)((T((t))))e2)\1(t (t))—2v2M\ R(t) (4.10)

Proof. (i) We have
Ps, o [Zi-s(A+ R(1))] = mpf—s(w (wlayre) ((t))-

Note that for ¢ large enough such that R(t) + (inf AA0) > M, w(z) = w_ for all z € A+ R(t). It

follows that
w_

Ps, ) [Zi-sn(A+ R())] = Mpf_s(t) Latre) (2(1))-

25



Thus (£9) follows immediately from Lemma 2.2
(ii) The first inequality of (ZI0)) is obvious since, by (.G,
P5w(t> [Zt—S(t)(A + R(t))z] = P6z(t) [Zt—S(t) (A+ R(t))]

2
w(z(

t—s(t)
775))/0 P’ |:7Pt6_s(t)_7« (w1A+R(t))2} (x(t))dr.(4.11)

Suppose suppy C [—k, k] for some 0 < k < 4+o00. Let o be the first hitting time of [—k, k] by the

Brownian motion. Noting that s(t) < at <t — 1 for ¢ sufficiently large, we have

t—s(t) 2
/0 Prﬁ [’Y (Pf_s(t)_rlA+R(t)> ] (z(t))dr

t—s(t) 5 2
= M | [ a0 (P aer (Br) dr

t—s(t) 2
= I / es(r)v(By) (P - s (By) dr;akgt—s(t)]

[ t—s(t)— 2
= Tl |es(ow) I, /0 es(r)y(Br) (Pf_s(t)_u_rlAJrR(t)(Br)) dr] o <t — S(t)}
L u=0o}
h(B,,) o
< Il |egloy) ———— eP(t=st)=0x) 2mR(t>;a <t-—s(t ]
= T [ ol k)lnfme[—k,k] h(x) e ()
= pePh(t=s®)=2v 2)‘1R(t)1'[x(t) [eg(ak)h(ng)e_Q)‘l"k; op <t— s(t)} . (4.12)

The above inequality follows from Lemma 2I{ii). Since e~*eg(t)h(B;) is a martingale, by the

optional stopping theorem, the last term in ([AI2]) is no larger than h(x(t)). So we get that

t—s(t) 2
/ Pf [’y <Pt6_s(t)_r1A+R(t)) } (z(t))dr < 6362>\1(t—s(t))—2\/_2)\1R(t)h(x(t))'
0

We also note that for ¢ large enough, w(x) = w_ for all x € A+ R(t). Thus

t—s(t) 5 5 ) , [t 5 5 2
[ R e )] orar = [P (P )|

< cgw2_e2)‘1(t_s(t))_sz(t)h(x(t))-

Putting this back to ([@II)) we get (ZI0).

O

Lemma 4.4. Assume that § = \/\1/2 and that \1s(t) + 2 1a(t) — +00 as t — +o00. Then there

exist C,T > 0 and 6;(t) (i =4,5,6,7) such that fort > T,

Pa, (Zao(A+ RO)=0) < 1= iltju-n-(4) 0 00),
Pa, (Zao(A+RO)=0) > 1= bs(tju-n-(4) 0 00),
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Pi o (ZwnA+ RO =1) < Os(un_(A) D o). (4.15)

w(z(t))
Pay, (Zoap(A+ BO)=1) = brlthu-n-(4) S 00), (116)
Ps, . (Zi—sy(A+R(t) >2) < C Z((”; (('?))) %(t). (4.17)

where O(t) = e~ MsO=V2Malt) 4nd 0,(t) — 1 ast — +oo fori=4,5,6,7 .

Proof. We note that if Z is an integer-valued random variable then

E[Z)?
E[72]

< P(Z>0)=P(Z>1)<E[Z], (4.18)

and
P(Z>2)<E[Z(Z-1);Z >2|=E[Z(Z - 1)| = E[Z?| - E|Z]. (4.19)

It is easy to see that ([AIT) follows immediately from (AIJ) and Lemma [3|(ii). Since 1 —

Ps, (Zi—sry(A+ R(t)) = 0) = Ps, . (Zi—s(t)(A+ R(t)) > 0), we have by [@I8) and Lemma
that for ¢ large enough,
1-Ps . (Zio(A+RE) =0) <Ps  [Z, (A <0 ayz) o
5oty (Zi—sy(A+ R(t)) = 0) < Py, [Zi—sy(A+ R(t))] < 2(t)w_n_(A) (),
w(z(t))
and
Ps ., [Zi_aw(A+R(1)]
1-Ps . (Zispy(A+R(t) =0) >
(t) ( t—s(t) ) P(Sw) [Zt—s(t)(A+R(t))2]
N P50 [Zi-s(A + R’
T Po,, [Zisy(A+ RO + O e2(1)
2
i (- () B O]
T (o (A 2D e@r) + L 6(1)
_ 91(75)2 w_n_(A) h(l‘(t)) @(t)
02(t) + CwZ'n=' (A)O(t) w(z(t))
01(t)

Since 6;(t) — 1 for i = 1,2 and O(t) — 0 as t — 400
we prove ([£I3]) and ([EI14).

We note that

— 1 as t — +o00. Hence

" 02(t)+Cw”Tn_t(A)O(t)

P5x(t) (Zt—s(t) (A + R(t)) = 1) =1 _P(Sx(t) (Zt—s(t) (A + R(t)) = 0) _P(Sx(t) (Zt—s(t) (A + R(t)) > 2) .
Thus (£I5) and (£I0) follow immediately from (AI3]), (@I4) and @IT). O
Lemma 4.5. (i) For every § € (\/A\1/2,v/2A1) and x € R,

lim Pj, (max|zu(t)| < 5t> = 1.
uEZt

t—+o00
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(ii) For every x € R,
liminfe | Z;|| >0 Pj, -a.s.
t—4o00

Proof. (i) We have

Ps. | max|z,(t)| < ot) = Ps, (Z;((—0t,0t)°) =0)
(z el <)
= 1-—Ps, (Z((—0t,6t)°) > 1)
= 1=Ps, [Z((=6t,6t)°)] .

So it suffices to show that

Jim Py, [Z((—0t,8t)%)] = (4.20)

Note that for ¢ large enough such that §t > M,

Ps, [Z:((=dt,0t)°)] = P (w1 (s 51) ()

B _
< Wpt 1(_st.6t) (z) =

It follows by Lemma Bl that limy o log 7t (z)/t = —As < 0 for 6 € (v/A1/2,v/2N1). So we get
7dt(x) — 0 as t — +oo and ([@E20) follows immediately.

(ii) We note that for ¢t > 0,

_ _ w h w
e Zt>>H—II w(2),

where ||h/wl||s < +00. So it suffices to show that for every z € R,
P;. <Wfo/w(Z) > 0) ~1. (4.21)

We have

Py, (W"(2) = 0) =Py, | T] Ps, (W(2)=0) | = @2 (A=) (g g9

ueZo

The final equality is because (Zy, Ps, ) is a Poisson point process with intensity wd,. On the other
hand, by (8] we have

P;. (W;g/w(Z) - 0) — P, (W;LO(X) - 0) — v,

Combining this with ([£22), we get that Pj, <Wh/ “(Z)= 0) = 0 and ([Z2I) follows immediately.
U

Proposition 4.6. For everyx € R, ((Zy£+/A1/2t)t>0, Ps, ) converges in distribution to a Coz pro-
cess directed by wi W /w(Z)ni(dx), where Wfo/w(Z) is the martingale limit of((Wth/w(Z))tzo, Ps. ).
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Proof. Take R(t) = /A1/2t and fix a function s(-) such that s(t) — +oo and s(t) = o(t) as
t — +4o00. For notational simplicity, in the proof we shall write s(t) as s. We only consider
Z; — /A1/2t. The result for Z; + 1/A1/2t can be proved similarly.

It follows from Lemma [£3)i) that for any Borel set A with inf A > —o0,

Ps, [Zi(A+ R(t))] ~ w_n_(A) Z((Z)) as t — +o00. (4.23)

We only need to show that condition (i) of Lemma [A.2] is satisfied by any subsequence of {Z; —
VA2t t >0}

Take m € N, ky,--- ,k,, € Z" and mutually disjoint Borel sets Ay,--- , A,, in R with inf A; >
—oofori=1,---,m. Put k:= ki +---+kp and A:=J;~, Ai. Let G5 be the o-field generated by
{Z, :r €]0,s]}. It suffices to show that

h/w

m —w h/w m ) m w—WOO (Z)T,_(AZ)

P, <ﬂ{zt<Ai+R<t>>=ki} |gs> S <Z>Zf—1”“‘”H( E )
1=1 1=1

(4.24)
in probability as t — 4o0. E| For u € Zg, let Zt(ﬁ) be the point process of the locations of the

s

particles alive at time ¢ whose ancestor is u. Take a constant x > \/A;/2. Define

gl = {umeazpj\zu(s)\ < ks, || Zs]| > k‘} and 2 := {Zt(fl(A +R(t) <1 Yue Zs}.
It follows from Lemma [4.5] that Pj, (5}1) — 1 as t — +o0. Since & € G, we get

Ps, ((E1)°]Gs) = Lgne — 0ast—+oo  in probability. (4.25)
On the event & we have

Ps, ((E1)°1Gs) = Py, (Zt(ﬁ)s(A + R(t)) > 2 for some u € Z; ]QS>

< Y Po, (24 R@) 2 2). (4.26)
UEZs

By Lemma4], for t large enough, on the event &}, Ps.. (Zt(f)s(A + R(t)) > 2) < %e_”ls.
Hence we get by ([#26) that on &}

Ps, (()°1Gs) < a1 Z %e‘%s < cre MW (7).
u€Zs uw

This yields 11 Ps, ((€2)¢]Gs) — 0 Ps,-a.s. Consequently by ([@25) we have

P;s, ((cf’tz)C |Gs) = 0 in probability as ¢ — +ooc. (4.27)

! Actually (@2 is a bit stronger than what one needs for the proof of Proposition EE6l The proof can be shortened
by applying [I7, Proposition 16.17]. In fact by the aforementioned result, one only needs to show that (i) (Z23]) holds
for all relatively compact sets A C R, and (ii) lim;— o Ps, (Z:(A+ R(t)) =0) = Ps, [exp{—w, wh/v (Z)n- (A)}]
for all compact sets A. However, since (£24)) further yields the limit of the order statistics of Z; (see Proposition [£.8]

and the remark below), we present it here for the sake of being more self-contained.
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By (23] and (£27]), we have
(ﬂ {Z1(Ai + R(t)) = ki} |gs> =Ps, (ﬁ {Zi(Ai + R(1)) = i} &}, €7 | gs) +e (428
i=1

for some ¢} — 0 in probability.
We note that on the event &7, {Zt(f)s(A + R(t)) : u € Zs} are Bernoulli random variables. So

we have

Ps, (ﬁ {Z:(A; + R(t)) = ki), &} EF | gs>
i=1
= P U (B RO =1 2 (A + R() =

l... |
& " (u1, up)CZs
ZU(A+R) =0 Yue Z\ {ur, - u}} €L ER|G), (4.29)
where (uy,--- ,ur) C Zs is the union over all k-permutations of Zs;. By (£27) and the fact that

&l € G, the conditional probability in the right hand side of (29 equals

1P (U {2+ R =1 2" (A + R) =

(u17--- 7uk)CZS

ZENATR) =0 Yue 2\ {u, - u)}G) + (4.30)
where € — 0 in probability. Since [, ... ,ycz,{--+} is an union of mutually-disjoint events, we
have

P5z( U (Z") (AL + R() =1, , Z{") (A + R(1)) =
(uly"',uk)CZS

ZU (A4 RE) =0 Vue Z\ {une- u}}16.)
= Y P (ZM") (A +RM) =1, Z") (A + R() = 1,
(u17"'7uk)CZs
Z(A+R() =0 Yue Zo\{ur, - ug}| Go)
- Z P62u1 (s) (Zt_s(Al + R(t)) = 1) XX P‘Szuk(s) (Zt_S(Am + R(t)) = 1)
(U17"'7Uk)CZs
X 11 P;. o (Zis(A+ R(t)) = 0)

ueZs\{u1, - ,ur}

= [II Poo (Zesta+ RGD = 0)] x

UEZS

3

P
(w1, up)CZs 62“1(5)(

Ps., . (Zi-s(A1 + R(1))
(A + R(D)

) X o0 X P(;Z%(s)( —s(Al —I—R(t)) = 0)

The second equality follows the Markov branching property. So far we have proved that

P;, (ﬁ {Zu(A; + R(1)) = k) rgs>

i=1

) Pézuk(.s) ( s(Am + R(1)) = ) ]
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= ¢ te+ R [ 11 Ps. ., (Zi—s(A+ R(t) = 0)] X
P62u1 (s) (Zt—s(Al +R(t)) = 1) P5zuk(s) (Zt—S(Am + R(t)) = 1)
p> Pr, o (Za M+ RO)=0) " P, (Z (A1 1 R(2) =0) J

(w1, up)CZs

Hence to prove (4.24)), it suffices to prove that
h/w
—w-Wes H(Z)n-(4) i probability, (4.31)

Jim ey T Po, o (Zs(4 + R(t) = 0) =€
uEZs
and
g0 (Gis(A1 + BI)) = 1) Ps., o (Zi-s(Am + R(H) = 1)
lim 1 Z - X e X -
oo A s Po (Zi—s(A1 + R(t)) = 0) Ps,, (o (Zi-s(A1 + R(t)) = 0)
m ks
= H (w_ WhIv(Z)n_ (AZ)) in probability. (4.32)
i=1
(i) We first prove (d.31]). It follows from (4.I3)) that for ¢ large enough, on the event &;,
Il Ps...,(Zs(A+R(t)=0) < ] (1-0at)w_n_(A )h( u(s) e M
e - w(zu(s)
uEZs UELs
h(zu(s)) -
< exp{—04(t)w_n_ 19
TT ent-tnttu-n- (520
= exp{—fa(t)w_n_(A)W}"(Z)}. (4.33)

The second inequality is from the fact that 1 — z < e™ for all x > 0. For the lower bound, it

follows from (@I4)) that for ¢ large enough, on &}
II Ps...., (Zi-s(A+ R(p)

UEL
B w Me_)‘ls
I <1 bs(t)w—n—(4) o) >
we_)‘ls
( >} (4.34)

uEs
= exp { Z IOg <1 B 95(t)W—77—(A)w(zu S))

UuELs

:0)

v

Note that ¢ := supyer h(y)/w(y) < [|hlloo/ infyer w(y) < +oo. Using the fact that
log(1 — x*

log(1 —z) > L*:E)w Va* € (0,1), z € [0,2"],

x

we get by (L34) that on &}
II Ps..., (Z-s(A+ R(t)
UEZS

:0)

log (1 — 05 (t)w_n_(A)ce %)
2 exp{ —A1s
O5(t)w_n_(A)ce=M =
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exp {log (1= 05(t)w_n_(A)ce™™19)

05 (Dw_1_(A)co s 05 (t)w_n—(A) W[ (2) } (4.35)

It is easy to see that the final terms of ([£33]) and (433]) converges to exp {—w_n_ (A4) ;Lo/w(Z)}
almost surely. Thus ([@31]) follows immediately.

(ii) Now we prove (£.32]). We use HZQ ) (t) to denote the functions 6;(¢) in LemmalL4 corresponding
to the set A;. It follows by (ZI4) and (ZIF) that, on &},

> Piy o (Zs(Ar + R(B) = 1) Ps., ) (Zis(Am+ R(t) = 1)
X oo X
(u1,+uk)CZs P52u1(8> (Zi—s(A1 + R(1)) = 0) Pézuk(s) (Zi—s(A1 + R(t)) = 0)
h(zu, (s —A18 m h(zu, (s s
.y WO O™ () (A Ml o
X e X

B h(zu, (s —A1s h(zu, (s s

(“17"'7uk)CZs 1 - 05( ) 77 (A) ((Zull((s))))e )\1 1 - 95(t)w_n_(A) w((ZuIZ((S)))) )\1
- [T 06 ()"
(- 95(t)w—77_(14)ce_)‘15)k

Mz, (5)) h(zu, (5)) _\
. w_n_(A)) =TT M e x wn (Agy) kL oA
<( Z ( l)w(ZUl (S)) ( )w(zuk(s)) >
w,ug)C s

- [T, 05 ()"

(1 — O5(t)w_n_ <A>ce—m>’f
Mz () s Wz (5) _xs
<Zw17 (A1) (o (5)) A)x---x(Zw_n_(Am)ﬁeA)

U1EZs Zul (8)) upEZs w zuk (S)

T - 955):)1—776_ &ce—w Hl (w-n-(awi"(2)) " (4.36)

For the lower bound, we have by (&If) that on &},
5 (ZH(A1 + R(t)) = 1) . Ps., (Zt s(Am + R(t)) = )
-7, Py o (Zi-o(As + R() = 0)
> Po, (s RO =1) x o x Py (Zt (A + R(1)) = )

Ps

Zuq (s)

>
(w1, ug) CZs
> 3 oY (H)w_ (Al)MG—MS X oo X H(m)(t)w_n_(Am)Me_*ls
(1, yur)C Zs ! w(zy, (5)) ’ w(2zy, (5))
= [H (99 (t)w_n_(Ai)>ki] X [ Z %e_)‘ls X e X %e_)‘ls] (4.37)
i=1 (ur ) zs ‘

Note that the sum >, ., ., is no larger than the sum of >3, Zu17"'7uk6ZS7ui:uj and

Z(ul’ k) CZe? and that

Up,- 7ukCZs,ui:u]‘
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< ce—)\ls Z h(zul (S)) e—)\ls N h(zuk (3)) e—)\ls
ut, e, up—1CZs Wi (S)) w(zuk 5)
< Ce_)\lsWSh/w(Z)k_l.
Thus we have
h(zu () h(zu, (s) —
Wsh/w Z)k: _ 1 e )\18 X oo X k e )\18
( 2 ) EmE)
B LLCHIC W TENE) I
w2, ) (e, )
tee MWW (7 k1 (4.38)
Putting this back to (@37 we get that on &},
5 Pouo (i rO)=1) s (%At RE) =1)
X e X
(- Lmrcz, Po, ) (Z-o( Ay + R(1) = 0) Py, o (Zo(A1+ R(£) = 0)
m ] ks
> [TT (09 @w-n-(4)" | x [Wh'e(2) = ce™ Wi (z)41). (4.39)

1=1

k;
We note that the final terms of (€30]) and ([39) converges to [];", (w_n_ (4) oy “(z )) almost
surely. Thus ([£32]) follows immediately. Therefore we complete the proof. O

Proposition 4.7. For every p € M(R), ((Z £/ A1/2t)i>0,Pu) converges in distribution to a Cox
process directed by ’LUj:WCiLO/w(Z)TH: (dx), where Wfo/w(Z) is the martingale limit of((Wth/w(Z))tzo, PL).

Proof. For any f € CH(R) and p € M(R),

P, |:e—<f,Zt:|: A—2115>:| = P, |:P,u |:e—<f7Zt:|:\/TTIt>|ZO:|:|

—(f, 2/ 2t
= P, H Pézu(o) |:e (f1Z¢ 3 >:|
u€eZy

eXp{— /R (1—P5x [e*f’zti@”]) w(:p),u(d:p)}. (4.40)

The final equality is because (Zy,P,,) is a Poisson point process with intensity wpy. Similarly one

can prove that for every A > 0,
P, [e—,\wfo/w(Z)] = exp {—/ (1 — P, [e—,\W;g/w(Z)D w(:p)u(dl«)} .
R

_ A h/w _
Since by Proposition 0] lim;—, 1 o P, |e (k50| Ps, [e_wﬂtwOO (Z)(1-e fv"i>] for all z € R,

we get by the bounded convergence theorem that

lim P, [e_<f’Zti A_21t>] =P, [e_wiwfo/w(z)ﬂ—e*fmﬂ] )
t——+o0
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Hence we prove this proposition. [l

For ¢ > 0, let max Z; := max{z,(t) : v € Z;} be the maximum displacement of the skeleton

branching diffusion.

Proposition 4.8. For any p € M.(R) and y € R,

: [ A1 h
tl}I-ElooP'u' <maXZt - 715 < y‘ Wo(X) > 0)

P, [exp{ - w_T\/%e_mnyo(X)} ‘W;‘O(X) > o} . (4.41)

This implies that conditioned on {W/ (X) > 0}, the maximal displacement of the skeleton
branching diffusion centered by \/T/2t converges in distribution to a randomly shifted Gumbel
distribution.

Proof of Proposition 4.8 Fix an arbitrary y € R. If we set A = Ay = (y,+o0) and k =k; =0

in (@24]), then we get

_w,C,O, 2A1yWiLo/w A
Ps, (Zt<\/%t+y,+oo>20‘gs>—>e 221 )

in probability as t — +o00. It follows immediately that

: [A1 w_C_ _ axiyrh
_ < — _ 1Y Jw
tlgfloo Ps, (max Zy 5 t < y) Ps, [exp{ oo e W (Z)} .

Using this and the branching property, we can show that for any pu € M.(R),

. )\1 w_C_ /IN h
— —t < — . 1Y A .
thm P, (maXZt \/ 5 t y) =P, [exp{ NN e WOO(X)} (4.42)

We note that

P, <maXZt -1/ %t <y, Wh(x)= 0)
S o} A1 h/w _
= P, |maxZ; — 7t§y, W (Z) =0

A
= PullZo]l =0)+P, (Pzt (Wh/(2) = 0) 511 Z0]l # 0, max 7 — /T2t < y> - (143)

Noting (Z2I]) one has Py, < oho/w(Z) = 0) = 0 P,-a.s. on {||Zy]| # 0}. Thus the second term in

the right hand side of ([4.43]) equals 0, and one gets

Py (math —\/ %’f <y, Wh(X)= 0) =P, ([Z0] = 0) = et (4.44)
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Then we have

P, (maXZt - \/%t < y( wh(x) > o) - P, [exp{ — w—_C—e—mgWOhO(X)} ‘ wh(X) > o]

V2\
Py (max Zy— 3t < y> — e P, [exp {——u\]/’% e_myW&(X)}] — P, (Wh(X)=0)
P (WL (X) > 0) - P, (WL(X) > 0) '
Hence (@41 follows by (£.42]). O

Remark 4.9. One can order the positions of the particles alive at time ¢ in a non-increasing order:
Rty > Ry > -+ > Ry z,- Then similarly as in Proposition .8} one can get the weak convergence
of (Rt,17 Rt,?a T 7R(t,n))’

4.3 Proofs of Theorem and Theorem

The main idea of the proof for Theorem is from [I8, Lemma 4.17]: Suppose &1, &2, -+ are Cox
processes on R directed by some random measures 11,79, ---. Then &, converges in distribution to
some ¢ if and only if 7, converges in distribution to some 7, in which case £ is distributed as a Cox
process directed by 7.

Proof of Theorem Fix p € M(R). In view of Proposition IIiii), (Z; = /M1 /2t,P,) is
distributed as a Cox process directed by w(z F /A1/2t) (Xt + 1/ A\1/2 t) (dz). Tt then follows by
[18, Lemma 4.17] and Proposition @7 that the latter converges in distribution to w4 W/ (X)n4 (dz).
This implies that for every f € CH(R), [ f(z)w(z F /A1/21t) (Xt +/A1/2 t) (dx) converges in
distribution to wi W (X)(f,n+). Recall that for x > M, w = w_ and for < —M, w = wy.
Note that for ¢ large enough such that z + \/A\1/2t > M and z — \/A;/2t < —M for all 2 €
suppf, [p flz)w(z F \/A1/2t) (Xt +/A1/2 t) (dz) = wi(f, Xy £ \/A1/2t). Thus one gets that
(f, Xy £ y/A1/2t) converges in distribution to W2 (X)(f,n+). This implies that X, + \/\1/2t
converges in distribution to W (X)n. (dz). O

Remark 4.10. (i) Theorem implies that for any bounded and compactly supported mea-
surable function f on R whose set of discontinuous points has zero Lebesgue measure,
(f, X¢ £ \/A1/2t) converges in distribution to W/ (X)(f,n+). In particular for any com-
pact set B C R whose boundary has zero Lebesgue measure, X; (ZF\/T/2 t+ B) converges
in distribution to W2 (X)n.(B).

(ii) We use max X; to denote the supremum of the support of X, ie., max X; := sup{z :
Xi(z,+00) > 0}. Let m > 0 and y € R. We have

) )
P, (maxXt - ,/711: > y) >P, <<1(y7y+m),Xt - ,/7175> > 0) . (4.45)

Note that <1(y,y+m),Xt — 4/ %t> converges in distribution to W/ (X)n_(y,y + m). Hence,
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letting t — 400 in ([A45]), we get that

- [A1
ltlglﬁ&f P, <maXXt - ?t > y> >P, (WOhO(X) > 0) . (4.46)

Note that
P, <maXXt - \/gt >y ‘ wh(x) > 0)
P, <maxXt— %t>y> -P, (maxXt— %t>y,W£LO(X):0>
B P, (WL (X)>0)
P, <max X — %t > y) -P, (e_<w7Xt>;maxXt — )‘—zlt > y)
B P, (WE(X)>0)
P, <max X — %t > y) -P, (e_<w’Xt>)
>

P, (WE(X) > 0)
P, <maX X — %t > y) — e~ {wm)
P, (WE(X) > 0)
Hence by (4.40]), we have for any y € R,

lim inf P X, — £t> Wh(X >0 >1_ﬂ>0
fmnf ) max X — ([t >y [WE(X) > 0) 21 = o >0

So conditioned on {W/ (X) > 0}, the distributions of {max X; — \/A1/2t : t > 0} are not
tight. This is very different from the behavior we observe in Proposition for the skeleton.

Loosely speaking, this is because the range of the super-Brownian motion is much ‘larger’
than that of the embedded skeleton

Proof of Theorem [I.3t We take 6 = \/\1/2 and p € M (R). Suppose suppu C [—k, k| for some
0 < k < +oo. We have

B, [40] = [ T leate). Bl > o1 p(da).

Since by Lemma for t large enough

I, [ea(t), [ Bil = t] < 041 \/;leu £ C)h(z) Ve [k, K,
where 04 (t) — 1 as t — +o00, we have
P [47] <040 5=(Ci+ € [ hantaa).
1 R
This implies that
3121%))]?# (Xft > )\> < 21215) %Xt&] —0 as A — +4oo.
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So the distributions of {X?* : t > 0} are tight.

Applying similar argument as in the proof of Proposition 4.6} one can show that for any v € R,
integers m,n > 0, integers ki, --- ,km,l1, - ,l, > 0 and Borel sets Ay, -, An, By, -+, By such
that inf A; > —oco and supB; < oo fori=1,--- ,m,j5=1,--- ,n,

P;, ﬁ{ztwt + Ai) = ki}, ﬁ{zx—ét +Bj) =1;}| G
i=1 Jj=1
— exp{—w_WL"(2)Y n_(A) —w,WH"(2)> ny(B))}
j=1

i=1

n (w0 W (2 ()" o (W (2)n.(8)

Hl i I1 ( I (4.47)

in probability as t — 4o0c. This implies that the point process ((Z; — dt) + (Z; + dt), Ps, ) converges

in distribution to a Cox process directed by W/ “Z)(w_n—_(dx) + wyny(dz)). Applying similar

argument as in the proof of Theorem [[L2] one can further show that the random measure ((X; —
6t) + (X¢ + 6t),P,) converges in distribution to W2 (X)(n-(dz) + n4(dz)). On the other hand, by
taking n =m =1 and A; = —B; = [0, +00) in ([£4T), one gets

Pz (Z1([0t, +00)) = k1, Zi((—00, —6t]) =1 [Gs)

e (w0 W22V IR) " (W () /)
LA @ ey (W 1 o 1
k! Ii!

l1

in probability as t — +oo. Using similar computations as in the proof of Proposition B.7], one gets
that for all A1, Ao > 0,

lim P,
t——4o00

= P, [exp {— (1 - e_)‘l) \/%le(?O(X)w_C_ - (1 - e_)‘2> \/%Tleo(X)wJFCJFH (4.48)

Recall that given X;, Z; is a Poisson point process with intensity wX;. Thus for ¢ sufficiently large,

[e—)\lZt([6t,+oo))—)\2Zt((—oo,—6t}):|

P, [e—)\th([6t,+oo))—)\2Zt((—oo,—6t])]
= P, [exp {—< <1 — e_>‘1> 1ist,400) + <1 — e_>‘2> 1(_00,_&],th>”
- P, [exp {_ (1 - e_>‘1) w_X;([6t, +00)) — (1 - e_>‘2> w X ((— o0, —5t])H :

Hence by ([#48]) we have

lim P, [exp {_ (1 - e_)‘l) w_ X, ([0t, +-00)) — (1 - e—*z) w X ((— o0, —575])}]

t——+o0

_ P, [exp {— (1-e) \/%TlWQO(X)w_C_ (1) \/QLTlW;g(X)m@H .
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For 0 < A < w_ Awy, taking A1, Ay such that (1 —e M)w_ = (1 — e *2)w, = ), one gets that

t —“\NCy+C_) 2 X
lim P, e M| =P, [e (Crrepn =) (4.49)

Suppose (X, IP,,) converges in distribution to £ along a subsequence {t,, : n > 1} C [0, 400), for
some random variable £&. Let Fy and F, be the distribution functions of ¢ and (C, +C_ )W/ (X)/v/2M\(
respectively. It suffices to show that Fy; = Fy. Let D; be the set of continuous points of 7. We
note that {X% < x} C {X;((6t,6t + N)) + X;((—0t — N, —6t)) < x} for all 2, N € R. Thus for any
y € Dy,

Fi(y) = tim P, (a0 <y)
< limsup P, (X4, ((6tn, 6ty + N)) + Xy, (=0t — N, —=6ty)) < y)
n——+00
< Py (WL - ((0,3) + 14 ((=N,0))) < y)

By letting N — +00, one gets that Fi(y) < F(y). If Fi(y) < Fa(y) for some y € Dy, then there is
some € > 0 such that Fy(z) < Fy(z) for all z € (y,y + €). This yields that for any A > 0,

E [e_)‘f] -P, [e MO )

] e A (Fi(x) — Fy(x))dx <0,

which contradicts (£49). Thus we have Fj(x) = Fy(x) for all x € Dy and hence for all z ¢ R. O

A Appendix

Lemma A.1. The martingale function w in ([A2)) is a solution to the following equation.

%w"(x) —(z,w(z) =0, VzeR. (A1)

Proof. Tt is proved by [12) Lemma 2.1] that the martingale function w which satisfies ([A2]) is
continuous on R. Moreover, the argument leading to [12] (2.4)] shows that for any compact set D
of R,

w(z) = T, [w(Bory )] — 1, [/OWD zb(Bs,w(Bs))ds} . V>0, R,

where 7p denotes the first exit time of Brownian motion from D. Since w is continuous and locally

bounded, letting ¢ — 400 in the above equation, we get by the bounded convergence theorem that

wl) = fulBo,)) - 1L | [ 6(BuB)as| . we.

Applying similar argument as in the last paragraph of Page 708 in [13], one can show that w is a
solution to (A.T]). O
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Lemma A.2. Suppose {&, : n > 1} is a sequence of point processes on R, and n is a locally finite
random measure on R. Then &, converges in distribution to a Cox process directed by n if the

following conditions hold.

(i) For m € N, mutually disjoint bounded Borel sets Ay,--- , Ay of R and ky, -+ ,ky, € 27,

P (0(A1) = ki, &n(Am) = k) — B

as n — +oo.

m k;
e N I n(Ai)

i kil
(i1) For any bounded Borel set A of R, sup,, E[£,(A)] < +o0.
Proof. We need to show that for all f € C(R),
E {e_mg")] —E [e_“_eff’"q as n — +00. (A.2)

It is easy to deduce from (i) that (A2]) holds if f is a nonnegative compactly supported simple
function. For an arbitrary f € CH(R) with suppf C A where A is a bounded Borel set of R, one can
find a nondecreasing sequence of nonnegative compactly supported simple functions {f; : & > 1}

such that f,, converges uniformly to f. We note that for k,n > 1,

‘E {e—<fk,sn>}_E{e—<f,sn>” < EHe—<fk,5n>_e—(f7§n>}
< E[l{fe, &) — {f:&n)l]
< E[(Ife = fI.&)]
< e = fllcE [€n(A)] -

It follows by (ii) that sup,, |E [e=Ukdn)] — B [e=(/ién)] | =0 as k — +00. So we have

lim E [e_<f’5”>] = lim lim E [e_m@’s”q
n—+oo n—+00 k—+o0
= lim lim E {e_m’g"q
k—+00 n—r+00
= lim E [e_ﬁ_‘ff’“ ”7>}
k—+00
= E |:e_<1_eif777>i| .
The first and final equalities are from the bounded convergence theorem. O

References

[1] Aidékon, E.: Convergence in law of the minimum of a branching random walk, Ann. Probab., 41,
1362-1426, 2013.

[2] Aidékon, E., Berestycki, J., Brunet, E. and Shi, Z.: Branching Brownian motion seen from its tip,
Probab. Theory Related Fields, 157, 405-451, 2013.

[3] Arguin, L.-P., Bovier, A. and Kistler, N.: The extremal process of branching Brownian motion, Probab.
Theory Related Fields, 157, 535574, 2013.

39



[4]

[5]

[20]
[21]

Belloum, M.A. and Mallein, B.: Anomalous spreading in reducible multitype branching Brownian
motion, Electron. J. Probab., 26, no.61, 1-39, 2021.

Berestycki, J., Kim, Y.H., Lubetzky, E., Mallein, B. and Zeitouni, O.: The extremal point process of
branching Brownian motion in R?, arXiv:2112.08407.

Bocharov, S.: Limiting distribution of particles near the frontier in the catalytic branching Brownian
motion, Acta Appl. Math., 169, 433-453, 2020.

Bocharov, S. and Harris, S.C.: Branching Brownian motion with catalytic branching at the origin, Acta
Appl. Math., 134, 201-228, 2014.

Chen, Z.-Q., Ren, Y.-X. and Yang, T.: Law of large numbers for branching symmetric Hunt processes
with measure-valued branching rates, J. Theoret. Probab., 30, 898-931, 2017.

Chen, Z.-Q., Ren, Y.-X. and Yang, T.: Skeleton decomposition and law of large numbers for supercritical
superprocesses, Acta Appl. Math., 159, 225-285, 2019.

Chung, K.-L., Zhao, Z.: From Brownian Motion to Schridinger’s Equation, Grundlehren der Math-
ematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 312. Springer-Verlag,
Berlin, 1995.

Dynkin, E.B.: Superprocesses and partial differential equations, Ann. Probab., 21, 1185-1262, 1993.

Eckhoff, M., Kyprianou, A.E., Winkel, M.: Spines, skeletons and the strong law of large numbers for
superdiffusions, Ann. Probab., 43, 2545-2610, 2015.

Englénder, J. and Pinsky, R.G.: On the construction and support properties of measure-valued diffusions
on D C R with spatially dependent branching, Ann. Probab., 27, 684-730, 1999.

Fitzsimmons, P.J.: On the martingale problem for measure-valued Markov branching processes, In:
Seminar on Stochastic Processes 1991, Progr. Probab., vol. 29, Birkh&duser Boston, Boston, 39-51,
1992.

Hou, H.-J., Song, R. and Ren, Y.-X.: Extremal process for irreducible multitype branching Brownian
motion, arXiv:2303.12256, 2023.

Hu, Y. and Shi, Z.: Minimal position and critical martingale convergence in branching random walks,
and directed polymers on disordered trees, Ann. Probab., 37, 742-789, 2009.

Kallenberg, O.: Foundations of Modern Probability, Second edition, Probability and Its Applications
(New York), Springer, New York, 2002.

Kallenberg, O.: Random Measures, Theory and Applications, Probability Theory and Stochastic Mod-
elling 77, Springer, Cham, 2017.

Kyprianou, A.E., Pérez, J.-L., Ren, Y.-X.: The backbone decomposition for spatially dependent super-
critical superprocesses, In Séminaire de Probabilités, XLVI (Lecture Notes Math. 2123), 33-59. Springer
International Publishing, Switzerland, 2014.

Li, Z.-H.: Measure-valued Branching Markov Processes. Springer, Heidelberg, 2011.

Madaule, T.: Convergence in law for the branching random walk seen from its tip, J. Theoret. Probab.,
30, 27-63, 2017.

40


http://arxiv.org/abs/2112.08407
http://arxiv.org/abs/2303.12256

Nishimori, Y.: Limiting distributions for particles near the frontier of spatially inhomogeneous branching
Brownian motions, Acta Appl. Math., 184, Paper No. 10, 31 pp, 2023.

Nishimori, Y., Shiozawa, Y. : Limiting distributions for the maximal displacement of branching Brow-
nian motions, J. Math. Soc. Japan, 74, 177-216, 2022.

Palau, S. and Yang, T.: Law of large numbers for supercritical superprocesses with non-local branching,
Stochastic Proccess. Appl., 130, 1074-1102, 2020.

Ren, Y.-X., Song, R. and Zhang, R.: The extremal process of super-Brownian motion, Stoch. Proc.
Appl., 137, 1-34, 2021.

Ren, Y.-X., Song, R. and Zhang, R.: Weak convergence of the extremes of branching Lévy processes
with regularly varying tails, larXiv:2210.06130, 2022.

Ren, Y.-X., Yang, T. and Zhang, R.: The extremal process of super-Brownian motion: a probabilistic
approach via skeletons, arXiv:2208.14696, 2022.

Shiozawa, Y.: Spread rate of branching Brownian motions, Acta Appl. Math., 155, 113-150, 2018.

Shiozawa, Y.: Maximal displacement and population growth for branching Brownian motions, Illinois
J. Math., 63, 353402, 2019.

Yan-Xia Ren
LMAM School of Mathematical Sciences & Center for Statistical Science, Peking University,
Beijing, 100871, P.R. China.

E-mail: yxren@math.pku.edu.cn

Ting Yang

School of Mathematics and Statistics, Beijing Institute of Technology,
Beijing, 100081, P.R.China;

Beijing Key Laboratory on MCAACI,

Beijing, 100081, P.R. China.

Email: yangt@bit.edu.cn

41


http://arxiv.org/abs/2210.06130
http://arxiv.org/abs/2208.14696

	Introduction and main results
	Super-Brownian motions
	Notation and some facts
	Main results

	Estimates on the Feynman-Kac functionals
	Proof of Theorem 1.1
	Estimates on the first moment
	The upper bound of Xtt
	The lower bound of Xtt

	Proofs of Theorem 1.2 and Theorem 1.3
	Skeleton decomposition
	Limiting distributions for the skeleton
	Proofs of Theorem 1.2 and Theorem 1.3

	Appendix

