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Abstract Suppose X=|X;, X,, P, is a superdiffusion in R? with general branching mechanism y
and general branching rate function A. We discuss conditions on A to guarantee that the exit measures
X, of the superdiffusion X from bounded smooth domains in R have absolutely continuous states.
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Let L be a uniformly elliptic differential operator in R?, &:= { &, II,, s=0, xER? de-

note the diffusion in R? with generator I, and let

J(x,z) = a(x)z + b(x)z* + Jo (e -1+ uz)n(x,du), (0.1)

0
bounded Borel functions on R?. Suppose A is a continuous additive function of &. Consider the
d-dimensional superdiffusion X = 1X,, X., P, | with parameters (L, ¢, A) (enhanced model) .
Let 7 denote the first exit time of & from an open set D in RY, i.e. p=infli: & ¢
D . In this paper we investigate the absolute continuities of the first exit measures X with gen-

where n is a kernel from R? to (0, ® ) and a(x), b(x) andJ u A u’n(x,du) are positive

eral branching mechanism ¢ given above and general branching rate function A . Particularly,
when A(d¢) = dt and ¢(x,z2) = 2P0 < B <1, the states of the random exit measures XTD

were studied by Sheu'! . Tt was shown that, in the case d <1 + 2 , the states of X,” are abso-

B

. . . 2
lutely continuous with respect to the surface area on d D, whereas in the case d > 1+ 7, they

B

are singular. Ren and Wang'?! showed that if the branching is restricted to a singular hyperplane,
X are absolutely continuous for any dimension d =1. But if A is changed to a sufficient irregu-

lar branching rate function and the branching mechanism ¢ is given by the general form (0.1),
the question as to what properties the random exit measures X have left open. Our purpose is to

solve this problem in some sense.

1 Notations and main results

For every Borel-measurable space (E, .5 (E)), we denote by M(E) the set of all finite
measures on .5 ( E) endowed with the topology of weak convergence. The expression {f, )
stands for the integral of f with respect to ;2. We write f€.% (E) if f is a % ( E)-measurable
function. Writing € p.%# (E)(b.% (E)) means that, in addition, f is positive (bounded) .
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We put bp. % (E)=b B (E)N\pB(E). If E = R, we simply write .% instead of .A(E).
For a bounded domain D, we write #& M.(D) if & M(D) and has a compact support in D,
and write € My(ID) if € M(ID) and p has a finite support in 9 D.

We denote by .7 the set of all exit times from open sets in R?. Set 7z, =6 (&, s <r),
Frv=0(&, s>r)and 7 =V {.7%,, r =0|. For t€.7, we put FE 7% if FE.7, and
if, foreach r, | F, t>rl€.%,.

The process X = {X,, X;, P,, t =0, TG.,OZ#EM(Rd)% is an M(R?)-valued Markov pro-

cess. The transition measures of X;, ¢t =0 are characterized through their Laplace transforms as

Poexp(- f,X,) = exp{= v,, ), [fE bp.B, n € MR, (1.1)
where v is the unique solution of the integral equation
t
vt(x)’I'Hx[J‘OSb(gs’ Ut—s(Ss))ds] = fo(st)~ (1.2)
Moreover, the transition measures of X,, t&.7 are characterized as
P/texp<_f’Xz'D> = eXp<_ u, //(>’ fe bp%)’ ﬂ 6 M(Rd)’ (13)
where u is the unique solution of the integral equation
u(x) + Hx[_[osb(&, u(Es))dS] = II.f(&). (1.4)

We call X =1{X,, X,, Pﬂ} the superdiffusion with parameters (L, ¢, A), ¢ the branching
mechanism of X and A the branching rate of X . The existence of X has been discussed in many
papers (see, for example, Dynkin[3' 4.

In the following we suppose D is a fixed bounded smooth domain in R?. Let k(x, y) be
the Poisson kemnel of D. For v&E M(3dD) define

Hpv(x) :.[Dk(x,y)v(dy). (1.5)

The study of fundamental solutions of the following integral equation plays an important role in the
investigation of the absolute continuity of X. .

w(x) + IL| "9(&,u(6)AWN) = Hyu(x), x € D, (1.6)
with vEM(ID).
Let S(dz) be the surface area on the boundary 9D of D. Forv = ZAiSZ’,zl,"',zm €

i=1

aD, x, ER",i =1, =, m, let
vo(dz) = DA f3(2)S(dz), (1.7)
i=1

where

1
S0 O Bz, i/n)y 2 € Bl 1/n), (1.8)
0, z ¢ B(z,1/n).
Clearly as n—>% , v, converges weakly to v. v, is called the regularization of v .
We now present the main results.
Theorem 1.1. Let A be a branching rate function of X satisfying
II,ACO, 7)) < ©, x € D. (1.9)

fiz) =
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Assume that there exist a sequence of bounded smooth domains {D,1 satisfying D), AD and a
Borel subset NV of surface measure 0 such that, for all v & My(9 D) with finite support contained
indD\ N, ¢ and A satisfy one of the following conditions (C1) and (C2):

(C1) ¢ is given by (0.1) with a(x)=0.

limﬂsupHxJT“(HDvn(Sg))ZA(ds) -0 (k—>w®), x€D. (1.10)

(C2) ¢ is given by the particular form:
Y(x,z) = y(x)Z"F, 0< pB<1, 7€ bph (1.11)
lim supl, | (Hpw,(£))*4(ds) =0 (k> ), x€ D,  (1.12)

where v, , the regularization of v, is defined by (1.7).
Then we have:
(i) there exists a random measurable function x; on d D such that
P#(Xrb(dz) = xp(2)S(dz)) =1, S M.(D); (1.13)
(ii) for each finite collection z;, ***, z, of points in dD \ N, the Laplace function of the
random vector [ xp(z;),**, xp(z)] with respect to P, is given by

k
P/LeXp[_ Elixl)(zi)] = eXp<_ u, #>’ Al’ ) Ak 20’ (1-14)
i=1

where € M, (D) and u is the unique positive solution of eq. (1.6) with v(dz) =
k

> AQ: (dz).

i=1

If particularly, A has the formal structure:
Acds) = = ds| £(d)8,(8), (1.15)

where £, a measure on R?, is called the kemel of A. The next theorem gives sufficient condi-
tions on ¢ such that the results of Theorem 1.1 hold.
Theorem 1.2. Let A, be the branching rate function given by (1.15). Suppose that
there exist a positive constant C > 0 such that { satisfies:
§(dy) = Cdyd_lCl(dyl), y = [Yd_l ,y1] € R xR, (1.16)
with ¢, being a locally finite measure in R?. If there exists a Borel subset N of zero surface mea-
sure such that ¢ and ¢ satisfy one of the following conditions (C3) and (C4), then the results of
Theorem 1.1 hold.
(C3) ¢ is given by the general form (0.1) with a(x)=0, and for each collection z; € D
\'N, i=1, ***, m, there exists an integer ng such that
—ad+a+1
m?XzeE&R/n).[D | x -z ¢(dx) < © n =ng, (1.17)
holds for some a > 2.
(C4) ¢ is given by the form (1.11), and for each collection z €D\ N, i =1, ***, m,
(1.17) holds for some a > 1+ (.
Corollary 1.1.  Let A be the branching rate function given by (1.15). Under one of the fol-

lowing conditions, the exit measure X. is absolutely continuous about the surface measure S(dz).

(C5) ¢(x,z) is given by the general form (0.1) with a(x)=0, and {(dy) =



452 SCIENCE IN CHINA (Series A) Vol. 43

Co1Cya)dyg—1 & (dyy) with &€ bp. B (R and £, (dy,) =6.(dy,), ¢cER.

(C6) d<3, ¢(x,z) is given by the general form (0.1) with a(x) =0, and {(dy) =
¢(y)dy with £(y) € bp. 5.

(c7) d<1+é, ¢(x,z) is given by the form (1.11), and ¢(dy) = £(y)dy with

¢(y)E bp 7.

(C8) ¢(«x,z) is given by the general form (0.1) with a(x)=0, and {(dy) = {(y)dy
with £(y) € bp. % satisfying

t(y) < Cd(y,aD)d_3+€ for some ¢ > 0 and C > 0.

(C9) ¢(x, z) is given by the form (1.11), and £(dy) = £(y)dy with £(y) € bp.B

satisfying
¢(y) <Cd(y, ID)P2=B+¢ for some ¢ > 0 and C > 0.

Ren and Wangm , Sheu'" and Zhao"*’ proved the result of Corollary 1.1 under conditions
(C5), (C7) and (C8), respectively.

Throughout this paper the notation C always denotes a constant which may change values
from line to line.

2 Proof of Theorem 1.1

In this section we investigate conditions on A to guarantee the absolute continuity of the exit
measure X, in the case that A is a general branching rate function. Let us first state a lemma on

the integral equation (1.6). For ¢ € p.% put
HeCrpor) = exp(_jzc(sqm(ds)), 0 <1y

Lemma 2.1. Suppose A(d¢) is a non-negative continuous additive function of the diffu-
sion &. Let t€.7; and ¢, g€ bp.%. Assume that w € .% and F € 7%, satisfy

HJ;M&) Alds) < o, IL|Fl <, x€R".

Then
g(x) = HX[HC(O,T)F +J;H"(0,S)w(&)f1(ds)] (2.1)
if and only if
g+ I (e) (6)As) = I F+ [Tw(&)a(as)]. (2.2)
Proof. The proof is similar to that of Lemma 2.1 in Ren and Wang'?'. We omit the de-
taﬂs.Theorem 2.1 (Fundamental solutions). Let ¢ be given by (0.1), A be a branching

rate function of X and v belong to M (9 D). Assume that there exist a sequence of bounded
smooth domains { D, | and a sequence of functions f, € bp. /(I D) such that

D, AD; v, = !fn(z)S(dz>l’v weakly as n — oo, (2.3)
and A satisfies (1.9) and (1.10).

(i) (Existence and uniqueness). There is exactly one measurable non-negative function

Ul A, v] defined on D which solves (1.6).
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(ii) (Continuity of regularization) . The solution U [A, v] is continuous with respect to the
operation of regulation of v in the following sense:

U[A,vn](')ﬂ’ UA,v](+) (n—> o) in each compact subset K of D. (2.4)
(iii) (First derivative with respect to small parameter). If a(x)=0in (0.1), then
/\"IU[A,M](')i’HDv(-) (A —> ) in each compact subset K of D. (2.5)
Proof. For simplicity, we write 7 and t, parallel with z; and T , respectively .

Assume that, for each n, u, is a non-negative solution of the cumulate equation (1.6) with
v replaced by v,. We want to show that, for any compact subset K of D, {u,(*); n=1} isa
Cauchy sequence in the Banach space b.%( K) endowed with the topology of bounded pointwise
convergence. Note that there is a constant C depending only on D such that

kE(x,z) <Co(x) |l x -zl "4, x €D, z€ID, (2.6)
where p(x) =d(x,dD). First of all, for a fixed compact subset K of D, we have the following

domination
0<u,(x) <J k(x,z)f,(z)S(dz) <Cv,(dD) <C, forx € K, n=1.
aD

(2.7)
Let

My = Gupcn st Hofs () V 1 24(x) = [26G) + | A wn )]

a(x) = (a+2)(x); Ri(x,2) = ¢(x)z - ¢(x,2).
Then
[R.(x,2)]" =

2b(x) (M, - z) +J u(Mu -1+ e ™“)n(x,du) +J u(M, -1 +e“)n(x,du),

which means for all x € R?, 0 <z <M,,
0<[R.(x,2)]. <X, (x).

Consequently
| Ri(x,21) — Ri(x,2) | <2, (%) 21 - 2

Using Lemma 2.1 with ¢ = ¢, F = f, (&) _J $(&, u,(&))AWds), g(x) = u,(x) and
w(x) = ep(2)u,(x) = ¢(x,u,(x)) = Rk(x u, (%)) we get
(&) —st(a, u, (&))A(ds HJOA(ds)H"k(O,s)Rk(&, u, (&)

, xERY 0<z, zy <M,. (2.8)

(x) = ILH(0, ;)

For x€R?, put

gnon(x) = $(x, Hpfo(x)) + ¢(x, Hpf,(x)). (2.9)
Note that u,(x)< M, for x&€ D,. By (2.8) and the strong Markov property of & we have, for
m,n =1,x€ D and sufficiently large k& (satisfying x € D),

‘ Uy — un| (x) SILCI{C“(O, Tk)‘HGTL(fn _fm>(gr) + HxHCk(O’ Tk)HETKJ-;gm,n(Sx)A(dS)

e L] 0,9 ] )(8)A ),
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lterating the above inequality [ =1 times yields

Hfrﬁ(fn _fm)(gr)

‘ Uy — un| (x) gﬂx

+ 1L g (8)A(ds)

([‘azracan)’

0
[

+ CMkaJ:H‘M—(O,s) Alds).  (2.10)
Noticing that for fixed %,
fon(fr)ﬂ’Jmk(x,z)u(dz) (n—> ), forx € D,.

By dominated convergence theorem and condition (1.9), we obtain

mliTwa HET (fn _fm)(ér) = O’ (2‘11)
and
s l
. (] 2eceracan)
}imﬂxjo HH(0,5) 70 A(ds) = 0. (2.12)
Note that (see Ren and Wangm)
Y(x,z) <C(z+2°), z=0, »€R. (2.13)
Thus by (1.9), (1.10), (2.13) and Holder inequality, for every x € D,
lim §upﬂxjrgm,n(&)A(ds)»O (kA o). (2.14)

Combining (2.10), (2.11), (2.12) and (2.14), we have
lim sup| w,(x) = u,(x)| =0, x€ D.

Therefore there exists a non-negative measurable function u in D such that, for each compact
subset KC D,

u(x) P ulx) (n—>w), x€K.

By Fatou’s lemma, (1.10) also holds for e,=0. Repeating the procedure from the begin-
ning with this u instead of u,, we conclude that u solves eq. (1.6). By similar arguments we
conclude that v is uniquely determined by the equation. Summarizing the above, we now have
proved the statements (i) and (ii) of Theorem 2.1.

It remains to verify the asymptotic property (2.5). By (1.6) (with v replaced by Av)

AUTAL ] = Hy| (2) <HJ;A"I¢J(€S, AHp(ENAGs). (2,15

By (2.13),
A7 g (w, AHp (1)) <C[(Hp)*+ Hyl(x), forx€RY!, 0< r<I.

Domination (2.7), condition (1.10), and Fatou’s lemma imply that HxJO(HDuy(SS)A(ds)
< o, and therefore by (1.9) and Holder inequality, HXJT[(HDV)z + Hyl(E)A(ds) < =.
0
Letting A v0in (2.15), by Fatou’s lemma,
linh%up| ATYULA v - Hyy ‘ (x) SHXJOA(dS) linh%up/\_lg/)(&,AHDV(S‘.))
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It is easy to prove that for fixed z =0, xER?, lim, VoA _1()[1(96, Az) =0. So we obtain
A7YUlA, v (e, 2) > Hpy(+) pointwisely as A v 0.

But A 'U[A,Av](*) are all dominated by the same function Hpv(+) and Hpv(*) is bounded
in any compact subset K of D . The statement (iii) follows. We finish the proof of Theorem 2.1.

Checking the above proof we find the following remark .

Remark 2.1. If ¢(x, z) is given by the particular form (1.11) and if condition (1.
10) is replaced by condition (1.12), the results of Theorem 2.1 also hold.

Proof of Theorem 1.1.  Using Theorem 2.1, Remark 2.1, and the same argument of
Theorem 2.1 in Ren and Wangm , we can prove the results of Theorem 1.1 hold. We omit the
details.

3 Proof of Theorem 1.2 and Corollary 1.1

In this section we discuss that if particularly A has a branching rate kernel, {, say, under
what conditions the related superdiffusion has absolutely continuous exit measures. We first study
requirement (1.9).

Lemma 3.1. Let A, be the branching rate function given by (1.15) with kernel § satis-

fying (1.16). If £, is a locally finite measure on R?, then HxAg(O, 7p) is bounded in D.
Proof.

TA0,79) = IL| "as] €)8,(8) = | 6p(e, )0y =] gle,0)Eldy),

where Gp(x,y) denotes the Green function of & in D and

_ Hx_yH 2—(1’ d>39
g(x,y) a [10g+ | x - yH 141, d=2.

Since D is bounded, there exists a constant M > 1 such that Dc B(0, M), Thus D CB
(x,2M) for all xE D.

In the case d =3,

IT,A:(0, 7p) <[ Dg(x,y)Cd-1(yd-1)d}’d-1§1(d9’1)

CJ Cl( yl)J ( || Yd-1 — Xd-1 H )z_dd}/d_1
(-M,] M

Iy, =2, I <2

2M
< CJ Cl(dyl)J 2y < .
(-=M,M) 0
In the case d =2,

IA:A0,7p) <C (log* Il y = x|l =" + 1)dy,_1 & (dyy)

J13(962 M)ND
ng( nA . IOgH Yy —x H dyd 1C1(dy1) + C[ dyd—lgl(dyl)

§1( }/1 J B( 0 = 10g|| Yd-1 — Xd-1 || dyd—l + CCl(— M,M)

X

C

d-1’

<CL 1 l)Cl(dyl)JO - rlogrdr + C¢,(- M, M) <C.

We conclude that HxAg(O, 7)) is bounded in D .
Now let us discuss the requirements (1.10) and (1.12) in Theorem 1.1 in the case A =
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A¢ as indicated in (1.15).
Lemma 3.2. Suppose { satisfies (1.16) with £, being locally finite. Let v = E A0,
i=1 '

for some fixed zy,**,2,€ID,A;,"**, A, =0 and let v, be defined by (1.7).

(i) If (1.17) holds for some a > 2, then the corresponding branching rate function A, sat-
isfies condition (1.10).

(ii) If (1.17) holds for some @ > 1+ 3, then the corresponding branching rate function A,
satisfies condition (1.12).

Proof. We only prove (i). Result (ii) can be proved similarly. Suppose {D,| is a se-
quence of bounded smooth domains in R’ satisfying D, A D as n ! o. Recall that we use 7, to
denote the first exit time from D, and 7 the first exit time from D. Fix x& D. For any integer
k , the bounded convergence theorem implies that

limiL | (Hp (20 A(ds) = 1| (Hp Y (6)4(ds) < .
0 0

n—>®

Consequently condition (1.10) is satisfied if
timI1,| " (i, (8D AGAs) = L] *(Hip)*(8)A(ds) <
which is equivalent to
lim| Gy, ), P () Ey) = | G, )P ()EWY) < 2. (3.1)

Let K be an arbitrary compact set of D . Note thatj Gp(x,y)t(dy) SJ Gp(x,y)E(dy) =
K D

IT1,A.(0,7p) < . The dominated convergence theorem implies that

}L@JKGD(x,y)(HDvn)Q(y)C(dy) = JKGD(x,y)(HDV)z(y) ¢ldy) < .
So, to prove (3.1) it suffices to show that there exists an integer ng such that

Supj \DGD(x,y)(HDVn,)Z(y)C(dy)—>0 (kA o). (3.2)

=
n=n;

Assume that x belongs to D, k =1. Since Gy (x,y)/ 0 (y) is bounded in D \ D, where
p( y)=d(y,dD) is the distance from y to 9D, to prove (3.2) it is enough to show that there
exists an integer n, such that

fgng\on(y)(HDVn)z(y>§(dY) —0 (k4 ). (3.3)
For M >0, we have |

JD\DAP(}’)(HDvn)Q(J/)g(d}’) $M2JD\D:0(y)§(dy) + JDQ(HD;;">M)(HDV")Z‘O(}/) £(dy)
(3.4)
and
2 _ %2
JDQ(H”u">M)(HDv"> p(y)é’(dy) - JM;{ dﬁn(/l)’ (35)
where 8,(1) = JDﬂ(HV >MP(}/)C(OU/), A > 0. For simplicity, we set h,(x) = Hpv,(x).

Then estimate
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B S| W EA) = | @] ke 5y

o DACA >2)
< (C max sup meh “k(y,z)p(y)g(dy).

i 2€ B(z,1/n),

Choose @ >2, by Holder’s inequality, we have

AB,(A) < C max sup_ (A( )) (B, (/1))_

lsz, n)

where A(z) = jDk(y,z)"p(y)C(dy),; + % = 1. By (2.6) we have

A(z) $CJD,0(y)‘”1 |y -zl ~¢(dy) $CJD |y =z || ~d*=te(dy).
The assumption (1.17) implies that there exists an integer ng such that

ABIL(A) SC:/Brl(/l)%, n Bno,

and so
B.(A) <Cx™, forall A > 0, n =n,. (3.6)
Since a >2, we have, by integration by parts and (3.6),
J A2dB,(A) = MR, (M) + Jwﬂ (A)adr < cm*= (3.7)

Condition (3.3) follows easily from (3.4), (3.5) and (3.7). Thus we finish the proof of Lem-
ma3.2.

Proof of Theorem 1.2. Summarizing Lemmas 3.1 and 3.2, the conditions in Theorem
1.1 hold, and therefore the results of Theorem 1.1 hold.

Proof of Corollary 1.1. We only prove the result under condition (C8). The others can
be proved similarly. It is clear that under condition (C8), ¢ satisfies (1.16).

su]g[)J | x =z | _“‘“‘”lé‘(x)dx <C sulzj | x — z || 2+ 1 q(x,dD)4 3 <dx
z€d D z€d D

diam( D)

<C su‘pj H X — z || —ad+a+l+d—3+sdx < CJ T<2_a)<d_l)+€_1dr.
z€4d D 0

If (2-a)(d-1)+¢>0, thensu[‘)j | x =z ~***'¢(x)dx < . Since when a =2, (2
z€4d D

—a)(d-1)+e=¢>0, there exists a >2, such that

SuB‘JD H x - z H —ad+a+1§(x)dx < ®©.

K

Thus, by Theorem 1.2, under condition (C8), an is absolutely continuous .
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