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Abstract

We study the weak convergence of the extremes of supercritical branching Lévy pro-
cesses {Xt, t ≥ 0} whose spatial motions are Lévy processes with regularly varying tails.
The result is drastically different from the case of branching Brownian motions. We
prove that, when properly renormalized, Xt converges weakly. As a consequence, we
obtain a limit theorem for the order statistics of Xt.
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1. Introduction

We consider a supercritical branching Lévy process. At time 0, we start with a single particle
which moves according to a Lévy process {(ξt)t≥0, P} with Lévy exponent ψ(θ ) = log E

(
eiθξ1

)
.

The lifetime of each particle is exponentially distributed with parameter β, then it splits into
k new particles with probability pk, k ≥ 0. Once born, each particle will evolve independently,
from its parent’s place of death, according to the same law as its parent, i.e. move according
to the same Lévy process, and branch with the same branching rate and offspring distribution.
We use P to denote the law of the branching Lévy process. Expectations with respect to P and
P will be denoted by E and E respectively.

In this paper, we use ‘:=’ to denote a definition. For a, b ∈R, a ∧ b := min{a, b}. We will
label each particle using the classical Ulam–Harris system. We write T for the set of all the
particles in the tree, and o for the root of the tree. We also use the following notation:

• For any u ∈T, I0
u denotes set of all the ancestors of u, Iu := I0

u ∪ {u}, and nu is the number
of particles in Iu \ {o}.
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Extremes of branching Lévy processes with regularly varying tails 623

• For any u ∈T, τu is the life length of u. Then {τu, u ∈T} are independent and identically
distributed (i.i.d.), and exponentially distributed with parameter β. Let bu and σu be the
birth and death times of u respectively. It is clear that bu =∑

v∈I0
u
τv and σu = bu + τu.

For any t ≥ 0, let FT
t := σ {bu ∧ t, σu ∧ t : u ∈T}.

• For any t ≥ 0, let Lt be the set of all particles alive at time t.

• Let {(Xu
s )s≥0, u ∈T} be i.i.d. with the same law as {(ξs)s≥0, P} and also independent of

{τu, u ∈T}.
• For u ∈Lt, let ξu

t be the position of u at time t. Then, for t ∈ [0, σo], ξo
t = Xo

t and, for any
other u ∈T,

ξu
t = ξπ (u)

σπ (u)
+ Xu

t−bu
=

∑
v∈I0

u

Xv
τv

+ Xu
t−bu

, t ∈ [bu, σu], (1.1)

where π (u) denotes the parent of u.

• For t ≥ 0, v ∈Lt, and u ∈ Iv, we set Xu,t := ξu
σu∧t − ξu

bu∧t. Note that Xv,t = Xv
t−bv

and

Xu,t = Xu
τu

for all u ∈ I0
v .

For t ≥ 0, define Xt := ∑
u∈Lt

δξu
t
. The measure-valued process (Xt)t≥0 is called a branch-

ing Lévy process. When {(ξt)t≥0, P} is a Brownian motion, (Xt)t≥0 is called a branching
Brownian motion.

Denote by Zt the number of particles alive at time t. It is well known that (Zt)≥0 is
a continuous-time branching process. In this paper we consider the supercritical case, i.e.
m := ∑

k kpk > 1. Then P(S)> 0, where S is the event of survival. The extinction probability
P(Sc) is the smallest root in (0,1) of the equation

∑
k pksk = s; see, for instance, [6, Section

III.4]. Define
λ := β(m − 1). (1.2)

The process
(
e−λtZt

)
t≥0 is a non-negative martingale and hence

lim
t→∞ e−λtZt =: W exists almost surely (a.s.). (1.3)

For any two functions f and g on [0,∞), f ∼ g as s → 0+ means that
lims↓0 (f (s)/g(s)) = 1. Similarly, f ∼ g as s → ∞ means that lims→∞ (f (s)/g(s)) = 1.
Throughout this paper we assume the following two conditions hold.

The first condition is that the offspring distribution satisfies the Kesten–Stigum condition:

(H1)
∑

k≥1 (k log k)pk <∞.

Condition (H1) ensures that W is non-degenerate with P(W > 0) = P(S). For more details,
see [6, Section III.7].

The second condition is on the spatial motion:

(H2) There exist a complex constant c∗ with Re(c∗)> 0, α ∈ (0, 2), and a function
L(x) : R+ →R+ slowly varying at ∞ such that ψ(θ ) ∼ −c∗θαL

(
θ−1

)
as θ → 0+.

Since eψ(θ) = E
(
eiθξ1

)
, we have Re(ψ) ≤ 0 and ψ(−θ ) =ψ(θ ). Thus, ψ(θ ) ∼

−c∗|θ |αL
(|θ |−1

)
as θ → 0−. Under condition (H2), we can prove (see Remark 2.1) that

P(|ξs| ≥ x) ∼ csx−αL(x) as x → ∞, i.e. |ξs| has regularly varying tails.

https://doi.org/10.1017/jpr.2023.103 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.103


624 Y.-X. REN ET AL.

An important example satisfying (H2) is the strictly stable process.

Example 1.1. (Stable process.) Let ξ be a strictly α-stable process, α ∈ (0, 2), on R with Lévy
measure

n(dy) = c1x−(1+α)1(0,∞)(x) dx + c2|x|−(1+α)1(−∞,0)(x) dx,

where c1, c2 ≥ 0, c1 + c2 > 0, and if α= 1, c1 = c2 = c. For α ∈ (1, 2), by [36, Lemma 14.11,
(14.19)] and the fact that �(−α) = −α�(1 − α), we obtain that, for θ > 0,∫ ∞

0

(
eiθy − 1 − iθy

)
n(dy) = −c1α�(1 − α)e−iπα/2θα,

and, taking the conjugate on both sides of [36, Lemma 14.11 (14.19)], we get that∫ 0

−∞
(
eiθy − 1 − iθy

)
n(dy) = −c2α�(1 − α)eiπα/2θα .

Thus, the Lévy exponent of ξ is given, for θ > 0, by

ψ(θ ) =
∫ (

eiθy − 1 − iθy
)

n(dy) = −α�(1 − α)
(
c1e−iπα/2 + c2eiπα/2)θα .

Similarly, by [36, Lemma 14.11 (14.18), (114.20)], we have, for θ > 0,

ψ(θ ) =

⎧⎪⎨⎪⎩
∫ (

eiθy − 1
)

n(dy), α ∈ (0, 1),∫
(eiθy − 1 − iθy1|y|≤1) n(dy) + iaθ, α = 1

=
{−α�(1 − α)

(
c1e−iπα/2 + c2eiπα/2

)
θα, α ∈ (0, 1),

−cπθ + iaθ, α= 1,
(1.4)

where a ∈R is a constant. It is clear that ψ satisfies (H2). For more details on stable processes,
we refer the reader to [36, Section 14].

In Section 4 we give more examples satisfying condition (H2). Note that the non-symmetric
1-stable process does not satisfy (H2). However, in Example 4.1 we show that our main result
still holds for the non-symmetric 1-stable process.

The maximal position Mt := supu∈Lt
ξu

t of branching Brownian motions has been stud-
ied intensively. Assume that β = 1, p0 = 0, and m = 2. The seminal paper [29] proved that
Mt/t → √

2 in probability as t → ∞. [15] (see also [16]) proved that, under some moment con-
ditions, P(Mt − m(t) ≤ x) → 1 − w(x) as t → ∞ for all x ∈R, where m(t) = √

2t − 3/2
√

2 log t
and w(x) is a traveling wave solution. For more works on Mt, see [19, 20, 30, 35]. For inho-
mogeneous branching Brownian motions, many papers have discussed the growth rate of the
maximal position; see [12–14] for the case with catalytic branching at the origin, and [31, 32,
34, 37] for the case with some general branching mechanisms.

Recently, the full statistics of the extremal configuration of branching Brownian motion
have been studied. [3, 4] studied the limit property of the extremal process of branching
Brownian motion, proving that the random measure defined by Et := ∑

u∈Lt
δξu

t −m(t) converges
weakly, and that the limiting process is a (randomly shifted) Poisson cluster process. Almost
at the same time, [2] proved similar results using a totally different method.

For branching random walks, several authors have studied similar problems under an expo-
nential moment assumption on the displacements of the offspring from the parent [1, 18, 27,
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33]. When the displacements of the offspring from the parents are i.i.d. and have regularly
varying tails, [23] studied the limit property of its maximum displacement Mn. More precisely,
[23] proved that a−1

n Mn converges weakly, where an = mn/αL0(mn) and L0 is slowly varying
at ∞. Recently, the extremal processes of the branching random walks with regularly varying
steps were studied in [8, 9], where it was proved that the point random measure

∑
|v|=n δa−1

n Sv
,

where Sv is the position of v, converges weakly to a Cox cluster process, which is quite differ-
ent from the case with exponential moments. See also [10, 25] for related works on branching
random walks with heavy-tailed displacements.

[38] studied branching symmetric stable processes with branching rate μ being a measure
on R in a Kato class with compact support (i.e. the support of μ is compact) and the off-
spring distribution {pn(x), n ≥ 0} being spatially dependent. Under some conditions on μ and
{pn(x), n ≥ 0}, [38] proved that the growth rate of the maximal displacement is exponential
with rate given by the principal eigenvalue of the mean semigroup of the branching symmetric
stable process. In this paper, we study the extremes of branching Lévy processes with constant
branching rate β (that is, μ(dx) = β dx) and spatial motion having regularly varying tails (see
condition (H2)). Since β dx is not compactly supported, we cannot get the growth rate of the
maximal displacement from [38]. As a corollary of our extreme limit result we get the growth
rate of the maximal displacement, see Corollary 1.2.

The key idea of the proof in this paper is the ‘one large jump principle’ inspired by [8,
9, 23]. Along the discrete times nδ, the branching Lévy process {Xnδ, n ≥ 1} is a branching
random walk and the displacements from parents has the same law as Xδ . It is natural to think
that we may get the results of this paper from the results for branching random walks by letting
the time grid become finer and finer, and appropriately controlling the behavior between the
time gaps. However, we cannot apply the results for branching random walks in [8, 9, 33] to
{Xnδ, n ≥ 1}. First, under condition (H2), the exponential moment assumption in [33] is not
satisfied. Second, [8] assumes that the displacements are i.i.d., while the atoms of the random
measure Xδ , being particles alive at time δ in our branching Lévy process, are not independent.
Last, although the displacements of offspring coming from the same parent are allowed to be
dependent in [9], [9, Assumption 2.5], where the displacements from parents are given by a
special form [9, (2.9) and (2.10)]), seems to be very difficult to check for Xδ .

Branching Lévy processes are closely related to the Fisher–Kolmogorov–Petrovsky–
Piskunov (Fisher–KPP) equation when the classical Laplacian 
 is replaced by the infinites-
imal generator of the corresponding Lévy process. For any g ∈ C+

b (R), define ug(t, x) =
E
(

exp
{−∑

v∈Lt
g
(
ξ v

t + x
)})

. By the Markov and branching properties, we have

ug(t, x) = E
(
e−g(ξt+x))+ E

∫ t

0
ϕ
(
ug
(
t − s, ξs + x

))
ds, (1.5)

where ϕ(s) = β
(∑

k skpk − s
)
. Then 1 − ug is a mild solution to

∂tu −Au = −ϕ(1 − u), (1.6)

with initial data u(0, x) = 1 − e−g(x), where A is the infinitesimal generator of ξ . [17] proved
that, under the assumption that the density of ξ is comparable to that of a symmetric α-stable
process, the frontal position of 1 − u is exponential in time. Using our main result, we give
another proof of [17, Theorem 1.5] and also partially generalize it; see Remark 5.1.
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1.1. Main results

Put R0 = (−∞,∞) \ {0}, and R0 = [−∞,∞] \ {0} with the topology generated by the set
{(a, b), (−b,−a), (a,∞], [−∞,−a) : 0< a< b ≤ ∞}. Note that, for any a> 0, [a,∞] and
[−∞,−a] are compact subsets of R0. Denote by B+

b

(
R0

)
the set of all bounded non-negative

Borel functions on R0. Let C+
c

(
R0

)
be the set of all non-negative continuous functions on R0

such that g = 0 on (−δ, 0) ∪ (0, δ) for some δ > 0. Denote by M(
R0

)
the set of all Radon mea-

sures endowed with the topology of vague convergence (denoted by
v→), generated by the maps

μ→ ∫
f dμ for all f ∈ C+

c

(
R0

)
. Then M(

R0
)

is a metrizable space, see [28, Theorem 4.2, p.
112]. For any g ∈B+

b

(
R0

)
and μ ∈M(

R0
)
, we write μ(g) := ∫

R0
g(x)μ(dx). A sequence of

random elements νn in M(
R0

)
converges weakly to ν, denoted as νn

d→ ν, if and only if, for
all g ∈ C+

c

(
R0

)
, νn(g) converges weakly to ν(g).

We claim that there exists a non-decreasing function ht with ht ↑ ∞ such that

lim
t→∞ eλth−α

t L(ht) = 1, (1.7)

where λ is defined by (1.2). In fact, using [11, Theorem 1.5.4], there exists a non-increasing
function g such that g(x) ∼ x−αL(x) as x → ∞. Then g(x) → 0 as x → ∞. Define ht := inf{x>
0 : g(x) ≤ e−λt}. It is clear that ht is non-decreasing and ht ↑ ∞. By the definition of ht, for any
ε > 0, g(ht/(1 + ε)) ≥ e−λt ≥ g(ht(1 + ε)), which implies that

(1 + ε)−α = (1 + ε)−α lim
t→∞

L(ht)

L(ht/(1 + ε))
= lim

t→∞
g(ht)

g(ht/(1 + ε))

≤ lim inf
t→∞ eλtg(ht) ≤ lim sup

t→∞
eλtg(ht)

≤ lim
t→∞

g(ht)

g(ht(1 + ε))
= (1 + ε)α lim

t→∞
L(ht)

L(ht(1 + ε))
= (1 + ε)α .

Since ε is arbitrary, we get limt→∞ eλth−α
t L(ht) = limt→∞ eλtg(ht) = 1. In particular, ht =

eλt/α if L = 1. In Lemma 2.1 we prove that eλtP(h−1
t ξs ∈ ·) v→ svα(·), where

vα(dx) = q1x−1−α1(0,∞)(x) dx + q2|x|−1−α1(−∞,0)(x) dx, (1.8)

with q1 and q2 being non-negative numbers, uniquely determined by c∗ = α�(1 −
α)(q1e−iπα/2 + q2eiπα/2) if α �= 1 and q1 = q2 = Re(c∗)/π if α= 1.

Now we are ready to state our main result. Define a renormalized version of Xt by

Nt :=
∑
v∈Lt

δh−1
t ξ v

t
. (1.9)

In this paper we will investigate the limit of Nt as t → ∞.

Theorem 1.1. Under P, Nt converges weakly to a random measure N∞ ∈M(
R0

)
defined on

some extension (�, G, P) of the probability space on which the branching Lévy process is
defined, with Laplace transform given by

E
(
e−N∞(g))=E

(
exp

{
−W

∫ ∞

0
e−λr

∫
R0

E
(
1 − e−Zrg(x)) vα(dx) dr

})
, g ∈ C+

c

(
R0

)
,
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where λ is defined in (1.2) and W is the martingale limit defined in (1.3). Moreover, N∞ =∑
j Tjδej , where, given W,

∑
j δej is a Poisson random measure with intensity ϑWvα(dx), {Tj, j ≥

1} is a sequence of i.i.d. random variables with common law

P(Tj = k) = ϑ−1
∫ ∞

0
e−λr

P(Zr = k) dr, k ≥ 1, (1.10)

where vα(dx) is given by (1.8), Zr is the number of particles alive at time r, ϑ = ∫ ∞
0 e−λr

P(Zr >

0) dr, and
∑

j δej and {Tj, j ≥ 1} are independent.

Theorem 1.1 says that, given W, N∞ is an integer-valued random measure with the locations
of the atoms being a Poisson random measure with intensity ϑWvα(dx) and with weights being
i.i.d. with common distribution given by (1.10).

The proof of Theorem 1.1 consists of two steps. First, we use the idea of ‘one large jump’,
which has been used in [8, 9, 23] for branching random walks, to deduce that Nt has the same
limit as the family of random measures defined by

Ñt :=
∑
v∈Lt

∑
u∈Iv

δh−1
t Xu,t

.

By ‘one large jump’ we mean that with large probability, for all v ∈Lt, at most one of the
ancestors of v has a large enough movement. Then we prove that with large probability, for all
u born before t − s,

∣∣h−1
t Xu,t

∣∣ is small. Thus, the main contribution to Ñt is

Ñs,t :=
∑
v∈Lt

∑
u∈Iv,bu>t−s

δh−1
t Xu,t

.

Remark 1.1. Given a function f , we use Df to denote its set of discontinuity points. Then,

by Theorem 1.1, Nt(f )
d→N∞(f ) for any bounded measurable function f on R0 with compact

support satisfying N∞(Df ) = 0 P-a.s. Furthermore, for any k ≥ 1,

(Nt(B1),Nt(B2), . . . ,Nt(Bk))
d→ (N∞(B1),N∞(B2), . . . ,N∞(Bk)),

where {Bj} are relatively compact subsets of R0 satisfying N∞(∂Bj) = 0, j = 1, . . . , k, P-a.s.
See [28, Theorem 4.4] for a proof.

Now we list the positions of all particles alive at time t in decreasing order, Mt,1 ≥ Mt,2 ≥
· · · ≥ Mt,Zt , and for n> Zt define Mt,n := −∞. In particular, Mt,1 = maxv∈Lt ξ

v
t is the right-

most position of the particles alive at time t. Note that vα(0,∞) = ∞ if and only if q1 > 0.
By the definition of N∞ in Theorem 1.1, we have that if q1 = 0 then P(N∞(0,∞) = 0) =
P
(∑

j 1ej>0 = 0
)= 1. If q1 > 0 then

P(N∞(0,∞) = ∞ | S) = P
(∑

j 1ej>0 = ∞ | S)= 1,

and since, for any x> 0, vα(x,∞)<∞, we have

P(N∞(x,∞)<∞ | S) = P

(∑
j

1ej>x <∞ | S
)

= 1.

Thus, on the set S , we can order the atoms of N∞ on (0,∞) in decreasing order: M(1) ≥ M(2) ≥
· · · ≥ M(k) ≥ · · · → 0. On the set Sc, N∞ is null; then we define M(k) = −∞ for k ≥ 1.
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Define P
∗(·) := P(· | S) (P∗(·) := P(· | S)) and let E∗ (E∗) be the corresponding expecta-

tion. As a consequence of Theorem 1.1, we have the following corollary.

Corollary 1.1. If q1 > 0 then, for any n ≥ 1,

(
h−1

t Mt,1, h−1
t Mt,2, . . . , h−1

t Mt,n; P∗) d→ (
M(1),M(2), . . . ,M(n); P∗).

Moreover, M(k) > 0, k ≥ 1, P∗-a.s.

In particular, for the rightmost position Rt := Mt,1 = maxv∈Lt ξ
v
t , we have the following

result.

Corollary 1.2. If q1 > 0 then
(
h−1

t Rt; P∗) d→ (
M(1); P∗), where the law of

(
M(1); P∗) is

given by

P∗(M(1) ≤ x
)=

{
E

∗(e−α−1q1ϑWx−α )
, x> 0,

0, x ≤ 0.

Proof. Using Corollary 1.1,
(
h−1

t Rt; P∗) d→ (
M(1); P∗), and M(1) > 0 P∗-a.s. For

any x> 0, P∗(M(1) ≤ x) = P∗(N∞(x,∞) = 0) = P∗(∑
j 1(x,∞)(ej) = 0

)=E
∗(e−ϑWvα(x,∞)

)=
E

∗(e−α−1q1ϑWx−α )
. The proof is now complete. �

Remark 1.2. Similarly, we can order the particles alive at time t in an increasing order: Lt,1 ≤
Lt,2 ≤ · · · ≤ Lt,Zt . When q2 = 0, P(N∞(−∞, 0) = 0) = P

(∑
j 1ej<0 = 0

)= 1. When q2 > 0,
on the set S , we can order the atoms of N∞ on (−∞, 0) as L(1) ≤ L(2) ≤ · · · ≤ L(k) ≤ · · · → 0.
Note that {M(k), k ≥ 1} and {L(k), k ≥ 1} cover all the atoms of N∞. Similar to Corollaries 1.1
and 1.2, we have the following weak convergence of (Lt,1, Lt,2, . . . , Lt,n): if q2 > 0 then, for
any n ≥ 1,

(
h−1

t Lt,1, h−1
t Lt,2, . . . , h−1

t Lt,n; P∗) d→ (
L(1), L(2), . . . , L(n); P∗);

and the distribution of L(1) under P∗ is as follows: for any x< 0, P∗(L(1) ≤
x) = P∗(N∞(−∞, x]> 0) = P∗(∑

j 1(−∞,x](ej)> 0
)= 1 −E

∗(e−ϑWvα(−∞,x]
)=

1 −E
∗
(

e−α−1q2ϑW|x|−α
)

.

The rest of the paper is organized as follows. In Section 2 we introduce the one large jump
principle and give the proof of Theorem 1.1 based on Proposition 2.1, which will be proved
in Section 2.3. The proof of Corollary 1.1 is given in Section 3. In Section 4 we give more
examples satisfying condition (H2) and conditions which are weaker than (H2), but sufficient
for the main result of this paper. We discuss the front position of the Fisher–KPP equation (1.6)
in Section 5.

2. Proof of Theorem 1.1

2.1. Preliminaries

Recall that ht is a function satisfying (1.7). Let C0
b(R) be the set of all bounded con-

tinuous functions vanishing in a neighborhood of 0. It is clear that if g ∈ C+
c

(
R0

)
then

g∗(x) := 1R0 (x)g(x) ∈ C0
b(R).
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Lemma 2.1. For any g ∈ C0
b(R) and s> 0, limt→∞ eλtE

(
g
(
h−1

t ξs
))= s

∫
R0

g(x) vα(dx).

Proof. Let νt be the law of h−1
t ξs. Then, by (H2), as t → ∞,

exp

{
eλt

∫
R

(
eiθx − 1

)
νt(dx)

}
= exp

{
eλt

(
esψ(h−1

t θ) − 1
)}

→ exp
{
sψ̃(θ )

}
, (2.1)

where

ψ̃(θ ) =
{ −c∗θα, θ > 0;
−c∗|θ |α, θ ≤ 0.

Note that the left-hand side of (2.1) is the characteristic function of an infinitely divisible
random variable Yt with Lévy measure eλtνt, and, by (1.4), esψ̃(θ) is the characteristic function
of a strictly α-stable random variable Y with Lévy measure svα(dx). Thus, Yt weakly converges
to Y . The desired result follows immediately from [36, Theorem 8.7 (1)]. �

It is well known (see [11, Theorem 1.5.6], for instance) that, for any ε > 0, there exists
aε > 0 such that, for any y> aε and x> aε,

L(y)

L(x)
≤ (1 − ε)−1 max

{
(y/x)ε, (y/x)−ε

}
, (2.2)

which is occasionally called Potter’s bound.

Lemma 2.2. There exists c0 > 0 such that, for any s> 0 and x> 2 + 2a0.5, Gs(x) := P(|ξs|>
x) ≤ c0sx−αL(x).

Proof. By [24, (3.3.1)], for any x> 2,

P(|ξs|> x) ≤ x

2

∫ 2x−1

−2x−1

(
1 − esψ(θ)) dθ ≤ s

x

2

∫ 2x−1

−2x−1
‖ψ(θ )‖ dθ = s

∫ 2

0
‖ψ(θ/x)‖ dθ,

where in the last equality we used the symmetry of ‖ψ(θ )‖. By (H2), it is clear that there
exists c1 > 0 such that ‖ψ(θ )‖ ≤ c1θ

αL
(
θ−1

)
, |θ | ≤ 1. Thus, for x> 2 + 2a0.5, using (2.2) with

ε= 0.5, we get

P(|ξs|> x) ≤ c1sx−α
∫ 2

0
θαL(x/θ ) dθ ≤ 2c1sx−αL(x)

∫ 2

0
θα

(
θ−1/2 + θ1/2) dθ .

The proof is now complete. �

Remark 2.1. It follows from Lemma 2.1 that limt→∞ eλtP(|ξs| ≥ ht) = s(q1 + q2)/α, which
implies that P(|ξs| ≥ x) ∼ ((q1 + q2)/α)sx−αL(x), x → ∞.

Now we recall the many-to-one formula which is useful in computing expectations. We
only list some special cases that we use here; see [26, Theorem 8.5] for general cases.

Recall that, for any u ∈T, nu is the number of particles in Iu \ {o}.
Lemma 2.3. (Many-to-one formula.) Let {nt} be a Poisson process with parameter β on some
probability space (�, G, P). Then, for any g ∈B+

b (R), E
(∑

v∈Lt
g(nv)

)= eλtE(g(nt)) and, for
any 0 ≤ s< t, E

(∑
v∈Lt

1bv≤t−s
)= eλtP(nt − nt−s = 0) = eλte−βs.
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2.2. Proof of the Theorem 1.1

Recall that, on some extension (�, G, P) of the probability space on which the branch-
ing Lévy process is defined, given W,

∑
j δej is a Poisson random measure with intensity

ϑWvα(dx), {Tj, j ≥ 1} is a sequence of i.i.d. random variables with common law

P(Tj = k) = ϑ−1
∫ ∞

0
e−λr

P(Zr = k) dr, k ≥ 1,

where ϑ = ∫ ∞
0 e−λr

P(Zr > 0) dr, and
∑

j δej and {Tj, j ≥ 1} are independent.

Lemma 2.4. Let N∞ =∑
j Tjδej . Then N∞ ∈M(

R0
)

and the Laplace transform of N∞ is
given by

E
(
e−N∞(g))=E

(
exp

{
−W

∫ ∞

0
e−λr

∫
R0

E
(
1 − e−Zrg(x)) vα(dx) dr

})
, g ∈ C+

c

(
R0

)
.

Proof. First note that, for any a> 0, ϑWvα([−∞,−a] ∪ [a,∞])<∞, P-a.s. Thus, given
W,

∑
j 1|ej|≥a is Poisson distributed with parameter ϑWvα([−∞,−a] ∪ [a,∞]), which implies

that
∑

j 1|ej|≥a <∞, a.s. Thus, by the definition of N∞,

P(N∞([−∞,−a] ∪ [a,∞])<∞) = P

(∑
j

1|ej|≥a <∞
)

= 1.

So N∞ ∈M(
R0

)
. Note that

φ(θ ) := E
(
e−θTj

)= ϑ−1
∑
k≥1

e−θk
∫ ∞

0
e−λr

P(Zr = k) dr

= ϑ−1
∫ ∞

0
e−λr

E
(
e−θZr , Zr > 0

)
dr

= 1 − ϑ−1
∫ ∞

0
e−λr

E
(
1 − e−θZr

)
dr.

Thus, for any g ∈ C+
c

(
R0

)
,

E
(
e−N∞(g))= E

(
e−∑

j Tjg(ej)
)= E

(∏
j

φ(g(ej))

)

=E

(
exp

{
−ϑW

∫
R0

(1 − φ(g(x))) vα(dx)

})
=E

(
exp

{
−W

∫ ∞

0
e−λr

∫
R0

E
(
1 − e−Zrg(x)) vα(dx) dr

})
.

The proof is now complete. �

To prove Theorem 1.1 we use the idea of ‘one large jump’, which has been used in [8, 9, 23]
for branching random walks. By ‘one large jump’ we mean that with large probability, for all
v ∈Lt, at most one of the random variables {|Xu,t| : u ∈ Iv} is bigger than htθ/t (θ > 0). Thus,
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by (1.1), to investigate the limit property of Nt defined by (1.9), we consider the limit of the
point process defined by Ñt := ∑

v∈Lt

∑
u∈Iv

δh−1
t Xu,t

.

Proposition 2.1. Under P, as t → ∞, Ñt
d→N∞.

The proof of this proposition is postponed to the next subsection. The following lemma
formalizes the well-known one large jump principle (see, e.g., Steps 3 and 4 in [23, Section 2])
at the level of point processes. Because of Lemma 2.5, it suffices to investigate the weak
convergence of Ñt, which is much easier compared to that of Nt.

Lemma 2.5. Assume g ∈ C+
c

(
R0

)
. For any ε > 0, limt→∞ P(|Nt(g) − Ñt(g)|> ε) = 0.

Proof. Since g ∈ C+
c

(
R0

)
, we have Supp(g) ⊂ {x : |x|> δ} for some δ > 0.

Step 1: For any θ > 0, let At(θ ) denote the event that, for all v ∈Lt, at most one of the
random variables {|Xu,t| : u ∈ Iv} is bigger than htθ/t. We claim that

P
(
At(θ )c)→ 0. (2.3)

Note that

P

(
At(θ )c |FT

t

)
≤

∑
v∈Lt

P

(∑
u∈Iv

1{|Xu,t|>htθ/t} ≥ 2 |FT

t

)
. (2.4)

By Lemma 2.2 and (2.2) with ε= 0.5, we have, for htθ/t> 2 + 2a0.5 and ht > a0.5,

P

(
|Xu,t|> htθ/t |FT

t

)
= P(|ξs|> htθ/t)|s=τu,t

≤ c0τu,th
−α
t tαθ−αL(htθ/t)

≤ 2c0θ
−αt1+αh−α

t L(ht)
[
(θ/t)1/2 + (θ/t)−1/2] := pt. (2.5)

Recall that the number of elements in Iv is nv + 1. Since they are conditioned on FT
t , the

{Xu,t, u ∈ Iv} are independent, and by (2.5) we get

P

(∑
u∈Iv

1{|Xu,t|>htθ/t} ≥ 2 |FT

t

)
≤

nv+1∑
m=2

(
nv + 1

m

)
pm

t

= p2
t

nv−1∑
m=0

(
nv + 1
m + 2

)
pm

t

≤ p2
t

nv−1∑
m=0

nv(nv + 1)

(
nv − 1

m

)
pm

t

= p2
t nv(nv + 1)(1 + pt)

nv−1.

Thus, by (2.4) and the many-to-one formula (Lemma 2.3),

P
(
At(θ )c)=E

(
P
(
At(θ )c |FT

t

))≤ eλtp2
t E

(
nt(nt + 1)(1 + pt)

nt−1)
= eλtp2

t

(
2β + (1 + pt)β

2)eβpt , (2.6)

where nt is a Poisson process with parameter β on some probability space (�, G, P). Since
eλth−α

t L(ht) → 1, (2.3) follows immediately from (2.5) and (2.6).
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Step 2: Let � > β + 1, to be chosen later. Let Bt(�) be the event that, for all v ∈Lt, nv
t ≤ �t.

Using the many-to-one formula,

P
(
Bt(�)c)≤E

( ∑
v∈Lt

1nv>�t

)
= eλtP(nt >�t)

≤ eλt inf
r>0

e−r�tE
(
ernt

)
= eλt inf

r>0
exp

{((
er − 1

)
β − r�

)
t
}

= eλt exp{−(�( log �− log β) − �+ β)t}.
Choose � large enough that �( log �− log β) − �+ β > λ; then limt→∞ P

(
Bt(�)c

)= 0.
Step 3: Since g ∈ C+

c

(
R0

)
, g is uniformly continuous, i.e. for any a> 0 there exists η > 0

such that |g(x1) − g(x2)| ≤ a whenever |x1 − x2|<η.
Now consider θ small enough that �θ < η ∧ (δ/2). Let v′ ∈ Iv be such that |Xv′,t| =

maxu∈Iv{|Xu,t|}. We note that, on the event At(θ ), |Xu,t| ≤ θht/t ≤ htδ/2 for any u ∈ Iv \ {v′}
and t> 1, and thus g(Xu,t/ht) = 0, which implies that

Ñt(g) =
∑
v∈Lt

∑
u∈Iv

g(Xu,t/ht) =
∑
v∈Lt

g
(
Xv′,t/ht

)
.

Thus it follows that, on the event At(θ ),

∣∣Nt(g) − Ñt(g)
∣∣= ∣∣∣∣∣ ∑

v∈Lt

[
g
(
ξ v

t /ht
)− g

(
Xv′,t/ht

)]∣∣∣∣∣. (2.7)

Since ξ v
t =∑

u∈Iv
Xu,t, on the event At(θ ) ∩ Bt(�) we have

h−1
t |ξ v

t − Xv′,t| = h−1
t

∣∣∣∣∣ ∑
u∈Iv\{v′}

Xu,t

∣∣∣∣∣≤ θ t−1nv ≤ �θ < η ∧ (δ/2).

Note that if |Xv′,t/ht| ≤ δ/2, then |ξ v
t |/ht < δ, which implies that g

(
ξ v

t /ht
)− g

(
Xv′,t/ht

)= 0.
Thus,∣∣g(ξ v

t /ht
)− g

(
Xv′,t/ht

)∣∣= ∣∣g(ξ v
t /ht

)− g
(
Xv′,t/ht

)∣∣1{∣∣Xv′,t
∣∣>htδ/2

} ≤ a1{∣∣Xv′,t
∣∣>htδ/2

}.

It follows from this and (2.7) that, on the event At(θ ) ∩ Bt(�),∣∣Nt(g) − Ñt(g)
∣∣≤ a

∑
v∈Lt

1{∣∣Xv′,t
∣∣>htδ/2

}
≤ a

∑
v∈Lt

∑
u∈Iv

1{∣∣Xu,t

∣∣>htδ/2
} = aÑt{[−∞,−δ/2) ∪ (δ/2,∞]}.

Let f ∈ C+
c

(
R0

)
satisfy f (x) = 1 for |x| ≥ δ/2. Then |Nt(g) − Ñt(g)| ≤ aÑt(f ).

Combining Steps 1–3, we get

lim sup
t→∞

P
(∣∣Nt(g) − Ñt(g)

∣∣> ε)≤ lim sup
t→∞

P
(
At(θ )c)+ P

(
Bt(�)c)+ P

(Ñt(f )> a−1ε
)

= lim sup
t→∞

P
(Ñt(f )> a−1ε

)= P
(N∞(f )> a−1ε

)
,
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where the final equality follows from Proposition 2.1 (the proof of Proposition 2.1 does not
use the result in this lemma). Then, letting a → 0, we get the desired result. �

Proof of Theorem 1.1. Using Lemma 2.4, Proposition 2.1, and Lemma 2.5, the results of
Theorem 1.1 follow immediately. �

2.3. Proof of Proposition 2.1

To prove the weak convergence of Ñt, we first cut the tree at time t − s. We divide the
particles born before time t into two parts: the particles born before time t − s and after t − s.
Define

Ñs,t :=
∑
v∈Lt

∑
u∈Iv,bu>t−s

δh−1
t Xu,t

. (2.8)

Lemma 2.6. For any ε > 0 and g ∈ C+
c

(
R0

)
, lims→∞ lim supt→∞ P

(∣∣Ñt(g) − Ñs,t(g)
∣∣> ε)

= 0.

Proof. Since g ∈ C+
c

(
R0

)
, we have Supp(g) ⊂ {x : |x|> δ} for some δ > 0.

Let Js,t be the event that, for all u with bu ≤ t − s, |Xu,t| ≤ htδ/2. On Js,t, Ñt(g) − Ñs,t(g) =
0, and thus we only need to show that

lim
s→∞ lim sup

t→∞
P
(
Jc

s,t

)= 0. (2.9)

Recall that Gs(x) := P(|ξs|> x). By Lemma 2.2, for t large enough that htδ/2 ≥ 2 + 2a0.5,

P
(
Jc

s,t

)= 1 − P(Js,t) = 1 −E

( ∏
u:bu≤t−s

(
1 − Gτu,t (htδ/2)

))

≤E

( ∑
u:bu≤t−s

Gτu,t (htδ/2)

)

≤ c0h−α
t (δ/2)−αL(htδ/2)E

( ∑
u:bu≤t−s

τu,t

)
. (2.10)

In the first inequality we used 1 −∏n
i=1 (1 − xi) ≤∑n

i=1 xi, xi ∈ (0, 1). By the definition of τu,t,

∑
u:bu≤t−s

τu,t =
∑

u:bu≤t−s

∫ t

0
1(bu,σu)(r) dr

=
∫ t−s

0

∑
u

1(bu,σu)(r) dr +
∫ t

t−s

∑
u

1bu<t−s,σu>r dr. (2.11)

For the first part, noting that r ∈ (bu, σu) is equivalent to u ∈Lr, we get

E

∫ t−s

0

∑
u

1(
bu,σu

)(r) dr =E

∫ t−s

0
Zr dr =

∫ t−s

0
eλr dr = λ−1(eλ(t−s) − 1

)
. (2.12)

For the second part, using the many-to-one formula we have

E

(∑
u

1bu<t−s,σu>r

)
=E

( ∑
u∈Lr

1bu<t−s

)
= eλre−β(r+s−t).
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Thus,

E

∫ t

t−s

∑
u

1bu<t−s,σu>r dr =
∫ t

t−s
eλre−β(r−t+s) dr = eλt e−βs − e−λs

λ− β
. (2.13)

Combining (2.11), (2.12), and (2.13),

E

∑
u:bu≤t−s

τu,t ≤ eλt
(
λ−1e−λs + e−βs − e−λs

λ− β

)
.

Therefore, by (2.10),

P
(
Jc

s,t

)≤ c0(δ/2)−αeλth−α
t L(htδ/2)

(
λ−1e−λs + e−βs − e−λs

λ− β

)
. (2.14)

It follows from (1.7) that limt→∞ eλth−α
t L(htδ/2) = 1. First letting t → ∞ and then s → ∞ in

(2.14), we get (2.9) immediately. The proof is now complete. �

Now we consider the weak convergence of Ñs,t. Recall the definition of Ñs,t in (2.8). Note
that the atoms of Ñs,t are

{
h−1

t Xu,t, t − s< bu ≤ t
}
. Thus Ñs,t =∑

u:t−s<bu<t Zu
t δh−1

t Xu,t
, where

Zu
t is the number of offspring of u alive at time t. Using the tree structure, we can split all

the particles born after t − s according to the branches generated by the particles alive at t − s.
More precisely,

Ñs,t =
∑

w∈Lt−s

∑
u∈Dw

t

Zu
t δh−1

t Xu,t
=:

∑
w∈Lt−s

Mw
s,t, (2.15)

where, for w ∈Lt−s, Dw
t := {u : w ∈ Iu, t − s< bu ≤ t} is the set of all the offspring of w before

time t. By the branching property, Mw
s,t are i.i.d. with a common law which is the same as that

of Ms,t := ∑
u∈Ds

Zu
s δh−1

t Xu,s
, where Ds = {u : 0< bu ≤ s}.

Lemma 2.7. For any j = 1, . . . , n, let γj(t) be a (0, 1]-valued function on (0,∞). Suppose
at is a positive function with limt→∞ at = ∞ such that limt→∞ at(1 − γj(t)) = cj <∞. Then
limt→∞ at

(
1 −∏n

j=1 γj(t)
)=∑n

j=1 cj.

Proof. Note that 1 −∏n
j=1 γj(t) =∑n

j=1
∏j−1

k=1 γk(t)(1 − γj(t)). Since γj(t) → 1 we get that,
as t → ∞,

at

(
1 −

n∏
j=1

γj(t)

)
=

n∑
j=1

j−1∏
k=1

γk(t)at(1 − γj(t)) →
n∑

j=1

cj. �

Proof of Proposition 2.1. By Lemma 2.6, we only need to consider the convergence of
Ñs,t. Assume that Supp(g) ⊂ {x : |x|> δ} for some δ > 0. Using the Markov property and the
decomposition of Ñs,t in (2.15), we have

E

(
e−Ñs,t(g)

)
=E

([
E
(
e−Ms,t(g))]Zt−s

)
. (2.16)

We claim that

lim
t→∞

(
1 −E

(
e−Ms,t(g)))eλt =

∫
R0

E

[ ∑
u∈Ds

τu,s1 − e−Zu
s g(x)

]
vα(dx). (2.17)
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By the definition of Ms,t, we have(
1 −E

(
e−Ms,t(g) |FT

s

))
eλt = eλt

(
1 −

∏
u∈Ds

E

(
e−Zu

s g
(

h−1
t Xu,s

)
|FT

s

))
.

Note that, given FT
s , Xu,s

d= ξτu,s . Thus, by Lemma 2.1 (with s replaced by τu,s and g replaced
by 1 − e−Zu

s g(x)),

eλt
(

1 −E

[
e−Zu

s g
(

h−1
t Xu,s

)
|FT

s

])
→ τu,s

∫
R0

1 − e−Zu
s g(x) vα(dx) as t → ∞.

Hence, it follows from Lemma 2.7 that

lim
t→∞ eλt(1 −E

[
e−Ms,t(g) |FT

s

])=
∫
R0

∑
u∈Ds

τu,s
[
1 − e−Zu

s g(x)] vα(dx). (2.18)

Moreover, for htδ ≥ 2 + 2a0.5,

eλt(1 −E
[
e−Ms,t(g) |FT

s

])≤ eλt
E
(
Ms,t(g) |FT

s

)
≤ ‖g‖∞eλt

∑
u∈Ds

Zu
s Gτu,s (htδ)

≤ c0‖g‖∞δ−αeλth−α
t L(htδ)

∑
u∈Ds

τu,sZ
u
s

≤ C
∑
u∈Ds

τu,sZ
u
s , (2.19)

where C is a constant not depending on t. The third inequality follows from Lemma 2.2, and
the final inequality from the fact that eλth−α

t L(htδ) → 1. Since τu,s = ∫ s
0 1(bu,σu)(r) dr,

E

( ∑
u∈Ds

τu,sZ
u
s

)
=

∫ s

0
E

( ∑
u∈Ds

1(bu,σu)(r)Zu
s

)
dr

=
∫ s

0
E

( ∑
u∈Lr−{o}

Zu
s

)
dr ≤

∫ s

0
E(Zs) dr = seλs <∞.

Thus, by (2.18), (2.19), and the dominated convergence theorem, the claim (2.17) holds.
By (2.17) and the fact that limt→∞ e−λtZt−s = e−λsW, we have

lim
t→∞

[
E
(
e−Ms,t(g))]Zt−s = exp

{
−e−λsW

∫
R0

E

[ ∑
u∈Ds

τu,s
(
1 − e−Zu

s g(x))] vα(dx)

}
.

Thus, by (2.16) and the bounded convergence theorem,

lim
t→∞ E

(
e−Ñs,t(g))=E

(
exp

{
−e−λsW

∫
R0

E

[ ∑
u∈Ds

τu,s
(
1 − e−Zu

s g(x))] vα(dx)

})
.

By the definition of τu,s, we have∑
u∈Ds

τu,s
(
1 − e−Zu

s g(x))=
∑
u∈Ds

∫ s

0
1(bu,σu)(r) dr

(
1 − e−Zu

s g(x))=
∫ s

0

∑
u∈Lr\{o}

(
1 − e−Zu

s g(x)) dr.
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Using the Markov property and the branching property, the Zu
s , u ∈Lr, are i.i.d. with the same

distribution as Zs−r, and independent of Lr. Thus,

E

∑
u∈Ds

τu,s
(
1 − e−Zu

s g(x))=
∫ s

0
E
(
Zr − 1{o∈Lr}

)
E
(
1 − e−Zs−rg(x)) dr

=
∫ s

0

(
eλr − e−βr)

E
(
1 − e−Zs−rg(x)) dr,

which implies that

e−λs
E

∑
u∈Ds

τu,s
(
1 − e−Zu

s g(x))→
∫ ∞

0
e−λr

E
(
1 − e−Zrg(x)) dr

and

e−λs
E

∑
u∈Ds

τu,s
(
1 − e−Zu

s g(x))≤
∫ ∞

0
e−λr

E
(
1 − e−Zrg(x)) dr ≤ λ−11{|x|>δ}.

The final inequality follows from the fact that Supp(g) ⊂ {x : |x|> δ}. Since vα(1{|x|>δ})<∞,
using the dominated convergence theorem we get

lim
s→∞ e−λs

∫
R0

E

[ ∑
u∈Ds

τu,s
(
1 − e−Zu

s g(x))] vα(dx) =
∫ ∞

0
e−λr

∫
R0

E
(
1 − e−Zrg(x)) vα(dx) dr,

which implies that

lim
s→∞ lim

t→∞ E
(
e−Ñs,t(g))=E

(
exp

{
−W

∫ ∞

0
e−λr

∫
R0

E
(
1 − e−Zrg(x)) vα(dx) dr

})
.

By Lemmas 2.6 and 2.4, limt→∞ E

(
e−Ñt(g)

)
= E

(
e−N∞(g)

)
. The proof is now

complete. �

3. Joint convergence of the order statistics

Proof of Corollary 1.1. Since q1 > 0, we have, for all k ≥ 1, M(k) > 0, P∗-a.s.
Note that, for any x ∈R0, N∞({x}) = 0, a.s. Since {Mt,k ≤ htx} = {Nt(x,∞) ≤ k − 1} for

any x> 0, by Remark 1.1 with Bk = (xk,∞), we have, for any n ≥ 1 and x1, x2, x3, . . . , xn > 0,

P(Mt,1 ≤ htx1,Mt,2 ≤ htx2,Mt,3 ≤ htx3, . . . ,Mt,n ≤ htxn)

= P(Nt(xk,∞) ≤ k − 1, k = 1, . . . , n)

→ P(N∞(xk,∞) ≤ k − 1, k = 1, . . . , n)

= P
(
M(1) ≤ x1,M(2) ≤ x2,M(3) ≤ x3, . . . ,M(n) ≤ xn

)
as t → ∞.

Thus, as t → ∞,

P
∗(Mt,1 ≤ htx1,Mt,2 ≤ htx2, . . . ,Mt,n ≤ htxn

)
= P(S)−1[

P
(
Mt,k ≤ htxk, k = 1, . . . , n

)− P
(
Mt,k ≤ htxk, k = 1, . . . , n, Sc)]

→ P(S)−1[P(M(k) ≤ xk, k = 1, . . . , n
)− P

(Sc)]
= P∗(M(k) ≤ xk, k = 1, . . . , n

)
, (3.1)

where in the final equality we used the fact that on the event of extinction, M(k) = −∞, k ≥ 1.
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Now we consider the case x1, . . . , xn ∈R with xi ≤ 0 for some i and xj > 0, j �= i. By (3.1),
for any ε > 0,

lim sup
t→∞

P
∗(Mt,1 ≤ htx1,Mt,2 ≤ htx2, . . . ,Mt,n ≤ htxn

)
≤ lim

t→∞ P
∗(Mt,j ≤ htxj, j �= i,Mt,i ≤ htε

)= P∗(M(j) ≤ xj, j �= i,M(i) ≤ ε).
The right-hand side of the display above tends to 0 as ε→ 0 since M(i) > 0 a.s. Thus,

lim
t→∞ P

∗(Mt,k ≤ htxk, k = 1, . . . , n) = 0 = P∗(M(k) ≤ xk, k = 1, . . . , n).

Similarly, this can be shown to hold for any x1, . . . , xn ∈R.
The proof is now complete. �

4. Examples and an extension

This section provides more examples satisfying (H2) and an extension.

Lemma 4.1. Assume that L∗ is a positive function on (0,∞) slowly varying at ∞ such
that lε(x) := supy∈(0,x] yεL∗(y)<∞ for any ε > 0 and x> 0. Then, for any ε > 0, there exist
cε,Cε > 0 such that, for any y> 0 and a> cε,

L∗(ay)

L∗(a)
≤ Cε

(
yε + y−ε).

Proof. By [11, Theorem 1.5.6], for any ε > 0 there exists cε > 0 such that, for any a ≥ cε
and y ≥ a−1cε,

L∗(ay)

L∗(a)
≤ (1 − ε)−1 max

{
yε, y−ε}. (4.1)

Thus, for any a> cε,
L∗(cε)

L∗(a)
≤ (1 − ε)−1(a/cε)

ε.

Hence, for a> cε and 0< y ≤ a−1cε,

L∗(ay)

L∗(a)
≤ lε(cε)(ay)−ε

L∗(a)
≤ lε(cε)

L∗(cε)(1 − ε)cεε
y−ε. (4.2)

Combining (4.1) and (4.2), there exists Cε > 0 such that, for any y> 0 and a> cε,

L∗(ay)

L∗(a)
≤ Cε

(
yε + y−ε). �

Example 4.1. Let n(dy) = c1x−(1+α)L∗(x)1(0,∞)(x)dx + c2|x|−(1+α)L∗(|x|)1(−∞,0)(x)dx, where
α ∈ (0, 2), c1, c2 ≥ 0, c1 + c2 > 0, and L∗ is a positive function on (0,∞) slowly varying at ∞
such that supy∈(0,x] yεL∗(y)<∞ for any ε > 0 and x> 0.

(i) For α ∈ (0, 1), assume that the Lévy exponent of ξ has the form

ψ(θ ) = iaθ − b2θ2 +
∫ (

eiθy − 1
)

n(dy),
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where a ∈R, b ≥ 0. Using Lemma 4.1 with ε ∈ (0, (1 − α) ∧ α) we have, by the domi-
nated convergence theorem, as θ → 0+,∫ ∞

0

(
eiθy − 1

)
n(dy) = θα

∫ ∞

0

(
eiy − 1

)
y−1−αL∗(θ−1y

)
dy

∼ θαL∗(θ−1
) ∫ ∞

0

(
eiy − 1

)
y−1−α dy = −α�(1 − α)e−iπα/2θαL∗(θ−1

)
,∫ 0

−∞

(
eiθy − 1

)
n(dy) = θα

∫ ∞

0

(
e−iy − 1

)
y−1−αL∗(θ−1y

)
dy

∼ θαL∗(θ−1
) ∫ ∞

0

(
e−iy − 1

)
y−1−α dy = −α�(1 − α)eiπα/2θαL∗(θ−1

)
.

Thus as θ → 0+, ψ(θ ) ∼ −α�(1 − α)
(
e−iπα/2c1 + eiπα/2c2

)
θαL∗(θ−1

)
.

(ii) For α ∈ (1, 2), assume that the Lévy exponent of ξ has the form

ψ(θ ) = −b2θ2 +
∫ (

eiθy − 1 − iθy
)

n(dy),

where b ≥ 0. Using Lemma 4.1 with ε ∈ (0, (2 − α) ∧ (α− 1)), we have, by the domi-
nated convergence theorem, as θ → 0+,∫ ∞

0

(
eiθy − 1 − iθy

)
n(dy) = θα

∫ ∞

0

(
eiy − 1 − iy

)
y−1−αL∗(θ−1y

)
dy

∼ θαL∗(θ−1) ∫ ∞

0
(eiy − 1 + iy)y−1−α dy

= −α�(1 − α)e−iπα/2θαL∗(θ−1),∫ 0

−∞
(
eiθy − 1 − iθy

)
n(dy) = θα

∫ ∞

0
(e−iy − 1 + iy)y−1−αL∗(θ−1y

)
dy

∼ θαL∗(θ−1) ∫ ∞

0

(
e−iy − 1 + iy

)
y−1−α dy

= −α�(1 − α)eiπα/2θαL∗(θ−1).
Thus, as θ → 0+, ψ(θ ) ∼ −α�(1 − α)

(
e−iπα/2c1 + eiπα/2c2

)
θαL∗(θ−1

)
.

(iii) For α = 1, assume that c1 = c2 and the Lévy exponent of ξ has the form

ψ(θ ) = iaθ − b2θ2 +
∫ (

eiθy − 1 − iθy1|y|≤1
)

n(dy),

where a ∈R, b ≥ 0. Since c1 = c2, we have∫ ∞

−∞
(
eiθy − 1 − iθy1|y|≤1

)
n(dy) = −2c1θ

∫ ∞

0
(1 − cos y)y−2L∗(θ−1y

)
dy.

Using Lemma 4.1 with ε ∈ (0, 1), we have, by the dominated convergence theorem,

lim
θ→0+

L∗(θ−1)−1
∫ ∞

0
(1 − cos y)y−2L∗(θ−1y

)
dy =

∫ ∞

0
(1 − cos y)y−2 dy = π/2,

which implies that as θ → 0+, ψ(θ ) ∼ −(c1π − ia)θL∗(θ−1
)
.
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Remark 4.1. (An extension.) Checking the proof of Theorem 1.1, we see that Theorem 1.1
holds for more general branching Lévy processes with spatial motions satisfying the following
assumptions:

(A1) There exist a non-increasing function ht with ht ↑ ∞ and a measure π (dx) ∈M(
R0

)
such that

lim
t→∞ eλtE

(
g
(
h−1

t ξs
))= s

∫
R0

g(x) π (dx), g ∈ C+
c

(
R0

)
.

(A2) eλtp2
t → 0, where pt := sups≤t P(|ξs|> htθ/t).

(A3) For any θ > 0, supt>1 sups≤t s−1eλtP(|ξs|> htθ )<∞.

First, (H2) implies (A1)–(A3). Next, we explain that Theorem 1.1 holds under assumptions
(A1)–(A3). Checking the proof of Lemma 2.5, we see that Lemma 2.5 holds under conditions
(A1)–(A3). In fact, we may replace Lemma 2.2 by (A2) to get (2.3) (see (2.5) and (2.6)). For
the proof of Lemma 2.6, using (A3) we get that P

(
Jc

s,t

)≤ Ce−λt
E
∑

u:bu≤t−s τu,t, which says
that (2.10) holds. Thus, (2.9) holds using the same arguments as in Lemma 2.6. Replacing
Lemma 2.1 by (A1), we see that Proposition 2.1 holds with vα replaced by π (dx). So, under
(A1)–(A3), Theorem 1.1 holds with vα replaced by π (dx).

An easy example which satisfies (A1)–(A3) but not (H2) is the non-symmetric 1-
stable process. Assume ξ is a non-symmetric 1-stable process with Lévy measure n(dx) =
c1x−21(0,∞)(x) dx + c2|x|−21(−∞,0)(x) dx, where c1, c2 ≥ 0, c1 + c2 > 0, and c1 �= c2. The
Lévy exponent of ξ is given, for θ > 0, by

ψ(θ ) = −π
2

(c1 + c2)θ − i(c1 − c2)θ log θ + ia(c1 − c2)θ ∼ −i(c1 − c2)θ log θ, θ → 0+,

where a is constant. Thus, c∗ = i(c1 − c2). So ψ(θ ) does not satisfy (H2) since Re(c∗) = 0.

By [7, Section 1.5, Exercise 1], (1/t)P(ξt ∈ ·) v→ n(dx) as t → 0. Since e−λtξs
d= ξse−λt +

(c1 − c2)sλte−λt for s, t> 0, we have eλtP(e−λtξs ∈ ·) v→ s n(dx) as t → ∞. So (A1) holds with
ht = eλt. We claim that, for any x> 0 and s> 0,

P(|ξs|> x) ≤ c
(
sx−1 + s2x−2 + s2x−2( log x)2), (4.3)

where c is a constant. Thus it is easy to prove that (A2) and (A3) hold.
In fact, for any x> 0,

P(|ξs|> x) ≤ x

2

∫ 2x−1

−2x−1

(
1 − esψ(θ)) dθ = x

∫ 2x−1

0

(
1 − Re

(
esψ(θ))) dθ .

Note that

1 − Re
(
esψ(θ))= 1 − esRe(ψ(θ)) cos [sIm(ψ(θ ))]

= 1 − esRe(ψ(θ)) + esRe(ψ(θ))(1 − cos [sIm(ψ(θ ))])

≤ −sRe(ψ(θ )) + s2[Im(ψ(θ ))]2

= π

2
(c1 + c2)sθ + (c1 − c2)2s2(a − log θ )2θ2.
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Thus, we have

P(|ξs|> x) ≤ π (c1 + c2)sx−1 + (c1 − c2)2s2x−2
∫ 2

0
(a − log θ + log x)2θ2 dθ

≤ π (c1 + c2)sx−1 + 2(c1 − c2)2s2x−2
∫ 2

0
[(a − log θ )2 + ( log x)2]θ2 dθ

≤ c
(
sx−1 + s2x−2 + s2x−2( log x)2),

which proves the claim (4.3).

5. Frontal position of Fisher–KPP equation

The Fisher-KPP equation related to our branching Lévy process is given by{
∂tu −Au = −ϕ(1 − u) in (0,∞) ×R,

u(0, x) = u0(x), x ∈R,
(5.1)

where A is the generator of the Lévy process {(ξt)t≥0, P}, ϕ(s) = β
(∑

k skpk − s
)
, u0(x) ∈

[0, 1], x ∈R; see, for instance, [17].
Recall that, for any g ∈ C+

b (R), ug(t, x) =E
(

exp
{−∑

v∈Lt
g
(
ξ v

t + x
)})

satisfies (1.5), and
thus is a mild solution of the following Cauchy problem:{

∂tu −Au = ϕ(u) in (0,∞) ×R,

u(0, x) = e−g(x), x ∈R.

Hence 1 − ug(t, x) is a mild solution to (5.1) with u0(x) = 1 − e−g(x).
We are interested in the large-time behavior of 1 − ug(t, x). For θ ∈ (0, 1), the level set

{x ∈R : 1 − ug(t, x) = θ} is also called the front of 1 − ug. The evolution of the front of 1 − ug

as time goes to ∞ is of considerable interest. Using analytic methods, it was shown in [5] that,
if ξ is a standard Brownian motion, the frontal position of branching Brownian motion is

√
2λt,

with λ given by (1.2). More precisely, under the condition that g is compactly supported, if c>√
2λ, then 1 − ug(t, x) → 0 uniformly in {|x| ≥ ct} as t → ∞; if c<

√
2λ, then 1 − ug(t, x) → 1

uniformly in {|x| ≤ ct} as t → ∞. But if the density of ξ is comparable to that of a symmetric
α-stable process, [17, Theorem 1.5] proved that the frontal position is exponential in time;
see Remark 5.1 for the precise meaning. In this paper we provide a probabilistic proof of [17,
Theorem 1.5] using Corollary 1.2, and also partially generalize it.

Proposition 5.1. Assume that q1 > 0.

(i) Assume that at satisfies at/ht → ∞ as t → ∞, and that g is a non-negative function
satisfying

eλt sup
x≤−at/2

g(x) → 0 as t → ∞. (5.2)

Then limt→∞ supx≤−at
(1 − ug(t, x)) = 0.

(ii) Assume that ct satisfies ct/ht → 0 as t → ∞, and that g is a non-negative function
satisfying a0 := lim infx→∞ g(x)> 0. Then

lim
t→∞ sup

x≥−ct

|ug(t, x) − P(Sc)| = 0.
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Proof. (i) Let g∗(x) = supy≤−x g(y). Note that, for x ≤ −at,

1 − ug(t, x) =E

(
1 − exp

{
−

∑
v∈Lt

g
(
ξ v

t + x
)})

≤ P(Rt ≥ at/2) +E

(
1 − exp

{
−

∑
v∈Lt

g
(
ξ v

t + x
)}

;Rt < at/2

)
≤ P(Rt ≥ at/2) +E

(
1 − e−g∗(at/2)Zt

)
≤ P(Rt ≥ at/2) + eλtg∗(at/2), (5.3)

where in the second inequality we used the fact that, on the event {Rt < at/2}, ξ v
t + x<

at/2 − at = −at/2 and g
(
ξ v

t + x
)≤ g∗(at/2). By the assumption (5.2), eλtg∗(at/2) → 0. By

Corollary 1.2, P∗(Rt ≥ at/2) → 0. Thus

P(Rt ≥ at/2) ≤ P
∗(Rt ≥ at/2)P(S) + P(‖Xt‖> 0, Sc) → 0

as t → ∞. Thus, by (5.3), limt→∞ supx≤−at
(1 − ug(t, x)) = 0.

(ii) Note that

|ug(t, x) − P(Sc)| ≤E

(
exp

{
−

∑
v∈Lt

g
(
ξ v

t + x
)}

; S
)

+E

(
1 − exp

{
−

∑
v∈Lt

g
(
ξ v

t + x
)}

; Sc

)
.

Noticing that on the event Zt = 0, 1 − exp
{−∑

v∈Lt
g
(
ξ v

t + x
)}= 0, we get, for any x ∈R,

E
(
1 − exp

{−∑
v∈Lt

g
(
ξ v

t + x
)}

; Sc
)≤ P(Zt > 0; Sc) → 0 as t → ∞. Let g∗(x) = infy≥x g(y).

Since ct/ht → 0 for any ε > 0, there exists tε > 0 such that ct ≤ εht for t> tε. For any t> tε
and x ≥ −ct,

E

(
exp

{
−

∑
v∈Lt

g
(
ξ v

t + x
)}

; S
)

≤E

(
exp

{
−g∗(ct)

∑
v∈Lt

1ξ v
t >2ct

}
; S

)

≤E

(
exp

{
−g∗(ct)

∑
v∈Lt

1ξ v
t >2εht

}
; S

)
=E

(
e−g∗(ct)Nt(2ε,∞); S).

Thus
lim sup

t→∞
sup

x≥−ct

|ug(t, x) − P(Sc)| ≤ E(e−a0N∞(2ε,∞), S). (5.4)

Since on the event S , ϑWvα(0,∞) = ∞, we have N∞(0,∞) = ∞. Now letting ε→ 0 in (5.4)
we get the desired result. �

Remark 5.1. Proposition 5.1 is a slight generalization of [17, Theorem 1.5]. Assume that
p0 = 0, which ensures that P(Sc) = 0. If L = 1, then ht = eλt/α , and we have the following
results:

(i) Let g be a non-negative measurable function satisfying

g(x) ≤ C|x|−α, x< 0. (5.5)

Then, for any γ > λ/α, eλtg∗(−eγ t/2) ≤ C2αeλte−αγ t → 0. Thus, by Proposition 5.1,
limt→∞ supx≤−eγ t (1 − ug(t, x)) = 0.
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(ii) Assume that g is a non-negative function satisfying a0 := lim infx→∞ g(x)> 0. For any
γ < λ/α, by Proposition 5.1 we have limt→∞ supx≥−eγ t ug(t, x) = 0.

Note that in the notation of [17], σ ∗∗ = λ/α, and our condition (5.5) is equivalent to
1 − e−g(x) ≤ C|x|−α , x< 0, for some constant C. If g is non-decreasing, it is clear that
lim infx→∞ g(x)> 0. Thus, when the Lévy process ξ satisfies (H2) with L = 1, we can get
that the conclusion of [17, Theorem 1.5] holds from Proposition 5.1. Note that the independent
sum of Brownian motion and a symmetric α-stable process satisfies (H2) with L = 1, but its
transition density is not comparable with that of the symmetric α-stable process, see [22, 39].
Note also that the independent sum of a symmetric α-stable process and a symmetric β-stable
process, 0<α < β < 2, also satisfies (H2) with L = 1, but its transition density is not com-
parable with that of the symmetric α-stable process, see [21]. Note that in this paper we do
not need to assume that g is non-decreasing. Thus Proposition 5.1 partially generalizes [17,
Theorem 1.5].
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