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Abstract
In this paper, we consider a large class of super-Brownian motions in R with spatially
dependent branching mechanisms. We establish the almost sure growth rate of the
mass located outside a time-dependent interval (−δt, δt) for δ > 0. The growth rate
is given in terms of the principal eigenvalue λ1 of the Schrödinger-type operator
associated with the branching mechanism. From this result, we see the existence of
phase transition for the growth order at δ = √

λ1/2. We further show that the super-
Brownian motion shifted by

√
λ1/2 t converges in distribution to a random measure

with random density mixed by a martingale limit.
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1 Introduction andMain Results

1.1 Super-BrownianMotions

LetM(R) (resp.Mc(R)) denote the set of finite (resp. finite and compactly supported)
measures on R. When μ is a measure on R and f is a measurable function, define
〈 f , μ〉 = ∫

R
f (x)μ(dx) whenever the right-hand side makes sense. Sometimes we

also write μ( f ) for 〈 f , μ〉. Let ((Bt )t≥0,�x , x ∈ R
)
be a standard Brownian motion

on R with �x (B0 = x) = 1. The main process of interest in this paper is an M(R)-
valued Markov process X = {Xt : t ≥ 0} with evolution depending on two quantities
Pt and ψ . Here, Pt is the semigroup of

(
(Bt )t≥0,�x , x ∈ R

)
and ψ is the so-called

branching mechanism, which takes the form

ψ(x, λ) = −β(x)λ+ α(x)λ2 +
∫

(0,+∞)

(
e−λu − 1+ λu

)
π(x, du) x ∈ R, λ ≥ 0,

where β ∈ Cc(R), 0 �≡ α ∈ C+c (R), and π is a kernel from R to (0,+∞) such that

∫

(0,+∞)

u2π(x, du) ∈ C+c (R).

The distribution of X is denoted by Pμ if it is started at μ ∈ M(R) at t = 0. X is
called a (Bt , ψ)-superprocess or super-Brownian motion with branching mechanism
ψ if for all μ ∈M(R), nonnegative bounded measurable function f and t ≥ 0,

Pμ

[
e−〈 f ,Xt 〉

]
= e−〈u f (t,·),μ〉, (1.1)

where u f (t, x) = − logPδx

(
e−〈 f ,Xt 〉) is the unique nonnegative locally bounded

solution to the following integral equation:

u f (t, x) = Pt f (x)−
∫ t

0
Ps

(
ψ(·, u f (t − s, ·))) (x)ds ∀x ∈ R, t ≥ 0.

The existence of such a process X is established in [12]. A closely related M(R)-
valued process is branching Brownian motion with the branching rate given by either
a compactly supported measure or a function decaying sufficiently fast at infinity (see,
e.g., [6, 7, 26, 27, 33, 34] and references therein).

The process X may be loosely described as a scaling limit of branching particle
systems as follows. Let μ ∈ M(R). Suppose that, at time zero, a random number of
particles are set in R, according to a Poisson random measure with intensity Nμ. The
particles move independently according to the law of a standard Brownian motion in
R from its starting point. A given particle lives an exponential amount of time with
mean lifetime bN and upon its death gives birth to a random number of offspring. The
offspring wander and propagate in the same fashion. Offspring are born at the death
site of their parents, and the distribution (pNk (x); k ≥ 0) of the number of offspring is

123



Journal of Theoretical Probability (2024) 37:2457–2507 2459

allowed to depend on the death site x , and on the parameter N . The mass distribution
of particles alive at time t may be viewed as a random measure X (N )

t (each particle
being given weight 1/N ). Under suitable hypotheses, this sequence of measure-valued
process converges in distribution, as N → ∞, to a limit measure-valued Markov
process X with X0 = μ. The typical conditions are bN → 0 and

lim
N→∞

[ ∞∑

k=0
p(N )
k (x)(1− λ/N )k − (1− λ/N )

]

(N/bN ) = ψ(x, λ), λ ≥ 0.

Super-Brownian motion is a special type of superprocesses, which arise as stochas-
tic models describing the evolution of a random mass distributed in space. For details
on superprocesses as scaling limits of branching particle systems, we refer to Dynkin
[12] and [24, Chapter 4].

Another link between superprocesses and branching Markov processes is provided
by the so-called skeleton decomposition, which is developed by [10, 15, 22]. The
skeleton decomposition provides a pathwise description of a superprocesses in terms
of immigrations along a branching Markov process called the skeleton. We shall work
with this skeleton construction in this paper, see Proposition 4.1.

1.2 Notation and Some Facts

Throughout this paper, we use “:=” to denote a definition. For functions f and
g on R, ‖ f ‖∞ := supx∈R | f (x)| and ( f , g) := ∫ +∞

−∞ f (x)g(x)dx . For positive
functions f (x) and g(x) on (0,+∞), we write f (x) ∼ g(x) (x → +∞) if
limx→+∞ f (x)/g(x) = 1. For a, b ∈ R, a ∧ b := min{a, b}, a ∨ b := max{a, b}.
The letters c and C (with subscript) denote finite positive constants which may vary
from place to place.

Let Mloc(R) denote the space of locally finite Borel measures on R with vague
topology,which is generated by the integrationmapsπ f : μ �→ μ( f ) for all compactly
supported bounded continuous functions f on R. A random variable taking values in
Mloc(R) is called a random measure on R. We say random measures ξn converges
in distribution to ξ if E[F(ξn)] → E[F(ξ)] for every bounded continuous function
F on Mloc(R). [21, Theorem 4.11] proves that ξn converges in distribution to ξ if
and only if the random variables 〈 f , ξn〉 converge in distribution to 〈 f , ξ 〉 for every
f ∈ C+c (R).
For a measurable function f , we set

e f (t) := exp

{∫ t

0
f (ξs)ds

}

, t ≥ 0,

whenever it is well defined. We define the Feynman–Kac semigroup Pβ
t by

Pβ
t f (x) := �x

[
eβ(t) f (ξt )

]
for f ∈ B+b (R).
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Define

γ (x) := α(x)+ 1

2

∫

(0,+∞)

u2π(x, du), x ∈ R. (1.2)

It is known (cf. [12]) that for everyμ ∈M(R) and f ∈ B+b (R), the first two moments
of 〈 f , Xt 〉 exist and can be expressed as

Pμ [〈 f , Xt 〉] = 〈Pβ
t f , μ〉, (1.3)

and

Varμ (〈 f , Xt 〉) =
∫ t

0
〈Pβ

s

(

2γ
(
Pβ
t−s f

)2)

, μ〉ds.

The spectrum of the operator L = 1
2�+ β, denoted by σ(L), consists of (−∞, 0]

and at most a finite number of nonnegative eigenvalues. Throughout this paper, we
make the following assumption:

λ1 := sup(σ (L)) > 0. (A1)

Then, λ1 is simple and the corresponding eigenfunction (ground state) h can be taken
to be strictly positive, bounded and continuous. We choose h that is normalized with∫ +∞
−∞ h2(x)dx = 1. We remark here that (A1) is automatically satisfied when β ≥ 0
is a nontrivial function. One has (see, for example, [27, Lemma 3.1])

h(x) =
∫ +∞

−∞
Gλ1(x, y)β(y)h(y)dy. (1.4)

where Gλ1(x, y) denotes the λ1-potential density of Brownian motion. Using the fact
that

Gλ1(x, y) ∼
1√
2λ1

e−
√
2λ1|x−y| as |x − y| → +∞, (1.5)

one can easily show that

h(x) ∼ C∓e−
√
2λ1|x | as x →±∞, (1.6)

where

C∓ := 1√
2λ1

∫ +∞

−∞
β(y)h(y)e±

√
2λ1ydy. (1.7)

Since e−λ1t Pβ
t h = h for all t ≥ 0, one can show by the Markov property that

Wh
t (X) := e−λ1t 〈h, Xt 〉, ∀t ≥ 0

123



Journal of Theoretical Probability (2024) 37:2457–2507 2461

is a nonnegative Pμ-martingale for every μ ∈ M(R). Let Wh∞(X) be the martingale
limit. It then follows by [28, Theorem 3.2] that for every nontrivial μ ∈Mc(R),

lim
t→+∞Wh

t (X) = Wh∞(X) Pμ-a.s. and in L2(Pμ).

Hence, Wh∞(X) is nondegenerate in the sense that Pμ

(
Wh∞(X) > 0

)
> 0.

1.3 Main Results

For any R ≥ 0, define

X R
t := 〈1(−R,R)c , Xt 〉.

Theorem 1.1 For any δ >
√

λ1/2 and μ ∈Mc(R),

lim
t→+∞X δt

t = 0 Pμ-a.s.

For any 0 ≤ δ <
√

λ1/2 and μ ∈Mc(R),

lim
t→+∞

logX δt
t

t
= λ1 −

√
2λ1δ Pμ-a.s. on {Wh∞(X) > 0}.

According to Theorem 1.1, for δ <
√

λ1/2, the mass outside (−δt, δt) at time t
grows exponentiallywith a positive rateλ1−√2λ1δ,while for δ >

√
λ1/2, it converges

to 0. In the latter case, Proposition 3.8 shows that the upper bound of the mass outside
(−δt, δt) decreases exponentially with a negative rate. The version of Theorem 1.1
has been proved recently for branching Brownian motions with branching rate given
by a compactly supported measure in [7, 33, 34]. The idea of our proof is similar to
that of [34]: The upper bound and the lower bound of X δt

t are considered separately,
and the proofs for convergence follow two main steps. The first step is to obtain the
limit along lattice times. This is done via a Borel–Cantelli argument and thus requires
the asymptotics of the expectation of X δt

t (Lemma 3.1). The second step is to extend
the limits to all times. For the aforementioned class of branching Brownian motions, a
key fact used in the proofs is that the particles alive at time t located in (−δt, δt)c are
the children of the particles alive at time �t�. However, this kind of property fails for
the super-Brownian motions. We overcome this difficulty by appealing to a stochastic
integral representation of super-Brownian motions (eq. (3.6)). This representation
enables us to decompose the super-Brownian motion in terms of martingale measures
and hence providing useful structural properties of super-Brownian motions. Let us
mention that the result, which corresponds to Theorem 1.1 for the aforementioned
class of branching Brownian motions, implies that the supremum of the support of
the process, denoted by Rt , grows linearly with rate

√
λ1/2 as t → +∞ a.s. on the
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survival event. Recently, Nishimori and Shiozawa [27] proved that

Rt =
√

λ1

2
t + Yt ,

where the conditional distribution of Yt on the survival event is convergent. [27] is a
generalization of [23] and [8]. However, analogous result does not hold for the super-
Brownian motions. As we show in Remark 4.10, for the (Bt , ψ)-superprocess, the
conditional distributions of Rt −√

λ1/2 t are not even tight.
The growth order of X δt

t undergoes the phase transition at δ = √
λ1/2. We further

obtain the limiting distributions of the super-Brownian motion at the critical phase in
Theorem 1.2. For ν ∈Mloc(R) and x ∈ R, we use ν+x to denote themeasure induced
by the shift operator y �→ x + y, that is,

∫
R
f (y)(ν + x)(dy) = ∫

R
f (y + x)ν(dy)

for all f ∈ B+(R).

Theorem 1.2 For every μ ∈ M(R), ((Xt ±√
λ1/2 t)t≥0,Pμ) converges in distribu-

tion to Wh∞(X)η±(dx), where η±(dx) are (nonrandom) measures on R defined by

η±(dx) = C±e±
√
2λ1xdx with C± being defined by (1.7).

For branchingMarkovprocesses, results of the type ofTheorem1.2 have been estab-
lished in recent years for various models. See, e.g., [2, 3, 5] for spatially homogeneous
branching Brownianmotions, [1, 19, 25] for branching randomwalks, [30] for branch-
ing Lévy processes, [4, 18] for multitype branching Brownian motions, and [6, 26] for
spatially inhomogeneous branching Brownian motions. In contrast, there is much less
work for superprocesses. Very recently, Ren et al. [29] showed that super-Brownian
motion with a spatially independent branching mechanism translated by a centered
term converges in distribution. Later, Ren et al. [31] represented the limiting process as
the limit of a sequence of Poisson random measures in which each atom is decorated
by an independent copy of an auxiliary measure. As far as the authors know, there are
no references on the vague convergence for superprocesses with spatially dependent
branching mechanisms. To prove Theorem 1.2, we appeal to the skeleton techniques
for superprocesses. Intuitively, under suitable assumptions, for a given superprocess
(Xt )t≥0 there exists a related branching Markov process (Zt )t≥0, called the skeleton,
such that at each fixed time t ≥ 0, the law of Zt may be coupled to the law of Xt

in such a way that given Xt , Zt has the law of a Poisson point process with random
intensity determined by Xt . We exploit this fact and carry the long time behavior
from the skeleton to the superprocess. Our idea is partly inspired by [31] where the
skeleton techniques have been used successfully to establish the limiting distribution
for super-Brownian motions with spatially independent branching mechanisms.

Theorem 1.2 yields the following result on the convergence of the mass at the
critical phase.

Theorem 1.3 For δ = √
λ1/2 and μ ∈ Mc(R), (X δt

t ,Pμ) converges in distribution
to 1√

2λ1
(C+ + C−)Wh∞(X).

We remark that results of this paper are restricted to the one-dimensional super-
Brownian motion. For higher-dimensional case (d ≥ 2), one may consider the growth
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rate of the mass located outside balls with time-dependent radius. For d ≥ 2, Theorem
1.1 remains true by replacing X δt

t with Xt (Bc
δt ) where Bδt denotes the ball centered

at the origin with radius δt . The argument in this paper can be applied with minor
modifications to prove this statement. The growth rate at the critical phase δ = √

λ1/2
might depend on the spatial dimension d. For branching Brownian motions with com-
pactly supported branching rates, [34, Theorem 3.9] shows that the growth order of the
population around the forefront depends on the spatial dimension. However, for our
model the exact growth rate of population at the critical phase in higher dimensions
remains open.

The rest of this paper is organized as follows. In Sect. 2, we derive the long time
asymptotic properties of Feynman–Kac functionals related to the first and second
moments of superprocesses. Section3 is devoted to the proof of Theorem 1.1. The
proofs of Theorems 1.2 and 1.3 are given in Sect. 4.

2 Estimates on the Feynman–Kac Functionals

In this section, we show two lemmas related to the Feynman–Kac functionals of
Brownian motions, which will be used in the proofs of the main results.

Let a(t) be a function on [0,+∞) with a(t) = o(t) as t →+∞. For δ > 0, define
R(t) := δt + a(t). Let A be a Borel set of R with inf A > −∞. Let b : [0,+∞) →
[0,+∞) be a function with b(t) = o(t) as t → +∞. For r ∈ R and � ⊆ {±1},
define C�(r , A) := {x ∈ R : θx ∈ r + A for some θ ∈ �}.
Lemma 2.1 Suppose δ ∈ (0,

√
2λ1).

(i) For any a ∈
(
0, 1− δ√

2λ1

)
, there exist constants C1, T1 > 0 such that for t ≥ T1,

s ∈ [0, at] and |x | ≤ b(t),

∣
∣
∣�x

[
eβ(t − s), Bt−s ∈ C�(R(t), A)

]− eλ1(t−s)h(x)
∫

C�(R(t),A)

h(y)dy
∣
∣
∣

≤ e−C1teλ1(t−s)−√2λ1R(t). (2.1)

(ii) There exist constants C2 > 0 and T2 > 1 such that for t ≥ T2, s ∈ [0, t − 1] and
|x | ≤ b(t),

�x

[∫ t−s

0
γ (Br )eβ(r)�Br

[
eβ(t − s − r), Bt−s−r ∈ C�(R(t), A)

]2
dr

]

≤ C2e
2λ1(t−s)−2√2λ1R(t), (2.2)

where γ is defined by (1.2).

We remark here that for the special case where � = {±1}, A = (0,+∞) (corre-
spondingly C�(R(t), A) = {y ∈ R : |y| > R(t)}) and b(t) = b for some constant
b > 0, the above two inequalities follow, respectively, from Lemma 3.8 and Lemma
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3.9 of [27]. Here, we show the results for more general case where A can be any
left-bounded Borel set and b(t) = o(t). Our proofs are based on [27, Section 3.3].

Proof of Lemma 2.1: (i) Let pβ(t, x, y) and p(t, x, y) be the transition densities of Pβ
t

and Pt , respectively. Let qt (x, y) := pβ(t, x, y)− p(t, x, y)−eλ1t h(x)h(y).We have

�x
[
eβ(t − s), Bt−s ∈ C�(R(t), A)

]− eλ1(t−s)h(x)
∫

C�(R(t),A)

h(y)dy

= �x (Bt−s ∈ C�(R(t), A))+
∫

C�(R(t),A)

qt−s(x, y)dy.

We note that for R > 0 large enough such that R + inf A > 0, C�(R, A) ⊆ {y ∈ R :
|y| ≥ R + inf A}. Thus for t sufficiently large such that R(t)− b(t)+ inf A > 0 and
|x | ≤ b(t),

�x (Bt−s ∈ C�(R(t), A)) = �0 (Bt−s + x ∈ C�(R(t), A))

≤ �0 (|Bt−s | ≥ R(t)− b(t)− inf A) . (2.3)

On the other hand, it follows similarly as [27, equation (3.19)] that for any t ≥ 1 and
x ∈ R,

∫

C�(R,A)

qt (x, y)dy

=
∫ 1

0

( ∫

R

pβ
s (x, z)�z

(
Bt−s ∈ C�(R, A)

)
β(z)dz

)
ds

+
∫ t

1

[ ∫

R

(
pβ
s (x, z)− eλ1sh(x)h(z)

)
�z

(
Bt−s ∈ C�(R, A)

)
β(z)dz

]
ds

−eλ1t h(x)
∫ +∞

t−1
e−λ1s

( ∫

R

h(z)β(z)�z (Bs ∈ C�(R, A)) dz
)
ds.

Thus, we have

∣
∣
∣
∣

∫

C�(R,A)

qt (x, y)dy

∣
∣
∣
∣ ≤ (I )+ (I I )+ (I I I ),

where

(I ) =
∫ 1

0

( ∫

R

pβ
s (x, z)�z

(|Bt−s | ≥ R + inf A
)
β(z)dz

)
ds,

(I I ) =
∫ t

1

[ ∫

R

(
pβ
s (x, z)− eλ1sh(x)h(z)

)
�z

(|Bt−s | ≥ R + inf A
)
β(z)dz

]
ds,

(I I I ) = eλ1t h(x)
∫ +∞

t−1
e−λ1s

( ∫

R

h(z)β(z)�z (|Bs | ≥ R + inf A) dz
)
ds.
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The upper bounds for (I ), (I I ), (I I I ) are established through Lemmas 3.5−3.7 of
[27]. These yield that if suppβ ⊂ [−k, k] for some k ∈ (0,+∞), then there exist
constants c,C > 0 such that for all x ∈ R, t ≥ 1 and R + inf A > 2k,

∣
∣
∣
∣

∫

C�(R,A)

qt (x, y)dy

∣
∣
∣
∣ ≤ C

[
h(x)�0 (|Bt | > R + inf A − k)

+Ic(t, R + inf A)+ h(x)J (t, R + inf A)
]
. (2.4)

Here, Ic and J are defined by (3.15) and (3.16) of [27], respectively. Using (2.3) and
(2.4), one can apply similar argument of [27, Lemma 3.8] to prove (2.1). We omit the
details here.

(ii) Noting that for t large enough such that R(t)+ inf A ≥ 0,C�(R(t), A) ⊆ {y ∈
R : |y| ≥ R(t)+ inf A}, we have

�x

[∫ t−s

0
γ (Br )eβ(r)�Br

[
eβ(t − s − r), Bt−s−r ∈ C�(R(t), A)

]2dr

]

≤ �x

[∫ t−s

0
γ (Br )eβ(r)�Br

[
eβ(t − s − r), |Bt−s−r | ≥ R(t)+ inf A

]2dr

]

.

Using the argument of [27, Lemma 3.9] withminor modifications, one can prove (1.2).
We omit the details. ��

Lemma 2.2 Suppose the assumptions of Lemma 2.1(i) hold. Then, there exist T > 0
and θ±(t) such that for t ≥ T , s ∈ [0, at] and |x | ≤ b(t),

θ−(t) ≤ �x
[
eβ(t − s), Bt−s ∈ C�(R(t), A)

]

C�

(∫
A e

−√2λ1ydy
)
h(x)eλ1(t−s)−√2λ1R(t)

≤ θ+(t), (2.5)

where θ±(t) → 1 as t → +∞ and C� = C−, C+ and (C+ + C−) accordingly as
� = {1}, {−1} and {±1}.

Proof Without loss of generality, we assume in addition that b(t) →+∞ as t →+∞.
Noting (1.4), we have

∫

C�(R(t),A)

h(y)dy =
∫

C�(R(t),A)

(∫ +∞

−∞
Gλ1(y, z)β(z)h(z)dz

)

dy.

Using (1.5) and the fact that β is compactly supported, one can easily show by ele-
mentary calculation that

∫

C�(R(t),A)

h(y)dy ∼ C�η(A)e−
√
2λ1R(t) as t →+∞,
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where η(A) = ∫
A e

−√2λ1ydy. It then follows from Lemma 2.1(i) that there exist
constants c1, T1 > 0 such that for t ≥ T1, s ∈ [0, at] and |x | ≤ b(t),

∣
∣
∣
∣
∣

�x
[
eβ(t − s), Bt−s ∈ C�(R(t)+ A)

]

C�η(A)h(x)eλ1(t−s)−√2λ1R(t)
−

∫
C�(R(t),A)

h(y)dy

C�η(A)e−
√
2λ1R(t)

∣
∣
∣
∣
∣
≤ e−c1t

C�η(A)h(x)
.

By (1.6), there is a constant c2 > 0 such that h(x) ≥ c2e−
√
2λ1|x | for all x ∈ R. So

one has inf |x |≤b(t) h(x) ≥ c2e−
√
2λ1b(t). Thus,

e−c1t

C�η(A)h(x)
≤ c3e

−c1t+√2λ1b(t) → 0 as t →+∞.

Hence, we obtain (2.5) by setting θ±(t) =
∫
C�(R(t),A) h(y)dy

C�η(A)e−
√

2λ1R(t)
± c3e−c1t+

√
2λ1b(t). ��

3 Proof of Theorem 1.1

3.1 Estimates on the First Moment

Put

π R
t (x) := �x

[
eβ(t); |Bt | ≥ R

]
, t ≥ 0, x ∈ R.

In this section, we derive some estimates for π R
t (x), which will be used in the proof

of Theorem 1.1.
For any δ ≥ 0, we define

�δ :=
{
−λ1 +√

2λ1δ if 0 ≤ δ <
√
2λ1,

δ2

2 if δ ≥ √
2λ1.

Obviously, �δ < 0, �δ = 0 and �δ > 0 accordingly as 0 ≤ δ <
√

λ1/2, δ = √
λ1/2

and δ >
√

λ1/2.

Lemma 3.1 Suppose δ > 0. For any compact set K ⊂ R,

lim
t→+∞ sup

y∈K
logπδt

t (y)

t
= lim

t→+∞ inf
y∈K

logπδt
t (x)

t
= −�δ. (3.1)

Proof For δ ≥ √
2λ1, (3.1) is proved by [34, Lemmas 4.4−4.5]. For 0 < δ <

√
2λ1,

noting that πδt
t (x) = �x

[
eβ(t), Bt ∈ C{±1}(δt, (0,+∞))

]
, we get by Lemma 2.2

that for every compact set K , when t is sufficiently large,

θ−(t)c1e
λ1t−√2λ1δt ≤ πδt

t (y) ≤ θ+(t)c1e
λ1t−√2λ1δt ∀y ∈ K ,
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where c1 = (C+ + C−)
∫ +∞
0 e−

√
2λ1ydy and θ±(t) → 1 as t → +∞. Thus, (3.1)

follows immediately. ��
Remark 3.2 We remark here that for any compact set K ⊂ R and x ∈ R,

lim
t→+∞ sup

y∈K
logπ0

t (y)

t
= lim

t→+∞
logπ0

t (x)

t
= λ1. (3.2)

The second equality follows immediately by [34, Theorem A.2]. We shall show the
first equality. Let ε > 0. It follows by [34, Lemma 4.3] that there is p∗ > 1 such that
for all p ∈ (1, p∗),

c1(p) := sup
y∈R

�x

[

sup
t≥0

e−p(λ1+ε)t epβ(t)

]

< +∞.

By this and Jensen’s inequality, we have

π0
t (y) ≤ �y

[
epβ(t)

]1/p = e(λ1+ε)t�y

[
e−p(λ1+ε)t epβ(t)

]
≤ c1(p)

1/pe(λ1+ε)t

for every t ≥ 0 and y ∈ R. Thus,

lim sup
t→+∞

sup
y∈K

logπ0
t (y)

t
≤ λ1 + ε.

This implies the first identity of (3.2).

Lemma 3.3 (i) For every σ > 0, there exists a constant C3 = C3(σ ) > 0, such that
for any 0 < θ < δ < +∞,

πδt
s (x) ≤ C3 · (θ t)−1e− θ2 t2

2σ , ∀s ∈ (0, σ ], |x | ≤ (δ − θ)t,

when t is sufficiently large.
(ii) For every δ ≥ 0 and σ > 0, there exists a constant C4 = C4(δ, σ ) > 0 such that

for any s ∈ (0, σ ], t ≥ s and |x | ≥ δ(t − s),

πδt
s (x) ≥ C4.

(iii) If δ >
√

λ1/2, then x �→ ∫ +∞
0 πδs

s (x)ds is a locally bounded function on R.

Proof (i) Note that for every s ≥ 0,

eβ(s) = 1+
∫ s

0
eβ(r)β(Br )dr .
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We have

πδt
s (x) = �x

[
eβ(s); |Bs | ≥ δt

]

= �x (|Bs | ≥ δt)+�x

[∫ s

0
eβ(r)β(Br )1{|Bs |≥δt}dr

]

=: I(x, s, t)+ II(x, s, t).

For R ≥ 0, let

G(R) := �0 (|B1| ≥ R) =
√

2

π

∫ +∞

R
e−

y2

2 dy.

Then for s ∈ (0, σ ] and |x | ≤ (δ − θ)t ,

I(x, s, t) = �0 (|Bs + x | ≥ δt) ≤ �0 (|Bs | ≥ δt − |x |)
≤ �0

(

|B1| ≥ θ t√
σ

)

= G

(
θ t√
σ

)

. (3.3)

Suppose suppβ ⊂ [−k, k] for some k ∈ (0,+∞). By Markov property, we have for
x ∈ R and s ∈ (0, σ ],

II(x, s, t) = �x

[∫ s

0
eβ(r)β(Br )�Br (|Bs−r | ≥ δt) dr

]

= �x

[∫ s

0
eβ(r)β(Br )1{|Br |≤k}�Br (|Bs−r | ≥ δt) dr

]

≤ �x

[∫ s

0
eβ(r)β+(Br )�0 (|Bs−r | ≥ δt − k) dr

]

≤
∫ σ

0
e‖β+‖∞r‖β+‖∞G

(
δt − k√
σ − r

)

dr

≤ c1G

(
δt − k√

σ

)

(3.4)

for some c1 = c1(σ ) > 0. Note that for t ≥ k/(δ−θ),G((δt−k)/
√

σ) ≤ G(θ t/
√

σ).
It follows from (3.3) and (3.4) that for t ≥ k/(δ − θ), |x | ≤ (δ − θ)t and s ∈ (0, σ ],

πδt
s (x) ≤ (1+ c1)G

(
θ t√
σ

)

.

Thus, (i) follows by the fact that G(R) ∼ √
2/πR−1e−R2/2 as R →+∞.

(ii) We have

πδt
s (x) = �x

[
eβ(s); |Bs | ≥ δt

] ≥ e−‖β−‖∞s�x (|Bs | ≥ δt) .
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Note that for x ≥ δ(t − s),

�x (|Bs | ≥ δt) ≥ �x (Bs ≥ δt) = �0 (Bs ≥ δt − x)

≥ �0 (Bs ≥ δs) = �0
(
B1 ≥ δ

√
s
)
.

Similarly, one can show that �x (|Bs | ≥ δt) ≥ �0
(
B1 ≤ −δ

√
s
)
for x ≤ −δ(t − s).

Hence, we get (ii) by setting C4 = e−‖β−‖∞σ �0
(
B1 ≥ δ

√
σ
)
.

(iii) By Lemma 3.1, for δ >
√

λ1/2 and any compact set K ⊂ R,

lim
t→+∞ sup

x∈K
logπδt

t (x)

t
= −�δ < 0.

So there is some T > 0 such that for all s ≥ T , supx∈K πδs
s (x) ≤ exp{−�δs/2}. We

also note that πδs
s (x) = �x

[
eβ(s); |Bs | ≥ δs

] ≤ e‖β+‖∞s for all x ∈ K and s ≥ 0.
Hence,

sup
x∈K

∫ +∞

0
πδs
s (x)ds ≤

∫ T

0
e‖β+‖∞sds +

∫ +∞

T
e−�δs/2ds < +∞.

��

3.2 The Upper Bound ofX ıt
t

For t ≥ 0, let Ft denote the σ -field generated by {Xs : 0 ≤ s ≤ t}. It follows
immediately from Lemma 3.3(ii) that for any n ∈ N and t ∈ [nσ, (n + 1)σ ),

π
δ(n+1)σ
(n+1)σ−t (x) ≥ C4, ∀x ∈ R such that |x | ≥ δt .

Thus for t ∈ [nσ, (n + 1)σ ) and μ ∈M(R),

X δt
t = 〈1(−δt,δt)c , Xt 〉 ≤ C−14 〈πδ(n+1)σ

(n+1)σ−t , Xt 〉 = C−14 Pμ

[
X δ(n+1)σ

(n+1)σ |Ft

]
Pμ-a.s.

(3.5)

Here, the last equality follows by the Markov property of Xt and (1.3). Hence to get

an upper bound for X δt
t , we only need to compute Pμ

[
X δ(n+1)σ

(n+1)σ |Ft

]
.

Lemma 3.4 For any δ ≥ 0, σ > 0 and μ ∈Mc(R),

lim sup
n→+∞

logX δnσ
nσ

nσ
≤ −�δ Pμ-a.s.
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Proof Let ε > 0. By the Markov inequality and (1.3), we have

Pμ

(
logX δnσ

nσ

nσ
≥ −�δ + ε

)

= Pμ

(
X δnσ
nσ ≥ e(−�δ+ε)nσ

)

≤ e(�δ−ε)nσ 〈πδnσ
nσ , μ〉

= e
nσ

(
log〈πδnσ

nσ ,μ〉
nσ

+�δ−ε

)

.

Since μ is compactly supported, (3.1) and (3.2) imply that

lim sup
n→+∞

log〈πδnσ
nσ , μ〉
nσ

≤ −�δ.

Thus, when n is large enough, we have

Pμ

(
logX δnσ

nσ

nσ
≥ −�δ + ε

)

≤ e−εnσ/2,

which in turn implies that
∑+∞

n=0 Pμ

(
logX δnσ

nσ

nσ
≥ −�δ + ε

)
< +∞. Hence, this

lemma follows immediately by Borel–Cantelli lemma. ��

Fitzsimmons [17] (see also [24,Chapter 7]) studied themartingale problemof super-
processes and established a stochastic integral representation for the finite variance
branching case. We recall from [17] and [24, Corollary 7.15] that for any ϕ ∈ C2

c (R),
the process

Mt (ϕ) := 〈ϕ, Xt 〉 − 〈ϕ, Xt 〉 −
∫ t

0
〈(1
2
�+ β)ϕ, Xs〉ds

is a square-integrable Ft -martingale. These martingales then induce a (worthy)
martingale measure M(ds, dx) (see [24, Chapter 7] for the precise definition) sat-
isfying that Mt (ϕ) = ∫ t

0

∫
R

ϕ(x)M(ds, dx). By standard techniques, the martingale
Mt (g) :=

∫ t
0

∫
R
g(s, x)M(ds, dx) can be defined formally for a large class of mea-

surable functions g(s, x) on [0,+∞) × R. Then, [17, Corollary 2.18] (see also [24,
Theorem 7.26]) proved that for any f ∈ Bb(R), t ≥ 0 and μ ∈M(R),

〈 f , Xt 〉 = 〈Pβ
t f , X0〉 +

∫ t

0

∫ +∞

−∞
Pβ
t−s f (x)M(ds, dx) Pμ-a.s. (3.6)

where for every T > 0, [0, T ] � t �→ ∫ t
0

∫ +∞
−∞ Pβ

t−s f (x)M(ds, dx) is a square-

integrable Ft -martingale with quadratic variation t �→ ∫ t
0 〈2γ (Pβ

t−s f )2, Xs〉ds.
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Lemma 3.5 Suppose δ ≥ 0, σ > 0 andμ ∈Mc(R). Then for any ε > 0, the following
holds Pμ-a.s.

lim
n→+∞ e

(
1
2�δ−ε

)
(n+1)σ

sup
t∈[nσ,(n+1)σ ]

∣
∣
∣Pμ

[
X δ(n+1)σ

(n+1)σ |Ft

]
− Pμ

[
X δ(n+1)σ

(n+1)σ |Fnσ

]∣
∣
∣ = 0.

Proof By (3.6), we have

X δ(n+1)σ
(n+1)σ = 〈πδ(n+1)σ

(n+1)σ , X0〉 +
∫ (n+1)σ

0

∫ +∞

−∞
π

δ(n+1)σ
(n+1)σ−s(x)M(ds, dx),

where [0, (n + 1)σ ] � t �→ ∫ t
0

∫ +∞
−∞ π

δ(n+1)σ
(n+1)σ−s(x)M(ds, dx) is a square-integrable

Pμ-martingale with quadratic variation t �→ ∫ t
0 〈2γ (π

δ(n+1)σ
(n+1)σ−s)2, Xs〉ds. Thus,

Pμ

[
X δ(n+1)σ

(n+1)σ |Ft

]
− Pμ

[
X δ(n+1)σ

(n+1)σ |Fnσ

]

= Pμ

[∫ (n+1)σ

0

∫ +∞

−∞
π

δ(n+1)σ
(n+1)σ−s(x)M(ds, dx)

∣
∣
∣Ft

]

− Pμ

[∫ (n+1)σ

0

∫ +∞

−∞
π

δ(n+1)σ
(n+1)σ−s(x)M(ds, dx)

∣
∣
∣Fnσ

]

=
∫ t

nσ

∫ +∞

−∞
π

δ(n+1)σ
(n+1)σ−s(x)M(ds, dx).

By this and the L2-maximum inequality for martingales, we have

Pμ

[

sup
t∈[nσ,(n+1)σ ]

∣
∣
∣Pμ

[
X δ(n+1)σ

(n+1)σ |Ft

]
− Pμ

[
X δ(n+1)σ

(n+1)σ |Fnσ

]∣∣
∣
2
]

≤ 4Pμ

⎡

⎣

(∫ (n+1)σ

nσ

∫ +∞

−∞
π

δ(n+1)σ
(n+1)σ−s(x)M(ds, dx)

)2
⎤

⎦

= 4Pμ

[∫ (n+1)σ

nσ

〈2γ
(
π

δ(n+1)σ
(n+1)σ−s

)2
, Xs〉ds

]

≤ 8‖γ ‖∞e‖β+‖∞σ
Pμ

[∫ (n+1)σ

nσ

〈πδ(n+1)σ
(n+1)σ−s, Xs〉ds

]

= 8‖γ ‖∞e‖β+‖∞σ

∫ (n+1)σ

nσ

Pμ

[
〈πδ(n+1)σ

(n+1)σ−s, Xs〉
]
ds

= 8‖γ ‖∞e‖β+‖∞σ

∫ (n+1)σ

nσ

Pμ

[〈1(−δ(n+1)σ,δ(n+1)σ )c , X(n+1)σ 〉
]
ds

= 8‖γ ‖∞e‖β+‖∞σ σ 〈πδ(n+1)σ
(n+1)σ , μ〉. (3.7)
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The second inequality is because

π
δ(n+1)σ
(n+1)σ−s(x) ≤ �x

[
eβ((n + 1)σ − s)

] ≤ e‖β+‖∞((n+1)σ−s).

The third equality follows from (1.3) and the Markov property of Xt . Let K be the
compact support of μ. Lemma 3.1 implies that for any ε > 0, there is T > 0 such
that

sup
x∈K

πδt
t (x) ≤ e(−�δ+ε)t ∀t ≥ T .

Thus, one has

〈πδ(n+1)σ
(n+1)σ , μ〉 ≤ e(−�δ+ε)(n+1)σ 〈1, μ〉

for n sufficiently large. Putting this back to (3.7), one gets

Pμ

⎡

⎣

(

e( 12�δ−ε)(n+1)σ sup
t∈[nσ,(n+1)σ ]

∣
∣
∣Pμ

[
X δ(n+1)σ

(n+1)σ |Ft

]
− Pμ

[
X δ(n+1)σ

(n+1)σ |Fnσ

]∣∣
∣

)2
⎤

⎦

≤ c1e
(�δ−2ε)(n+1)σ 〈πδ(n+1)σ

(n+1)σ , μ〉 ≤ c1e
−ε(n+1)σ 〈1, μ〉,

for some constant c1 = c1(σ ) > 0. This implies that the sum

+∞∑

n=0
Pμ

⎡

⎣

(

e(
1
2�δ−ε)(n+1)σ sup

t∈[nσ,(n+1)σ ]

∣
∣
∣Pμ

[
X δ(n+1)σ

(n+1)σ |Ft

]
− Pμ

[
X δ(n+1)σ

(n+1)σ |Fnσ

]∣∣
∣

)2
⎤

⎦

is finite. The lemma follows by Borel–Cantelli lemma. ��
Lemma 3.6 Suppose σ > 0 and μ ∈ Mc(R). There is a constant C5 = C5(σ ) > 0
such that for any 0 < θ < δ < +∞ and ε > 0 the following inequality holds Pμ-a.s.
for n sufficiently large.

Pμ

[
X δ(n+1)σ

(n+1)σ |Fnσ

]

≤ C5

[

(θnσ)−1e−
θ2
2 n2σ+(λ1+√2λ1(δ−θ))nσWh

nσ (X)+ e(−�δ−θ+ε)nσ

]

.

Proof Fix arbitrary σ > 0 and μ ∈ Mc(R). By Markov property, we have for any
0 < θ < δ < +∞,

Pμ

[
X δ(n+1)σ

(n+1)σ |Fnσ

]
= 〈πδ(n+1)σ

σ , Xnσ 〉
= 〈πδ(n+1)σ

σ 1(−(δ−θ)nσ,(δ−θ)nσ), Xnσ 〉
+ 〈πδ(n+1)σ

σ 1(−(δ−θ)nσ,(δ−θ)nσ)c , Xnσ 〉
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=: I(n, δ, θ)+ II(n, δ, θ).

It follows from Lemma 3.3(i) that when n is sufficiently large,

πδ(n+1)σ
σ (x) ≤ C3(θ(n + 1)σ )−1e−

θ2
2 (n+1)2σ , ∀x ∈ R such that |x | < (δ − θ)nσ,

where C3 = C3(σ ) > 0. Thus, we have

I(n, δ, θ) ≤ C3(θ(n + 1)σ )−1e−
θ2
2 n2σ 〈1(−(δ−θ)nσ,(δ−θ)nσ), Xnσ 〉

≤ C3(θ(n + 1)σ )−1e−
θ2
2 n2σ eλ1nσ

〈
e−λ1nσ h

inf |x |<(δ−θ)nσ h(x)
, Xnσ

〉

= C3(θ(n + 1)σ )−1e−
θ2
2 n2σ+λ1nσ

(

inf|x |<(δ−θ)nσ
h(x)

)−1
Wh

nσ (X). (3.8)

The continuity ofh togetherwith (1.6) implies that inf |x |<(δ−θ)nσ h(x) ≥ c1e−
√
2λ1(δ−θ)nσ

for n sufficiently large. Thus, we get by (3.8) that Pμ-a.s.

I(n, δ, θ) ≤ c2
(
θnσ

)−1e−
θ2
2 n2σ+(λ1+√2λ1(δ−θ))nσWh

nσ (X) (3.9)

for n sufficiently large, where c2 = c2(σ ) > 0. On the other hand, by Lemma 3.4 we
have lim supn→+∞ logX (δ−θ)nσ

nσ /nσ ≤ −�δ−θ Pμ-a.s. Thus for any ε > 0,

Pμ

(
X (δ−θ)nσ
nσ ≤ e(−�δ−θ+ε)nσ for n sufficiently large

)
= 1.

Note that by definition II(n, δ, θ) ≤ ‖πδ(n+1)σ
σ ‖∞X (δ−θ)nσ

nσ ≤ e‖β+‖∞σX (δ−θ)nσ
nσ for

every n ∈ N. We get that

Pμ

(
II(n, δ, θ) ≤ c3e

(−�δ−θ+ε)nσ for n sufficiently large
)
= 1 (3.10)

for c3 = e‖β+‖∞σ . This lemma follows immediately by combining (3.9) and (3.10).��
Lemma 3.7 For any δ ≥ 0, σ > 0 and μ ∈Mc(R),

lim sup
n→+∞

logPμ

[
X δ(n+1)σ

(n+1)σ |Fnσ

]

nσ
≤ −�δ Pμ-a.s.

Proof First we consider δ > 0. It follows by Lemma 3.6 that for any 0 < θ < δ and
ε > 0, Pμ-a.s.

e�δnσ
Pμ

[
X δ(n+1)σ

(n+1)σ |Fnσ

]
≤ C5(σ )

[
e(�δ−�δ−θ+ε)nσ
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+ (
θnσ

)−1e−
θ2
2 n2σ+(�δ+λ1+√2λ1(δ−θ))nσWh

nσ (X)
]
.

(3.11)

for n sufficiently large. Since δ �→ �δ is nondecreasing and continuous on (0,+∞)

and that Pμ

(
Wh∞(X) < +∞) = 1, one can choose θ so small that �δ −�δ−θ < ε.

We also note that for fixed δ and θ , the first term on the right-hand side of (3.11)
converges to 0 Pμ-a.s. as n →+∞. Thus, we get by (3.11) that

Pμ

(
e�δnσ

Pμ

[
X δ(n+1)σ

(n+1)σ |Fnσ

]
≤ 2e2εnσ for n sufficiently large

)
= 1.

Hence, we prove this lemma for δ > 0. Now, we suppose δ = 0. By Markov property,
we have

Pμ

[
X 0

(n+1)σ |Fnσ

]
= 〈π0

σ , Xnσ 〉 ≤ e‖β+‖∞σX 0
nσ .

It follows by Lemma 3.4 that

lim sup
n→+∞

logPμ

[
X 0

(n+1)σ |Fnσ

]

nσ
≤ lim sup

n→+∞
logX 0

nσ

nσ
≤ −�0 Pμ-a.s.

Hence, we complete the proof. ��
Proposition 3.8 Suppose μ ∈Mc(R). For any δ >

√
λ1/2,

lim sup
t→+∞

logX δt
t

t
≤ −1

2
�δ Pμ-a.s., (3.12)

and for any 0 ≤ δ ≤ √
λ1/2,

lim sup
t→+∞

logX δt
t

t
≤ −�δ Pμ-a.s. (3.13)

Proof Let σ > 0. By (3.5), we have for any n ∈ N and t ∈ [nσ, (n + 1)σ ),

X δt
t ≤ C−14 Pμ

[
X δ(n+1)σ

(n+1)σ |Ft

]
Pμ-a.s. (3.14)

One can decompose Pμ

[
X δ(n+1)σ

(n+1)σ |Ft

]
as I(n, σ, t) + II(n, σ ), where I(n, σ, t) :=

Pμ

[
X δ(n+1)σ

(n+1)σ |Ft

]
−Pμ

[
X δ(n+1)σ

(n+1)σ |Fnσ

]
and II(n, σ ) := Pμ

[
X δ(n+1)σ

(n+1)σ |Fnσ

]
. It fol-

lows by Lemma 3.7 that for any ε > 0,

Pμ

(
II(n, σ ) ≤ e(−�δ+ε)nσ for n sufficiently large

)
= 1. (3.15)
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On the other hand, by Lemma 3.5 we have

Pμ

(

sup
t∈[nσ,(n+1)σ )

I(n, σ, t) ≤ εe(− 1
2�δ+ε)(n+1)σ for n sufficiently large

)

= 1.

(3.16)

Combining (3.14)–(3.16), we get that

sup
t∈[nσ,(n+1)σ )

X δt
t ≤ C−14

(
e(−�δ+ε)nσ + εe(− 1

2�δ+ε)(n+1)σ)

for n sufficiently large Pμ-a.s. It follows immediately that

lim sup
t→+∞

logX δt
t

t
≤ (−�δ) ∨

(

−1

2
�δ

)

Pμ-a.s. (3.17)

If 0 ≤ δ ≤ √
λ1/2, then−�δ ≥ −�δ/2 ≥ 0, and (3.13) follows directly from (3.17).

Otherwise if δ >
√

λ1/2, then −�δ < − 1
2�δ < 0, and hence (3.12) follows. ��

3.3 The Lower Bound ofX ıt
t

Let pβ(t, x, y) be the transition density of Pβ
t . It is easy to see that

e−‖β−‖∞t p(t, x, y) ≤ pβ(t, x, y) ≤ e‖β+‖∞t p(t, x, y) ∀t ≥ 0, x, y ∈ R.

(3.18)

Here, p(t, x, y) is the transition density of a Brownian motion on R. Let Ph
t be the

semigroup obtained from Pβ
t through Doob’s h-transform, that is,

Ph
t f (x) = e−λ1t

h(x)
Pβ
t (h f )(x) ∀t ≥ 0, x ∈ R, f ∈ B+(R). (3.19)

Then, Ph
t has a transition density with respect to the measure h2(y)dy, which is given

by

ph(t, x, y) = e−λ1t pβ(t, x, y)

h(x)h(y)
∀t ≥ 0, x, y ∈ R. (3.20)

It is proved in [9, eq. (2.14)] that there exists a constant a > 0 such that

∣
∣
∣ph(t, x, y)− 1

∣
∣
∣ ≤ e−a(t−1) ph(1, x, x)1/2 ph(1, y, y)1/2 ∀t > 1, x, y ∈ R.
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This together with (3.18) and (3.20) implies that there is some constant c1 > 0 such
that

∣
∣
∣ph(t, x, y)− 1

∣
∣
∣ ≤ c1e

−at h(x)−1h(y)−1 ∀t > 1, x, y ∈ R. (3.21)

Lemma 3.9 Suppose μ ∈ M(R) and σ > 0. For any f ∈ B+b (R) such that f /h is

bounded from above and that
∫ +∞
−∞ f (x)h(x)dx > 0, we have

lim
n→+∞

log〈 f , Xnσ 〉
nσ

= λ1 Pμ-a.s. on {Wh∞(X) > 0}.

Proof Without loss of generality, we assume 0 �= μ ∈ M(R). It follows by Proposi-
tion 3.8 that

lim sup
n→+∞

log〈 f , Xnσ 〉
nσ

≤ lim sup
n→+∞

log ‖ f ‖∞ + logX 0
nσ

nσ
≤ λ1 Pμ-a.s.

Hence, we only need to show that

lim inf
n→+∞

log〈 f , Xnσ 〉
nσ

≥ λ1 Pμ-a.s. on {Wh∞(X) > 0},

or equivalently, for any ε > 0,

Pμ

(
e−λ1nσ 〈 f , Xnσ 〉 ≥ e−εnσ for n sufficiently large | Wh∞(X) > 0

)
= 1.

(3.22)

For any n ∈ N and σ > 0, we have

e−λ1nσ 〈 f , Xnσ 〉 = I(n, σ )+ II(n, σ )+ III(n, σ ),

where

I(n, σ ) = e−λ1nσ 〈 f , Xnσ 〉 − Pμ

[
e−λ1nσ 〈 f , Xnσ 〉|Fnσ/2

]
,

II(n, σ ) = Pμ

[
e−λ1nσ 〈 f , Xnσ 〉|Fnσ/2

]− ( f , h)Wh
nσ/2(X),

III(n, σ ) = ( f , h)Wh
nσ/2(X).

Since limt→+∞Wh
t (X) = Wh∞(X) Pμ-a.s., we have

Pμ

(

III(n, σ ) ≥ 1

2
( f , h)Wh∞(X) > 0 for n sufficiently large | Wh∞(X) > 0

)

= 1.

(3.23)
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Let φ(x) := f (x)/h(x) for x ∈ R. By Markov property and (3.19), we have

II(n, σ ) = e−λ1nσ 〈Pβ
nσ/2(φh), Xnσ/2〉 − (φh, h)e−

1
2λ1nσ 〈h, Xnσ/2〉

= e−
1
2λ1nσ 〈hPh

nσ/2(φ), Xnσ/2〉 − (φh, h)e−
1
2λ1nσ 〈h, Xnσ/2〉

= e−
1
2λ1nσ

〈
h

∫ +∞

−∞

(
ph(nσ/2, ·, y)− 1

)
φ(y)h2(y)dy, Xnσ/2

〉
.

It follows by (3.21) that for n ∈ N with nσ > 1,

|II(n, σ )| ≤ e−
1
2λ1nσ 〈h

∫ +∞

−∞

∣
∣
∣ph(nσ/2, ·, y)− 1

∣
∣
∣φ(y)h2(y)dy, Xnσ/2〉

≤ c1e
−anσ/2(φ, h)e−

1
2λ1nσX 0

nσ/2.

This together with (3.13) yields that

Pμ

(

lim
n→+∞ |II(n, σ )| = 0

)

= 1. (3.24)

By (3.6), we have

e−λ1nσ 〈 f , Xnσ 〉 = 〈hPh
nσ φ, X0〉 +

∫ nσ

0

∫ +∞

−∞
e−λ1sh(x)Ph

nσ−sφ(x)M(ds, dx).

Here, [0, nσ ] � t �→ ∫ t
0

∫ +∞
−∞ e−λ1sh(x)Ph

nσ−sφ(x)M(ds, dx) is a square-integrable

martingale with quadratic variation t �→ ∫ t
0 〈2γ e−2λ1sh2

(
Ph
nσ−sφ

)2
, Xs〉ds. Hence,

I(n, σ ) =
∫ nσ

nσ/2

∫ +∞

−∞
e−λ1sh(x)Ph

nσ−sφ(x)M(ds, dx).

Moreover, by (3.19) we have

Pμ

[
I(n, σ )2

]
= Pμ

[∫ nσ

nσ/2
〈2γ e−2λ1sh2

(
Ph
nσ−sφ

)2
, Xs〉ds

]

≤ 2‖γ ‖∞‖φ‖∞‖h‖∞
∫ nσ

nσ/2
e−2λ1sPμ

[
〈hPh

nσ−sφ, Xs〉
]
ds

= c2

∫ nσ

nσ/2
e−2λ1s〈Pβ

s

(
hPh

nσ−sφ
)

, μ〉ds

= c2

∫ nσ

nσ/2
e−λ1s〈hPh

nσ φ, μ〉ds

≤ c2‖φ‖∞〈h, μ〉
∫ nσ

nσ/2
e−λ1sds
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= c2‖φ‖∞〈h, μ〉λ−11 e−λ1nσ/2
(
1− e−λ1nσ/2

)
.

Immediately
∑+∞

n=0 Pμ

[
I(n, σ )2

]
< +∞. Hence by the Fubini theorem,

Pμ

(

lim
n→+∞ |I(n, σ )| = 0

)

= 1.

This together with (3.23) and (3.24) yields (3.22). Hence, we complete the proof. ��
Lemma 3.10 Suppose 0 < δ <

√
λ1/2 and σ > 0. For any nontrivial μ ∈Mc(R),

lim inf
n→+∞

logX δnσ
nσ

nσ
≥ −�δ Pμ-a.s. on {Wh∞(X) > 0}.

Proof We define a quadratic branching mechanism ψ̃ by

ψ̃(x, λ) := −β(x)λ+ γ (x)λ2, ∀x ∈ R, λ ≥ 0,

where γ is defined in (1.2). Let ((X̃t )t≥0,Pδx ) be a (Bt , ψ̃)-superprocess started
from Dirac measure at x . For any R, t ≥ 0 and x ∈ R, let ũ R(t, x) :=
− logPδx

[
e−X̃((−R,R)c)

]
and uR(t, x) := − logPδx

[
e−X R

t

]
. Noting that ψ ≤ ψ̃ ,

we have by [24, Corollary 5.18] that

uR(t, x) ≥ ũ R(t, x) ∀t, R ≥ 0, x ∈ R. (3.25)

It is known that (t, x) �→ ũ R(t, x) is the unique nonnegative locally bounded solution
to the following integral equation.

ũ R(t, x) = �x (|Bt | ≥ R)+�x

[∫ t

0
β(Bs)ũ

R(t − s, Bs)− γ (Bs)ũ
R(t − s, Bs)

2ds

]

.

By [24, Proposition 2.9], ũ R(t, x) also satisfies that

ũ R(t, x) = �x

[

exp

{∫ t

0

(
β(Bs)− γ (Bs)ũ

R(t − s, Bs)
)
ds

}

1{|Bt |≥R}
]

.

(3.26)

Immediately, we have

ũ R(t, x) ≤ �x
[
eβ(t), |Bt | ≥ R

] = π R
t (x) ∀x ∈ R, t ≥ 0. (3.27)

Let q ∈ (0, 1) and p = 1− q. By (3.26) and (3.27), one has for all n ∈ N and x ∈ R,

ũδnσ (nqσ, x)
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= �x

[

exp

{∫ nqσ

0

(
β(Bs)− γ (Bs)ũ

δnσ (nqσ − s, Bs)
)
ds

}

1{|Bnqσ |≥δnσ }
]

≥ �x

[

exp

{∫ nqσ

0

(
β(Bs)− γ (Bs)π

δnσ
nqσ−s(Bs)

)
ds

}

1{|Bnqσ |≥δnσ }
]

≥ �x

[

exp

{∫ nqσ

0

(

β(Bs)− γ (Bs)π
δ
q (nqσ−s)
nqσ−s (Bs)

)

ds

}

1{|Bnqσ |≥δnσ }
]

= �x

[

exp

{

−
∫ nqσ

0
γ (Bnqσ−r )π

δ
q r
r (Bnqσ−r )dr

}

eβ(nqσ)1{|Bnqσ |≥δnσ }
]

. (3.28)

The final equality follows from the changes of variables. By choosing q ∈
(0, δ/

√
2λ1), we have δ/q >

√
2λ1. Since γ is compactly supported, it follows from

Lemma 3.3(iii) that

c1 := sup
x∈Rd

γ (x)
∫ +∞

0
π

δ
q s
s (x)ds < +∞.

Putting this back to (3.28), one gets

ũδnσ (nqσ, x) ≥ e−c1�x
[
eβ(nqσ)1{|Bnqσ |≥δnσ }

] = e−c1π
δ
q ·nqσ

nqσ (x). (3.29)

Let K be a compact set of R with
∫
K h(x)dy > 0. Since δ

q >
√
2λ1, we have by

Lemma 3.1 that

lim
n→+∞ inf

x∈K
logπδnσ

nqσ (x)

nqσ
= −� δ

q
= − δ2

2q2
.

Let ε ∈ (0,−�δ/8). The above equation combined with (3.25) and (3.29) implies
that there is some constant c2 > 0 such that

inf
x∈K uδnσ (nqσ, x) ≥ c2e

− δ2
2q nσ− 1

2 εnqσ (3.30)

for n sufficiently large. By the Markov property, we have

Pμ

(

X δnσ
nσ ≤ e

(
−�δ− 3

2 ε
)
nσ ; Xnpσ (K ) ≥ e

(
λ1− 1

2 ε
)
npσ

)

= Pμ

[

PXnpσ

[

e−X
δnσ
nqσ ≥ e−e

(−�δ− 3
2 ε)nσ

]

; Xnpσ (K ) ≥ e(λ1− 1
2 ε)npσ

]

≤ exp{e
(
−�δ− 3

2 ε
)
nσ }Pμ

[

e−〈uδnσ (nqσ,·),Xnpσ 〉; Xnpσ (K ) ≥ e

(
λ1− 1

2 ε
)
npσ

]

≤ exp{e
(
−�δ− 3

2 ε
)
nσ }Pμ

[

exp{−c2e−
δ2
2q nσ− 1

2 εnqσ Xnpσ (K )}; Xnpσ (K ) ≥ e

(
λ1− 1

2 ε
)
npσ

]

≤ exp{e
(
−�δ− 3

2 ε
)
nσ − c2e

− δ2
2q nσ− 1

2 εnqσ+(λ1− 1
2 ε)npσ }Pμ

[

Xnpσ (K ) ≥ e

(
λ1− 1

2 ε
)
npσ

]
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= exp

{

−e
(
−�δ− 3

2 ε
)
nσ

(

c2e
nσ

(√
2λ1δ+ε−λ1q− δ2

2q

)

− 1

)}

Pμ

[

Xnpσ (K ) ≥ e

(
λ1− 1

2 ε
)
npσ

]

.

The first and second inequalities follow from Chebyshev’s inequality and (3.30),

respectively. We choose q ∈
((

δ√
2λ1

+ ε−
√

ε2+2√2λ1δε
2λ1

)

∨ 0, δ√
2λ1

)

then
√
2λ1δ+

ε − λ1q − δ2

2q > 0. Note that −�δ − 3
2ε > −13�δ/16 > 0 for 0 < δ <

√
λ1/2 and

ε ∈ (0,−�δ/8). The above inequality implies that

Pμ

(

X δnσ
nσ ≤ e

(
−�δ− 3

2 ε
)
nσ ; Xnpσ (K ) ≥ e

(
λ1− 1

2 ε
)
npσ

)

decreases faster than exponentially as n →+∞. Thus,

+∞∑

n=0
Pμ

(

X δnσ
nσ ≤ e

(
−�δ− 1

2 ε
)
nσ ; Xnpσ (K ) ≥ e

(
λ1− 1

2 ε
)
npσ

)

< +∞,

and by Borel–Cantelli lemma,

either
logX δnσ

nσ

nσ
> −�δ − 1

2
ε or

log Xnpσ (K )

npσ
< λ1 − 1

2
ε (3.31)

for n sufficiently large Pμ-a.s. Note that by Lemma 3.9

Pμ

(

lim
n→+∞

log Xnpσ (K )

npσ
= λ1

∣
∣
∣Wh∞(X) > 0

)

= 1.

We get by (3.31) that

Pμ

(
logX δnσ

nσ

nσ
> −�δ − 1

2
ε for n sufficiently large

∣
∣
∣Wh∞(X) > 0

)

= 1.

This lemma follows by letting ε ↓ 0. ��
Proposition 3.11 For 0 ≤ δ <

√
λ1/2 and μ ∈Mc(R),

lim inf
t→+∞

logX δt
t

t
≥ −�δ Pμ-a.s. on {Wh∞(X) > 0}.

Proof First we consider δ = 0. Since

Wh
t (X) = e−λ1t 〈h, Xt 〉 ≤ ‖h‖∞e−λ1tX 0

t ,

we have

logX 0
t

t
≥ logWh

t (X)

t
− log ‖h‖∞

t
+ λ1.
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Since Wh
t (X) → Wh∞(X) Pμ-a.s., we get that

lim inf
t→+∞

logX 0
t

t
≥ λ1 = −�0 Pμ-a.s. on {Wh∞(X) > 0}.

Now, suppose 0 < δ <
√

λ1/2. Let σ > 0. We take θ > 0 small such that
δθ := δ + θ <

√
λ1/2. By (3.5), we have

Pμ

[
X δθ (n+1)σ

(n+1)σ
∣
∣
∣Fnσ

]
≥ c1X δθnσ

nσ

for some constant c1 = c1(θ, σ ) > 0. It then follows by Lemma 3.10 that

Pμ

⎛

⎝lim inf
n→+∞

logPμ

[
X δθ (n+1)σ

(n+1)σ |Fnσ

]

nσ
≥ −�δθ

∣
∣
∣Wh∞(X) > 0

⎞

⎠ = 1. (3.32)

Let 0 < ε < −�δθ /4. We have

sup
t∈[nσ,(n+1)σ )

e�δθ
t
∣
∣
∣Pμ

[
X δθ (n+1)σ

(n+1)σ |Ft

]
− Pμ

[
X δθ (n+1)σ

(n+1)σ |Fnσ

]∣∣
∣

≤ sup
t∈[nσ,(n+1)σ )

e�δθ
nσ

∣
∣
∣Pμ

[
X δθ (n+1)σ

(n+1)σ |Ft

]
− Pμ

[
X δθ (n+1)σ

(n+1)σ |Fnσ

]∣∣
∣

= e
−

(
− 1

2�δθ
−ε

)
nσ−

(
1
2�δθ

−ε
)
σ

× sup
t∈[nσ,(n+1)σ )

e

(
1
2�δθ

−ε
)
(n+1)σ ∣

∣
∣Pμ

[
X δθ (n+1)σ

(n+1)σ |Ft

]
− Pμ

[
X δθ (n+1)σ

(n+1)σ |Fnσ

]∣∣
∣ .

By Lemma 3.5, the final term in the right-hand side converges to 0 as n →+∞. Thus,
we get

lim
n→+∞ sup

t∈[nσ,(n+1)σ )

e�δθ
t
∣
∣
∣Pμ

[
X δθ (n+1)σ

(n+1)σ |Ft

]
− Pμ

[
X δθ (n+1)σ

(n+1)σ |Fnσ

]∣
∣
∣ = 0 Pμ-a.s.

(3.33)

Note that for any t ∈ [nσ, (n + 1)σ ),

e�δθ
t
Pμ

[
X δθ (n+1)σ

(n+1)σ |Ft

]

≥ e�δθ
(n+1)σ

Pμ

[
X δθ (n+1)σ

(n+1)σ |Fnσ

]

− sup
t∈[nσ,(n+1)σ )

e�δθ
t
∣
∣
∣Pμ

[
X δθ (n+1)σ

(n+1)σ |Ft

]
− Pμ

[
X δθ (n+1)σ

(n+1)σ |Fnσ

]∣∣
∣
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Hence, by (3.32) and (3.33) we get that

Pμ

⎛

⎝lim inf
t→+∞

logPμ

[
X δθ (n+1)σ

(n+1)σ |Ft

]

t
≥ −�δθ

∣
∣
∣Wh∞(X) > 0

⎞

⎠ = 1. (3.34)

By Markov property, for any t ∈ [nσ, (n + 1)σ ),

Pμ

[
X δθ (n+1)σ

(n+1)σ |Ft

]
= 〈πδθ (n+1)σ

(n+1)σ−t , Xt 〉.

So we have

I(δθ , t) := 〈πδθ (n+1)σ
(n+1)σ−t1(−δt,δt)c , Xt 〉

= Pμ

[
X δθ (n+1)σ

(n+1)σ |Ft

]
− 〈πδθ (n+1)σ

(n+1)σ−t1(−δt,δt), Xt 〉
=: Pμ

[
X δθ (n+1)σ

(n+1)σ |Ft

]
− II(δθ , t). (3.35)

Lemma 3.3(i) implies that there is a constant c2 > 0 independent of δθ and θ such
that

π
δθ (n+1)σ
(n+1)σ−t (y) ≤ c2(θ(n + 1)σ )−1e−

θ2
2 (n+1)2σ ∀t ∈ [nσ, (n + 1)σ ), |y| < δt,

when n is sufficiently large. Hence, we get that for t ∈ [nσ, (n + 1)σ ),

II(δθ , t) ≤ c2(θ(n + 1)σ )−1e−
θ2
2 (n+1)2σ 〈1(−δt,δt), Xt 〉

≤ c2(θ(n + 1)σ )−1e− θ2
2 (n+1)2σ+λ1t

inf |y|<δ(n+1)σ h(y)
〈e−λ1t h1(−δt,δt), Xt 〉

≤ c2(θ(n + 1)σ )−1e− θ2
2 (n+1)2σ+λ1t

inf |y|<δ(n+1)σ h(y)
Wh

t (X).

By (1.6), there is a constant c3 > 0 such that when n is sufficiently large,

II(δθ , t) ≤ c3(θ(n + 1)σ )−1e−
θ2
2 (n+1)2σ+(λ1+√2λ1δ)(n+1)σWh

t (x)

for all t ∈ [nσ, (n + 1)σ ). This implies that

lim
n→+∞ sup

t∈[nσ,(n+1)σ )

e�δθ t II(δθ , t) = 0 Pμ-a.s. (3.36)

Note that by (3.35)

e�δθ
t I(δθ , t) = et

(
log I(δθ ,t)/t+�δθ

)
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= e
t
(
logPμ

[
X δθ (n+1)σ

(n+1)σ
∣
∣Ft

]/
t+�δθ

)

− e�δθ
t II(δθ , t).

This together with (3.34) and (3.36) implies that

Pμ

(

lim inf
t→+∞

log I(δθ , t)

t
≥ −�δθ

∣
∣
∣Wh∞(X) > 0

)

= 1. (3.37)

Note that by definition

I(δθ , t) ≤ ‖πδθ (n+1)σ
(n+1)σ−t‖∞X δt

t ≤ e‖β+‖∞σX δt
t ∀t ∈ [nσ, (n + 1)σ ).

By (3.37), we have

Pμ

(

lim inf
t→+∞

logX δt
t

t
≥ −�δθ |Wh∞(X) > 0

)

= 1.

��
Proof of Theorem 1.1: Theorem 1.1 follows immediately from Propositions 3.8
and 3.11. ��

4 Proofs of Theorem 1.2 and Theorem 1.3

4.1 Skeleton Decomposition

In this subsection, we shall establish the skeleton space for the (Bt , ψ)-superprocess.
The following condition is fundamental for the skeleton construction.

There is a locally bounded function w > 0 on R satisfying that

Pμ

[
e−〈w,Xt 〉

]
= e−〈w,μ〉 ∀μ ∈Mc(R). (A2)

This locally bounded martingale function w assures that

(

w(Bt ) exp{−
∫ t

0

ψ(Bs, w(Bs))

w(Bs)
ds}

)

t≥0

is a�x -(super)martingale. Thus, one can define a family of (sub)probability measures
{�w

x , x ∈ R} by

d�w
x

d�x

∣
∣
∣
∣
σ(Bs :s∈[0,t])

:= w(Bt )

w(x)
exp

{

−
∫ t

0

ψ(Bs, w(Bs))

w(Bs)
ds

}

∀t ≥ 0.

We denote the process ((Bt )t≥0,�w
x , x ∈ R) by (Bw

t )t≥0.
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An integer-valued locally finite randommeasure ξ onR is called a point process. If
there is a locally finite measure λ onR such that ξ(B) is Poisson distributed with mean
λ(B) for any Borel set B, and that ξ(B1), · · · , ξ(Bn) are independent for any disjoint
Borel sets B1, · · · , Bn , n ≥ 2, then ξ is called Poisson point process with intensity
λ. If we randomize by replacing the fixed measure λ by a random measure � on R,
then we get a Cox process directed by �. More precisely, given �, ξ is conditionally
Poisson with intensity � almost surely.

Proposition 4.1 Assume (A2) holds. For every μ ∈ M(R), there exists a probability
space with probability measure Pμ that carries two processes (Zt )t≥0 and (X̂t )t≥0
satisfying the following conditions.

(i) ((Zt )t≥0,Pμ) is branching Markov process with Z0 being a Poisson point process
with intensity w(x)μ(dx), in which each particle moves independently as a copy
of (Bw

t )t≥0, and a particle at location x dies at rate q(x) and is replaced by a
random number of offspring with distribution {pk(x) : k ≥ 2} uniquely identified
by

G(x, s) := q(x)
+∞∑

k=2
pk(x)(s

k − s)

= 1

w(x)
[ψ(x, w(x)(1− s))− (1− s)ψ(x, w(x))] .

(ii) ((X̂t )t≥0,Pμ) has the same distribution as (X ,Pμ).
(iii) For every t ≥ 0, Zt is a Cox process directed by w X̂t .

We show in the next proposition that the martingale function w in (A2) exists for
the (Bt , ψ)-superprocess. Recall that Wh

t (X) := e−λ1t 〈h, Xt 〉, ∀t ≥ 0.

Proposition 4.2 Let E := {Wh∞(X) = 0} and w(x) := − logPδx (E) for x ∈ R.
Then, w is a bounded positive function satisfying (A2). Moreover, w′(x) = 0 for |x |
sufficiently large.

Proof Since Wh∞(X) is nondegenerate under Pδx , w(x) = − logPδx (E) takes values
in (0,+∞]. By (1.1), for any μ ∈M(R), t ≥ 0 and λ > 0,

Pμ

[
e−λWh

t (X)
]
= e

−
〈
u

λe−λ1t h
(t,·),μ

〉

,

where for x ∈ R, uλe−λ1 t h(t, x) = − logPδx

[
exp{−λWh

t (X)}]. By letting t → +∞
and then λ →+∞ in the above equation, we get

Pμ (E) = e−〈w,μ〉 ∀μ ∈M(R).

Using this and the Markov property of Xt , we have

Pμ

[
e−〈w,Xt 〉

]
= Pμ

[
PXt (E)

] = Pμ(E) = e−〈w,μ〉.
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So w satisfies (A2). We only need to show that w is a bounded function on R since
the second assertion is a direct result of Lemma A.1 and the boundedness of w.

Let Eext := {‖Xt‖ = 0 for t large enough} and wext(x) := − logPδx (Eext) for
x ∈ R. Sinceψ(x, λ) ≥ −β(x)λ+α(x)λ2 =: ψ̂(x, λ) for x ∈ R and λ ≥ 0, it follows
by [24, Corollary 5.18] that the extinction probability of the (Bt , ψ)-superprocess is
larger than that of the (Bt , ψ̂)-superprocess. Let ŵext be the log-Laplace exponent
of the (Bt , ψ̂)-superprocess. Let ∅ �= O := {x ∈ R : α(x) > 0}. By [16, Lemma
7.1], ŵext(x) is a locally bounded function on O. Since Eext ⊆ E , one has w(x) ≤
wext(x) ≤ ŵext(x) < +∞ for all x ∈ O. In the remaining of this proof, we fix an
arbitrary c ∈ O and x0 ∈ R\O. Without loss of generality, we assume x0 > c.

We recall from [12] (see also [13, 14]) that the (Bt , ψ)-superprocess (Xt )t≥0 can
also be modeled as a system of exit measures from time-space open sets. In particular,
branching property andMarkov properties of such systems are established there. From
this perspective, Xt can be viewed as the projection of the exit measure from (0, t)×R

on {t} × R. Let H be the set of nonnegative bounded functions on [0,+∞) × R

satisfying that there is some S such that f (s, y) = 0 for all (s, y) ∈ [S,+∞)×R. By
[12, Theorem I.1.1 and Theorem I.1.2], for t ∈ (0,+∞) and Qt := (0, t)× (c,+∞),
there exists a finite random measure XQt , called the exit measure from Qt , which is
supported on the boundary of Qt and satisfies that for every f ∈ H,

Pμ

[
e−〈 f ,XQt 〉] = e−〈U f (t,·),μ〉,

where U f (t, x) is a solution to the following integral equation

U f (t, x)+�x

[∫ τc∧t

0
ψ(Bs,U f (t − s, Bs))

]

= �x
[
f (τc ∧ t, Bτc∧t )

]
. (4.1)

Here, τc denotes the first exit time of (Bt )t≥0 from (c,+∞). Let Xc
t (A) := XQt ({t}×

(A ∩ (c,+∞))) for any A ⊂ R. This definition implies that Xc
t is the projection of

XQt on {t} × (c,+∞). Let ucg(t, x) := − logPδx

[
exp{−〈g, Xc

t 〉}
]
for g ∈ B+b (R),

t ≥ 0 and x ∈ R. By (4.1), ucg(t, x) satisfies the following integral equation.

ucg(t, x)+�x

[∫ t

0
ψ(Bc

s , u
c
g(t − s, Bc

s ))ds

]

= �x
[
g(Bc

t )
]
,

where (Bc
t )t≥0 denotes the Brownian motion killed outside (c,+∞). This implies that

(Xc
t )t≥0 is a (Bc

t , ψ)-superprocess. Note that

Pδx0

[
e−λ1t 〈h, Xc

t 〉
] = e−λ1t�x0

[
eβ(t)h(Bt ); t < τc

]

= �h
x0 (t < τc) .
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Here, �h
x0 is the probability measure defined by

d�h
x0

d�x0

∣
∣
∣
∣
∣
σ(Bs :s≤t)

= e−λ1t eβ(t)
h(Bt )

h(x0)
∀t ≥ 0.

It is known that (cf. [9, Section 3]) ((Bt )t≥0,�h
x0) is a recurrent diffusion on R.

So �h
x0 (t < τc) → 0 as t → +∞. This implies that e−λ1t 〈h, Xc

t 〉 converges to 0 in
L1(Pδx0

), and so there is a subsequence of e−λ1t 〈h, Xc
t 〉which converges to 0 Pδx0

-a.s.

On the other hand, we note that ‖XQt ((0,+∞)× {c}) ‖ denotes the total mass
of the projection of XQt on (0, t] × {c}. For λ, t ≥ 0 and y ∈ R, let vcλ(t, y) :=− logPδy

[
exp{−λ‖XQt ((0,+∞)× {c})‖}]. It follows by (4.1) that

vcλ(t, x) = λ�x (τc ≤ t)−�x

[∫ τc∧t

0
ψ(Bs, v

c
λ(t − s, Bs))ds

]

= λ�x
[
eβ(τc ∧ t); τc ≤ t

]−�x

[∫ τc∧t

0
eβ(s)ψ0(Bs, v

c
λ(t − s, Bs))ds

]

,

(4.2)

where ψ0(x, λ) = ψ(x, λ)+ β(x)λ. The second equation follows from [15, Lemma
A.1].

Let ‖X {c}‖ be the limit of the nondecreasing sequence {‖XQt ((0,+∞) × {c})‖ :
t ≥ 0} and vcλ(x) := − logPδx

[
exp{−λ‖X {c}‖}] = limt→+∞ vcλ(t, x) for λ ≥ 0

and x ≥ c. By (4.2), one has vcλ(t, x) ≤ λ�x
[
eβ(τc); τc ≤ t

]
, and so vcλ(x) ≤

λ�x
[
eβ(τc)

]
. Since β is compactly supported, by [11, Theorem 9.22] x �→

�x
[
eβ(τc)

]
is a bounded function on [c,+∞). Thus for every λ ≥ 0, x �→ vcλ(x)

is a bounded function on [c,+∞). We note that E = {Wh∞(X) = 0} = {∃ tn →
+∞ such that e−λ1tn 〈h, Xtn 〉 → 0}. We have

e−w(x0) = Pδx0
(E) = Pδx0

[
Pδx0

(
E |XQt

)]

≥ Pδx0

[
P‖X {c}‖δc (Eext)

]

= Pδx0

[
e−wext(c)‖X {c}‖

]
= e−vc

wext (c)
(x0).

Thus, one gets w(x0) ≤ vcwext(c)
(x0) and so w is a bounded function on [c,+∞). ��

4.2 Limiting Distributions for the Skeleton

Since (X̂;Pμ) is equal in distribution to the (Bt , ψ)-superprocess, wemaywork on this
skeleton space whenever it is convenient. For notational simplification, we will abuse
the notation and denote X̂ by X . We will refer to (Zt )t≥0 as the skeleton branching
diffusion (skeleton) of X . We use u ∈ Zt to denote a particle of the skeleton which
is alive at time t, and zu(t) for its spatial location. We use ‖Zt‖ to denote the total
number of particles alive at time t .
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In this section, we shall show that the skeleton branching diffusion Zt shifted by√
λ1/2 t converges in distribution to a Cox process directed by a random measure

which has a random intensity mixed by the limit of an additive martingale (see Propo-
sition 4.7). Our proof follows the same approach as [6] (see, also [26]): First, we
represent the population moments in terms of Feynman–Kac functionals associated
to Brownian motions, see (4.3) and (4.4). Using the estimates established in Sect. 2,
we show in Lemma 4.3 that the second-order moment is asymptotically the same
as the first-order moment. Combining this with the Chebyshev and Paley–Zygmund
inequalities, we compute the asymptotic behavior of the distributions of particles near√

λ1/2 t in Lemma 4.4.We can then follow the argument of [6] to establish Proposition
4.6.

Recall that w′(x) = 0 when |x | is large. So we assume that there are constants
M, w± > 0 such that w(x) = w− for x ≥ M and w(x) = w+ for x ≤ −M .

In what follows, we always assume the following:

(1) R(t) = δt + a(t) where δ ∈ (0,
√
2λ1) and a(t) = o(t) as t →+∞.

(2) For some a ∈
(
0, 1− δ√

2λ1

)
, 0 ≤ s(t) < at for all t ≥ 0 and s(t) = o(t) as

t →+∞.
(3) b(t) ≥ 0 for all t ≥ 0 and b(t) = o(t) as t →+∞.
(4) x(·) : [0,+∞) → R satisfies |x(t)| ≤ b(t) for all large t > 0.
(5) A is a Borel set of R with inf A > −∞.

We use Pν to denote the probability measure where the branching Markov process
(Zt )t≥0 started from the integer-valued measure ν. For every x ∈ R, the first two
moments of ((Zt )t≥0,Pδx ) can be expressed by the spatial motion and the branching
rate (cf. [32, Lemma 3.3]): For f ∈ B+b (R),

Pδx [〈 f , Zt 〉] = �w
x

[
e
∫ t
0

∂
∂s G(Bw

r ,1)dr f (Bw
t )

]
= 1

w(x)
Pβ
t (w f )(x), (4.3)

and

Pδx

[
〈 f , Zt 〉2

]

= Pδx

[
〈 f 2, Zt 〉

]
+�w

x

[∫ t

0
e
∫ r
0

∂
∂s G(Bw

u ,1)du ∂2

∂s2
G(Bw

r , 1)PδBw
r

[〈 f , Zt−r 〉
]2 dr

]

= 1

w(x)
Pβ
t (w f 2)(x)+ 1

w(x)

∫ t

0
Pβ
s

[

2γ
(
Pβ
t−s(w f )

)2]

(x)ds. (4.4)

One can easily show by (4.3) that

Wh/w
t (Z) := e−λ1t

〈
h

w
, Zt

〉

, t ≥ 0,

is a nonnegative Pδx -martingale for every x ∈ R, and a nonnegative Pμ-martingale

for every μ ∈M(R). We useWh/w∞ (Z) to denote the martingale limit. It is proved by
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[15, Proposition 1.1] that

Wh/w∞ (Z) = Wh∞(X) Pμ-a.s. (4.5)

for all μ ∈M(R).

Lemma 4.3 (i) There exist T1 > 0 and θi (t) (i = 1, 2) such that for t ≥ T1,

θ1(t) ≤
Pδx(t)

[
Zt−s(t)(A + R(t))

]

w−η−(A)
h(x(t))
w(x(t))e

λ1(t−s(t))−√2λ1R(t)
≤ θ2(t), (4.6)

where η−(dx) = C−e−
√
2λ1xdx, and for i = 1, 2, θi (t) → 1 as t →+∞.

(ii) There exist T2,C > 0 such that for t ≥ T2,

Pδx(t)

[
Zt−s(t)(A + R(t))

] ≤ Pδx(t)

[
Zt−s(t)(A + R(t))2

]

≤ Pδx(t)

[
Zt−s(t)(A + R(t))

]+ C
h(x(t))

w(x(t))
e2λ1(t−s(t))−2

√
2λ1R(t). (4.7)

Proof (i) We have

Pδx(t)

[
Zt−s(t)(A + R(t))

] = 1

w(x(t))
Pβ

t−s(t)
(
w1A+R(t)

)
(x(t)).

Note that for t large enough such that R(t) + (inf A ∧ 0) ≥ M , w(x) = w− for all
x ∈ A + R(t). It follows that

Pδx(t)

[
Zt−s(t)(A + R(t))

] = w−
w(x(t))

Pβ

t−s(t)1A+R(t)(x(t)).

Thus, (4.6) follows immediately from Lemma 2.2.
(ii) The first inequality of (4.7) is obvious since, by (4.4),

Pδx(t)

[
Zt−s(t)(A + R(t))2

]
= Pδx(t)

[
Zt−s(t)(A + R(t))

]

+ 2

w(x(t))

∫ t−s(t)

0
Pβ
r

[
γ Pβ

t−s(t)−r
(
w1A+R(t)

)2]
(x(t))dr . (4.8)

Suppose suppγ ⊂ [−k, k] for some 0 < k < +∞. Let σk be the first hitting time
of [−k, k] by the Brownian motion. Noting that s(t) ≤ at < t − 1 for t sufficiently
large, we have

∫ t−s(t)
0

Pβ
r

[

γ
(
Pβ
t−s(t)−r1A+R(t)

)2
]

(x(t))dr

= �x(t)

[∫ t−s(t)
0

eβ(r)γ (Br )
(
Pβ
t−s(t)−r1A+R(t)(Br )

)2
dr

]
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= �x(t)

[∫ t−s(t)
σk

eβ(r)γ (Br )
(
Pβ
t−s(t)−r1A+R(t)(Br )

)2
dr; σk ≤ t − s(t)

]

= �x(t)

[
eβ(σk) �Bu

[∫ t−s(t)−u
0

eβ(r)γ (Br )
(
Pβ
t−s(t)−u−r1A+R(t)(Br )

)2
dr

]∣
∣
∣
∣
∣
u=σk

;

σk ≤ t − s(t)
]

≤ c1�x(t)

[

eβ(σk)
h(Bσk )

infx∈[−k,k] h(x)
e2λ1(t−s(t)−σk )−2√2λ1R(t); σk ≤ t − s(t)

]

= c2e
2λ1(t−s(t))−2√2λ1R(t)�x(t)

[
eβ(σk)h(Bσk )e

−2λ1σk ; σk ≤ t − s(t)
]
. (4.9)

The above inequality follows from Lemma 2.1(ii). Since e−λ1teβ(t)h(Bt ) is a martin-
gale, by the optional stopping theorem, the last term in (4.9) is no larger than h(x(t)).
So we get that

∫ t−s(t)

0
Pβ
r

[

γ
(
Pβ

t−s(t)−r1A+R(t)

)2]

(x(t))dr ≤ c3e
2λ1(t−s(t))−2√2λ1R(t)h(x(t)).

We also note that for t large enough, w(x) = w− for all x ∈ A + R(t). Thus,

∫ t−s(t)

0
Pβ
r

[
γ Pβ

t−s(t)−r
(
w1A+R(t)

)2]
(x(t))dr

= w2−
∫ t−s(t)

0
Pβ
r

[

γ
(
Pβ

t−s(t)−r1A+R(t)

)2]

(x(t))dr

≤ c3w
2−e2λ1(t−s(t))−2

√
2λ1R(t)h(x(t)).

Putting this back to (4.8), we get (4.7). ��
Lemma 4.4 Assume that δ = √

λ1/2 and that λ1s(t) + √
2λ1a(t) → +∞ as t →

+∞. Then, there exist C, T > 0 and θi (t) (i = 4, 5, 6, 7) such that for t ≥ T ,

Pδx(t)

(
Zt−s(t)(A + R(t)) = 0

) ≤ 1− θ4(t)w−η−(A)
h(x(t))

w(x(t))
�(t), (4.10)

Pδx(t)

(
Zt−s(t)(A + R(t)) = 0

) ≥ 1− θ5(t)w−η−(A)
h(x(t))

w(x(t))
�(t), (4.11)

Pδx(t)

(
Zt−s(t)(A + R(t)) = 1

) ≤ θ6(t)w−η−(A)
h(x(t))

w(x(t))
�(t), (4.12)

Pδx(t)

(
Zt−s(t)(A + R(t)) = 1

) ≥ θ7(t)w−η−(A)
h(x(t))

w(x(t))
�(t), (4.13)

Pδx(t)

(
Zt−s(t)(A + R(t)) ≥ 2

) ≤ C
h(x(t))

w(x(t))
�2(t). (4.14)

where �(t) = e−λ1s(t)−√2λ1a(t) and θi (t) → 1 as t →+∞ for i = 4, 5, 6, 7.
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Proof We note that if Z is an integer-valued random variable, then

E[Z ]2
E[Z2] ≤ P(Z > 0) = P(Z ≥ 1) ≤ E[Z ], (4.15)

and

P(Z ≥ 2) ≤ E[Z(Z − 1); Z ≥ 2] = E[Z(Z − 1)] = E[Z2] − E[Z ]. (4.16)

It is easy to see that (4.14) follows immediately from (4.16) and Lemma 4.3(ii).
Since 1− Pδx(t)

(
Zt−s(t)(A + R(t)) = 0

) = Pδx(t)

(
Zt−s(t)(A + R(t)) > 0

)
, we have

by (4.15) and Lemma 4.3 that for t large enough,

1− Pδx(t)

(
Zt−s(t)(A + R(t)) = 0

) ≤ Pδx(t)

[
Zt−s(t)(A + R(t))

]

≤ θ2(t)w−η−(A)
h(x(t))

w(x(t))
�(t),

and

1− Pδx(t)

(
Zt−s(t)(A + R(t)) = 0

)

≥ Pδx(t)

[
Zt−s(t)(A + R(t))

]2

Pδx(t)

[
Zt−s(t)(A + R(t))2

]

≥ Pδx(t)

[
Zt−s(t)(A + R(t))

]2

Pδx(t)

[
Zt−s(t)(A + R(t))

]+ C h(x(t))
w(x(t))�

2(t)

≥
[
θ1(t)w−η−(A)

h(x(t))
w(x(t))�(t)

]2

θ2(t)w−η−(A)
h(x(t))
w(x(t))�(t)+ C h(x(t))

w(x(t))�
2(t)

= θ1(t)2

θ2(t)+ Cw−1− η−1− (A)�(t)
w−η−(A)

h(x(t))

w(x(t))
�(t).

Since θi (t) → 1 for i = 1, 2 and �(t) → 0 as t → +∞, θ1(t)2

θ2(t)+Cw−1− η−1− (A)�(t)
→ 1

as t →+∞. Hence, we prove (4.10) and (4.11).
We note that

Pδx(t)

(
Zt−s(t)(A + R(t)) = 1

) = 1− Pδx(t)

(
Zt−s(t)(A + R(t)) = 0

)

−Pδx(t)

(
Zt−s(t)(A + R(t)) ≥ 2

)
.

Thus, (4.12) and (4.13) follow immediately from (4.10), (4.11) and (4.14). ��
Lemma 4.5 (i) For every δ ∈ (

√
λ1/2,

√
2λ1) and x ∈ R,

lim
t→+∞Pδx

(

max
u∈Zt

|zu(t)| < δt

)

= 1.
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(ii) For every x ∈ R,

lim inf
t→+∞ e−λ1t‖Zt‖ > 0 Pδx -a.s.

Proof (i) We have

Pδx

(

max
u∈Zt

|zu(t)| < δt

)

= Pδx

(
Zt ((−δt, δt)c) = 0

)

= 1− Pδx

(
Zt ((−δt, δt)c) ≥ 1

)

≥ 1− Pδx

[
Zt ((−δt, δt)c)

]
.

So it suffices to show that

lim
t→+∞Pδx

[
Zt ((−δt, δt)c)

] = 0. (4.17)

Note that for t large enough such that δt > M ,

Pδx

[
Zt ((−δt, δt)c)

] = 1

w(x)
Pβ
t

(
w1(−δt,δt)c

)
(x)

≤ w+ ∨ w−
w(x)

Pβ
t 1(−δt,δt)c(x) = w+ ∨ w−

w(x)
πδt
t (x).

It follows by Lemma 3.1 that limt→+∞ logπδt
t (x)/t = −�δ < 0 for any δ ∈

(
√

λ1/2,
√
2λ1). So we get πδt

t (x) → 0 as t → +∞ and (4.17) follows immedi-
ately.

(ii) We note that for t ≥ 0,

e−λ1t‖Zt‖ = e−λ1t
〈w

h
· h
w

, Zt

〉
≥ ‖ h

w
‖−1∞ Wh/w

t (Z),

where ‖h/w‖∞ < +∞. So it suffices to show that for every x ∈ R,

Pδx

(
Wh/w∞ (Z) > 0

)
= 1. (4.18)

We have

Pδx

(
Wh/w∞ (Z) = 0

)
= Pδx

⎡

⎣
∏

u∈Z0

Pδzu (0)

(
Wh/w∞ (Z) = 0

)
⎤

⎦

= e
−w(x)

(
1−Pδx

(
Wh/w∞ (Z)=0

))

. (4.19)

The final equality is because (Z0,Pδx ) is a Poisson point process with intensity wδx .
On the other hand, by (4.5) we have

Pδx

(
Wh/w∞ (Z) = 0

)
= Pδx

(
Wh∞(X) = 0

)
= e−w(x).
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Combining this with (4.19), we get that Pδx

(
Wh/w∞ (Z) = 0

)
= 0 and (4.18) follows

immediately. ��
Proposition 4.6 For every x ∈ R, ((Zt ±√λ1/2 t)t≥0,Pδx ) converges in distribution

to a Cox process directed by w±Wh/w∞ (Z)η±(dx), where Wh/w∞ (Z) is the martingale
limit of ((Wh/w

t (Z))t≥0,Pδx ).

Proof Take R(t) = √
λ1/2 t and fix a function s(·) such that s(t) →+∞ and s(t) =

o(t) as t → +∞. For notational simplicity, in the proof we shall write s(t) as s. We
only consider Zt − R(t). The result for Zt + R(t) can be proved similarly.

In view of Lemma A.2, to show the result for {Zt − R(t) : t ≥ 0}, it suffices to
show that for any subsequence {Ztn − R(tn) : n ≥ 1} with tn → +∞, conditions (i)

and (ii) are satisfied when taking ξn = Ztn − R(tn) and η(dx) = w−Wh/w∞ (Z)η−(dx).
It follows from Lemma 4.3(i) that for any Borel set A with inf A > −∞,

Pδx [Zt (A + R(t))] ∼ w−η−(A)
h(x)

w(x)
as t →+∞, (4.20)

which implies that condition (ii) of Lemma A.2 is satisfied with ξn = Ztn − R(tn).
Hence, we only need to verify condition (i).

Take m ∈ N, k1, · · · , km ∈ Z
+ and mutually disjoint Borel sets A1, · · · , Am in R

with inf Ai > −∞ for i = 1, · · · ,m. Put k := k1 + · · · + km and A := ⋃m
i=1 Ai . Let

Gs be the σ -field generated by {Zr : r ∈ [0, s]}. It suffices to show that

Pδx

(
m⋂

i=1
{Zt (Ai + R(t)) = ki } |Gs

)

→ e−w−Wh/w∞ (Z)
∑m

i=1 η−(Ai )
m∏

i=1

(
w−Wh/w∞ (Z)η−(Ai )

)ki

ki ! . (4.21)

in probability as t → +∞.1 For u ∈ Zs , let Z (u)
t−s be the point process of

the locations of the particles alive at time t whose ancestor is u. Take a con-
stant κ >

√
λ1/2. Define E1

t := {
maxu∈Zs |zu(s)| ≤ κs, ‖Zs‖ ≥ k

}
and E2

t :={
Z (u)
t−s(A + R(t)) ≤ 1 ∀u ∈ Zs

}
. It follows from Lemma 4.5 that Pδx

(E1
t

) → 1

as t →+∞. Since E1
t ∈ Gs , we get

Pδx

(
(E1

t )c |Gs
)
= 1(E1

t )c → 0 as t →+∞ in probability. (4.22)

1 Actually (4.21) is a bit stronger than what one needs for the proof of Proposition 4.6. The proof can be
shortened by applying [20, Proposition 16.17] In fact by the aforementioned result, one only needs to show
that (i) (4.20) holds for all relatively compact sets A ⊂ R, and (ii) limt→+∞ Pδx (Zt (A + R(t)) = 0) =
Pδx

[
exp{−w−Wh/w∞ (Z)η−(A)}

]
for all compact sets A. However, since (4.21) further yields the limit of

the order statistics of Zt (see Proposition 4.8 and the remark below), we present it here for the sake of being
more self-contained.
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On the event E1
t , we have

Pδx

(
(E2

t )c |Gs
)
= Pδx

(
Z (u)
t−s(A + R(t)) ≥ 2 for some u ∈ Zs |Gs

)

≤
∑

u∈Zs

Pδzu (s)

(
Z (u)
t−s(A + R(t)) ≥ 2

)
. (4.23)

By Lemma 4.4, for t large enough, on the event E1
t ,

Pδzu (s)

(
Z (u)
t−s(A + R(t)) ≥ 2

)
≤ c1

h(zu(s))

w(zu(s))
e−2λ1s .

Hence, we get by (4.23) that on E1
t

Pδx

(
(E2

t )c |Gs
)
≤ c1

∑

u∈Zs

h(zu(s))

w(zu(s))
e−2λ1s ≤ c1e

−λ1sWh/w
s (Z).

This yields 1E1
t
Pδx

(
(E2

t )c |Gs
) → 0 Pδx -a.s. Consequently by (4.22) we have

Pδx

(
(E2

t )c |Gs
)
→ 0 in probability as t →+∞. (4.24)

By (4.22) and (4.24), we have

Pδx

(
m⋂

i=1
{Zt (Ai + R(t)) = ki } |Gs

)

= Pδx

(
m⋂

i=1
{Zt (Ai + R(t)) = ki } , E1

t , E2
t |Gs

)

+ ε1t

for some ε1t → 0 in probability.

We note that on the event E2
t , {Z (u)

t−s(A + R(t)) : u ∈ Zs} are Bernoulli random
variables. So we have

Pδx

(
m⋂

i=1
{Zt (Ai + R(t)) = ki } , E1

t , E2
t |Gs

)

= 1

k1! · · · km ! × Pδx

( ⋃

(u1,··· ,uk )⊂Zs

{ k1⋂

j=1
{Z (u j )

t−s (A1 + R(t)) = 1},

· · · ,

k⋂

j=k−km+1
{Z (u j )

t−s (Am + R(t)) = 1},
⋂

u∈Zs\{u1,··· ,uk }
{Z (u)

t−s(A + R(t)) = 0}}, E1
t , E2

t |Gs
)
. (4.25)
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Here,
⋃

(u1,··· ,uk )⊂Zs
is the union over all k-permutations of Zs , and (u1, · · · , uk) ⊂ Zs

means that u1 ∈ Zs , u2 ∈ Zs : u2 �= u1,..., uk ∈ Zs : uk �= u j , j = 1, · · · , k − 1. By
(4.24) and the fact that E1

t ∈ Gs , the conditional probability in the right-hand side of
(4.25) equals

1E1
t
Pδx

( ⋃

(u1,··· ,uk )⊂Zs

{ k1⋂

j=1
{Z (u j )

t−s (A1 + R(t)) = 1}, · · · ,

k⋂

j=k−km+1
{Z (u j )

t−s (Am + R(t)) = 1},
⋂

u∈Zs\{u1,··· ,uk }
{Z (u)

t−s(A + R(t)) = 0}} |Gs
)
+ ε2t ,

where ε2t → 0 in probability. Since
⋃

(u1,··· ,uk )⊂Zs
{· · · } is a union of mutually disjoint

events, we have

Pδx

( ⋃

(u1,··· ,uk )⊂Zs

{ k1⋂

j=1
{Z (u j )

t−s (A1 + R(t)) = 1}, · · · ,

k⋂

j=k−km+1
{Z (u j )

t−s (Am + R(t)) = 1},
⋂

u∈Zs\{u1,··· ,uk }
{Z (u)

t−s(A + R(t)) = 0}} |Gs
)

=
∑

(u1,··· ,uk )⊂Zs

Pδx

( k1⋂

j=1
{Z (u j )

t−s (A1 + R(t)) = 1}, · · · ,

k⋂

j=k−km+1
{Z (u j )

t−s (Am + R(t)) = 1},
⋂

u∈Zs\{u1,··· ,uk }
{Z (u)

t−s(A + R(t)) = 0} |Gs
)

=
∑

(u1,··· ,uk )⊂Zs

Pδzu1 (s)

(
Zt−s(A1 + R(t)) = 1

)× · · · × Pδzuk (s)

(
Zt−s(Am + R(t)) = 1

)

×
∏

u∈Zs\{u1,··· ,uk }
Pδzu (s)

(
Zt−s(A + R(t)) = 0

)

=
[ ∏

u∈Zs

Pδzu (s)

(
Zt−s(A + R(t)) = 0

)]×
[ ∑

(u1,··· ,uk )⊂Zs

Pδzu1 (s)

(
Zt−s(A1 + R(t)) = 1

)

Pδzu1 (s)

(
Zt−s(A1 + R(t)) = 0

)

× · · · ×
Pδzuk (s)

(
Zt−s(Am + R(t)) = 1

)

Pδzuk (s)

(
Zt−s(A1 + R(t)) = 0

)
]
.

The second equality follows by theMarkov branching property. So far we have proved
that

Pδx

(
m⋂

i=1
{Zt (Ai + R(t)) = ki } |Gs

)

= ε1t + ε2t +
1

k1! · · · km !1E1
t

[ ∏

u∈Zs

Pδzu (s)

(
Zt−s(A + R(t)) = 0

)]
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×
[ ∑

(u1,··· ,uk )⊂Zs

Pδzu1 (s)

(
Zt−s(A1 + R(t)) = 1

)

Pδzu1 (s)

(
Zt−s(A1 + R(t)) = 0

) × · · ·

×
Pδzuk (s)

(
Zt−s(Am + R(t)) = 1

)

Pδzuk (s)

(
Zt−s(A1 + R(t)) = 0

)
]
.

Hence to prove (4.21), it suffices to prove that

lim
t→+∞ 1E1

t

∏

u∈Zs

Pδzu (s)

(
Zt−s(A + R(t)) = 0

) = e−w−Wh/w∞ (Z)η−(A) (4.26)

in probability and

lim
t→+∞ 1E1

t

∑

(u1,··· ,uk )⊂Zs

Pδzu1 (s)

(
Zt−s(A1 + R(t)) = 1

)

Pδzu1 (s)

(
Zt−s(A1 + R(t)) = 0

) × · · ·

×
Pδzuk (s)

(
Zt−s(Am + R(t)) = 1

)

Pδzuk (s)

(
Zt−s(A1 + R(t)) = 0

)

=
m∏

i=1

(
w−Wh/w∞ (Z)η−(Ai )

)ki
in probability. (4.27)

(i) We first prove (4.26). It follows from (4.10) that for t large enough, on the event
E1
t ,

∏

u∈Zs

Pδzu (s)

(
Zt−s(A + R(t)) = 0

) ≤
∏

u∈Zs

(

1− θ4(t)w−η−(A)
h(zu(s))

w(zu(s))
e−λ1s

)

≤
∏

u∈Zs

exp{−θ4(t)w−η−(A)
h(zu(s))

w(zu(s))
e−λ1s}

= exp{−θ4(t)w−η−(A)Wh/w
s (Z)}. (4.28)

The second inequality is from the fact that 1 − x ≤ e−x for all x ≥ 0. For the lower
bound, it follows from (4.11) that for t large enough, on E1

t

∏

u∈Zs

Pδzu (s)

(
Zt−s(A + R(t)) = 0

)

≥
∏

u∈Zs

(

1− θ5(t)w−η−(A)
h(zu(s))

w(zu(s))
e−λ1s

)

= exp

⎧
⎨

⎩

∑

u∈Zs

log

(

1− θ5(t)w−η−(A)
h(zu(s))

w(zu(s))
e−λ1s

)
⎫
⎬

⎭
. (4.29)
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Note that c := supy∈R h(y)/w(y) ≤ ‖h‖∞/ inf y∈R w(y) < +∞. Using the fact that

log(1− x) ≥ log(1− x∗)
x∗

x ∀x∗ ∈ (0, 1), x ∈ [0, x∗],

we get by (4.29) that on E1
t ,

∏

u∈Zs

Pδzu (s)

(
Zt−s(A + R(t)) = 0

)

≥ exp
{ log

(
1− θ5(t)w−η−(A)ce−λ1s

)

θ5(t)w−η−(A)ce−λ1s

∑

u∈Zs

θ5(t)w−η−(A)
h(zu(s))

w(zu(s))
e−λ1s

}

= exp
{ log

(
1− θ5(t)w−η−(A)ce−λ1s

)

θ5(t)w−η−(A)ce−λ1s
θ5(t)w−η−(A)Wh/w

s (Z)
}
. (4.30)

It is easy to see that the final terms of (4.28) and (4.30) converge to e−w−η−(A)Wh/w∞ (Z)

almost surely. Thus, (4.26) follows immediately.
(ii) Now, we prove (4.27).We use θ

( j)
i (t) to denote the functions θi (t) in Lemma 4.4

corresponding to the set A j . It follows by (4.11) and (4.12) that, on the event E1
t ,

∑

(u1,··· ,uk )⊂Zs

Pδzu1 (s)

(
Zt−s(A1 + R(t)) = 1

)

Pδzu1 (s)

(
Zt−s(A1 + R(t)) = 0

) × · · · ×
Pδzuk (s)

(
Zt−s(Am + R(t)) = 1

)

Pδzuk (s)

(
Zt−s(A1 + R(t)) = 0

)

≤
∑

(u1,··· ,uk )⊂Zs

θ
(1)
6 (t)w−η−(A1)

h(zu1 (s))
w(zu1 (s)) e

−λ1s

1− θ5(t)w−η−(A)
h(zu1 (s))
w(zu1 (s)) e

−λ1s
× · · · ×

θ
(m)
6 (t)w−η−(Am)

h(zuk (s))
w(zuk (s)) e

−λ1s

1− θ5(t)w−η−(A)
h(zuk (s))
w(zuk (s)) e

−λ1s

≤
∏m

i=1 θ
(i)
6 (t)ki

(
1− θ5(t)w−η−(A)ce−λ1s

)k

×
( ∑

(u1,··· ,uk )⊂Zs

w−η−(A1)
h(zu1 (s))

w(zu1 (s))
e−λ1s × · · · × w−η−(Am)

h(zuk (s))

w(zuk (s))
e−λ1s

)

≤
∏m

i=1 θ
(i)
6 (t)ki

(
1− θ5(t)w−η−(A)ce−λ1s

)k

×
( ∑

u1∈Zs

w−η−(A1)
h(zu1 (s))

w(zu1 (s))
e−λ1s

)
× · · · ×

( ∑

uk∈Zs

w−η−(Am)
h(zuk (s))

w(zuk (s))
e−λ1s

)

=
∏m

i=1 θ
(i)
6 (t)ki

(
1− θ5(t)w−η−(A)ce−λ1s

)k

m∏

i=1

(
w−η−(Ai )W

h/w
s (Z)

)ki
. (4.31)

For the lower bound, we have by (4.12) that on E1
t ,
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∑

(u1,··· ,uk )⊂Zs

Pδzu1 (s)

(
Zt−s(A1 + R(t)) = 1

)

Pδzu1 (s)

(
Zt−s(A1 + R(t)) = 0

) × · · · ×
Pδzuk (s)

(
Zt−s(Am + R(t)) = 1

)

Pδzuk (s)

(
Zt−s(A1 + R(t)) = 0

)

≥
∑

(u1,··· ,uk )⊂Zs

Pδzu1 (s)

(
Zt−s(A1 + R(t)) = 1

)
× · · · × Pδzuk (s)

(
Zt−s(Am + R(t)) = 1

)

≥
∑

(u1,··· ,uk )⊂Zs

θ
(1)
7 (t)w−η−(A1)

h(zu1 (s))

w(zu1 (s))
e−λ1s × · · · × θ

(m)
7 (t)w−η−(Am)

h(zuk (s))

w(zuk (s))
e−λ1s

=
[ m∏

i=1

(
θ

(i)
7 (t)w−η−(Ai )

)ki ]×
[ ∑

(u1,··· ,uk )⊂Zs

h(zu1 (s))

w(zu1 (s))
e−λ1s × · · · × h(zuk (s))

w(zuk (s))
e−λ1s

]
.

(4.32)

Note that the sum
∑

u1,··· ,uk∈Zs
is no larger than the sum of

∑
(u1,··· ,uk )⊂Zs

and∑
1≤i< j≤k

∑
u1,··· ,uk∈Zs ,ui=u j

, and that

∑

u1,··· ,uk∈Zs ,ui=u j

h(zu1(s))

w(zu1(s))
e−λ1s × · · · × h(zuk (s))

w(zuk (s))
e−λ1s

≤ c1e
−λ1s

∑

u1,··· ,uk−1∈Zs

h(zu1(s))

w(zu1(s))
e−λ1s × · · · × h(zuk−1(s))

w(zuk−1(s))
e−λ1s

≤ c1e
−λ1sWh/w

s (Z)k−1.

Thus, we have

Wh/w
s (Z)k =

∑

u1,··· ,uk∈Zs

h(zu1(s))

w(zu1(s))
e−λ1s × · · · × h(zuk (s))

w(zuk (s))
e−λ1s

≤
∑

(u1,··· ,uk )⊂Zs

h(zu1(s))

w(zu1(s))
e−λ1s × · · · × h(zuk (s))

w(zuk (s))
e−λ1s

+ c2e
−λ1sWh/w

s (Z)k−1. (4.33)

Putting this back to (4.32), we get that on E1
t ,

∑

(u1,··· ,uk )⊂Zs

Pδzu1 (s)

(
Zt−s(A1 + R(t)) = 1

)

Pδzu1 (s)

(
Zt−s(A1 + R(t)) = 0

) × · · ·

×
Pδzuk (s)

(
Zt−s(Am + R(t)) = 1

)

Pδzuk (s)

(
Zt−s(A1 + R(t)) = 0

)

≥
[ m∏

i=1

(
θ

(i)
7 (t)w−η−(Ai )

)ki ]×
[
Wh/w

s (Z)k − c2e
−λ1sWh/w

s (Z)k−1
]
. (4.34)
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We note that the final terms of (4.31) and (4.34) converge to

m∏

i=1

(
w−η−(Ai )W

h/w∞ (Z)
)ki

almost surely. Thus, (4.27) follows immediately. Therefore, we complete the proof.��
Proposition 4.7 For every μ ∈ M(R), ((Zt ± √

λ1/2 t)t≥0,Pμ) converges in dis-

tribution to a Cox process directed by w±Wh/w∞ (Z)η±(dx), where Wh/w∞ (Z) is the
martingale limit of ((Wh/w

t (Z))t≥0,Pμ).

Proof For any f ∈ C+c (R) and μ ∈M(R),

Pμ

[

e−〈 f ,Zt±
√

λ1
2 t〉

]

= Pμ

[

Pμ

[

e−〈 f ,Zt±
√

λ1
2 t〉|Z0

]]

= Pμ

⎡

⎣
∏

u∈Z0

Pδzu (0)

[

e−〈 f ,Zt±
√

λ1
2 t〉

]
⎤

⎦

= exp

{

−
∫

R

(

1− Pδx

[

e−〈 f ,Zt±
√

λ1
2 t〉

])

w(x)μ(dx)

}

.

The final equality is because (Z0,Pμ) is a Poisson point process with intensity wμ.
Similarly, one can prove that for every λ ≥ 0,

Pμ

[
e−λWh/w∞ (Z)

]
= exp

{

−
∫

R

(
1− Pδx

[
e−λWh/w∞ (Z)

])
w(x)μ(dx)

}

.

Since by Proposition 4.6

lim
t→+∞Pδx

[

e−〈 f ,Zt±
√

λ1
2 t〉

]

= Pδx

[
e−w±Wh/w∞ (Z)〈1−e− f ,η±〉

]

for all x ∈ R, we get by the bounded convergence theorem that

lim
t→+∞Pμ

[

e−〈 f ,Zt±
√

λ1
2 t〉

]

= Pμ

[
e−w±Wh/w∞ (Z)〈1−e− f ,η±〉

]
.

Hence, we prove this proposition. ��
For t ≥ 0, let max Zt := max{zu(t) : u ∈ Zt } be the maximum displacement of

the skeleton branching diffusion.

Proposition 4.8 For any μ ∈Mc(R) and y ∈ R,

lim
t→+∞Pμ

(

max Zt −
√

λ1

2
t ≤ y

∣
∣
∣ Wh∞(X) > 0

)
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= Pμ

[

exp
{
− w−C−√

2λ1
e−

√
2λ1yWh∞(X)

} ∣
∣
∣Wh∞(X) > 0

]

. (4.35)

This implies that conditioned on {Wh∞(X) > 0}, the maximal displacement of the
skeleton branching diffusion centered by

√
λ1/2 t converges in distribution to a ran-

domly shifted Gumbel distribution.

Proof Fix an arbitrary y ∈ R. If we set A = A1 = (y,+∞) and k = k1 = 0 in (4.21),
then we get

Pδx

(

Zt

(√
λ1

2
t + y,+∞

)
= 0

∣
∣
∣Gs

)

→ e
−w−C−√

2λ1
e−
√

2λ1 yWh/w∞ (Z)

in probability as t →+∞. It follows immediately that

lim
t→+∞Pδx

(

max Zt −
√

λ1

2
t ≤ y

)

= Pδx

[

e
−w−C−√

2λ1
e−
√

2λ1 yWh/w∞ (Z)

]

.

Using this and the branching property, we can show that for any μ ∈Mc(R),

lim
t→+∞Pμ

(

max Zt −
√

λ1

2
t ≤ y

)

= Pμ

[

e
−w−C−√

2λ1
e−
√

2λ1 yWh∞(X)

]

. (4.36)

We note that

Pμ

(

max Zt −
√

λ1

2
t ≤ y, Wh∞(X) = 0

)

= Pμ

(

max Zt −
√

λ1

2
t ≤ y, Wh/w∞ (Z) = 0

)

= Pμ (‖Z0‖ = 0)

+ Pμ

(

PZt

(
Wh/w∞ (Z) = 0

)
; ‖Z0‖ �= 0, max Zt −

√
λ1

2
t ≤ y

)

. (4.37)

Noting (4.18), one has PZt

(
Wh/w∞ (Z) = 0

)
= 0 Pμ-a.s. on {‖Z0‖ �= 0}. Thus, the

second term in the right-hand side of (4.37) equals 0, and one gets

Pμ

(

max Zt −
√

λ1

2
t ≤ y, Wh∞(X) = 0

)

= Pμ (‖Z0‖ = 0) = e−〈w,μ〉.
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Thus, we have

Pμ

(

max Zt −
√

λ1

2
t ≤ y

∣
∣
∣ Wh∞(X) > 0

)

−Pμ

[

exp
{
− w−C−√

2λ1
e−

√
2λ1yWh∞(X)

} ∣
∣
∣Wh∞(X) > 0

]

=
Pμ

(

max Zt −
√

λ1
2 t ≤ y, Wh∞(X) > 0

)

Pμ

(
Wh∞(X) > 0

)

−
Pμ

[
exp

{
− w−C−√

2λ1
e−

√
2λ1yWh∞(X)

}
,Wh∞(X) > 0

]

Pμ

(
Wh∞(X) > 0

)

=
Pμ

(

max Zt −
√

λ1
2 t ≤ y

)

− e−〈w,μ〉

Pμ

(
Wh∞(X) > 0

)

−
Pμ

[
exp

{
−w−C−√

2λ1
e−

√
2λ1yWh∞(X)

}]
− Pμ

(
Wh∞(X) = 0

)

Pμ

(
Wh∞(X) > 0

) .

Hence, (4.35) follows by (4.36). ��
Remark 4.9 One can order the positions of the particles alive at time t in a nonincreas-
ing order: Rt,1 ≥ Rt,2 ≥ · · · ≥ Rt,‖Zt‖. Then similarly as in Proposition 4.8, one can
get the weak convergence of (Rt,1, Rt,2, · · · , R(t,n)).

4.3 Proofs of Theorem 1.2 and Theorem 1.3

The main idea of the proof for Theorem 1.2 is from [21, Lemma 4.17]: Suppose
ξ1, ξ2, · · · are Cox processes on R directed by some random measures η1, η2, · · · .
Then, ξn converges in distribution to some ξ if and only if ηn converges in distribution
to some η, in which case ξ is distributed as a Cox process directed by η.

Proof of Theorem 1.2: Fix μ ∈ M(R). Proposition 4.1(iii) implies that (Zt ±√
λ1/2 t,Pμ) is distributed as a Cox process directed by the random measure

w(x ∓ √
λ1/2 t)

(
Xt ±√λ1/2 t

)
(dx). It then follows by [21, Lemma 4.17] and

Proposition 4.7 that the latter converges in distribution to w±Wh∞(X)η±(dx). This
implies that

∫
R
f (x)w(x ∓ √

λ1/2 t)
(
Xt ±√

λ1/2 t
)
(dx) converges in distribution

to w±Wh∞(X)〈 f , η±〉 for every f ∈ C+c (R). Recall that for x ≥ M , w = w− and for
x ≤ −M , w = w+. Note that for t large enough such that x +√λ1/2 t ≥ M and x −√

λ1/2 t ≤ −M for all x ∈ supp f ,
∫
R
f (x)w(x ∓√

λ1/2 t)
(
Xt ±√λ1/2 t

)
(dx) =

w±〈 f , Xt ±√
λ1/2 t〉. Thus, one gets that 〈 f , Xt ±√

λ1/2 t〉 converges in distribu-
tion to Wh∞(X)〈 f , η±〉. This implies that Xt ± √

λ1/2 t converges in distribution to
Wh∞(X)η±(dx). ��

123



Journal of Theoretical Probability (2024) 37:2457–2507 2501

Remark 4.10 (i) Theorem 1.2 implies that for any bounded and compactly supported
measurable function f on R whose set of discontinuous points has zero Lebesgue
measure, 〈 f , Xt ± √

λ1/2 t〉 converges in distribution to Wh∞(X)〈 f , η±〉. In par-
ticular for any compact set B ⊂ R whose boundary has zero Lebesgue measure,
Xt

(∓√λ1/2 t + B
)
converges in distribution to Wh∞(X)η±(B).

(ii) We use max Xt to denote the supremum of the support of Xt , i.e., max Xt :=
sup{x : Xt (x,+∞) > 0}. Let m > 0 and y ∈ R. We have

Pμ

(

max Xt −
√

λ1

2
t > y

)

≥ Pμ

(
〈
1(y,y+m), Xt −

√
λ1

2
t
〉
> 0

)

. (4.38)

Wenote that
〈
1(y,y+m), Xt−

√
λ1
2 t

〉
converges in distribution toWh∞(X)〈1(y,y+m), η−〉.

Hence, letting t →+∞ in (4.38), we get that

lim inf
t→+∞ Pμ

(

max Xt −
√

λ1

2
t > y

)

≥ Pμ

(
Wh∞(X) > 0

)
. (4.39)

Note that

Pμ

(

max Xt −
√

λ1

2
t > y

∣
∣
∣Wh∞(X) > 0

)

=
Pμ

(

max Xt −
√

λ1
2 t > y

)

− Pμ

(

max Xt −
√

λ1
2 t > y,Wh∞(X) = 0

)

Pμ

(
Wh∞(X) > 0

)

=
Pμ

(

max Xt −
√

λ1
2 t > y

)

− Pμ

(

e−〈w,Xt 〉;max Xt −
√

λ1
2 t > y

)

Pμ

(
Wh∞(X) > 0

)

≥
Pμ

(

max Xt −
√

λ1
2 t > y

)

− Pμ

(
e−〈w,Xt 〉)

Pμ

(
Wh∞(X) > 0

)

=
Pμ

(

max Xt −
√

λ1
2 t > y

)

− e−〈w,μ〉

Pμ

(
Wh∞(X) > 0

) .

Hence by (4.39), we have for any y ∈ R,

lim inf
t→+∞ Pμ

(

max Xt −
√

λ1

2
t > y

∣
∣
∣Wh∞(X) > 0

)

≥ 1− e−〈w,μ〉

1− e−〈w,μ〉 > 0.

So conditioned on {Wh∞(X) > 0}, the distributions of {max Xt −√λ1/2 t : t ≥ 0} are
not tight. This is very different from the behavior we observe in Proposition 4.8 for
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the skeleton. Loosely speaking, supremum of the support of super-Brownian motion
may grow much faster than that of the embedded skeleton. Similar phenomenon has
been observed for spatially independent branching super-Brownian motions, see, for
example, [31, Remark 2.12]. This is partly because of the effect of the infinitesimal
branching of super-Brownian motions.

Proof of Theorem 1.3: We take δ = √
λ1/2 and μ ∈ Mc(R). Suppose suppμ ⊂

[−k, k] for some 0 < k < +∞. We have

Pμ

[X δt
t

] =
∫

R

�x
[
eβ(t), |Bt | ≥ δt

]
μ(dx).

Since by Lemma 2.2 for t large enough

�x
[
eβ(t), |Bt | ≥ δt

] ≤ θ+(t)
1√
2λ1

(C+ + C−)h(x) ∀x ∈ [−k, k],

where θ+(t) → 1 as t →+∞, we have

Pμ

[X δt
t

] ≤ θ+(t)
1√
2λ1

(C+ + C−)

∫

R

h(x)μ(dx).

This implies that

sup
t≥0

Pμ

(X δt
t > λ

) ≤ sup
t≥0

Pμ

[X δt
t

]

λ
→ 0 as λ →+∞.

So the distributions of {X δt
t : t ≥ 0} are tight.

Applying similar argument as in the proof of Proposition 4.6, one can show that
for any x ∈ R, integers m, n ≥ 0, integers k1, · · · , km, l1, · · · , ln ≥ 0 and Borel
sets A1, · · · , Am, B1, · · · , Bn such that inf Ai > −∞ and sup Bj < +∞ for i =
1, · · · ,m, j = 1, · · · , n,

Pδx

⎛

⎝
m⋂

i=1
{Zt (δt + Ai ) = ki },

n⋂

j=1
{Zt (−δt + Bj ) = l j } |Gs

⎞

⎠

→ exp{−w−Wh/w∞ (Z)

m∑

i=1
η−(Ai )− w+Wh/w∞ (Z)

n∑

j=1
η+(Bj )}

m∏

i=1

(
w−Wh/w∞ (Z)η−(Ai )

)ki

ki !
n∏

j=1

(
w+Wh/w∞ (Z)η+(Bj )

)l j

l j ! (4.40)

in probability as t → +∞. This implies that the point process ((Zt − δt) + (Zt +
δt),Pδx ) converges in distribution to a Cox process directed by the random measure

Wh/w∞ (Z)(w−η−(dx) + w+η+(dx)). Applying similar argument as in the proof of
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Theorem1.2, one can further show that the randommeasure ((Xt−δt)+(Xt+δt),Pμ)

converges in distribution toWh∞(X)(η−(dx)+ η+(dx)). On the other hand, by taking
n = m = 1 and A1 = −B1 = [0,+∞) in (4.40), one gets

Pδx (Zt ([δt,+∞)) = k1, Zt ((−∞,−δt]) = l1 |Gs)

→ e
− 1√

2λ1
Wh/w∞ (Z)(w−C−+w+C+)

(
w−Wh/w∞ (Z)/

√
2λ1

)k1

k1!

(
w+Wh/w∞ (Z)/

√
2λ1

)l1

l1!

in probability as t → +∞. Using similar computations as in the proof of Proposi-
tion 4.7, one gets that for all λ1, λ2 ≥ 0,

lim
t→+∞Pμ

[
e−λ1Zt ([δt,+∞))−λ2Zt ((−∞,−δt])]

= Pμ

[
e
−(

1−e−λ1
) 1√

2λ1
Wh∞(X)w−C−−

(
1−e−λ2

) 1√
2λ1

Wh∞(X)w+C+]
. (4.41)

Recall that given Xt , Zt is a Poisson point process with intensity wXt . Thus for t
sufficiently large,

Pμ

[
e−λ1Zt ([δt,+∞))−λ2Zt ((−∞,−δt])]

= Pμ

[

e
−
〈
(
1−e−λ1

)
1[δt,+∞)+

(
1−e−λ2

)
1(−∞,−δt],wXt

〉]

= Pμ

[
e−

(
1−e−λ1

)
w−Xt ([δt,+∞))−(

1−e−λ2
)
w+Xt ((−∞,−δt])] .

Hence, by (4.41) we have

lim
t→+∞Pμ

[
e−

(
1−e−λ1

)
w−Xt ([δt,+∞))−(

1−e−λ2
)
w+Xt ((−∞,−δt])]

= Pμ

[
e
−(

1−e−λ1
) 1√

2λ1
Wh∞(X)w−C−−

(
1−e−λ2

) 1√
2λ1

Wh∞(X)w+C+]
.

For 0 ≤ λ < w− ∧w+, taking λ1, λ2 such that (1− e−λ1)w− = (1− e−λ2)w+ = λ,
one gets that

lim
t→+∞Pμ

[
e−λX δt

t

]
= Pμ

[

e
−λ(C++C−) 1√

2λ1
Wh∞(X)

]

. (4.42)

Suppose (X δt
t ,Pμ) converges in distribution to ξ along a subsequence {tn : n ≥

1} ⊂ [0,+∞), for some random variable ξ . Let F1 and F2 be the distribution functions
of ξ and (C+ + C−)Wh∞(X)/

√
2λ1, respectively. It suffices to show that F1 = F2.

Let D1 be the set of continuous points of F1. We note that {X δt
t ≤ x} ⊆ {Xt ((δt, δt +
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N ))+ Xt ((−δt − N ,−δt)) ≤ x} for all x, N ∈ R. Thus for any y ∈ D1,

F1(y) = lim
n→+∞Pμ

(
X δtn
tn ≤ y

)

≤ lim sup
n→+∞

Pμ

(
Xtn ((δtn, δtn + N ))+ Xtn ((−δtn − N ,−δtn)) ≤ y

)

≤ Pμ

(
Wh∞(X) (η−((0, N ))+ η+((−N , 0))) ≤ y

)

= F2

(
η−((0,+∞))+ η+((−∞, 0))

η−((0, N ))+ η+((−N , 0))
y

)

.

By letting N → +∞, one gets that F1(y) ≤ F2(y). If F1(y) < F2(y) for some
y ∈ D1, then there is some ε > 0 such that F1(x) < F2(x) for all x ∈ (y, y+ ε). This
yields that for any λ > 0,

E
[
e−λξ

]− Pμ

[

e
−λ(C++C−) 1√

2λ1
Wh∞(X)

]

= λ

∫ +∞

0
e−λx (F1(x)− F2(x)) dx < 0,

which contradicts (4.42). Thus, we have F1(x) = F2(x) for all x ∈ D1 and hence for
all x ∈ R. ��
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Appendix A

Lemma A.1 The martingale functionw in (A2) is a solution to the following equation.

1

2
w′′(x)− ψ(x, w(x)) = 0, ∀x ∈ R. (A1)

Proof It is proved by [15, Lemma 2.1] that the martingale function w which satisfies
(A2) is continuous on R. Moreover, the argument leading to [15, (2.4)] shows that for
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any compact set D of R,

w(x) = �x
[
w(Bt∧τD )

]−�x

[∫ t∧τD

0
ψ(Bs, w(Bs))ds

]

, ∀t ≥ 0, x ∈ R,

where τD denotes the first exit time of Brownianmotion from D. Sincew is continuous
and locally bounded, letting t → +∞ in the above equation, we get by the bounded
convergence theorem that

w(x) = �x
[
w(BτD )

]−�x

[∫ τD

0
ψ(Bs, w(Bs))ds

]

, x ∈ D.

Applying similar argument as in the last paragraph of Page 708 in [16], one can show
that w is a solution to (A1). ��
Lemma A.2 Suppose {ξn : n ≥ 1} is a sequence of point processes on R, and η is
a locally finite random measure on R. Then, ξn converges in distribution to a Cox
process directed by η if the following conditions hold.

(i) For m ∈ N, mutually disjoint bounded Borel sets A1, · · · , Am of R and
k1, · · · , km ∈ Z

+,

lim
n→+∞P (ξn(A1) = k1, · · · , ξn(Am) = km) = E

[

e−
∑m

i=1 η(Ai )
m∏

i=1

η(Ai )
ki

ki !

]

.

(ii) For any bounded Borel set A of R, supn E [ξn(A)] < +∞.

Proof We need to show that for all f ∈ C+c (R),

E
[
e−〈 f ,ξn〉

]
→ E

[
e−〈1−e− f ,η〉] as n →+∞. (A2)

It is easy to deduce from (i) that (A2) holds if f is a nonnegative compactly supported
simple function. For an arbitrary f ∈ C+c (R) with supp f ⊂ A where A is a bounded
Borel set of R, one can find a nondecreasing sequence of nonnegative compactly
supported simple functions { fk : k ≥ 1} such that fn converges uniformly to f . We
note that for k, n ≥ 1,

∣
∣
∣E

[
e−〈 fk ,ξn〉

]
− E

[
e−〈 f ,ξn〉

]∣∣
∣ ≤ E

[∣∣
∣e−〈 fk ,ξn〉 − e−〈 f ,ξn〉

∣
∣
∣
]

≤ E [|〈 fk, ξn〉 − 〈 f , ξn〉|]
≤ E [〈| fk − f |, ξn〉]
≤ ‖ fk − f ‖∞E [ξn(A)] .

It follows by (ii) that supn
∣
∣E

[
e−〈 fk ,ξn〉

]− E
[
e−〈 f ,ξn〉

]∣∣ → 0 as k → +∞. So we
have

lim
n→+∞E

[
e−〈 f ,ξn〉

]
= lim

n→+∞ lim
k→+∞E

[
e−〈 fk ,ξn〉

]
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= lim
k→+∞ lim

n→+∞E
[
e−〈 fk ,ξn〉

]

= lim
k→+∞E

[
e−〈1−e− fk ,η〉]

= E
[
e−〈1−e− f ,η〉] .

The first and final equalities are from the bounded convergence theorem. ��
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