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Abstract

Using one-dimensional branching Brownian motion in a periodic environment, we give
probabilistic proofs of the asymptotics and uniqueness of pulsating traveling waves of
the Fisher–Kolmogorov–Petrovskii–Piskounov (F-KPP) equation in a periodic environ-
ment. This paper is a sequel to ‘Branching Brownian motion in a periodic environment
and existence of pulsating travelling waves’ (Ren et al., 2022), in which we proved the
existence of the pulsating traveling waves in the supercritical and critical cases, using
the limits of the additive and derivative martingales of branching Brownian motion in a
periodic environment.
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1. Introduction

McKean [15] established the connection between branching Brownian motion (BBM) and
the Fisher–Kolmogorov–Petrovskii–Piskounov (F-KPP) reaction-diffusion equation

∂u
∂t

= 1

2

∂2u
∂x2

+ β(f(u)− u), (1.1)

where f is the generating function of the offspring distribution and β is the (constant) branching
rate of BBM. The F-KPP equation has been studied intensively using both analytic techniques
(see, for example, Kolmogorov et al. [12] and Fisher [6]) and probabilistic methods (see, for
instance, McKean [15], Bramson [2, 3], Harris [10], and Kyprianou [13]).

A traveling wave solution of (1.1) with speed c is a solution of the following equation:

1

2
�′′

c + c�′
c + β(f(�c)−�c)= 0. (1.2)
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Branching Brownian motion in a periodic environment 511

If �c is a solution of (1.2), then u(t, x)=�c(x− ct) satisfies (1.1). Using the relation between
the F-KPP equation (1.1) and BBM, Kyprianou [13] gave probabilistic proofs of the existence,
asymptotics, and uniqueness of traveling wave solutions. In this paper, we study the follow-
ing more general F-KPP equation, in which the constant β is replaced by a continuous and
1-periodic function g:

∂u
∂t

= 1

2

∂2u
∂x2

+ g · (f(u)− u), (1.3)

where u : R+ ×R→ [0, 1]. In [16], we have shown that the above equation is related to
branching Brownian motion in a periodic environment.

Now we describe branching Brownian motion in a periodic environment. Initially there is
a single particle v at the origin of the real line. This particle moves as a standard Brownian
motion B= {B(t), t ≥ 0} and produces a random number of offspring, 1+ L, after a random
time ηv. We assume that L has distribution {pk, k ≥ 0} with m := ∑

k≥0 kpk ∈ (0,∞). Let bv

and dv be the birth time and death time, respectively, of the particle v, and let Xv(s) be the
location of the particle v at time s; then ηv = dv − bv, the lifetime of v, satisfies

Px(ηv > t | bv, {Xv(s) : s≥ bv})= exp

{
−

∫ bv+t

bv

g(Xv(s))ds

}
,

where we assume the branching rate function g ∈C1(R) is strictly positive and 1-periodic.
Starting from their points of creation, each of these children evolves independently.

Let Nt be the set of particles alive at time t, and let Xu(s) be the position of the particle u or
its ancestor at time s for any u ∈Nt, s≤ t. Define

Zt =
∑
u∈Nt

δXu(t)

and Ft = σ (Zs : s≤ t). Then {Zt : t ≥ 0} is called a branching Brownian motion in a periodic
environment (BBMPE). Let Px be the law of {Zt : t ≥ 0} when the initial particle starts at x ∈R,
that is, Px(Z0 = δx)= 1, and let Ex be expectation with respect to Px. For simplicity, P0 and
E0 will be written as P and E, respectively. Notice that the distribution of L does not depend
on the spatial location. In the remainder of this paper, expectations with respect to L will be
written as E. The notation in this paper is the same as that in [16].

As stated in [16], the F-KPP equation related to BBMPE is given by (1.3) with f(s)=
E(sL+1). Traveling wave solutions, that is, solutions satisfying (1.2), do not exist. However,
we can consider so-called pulsating traveling waves, that is, solutions u : R+ ×R→ [0, 1] to
(1.3) satisfying

u
(

t + 1

ν
, x

)
= u(t, x− 1), (1.4)

as well as the boundary condition

lim
x→−∞ u(t, x)= 0, lim

x→+∞ u(t, x)= 1,

when ν > 0, and
lim

x→−∞ u(t, x)= 1, lim
x→+∞ u(t, x)= 0,

when ν < 0. The quantity ν is called the wave speed. It is known that there is a constant ν∗ > 0
(defined below) such that when |ν|< ν∗ (called the subcritical case) no such solution exists,
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whereas for each |ν| ≥ ν∗ (where |ν|> ν∗ is called the supercritical case and |ν| = ν∗ is called
the critical case) there exists a unique (up to time-shift) pulsating traveling wave (see Hamel
et al. [8]).

In [16], we studied the limits of the additive and derivative martingales of BBMPE, and by
using these limits we gave a probabilistic proof of the existence of pulsating traveling waves.
In this paper, using the relation between BBMPE and the related F-KPP equation, we give
probabilistic proofs of the asymptotics and uniqueness of pulsating traveling waves. These
extend the results of Kyprianou [13] for classical BBM to BBMPE. However, the methods
in Kyprianou [13] do not work for BBMPE. We will therefore adapt ideas from [10]. The
non-homogeneous nature of the environment makes the actual arguments much more delicate.

Before stating our main results, we first introduce the minimal speed ν∗. For every λ ∈R,
let γ (λ) and ψ(·, λ) be the principal eigenvalue and the corresponding positive eigenfunction
of the periodic problem: for all x ∈R,

1

2
ψxx(x, λ)− λψx(x, λ)+

(
1

2
λ2 +mg(x)

)
ψ(x, λ)= γ (λ)ψ(x, λ),

ψ(x+ 1, λ)=ψ(x, λ).

We normalize ψ(·, λ) so that
∫ 1

0 ψ(x, λ)dx= 1. Define

ν∗ := min
λ>0

γ (λ)

λ
, λ∗ := arg min

λ>0

γ (λ)

λ
.

Then ν∗ is the minimal wave speed (see [8]), and the existence of λ∗ is proved in [14].

Using the property u
(

t + 1
ν
, x

)
= u(t, x− 1), we can define u(−t, x) for any t> 0. To be

more specific, let 	x
 be the smallest integer greater than or equal to x, and let �x� be the
integral part of x. When ν > 0, define

u(−t, x)= u
(
−t + 	νt


ν
, x+ 	νt


)
, t> 0, x ∈R.

When ν < 0, define

u(−t, x)= u
(
−t + �νt�

ν
, x+ �νt�

)
, t> 0, x ∈R.

Then u(t, x) satisfies the F-KPP equation (1.3) and (1.4) in R×R.
Our first two main results give the asymptotic behaviors of pulsating traveling waves in the

supercritical case of |ν|> ν∗ and the critical case of |ν| = ν∗.

Theorem 1.1. Suppose u(t, x) is a pulsating traveling wave with speed ν > ν∗ and λ ∈ (0, λ∗)
satisfies ν = γ (λ)

λ
. If E(L log+ L)<+∞, then there exists β > 0 such that

1− u
(

y− x

ν
, y

)
∼ βe−λxψ(y, λ) uniformly in y ∈ [0, 1] as x→+∞.

Theorem 1.2. Suppose u(t, x) is a pulsating traveling wave with speed ν = ν∗. If
E
(
L(log+ L)2

)
<∞, then there exists β > 0 such that

1− u
(

y− x

ν∗
, y

)
∼ βxe−λ∗xψ(y, λ∗) uniformly in y ∈ [0, 1] as x→+∞.
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Remark 1.1. By symmetry, we also have the asymptotic behaviors of pulsating traveling
waves with negative speed. In the supercritical case of ν <−ν∗, suppose u(t, x) is a pulsat-
ing traveling wave with speed ν and λ ∈ (−λ∗, 0) satisfies ν = γ (λ)

λ
. If E(L log+ L)<+∞,

then there exists β > 0 such that

1− u
(

y− x

ν
, y

)
∼ βe−λxψ(y, λ) uniformly in y ∈ [0, 1] as x→−∞.

In the critical case, suppose u(t, x) is a pulsating traveling wave with speed −ν∗. If
E
(
L(log+ L)2

)
<∞, then there exists β > 0 such that

1− u
(

y− x

−ν∗ , y

)
∼ β|x|eλ∗xψ(y,−λ∗) uniformly in y ∈ [0, 1] as x→−∞.

For any λ ∈R, define

Wt(λ)= e−γ (λ)t
∑
u∈Nt

e−λXu(t)ψ(Xu(t), λ) (1.5)

and

∂Wt(λ) := e−γ (λ)t
∑
u∈Nt

e−λXu(t)(ψ(Xu(t), λ)(γ ′(λ)t + Xu(t))−ψλ(Xu(t), λ)
)
. (1.6)

It follows from [16, Theorem 1.1] that, for any λ ∈R and x ∈R, {(Wt(λ))t≥0, Px} is a mar-
tingale, called the additive martingale. The limit W(λ, x) := limt↑∞ Wt(λ) exists Px-almost
surely (a.s.). Moreover, W(λ, x) is an L1(Px)-limit when |λ|<λ∗ and E(L log+ L)<∞;
and W(λ, x)= 0 Px-a.s. when |λ| ≥ λ∗ or |λ|<λ∗ and E(L log+ L)=∞. It follows from
[16, Theorem 1.2] that, for any λ ∈R and x ∈R, {(∂Wt(λ))t≥0, Px} is a martingale, called
the derivative martingale. For all |λ| ≥ λ∗, the limit ∂W(λ, x) := limt↑∞ ∂Wt(λ) exists Px-
a.s. Moreover, if E

(
L(log+ L)2

)
<∞, then ∂W(λ, x) ∈ (0,∞) when λ= λ∗, and ∂W(λ, x) ∈

(−∞, 0) when λ=−λ∗. If |λ|>λ∗ or |λ| = λ∗ and E
(
L(log+ L)2

)=∞, then ∂W(λ, x)= 0
Px-a.s.

Using Theorem 1.1, Theorem 1.2, and [16, Theorem 1.3], we can prove the following result,
which gives the existence and uniqueness of pulsating traveling waves.

Theorem 1.3. (i) Supercritical case. If |ν|> ν∗ and E(L log+ L)<∞, then there is a unique
(up to time-shift) pulsating traveling wave with speed ν, given by

u(t, x)=Ex

(
exp

{
−eγ (λ)tW(λ, x)

})
,

where |λ| ∈ (0, λ∗) is such that ν = γ (λ)
λ

.
(ii) Critical case. If |ν| = ν∗ and E

(
L(log+ L)2

)
<∞, then there is a unique (up to time-

shift) pulsating traveling wave with speed ν, given by

u(t, x)=Ex

(
exp

{
−eγ (λ)t∂W(λ, x)

})
,

where λ= λ∗ if ν = ν∗, and λ=−λ∗ if ν =−ν∗.

Theorem 1.1, Theorem 1.2, and the uniqueness in Theorem 1.3 were proved analytically in
[7, 9] under slightly different assumptions. The probabilistic representation in Theorem 1.3 is
new. For a detailed comparison, see Remark 4.1 at the end of Section 4.
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2. Preliminaries

2.1. Properties of principal eigenvalue and eigenfunction

In this section, we recall some properties of γ (λ) and ψ(x, λ) from [16]. By [16, Lemma
2.1], the function γ is analytic, strictly convex, and even on R. There exists a unique λ∗ > 0
such that

ν∗ = γ (λ∗)

λ∗
=min
λ>0

γ (λ)

λ
> 0.

Furthermore,
lim

λ→−∞ γ
′(λ)=−∞, lim

λ→+∞ γ
′(λ)=+∞.

By [16, Lemma 2.2], we have γ ′(λ∗)= γ (λ∗)

λ∗
,

γ ′(λ)<
γ (λ)

λ
on (0, λ∗), and γ ′(λ)>

γ (λ)

λ
on (λ∗,∞). (2.1)

By [16, Lemma 2.5], we have that ψ(x, ·) ∈C(R)∩C1(R \ {0}), and ψλ(x, λ) satisfies

1

2
ψλxx(x, λ)−ψx(x, λ)− λψλx(x, λ)+

(
1

2
λ2 +mg(x)

)
ψλ(x, λ)+ λψ(x, λ)

= γ (λ)ψλ(x, λ)+ γ ′(λ)ψ(x, λ).

Define
φ(x, λ) := e−λxψ(x, λ), x ∈R.

Then φ(x, λ) satisfies

1

2
φxx(x, λ)+mg(x)φ(x, λ)= γ (λ)φ(x, λ), (2.2)

and φλ(x, λ) satisfies

1

2
φλxx(x, λ)+mg(x)φλ(x, λ)= γ ′(λ)φ(x, λ)+ γ (λ)φλ(x, λ). (2.3)

Define

h(x) := x− ψλ(x, λ)

ψ(x, λ)
; (2.4)

we also have

h(x)=−φλ(x, λ)

φ(x, λ)
.

It is easy to see that h′ is 1-periodic and continuous, and [16, Lemma 2.10] shows that h′ is
strictly positive.

2.2. Measure change for Brownian motion

Martingale change of measures for Brownian motion will play an important role in our
arguments. In this section, we state the results of [16] about martingale change of measures.

Let {Bt, t ≥ 0;x} be a standard Brownian motion starting from x. Define

�t(λ) := e−γ (λ)t−λBt+m
∫ t

0 g(Bs)dsψ(Bt, λ);
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then by [16, Lemma 2.6], {�t(λ), t ≥ 0} is a x-martingale. Define a probability measure
λx by

dλx
dx

∣∣∣∣FB
t

= �t(λ)

�0(λ)
, (2.5)

where
{FB

t : t ≥ 0
}

is the natural filtration of Brownian motion. We have shown in [16] that{
Bt, 

λ
x

}
is a diffusion with infinitesimal generator

(Af )(x)= 1

2

∂2f (x)

∂x2
+

(
ψx(x, λ)

ψ(x, λ)
− λ

)
∂f (x)

∂x
. (2.6)

In the remainder of this paper, we always assume that
{
Yt, t ≥ 0;λx

}
is a diffusion with

infinitesimal generator (2.6). It follows from [16, Lemma 2.8] that, for any x ∈R,

Yt

t
→−γ ′(λ), as t →∞, λx -a.s. (2.7)

Define

Mt := γ ′(λ)t + h(Yt)− h(Y0), t ≥ 0.

By [16, Lemma 2.12],
{
Mt, t ≥ 0;λx

}
is a martingale. Moreover, there exist two constants

c2 > c1 > 0 such that the quadratic variation 〈M〉t satisfies

〈M〉t =
∫ t

0

(
h′(Ys)

)2 ds ∈ [c1t, c2t]. (2.8)

For any x ∈R, define an
{FB

t

}
stopping time

τ x
λ := inf

{
t ≥ 0 : h(Bt)≤−x− γ ′(λ)t

}
. (2.9)

Define

�
(x,λ)
t := e−γ (λ)t−λBt+m

∫ t
0 g(Bs)dsψ(Bt, λ)

(
x+ γ ′(λ)t + h(Bt)

)
1{
τ x
λ>t

}; (2.10)

then [16, Lemma 2.11] shows that for any x, y ∈R with y> h−1(−x),
{
�

(x,λ)
t , t ≥ 0

}
is a y-

martingale. For x, y ∈R with y> h−1(−x), define a new probability measure (x,λ)
y by

d(x,λ)
y

dy

∣∣∣∣FB
t

= �
(x,λ)
t

�
(x,λ)
0

. (2.11)

By [16, Section 2.2], if {Bt, t ≥ 0;y} is a standard Brownian motion starting at y, then{
x+ h(y)+MT(t), t ≥ 0;(x,λ)

y

}
is a standard Bessel-3 process starting at x+ h(y), where

Mt = γ ′(λ)t + h(Bt)− h(B0) and

T(s)= inf{t> 0 : 〈M〉t > s} = inf

{
t> 0 :

∫ t

0

(
h′(Br)

)2 dr> s

}
.
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3. Proof of Theorem 1.1

Proof of Theorem 1.1. We fix ν > ν∗ in this proof and so λ is also fixed. We will prove the
theorem in five steps. In the first four steps, we assume the number of offspring is 2, that is,
L= 1. In the last step, we prove the result for general L.

Step 1. Suppose L= 1 and thus m= 1. Let w(t, x)= 1− u(t, x); then w(t, x) satisfies⎧⎪⎨⎪⎩
∂w
∂t = 1

2
∂2w
∂x2 + g · (w−w2

)
,

w
(

t + 1
ν
, x

)
=w(t, x− 1),

(3.1)

for t ≥ 0, x ∈R. Define

w(−t, x)=w
(
−t + 	νt


ν
, x+ 	νt


)
, for t> 0, x ∈R.

By the periodicity of w, we get that w(t, x) satisfies (3.1). Put

w̃(t, x) := eλx−γ (λ)tw(t, x)

ψ(x, λ)
. (3.2)

Recall that
{
Yt, 

λ
x

}
is a diffusion with infinitesimal generator (2.6). For t ≥ 0, let Y[0,t] be the

restriction of Y to [0, t]. Define

f
(
Y[0,t]

)= w̃(−t, Yt)e
− ∫ t

0 g(Ys)w(−s,Ys)ds, t ≥ 0. (3.3)

In this step we prove that
{(

f
(
Y[0,t]

))
t≥0, 

λ
x

}
is a positive martingale.

By the Feynman–Kac formula, we have

w(T, x)=x

[
w(T − t, Bt)e

∫ t
0 g(Bs)(1−w(T−s,Bs))ds

]
, for T ∈R, t> 0. (3.4)

Recall that, since m= 1,

dλx
dx

∣∣∣∣FB
t

= �t(λ)

�0(λ)
= e−γ (λ)t−λBt+

∫ t
0 g(Bs)dsψ(Bt, λ)

e−λxψ(x, λ)
.

Therefore,

w(T, x)=λx
[
�0(λ)

�t(λ)
w(T − t, Bt)e

∫ t
0 g(Bs)(1−w(T−s,Bs))ds

]
=λx

[
e−λxψ(x, λ)

eλBt+γ (λ)t−∫ t
0 g(Bs)dsw(T − t, Bt)

ψ(Bt, λ)
e
∫ t

0 g(Bs)(1−w(T−s,Bs))ds

]

=λx
[

e−λx+γ (λ)Tψ(x, λ)
eλBt−γ (λ)(T−t)w(T − t, Bt)

ψ(Bt, λ)
e−

∫ t
0 g(Bs)w(T−s,Bs)ds

]
.

Thus we have
w̃(T, x)=λx

[
w̃(T − t, Bt)e

− ∫ t
0 g(Bs)w(T−s,Bs)ds

]
.
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Note that both
{
Bt, 

λ
x

}
and

{
Yt, 

λ
x

}
are diffusions with infinitesimal generator A. Thus

w̃(T, x)=λx
[
w̃(T − t, Yt)e

− ∫ t
0 g(Ys)w(T−s,Ys)ds

]
. (3.5)

It follows from ν = γ (λ)
λ

that

w̃
(

t + 1

ν
, x+ 1

)
= eλ(x+1)−γ (λ)

(
t+ 1

ν

)
w
(
t + 1

ν
, x+ 1

)
ψ(x+ 1, λ)

= eλx−γ (λ)tw(t, x)

ψ(x, λ)
= w̃(t, x). (3.6)

For 0< s< t, we have

λx

[
f
(
Y[0,t]

)∣∣∣Fs

]
=λx

[
w̃(−t, Yt)e

− ∫ t
0 g(Yr)w(−r,Yr)dr

∣∣∣Fs

]
= e−

∫ s
0 g(Yr)w(−r,Yr)drλYs

[
w̃(−t, Yt−s)e

− ∫ t−s
0 g(Yr)w(−(r+s),Yr)dr

]
= e−

∫ s
0 g(Yr)w(−r,Yr)drλYs

[
w̃
(−s− (t − s), Yt−s

)
e−

∫ t−s
0 g(Yr)w(−s−r,Yr)dr

]
= e−

∫ s
0 g(Yr)w(−r,Yr)drw̃(−s, Ys)= f (Y[0,s]),

where the penultimate equality follows from (3.5) with T =−s. Hence the process{(
f
(
Y[0,t]

))
t≥0, 

λ
x

}
is a positive martingale.

Step 2. Suppose L= 1. In this step, we will show that there exists a constant β ≥ 0 such that
for any x ∈R,

w̃(−t, Yt)→ β as t →∞, λx -a.s. (3.7)

Moreover, we also prove that for any x, T ∈R,

w̃(T − t, Yt)→ β as t →∞, λx -a.s. (3.8)

It follows from (2.7) and (2.1) that

lim
s→∞

Ys + νs

s
=−γ ′(λ)+ γ (λ)

λ
> 0.

Thus lim
s→∞ (Ys + νs)=∞. Since a positive martingale has a non-negative finite limit, taking

logarithms in (3.3) and dividing by Yt + νt gives

lim sup
t→∞

{
ln w̃(−t, Yt)

Yt + νt
− 1

Yt + νt

∫ t

0
g(Ys)w(−s, Ys)ds

}
≤ 0 λx -a.s. (3.9)

Put ‖g‖∞ =maxx∈[0,1] g(x). Taking T = t in (3.4), we get

w(t, x)=x

[
w(0, Bt)e

∫ t
0 g(Bs)(1−w(t−s,Bs))ds

]
≤x

[
w(0, Bt)e

‖g‖∞t
]

≤ e‖g‖∞/ν0 [w(0, Bt + x)] , t ∈
[

0,
1

ν

]
.

Since w(0, x)→ 0 as x→∞, we have, for any ε > 0, w(0, x/2)≤ ε/2 when x is large
enough. Since 0(Bt + x≤ x/2)=0(Bt ≤−x/2), we have 0(Bt + x≤ x/2)≤ ε/2 for x
large enough. Therefore, for x large enough,

w(t, x)≤ e‖g‖∞/ν0(w(0, Bt + x))≤ e‖g‖∞/νε, t ∈
[

0,
1

ν

]
.
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This implies that w(t, x)→ 0 as x→∞ uniformly in t ∈
[
0, 1

ν

]
. Combining this with the fact

that

w(−t, Yt)=w
(
−t + 	νt


ν
, Yt + 	νt


)
and lim

t→∞ (Yt + 	νt
)=∞ λx -a.s., we get

lim
t→∞

1

t

∫ t

0
g(Ys)w(−s, Ys)ds= 0, λx -a.s.

Therefore, by (3.9),

lim sup
t→∞

{
ln w̃(−t, Yt)

Yt + νt

}
≤ 0, λx -a.s.

Hence by (3.2), we have

lim sup
t→∞

{
ln

[
eλYt+γ (λ)tw(−t, Yt)/ψ(Yt, λ)

]
Yt + νt

}
≤ 0, λx -a.s. (3.10)

Since ψ(·, λ) is positive, continuous, and periodic, we have

0< inf
x∈Rψ(x, λ)≤ sup

x∈R
ψ(x, λ)<∞.

Combining this with ν = γ (λ)
λ

and (3.10), we get that

lim sup
t→∞

{
λ(Yt + νt)+ ln w(−t, Yt)

Yt + νt

}
≤ 0, λx -a.s.;

that is,

lim sup
t→∞

{
ln w(−t, Yt)

Yt + νt

}
≤−λ, λx -a.s.

This implies that, for any δ > 0 and λx -a.s. all ω, there exists C(ω)> 0 such that

w(−t, Yt(ω))≤C(ω)e−(λ−δ)(Yt(ω)+νt), t ≥ 0. (3.11)

Therefore, ∫ ∞

0
g(Ys)w(−s, Ys)ds<+∞, λx -a.s.

Consequently, by (3.3), w̃(−t, Yt) converges λx -a.s. to some limit, say ξx.
Next we use a coupling method to prove that ξx is a constant λx -a.s. Consider{(

Y1
t , Y2

t

)
, t ≥ 0; ̃λ(x,y)

}
with

{
Y1

t , t ≥ 0
}

and
{
Y2

t , t ≥ 0
}

being independent, and

{
Y1

t , t ≥ 0; ̃λ(x,y)

} d= {
Yt, t ≥ 0;λx

}
,

{
Y2

t , t ≥ 0; ̃λ(x,y)

} d= {
Yt, t ≥ 0;λy

}
.

Define
Mi

t = h
(
Yi

t

)+ γ ′(λ)t − h
(
Yi

0

)
, i= 1, 2.
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Then
{

M1
t , t ≥ 0; ̃λ(x,y)

}
and

{
M2

t , t ≥ 0; ̃λ(x,y)

}
are independent martingales. Hence

〈
M1 −M2〉

t = 〈M1〉t +
〈
M2〉

t →∞, as t →∞.

By the Dambis–Dubins–Schwarz theorem, we get

lim inf
t→∞

(
M1

t −M2
t

)=−∞ and lim sup
t→∞

(
M1

t −M2
t

)=+∞, ̃λ(x,y)-a.s. (3.12)

Since h(x)= x− ψλ(x,λ)
ψ(x,λ) , we have

Y1
t − Y2

t =M1
t −M2

t +
ψλ

(
Y1

t , λ
)

ψ
(
Y1

t , λ
) − ψλ

(
Y2

t , λ
)

ψ
(
Y2

t , λ
) + h

(
Y1

0

)− h
(
Y2

0

)
.

Combining (3.12) with the boundedness of ψλ(x,λ)
ψ(x,λ) , we get

lim inf
t→∞

(
Y1

t − Y2
t

)=−∞ and lim sup
t→∞

(
Y1

t − Y2
t

)=+∞, ̃λ(x,y)-a.s.

Define E := {
ω : ∃tn = tn(ω)→∞ with Y1

tn = Y2
tn for all n

}
. Then it follows from the display

above that
̃λ(x,y)(E)= 1. (3.13)

If we use ξ̃x and ξ̃y respectively to denote the limits of w̃
(−t, Y1

t

)
and w̃

(−t, Y2
t

)
under ̃λ(x,y),

then (3.13) implies ̃λ(x,y)

(
ξ̃x = ξ̃y

)= 1. Since ξ̃x and ξ̃y are independent, there is a constant

β ≥ 0 such that ξ̃x = ξ̃y = β. Since ξ̃x
d= ξx, we have for any x ∈R, ξx = β, which means (3.7)

holds.
Now we consider

f
(
Y[0,t], T

)= w̃(T − t, Yt)e
− ∫ t

0 g(Ys)w(T−s,Ys)ds, t ≥ 0.

The proof in Step 1 also works if f
(
Y[0,t]

)
is replaced by f (Y[0,t], T). Then, using the same

argument as above, there exists another constant βT such that

w̃(T − t, Yt)→ βT , λx -a.s.

We also have

lim inf
t→∞

(
Y1

t+T − Y2
t

)=−∞ and lim sup
t→∞

(
Y1

t+T − Y2
t

)=+∞.

Hence, if we put ET :=
{
ω : ∃tn = tn(ω)→∞ with Y1

tn+T = Y2
tn for all n

}
, then

̃λ(x,y)(ET )= 1. (3.14)

Notice that Y1
tn+T = Y2

tn implies w̃
(
T − (t + T), Y1

t+T

)= w̃
(−t, Y2

t

)
. Combining this with

(3.14), we have βT = β; that is, for any x, T ∈R, (3.8) holds.
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Step 3. In Step 2, we have shown that w̃(−t, Yt)→ β λx -a.s., that is, w̃ converges along
each path. In this step, we prove that

w̃(t, x)→ β uniformly in t ∈
[

0,
1

ν

]
as x→∞, (3.15)

and β is positive.
First, we prove that w̃ is bounded. Using the same notation as in Step 2, we also have, for

any k ∈Z, 〈
M1
·+ k

ν

−M2·
〉
t
=

〈
M1
·+ k

ν

〉
t
+ 〈

M2·
〉
t →∞, as t →∞.

By the Dambis–Dubins–Schwarz theorem, it holds that

lim inf
t→∞

(
M1

t+ k
ν

−M2
t

)
=−∞ and lim sup

t→∞

(
M1

t+ k
ν

−M2
t

)
=+∞,

so the same conclusion holds for Y1
t+ k

ν

− Y2
t . This implies, with Ek :=

{
ω : ∃tn = tn(ω)→∞

with Y1
tn+ k

ν

+ k = Y2
tn for all n

}
, that

̃λ(x,y)(Ek)= 1. (3.16)

Consider the event �0 defined by⋂
k∈Z

Ek

⋂{
lim

t→∞ w̃
(−t, Yi

t

)= β, lim
t→∞

Yi
t

t
=−γ ′(λ), and Yi

t is continuous for i= 1, 2

}
.

By (2.7), (3.8), and (3.16), we get ̃λ(x,y)(�0)= 1. By (3.6), it suffices to show that w̃(t, x) is

bounded in
[
0, 1

ν

]×R. Fix ω ∈�0, and consider the continuous curves

Li
k =

{(
−t + k

ν
, Yi

t (ω)+ k

)
: t ∈

(
k − 1

ν
,

k

ν

)}
, k ∈N, i= 1, 2.

In Step 2 we have shown limt→∞ (Yi
t (ω)+ νt)=∞ for i= 1, 2; thus for any x0 large enough,

there exist k = k(ω)> j= j(ω) ∈N such that

x0 ≤ Y1
t (ω)+ k for any t ∈

[
k − 1

ν
,

k

ν

]
, and x0 ≥ Y2

t (ω)+ j for any t ∈
[

j− 1

ν
,

j

ν

]
.

Define

τ̃ (ω)= inf

{
t ≥ j/ν : Y1

t+ k−j
ν

(ω)+ k = Y2
t (ω)+ j

}
.

By the definition of �0, we know τ̃ (ω)<+∞. Let L̃ denote the line segment{
1

ν

}
×

[
Y2

j−1
ν

(ω)+ j, Y1
k−1
ν

(ω)+ k

]
,

and define the curves

L̃1
k =

{(
−t + k

ν
, Y1

t (ω)+ k

)
: t ∈

[
k − 1

ν
, τ̃ (ω)+ k − j

ν

]}
,

L̃2
j =

{(
−t + j

ν
, Y2

t (ω)+ j

)
: t ∈

[
j− 1

ν
, τ̃ (ω)

]}
.
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FIGURE 1. Bounded domain D with boundary L̃∪ L̃1
k ∪ L̃2

j .

By the definition of τ̃ (ω), we have(
−

(
τ̃ (ω)+ k − j

ν

)
+ k

ν
, Y1

τ̃ (ω)+ k−j
ν

(ω)+ k

)
=

(
−τ̃ (ω)+ j

ν
, Y2

τ̃ (ω)(ω)+ j

)
.

Define
y(ω)= Y1

τ̃ (ω)+ k−j
ν

(ω)+ k;

then y(ω)= Y2
τ̃ (ω)(ω)+ j, and L̃1

k and L̃2
j intersect at the point

(−τ̃ (ω)+ j
ν
, y(ω)

)
. Combining

(2.6), (3.5), and the Feynman–Kac formula, we have

∂w̃
∂t

= 1

2

∂2w̃
∂x2

+
(
ψx(x, λ)

ψ(x, λ)
− λ

)
∂w̃
∂x

− gww̃.

Let D denote the bounded domain with boundary L̃∪ L̃1
k ∪ L̃2

j (see Figure 1). By

the maximum principle, we have that w̃ attains its maximum in D on L̃1
k ∪ L̃2

j , where

D is the closure of D. Hence the maximum of w̃ on D is less than or equal to K :=
maxt≥0

{
w̃
(−t, Y1

t (ω)
)
, w̃

(−t, Y2
t (ω)

)}
. By the continuity of w̃ and since

lim
t→∞ w̃(−t, Yi

t (ω))= β, i= 1, 2,

we get K <∞. Notice that, fixing ω ∈�0, for any t0 ∈
[
0, 1

ν

]
and any x0 large enough, there

exist k = k(ω, x0), j= j(ω, x0) and a bounded domain D=D(ω, x0) such that D has boundary
L̃∪ L̃1

k ∪ L̃2
j and (t0, x0) ∈D. Thus w̃(t0, x0)≤K. Combining this with lim

x→−∞ w̃(t, x)= 0 and

the continuity of w̃, we get that w̃(t, x) is bounded in
[
0, 1

ν

]×R, hence bounded in R×R.
Since w̃(t, x) is bounded, by (3.5), (3.8), and the dominated convergence theorem,

w̃(t, x)=λx
[
βe−

∫∞
0 g(Ys)w(t−s,Ys)ds

]
≤ β.

Since w̃(t, x)> 0, we have β > 0.
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Next we show that

w̃(t, x)→ β uniformly in t ∈
[

0,
1

ν

]
as x→∞.

It follows from (3.2) that

w(t − s, Ys)≤ e−λYs+γ (λ)(t−s)ψ(Yt, λ)w̃(t − s, Ys)

≤ β max
z∈[0,1]

ψ(z, λ)eγ (λ) 1
ν e−λ(Ys+νs)

≤C1e−λ(Ys+νs), ∀t ∈
[

0,
1

ν

]
,

(3.17)

where C1 is a constant depending only on λ. Moreover, we have

g(Ys)w(t − s, Ys)≤Ce−λ(Ys+νs), ∀t ∈
[

0,
1

ν

]
,

where C =C1‖g‖∞. For any y ∈ [0, 1] and n ∈N, let

fn(y)=λy
[
e−

∫∞
0 Ce−λ(Ys+n+νs)ds

]
.

Recall that {x} is the fractional part of x and �x� is the integer part of x. Then by the periodicity
of Yt, we have

w̃(t, x)≥ βλx
[
e−

∫∞
0 Ce−λ(Ys+νs)ds

]
= βλ{x}

[
e−

∫∞
0 Ce−λ(Ys+�x�+νs)ds

]
= βf�x�({x}).

Since
∫∞

0 e−λ(Ys+νs)ds<+∞ λx -a.s., by the dominated convergence theorem, we get

lim
n→∞ fn(y)=λy

[
lim

n→∞ e−
∫∞

0 Ce−λ(Ys+n+νs)ds
]
=λy

[
e− limn→∞

∫∞
0 Ce−λ(Ys+n+νs)ds

]
=λy

[
e−

∫∞
0 limn→∞ Ce−λ(Ys+n+νs)ds

]
= 1.

Notice that fn(y)≤ fn+1(y), using Dini’s theorem we get fn(y)→ 1 uniformly for y ∈ [0, 1].
Combining this with βfn(y)≤ w̃(t, y+ n)≤ β, we have (3.15).

By (3.2), we get

eλx−γ (λ)tw(t, x)

ψ(x, λ)
→ β uniformly in t ∈

[
0,

1

ν

]
as x→∞. (3.18)

Step 4. Suppose L= 1. We will show that

w
(

y− x

ν
, y

)
∼ βe−λxψ(y, λ) uniformly in y ∈ [0, 1] as x→+∞. (3.19)

It is equivalent to show that, for any ε > 0, there exists x0 such that for any x> x0,

sup
y∈[0,1]

∣∣∣∣∣eλxw
(

y−x
ν
, y

)
ψ(y, λ)

− β
∣∣∣∣∣< ε.
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By (3.18), for any ε > 0, there exists z0 such that for any z> z0,

sup
t∈[0, 1

v ]

∣∣∣∣∣eλz−γ (λ)tw(t, z)

ψ(z, λ)
− β

∣∣∣∣∣< ε.

Put

t = {y− x}
ν

, z=−�y− x� + y.

For any x> z0 + 1, we have

sup
{y−x}
ν

∈
[

0, 1
ν

]
∣∣∣∣∣eλ(−�y−x�+y)−γ (λ) {y−x}

ν w
( {y−x}

ν
,−�y− x� + y

)
ψ(−�y− x� + y, λ)

− β
∣∣∣∣∣< ε,

that is

sup
y∈[0,1]

∣∣∣∣∣eλxw
(

y−x
ν
, y

)
ψ(y, λ)

− β
∣∣∣∣∣< ε,

where we used the periodicity of ψ and the fact that

λ(−�y− x� + y)− γ (λ)
{y− x}
ν

= λ(−�y− x� + y)− λ{y− x} = λ(−(y− x)+ y)= λx.

Thus (3.19) holds.

Step 5. In Steps 1–4, we have proven the theorem in the case of binary branching. It suffices
to prove Steps 1–4 again for general branching mechanism.

For general branching mechanism, w= 1− u satisfies

∂w
∂t

= 1

2

∂2w
∂x2

+ g · (1−w− f(1−w)),

where f(s)=Es1+L =
∞∑

k=0
pks1+k and m=

∞∑
k=0

kpk. By the Feynman–Kac formula,

w(T, x)=x

[
w(T − t, Bt)e

∫ t
0 g(Bs) 1−w−f(1−w)

w (T−s,Bs)ds
]

.

By the definition in (2.5),

w(T, x)=λx
[
�0(λ)

�t(λ)
w(T − t, Bt)e

∫ t
0 g(Bs) 1−w−f(1−w)

w (T−s,Bs)ds
]

=λx
[

e−λx+γ (λ)Tψ(x, λ)
eλBt−γ (λ)(T−t)w(T − t, Bt)

ψ(Bt, λ)
e
∫ t

0 g(Bs)
(

1−w−f(1−w)
w (T−s,Bs)−m

)
ds
]

.

Put

A(w)=
{

m− 1−w−f(1−w)
w , w ∈ (0, 1],

0, w= 0.

Since
(
Bt, 

λ
x

)
and

(
Yt, 

λ
x

)
have the same law, by (3.2), we have

w̃(T, x)=λx
[
w̃(T − t, Yt)e

− ∫ t
0 g(Ys)A(w)(T−s,Ys)ds

]
.

https://doi.org/10.1017/apr.2022.32 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.32


524 Y.-X. REN ET AL.

It follows from [1, Corollary 2, p. 26] that A(·) is non-negative and non-decreasing. Moreover,
for any r, c ∈ (0, 1),

∞∑
n=0

A
(
crn)<+∞ iff E

(
L log+ L

)
<+∞. (3.20)

Using the argument of Step 1, we get that{
w̃(−t, Yt)e

− ∫ t
0 g(Ys)A(w)(−s,Ys)ds, λx

}
t≥0

is a non-negative martingale. Using the argument at the beginning of Step 2, we get that
w(t, x)→ 0 uniformly in t ∈ [

0, 1
ν

]
as x→∞ and w(−t, Yt) decays exponentially with rate

at least −λ. We will get that w̃(−t, Yt) converges λx -a.s., if we can show that∫ ∞

0
g(Ys)A(w)(−s, Ys)ds<+∞, λx -a.s.

By (3.11) and (3.20), if E(L log+ L)<∞, we have∫ ∞

0
g(Ys)A(w)(−s, Ys)ds≤ ‖g‖∞

∫ ∞

0
A
(

Ce−(λ−δ)(Ys+νs)
)

ds

≤ ‖g‖∞
∫ ∞

0
A
(

C
(
e−(λ−δ)(ν−γ ′(λ))s)) ds

≤ ‖g‖∞
∞∑

n=0

A
(

C
(
e−(λ−δ)(ν−γ ′(λ))n))<+∞ λx -a.s.,

where C is a constant depending on ω and may change in value from line to line.
Also by the arguments in Steps 2 and 3, w̃(t, x) satisfies

∂w̃
∂t

= 1

2

∂2w̃
∂x2

+
(
ψx(x, λ)

ψ(x, λ)
− λ

)
∂w̃
∂x

− g · A(w)w̃,

and the maximum principle holds. Hence, w̃(t, x) is bounded in
[
0, 1

ν

]×R. Since A(·) is non-
decreasing, (3.17) implies

A(w)(t − s, Ys)≤ A
(

C1e−λ(Ys+νs)
)

.

By the periodicity of {Yt}, we have

w̃(t, y+ n)≥ βλy+n

[
e−

∫∞
0 ‖g‖∞A

(
C1e−λ(Ys+νs)

)
ds
]

= βλy
[
e−

∫∞
0 ‖g‖∞A

(
C1e−λ(Ys+n+νs)

)
ds
]

.

To prove the theorem, it suffices to show

λy

[
e−

∫∞
0 ‖g‖∞A

(
C1e−λ(Ys+n+νs)

)
ds
]
→ 1, as n→∞ uniformly for y ∈ [0, 1]. (3.21)

We know ∫ ∞

0
‖g‖∞A

(
C1e−λ(Ys+n+νs)

)
ds<+∞, λx -a.s.

By an argument similar to that in Step 3, (3.21) follows from limu↓0 A(u)= 0, the dominated
convergence theorem, and Dini’s theorem. This completes the proof. �
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4. Proof of Theorem 1.2

In this section, we prove the asymptotic behavior in the critical case.

Proof of Theorem 1.2. We prove the theorem in seven steps. In the first six steps, we consider
the case that L= 1. In the last step we consider general L.

Step 1. Suppose L= 1. Put w(t, x)= 1− u(t, x). We first prove that w(t, x) decays expo-
nentially with rate at least −λ uniformly in t ∈ [

0, 1
ν

]
. Using an argument similar to that of

Theorem 1.1, we have that, for t, x ∈R, w(t, x) satisfies⎧⎨⎩
∂w
∂t = 1

2
∂2w
∂x2 + g · (w−w2

)
,

w
(

t + 1
ν∗ , x

)
=w(t, x− 1).

By the Feynman–Kac formula, we get

w(T, x)=x

[
w(T − t, Bt)e

∫ t
0 g(Bs)(1−w(T−s,Bs))ds

]
, for T ∈R, t> 0.

For any λ< λ∗, define

w̃(t, x)= eλx−γ (λ)tw(t, x)

ψ(x, λ)
. (4.1)

Changing measure with �t(λ) and following the same ideas as in Step 1 of the proof of
Theorem 1.1, we get that

w̃(T, x)=λx
[
w̃(T − t, Yt)e

− ∫ t
0 g(Ys)w(T−s,Ys)ds

]
,

and {
w̃(−t, Yt)e

− ∫ t
0 g(Ys)w(−s,Ys)ds, λx

}
t≥0

is a positive martingale. Therefore, we have

lim sup
t→∞

{
ln w̃(−t, Yt)

Yt + ν∗t
− 1

Yt + ν∗t

∫ t

0
g(Ys)w(−s, Ys)ds

}
≤ 0, λx -a.s.

Notice that for λ< λ∗,

lim
t→∞

Yt + ν∗t

t
→−γ ′(λ)+ ν∗ > 0.

Combining this with (4.1), we get

lim sup
t→∞

ln w̃(−t, Yt)

Yt + ν∗t
= lim sup

t→∞

ln
(

eλ(Yt+ν∗t)+(γ (λ)−λν∗)tw(−t, Yt)
)

Yt + ν∗t

= lim sup
t→∞

ln w(−t, Yt)

Yt + ν∗t
+ λ+ γ (λ)− λν∗

ν∗ − γ ′(λ)
≤ 0, λx -a.s.,

where γ (λ)− λν∗ > 0. Hence w(−t, Yt) decays exponentially with rate at least −λ λx -a.s.
This implies ∫ ∞

0
g(Ys)w(−s, Ys)ds<+∞, λx -a.s.
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Then w̃(−t, Yt) converges λx -a.s. Using a coupling method similar to that of Step 2 in the
proof of Theorem 1.1, we get that the limit of w̃(−t, Yt) is a constant. Notice that

w̃
(

t + 1

ν∗
, x+ 1

)
=

eλ(x+1)−γ (λ)
(

t+ 1
ν∗

)
w
(

t + 1
ν∗ , x+ 1

)
ψ(x+ 1, λ)

= eλ−
γ (λ)
ν∗ w̃(t, x)< w̃(t, x),

where we used w
(

t + 1
ν∗ , x+ 1

)
=w(t, x) and ν∗ < γ (λ)

λ
for λ< λ∗. Therefore, for any

k ∈N,

w̃
(
−t + k

ν
, Yt + k

)
≤ w̃(−t, Yt).

Using an argument similar to that of Step 3 in the proof of Theorem 1.1, we get that w̃(t, x)

is bounded in
[
0, 1

ν∗
]
×R. Then, by (4.1), w(t, x) decays exponentially with rate at least −λ

uniformly in t ∈
[
0, 1

ν∗
]
.

Step 2. We will show that
{

f
(
B[0,t]

)
, 

(y,λ∗)
x

}
is a local martingale, where f

(
B[0,t]

)
is defined

in (4.7) below. Recall the definitions of h, τ x
λ , �(x,λ)

t , and (x,λ)
y given in (2.4), (2.9), (2.10),

and (2.11) respectively, with λ= λ∗ in (2.4). Fix y ∈R. For any (t, x) such that y− γ ′(λ∗)t+
h(x)> 0, define

ŵ(t, x, y) := eλ
∗x−γ (λ∗)tw(t, x)

ψ(x, λ∗)(y− γ ′(λ∗)t + h(x))
, (4.2)

and for any z> 0, define

τz := inf
{
t ≥ 0 : y+ γ ′(λ∗)t + h(Bt)≤ z

}
. (4.3)

We mention here that τz actually depends on y. For any x ∈R, we may define

τz(x) := inf
{
t ≥ 0 : x+ γ ′(λ∗)t + h(Bt)≤ z

}
.

Then τz is shorthand for τz(y), and for any x ∈R, τz(y− x)= τz+x. Using (4.2), it is easy to
show

ŵ
(

t + 1

ν∗
, x+ 1, y

)
= ŵ(t, x, y). (4.4)

We first prove that for any T ∈R and t> 0,

ŵ
(
T, x, y+ ν∗T

)=(y,λ∗)
x

(
ŵ
(
T − t ∧ τz, Bt∧τz , y+ ν∗T

)
e−

∫ t∧τz
0 g(Bs)w(T−s,Bs)ds

)
. (4.5)

First note that, by the Feynman–Kac formula and the optional stopping theorem,

w(T, x)=x

(
w(T − t ∧ τz, Bt∧τz )e

∫ t∧τz
0 g(Bs)(1−w(T−s,Bs))ds

)
, T ∈R, t> 0. (4.6)
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Noticing that �(y,λ∗)
t∧τz

> 0 and ν∗ = γ ′(λ∗), a direct calculation shows that for x> h−1(y),

(y,λ∗)
x

(
ψ(x, λ∗)(y+ h(x))e−λ∗x+γ (λ∗)T

× ŵ
(
T − t ∧ τz, Bt∧τz , y+ ν∗T

)
e−

∫ t∧τz
0 g(Bs)w(T−s,Bs)ds

)
=(y,λ∗)

x

(
�

(y,λ∗)
0

�
(y,λ∗)
t∧τz

w
(
T − t ∧ τz, Bt∧τz

)
e
∫ t∧τz

0 g(Bs)(1−w(T−s,Bs))ds

)

=x

⎛⎝�(y,λ∗)
0

�
(y,λ∗)
t∧τz

w
(
T − t ∧ τz, Bt∧τz

)
e
∫ t∧τz

0 g(Bs)(1−w(T−s,Bs))ds�
(y,λ∗)
t∧τz

�
(y,λ∗)
0

1{
�

(y,λ∗)
t∧τz >0

}⎞⎠
=x

(
w
(
T − t ∧ τz, Bt∧τz

)
e
∫ t∧τz

0 g(Bs)(1−w(T−s,Bs))ds
)
=w(T, x),

where in the last equality we used (4.6). Then using the definition of ŵ given in (4.2), we get
(4.5).

Notice that
{

Bt, t ≥ 0;(y,λ∗)
x

}
is not a Brownian motion. By the argument in the last

paragraph of Subsection 2.2, we have that
{

y+ γ ′(λ∗)T(t)+ h(BT(t)), 
(y,λ∗)
x

}
is a Bessel-3

process starting from y+ h(x). Define

f
(
B[0,t]

)= ŵ(−t, Bt, y)e−
∫ t

0 g(Bs)w(−s,Bs)ds. (4.7)

By the Markov property, for any 0< s< t,

(y,λ∗)
x

[
f
(
B[0,t∧τz]

)|Fs

]
= f

(
B[0,s∧τz]

)
.

The proof of the display above is given in the appendix; see Lemma A.1. This implies that{
f
(
B[0,t∧τz]

)
, 

(y,λ∗)
x

}
is a martingale. Since τz →∞ as z ↓ 0,

{
f
(
B[0,t]

)
, 

(y,λ∗)
x

}
is a local

martingale.

Step 3. In this step, we will show that ŵ(T − t, Bt, y) converges (y−ν∗T,λ∗)
x -a.s. to a con-

stant β ≥ 0 as t →∞. Non-negative local martingales are non-negative super-martingales

and hence must converge. Therefore f (B[0,t]), defined by (4.7), converges (y,λ∗)
x -a.s. as

t →∞. Notice that
{

y+ γ ′(λ∗)T(t)+ h(BT(t)), 
(y,λ∗)
x

}
is a Bessel-3 process starting from

y+ h(x). It is known (see, for example, [17, Theorem 3.2]) that the Bessel-3 process grows no
slower than t1/2−ε for any ε > 0. Recall that T(t)= inf{s> 0 : 〈M〉s > t}. Equation (2.8) yields

T(t) ∈
[

t
c2
, t

c1

]
. Therefore, y+ γ ′(λ∗)t + h(Bt) grows no slower than t1/2−ε for any ε > 0. By

(2.4) and the boundedness of ψλ(·, λ)/ψ(·, λ), we get that Bt + ν∗t = Bt + γ ′(λ∗)t grows no

slower than t1/2−ε . By Step 1, w(t, x) decays exponentially fast uniformly in t ∈
[
0, 1

ν∗
]
. Hence

we have ∫ ∞

0
g(Bt)w(−t, Bt)dt<+∞, (y,λ∗)

x -a.s.

Therefore, by (4.7), the convergence of f (B[0,t]) implies that ŵ(−t, Bt, y) converges(y,λ∗)
x -a.s.

to some limit, say ξx.
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By (4.5), we have

ŵ(T, x, y)

=(y−ν∗T,λ∗)
x

(
ŵ
(
T − t ∧ τz(y− ν∗T), Bt∧τz(y−ν∗T), y

)
e−

∫ t∧τz(y−ν∗T)
0 g(Bs)w(T−s,Bs)ds

)
.

By the same method, we can get{
ŵ
(
T − t ∧ τz(y− ν∗T), Bt∧τz(y−ν∗T), y

)
e−

∫ t∧τz(y−ν∗T)
0 g(Bs)w(T−s,Bs)ds, (y−ν∗T,λ∗)

x

}
is a local martingale and ŵ(T − t, Bt, y) converges (y−ν∗T,λ∗)

x -a.s. to some limit, say ξT
x .

Next we use a coupling method to prove that there is a constant β ≥ 0 such that

ξT
x = β, (y−ν∗T,λ∗)

x -a.s. ∀T ≥ 0. (4.8)

Similarly to Step 2 in the proof of Theorem 1.1, consider a process
{(

B1
t , B2

t

)
, t ≥ 0; ̃(y,T)

x

}
with

{
B1

t , t ≥ 0
}

and
{
B2

t , t ≥ 0
}

being independent, and{
B1

t , t ≥ 0; ̃(y,T)
x

}
d=
{

Bt, t ≥ 0;(y,λ∗)
x

}
,{

B2
t , t ≥ 0; ̃(y,T)

x

}
d=
{

Bt, t ≥ 0;(y−v∗T,λ∗)
x

}
.

Define random curves

L1
k =

{(
−t + k

ν∗
, B1

t + k

)
: t ≥ k − 1

ν∗

}
, k ∈N,

and

L2
k =

{(
T − t + k

ν∗
, B2

t + k

)
: t ≥ k − 1

ν∗
+ T

}
, k ∈N.

Notice that all the curves start from the line
{ 1
ν∗

}×R, and for each i= 1, 2, if Li
1 is given,

we can get all the curves Li
k by translation. Using the fact that y+ h(BT(t))+ γ ′(λ∗)T(t) is a

Bessel-3 process, γ ′(λ∗)= ν∗, and |h(x)− x| is bounded, we have

lim
t→∞ Bt + ν∗t =∞ 

(y,λ∗)
x -a.s.

Now we show that for ̃(y,T)
x -a.s. all ω, it holds that for any k ∈N, L1

k and L1
k+1 intersect

each other. It is also equivalent to show that for any k ∈N, L1
k and L1

k+1 intersect each other

̃
(y,T)
x -a.s. If there exists t ≥ k−1

v∗ such that B1
t+ 1

ν∗
+ 1= B1

t , then(
−t + k

ν∗
, B1

t + k

)
=

(
−

(
t + 1

ν∗

)
+ k + 1

ν∗
, B1

t+ 1
ν∗
+ k + 1

)
,

which implies L1
k and L1

k+1 intersect each other. Notice that

B1
t+ 1

ν∗
+ 1= B1

t ⇐⇒ B1
t+ 1

ν∗
+ ν∗t + 1= B1

t + ν∗t

⇐⇒ h
(

B1
t+ 1

ν∗

)
+ ν∗

(
t + 1

ν∗
)
= h

(
B1

t

)+ ν∗t

⇐⇒ R̂〈M1〉
t+ 1
ν∗
= R̂〈M1〉t ,
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where R̂t := y+ h
(
B1

T(t)

)+ ν∗T(t) is a standard Bessel-3 process starting at y+ h(x). By (2.8),
we have

〈M1〉t+ 1
ν∗
− 〈M1〉t ∈

[ c1

ν∗
,

c2

ν∗
]
,

where 〈M1〉t =
∫ t

0

(
h′
(
B1

s

))2ds. Put

l(t)= R̂〈M1〉
t+ 1
ν∗
− R̂〈M1〉t ;

then l(t) is continuous ̃(y,T)
x -a.s. Since ̃(y,T)

x
(
limt→∞ R̂t =∞)= 1, we have

̃(y,T)
x (for any T > 0, ∃ t> T s.t. l(t)> 0)= 1.

To prove L1
k and L1

k+1 intersect ̃(y,T)
x -a.s., it suffices to show that

̃(y,T)
x (for any T > 0, ∃ t> T s.t. l(t)< 0)= 1.

Notice that

l(t)≤ max
s∈
[

c1
ν∗ ,

c2
ν∗

] (R̂s+〈M1〉t − R̂〈M1〉t

)
.

For simplicity, put b1 = c1
ν∗ and b2 = c2

ν∗ . It suffices to show that

̃(y,T)
x

(
for any T > 0, ∃ t> T s.t. max

s∈[b1,b2]
(̂Rt+s − R̂t)< 0

)
= 1. (4.9)

A classical result shows R̂t satisfies

dR̂t = dB̂t + 1

R̂t
dt, (4.10)

where
(

B̂t; ̃
(y,T)
x

)
is a standard Brownian motion. By (4.10), we have

̃(y,T)
x

(
max

s∈[b1,b2]

(̂
Bt+s − B̂t

)
<−1

)
≥̃(y,T)

x

(
B̂t+b1 − B̂t <−2, max

s∈[b1,b2]
B̂t+s − B̂t+b1 < 1

)
=0(Bb1 <−2) ·0

(
max

s∈[0,b2−b1]
Bs < 1

)
≥C> 0,

where the constant C does not depend on t. Hence

∞∑
j=0

̃(y,T)
x

(
max

s∈[b1,b2]
(̂Bjb2+s − B̂jb2 )<−1

)
=+∞.

By the second Borel–Cantelli lemma and the independent increments property of the Brownian
motion, we have

̃(y,T)
x

(
max

s∈[b1,b2]
(̂Bjb2+s − B̂jb2 )<−1, i.o.

)
= 1. (4.11)
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By (4.10), it holds that

R̂t+s − R̂t = B̂t+s − B̂t +
∫ t+s

t

1

R̂r
dr.

If R̂t+r > b2 for r ∈ [0, b2] and B̂t+s − B̂t <−1 for s≤ b2, then

R̂t+s − R̂t <−1+ s

b2
≤ 0. (4.12)

Since the Bessel-3 process is transient, we have

̃(y,T)
x

(∃ T > 0, s.t. for any t> T, R̂t > b2
)= 1. (4.13)

Combining (4.11), (4.12), and (4.13), we get (4.9). So ̃(y,T)
x -a.s., it holds that for any k ∈N,

L1
k and L1

k+1 intersect each other. Using the same method, we can also prove that ̃(y,T)
x -a.s.,

for any k, j ∈N, L1
k and L1

k+j intersect each other.
Consider

�0 =
⋂

k,j∈N

{
L1

k , L1
k+j intersect

}⋂{
lim

t→∞ ŵ
(−t, B1

t , y
)
, lim

t→∞ ŵ
(
T − t, B2

t , y
)

exists
}

⋂{
lim

t→∞ Bi
t + ν∗t =+∞, and Bi

t is continuous for i= 1, 2
}

;

then ̃
(y,T)
x (�0)= 1. For any ω ∈�0 and j ∈N, we know L2

j starts from the point(
1
ν∗ , B2

j−1
ν∗ +T

+ j

)
and there exists k ∈N such that

B1
k−1
ν∗

(ω)+ k ≤ B2
j−1
ν∗ +T

(ω)+ j≤ B1
k
ν∗

(ω)+ k + 1.

Hence the starting point of L2
j (ω) is between the starting points of L1

k(ω) and L1
k+1(ω). Since

L1
k(ω) and L1

k+1(ω) intersect, we have that L2
j (ω) must intersect either L1

k(ω) or L1
k+1(ω). We

use (s1(ω), x1(ω)) to denote the intersection point. By (4.4), there exist t11(ω), t21(ω) satisfying

ŵ
(
−t11(ω), B1

t11
(ω), y

)
= ŵ(s1(ω), x1(ω), y)= ŵ

(
T − t21(ω), B2

t21
(ω), y

)
.

Since j is arbitrary, we can find {tin(ω) : n ∈N, i= 1, 2} by induction such that

ŵ
(
−t1n(ω), B1

t1n
(ω), y

)
= ŵ

(
T − t2n(ω), B2

t2n
(ω), y

)
and satisfying

lim
n→∞ tin(ω)=∞ for i= 1, 2.

Therefore, we have

̃(y,T)
x

(
lim

t→∞ ŵ
(−t, B1

t , y
)= lim

t→∞ ŵ
(
T − t, B2

t , y
))= 1.

By the independence of
{
B1

t , t ≥ 0
}

and
{
B2

t , t ≥ 0
}
, we get that the limits must be the same.

So there is a constant β ≥ 0 such that

ξx = β, (y,λ∗)
x -a.s., and ξT

x = β, (y−v∗T,λ∗)
x -a.s.

Thus (4.8) is valid.
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Step 4. In this step we prove β > 0 by contradiction. If β = 0, then ŵ(−t, Bt, y)→ 0 as
t →∞. Hence the positive local martingale

ŵ(−t, Bt, y)e−
∫ t

0 g(Bs)w(−s,Bs)ds → 0, as t →∞, (y,λ∗)
x -a.s. (4.14)

In Step 2 we proved that
{

f
(
B[0,t∧τz]

)
, 

(y,λ∗)
x

}
is a martingale. Thus if y+ h(x)> z> 0, we

have

ŵ(0, x, y)=(y,λ∗)
x

(
ŵ(−t ∧ τz, Bt∧τz , y)e−

∫ t∧τz
0 g(Bs)w(−s,Bs)ds

)
=(y,λ∗)

x

(
ŵ(−τz, Bτz , y)e−

∫ τz
0 g(Bs)w(−s,Bs)ds1{τz<t}

)
+(y,λ∗)

x

(
ŵ(−t, Bt, y)e−

∫ t
0 g(Bs)w(−s,Bs)ds1{τz≥t}

)
.

Letting t →∞ and using (4.14), we have

ŵ(0, x, y)=(y,λ∗)
x

(
ŵ
(−τz, Bτz , y

)
e−

∫ τz
0 g(Bs)w(−s,Bs)ds1{τz<∞}

)
.

It follows from (4.2) and (4.3) that

ŵ(0, x, y)=(y,λ∗)
x

(
eλ

∗Bτz+γ (λ∗)τz w
(−τz, Bτz

)
ψ

(
Bτz , λ

∗)(y+ γ ′(λ∗)τz + h
(
Bτz

))e−
∫ τz

0 g(Bs)w(−s,Bs)ds1{τz<∞}

)

=(y,λ∗)
x

(
eλ

∗Bτz+γ (λ∗)τz w
(−τz, Bτz

)
ψ

(
Bτz , λ

∗)z e−
∫ τz

0 g(Bs)w(−s,Bs)ds1{τz<∞}

)
.

Since
{

y+ γ ′(λ∗)T(t)+ h(BT(t)), 
(y,λ∗)
x

}
is a Bessel-3 process starting from y+ h(x), we

have (see, for example, Karatzas and Shreve [11, p. 162, Problem 3.23])

(y,λ∗)
x (τz <∞)=(y,λ∗)

x

(
inf
t≥0

{
y+ γ ′(λ∗)T(t)+ h

(
BT(t)

)}≤ z

)
= z

y+ h(x)
. (4.15)

By (4.2), we have

eλ
∗xw(0, x)

ψ(x, λ∗)(y+ h(x))
= ŵ(0, x, y)≤(y,λ∗)

x

(
eλ

∗Bτz+γ (λ∗)τz w
(−τz, Bτz

)
ψ

(
Bτz , λ

∗)z 1{τz<∞}

)

=(y,λ∗)
x

⎛⎝eλ
∗(z−y+ψλ

(
Bτz ,λ

∗)/ψ(Bτz ,λ
∗))

w
(−{τz}, Bτz + ν∗

[
τz
])

ψ
(
Bτz , λ

∗)z 1{τz<∞}

⎞⎠
≤C1

(y,λ∗)
x (τz <∞)≤C1

z

y+ h(x)
,

where we used the facts that ψλ/ψ is bounded and that w(t, x) is bounded in (t, x) ∈[− 1
ν∗ , 0

]× [−C2,C2]. Here C1,C2 are constants depending only on y, z, λ∗. Hence we get
that for x> h−1(z− y), eλ

∗xw(0, x)/ψ(x, λ∗) is bounded. Combining this with the fact that
eλ

∗xw(0, x)/ψ(x, λ∗)→ 0 as x→−∞, we have that eλ
∗xw(0, x)/ψ(x, λ∗) is bounded on R.

Similarly, we can prove that eλ
∗x−γ (λ∗)tw(t, x)/ψ(x, λ∗) is bounded on

[
0, 1

ν∗
]
×R.
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By Step 1 of the proof of Theorem 1.1, we know that{
eλ

∗Yt+γ (λ∗)tw(−t, Yt)

ψ(Yt, λ∗)
e−

∫ t
0 g(Ys)w(−s,Ys)ds, t ≥ 0;λ

∗
x

}

is a martingale and satisfies

eλxw(0, x)

ψ(x, λ∗)
=λ∗x

[
eλ

∗Yt+γ (λ∗)tw(−t, Yt)

ψ(Yt, λ∗)
e−

∫ t
0 g(Ys)w(−s,Ys)ds

]
, (4.16)

where
{
Yt, 

λ∗
x

}
is a diffusion with infinitesimal generator

(Af )(x)= 1

2

∂2f (x)

∂x2
+

(
ψx(x, λ∗)

ψ(x, λ∗)
− λ∗

)
∂f (x)

∂x
.

So {
eλ

∗Yt+γ (λ∗)tw(−t, Yt)

ψ(Yt, λ∗)
, λ

∗
x

}

is a positive submartingale that is bounded and hence must converge. Using an argument
similar to that of Step 2 in the proof of Theorem 1.1, we have that the limit of

eλ
∗Yt+γ (λ∗)tw(−t, Yt)

ψ(Yt, λ∗)

is a constant. Since

w(−t, Yt)≤ 1, lim inf
t→∞ (Yt + ν∗t)=−∞ and inf

x∈Rψ(x, λ∗)> 0,

we have

lim inf
t→∞

eλ
∗Yt+γ (λ∗)tw(−t, Yt)

ψ(Yt, λ∗)
≤ lim inft→∞ eλ

∗Yt+γ (λ∗)tw(−t, Yt)

infx∈R ψ(x, λ∗)
= 0.

So the constant must be 0. By (4.16), we have

eλxw(0, x)

ψ(x, λ∗)
≤λ∗x

[
eλ

∗Yt+γ (λ∗)tw(−t, Yt)

ψ(Yt, λ∗)

]
.

Letting t →∞ and noticing that

eλ
∗Yt+γ (λ∗)tw(−t, Yt)

ψ(Yt, λ∗)
→ 0, λ

∗
x -a.s.,
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we have

eλxw(0, x)

ψ(x, λ∗)
≤ lim

t→∞
λ∗
x

[
eλ

∗Yt+γ (λ∗)tw(−t, Yt)

ψ(Yt, λ∗)

]

=λ∗x

[
lim

t→∞
eλ

∗Yt+γ (λ∗)tw(−t, Yt)

ψ(Yt, λ∗)

]
= 0,

where we used the bounded dominated convergence theorem. This implies w(0, x)≡ 0, which
contradicts the definition of pulsating traveling waves. Therefore, we have β > 0.

Step 5. In this step, we show that

ŵ(t, x, y)→ β uniformly in t ∈
[

0,
1

ν∗

]
as x→∞. (4.17)

Fix y ∈R. First we will show that ŵ(t, x, y) is bounded for (t, x) ∈
[
0, 1

ν∗
]
× [h−1(z− y+

ν∗t),∞), which implies that (t, x) satisfies y− ν∗t + h(x)≥ z> 0. Recall that φ := φ(x, λ∗)=
e−λ∗xψ(x, λ∗). By (4.2), we can rewrite ŵ as

ŵ(t, x, y)= e−γ (λ∗)tw(t, x)

φ(x, λ∗) (y− γ ′(λ∗)t)− φλ(x, λ∗)
.

By (2.2) and (2.3), a direct calculation yields

∂ŵ
∂t

= 1

2

∂2ŵ
∂x2

+ (y− γ ′(λ∗))φx − φλx

(y− γ ′(λ∗))φ − φλ
∂ŵ
∂x

− gwŵ.

Similarly to Step 3 in the proof of Theorem 1.1, fix ω ∈�0; then for any x0 large
enough, there exist k, j ∈N such that (t, x0) is located between the curves L1

j (ω) and L1
k(ω)

for any t ∈
[
0, 1

ν∗
]
. Since L1

j (ω) and L1
k(ω) must intersect each other, it follows from the

maximum principle that ŵ(t, x0, y) is bounded by the maximum on boundary L1
j (ω) and

L1
k(ω). We know that ŵ(t, x, y) along (t, x) ∈L1

k(ω) converges as t →∞, and then ŵ(t, x, y)
is bounded on

⋃
j≥1 L1

j (ω). Since ŵ(t, x, y) is continuous and ŵ(t, h−1(z− y+ ν∗t), y) is

bounded, we have that ŵ(t, x0, y) is bounded when x0 is small. Therefore, ŵ(t, x, y) is bounded

in
[
0, 1

ν∗
]
× [h−1(z− y+ ν∗t),∞). We denote the bound by Kz.

Next, we will show (4.17). Recall that

ŵ(T, x, y)

=(y−ν∗T,λ∗)
x

(
ŵ
(
T − t ∧ τz(y− ν∗T), Bt∧τz(y−ν∗T), y

)
e−

∫ t∧τz(y−ν∗T)
0 g(Bs)w(T−s,Bs)ds

)
.

Letting t →∞, we have for T ∈
[
0, 1

ν∗
]

ŵ(T, x, y)≤
(

y−ν∗T,λ∗
)

x
(
β1{τz(y−ν∗T)=∞} +Kz1{τz(y−ν∗T)<∞}

)
= β

(
1− z

h(x)+ y− ν∗T

)
+Kz

z

h(x)+ y− ν∗T
,
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where we used (4.15). Therefore, we have

lim sup
x→∞

ŵ(T, x, y)≤ β uniformly for T ∈
[

0,
1

ν∗

]
. (4.18)

On the other hand, we have the following estimate:

ŵ(T, x, y)≥
(

y−ν∗T,λ∗
)

x

(
β1{τz(y−ν∗T)=∞}e−

∫∞
0 g(Bt)w(T−t,Bt)dt

)
.

By (4.2), we get

g(Bt)w(T − t, Bt)≤ ‖g‖∞zKz max
x∈[0,1]

ψ(x, λ∗)e−λ∗Bt+γ (λ∗)(T−t)

≤Ce−λ∗(y−ν∗T+h(Bt)+ν∗t) =Ce−λ
∗R̂T〈M〉t ,

where R̂T
t = y− ν∗T + h(BT(t))+ ν∗T(t) is a Bessel-3 process starting at y− ν∗T + h(x),

T(t)= inf{s> 0 : 〈M〉s > t}, and the constant C does not depend on T . Thus we have

ŵ(T, x, y)≥
(

y−ν∗T,λ∗
)

x

(
β1{τz(y−ν∗T)=∞}e−

∫∞
0 Ce

−λ∗R̂T〈M〉t dt
)

≥
(

y−ν∗T,λ∗
)

x

(
β1{τz+ν∗T=∞}e−

∫∞
0 Ce−λ∗R̂T

t dt
)
,

where τz(y− ν∗T)= τz+ν∗T . Define the stopping time

σx (̂RT ) := inf
{
t ≥ 0 : R̂T

t = y− ν∗T + h(x)
}

and the function

f (x) := 

(
y−ν∗T,λ∗

)
x

(
β1{τz+ν∗T=∞}e−

∫∞
0 Ce−λ∗R̂T

t dt
)

.

By the Markov property, for x1 < x2 we have

f (x1)=
(

y−ν∗T,λ∗
)

x1

[
1{σx2 (̂RT )<τz+ν∗T }e

− ∫ σx2 (̂RT )
0 Ce−λ∗R̂T

t dtf (x2)

]
≤ f (x2);

that is, f (x) is increasing. Put
f (∞) := lim

x→∞ f (x).

Since β > 0 and
∫∞

0 e−λ∗R̂T
t dt<∞, 

(
y−ν∗T,λ∗

)
x -a.s., we have f (x)> 0. Moreover,

βf (x)= lim
n→∞

(
y−ν∗T,λ∗

)
x

[
β1{σx+n (̂RT )<τz+ν∗T }e

− ∫ σx+n (̂RT )
0 Ce−λ∗R̂T

t dtf (x+ n)

]
=

(
y−ν∗T,λ∗

)
x

[
lim

n→∞ β1{σx+n (̂RT )<τz+ν∗T }e
− ∫ σx+n (̂RT )

0 Ce−λ∗R̂T
t dt

]
lim

n→∞ f (x+ n)

=
(

y−ν∗T,λ∗
)

x

[
β1{τz+ν∗T=∞}e−

∫∞
0 Ce−λ∗R̂T

t dt
]

f (∞)= f (x)f (∞).
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Therefore, f (∞)= β. Combining this with ŵ(T, x, y)≥ f (x), we have

lim inf
x→∞ ŵ(T, x, y)≥ β uniformly for T ∈

[
0,

1

ν∗

]
. (4.19)

By (4.18) and (4.19), we get (4.17).
Step 6. Since h(x)= x−ψλ(x, λ∗)/ψ(x, λ∗) and ψλ/ψ is bounded, we have

lim
x→∞ ŵ(t, x, y)= lim

x→∞
eλ

∗x−γ (λ∗)tw(t, x)

ψ(x, λ∗)x
.

Thus
eλ

∗z−γ (λ∗)tw(t, z)

ψ(z, λ∗)z
→ β uniformly in t ∈

[
0,

1

ν∗

]
as z→∞.

Using an argument similar to that in Step 3 of the proof of Theorem 1.1, we have

eλ
∗xw

(
y−x
ν∗ , y

)
ψ(y, λ∗)(−�y− x� + y)

→ β uniformly in y ∈ [0, 1] as x→∞.

By | − �y− x� + y− x| ≤ 1, we have

eλ
∗xw

(
y−x
ν∗ , y

)
xψ(y, λ∗)

→ β uniformly in y ∈ [0, 1] as x→∞.

Step 7. For general branching mechanism, w= 1− u satisfies

∂w
∂t

= 1

2

∂2w
∂x2

+ g · (1−w− f(1−w)).

Recall that A(w)=m− 1−w−f(1−w)
w . As in Step 3, it suffices to show that∫ ∞

0
g(Bt)w(−t, Bt)dt<∞, (y,λ∗)

x -a.s.

Since Bt + ν∗t behaves like
√

t and w(t, x) decays exponentially fast, we have∫ ∞

0
A
(

e−c
√

t
)

dt<∞ for some c> 0=⇒
∫ ∞

0
g(Bt)A(w)(−t, Bt)dt<∞.

Set s= e−c
√

t; then ∫ ∞

0
A
(

e−c
√

t
)

dt<∞⇐⇒
∫ 1

0
A(s)

| log s|
s

ds<∞.

By [5, Theorem 2], it holds that for a> 1,∫ 1

0
A(s)

| log s|a
s

ds<∞⇐⇒E
(
L(log+ L)1+a)<∞. (4.20)
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Actually the proof of [5, Theorem 2] also works for a= 1. So if E
(
L(log+ L)2

)
<∞, there

exists β > 0 such that

1− u
(

y− x

ν∗
, y

)
∼ βxe−λ∗xψ(y, λ∗) uniformly in y ∈ [0, 1] as x→+∞.

This completes the proof. �
Remark 4.1. The asymptotic behavior of pulsating traveling waves was studied analytically
by Hamel [7], who considered the following more general equation:

ut −∇ · (A(z)∇u)+ q(z) · ∇u= f (z, u), z ∈�,
where �⊂R

N is an unbounded domain, and A(z), q(z), f (z, u) are periodic in some sense. In
our case,

�=R, A(z)≡ 1

2
, q(z)≡ 0, and f (z, u)= g(z)(1− u− f(1− u)).

The main result of the paper, [7, Theorem 1.3], is similar to our Theorems 1.1 and 1.2, with
φ(t, x) in [7] corresponding to 1− u

( t+x
ν
, x

)
in this paper, and p−(x, y), p+(x, y) corresponding

to 0, 1 respectively.
The result in [7, Theorem 1.3] was proved under the assumptions [7, (1.4), (1.7), and (1.8)].

In our setup, [7, (1.4)] is equivalent to γ (0)> 0, which is true under our assumptions. The
condition [7, (1.8)] is equivalent to

f (x, s)= g(x)(1− s− f(1− s))≤mg(x)s for s ∈ [0, 1],

which is true for any generating function f. The condition [7, (1.7)] says that there exist α > 0
and γ > 0 such that the map (x, s) �→ g(x)(f′(1− s)− 1) belongs to C0,α(R× [0, γ ]), which is
equivalent to g ∈C0,α(R) and f′(1− s) ∈C0,α([0, γ ]). We claim that

f′(1− s) ∈Cα([0, γ ])=⇒∀p≥ 1, E(L(log+ L)p)<∞.

Thus the condition f′(1− s) ∈C0,α([0, γ ]) is stronger than the condition E(L log+ L)<∞ in
the supercritical case and E

(
L(log+ L)2

)
<∞ in the critical case. Now we prove the claim.

Notice that

A(w)=m− 1−w− f(1−w)

w
=m+ 1− 1− f (1−w)

w
=m+ 1− f ′(1− θw),

where θ ∈ [0, 1] and the last equality follows from the mean value theorem. Since f ′(1)=m+ 1
and f′(1− s) ∈Cα([0, γ ]), we have

A(w)= |m+ 1− f ′(1− θw)| ≤C(θw)α ≤Cwα, ∀w≤ γ,
for some constant C. Therefore, for any constant c> 0,∫ ∞

0
A
(

e−ct1/p
)

dt ≤
∫ ∞

0
Ce−cαt1/p dt<∞.

Using the substitution s= e−ct1/p , we get∫ 1

0
A(s)

| log s|p−1

s
ds<∞.

By (4.20), this implies E(L(log+ L)p)<∞.
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5. Proof of Theorem 1.3

The uniqueness of the pulsating traveling wave was proved analytically in [9, Theorem 1.1].
In this section, we will use probabilistic methods to prove the uniqueness in the supercritical
case |ν|> ν∗ and critical case |ν| = ν∗.

5.1. Martingales on stopping lines

First, we introduce the space of Galton–Watson trees. Let T be the space of Galton–Watson
trees. A Galton–Watson tree τ ∈T is a point in the space of possible Ulam–Harris labels

�=∅∪
⋃
n∈N

(N)n,

where N= {1, 2, 3, . . .}, such that

(i) ∅ ∈ τ (the ancestor);

(ii) if u, v ∈�, then uv ∈ τ implies u ∈ τ ;

(iii) for all u ∈ τ, there exists Au ∈ {0, 1, 2, . . .} such that for j ∈N, j ∈ τ if and only if 1≤
j≤ 1+ Au.

(Here 1+ Au is the number of offspring of u, and Au has the same distribution as L.)
Each particle u ∈ τ has a mark (ηu, Bu) ∈R

+ ×C(R+,R), where ηu is the lifetime of u and
Bu is the motion of u relative to its birth position. Then the birth time of u can be written as
bu =∑

v<u ηv, the death time of u is du =∑
v≤u ηv, and the position of u at time t is given by

Xu(t)=∑
v<u Bv(ηv)+ Bu(t − bu), where v< u denotes that u is a descendant of v.

Now, on the space–time half-plane {(y, t) : y ∈R, t ∈R
+}, consider the barrier �(x,ν)

described by the line y+ νt = x for x> 0 and ν ≥ ν∗. When a particle hits this barrier, it
is stopped immediately. Let C(x, ν) denote the random collection of particles stopped at the
barrier, which is known as a stopping line.

By [16, Theorem 1.1], Wt(λ∗)→ 0 Px-a.s., so we have

e−λ∗(mt+ν∗t) min
x∈[0,1]

ψ(x, λ∗)≤Wt(λ
∗)→ 0,

where mt =min{Xu(t) : u ∈Nt}. This yields

lim
t→∞(mt + ν∗t)=+∞. (5.1)

Therefore, all lines of descent from the ancestor will hit �(x,ν) with probability one for all
x> x0, where x0 is the position of the ancestor at time t = 0. Similarly to the argument in
[13] for BBM, we have limx→∞ inf{|u| : u ∈C(x, ν)} =∞, where |u| is the generation of the
particle u.

For any u ∈C(x, ν), let σu denote the time at which the particle u hits the barrier �(x,ν). Let
FC(x,ν) be the σ -field generated by{

(w, Aw, ηw, {Bw(s) : s ∈ [0, ηw]} : ∃u ∈C(x, ν), s.t. w< u) and

(u, {Bu(s) : s ∈ [0, σu − bu]} : u ∈C(x, ν))

}
.

Using traveling wave solutions of the KPP equation, Chauvin [4] exhibited an intrinsic class
of martingales. An argument similar to the one used in [4] gives the analogous martingales for
BBMPE.
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Theorem 5.1. Suppose that ν ≥ ν∗ and that u(t, x) is a pulsating traveling wave with speed ν.
Define

Mx(ν) :=
∏

u∈C(x,ν)

u
(−σu, Xu(σu)

)
. (5.2)

Then, for any z ∈R, {Mx(ν) : x≥ z} is a Pz-martingale with respect to {FC(x,ν), x≥ z}, has
expectation u(0, z), and converges Pz-a.s. and in L1(Pz).

We prove this theorem via several lemmas.

Lemma 5.1. Consider BBMPE starting from x and with branching rate function g. Let σ be
the first fission time and let 1+ A denote the number of offspring of the initial particle. Let
f(s)=Es1+A and P(A= k)= pk. Then

Px
(
1{σ>t}u(−t, Bt)+ 1{σ≤t}u1+A(−σ, Bσ )

)= u(0, x).

Proof. Note that

Px(σ > t | {Bs : s≤ t})= e−
∫ t

0 g(Bs)ds.

Put

f (t, Bt)= e−
∫ t

0 g(Bs)dsu(−t, Bt)+
∫ t

0
g(Bs)e

− ∫ s
0 g(Br)dr

∑
k

pkuk+1(−s, Bs)ds.

A standard computation using Itô’s formula shows that

df (t, Bt)

= e−
∫ t

0 g(Bs)ds ∂u(−t, Bt)

∂x
dBt + 1

2
e−

∫ t
0 g(Bs)ds ∂

2u(−t, Bt)

∂x2
dt

− g(Bt)e
− ∫ t

0 g(Bs)dsu(−t, Bt)dt − e−
∫ t

0 g(Bs)ds ∂u(−t, Bt)

∂t
dt

+ g(Bt)e
− ∫ t

0 g(Bs)ds
∑

k

pkuk+1(−t, Bt)dt

= e−
∫ t

0 g(Bs)ds ∂u(−t, Bt)

∂x
dBt + e−

∫ t
0 g(Bs)ds×(

1

2

∂2u(−t, Bt)

∂x2
− g(Bt)u(−t, Bt)− ∂u(−t, Bt)

∂t
+ g(Bt)f(u(−t, Bt))

)
dt

= e−
∫ t

0 g(Bs)ds ∂u(−t, Bt)

∂x
dBt.

Hence f (t, Bt) is a martingale and

xf (t, Bt)=xf (0, B0)= u(0, x).

Note that

Px(1{σ>t}u(−t, Bt))= Px
(
Px

[
1{σ>t}u(−t, Bt) | {Bs : s≤ t}])

= Px
(
u(−t, Bt)Px

[
1{σ>t} | {Bs : s≤ t}])

= x

(
e−

∫ t
0 g(Bs)dsu(−t, Bt)

)
.
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Similarly, we have

Px

(
1{σ≤t}uA+1(−σ, Bσ )

)
= Px

(
Px

[
1{σ≤t}uA+1(−σ, Bσ ) | {Bs : s≤ t}

])
=x

(∫ t

0
g(Bs)e

− ∫ s
0 g(Br)dr

∑
k

pkuk+1(−s, Bs)ds

)
.

Therefore,

Px

(
1{σ>t}u(−t, Bt)+ 1{σ≤t}u1+A(−σ, Bσ )

)
=xf (t, Bt)= u(0, x).

�
Recall that �=∅∪⋃

n∈N (N)n and that, for u ∈�, σu denotes the time at which u hits the
barrier �(x,ν). For a fixed stopping line C(x, ν), we define

Lτ := {u ∈� : bu ≤ σu < du} =C(x, ν),

Dτ := {u ∈� : ∃v ∈�, v< u, v != u, v ∈ Lτ },
A(n)
τ := {u ∈� : |u| = n, u /∈Dτ , u /∈ Lτ }.

In other words, Dτ is the set of strict descendants of the stopping line and A(n)
τ is the set of the

nth-generation particles u such that neither u nor the ancestors of u hit the barrier �(x,v). Let

Hn = σ({(u, Au, ηu, {Bu : u ∈ [0, ηu]})} : |u| ≤ n− 1) .

Recall that Mx(v) is defined by (5.2).

Lemma 5.2. For any z< x,
Ez(Mx(ν))= u(0, z).

Proof. For n ∈N, similarly to [4], we introduce the following approximation of Mx(ν):

M(n) =
∏

u∈Lτ ,|u|≤n

u
(−σu, Xu(σu)

) ∏
u∈A(n)

τ

u1+Au
(−du, Xu(du)

)
.

It is easy to see that M(n) ∈Hn+1, n≥ 0. We first prove that {M(n), n≥ 0} is an
Hn+1-martingale:

Ex
(
M(n+1) |Hn+1

)= ∏
u∈Lτ ,|u|≤n

u
(−σu, Xu(σu)

)
×Ex

( ∏
u∈Lτ ,|u|=n+1

u
(−σu, Xu(σu)

) ∏
u∈A(n+1)

τ

u1+Au
(−du, Xu(du)

) |Hn+1

)
. (5.3)

Note that
{u : u ∈ Lτ , |u| = n+ 1} ∪ A(n+1)

τ = {u : |u| = n+ 1, u /∈Dτ }.
Consider any particle u such that |u| = n+ 1 and u /∈Dτ . If u is in Lτ , it occurs in the
second product in (5.3); if not, it occurs in the third one. For any particle u, define
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vu(t, x)= u(t − bu, x). Then given bu, vu(t, x) satisfies (1.3) and (1.4). By the Markov property
and the branching property, we have

Ex

( ∏
u∈Lτ ,|u|=n+1

u
(−σu, Xu(σu)

) ∏
u∈A(n+1)

τ

u1+Au
(−du, Xu(du)

) |Hn+1

)

=
∏

|u|=n+1,u/∈Dτ

Ex

(
1{σu<du}u

(−σu, Xu(σu)
)+ 1{

σu≥du

}u1+Au
(−du, Xu(du)

) |Hn+1

)
=

∏
|u|=n+1,u/∈Dτ

EXu(bu)

(
1{σu<du}u(−σu, Xu(σu − bu))+

1{
σu≥du

}u1+Au (−du, Xu(du − bu))
)

=
∏

|u|=n+1,u/∈Dτ

EXu(bu)

(
1{σu−bu<du−bu}vu(−(σu − bu), Xu(σu − bu))+

1{σu−bu≥du−bu}v1+Au
u

(−(du − bu), Xu(du − bu)
))

=
∏

|u|=n+1,u/∈Dτ

vu(0, Xu(bu)).

The last equality follows from Lemma 5.1; the only difference is that we substitute the random
time σu − bu for the deterministic time t in Lemma 5.1. Putting together the offspring of the
same particle, it becomes∏

|u|=n+1,u/∈Dτ

vu(0, Xu(bu))=
∏

|u|=n+1,u/∈Dτ

u
(−bu, Xu(bu)

)
=

∏
|u|=n,u/∈Dτ ,u/∈Lτ

u1+Au
(−du, Xu(du)

)= ∏
u∈A(n)

τ

u1+Au
(−du, Xu(du)

)
.

This shows that M(n) is an Hn+1-martingale.
Note that (5.1) implies that all lines of descent from the ancestor will hit �(x,ν)

Pz-a.s.
This yields A(n)

τ →∅ as n→∞, and thus M(n) →Mx(ν) Pz-a.s. Since 0≤ u(t, x)≤ 1, M(n) is
bounded. This yields the L1-convergence of M(n) to Mx(ν). Therefore,

Ez(Mx(v))=Ez
(
M(0))= u(0, z).

This completes the proof of this lemma. �
Now we turn to the proof of Theorem 5.1.

Proof of Theorem 5.1. Fix ν ≥ ν∗. To distinguish the times when a particle hits different
barriers, we let σ x

u denote the time when u hits the barrier �(x,ν). For y> x,

My(ν)=
∏

u∈C(y,ν)

u
(−σ y

u , Xu
(
σ y

u

))= ∏
w∈C(x,ν)

∏
u∈C(y,ν),u>w

u
(−σ y

u , Xu
(
σ y

u

))
,
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where u>w means that u is a descendant of w. Therefore, by the special Markov property of
{Zt, t ≥ 0}, we have that

Ex
(
My(ν) |FC(x,ν)

)= ∏
w∈C(x,ν)

Ex

⎛⎝ ∏
u∈C(y,ν),u>w

u
(−σ y

u , Xu
(
σ y

u

)) ∣∣∣FC(x,ν)

⎞⎠
=

∏
w∈C(x,ν)

EXw(σ x
w)

∏
u∈C(y,ν),u>w

u
(−σ y

u , Xu
(
σ y

u − σ x
w

))
=

∏
w∈C(x,ν)

u
(−σ x

w, Xu
(
σ x

w

))=Mx(ν),

where the second-to-last equality follows from Lemma 5.2 and an argument similar to that in
the proof of Lemma 5.2, by defining v(t, x)= u(t − σ x

w, x). The proof is complete. �

5.2. Uniqueness in the supercritical and critical cases

In this section, we give a probabilistic proof of the uniqueness of the pulsating traveling
wave with speed |ν| ≥ ν∗.

Theorem 1.1 implies that for ν > ν∗,

− log u
(

y− x

ν
, y

)
∼ βe−λxψ(y, λ) uniformly in y ∈ [0, 1] as x→+∞. (5.4)

Theorem 1.2 implies that

− log u
(

y− x

ν∗
, y

)
∼ βxe−λ∗xψ(y, λ∗) uniformly in y ∈ [0, 1] as x→+∞. (5.5)

Recall that the additive martingale {Wt(λ)t≥0, Px} is defined by (1.5). By [16, Theorem
1.1], for any λ ∈R and x ∈R, the limit W(λ, x) := limt↑∞ Wt(λ) exists Px-a.s. and W(λ, x)
is an L1(Px)-limit when |λ|<λ∗ and E(L log+ L)<∞. Recall that C(x, ν) was defined at the
beginning of Section 5.1. In the spirit of [13], we define

WC(x,ν)(λ) :=
∑

u∈C(x,ν)

e−λXu(σu)−γ (λ)σuψ(Xu(σu), λ),

where ν = γ (λ)/λ. Using arguments similar to those of [13, Theorem 8], we can obtain the
following result, whose proof is omitted.

Proposition 5.1. For any z ∈R, {WC(x,ν)(λ) : x≥ z} is a Pz-martingale with respect to the fil-
tration {FC(x,ν) : x≥ z}, and, as x→∞, WC(x,ν)(λ) converges a.s. and in L1(Pz) to W(λ, z)
when |λ| ∈ [0, λ∗) and E(L log+ L)<∞.

Let Yx =∑
u∈C(x,ν) δ{Xu(σu)}, where {x} is the fractional part of x. Then Yx is a point measure

on [0, 1]. Notice that

WC(x,ν)(λ)=
∑

u∈C(x,ν)

e−λ(Xu(σu)+νσu)ψ(Xu(σu), λ)

=
∑

u∈C(x,ν)

e−λxψ(Xu(σu), λ)= e−λx〈Yx, ψ〉.
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Thus by Proposition 5.1, we have

e−λx〈Yx, ψ〉 Pz-a.s.−→ W(λ, z), as x→∞.

Theorem 5.2. Suppose |ν|> ν∗ and E(L log+ L)<∞. If u(t, x) is a pulsating traveling wave
with speed ν, then there exists β > 0 such that

u(t, x)=Ex exp
{
−βeγ (λ)tW(λ, x)

}
, (5.6)

where |λ| ∈ (0, λ∗) is such that ν = γ (λ)
λ

.

Proof. We assume that λ≥ 0. The case λ< 0 can be analyzed by symmetry. By
Theorem 5.1, Mx(ν) is a Pz-martingale with respect to {FC(x,ν) : x≥ z} with expectation u(0, z)
and converges a.s. and in L1(Pz), where

Mx(ν)= exp

⎧⎨⎩ ∑
u∈C(x,ν)

log u
(−σu, Xu(σu)

)⎫⎬⎭ .

So there exists a non-negative random variable Y such that

−
∑

u∈C(x,ν)

log u
(−σu, Xu(σu)

) Pz-a.s.−→ Y, as x→∞.

Note that

Xu(σu)= {Xu(σu)} + �Xu(σu)�,
− σu = Xu(σu)− x

ν
= {Xu(σu)} − x

ν
+ �Xu(σu)�

ν
.

The previous convergence can be written as〈
Yx, − log u

( · − x

ν
, ·

)〉
Pz-a.s.−→ Y, as x→∞.

By (5.4),

lim
x→∞

〈
Yx,− log u

( · − x

ν
, ·

)〉
= β lim

x→∞
〈
e−λxYx, ψ(·, λ)

〉
,

and thus Y = βW(λ, z). By the dominated convergence theorem,

u(0, z)= lim
x→∞Eze〈Yx, log u( ·−x

ν
,·)〉 =Ez lim

x→∞ e〈Yx, log u( ·−x
ν
,·)〉

=Eze
−Y =Eze

−βW(λ,z).

Theorem 1.3(i) of [16] shows that Ex exp{−βeγ (λ)tW(λ, x)}, as a function of (t, x), is a solution
of the following initial value problem:

∂u
∂t

= 1

2

∂2u
∂x2

+ g · (f(u)− u), u(0, x)=Exe−βW(λ,x).

Therefore, u(t, x) and Ex exp{−βeγ (λ)tW(λ, x)} are solutions of the above initial value
problem. The uniqueness of solutions of initial value problems implies that (5.6) holds. �
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Now we consider the critical case. Recall that on the space–time half-plane {(y, t) : y ∈
R, t ∈R

+}, the barrier �(x,ν) is described by the line y+ νt = x for x> 0, and C(x, ν) is the
random collection of particles stopped at the barrier. Define the barrier �(−x,λ) described by
y= h−1(−x− γ ′(λ)t), and define C(−x, λ) to be the random collection of particles hitting this
barrier.

Define C̃(z, ν∗) to be the set of particles that stopped at the barrier �(z,ν∗) before meeting
the barrier �(−x,λ∗). Fix x> 0 and y> h−1(−x). Define

Y (−x,λ∗)
z =

∑
u∈C̃(z,ν∗)

δ{Xu(σu)}, z≥ y.

Consider the sequence
{

Vx
C̃(z,v∗)

, z≥ y
}

, where

Vx
C̃(z,ν∗)

:=
∑

u∈C̃(z,ν∗)

e−γ (λ∗)σu−λ∗Xu(σu)ψ(Xu(σu), λ∗)×
(

x+ γ ′(λ∗)σu + Xu(σu)− ψλ(Xu(σu), λ∗)

ψ(Xu(σu), λ∗)

)
=

∑
u∈C̃(z,ν∗)

e−λ∗zψ(Xu(σu), λ∗)

(
x+ z− ψλ(Xu(σu), λ∗)

ψ(Xu(σu), λ∗)

)

=
〈
Y (−x,λ∗)

z , e−λ∗zψ(·, λ∗)

(
x+ z− ψλ(·, λ∗)

ψ(·, λ∗)

)〉
, z≥ y.

Using similar arguments as in [13, Theorem 15], we have following proposition.

Proposition 5.2. Let
{
FC̃(z,ν∗) : z≥ y

}
be the natural filtration describing everything in

the truncated branching tree up to the barrier �(z,ν∗). If E
(
L(log+ L)2

)
<+∞, then{

Vx
C̃(z,ν∗)

, z≥ y
}

is a Py-martingale with respect to
{
FC̃(z,ν∗), z≥ y

}
, and Vx

C̃(z,ν∗)
converges

Py-a.s. and in L1(Py) to Vx(λ∗) as z→∞.

Proof. For t> 0, let

C̃t(z, ν
∗)=

{
u ∈ C̃(z, ν∗) : σu ≤ t

}
and

Ãt(z, ν
∗)=

{
u ∈ Ñx

t : v /∈ C̃t(z, ν
∗), ∀v≤ u

}
.

Define

Vx
t∧C̃(z,ν∗)

:=
∑

u∈Ãt(z,ν∗)

e−γ (λ∗)t−λ∗Xu(t)ψ
(
Xu(t), λ∗

) (
x+ γ ′(λ∗)t + Xu(t)− ψλ

(
Xu(t), λ∗

)
ψ

(
Xu(t), λ∗

) )

+
∑

u∈C̃t(z,ν∗)

e−λ∗zψ(Xu(σu), λ∗)

(
x+ z− ψλ(Xu(σu), λ∗)

ψ(Xu(σu), λ∗)

)
.

A straightforward calculation, similar to the proof of [16, Lemma 2.16], shows that

Ey

(
Vx

t (λ∗)|FC̃(z,ν∗)

)
= Vx

t∧C̃(z,ν∗)
. (5.7)
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Since limt↑∞
∣∣̃At(z, ν∗)

∣∣= 0 and limt↑∞ C̃t(z, ν∗)= C̃(z, ν∗), letting t →∞ in (5.7), we have

lim
t↑∞Ey

(
Vx

t (λ∗)|FC̃(z,ν∗)

)
= Vx

C̃(z,ν∗)
.

By [16, Theorem 4.2], Vx
t (λ∗) converges to Vx(λ∗) in L1(Py) as t →∞. Thus

Ey
(
Vx

t (λ∗)|FC̃(z,ν∗)

)
converges to Ey

(
Vx(λ∗)|FC̃(z,ν∗)

)
in L1(Py). So

Ey

(
Vx(λ∗)|FC̃(z,ν∗)

)
= Vx

C̃(z,ν∗)
.

Letting z→∞ in (5.7), we get that Ey
(
Vx

t (λ∗)|F∞
)= Vx

t (λ∗), where F∞ = σ (∪z≥y

FC̃(z,ν∗)

)
. This implies that Vx(λ∗) is F∞-measurable. Hence

Vx
C̃(z,ν∗)

=Ey

(
Vx(λ∗)|FC̃(z,ν∗)

) L1(Py)/a.s.−→ Ey

(
Vx(λ∗)

∣∣∣F∞
)
= Vx(λ∗).

This completes the proof. �
Recall that the derivative martingale {∂Wt(λ)t≥0, Px} is defined by (1.6). By [16, Theorem

1.2], for any |λ| ≥ λ∗ and x ∈R, the limit ∂W(λ, x) := limt↑∞ ∂Wt(λ) exists Px-a.s., and
∂W(λ, x) ∈ (0,∞) when λ= λ∗ and E

(
L(log+ L)2

)
<∞.

Theorem 5.3. Suppose E
(
L(log+ L)2

)
<∞. If u(t, x) is a pulsating traveling wave with speed

ν∗, then there exists β > 0 such that

u(t, x)=Ex exp
{−βeγ (λ∗)t∂W(λ∗, x)

}
. (5.8)

Proof. From Proposition 5.2, we have

lim
z→∞ Vx

C̃(z,ν∗)
= lim

z→∞

〈
Y (−x,λ∗)

z , e−λ∗zψ(·, λ∗)

(
x+ z− ψλ(·, λ∗)

ψ(·, λ∗)

)〉
= Vx(λ∗), Py-a.s.

Notice that for fixed x≥ 0,(
x+ z− ψλ(w, λ∗)

ψ(w, λ∗)

)
/z→ 1 as z→∞, uniformly in w ∈ [0, 1].

Therefore,
lim

z→∞
〈
Y (−x,λ∗)

z , ze−λ∗zψ(·, λ∗)
〉
= Vx(λ∗), Py-a.s.

Let γ (−x,λ∗) be the event that the BBMPE remains entirely to the right of �(−x,λ∗). By (5.1)
and ν∗ = γ ′(λ∗), we have inft≥0{mt + γ ′(λ∗)t}>−∞ Py-a.s. By the definition of �(−x,λ∗),
γ (−x,λ∗) = {∀ t ≥ 0,mt ≥ h−1(−x− γ ′(λ∗)t)}. Therefore

Py
(
γ (−x,λ∗))≥ Py

(
inf
t≥0

{mt + γ ′(λ∗)t}>−x+ max
z∈[0,1]

ψλ(z, λ)

ψ(z, λ)

)
↑ 1 as x→∞,

which implies that
lim

x→∞ Py
(
γ (−x,λ∗))= 1. (5.9)

Note that on the event γ (−x,λ∗), Vx(λ∗)= ∂W(λ∗, y) Py-a.s. and Y (−x,λ∗)
z = Yz, where Yz =∑

u∈C(z,ν∗) δ{Xu(σu)}. Thus it follows that under Py,

lim
z→∞

〈
Yz, ze−λ∗zψ(·, λ∗)

〉= ∂W(λ∗, y) on γ (−x,λ∗).
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By (5.9),

lim
z→∞

〈
Yz, ze−λ∗zψ(·, λ∗)

〉
= ∂W(λ∗, y) Py-a.s.

So by the dominated convergence theorem and the asymptotic behavior (5.5),

u(0, y)= lim
z→∞Eye

〈
Yz, log u

( ·−z
ν∗ ,·

)〉
=Ey lim

z→∞ e
−
〈
Yz,− log u

( ·−z
ν∗ ,·

)〉

=Ey lim
z→∞ e−

〈
Yz, βze−λzψ(·,λ∗)

〉
=Eye−β∂W(λ∗,y).

Theorem 1.3(ii) of [16] shows that Ex exp
{
−βeγ (λ∗)t∂W(λ∗, x)

}
, as a function of (t, x), is a

solution of the following initial value problem:

∂u
∂t

= 1

2

∂2u
∂x2

+ g · (f(u)− u), u(0, x)=Exe−β∂W(λ∗,x).

Therefore, u(t, x) and Ex exp
{
−βeγ (λ∗)t∂W(λ∗, x)

}
are solutions of the above initial value

problem. The uniqueness of solutions of initial value problems implies (5.8) holds. �
Proof of Theorem 1.3. Combining Theorem 5.2, Theorem 5.3, and [16, Theorem 1.3], we

have Theorem 1.3. �

A. Appendix

Lemma A.1. Let {f (B[0,t]), t ≥ 0} be defined by (4.7). For any 0< s< t,

(y,λ∗)
x

[
f (B[0,t∧τz])|Fs

]= f (B[0,s∧τz]),

where τz is defined by (4.3),

Proof. For any s> 0, we use θs to denote the shift operator. First note that

(y,λ∗)
x

(
f (B[0,t∧τz])|Fs

)
(A.1)

=(y,λ∗)
x

[
ŵ(−t ∧ τz, Bt∧τz , y)e−

∫ t∧τz
0 g(Br)w(−r,Br)dr1s≥τz

∣∣∣Fs

]
+(y,λ∗)

x

[
ŵ(−t ∧ τz, Bt∧τz , y)e−

∫ t∧τz
0 g(Br)w(−r,Br)dr1s<τz

∣∣∣Fs

]
=: I + II.

For I, we have

I = ŵ
(−τz, Bτz , y

)
e−

∫ τz
0 g(Br)w(−r,Br)dr1s≥τz . (A.2)

For II, we will prove that

II = ŵ(−s, Bs, y)e−
∫ s

0 g(Br)w(−r,Br)dr1s<τz , (A.3)

which is equivalent to

x

(
�

(y,λ∗)
t∧τz

�
(y,λ∗)
0

ŵ(−t ∧ τz, Bt∧τz , y)e−
∫ t∧τz

0 g(Br)w(−r,Br)dr1{�(y,λ∗)
t∧τz >0}1s<τz

∣∣∣Fs

)

= �
(y,λ∗)
s

�
(y,λ∗)
0

ŵ(−s, Bs, y)e−
∫ s

0 g(Br)w(−r,Br)dr1s<τz . (A.4)
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Recall that
τz = τz(y)= inf{t ≥ 0 : y+ γ ′(λ∗)t + h(Bt)≤ z},

and τz(y+ ν∗s)= τz−ν∗s. For 0< s< t, we have on {s< τz}
t ∧ τz = s+ (t − s)∧ τz−ν∗s ◦ θs

and
Bt∧τz = B(t−s)∧τz−ν∗s ◦ θs.

Using the Markov property of {Bt, t ≥ 0} and the fact that
{
�

(y,λ∗)
t∧τz

> 0
}

, we have the following:

left side of (A.4)

= x

((
�

(y,λ∗)
0

)−1
e−γ (λ∗)t∧τz−λ∗Bt∧τz+

∫ t∧τz
0 g(Br)drψ(Bt∧τz , λ

∗)

×(y+ γ ′(λ∗)t ∧ τz + h(Bt∧τz ))ŵ(−t ∧ τz, Bt∧τz , y)e−
∫ t∧τz

0 g(Br)w(−r,Br)dr1s<τz

∣∣Fs

)
= 1s<τz

(
�

(y,λ∗)
0

)−1
e−γ (λ∗)s+∫ s

0 g(Br)(1−w(−r,Br))dr

×x

[
e−γ (λ∗)((t−s)∧τz−ν∗s)−λ∗B(t−s)∧τz−ν∗s

+∫ (t−s)∧τz−ν∗s
0 g(Br)(1−w(−s−r,Br))dr

×ψ(
B(t−s)∧τz−ν∗s , λ

∗)(y+ γ ′(λ∗)
(
s+ (t − s)∧ τz−ν∗s

)+ h
(
B(t−s)∧τz−ν∗s

))
× ŵ

(−s− (t − s)∧ τz−ν∗s, B(t−s)∧τz−ν∗s , y
) ◦ θs

∣∣∣Fs

]
= 1s<τz

(
�

(y,λ∗)
0

)−1
e−γ (λ∗)s+∫ s

0 g(Br)(1−w(−r,Br))dr

×Bs

[
e−γ (λ∗)((t−s)∧τz−ν∗s)−λ∗B(t−s)∧τz−ν∗s

+∫ (t−s)∧τz−ν∗s
0 g(Br)(1−w(−s−r,Br))dr

×ψ(
B(t−s)∧τz−ν∗s , λ

∗)(y+ γ ′(λ∗)s+ γ ′(λ∗)((t − s)∧ τz−ν∗s)+ h
(
B(t−s)∧τz−ν∗s

))
× ŵ

(−s− (t − s)∧ τz−ν∗s, B(t−s)∧τz−ν∗s , y
)]

.

By (2.11), we have the following:

left side of (A.4)

= 
(y+ν∗s,λ∗)
Bs

[
e−

∫ (t−s)∧τz−ν∗s
0 g(Br)w(−s−r,Br)drŵ

(−s− (t − s)∧ τz−ν∗s, B(t−s)∧τz−ν∗s , y
)]

× 1s<τz

(
�

(y,λ∗)
0

)−1
e−γ (λ∗)s+∫ s

0 g(Br)(1−w(−r,Br))dre−λ∗Bsψ(Bs, λ
∗)(y+ ν∗s+ h(Bs))

= 
(y+ν∗s,λ∗)
Bs

[
e−

∫ (t−s)∧τz−ν∗s
0 g(Br)w(−s−r,Br)drŵ

(−s− (t − s)∧ τz−ν∗s, B(t−s)∧τz−ν∗s , y
)]

× 1s<τz

(
�

(y,λ∗)
0

)−1
�(y,λ∗)

s e−
∫ s

0 g(Br)w(−r,Br)dr

= 
(y+ν∗s,λ∗)
Bs

[
e−

∫ (t−s)∧τz−ν∗s
0 g(Br)w(−s−r,Br)drŵ

(−s− (t − s)∧ τz−ν∗s, B(t−s)∧τz−ν∗s , y
)]

× �
(y,λ∗)
s

�
(y,λ∗)
0

e−
∫ s∧τz

0 g(Br)w(−r,Br)dr1s<τz

= �
(y,λ∗)
s

�
(y,λ∗)
0

ŵ(−s, Bs, y)e−
∫ s∧τz

0 g(Br)w(−r,Br)dr1s<τz = right side of (A.4),
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where in the last equality we used (4.5) with T replaced by −s, x replaced by Bs, y replaced by
y+ ν∗s, t replaced by t − s, and z replaced by z− ν∗s. Hence (A.3) holds. Combining (A.1),
(A.2), and (A.3), we obtain

(y,λ∗)
x

[
ŵ(−t ∧ τ, Bt∧τz , y)e−

∫ t∧τz
0 g(Br)w(−r,Br)dr

∣∣Fs

]
= ŵ(−s∧ τ, Bs∧τ , y)e−

∫ s∧τ
0 g(Br)w(−r,Br)dr = f (B[0,s∧τ ]).

�

Acknowledgements

We thank the referee for very helpful comments on the first version of this paper.

Funding information

The research for this project was supported in part by the National Key R&D Program of
China (No. 2020YFA0712902), by NSFC (Grant Nos. 12071011, 11731009, and 11931004),
by LMEQF, and by the Simons Foundation (#429343, Renming Song).

Competing interests

There were no competing interests to declare which arose during the preparation or
publication process for this article.

References

[1] ATHREYA, K. B. AND NEY P. E. (1972). Branching Processes. Springer, Berlin, Heidelberg.
[2] BRAMSON, M. (1978). Maximal displacement of branching Brownian motion. Commun. Pure Appl. Math. 31,

531–581.
[3] BRAMSON, M. (1983). Convergence of Solutions to the Kolmogorov Equation to Travelling Waves. American

Mathematical Society, Providence, RI.
[4] CHAUVIN, B. (1991). Product martingales and stopping lines for branching Brownian motion. Ann. Prob. 30,

1195–1205.
[5] CHAUVIN, B. AND ROUAULT, A. (1990). Supercritical branching Brownain motion and K-P-P equation in the

critical speed-area. Math. Nachr. 149, 41–59.
[6] FISHER, R. A. (1937). The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369.
[7] HAMEL, F. (2008). Qualitative properties of monostable pulsating fronts: exponential decay and monotonicity.

J. Math. Pures Appl. 89, 355–399.
[8] HAMEL, F., NOLEN, J., ROQUEJOFFRE, J.-M. AND RYZHIK, L. (2016). The logarithmic delay of KPP fronts

in a periodic medium. J. Europ. Math. Soc. 18, 465–505.
[9] HAMEL, F. AND ROQUES, L. (2011). Uniqueness and stability properties of monostable pulsating fronts.

J. Europ. Math. Soc. 13, 345–390.
[10] HARRIS, S. C. (1999). Travelling waves for the F-K-P-P equation via probabilistic arguments. Proc. R. Soc.

Edinburgh A 129, 503–517.
[11] KARATZAS, I. AND SHREVE, S. E. (1991). Brownian Motion and Stochastic Calculus, 2nd edn. Springer,

New York.
[12] KOLMOGOROV, A., PETROVSKII, I. AND PISKOUNOV, N. (1937). Étude de l’équation de la diffusion avec

croissance de la quantité de la matière et son application a un problème biologique. Moscow Univ. Math. Bull.
1, 1–25.

[13] KYPRIANOU, A. E. (2004). Travelling wave solution to the K-P-P equation: alternatives to Simon Harris’
probabilistic analysis. Ann. Inst. H. Poincaré Prob. Statist. 40, 53–72.

[14] LUBETZKY, E., THORNETT, C. AND ZEITOUNI, O. (2022). Maximum of branching Brownian motion in a
periodic environment. Ann. Inst. H. Poincaré Prob. Statist. 58, 2065–2093.

https://doi.org/10.1017/apr.2022.32 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.32


548 Y.-X. REN ET AL.

[15] MCKEAN, H. P. (1975). Application of Brownian motion to the equation of Kolmogorov–Petrovskii–Piskunov.
Commun. Pure Appl. Math. 28, 323–331.

[16] REN, Y.-X., SONG, R. AND YANG, F. (2022). Branching Brownian motion in a periodic environment and
existence of pulsating travelling waves. Preprint. Available at https://arxiv.org/abs/2202.11253.

[17] SHIGA, T. AND WATANABE, S. (1973). Bessel diffusions as a one-parameter family of diffusion processes.
Z. Wahrscheinlichkeitsth. 27, 37–46.

https://doi.org/10.1017/apr.2022.32 Published online by Cambridge University Press

https://arxiv.org/abs/https://arxiv.org/abs/2202.11253
https://doi.org/10.1017/apr.2022.32

	Introduction
	Preliminaries
	Properties of principal eigenvalue and eigenfunction
	Measure change for Brownian motion

	Proof of Theorem 1.1
	Proof of Theorem 1.2
	Proof of Theorem 1.3
	Martingales on stopping lines
	Uniqueness in the supercritical and critical cases

	Appendix
	Acknowledgements
	Funding information
	Competing interests
	References

