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Abstract

In this paper we study the maximal position process of branching Brownian motion
in random spatial environment. The random environment is given by a process
& = (£(»)), g satisfying certain conditions. We show that the maximum position M
of particles alive at time ¢ satisfies a quenched strong law of large numbers and an
annealed invariance principle.
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1 Introduction

1.1 Background and assumptions

A binary branching Brownian motion (BBM) in R can be described as follows: There
is an initial particle starting from the origin, and the particle moves as a standard
Brownian motion. After an independent exponential amount of time with parameter one,
the particle dies and splits into two new particles. The offspring evolve independently as
their parent.

Let M, denote the maximal position among all the particles alive at time ¢. Kolmogorov,
Petrovskii and Piskounov [15] showed that % converges to v/2 in probability as ¢ — co.
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Invariance principle for the maximal position of BBMRE

In [3, 4], Bramson proved that, as t — oo, M; — (ﬁt — % Int) converges weakly to a
limit related to a travelling wave solution. In [17], Lalley and Sellke gave a probabilistic
representation of the limit. Thus in this classical case, M; = v/2t + O(Int) as t — oc.

éerny and Drewitz [7] studied continuous-time branching random walks in random
environment and their results show that the asymptotic behavior of branching random
walk in random environment is different from the classical case. A continuous-time
branching random walk in random environment can be described as follows: Suppose
that £ = {£(z) : « € Z} is a family of iid random variables on a probability space (2, 7, P)
with 0 < essinf £(0) < esssup £(0) < co. Let

Qo :={w: {&(z,w),z € Z} is a sequence of positive numbers}.

Then P(£)) = 1. For any w € )y and = € Z, let P$ denote the law of a continuous-time
binary branching random walk starting from 2 with branching rate £(-,w). There is a
particle at = at time 0. As time evolves, the particle moves as a continuous time random
walk with jump rate 1. In addition, and independently of everything else, while at site
y, a particle splits into two at rate £(y,w), and when it does so, the two new particles
evolve independently according to the same diffusion mechanism as their parent. P is
referred to as the quenched law and P x P§ is referred to as the annealed law.

We still use M; to denote the maximal displacement at time ¢ of branching random
walk in random environment. Under some conditions, Cerny and Drewitz [7] proved an
annealed invariance principle for M;. That is, there exist vy > 0 and oy > 0 such that,
under P x PS, the sequence of processes
M, — vont

ooy’
converges, as n — oo, weakly to a standard Brownian motion. Thus IP-almost surely,
M; # vot + O(Int) as t — oo under Pg.

In this paper, we study branching Brownian motion in random environment (BBMRE).
As in [7], we suppose that {¢(z),x € R} is a family of non-negative random variables
on (2, F,P). We will add conditions on {{(z),z € R} below. For any fixed w € €,
{¢(z,w),x € R} can be regarded as a branching rate. Branching Brownian motion in
random environment ¢ started at x € R can be defined as follows: Conditionally on a
realization of £, we place one particle at z at time 0. As time evolves, all particles move
independently according to a standard Brownian motion. In addition, and independently
of everything else, while at y, a particle splits at rate £(y). Once a particle splits, this
particle is removed and, randomly and independently from everything else, replaced by
k new particles, with probability py, at the position of the removed particle. These k£ new
particles evolve independently according to the same diffusion-branching mechanism
as their parent. For a given £(-,w), let P$ denote the law of branching Brownian motion
starting from = with spatial-dependent branching rate £(-,w) and offspring distribution
{pr : £ =0,1,2,...}. More precisely, let N(t) be the set of particles alive at time ¢t and X}
be the position of the particle v € N(¢). Define

Xpi= Y Oxy, t>0,
vEN((t)

[0,00) D¢t — n €N,

which is the point process generated by the position of the particles alive at time t. We
call {X;,t > 0} a branching Brownian motion in random in random environment &.

For any v € N(t) and s € [0,t], we use X” to denote the position of v or its ancestor
at time s. X is referred to as the genealogy of v € N ().

For any t > 0, put
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The purpose of this paper is to study the limit behaviour of M; as ¢ — oo under the
quenched law Pg, z € R, and prove an invariance principle for M; under the annealed
law IP x Pg. Throughout this paper, we assume that po = 0 and ) -, kp, = m > 1. When
po > 0, we can consider M; under P5(-| survival) and P x P4 (| survival).

The first assumption (H1) on the environment £ already appeared in [1, 8, 10, 20, 21].

(H1) (a) P-almost surely, ¢ is uniformly Holder continuous, i.e., there exist constants
C(&),a(§) > 0 such that

[€(z,w) = £y, w)| < CE)lz —y|*®, Va,yeR.

(b) There exist constants 0 < ei < es < oo such that P-a.s.,

ei <¢(x)<es, VzeR.

(c) There exists a group of measure-preserving transformations {6, },cr, acting
ergodically on (Q2, F,P), such that, for almost every w € Q, {(z + y,w) = {(z, Oyw)
holds for all z,y € R.

(d) ¢ satisfies the ¢-mixing condition: Let F, ;=0 (§(t) :t < z), F¥ :=0 (§(r) : 7 > y)
and ( : [0,00) — [0,00) be a continuous non-increasing function with ., ((k) <
oo. It holds that for all z,y € R with » < y and all X € LY(Q,F,,P) and Y €
LY(Q, FY,P),

E (X - E(X)) [ F)| <E(X]) - ((y — ),

E(Y —E®Y)) | Fo)l <E(Y])-((y — ).

The mixing condition above is given in [10], and is weaker than the one given in [21].
For simplicity, we assume that (c) holds for all w € 2 rather than P-almost surely.

Our second assumption is [10, (VEL)], but we will describe it using principal eigen-
values, see Remark 1.1 below. Define

[ :
" e LR ),¢>01n]£{|x‘liniooxln¢() }

Ao = {(b € C*(R),
For )\ € R and ¢(z) € C2(R), define
2

1 A

T (m- 1>s<x,w>) 5

For any A € R and non-empty open interval I C R, define

Y(LY) :=sup {7| I ¢ € Aw such that L{¢ > v¢ in R},
F(LY) := inf {’y| 3 ¢ € Ay such that L§¢ < y¢ in R},

Ai(Lg,I) ==inf {y| 3p € C*(I)NC°(I), $ >0in I, ¢ =0indI, L§p < y¢in I},
Ay (L) = pim Ay (LG, (=R, +R)).

The definitions of y(L¥) and 7(L¥) are special cases of Berestycki and Nadin [1, (10)
and (11)] with R = —oo, and the definitions of Ay (Lg,I) and A (Lg) are given in [1, (45)
and (47)]. By [1, Theorem 5.1 (1)], there exists ; C  with IP(2;) = 1 such that, for any
weQand A € R, y(LY) = F(L¥) and this common value does not depend on w € ;. We
will write (L) asiw()\) for simplicity. By [1, (51) and Lemma 5.1], we know that there
exist two constants p;, < 0 and pr > 0 such that when \ € [p1, pr), Y(\) = A;(L&). Nadin
[20, Lemma 3.2] proved that

pr=—pL =:p =0.
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From the argument of [1, Theorem 5.1], we know that when A ¢ [pL, pr|, Y(A) > A1 (L),
and in this case, by [1, Theorem 5.1 (2)], there exists ¢ = ¢(-, \,w) € A, satisfying

2

$0 = gona = r + (g + (m = V() ) = 1N 1)
Moreover, the proof of [1, Theorem 5.1 (1)] shows that () is positive and strictly
increasing in (p,4+o00). Also, Nadin [20, Lemma 3.2] shows that 7(-) is even. By [20,
Lemma 3.3], ¢ is unique up to multiplicative constant. Thus, we can assume that
@(0,A\) =1 for all |A\| > p and w € Q; without loss of generality. Also [20, Proposition 1
and Proposition 3] imply that for all A € R,

2 2

(m—1)es+ % >y(A) > (m—1)ei+ =

so v* and \* below are well-defined:

ST (O B (N
= min — A ._argfém—.

Our second assumption is as follows:
(H2) v(\*) > (m —1)es.

Remark 1.1. Here we explain why (H2) corresponds to [10, (VEL)]. The function L(7)
defined in [10, (2.8)] is strictly increasing for n < 0. By [10, Lemma 2.4 (a) and (d)],
L'(n) is strictly increasing for n < 0 and, for every v > v, := ﬁ there exists a unique
non-random 7j(v) < 0 such that vL’ (7j(v)) = 1. So the condition [10, (VEL)] “vy > v.”
is equivalent to 7j(vg) < 7Tj(v.) = 0, which is also equivalent to L(7j(vo)) < L(0) by the
monotonicity of L. Combining [6, (4.10)] with (1.6) of this paper (see below), one sees
that there is a one-to-one correspondence between our notation () and 7 in [10]:
v(A) = —n + (m — 1)es. Therefore, we can translate the condition L(7j(v)) < L(0) into
(H2).

Since v(p) = v(0) < (m—1)es, (H2) implies \* > p. Combining [10, Proposition 4.10]
with the fact that (H2) and [10, (VEL)] are equivalent, we know that there exists a ¢
satisfying (H1) but not (H2).

Our final assumption (H3) will be used when we deal with the invariance principle
for M;.

(H3) my =Y k?pr < +o0.

BBMRE is related to the random F-KPP:

th%wxwﬁ-f(ﬂc,W) (1_w_zpk(1_w)k) . (12)
k=1

Solutions to (1.2) can be written as

wtz)=1-E [ [ Q-w©x))], (1.3)
VEN(t)

see [10, Proposition 2.1]. (1.3) is referred to as McKean’s representation, see [19] for the
case of homogeneous branching Brownian motion. In particular, w(t,z) = P5(M; > 0)
solves (1.2) with w(0,2) = 1jp,c)(z), and w(t,z) = P§ (min,ecn) Xy < 0) solves (1.2)
with w(0,2) = 1(_ g ().
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Freidlin [12, Chapter 7] studied branching Brownian motion in random environment
by considering (1.2). The asymptotic wave front propagation velocity for (1.2) is of
special interest. By [12, Theorem 7.6.1], under suitable assumptions, the solution
w(t, z) to (1.2) converges to 0 (resp. 1), uniformly for all z > vt with v > v* (resp. for
all x < vt with v € (0,v*)), as t — oo. In particular, using [12, Theorem 7.6.1] with
w(t,z) = P§ (min,en ) X < 0) (which implies w(0,2) = 1(_« o)(¢)), we have that P-a.s.

(t)

lim;_,oo 22 = v*, where

t
m(t) :=sup{z:PS( min X/ <0 _ 1
T \veN() ~ 2

is known as the front of (1.2). In particular when £(x,w) = ¢ > 0 with ¢ being a positive
constant, v* = y/2¢(m — 1). This result is due to Kolmogorov-Petrovskii-Piskunov [15].

Nolen [21] proved a central limit theorem for X; := sup{z : w(t,z) = 3}, where the
assumption on the initial value w(0, z) of (1.2) falls into the supercritical regime — the
limit of % is larger than the minimal speed v*. Recently, Drewitz and Schmitz [10]
studied the case when w(0, x) satisfies

0<w(0,z) <1l_w(z), and / w(0,y)dy > 6, Vx < —N,
[z—N,z]

for some fixed 4, N, N’ > 0. This case corresponds to the critical regime. [10] proved an
invariance principle for m®(t) := sup {z € R : P§ (min,en() X¢ < 0) > €} with e € (0,1).
Note that

Pi( min X/ <0) :Pi(max (—Xf)ZO),
VEN (1) VEN(t)

and that {} .y, d-xy,t = 0} is a BBMRE starting at —z with branching rate £(z) =
&(—x). Therefore

m(t) = sup{z € R : P (M, > 0) > €}.
By the translation and reflection invariance of the environment &, we have for z € R,
P (M, > 0) = P5(M, > x) in distribution under P.

This says that the invariance principle for m¢(¢) in [10] is related to our invariance
principle for M;. In the homogeneous medium, i.e., {(z,w) = ¢, P¢ (minyeN(t) Xy < O) =
P§ (M; > x), and then m*(¢), the front of the solution to (1.2) coincides with the e median
of the distribution of the maximal particle of the BBM. In the random medium case, m*(t)
has the same distribution as the ¢ median of the distribution of the maximal particle of
BBMRE. In this paper, we are mainly interested in the behavior of M;,t > 0.

We will always use {(B¢):>0; 11, } to denote a standard Brownian motion starting from
x att = 0, and also use II, for expectation with respect to II, for simplicity. According to
[10, Proposition 2.3], we have the following many-to-one and many-to-two formulae:

Proposition 1.2. Let ¢1, s : [0,00) — [—00, o0] be cadlag functions with ¢ < 5. Then
the first and second moments of the number of particles in N (t) with genealogy staying
between ¢, and - in the time interval [0,t] are given by

B (# v € N (1) tm ><X < oals), Vs € 0,4))
~ 11, (e { [ m - DB ario1(6) < B < als) Vs € 0,1
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and
BS (#{v € N(0): 01(s) < XY < pals) Vs € 0.1))°)
=11, <exp {/0 (m—1)¢(B,) dr} ;01(8) < Bs < pa(s) Vs € [O,t])

+ (mg —m) / 11, (eXP {/ (m —1)¢(B,) dT} §(Bs) 1{p,(r)<B, <ps(r), Y0<r<s}
0 0
2

t—s
X (Hy (exp {/ (m —1)¢(By) dr} L) (r45)<Br<po(rts) V0<r<ts}>> )dS
0 ly=Bs

respectively.
400, ifs<t,

. in Proposition 1.2, we get
a, ifs=t P g

For a € R, letting p1 = —o00, ¢a(s) = {
that

ES VGEN:“)J” (X¢) | =1l (exp {/Ot(m - 1)£(Br)d7‘} f(Bt)) ; (1.4)

first for f(z) = 1(_,q(2), and then for any non-negative Borel function f.
Recall that for |A\| > p and w € Q4, ¢(x, A\, w) solves (1.1) with ¢(0, \,w) = 1. Define

Yz, \) = e Mo(x,\), zeR (1.5)

and
Uy (t, @) = eV(A)t@/}(:c, A) = 67()\”67)\3%2/)(1’, A), z€R.

Then ¢ (-, \) solves the problem

1
/(/)(07 )\7 w) = 17

and wuyy) solves the problem

{ Uy = %um +(m—1Dé(z,w)u, t>0, xekR,
w(0,2, ) = ¢(z, A).

By the Feynman-Kac formula, u,»)(t, z) has the following representation
t
up(n) (t, ) =10, (exp {/0 (m— l)f(Bs,w)ds} e Bro(By, /\)) . (1.7)
Thus
ef)‘xqﬁ(x, A) = erO‘)tuw(A) (t,x)
—e Y, (exp {/Ot(m - 1)§(Bs,w)ds} e Beo(By, )\)) .

By (1.4), one has

e MG, \) = e TVES | YT e M g(xy ) | (1.8)
VEN(t)
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Let
Wi(\) := e YV Z e MUG(XPN), t>0,
vEN(t)

and ft be the o-field generated by all information of the branching Brownian motion

up to time ¢. Using (1.8) and the Markov property of { X;,¢ > 0}, we have the following
lemma:

Lemma 1.3. For any |A| > p and w € Qy, (Wt()\),]?t,Pi) is a positive martingale with
mean e~ ¢(x, ).
We omit the proof here, see [22, Lemma 1.2] for a proof in a more general case.
The first purpose of the present paper is to study the quenched limit of W;()\) as

t — oo under Assumptions (H1) and (H2), see Theorem 1.4. As a consequence, we will
get that, when ;- | (kInk)p; < oo, P-almost surely,

M,
Tt—w*, PS —a.s. ast— oo,

see Corollary 1.5.

The second purpose of this paper is to prove an annealed invariance principle for M,
under Assumptions (H1), (H2) and (H3).

Conditioned on ¢, for any non-negative Borel function f on R, u(t,z) := uy(t,z) =

ES (ZueN(t) f(Xf)) solves the following parabolic Anderson problem:

9 1

{ Sul(t,r) = S Uaa + (m —1)¢(z,w)u(t,z), =€eR, (1.9)
u(0,z) = f().

According to [21, Section 1], [7, Section 6] and [10, Section 4], the maximal position M;

of X, is related to the front of the solution uy. We write u(=2:9 for the solution to (1.9)
with initial condition u(0,2) = 1(_0)(z). The front of u(~>*% is defined as

me(t) = sup{z € R : u{~%(t,2) > €}.

[10, Theorem 1.4] proved that there exist a constant ¢ € (0, c0) and a P-a.s. finite random
time 7T'(w) such that for all ¢t > T'(w),

me(t) —mc(t) < clnt.

The processes {m*(t),t > 0} and {m(t),t > 0} satisfy invariance principles, see [10,
Theorem 1.3, Corollary 1.5].
Nolen [21] studied the front of uy with f = (z, —\*). Note that

Uy(oan)(t ) = 7 Tp(z, =A% w) = TN (2, N, w) (1.10)

solves (1.9) with f = ¢(x, —\*). The position of the wave u,_,-) at time ¢ is defined in
[21] by
g, (t, w) := sup {z € R:uyr(t,z,w) =€}.

Using the fact that log(¢(x, —\*,w)) ~ A*z as * — oo, we have

_— .
fim Teb@) ) e b (1.11)

t—o0 t )\*

see a similar argument in [21, (5)].
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In this paper, we will introduce a process V; to play the role of —m;(t,w). (H2)
implies that | — A*| > p. Taking A = —\* and z = 0 in (1.8) and using the fact that
¥(=A*) = v(A\*), we have

SN =E§ [ Y Xy, A (1.12)
VvEN (1)

Since ¥(x, —\*) grows exponentially as a function of x, we know that ¢ (M;, —\*) makes
the largest contribution to the sum in (1.12). Using this observation, we define V; by

Vi := sup {x ER: Yz, -\, w) = e"’o‘*)t} =sup{z € R: X'z + Ing(x, - A", w) = v(A\")t}.

(1.13)
Since ¥(-, —\*,w) is continuous, the supremum above is attained. Thus, ¥(V;, —A\*) =
") If v € N(t) is such that X? = V;, then, since ¢(-, —\*,w) is strictly increasing (see
Remark 2.4 below), ¥(X}, —\*) makes the largest contribution to the sum of the right
hand side of (1.12). By (1.10), we may rewrite our V; as

Vi(w) = sup {x LUy (7, w) = e2v(A*)t} ‘

By (1.11), we have

Vi _ .

lim — =v* P-a.s.,

Although both V; and m¢(¢) are fronts of the linear problem (1.9) at different levels, we
find that V; is easier to handle than m¢(¢) when we investigate the main contribution to

2ven() VXY, =A").

1.2 Main results

Theorem 1.4. If (H1) and (H2) hold, then there exists Qo C Q1 with P(Q3) = 1 such
that for any w € Qy, the limit W, (\) := lim;_,o, W;()\) exists P§-a.s. Moreover,

(i) if |\| > \* then W (\) = 0, PS-a.s.;

(i) if |\| € (p,\*), then W, (\) is an L'(P%) limit or W4 ()\) = 0 according to
Sore i (kInk)py < oo ord ;o (kInk)py = co.
Corollary 1.5. Assume that (H1) and (H2) hold. If Y, , (kInk)p, < oo, then P-almost
surely, M;/t — v*, PS-a.s. ast — oo.

Theorem 1.6. Assume that (H1), (H2) and (H3) hold. There exists a non-random
constant I > 0 such that for P-a.s. w,

M, —
lim sup M <T, Pg-a.s..
t— 00 Int
Theorem 1.7. Assume that (H1), (H2) and (H3) hold.
(i) Under P x PE, we have

Mt_’U*t d ~92
7@/\/0,0’7 * )y ast—)—i—oo,
\/i ( A )

where 62 . := (¢/_,.)?v*/(A\*)? and (0’_,.)? is defined in (2.33).
(ii) If (¢’_,.)* > 0, then the sequence of processes
My — vnt
[O,oo)BtHfiM, nelN
T_x /N
converges weakly as n — oo to a standard Brownian motion on [0, cc), in the topology of
0, 00).
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Here is a brief description of our strategy for proving the main results. Theorem 1.4
and Corollary 1.5 are proved using the spine decomposition and the long-time behavior
of the spine process. To prove Theorem 1.6, we adapt some ideas from [7, Section
6] and [10, Section 4]. Roughly speaking, we define a new process L; in (3.6). To
prove that the sum of Pg(infn_lgtgn M; —V,, < —T'lnn) over n is finite, we only need
to show that inf}, <, P$(L, > 0) > n~¢ for some constant C' when 7 is large enough
(see (3.26), (3.27) and (3.28)). To use the inequality P§(L,, > 0) > (E$(Ln))?/E5((Ln)?),
we need to estimate the first moment of £,, from below and the second moment from
above. The upper estimate of the second moment is relatively easy (see Lemma 3.1), but
the lower estimate of the first moment is very delicate (see Lemma 3.4). Our strategy
to prove Theorem 1.7 is to first prove functional central limit theorems for V;, see
Lemma 3.7 below, and then use Theorem 1.6 to get central limit theorems for M;. It
seems that using V; as a tool to establish invariance principle for M, is new.

One may expect that M; is comparable with m1/2(t) in the sense that P-a.s. w,

M w2
lim sup ——————+
t—00 Int

<TI, Pjas. (1.14)

for some constant I', and then use the central limit theorems for m'/?(t) proved in [10,
Corollary 1.5] to get Theorem 1.7. Actually this is the strategy used in [7] for branching
random walk in random environment. In [7], to prove the corresponding version of (1.14)
for branching random walk in random environment (see [7, Proposition 2.3]), éerny
and Drewitz first defined m(t) (see [7, (2.5)]), the front of the solution to the parabolic
Anderson model and also known as the breakpoint, and then proved that for P-a.s. w,

N
i sp ) = 2(0)

<T
t—o00 Int

— ?

P§-a.s. (1.15)

To prove equations (1.14) and (1.15), a main step is to estimate the probability Pg(Mt >
m(t) — Clnt) (see [7, Proposition 6.9]). The most difficult part to get this estimate is
[7, Lemma 6.2] where in the definition of the set Nf of leading particles at time ¢, the
breakpoint inverse T}, defined in [7, (5.21)] is related to m(¢). In the proof of [7, Lemma
6.2], they also need to modify T} (see [7, Lemma 6.3]). We think that it is possible to
use (1.14) and (1.15) as tools to prove our invariance principle. We prefer to use V;, the
leading partial position of the linearized problem, and compare M; with V; directly. In
our proof, we do not need to make any modification for V; and we think this makes things
clearer.

Remark 1.8. After our paper has been submitted, Cvlerny, Drewitz and Oswald [6, Theo-
rem 2.1] prove that for P-a.s. w, (Mt —m2(t),t > 0; Pg) is tight. Since for given w, V;

and m1/2(t) are non-random under Pg, we get (1.14). Therefore, using [6, Theorem 2.1]
and [10, Corollary 1.5], we can get a central limit theorem for M, as well, but not the
functional central limit theorem for M;.

1.3 The organization of the paper

In Section 2, we first introduce the spine decomposition, and then prove some basic
properties for the eigenvalues v(\) and eigenfunctions ¢(x, A). At the end of this section,
we prove a strong law of large number for the spine process =; and a central limit
theorem for the hitting time of =;.

In Section 3, we prove the main results. In subsection 3.1, we prove Theorem 1.4
and Corollary 1.5 with the help of the spine decomposition and the long-time behavior of
the spine process established in subsection 2.1 and subsection 2.3. In subsection 3.2,
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we prove Theorem 1.6. The method is inspired by [7, Section 6] and [10, Section
4] but we use the newly defined process V; to make the proof more accessible. The
most complicated part for the proof of Theorem 1.6 is postponed to subsection 3.4. In
subsection 3.3, we prove Theorem 1.7, which is a direct corollary by Theorem 1.6 and
[21, Lemma 3.1] (or see Lemma 3.6).

2 Preliminaries

2.1 Martingale change of measure and spine decomposition

It follows from the relationship between ¢ and v that

- Ge(@ ) L ba(m )
Iny(xz,\) = —Az + Ing(x, N), SV A+ ERYR
m =—x+ q;;\((sz7)\);)’ %lmp(%)\) — —Xas|z| = oo. (2.1)

For any w € {21, using the non-negative martingale (Wt()\)7 ft,t > 0; Pg) we define a
new probability measure Q5 by

in’)‘ _ Wi (A)
ars |z )= e A p(z, )

To help us understand {X;,¢ > 0} under Q%A, we introduce a martingale change of
measure for the law IT, of Brownian motion {B;,t > 0}. For fixed w € ), it follows from
1t6’s formula that IT,-a.s.,

_ 'l/)T(Bﬁ)‘) 1wa(Bt7)‘)w(Bf7>‘) - (wT(Bﬁ)‘))Q

dln?/}(Bt,A)— 7’(/}(3,5’)\) dBt+§ 1/}2(Bt,)\) dt
(B, ) 12 (y(\) — (m — 1)E(B)) ¥*(By, A) — (42 (By, \))°
=By s V(B M) .

Since II,(By = z) =1,

Bt, /lﬁg? ;/Ot<m)2ds+/ot<v<x>(mnf(Bs))ds.

Now we define
el L (48
= {10 22 [ 00— (m - e 05

P(z, )
=expq — tm— s ¥(B:, )
—oxp { e+ [ = e(gas| G

Then {Y;,t > 0;II,} is a martingale with respect to o(B,,r < t). In fact, by (1.7) and the
Markov property of {B;,t > 0}, we have that for t,s > 0,

t>0.

IL, [Tt+s|U(Br :r < t)]

=1t (e {in 20 [ 00— (- By o}

e~ Y N5y (s, By, \)
=7 L =
Y uBLY t
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Define a probability measure 115> by
IS
dIl,

=T, t>0. (2.2)

o(Bs:s<t)

Suppose that {Et, t>0; ﬁgvk} is a diffusion such that

—_ Q/Jw (E’ta )‘) (¢I(Et7 >\) >
d=y =dW, + ————=dt =dW; + | —=——= — A | d¢,
T WELN TUELN
where {W;,t > 0; ﬁgk} is a Brownian motion starting from z at time ¢t = 0. Applying
Girsanov’s theorem, we get

{Bt,tzo;ﬁgvA} 4 {Et,tzo;ﬁﬁf’\}. 2.3)

Now we define a new process {X’t,t > 0} with probability ﬁgA such that {)Z't,t >
0; P$*} has the same law as {X;,¢ > 0; Q5*}. More precisely, we consider a branching
particle system in which

(i) there is an initial marked particle at € R which moves according to (Z;, ﬁgA) ;

(ii) the branching rate of this marked particle is m{(y) at site y;

(iii) when a marked particle dies at site y, it gives birth to k children with p; =
kpi/m,k > 1;

(iv) one of these children is uniformly selected and marked, and the marked child
evolves independently like its parent and the other children evolve independently with
law P$. Define

Xii= Y 8z t20,
veN(t)

where N (t) be the set of particles alive at time ¢ and )?ff’ is the position of particle
v € N(t). Then by [22, Theorem 2.9],

{Xet > 0;Q5N) < (Xt > 0;PEN.

The set of the marked particles along with their trajectories is called a spine.

2.2 Properties of v(\) and ¢(z, \)

We only assume that (H1) holds in this subsection. We will give some basic properties
of v(A\) and ¢(-, \) for |A| > p. The cases that A > p and A < —p are similar. We will
state our results for |A| > p, but only prove the case A > p. By [12, Theorem 5.1, §7.41],
~(A) is differentiable, strictly convex and 4/(A) > 0 for A > p, and thus +/(}) is strictly
increasing.

Lemma 2.1. (1) y(\*) = A*y/(\), v* = +/(A\*). (2) If|A| > A%, then Ay'(\) > v()\) (3) if
p < |Al < A*, then \y'(\) < ~v(A).

Proof. By the definition of \*, we know that
o= 4 (2 _ YDA = (A
dA A

A=A* (A)°
A () =7(A) = X (N) = 7(A) = (A (A7) = v(A))
A

=X N =0+ [ G0 = @)

A%

& (A7) = A ().

For A > p,

Since 7/()) is strictly increasing, the conclusions of the lemma follow immediately. O
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Recall that ¥(z, \) = e **¢(z, \) satisfies (1.6). Thus, for fixed A > 0, ¥(z,\) — 0 as
x — +o00. For any y € R, define

Hy:=inf{t>0: B, =y}.

According to the Feynman-Kac formula, we have

Hl‘/
Pz, A) =Tl (exp {/0 ((m = 1)&(Bs) —v(A)) dS}) Py, A), z>y. (24

In fact for fixed A > p and any z > y, it is easy to see that (-, ) satisfies the condition of
[9, Corollary 2] in the interval (y, z) with ¢(z) = (m — 1)é(x) — v(A). By [9, Corollary 2],

the function
HyAH,
Ugy,z) (@) =11, <6XP {/ ((m —1)&(Bs) —v(N\)) d8}>
0

is bounded in [y, z]. Therefore, by [9, Theorem 2.3], for any = € (y, z), it holds that

H,AH,
Uz, A) =11, (exp {/O ((m —1)&(Bs) —v(N)) dS} Y(Bu,nH. A))
Hy
=11, <exp {/0 ((m = 1)&(Bs) —v(N)) dS} 1{Hy<Hz}> U(y, A)

H,
1, <exp { | = e =50) ds} 1{H2<Hy}> bz ). (2.5)

To prove (2.4), it suffices to show that the second term in the right-hand side of (2.5)
tends to 0 as z — +oo. Note that ¢ (-, — ) also satisfies the condition of [9, Corollary 2],
and thus (2.5) holds with A replaced by —\. Using the fact that y(\) = v(—2X), we get
that

e w@jv _)‘)
I, (exp {/0 ((m —1)§(Bs) —v(N)) ds} 1{Hz<Hy}> P(z,A) < md’(zv)\),

which tends to 0 as z — +o0 by (2.1) and thus (2.4) holds.
In particular, for z > 0,

Pz, \) =11, (exp {/0 i ((m —1)¢(Bs) — ’y(A))ds}) . (2.6)

Recall that F, = o{¢(y) : y < z} and F* = o{&(y) : y > x}. By (2.4), we have for any
x>y,

Yla, A) € FY.

U(y,A)
Similarly, for fixed A < 0, ¥(z,\) — 0 as * — —oo. It follows from the Feynman-Kac
formula that

H'y
w<x,A>=Hm(exp{/o <<m—1>£<Bs>—v<A>>ds}>ww), r<y @)

Thus

€ Fy, forz<y A<O.
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Lemma 2.2. For all |\| > p and w € 1, ¢(-, \,w) is differentiable in x and A.

Proof. Without loss of generality, we assume A € (p,o0). We claim that, for fixed « > 0,
1 is differentiable as a function of A and

Hyp
Pa(x, N) = w = —y' (M1, (Ho exp {/0 ((m — 1)&(Bs) —v(N) ds}) . (2.8)

In fact, we can choose \; € (p,A) and K > 0 such that hexp {— (v(A) —v(\1)) h} < K for
all A > 0, and thus

m, (H exp { / " ((m — DEBL) — (V) d})
< KT, <exp { / "((m - 1)e(By) - wmds}) .

We can now use the dominated convergence theorem in (2.6) to get (2.8).

The same argument together with (2.4) shows that, for = > y, ¥(x,\)/¥(y, A) is
differentiable in A € (p, 00). By choosing z > 0 > y, we get that ¢ is differentiable in A
for all x € R. The desired conclusion follows immediately from (1.5). O

To compare with the constant case in which ¢ = 1, we will use ¢ in the statements
of the results, but use ¥ in the proof for convenience. By the uniqueness of ¢, we have
P-almost surely ¢(z + y, A\, w) = ¢(y, \,w)d(z, A, Oyw). Thus by (2.1), for any z,y € R,

Iny(z+y, \w)—In(y, \,w) = =Az+Ind(z +y, \,w) — Ing(y, \,w)
=-Az+Ing¢(z, A\ Ow). (2.9)

Taking derivative with respect to A\, we get

w)\(z +ya)‘7w) _ w)\(y7 )‘7(“)) _ ¢A(Za)‘79yo‘))

=y 4 LA YR (2.10)
Pty Aw) Py, A\ w) P(z, A, Oyw)
Note also that (2.9) is equivalent to
7/)(2 + Y, )\7 (.d) —A
D DT — oM (z, N, Ow). (2.11)
Sl hw) (224 6y

Lemma 2.3. Suppose |\| > p and y(\) > (m — 1)es.
(1) For all |A\| > p, there exist positive constants C1()), C2()\) depending on A only
such that

_ w)\(%)\) I ¢)\(l’, )‘) N

(2) If \ > p, there exist positive constants K;(\), K2(\) depending on \ only such that

Vo (2, \) - bz (z, ) _ .
and if A < —p,
Yo(@,A) | alz,A)
Ky(\) < SV A+ Y < Ki(\), zeR.
(3)
Pa(w, )

lim ————= =0, P-a.s..

(4) 7' ()) is continuous in the open set {\ € R : || > p,v(\) > (m — 1)es}.
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Proof. Recall that, by (2.1), f;((;’;)) =—z+ ij(f;’\)). Put g(x, \) := 12(?7)3) for simplicity.

(1) Fix A > p. For = > y, taking logarithm and then differentiating in A in (2.4), we
get

NGRS 2 IL, (exp {fOHy ((m —1)&(Bs) —v(A)) ds} Hy) N ¢,\(y,/\). (2.14)

@) T, (exp (T (- DB — () ds)) PN

Hence, when z > y,

1, (exp { fy™ ((m = D&(B,) =7 (V) ds | H,)
I, (exp { ;" ((m = DE(B,) = 7(\) ds})

L (exp {((m — D)ei — 4(\) H,} H,)
< VT Texp (((m— Des — vV H, )

—v' (M) (z —y) e~ (@=y)/2(y(A)—(m—1)ei)
V2O = (m— Del) ¢ (e-9)V2000—(m—Des)

/!

g(@,A\) = g(y, \) = —=~"(\)

(2.15)

In the first inequality above we used the fact that —/(\) < 0 and in last equality the fact
that forany ©v > 0 and z,y € R,

I, (e “Hv) = ¢~lv—elV2u  gnq 11, (H e “Hs _ =2l yaivam (2.16)
(e (e = 122

Dividing both sides of (2.15) by = — y and letting y 1 x, we get

(2 —'(\)
90 S = (=D

Similarly, for z > vy,

IL; (exp {((m — 1)es — y(\)) Hy} Hy)
Iy (exp {((m — 1)ei — (X)) Hy})
— (M) (x —y) e~ @=y)/2(y(\)=(m—1)es)
V2O = (m—1)es) ¢~ @uv2E0—(m—Dey

gz, N) =gy, ) > —'(N)

and thus
—'(\)

ga:(xa /\) >
V2(r(A) = (m —1)es)
Hence (2.12) is valid.
When A < —p, (2.14) holds for all z < y. In this case we have that for z < y,

= —Cl()\), z € R.

1L, (exp { [o" ((m = DE(B,) —7(V) ds} 1, )
M, (exp { J3" ((m = 1)&(B,) = 7(V) ds} )

/

9y, A) — g(@, A) =~"(N) < 0.

An argument similar as above shows that (2.12) holds.
(2) The argument is very similar to that of (1). We only prove the case of A > p.
By (2.4), for x > y we have

e, —n =In ex . m — — s
J, e =N o) =1 H””( p{/ ((m = 1¢(B.) V(A))d}>
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Hy
< InIl, <eXp {/0 ((m —T)es —y(N)) d5}> = —(z = 9)v2(7(A) — (m — 1)es).

Similarly, for any « > v,

(2, N) .
Uy 2 - 9V2G0) — m - Ded).

Letting K2(\) := /2 (v(\) — (m — 1)es) and K;(A) := /2 (y(A\) — (m — 1)ei), we get the
results of (2).
(3) For A > p, in view of (1), for any =,y € R with |z —y| <1,

¢,\ x, )\ ~ a(y, A ’ ’¢,\ z,\) oy, N
T, A < Ci(N). 2.17)
o) - oy oy | =Y
Thus, it suffices to prove that for k € Z,
lim 9(k, A) = -1, P-a.s..
k|0 k

By (2.10) and (2.17), {g(k+ 1,\,w) — g(k, \,w) : k € Z} is a stationary and ergodic se-
quence with uniform bound Ci(\). By (2.9) and (2.13), we also have that {lny(k +
1, A\ w)—Iny(k,A\,w) : k € Z} is a stationary and ergodic sequence with uniform bound
Kl()\) Thus,

Iny(k, \,w)
lim ——————=

k— o0 k

Elny(l,\w) = =\

Taking derivative with respect to A in the display above, using the boundness of g, we
get that

Eg(1,\,w) = —1. (2.18)
By Birkhoff’s ergodic theorem,
k, A
lim 9(k. A) =Eg(l,\w)=-1, P-as..
|k|—oo kK

This completes the proof of (3).
(4) Suppose A > p and v(\) > (m — 1)es. Using (2.14), we have

a0 _ e (0 (e {5 = D) — () s} Ho)

9N ="y =TI (exp { ;" ((m = DE(B,) = 2(N) ds} )

Taking expectation with respect to IP, and using (2.18), we get

1 (exp { 3™ ((m = 1)E(B,) = 7(V) ds } Ho)
Iy (exp { 3" ((m = DE(BL) = 7(N) ds})

1=9\E

Using the bounded convergence theorem and the continuity of v(\), we get 7/()) is
continuous in . O

Remark 2.4. By Lemma 2.3(2), if (H2) holds, then (-, —\*) is increasing and for any
y<z,

Iy (z, =A%) =Ing(y, =A%) = /Z (Ine(z, =A%), dz € [Ka(=A")(z — y), K1 (=A")(z —y)].
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Thus, for any y < z,
Ko(=A") (2 —y) SInyp(z, =A%) —Inep(y, —A") < Ki(=A")(z — y). (2.19)
Recalling the definition of V; in (1.13), and using (2.19), we get that for any s < ¢,

YAt~ ) YAt~ 5)
e TS TR =

Throughout this paper, for any real z, we use [z] to denote the integer part of z,
and [z] to denote the smallest integer larger than z. The following lemma is from [13,
Theorem 5.5], see also [21, Theorem 2.8].

Lemma 2.5. Suppose that {n;,}3°, C L?(Q, F,P) is a stationary sequence with E(n;) = 0
and that

> (10— E(nolFr)), and Y E(m|Fo)
k=1 k=1

converge in L*(Q, F,P). Then the limit

exists and is finite. If o2 > 0, then

ZN71
72'\:/%”’“ L N(0,02)

and the process
[nt]—1

1
M7 o+t — [ty | . te[0,1],
1=0

o/n

converges weakly to a standard Brownian motion on [0, 1].

Lemma 2.6. Suppose || > p and v(\) > (m — 1)es, then there exists o3 > 0 such that
under P,

Inp(x, \) — )\m(f’)‘)
X

Moreover, if 03 > 0, then the process

In g(nt, A) — AL
, te€0,00),
ox/n

converge weakly to a standard Brownian motion on [0, oo) in the Skorohod topology and

éa(z,\)
Inp(x, A) — A (;(%)\)

lim sup = 400 P-as..
ja] -0 Vil ’
If o3 =0, then
T, A
sup ||In¢(z, A) — )\QS)‘()H < 00.
z€R ¢($, )‘) S
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Proof. By (2.1), we have that

_/\¢>\(m»/\) _)\Qbk(x’)‘)
oz, A) Y(z, )
holds for all |A| > p and z € R. In view of Lemma 2.3(1)-(2), to prove (2.21), it suffices to

prove it for the case of x € Z.
Fix A > p. Let x = n € Z and define

Ing(z, A) =Iny(z, A) (2.22)

V(i +1,Aw) s\ w)
P+ 1LAw) YA w)

Then by (2.12) and (2.13), {U,}cz is a stationary and ergodic sequence with uniform
bound Ci(X) + AK1(A), and

Uiy =Iny(i+ 1, \w) —In(i, \,w) — A ( ) , 1€7Z. (2.23)

n—1 n

%(”a )‘) _ ) B B ’l/J)\(—TL7 >‘) _ _ )
mwmﬁyfxﬁaxyfg;Ul Inp(—n, \) AmeA)fg; U_;.
Since
lnili(n, )\) _ /\wk(m)\) i )\w)\(_n3 )\) _ 1111/)(771, )\)

’(/)(TL/\) B ’(/)(_na )‘)
by the stationarity of U;, we only need to show (2.21) for x = n € Z*. By Lemma 2.3(3)
and Birkhoff’s ergodic theorem, IP-almost surely,

S Ui _ g (mw(n,A)_ Aw(n,»)
B n n(n, A)

EUp = lim

n—-+oo n n——+oo

= A+ A=0.

We will prove (2.21) using Lemma 2.5. First we check the conditions of Lemma 2.5
are satisfied using the argument of [10, Lemma A.2]. For j > 2, set

Hy
A1(A) = A1(Aws ) := 11 (eXp {/0 ((ml)i(Bs)’Y()\))dS} ; sup (Bs—1) < [j/2]>;

0<s<H,
Hy
Az(N) = A2(A\w;j) =11 (exp {/O (m—=1)&(Bs) —v(N)) dS} P sup (Bs—1) > [j/2]>

and A[(\) := %)E’\) for i = 1,2. According to (2.4) and (2.14), we have

B AN A5(N)
UO = ln(Al(/\) +A2(/\)) - /\A1(>\) + A2()\) - >\A1(>\) + A2()‘)'

Note that A; () is Fi;/2)+1 N F°- measurable. By the assumption that y(\) > (m — 1)es,
we have
A1 (A) <TIy (exp {((m — 1)es — y(N\)) Ho}) =: c1(N) < 1,

and for all j > 2,

AN >0 (exp{«m ~Dei =9 Hob: s (Bo—1) < [j/2])

> 1L <exp{((m —1ei—~v(N)) HO};O<§‘}1<pH (Bs—1)< 1) =:ca(A) > 0.

Therefore, for j > 2, we have

0<co(A) <A (N) <er(N) < 1. (2.24)
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Next, if Hy > j, then
Ho
exp {/O ((m —1)&(Bs) —v(N) dS} <exp{((m—1)es —v(\))j}:
if Hy < j, then exp {fOHO ((m — 1)&(By) — v(\) ds} <1, and

{ sw -0z} c{ sw e -0=a)

0<s<Hp 0<s<j

Thus,

0 < Ax(3) < exp {((m — Vs =9 (N) ) + T s (5, ~1) > [j/2]).

By the reflection principle and Markov’s inequality, there exists a positive constant
§ < (y(A) = (m —1)es) A £ such that for all j > 2,

H B,/2
0 < Ay(N) < e ™70 4 200y(B; > [5/2]) < e Jé”%

< e 4 2e//870/2TN/2 < 50 (2.25)
Since Fi; 941 C F; for j > 2, we have A;(\) € F;. Thus

Ing(1,A) — E (Ing(1,N)|F;)| = [ne(1,) — E (In(1, \)| F)|
= [In(A:1(A) + A2 (V) — E (In(A1 (A) + A2(N)|F) |
0 s 10

= ——¢ s
an” c2(A)
where in the last inequality we used the following estimate:
Az()\)) Az(N) 5 s
0<In(1+ < < e 7°.
- ( A1(N)) 7 A(A) T e ()

Take o > 0 small so that y(\) > (m—1)es+a. Noticing that sup; -, (hexp {—ah}) < oo, we
have that there is a constant c¢3 depending only on « such that hexp {—ah} < ¢3,Vh >0
and thus

< In(4:1 (V) — E (In(A1(\)|F) | + —= (2.26)

0<—AL(N) <3y (ML (efoHO((m—l)&(Bs)—v(k)Jra)ds; sup (Bs — 1) < [j/2]) ,

o 0<s<H,

0< fA/Z()\) < 037’()\)111 (efoHO((m1)£(Bs)v(>\)+a)ds; sup (By—1) > [j/g]) )
0<s<H,

Define () := y(\) — o. Then we get
0< —AN) < ey NN, i=1,2.

By (2.25), there exists § € (O, (y(A) = (m — 1)es — a) A %) such that 0 < Ay(\) < 5e=79,

and thus ~ ,
0< —A(\) <esy(Ner(A), 0 < —A5(N) < 5esy' (Ve 72, (2.27)

In the display below, A;()\) and A’(\) will be simply denoted as A; and A for j = 1, 2.

Hence,
oy = (e B) = ey = ()

EJP 28 (2023), paper 65. https://www.imstat.org/ejp
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Al Al A Al
= At 2 B2 N2 ]—'-)
‘ A+ A,y A+ A, ( A+ A, A1+A2’ J

Al Ay
+AE [ | —2—
‘ <‘A1 + Ay

/

)

S S T+
A, 1 Ay <A1+A2‘ )‘ ‘A T A,

|A/ ‘ { A1 < A1 ) } 6_j5
1l———+E(1-— 10 A
A1 Al + A2 + A1 + A2 + a7 ( )CQ()\)
A) e=90 e10 -
< 10nezy (A L 1 10)e —: cqe I, (2.28)
= 37( )02()\)02()\) 37( )02()\) 4

here in the second inequality above we used the fact that A; and A’ are F;-measurable,
and in the last inequality we used (2.24), (2.27), and the fact that A5 > 0.
Now (2.26) and (2.28) imply that there exists a non-random constant c5 independent
of j such that for all 5 > 2,
|E (Uo|F;) — Uo| < c5e™°, (2.29)

which implies that Y72, (IE (Uo|F;) — Up) converges in L*(Q, F, P).
Next, we estimate |E (Uj|.7-'0)‘ for j > 1. Note that when A\ > p, U; € F/ by (2.4).
Using the (-mixing condition and the fact that EU; = 0, we have

[EU;|Fo)| < E(|U;1) €(5) < [UollooC(5)- (2.30)

Here and later in this proof, we use || - || to denote the supremum over w. By the triangle
inequality,

n

zn:E(Ujlfo) SZ\/ (( (U;|F0)) ) Z||U0|OOC

j=m k=m j=m

which implies that 372, EE(U;|Fo) converges in L?*(Q, F,P). Applying Lemma 2.5 and
noting that [E(UyUj;)| g E (|Uo| |E (U;|Fo)|) < 1Uol%¢(5), we get

2
0?:= lim E(Z U) E(U2) +2ZE UoU;) < |Uoll% + 2||U]/% Zg

N—ooo N
j=1 Jj=1

mg(n, ) = AZLN Ingp(n, A) - A
= = N(0,03), asn — +oo,
vn Vn
which concludes the proof of the first part
If 02 >0, set R, = Int(z, ) — /\“’A e ’\ . For any K > 0, by the central limit theorem
for R,, we have

R, R, R,
P(limsup—=2>K )= lim Plsup—2L>K|>limP|[-—=ZX>K)>0
<H+£ NG ) rtoo (p Vi ) e (\/?: )

Since {limsup,_,, ., R./y/x > K} is an invariant set, we have
R
P (limsup = = —|—oo> =1.
T—00 X

When z — —oo, a similar argument also shows that P(limsup,_, . R./+/|z| = +0) = 1.
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For any M > 0, we modify the definition of U; in (2.23) by

U (M4 1), A\ w) RO\ (Mi, A,w))
Y (M(i+1),\w) v (Mi,\w) )’

U; = Ine (M(i + 1), \,w) — Inep (Mi, \,w) —A(

By Lemma 2.5, the process

In g(nt, A) — A2 LA
= ANt e o, M),
O’)\\/ﬁ

converges weakly to a standard Brownian motion on [0, M]. Since M is arbitrary, by [2,
Lemma 3, p.173], we get the weak convergence of {n}’,¢ > 0} to a Brownian motion on
[0, 00).

If 0/2\ = 0, then by [13, §5.4] or [2, (19.8), p.198], we may write the increments

{Ui,1 € Z} of the stationary ergodic process {Ilnv(n, ) — )\w*((n”;‘)) ,m € Z} as:

U =Y+ (T")'Zy — (T*) 2y, i€,

here {Y;,i € Z} is a stationary ergodic sequence of martingale differences with Y; € F;
and E (Y;41|F;) =0, Zp is a random variable and 7™ is the unitary operator associated
with 6, that is, T* Zy(w) = Zp(61w). In fact, we may take

Zo =Y B (U F1) =) (Uk —E(U-x|F-1)), (2.31)
= k=1
Y; = (T*)'Y, with
Yo = Z (E(U|Fo) — B(UI| F-1))
l=—0c0

see [13, (5.17) and (5.18), p.137]. From the proof of [13, Theorem 5.5], we know that
E[Y#] = 03 = 0 (see [13, the fourth paragraph, on p.142]), and thus Y; = 0, P-a.s. for any
i € Z. Note that

1U— = B(U_p|F-1)|loc = (T*) " (Uo = E(Uo|Fr—1)) lloc = |Uo — E(Up| Fre—1)lloo-

Thus by (2.29),
|U—_k — E(U_i|F_1)lloo < cseF7D0 k>3 (2.32)

Now using (2.32), (2.30) and (2.31), we have that

1Zollos < [1U0lloe Y ¢k +1) +¢5 ) e + 4l|Up|los < o0,

k=0 k=2
Therefore, for alln € Z,
oa(n V)| _ I
1 A) = A2 INT | = (20 — (T4 Zo| < 2|12
o) ~AGES] =520 = 17— (1) 2] <20 ol
which implies that
A
sup ln¢(x,)\)—)\¢)‘(x’)H <2 Zo)loo + C1(A) + AK1(N) < 0. O
zeR ¢(Z‘, A) 00
EJP 28 (2023), paper 65. https://www.imstat.org/ejp
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Remark 2.7. Suppose that |A\| > p and v(A\) > (m — 1)es. By the proof of Lemma 2.6,
and using (2.26) and (2.28), the limits

, 1 " 1 A ?
(04)? ::ngme(lnw(%)\)—&—)\x)z, (0))?:= lim —F (% —|—x> , (2.33)

exist under P, and as |z| — oo,

P (x,\)
lnqS(x,)\) lnw(x’)‘) +Axr 4 1\2 (;5,\(337)\) P (x,\) + d 11\2
= — N 0, , = = N 0, .
VTl VTl N W IR (0 (23)°)

If (0} )? > 0, the process
In ¢(nt, \)

7 = te Oa )
alvn [0, 00)
converge weakly to a standard Brownian motion on [0, c0) in the Skorohod topology. If
(04)? =0, then sup, ¢ [|¢(z, A)||cc < co. The same result also holds for ?&’A’\)).
2.3 Limit theorems for the spine
Define
Tk::inf{t>025t—50:kj}, keZ.
Proposition 2.8. If (H1) holds, then for any |\| > p and w € O,
lim =t — —~/()), P¢*aus.. (2.34)
t—oo

If we further assume that v(\) > (m — 1)es, then there exist Q) with P(Q2,) = 1 and a
constant X3 > 0 such that forw € Q,, when X > p,

T , —EEAT ~
b e Tk :d>N(O7Z§\) under P57,

Vk
and when A\ < —p, B
Tk - Eg’/\Tk d 2 ~
— L "= N(0,X under P5*.
\/E ( A)

Proof. The idea of the proof is from [18, Lemma 2.6 and Corollary 2.7]. (i) Fix A\, x and w.
For any e > 0, by the definition of 4/(\), there exists ¢ := d(e, A, p) € (0, |\| — p) such that
forany 0 < || <4,

YA +n) —7(A)

/
v (N <e.
. (A)
Our first goal is to show that
. 1 = =
tlggoglnEi’* (e7) =v(A—n) —v(N). (2.35)
By (2.2) and (2.3),
L ez L t 6(Bi, \)
—InES? (e7%) = = InTl, B; — )\t/ — 1)&(By)ds—\(B;— ’
JBE (@) =ttt (e {3 — 900k [ (= DB 2B o) | AP
—zA+Inop(x,\) 1 ¢
=) = ZAERED B, (exp {0 0B+ [ m - DeBas o)
0
—zA+ Ino(x, A
=y - Ao
EJP 28 (2023), paper 65. https://www.imstat.org/ejp

Page 21/63


https://doi.org/10.1214/23-EJP956
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Invariance principle for the maximal position of BBMRE

_ 9B
#(Bg, A — 1)

Now fix 5. Since In ¢(y, A)/y and In ¢(y, A — n)/y converge to 0 as |y| — oo, for any € > 0,
there exists an My = Mi(e,d, A) such that forall y € R,

+ %mnm (exp {(n —\)B; + /Ot(m - l)f(Bs)ds} ¢(Bi, A —n) ) - (2.36)

Mflefe\yl < Py, \) < Mlef‘?", Mflefelyl <Py, A —1n) < Mleelyl.
Thus, forall y € R,

) N
M 26—2e|y| < ¢(y7 < M2€2€|y‘.
! oy A—mn) !

Applying the above to (2.36), we get
LinEe (=)
t xr

1 t 1
> —y(\) + Z In 1L, (e(ﬁ—/\)Bz—%\Bszo (m—l)f(B’s)015(15(Bt7 A — 77)) +0 (t)

= —y(\) +y(A—n) + %m E$A7 (e-%lit‘) +0 (1) : (2.37)
here O(1/t) = (In(M;?) — (—2A + In¢(z, \)— In ¢(z, A — n))) /t. Similarly

1 _ 1~ - 1
n InES? (e7%) < —y(\) +v(A —n) + n InESA" <e26|:t‘) +0 (t) (2.38)

—_

with O(1/t) = (In(M?) — (—aA +In¢(z, \)— Ing(z, A — 7)) /t. Note under P 7, =,
satisfies

t —_
- _ 7/}32(‘:‘%)\_77)
%_M+A¢@A ds.

Since ¢(-, A — 1) € Ao, ¢ (-, A —1)/0(-, A —n) € L>®°(R), by (2.1), there exists a constant
M) _,, depending only on A — 7, such that forall y € R,

%@J—mww - %@A—W‘
‘ Yy A=) A=t gy a =y | = Mo (2.39)

Et‘ < |Wt —.13‘ + |J3‘ +Mk—nt' Since (Wt — T, ﬁi)\_n) g (Bt, Ho),

Therefore, under ﬁ%k—n'
by (2.37), we have

1~ ]
liminf — In ESA (e"™)
t—oo ¢
1 - _
> —y(A) + (A — ) + liminf — In E$A 7 (6—25‘=t|)
t—oo
1
> —y(\) + (A =) = 2eM_, + liminf 5 Inlly (e*%lBt‘) . (2.40)
—00

For fixed ¢, when t is large enough,

2 > 2 2, [2 > 2 2
I, (672€|Bt|> — \/;/ 6725\/Ey7y /Qdy — 6726 t ;/ \[efy /2dy > 6786 t7 (2.41)
0 2eV/'t

where in the last inequality we used the fact that

1 1 e
<z — 23) e~ /2 < / e*yg/Qdy, z>0
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and the inequality \/2/7(1/2 —1/2%) > e=*" for z > 0 large. Combining (2.40) and (2.41),
we get

1 ~ -
lim inf - In ESA (€75) > —y(A) +v(A — ) — 2eMy_,, — 8€7. (2.42)

t—o00

Similarly;,

Mo (e2121) = \F / ey < \/5 / T ey, - \Fe%gt. (2.43)
T Jo T J_o s

Using (2.38) and (2.43), we get

1 ~ _
lim sup n InES? (e75¢) < —y(N) +v(A —n) + 2eMy_,, + 262 (2.44)

t—o0

Since M) _, is independent of ¢, let € — 0+ in (2.42) and (2.44), we get (2.35).
Our second goal is to show that, for any ¢; > 0, there exist M3 = M3(\,¢1) > 0 and
01 = d1(€1, A) > 0 such that for all ¢,

P (|2 + 4/ (W] > ext) < Mae . (2.45)

For any ¢; > 0, let ¢ = ¢; /4 and let ¢§ satisfy the condition at the beginning of the proof.
By (2.35), for fixed n € (0, 9), there exists My = My(n, A, €1) such that for all ¢,

IESY (e77%) < My + (YA + 1) = v(A\) + ean/4) t < My + 7/ (Mt + et /2,
lnﬁi’)‘ (e"Et) <My+ (YA =n) —v\) +en/4)t < My —~' (MN)nt + exnt /2.

Thus, by Markov’s inequality,

P& (20 < (=70 — ) t) S exp {MEE (e772) = (v () + ) mt } < exp {My — neat/2}
PEN (20> (—// (V) + ) t) < exp (MBS (7)) + (7' (V) — 1) nt } < exp {Ma — mext/2}
Taking M3 = 2¢™4 and §; = ne; /2, we obtain (2.45).

Finally, for any ¢; > 0 and n > 2 (M, + |7y/(\)|) /e1 where M), is defined in (2.39), by
Markov’s inequality, we have

pé ( sup  |E—E, +7Y (Nt —n)| > em)
n<t<n+1

Sea
=P ( sup

n<t<n+1

Wt—WnJr/ Ve (25, A\) /V(Zs, N)ds + v (N)(t — n)

> 61n>

< Tl < sup |Bi| > ein— My — |7’(/\)> < I, ( sup |By| > eln/2>
t€[0,1] te[0,1]
HO (651n31/4)

eean/S

= 20Io(By > e1n/2) < 2 = 2e—in*/16, (2.46)

where in the first inequality we used (2.39). Together with (2.45) and (2.46), we conclude
that

Z pé < sup =+ (Nt > Qeln)
n=1

n<t<n+1

SZf’i”\ (IZ2n+7' (M)n| > e1n) + Zf’i)‘ ( sup  |E—E,+7Y Nt —n)| > eln) < 0.

n<t<n+1
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Now (2.34) follows from the Borel-Cantelli lemma.
(ii) Assume A > p. For : € IN, define

~ ~ 2
FQ(J?, —i, w) = Eg’)\ (T_l — T—i+1 — E%)\)T—i — T—i+1)> s

~ ~ 4
F4(.’,E, 77;, (.L)) = Ei’)\ (T_z — T—i+1 — Ei’)\(T—i — T—H—l)) .

We claim that P-almost surely for all i > 1, Fy(z,i,w) = Fa(x,1,0_;11w) and Fy(z,i,w) =
Fy(x,1,0_;41w). By the binomial theorem, to prove the claim above, it suffices to show
that, forany m =1,...,4and i € N, E,(T_;, — T_;4+1)™ is stationary. By (2.2) and the
strong Markov property of =,

ESM (T = Toipn)™ = B2, (1)

- v —ita g —i+7,\w)
ST (e T e DeBwas_ VTR BAW) g,
+i+ (e V(—it+ 1tz w)

11 (e O H et T (e DB aw)ds YL B A O i1w)
¢ Yz, 0_i11w) S )

here in the last equality, we used the fact that

Y(—i+z,\w)

w(—l + Z, )\, 9,i+1w)
1/)($7 >\7 9_1'_;'_1(4})
which is true by (2.11). Thus E,(7T—; — T—;4+1)™ is stationary. Note that we have assumed

A > pand v()\) > (m—1)es, so by Jensen’s inequality, the trivial inequality E(X —EX)*
16E(X*) and (2.2),

= 6A¢(_17 )‘7 97i+1+xw) =

IEFQ(x,fl w))? < EFQ( —1,w) < EFy(z, —1,w) < 16EEAT?,

(exp jo m = DE(B,w) —7(\) ds | H2, )
(exp {Jy™ " ((m = 1)&(By,w) =y () ds})
B exp{ N = (m—1es) Ho}HEL)

1L, (GXP{ ( (A) = (m —1)ei) Hy 1 })

Applying Birkhoff’s ergodic theorem, we get that P-almost surely, both + Zle Fy(x, —i,w)
and ¢ Zle Fy(x,—i,w) converge as k — co. Let

k .
. ieq P22, —i,w
Q) = Qlﬂ{w:kgrj_loo21 2](6 )EFQ(z,l,w)}
k .
K —
ﬂ{w: i izt Falz, —0,0) :EF4(x,—1,w)}. (2.47)
k—4o00 k

Then P(Q2,) = 1 and forw € Q,,

1
)
dm o . 221’4 =0
(Zi:1F2($7_17w)>

which implies by Lyapunov’s theorem that (T_;, — ES*T_;)/vk converges in P&- dis-
tribution to AV (0, EFy(z, —1,w)). Setting ¥3 := EFy(z, —1,w), we get the desired conclu-
sion. O
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Remark 2.9. By the strong Markov property of =, {T_;, — T_;41,i > 1} are inde-
pendent (see (4.2) below). For any M > 0 and any subsequence {T_,, } of {T_},
(liminfg o0 (T_p, —ES T, )/ /i < —M} belongs to the tail o-field of {T_; — T ;41,0 >
1}. By the central limit theorem, we have

~ T, —ES T ~ T —ES T,
ph (hm inf —"m L —fm o —M) :klim péA <inf m £ /A
c— 00

t—o0 /M m>k /m
~ T . —ESAT_,
> lim P$* ( S E < —M> > 0.
k—o0 Nk

Thus by Kolmogorov’s 0-1 law,

~ T_,, —E$ T,
pSA <liminf B b M) =1

k— o0 vV 1E

Letting M — +o00, we get

~ T ., —E& AT,
PS5 ([ lim inf k = F=—00| =1
- k—o0 v’

3 Proof of the main results

3.1 Proof of Theorem 1.4
Proof of Theorem 1.4. We only consider the case A > p. Define

Wi(A) = e TV 3T A G(Xr ) = e ST (XN

veN(t) vEN(t)
and Wao()) := limsup, ., W;()\). By [11, Theorem 4.3.5. p.227],

Wao(A) = 400, P& -as. <= Wy (A) =0, Pé-as.;

Wao(A) < 400, PéP-ais. <= ESWoo(\) = e *o(z, \).

Define
(= + 2, \*) — A AEREeS)
Qo := e N2 limsu —nte ) >0
2 A A ﬂ nﬁoop Jn
. In(n +xz, =A%) — A*%
ﬂ lim sup >0;,,
n—oo \/ﬁ

here Q)+ and Q_ - are defined in (2.47). Then P(2,) = 1 by (H1), (2.22) and Lemma 2.6.
We will fix w € Q5 in the rest of the proof.
(i) We first consider the case A > \*. In this case,

Wi (A) > e TN (E,, A) = exp { (WE”) x “Tt - V(A)) t} .

=t

By Lemma 2.8 and the asymptotic behavior of In (-, A), we have

In(Z, \) E ~
tim BEERNE L)) = a0, Bsas.
— 0 '—'t t
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By Lemma 2.1, when |A| > A*, Ay/(A) > v(\). Thus, We(A) = +oo, PS> -a.s. or equiva-
lently, W, (\) =0, P§ -a.s..
Now we consider the case A = A\*. In this case, we first prove that for any M > 0,

PSY (Ingp (2, \*) —y(\)t > M i0.) = 1.
Note that by (2.2),

1;[}(7” +, )‘*)
U(z, )

By Lemma 2.1, v(A\*) = A\*4/(\*). Thus, using (2.4) and (2.14), we have
I, (exp { [y ((m = DEBL) = 1(\")) ds | Ho )
I, (exp { [y ((m = 1&(B,) (X)) ds })

ok %(—H‘F%)\*) _%(37»)\*)
- ( b(=nt+a, ) (a,A) ) '

YANBENT-y =AW (" (mmneB oty )

YAESA T, = Ay (A7)

Therefore,

P& (Ingh(E4, A%) = y(A*)t > M i.0.) > PSY (ny(Er,,, A*) — y(A")T-p > M i0.)
JUSEN _RENT _ _ *\REA" _

_ pe (V(A*)T—n SN TL, _ Ind(on+a,)) = 9B T, - )

¢ \/ﬁ \/ﬁ 1.0.
. T, —ESNT.
— péA A=z —on
2 <v( ) NG
* w [(Yax(=ntz, ") Pax(x,A7)
Intp(—n+2,X%) = A (rGabaa) — lean)
< T i.o. |.
n

Thanks to our choice of {25, there exists a subsequence {n; = ni(w),k > 1} such that for
all w € Qo,

(=g + 2, A7) — A7 (L Emtmd) Ay

lim P(—nr+z,A*) P(x,A*) >0,
k—o0 A/ Mk
SO
* s [ Yax (—np+z,A\") Pyx (z,A7)
. 1111/1(*77% +xﬂ/\ )7 A ( a(—nkix,k*) - 12(.%,/\*) ) -M
inf > —00.
k>1 RVALD”)
Together with Remark 2.9, we have
PEA (Inep(B, M) — y(A)t > M i.0.)
. T ,—ESNT.
> ng)\ A* n T n
>P; <7( )—\/ﬁ
* x [ Yax(=ntz,\7) pax (z,A7)
< 1.0
NG
=1.
Letting M — oo,
pé <lim sup (In (24, A*) —y(A)t) = +oo) =1,
t—o0
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this implies Wa, (A*) = 400, P$* -a.s. or equivalently, Wo,(A*) = 0, Pé-a.s..

(ii) When |A| € (p,\*), by Lemma 2.1, A\ (A\) — v(A) < 0. Let O be the law of
the offspring of the spine particle, that is, ﬁiﬂ\(O = k) = kpi/m for k = 1,2,.... If
> e (kInk)py = 400, then

~ + s
0o = E&A <mMO>:/ PEM(Int O > yM)dy <Y PSMint O > kM), M >0.
0 k=0

Let uy be the time of the kth fission of the spine and Oy be the number of offspring of the
spine at time . Then by the Borel-Cantelli lemma and the arbitrariness of M, we have

Oy

lim sup - = 400, f’i”\-a.s..
k—o0
Note that
— In"(Op —1)  InY(E,,, A
Wi 2 (00 = e Orrs(3,,3) = exp { (M= 4 G )
k k

Since (m — 1)¢(z) > (m — 1)ei, we have
PEA (i < 1) = PEANL > k) > PN, > k) = PEA (i < 1),

where, given the trajectory of Z, N, is a Poisson process with rate (m — 1)¢(Z;) and N is
a Poisson process with rate (m — 1)ei, ji, := inf{t : N, = k}. We use a coupling of (N, N;)
such that N; — N, is a Poisson process with rate (m — 1) (£(Z;) — ei) and is independent
of Ny. So pj, < jir. Since k/fiy — ((m —1)ei), P& -a.s., we have liminfy_,o0 k/pu >
((m — 1)ei), P&*-a.s.. Similarly we also have limsup,,_,. k/u, < ((m — 1)es), P& -a.s..
Thus, 11, — oo P$*-a.s. and

lim sup Wu . = limsup exp

k—o0 k—o0

{(hﬁ(ok—l) LIS

k Mk Mk

- 70\)) ﬂk} = Fo00.

If Y7, (kInk)py < +oo, then for any ¢ > 0,

Cc

~ + oo _ >
00 > Ei’)\ (IHO> — / P%A(ln"" O > yc)dy > ZP%’\(IH"' O > kc).
0 k=1

Since c is arbitrary, we have

Oy

lim sup 1 =0, ﬁg”\-a S

k—oco

Define G to be the o-field of the genealogy along the spine, then we have

Ny—1
B (W0[G) = w(Ee e 4 3 (O = (Eue, Ne O

Here Oy, pur and Ny have the same meaning as in the case Zzozl(kln k)pr = +o00. Then,
ﬁE‘E’A-a.s.,

In(O — 1 In(Op — 1) k
lim sup M = lim sup M— =0.
k— 00 o k— 00 k ke
Note that P$*-a.s.,
. Iny(ELN) . Iny(E, N By ,
Jim ZEEES = Jim SECESSE =00 0) <503,
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and thus

i In(Z, A) < Y(A) + M ()

t— 00 t 2 ’

which implies
limsup (Z¢, A) exp {— (v(A) + M/ (V) t/2} = 0.

t—o0
So there exists a f’i“-a.s. finite random variable 7 such that for all £ and ¢,

1A =MV

In(Or —1) <n+ 1

gk, and Y (Eg, A) exp {— (v(A) + 1 (V) £/2} <.

Therefore,

N;—1

ES (Wt()\)‘é) = Y(Ey, \)e TVt 4 Z (O — DY(E,u,, N)e TP

<nexp{—(7(A) = M (\)t/2} + > _ neexp {exp {— (y(A) = My (V) e /4}} < o0,

k=1

which implies limsup,_, . ES (Wt )|Q~) < o0, P$*-a.s. Fatou’s lemma for conditional

probability implies that lim inf;_, ., Wt( ) < 00, Pf Aa.s. Since Wt( )~! is a non-negative
supermartingale under P$*, we have limy_,o Wy(A) = Weo (M) < 0o, P&*-a.s. Thus we
have shown that when \ € (p, \*) and Y7, (kInk)pj, < oo, W;(A) converges P$-a.s. and
in L' to Woo (N). O

Proof of Corollary 1.5. For any € > 0, there exists constant ¢, > 0 such that for all z € R,
Pz, =A%) > cee el
Taking A = —\* and using Theorem 1.4, we have, P-a.s.,

0 = Wao(=X*) > limsup ¢(My, —\*)e™ YAt > ¢ lim sup exp {\*M; — €| M| — y(A*)t} > 0.

t—o0 t—o0

Thus, Pé-a.s.,
tlim N My — €| M| — v(A*)t = —o0,
—00

which implies that
i XM, — €| M|
limsup —

t—o0 t

<~(\*), Pi-as.. (3.1)
When A € (p, A*), we will first show that for any w € Q, ﬁg/\ and P¢ are mutually
absolutely continuous. Define
q(z, A, w) == P§ (W (X) =0).

We only need to prove that
g(z,\,w) =0, VzeR. (3.2)
By the branching property, for s < ¢, we have
Wi(A) =M " Wy (
veN(s)

Here conditioned on F,, {W/ ,(\),v € N(s)} are independent. Letting ¢ — oo, we get

g, w) =B | [] a(X!Aw)
VEN(s)
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By the branching property and the Markov property, {HVE N(s) q(XY ,/\,w)} N is a
s>0

bounded martingale under P$. Since W ()) is the L! limit of W;()), ¢(z, \,w) < 1 for all
x € R. By (1.3), ¢(-, \,w) satisfies the equation

1
@z, A\, w) = 2qm(x Aw)+E(z (Zpkq T, A, w) (m,A,w)) .

By the Feynman-Kac formula, we have

q(z, A w) = I, (q(Bw\,w)eXp{/o &(Bs (Zpkq (Bs, A, w) — 1) ds }) :

Let A(e) :={z : q(z, \,w) <1 —¢€}, then

q(z, N\ w) < T, (exp{/ £(B (Zpkq (Bs, A\, w) — 1) ds })
1, (e { [ ettt = p) (Borw) - 105}
<, <exp {—5e1(1 ) /Ot lA(E)(Bs)ds}> , (3.3)

where in the second inequality, we used the domination (377, peg" ! (Bs, A, w) — 1) <
p1+ OCiespi)a(Bs,A,w) — 1 = (p1 — 1) + (1 — p1)q(Bs, \,w). Let m be the Lebesgue
measure in R. Note that if m (A(g)) > 0, then as ¢t — oo,

IN

t
/ La(e)(Bs)ds — +o0, I;-a.s..
0

Since ¢(z,\,w) < 1, we can find ¢ = ¢(w) > 0 such that m (A(e)) > 0. Letting ¢t — oo
in (3.3), we obtain (3.2), and thus Pi”\ and Pg are mutually absolute continuous. Noticing
that

t—o0 t—o00

_ M, =
Pi)‘ (hmlnf 5 2 >y (A)) > PE’A (hmlnf : > ()‘)) =1
we have

t—o0

M,
P¢ (hmlnf 5 2 > ()\)) =1.
Let A T \* we get that

t—o0

P: (hminf]\ft > v*) =1. (3.4)

(H2) implies that A* > p and v(\*) > (m — 1)es. By Lemma 2.3 (4), 7' (A) 1 7 (\*) = v* as
A1 A\*. In view of (3.4), we know that M; — +oco, P$-a.s. and thus (3.1) can be rewritten
as

M, < 7(A)

lim sup —
t— o0 A* —€

, PS-as..
Letting ¢ — 0+ and using (3.4), we get the conclusion of the corollary. O

3.2 Proof of Theorem 1.6

In this subsection, unless explicitly mentioned otherwise, we always assume A = —\*
and that (H1), (H2) and (H3) hold. The proof of Theorem 1.6 is inspired by [7, Section
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6] and [10, Section 4]. Since the proof is long and complicated, we divide it into several
parts. In this subsection,

Kl = Kl(—A*), K2 = KQ(—)\*)
are the two constants in Lemma 2.3(2).

For s € [0,¢] and Iy > 0, define

pi(s) :==sup {k €Z: s> /\—lnz/)(k —A*) =Ty lnt} .
Later we will take T’y > 2C(¢') + 1 with C(¢') being defined in Lemma 3.2 (i) below. We
claim that for any I'g > 0, ¢:(s) is cadlag and non-decreasing as a function of s € [0,¢]. In
fact, if ¢;(s) = k, then by definition,

SE[A**lnw(k —\") =Tylnt, )\

—Iny(k+1,-X\") =Ty lnt) ) (3.5)
which implies that, for any r € (s, z2= In¢)(k + 1, =A*) —=TgInt), ¢;(r) = k. On the other
hand, suppose that s,, € [0,], s, T s, and that ¢;(s) = k. If s = /\*v* Iny(k, —A\*) —Tolnt,
then @i(sn) T (k—1),if s > 5= Inep(k, —A*) — T Int, then for n large enough, we have
o7 InY(k, =A%) —=ToInt < s,, < s, which implies that ¢;(s,) = k. Thus ¢,(s) is a cadlag
function of s € [0, t]. The monotonicity follows easily from Remark 2.4.

Define

£t;=#{ueN(t);X;2Vt+2 min XY >V, — 3, X < @(s), VSE[H[”Vt],t},

reft—1,t]

1
HY > o no(k+1,-X") = Tolnt, Vb =1,2,... [m]}, (3.6)

here for any y € R and v € N(¢), H, is the first time that the particle v hits y, i.e.,
Hy =inf{t > 0: X} = y}. To prove Theorem 1.6, we will use the following inequality:

(5 ()
((ct>2>

We will estimate the first moment of £; from below and the second moment of £; from
above. The following lemma gives the estimate of the second moment of ;.

Pg(ﬁt>0)2 , t>0.

Lemma 3.1. There exists a non-random constant {5 such that for t large enough,

sup EE ((Et)Q) <t
ye[-1,1]

Proof. Note when v € N(t) makes a contribution to £;, we have X! < ¢(s) for all

s € [0,¢t]. This is because that for s € {Hl ) H[”v]) there exists k € {2,...,[V4]} such that
s € [Hy{_,,H}). Therefore,

s> HY_, > ——Indp(k,~\") - Tolnt,

1
A*p*
which implies that ¢,(s) > k. But s < H} means X! < k, so we get that X! <
k< <pt( ) for s € [HY,Hp,)). If s € [0,H}), then when ¢ is large enough so that
0> Iny(1,—A*) = TylInt,

A*v*

1
s>0> Yo Iny(l, —A\*) — Ty lnt,
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thus ¢¢(s) > k holds for k = 1. Thus for s < HY, we have X? < 1 < ¢(s). In conclusion,
L <H#{v e N({t): Xy >Vi+2, XY < p(s), Vs €[0,t]}.
By Proposition 1.2,
t
Eg ((ﬁt)2) < Eg (Ly) + (mg — m)/o 11, <€f0 (mfl)f(Br)dré-(Bs)1{Br<¢t(7‘)7 vosrs)
t—s 2
X (Hz (8 0 (m71)§(Br)dr1{BrS¥3t(r+S)v VOSTSt—S,Bt—sZVt+2}>) B >d$

|z=

Thus, for z < ¢:(s), using the monotonicity of (-, —A*) (see Remark 2.4) and (1.7), we
have

t—s
II, (exp {/ (m — 1)§(Br)d7“} 1B, <pi(r+s), V0<r<ts,Bts>Vt+2})
0

t—s
<II, (€XP {/0 (m — 1)§(Br)d7‘} 1{Bf,_s>vt+2}>

e W(Bross M)\ (2, ~A)IOE=2)
< (o [ - nemer S ) = Mo
_ (i), A" @O0

n 1/}(‘/;’ _)‘*)

= (pi(s), —A") e AV, (3.7)

where in the last equality we used the fact that e="(*)%)(V;,, —\*) = 1 given by (1.13).
Since (3.5) implies that for s € [0, ¢],

52 Mo+ ln¢(¢t(8)a _A*) - FO hl(“,'7

the last term of (3.7) is bounded from above by #'o*™*" for all z < ¢;(s), s € [0,t]. Similarly
as in (3.7), for s = 0 we have

11, (exp {/Ot(m - l)f(Br)dr} l{Btzvf,+2}>

<11, (e { [[on - ve(par} BB X)) S S

0, X
- 'l/}(‘/tv _/\*)

where in the last inequality we used (2.19). Therefore we conclude that

= w(la _)\*) S eKla

Ej ((£0)?)
t s
< E (Ly) 4 (ma — m)/ 11, (exp {/ (m — 1)5(37-)(17'} E(Bs)1{B,<p(r), vo<r<s}
0 0
t—s 2
X <Hz (eXP {/ (m — 1)€(Br)dr} LB, <pi(r+s), vog-St—s,Btssz})) >d8
0 |z=Bs
<ES(#{reN@): Xy >V, +2})
t s
4 oA (mg — m)es/ 11, (exp {/ (m— 1)5(Br)d7"} 1B, <. (r), vo<r<s}
0 0

t—s
x II, (GXP {/ (m— 1)§(Br)d7’} 1B, <. (r+s), V0<r<ts,Bt_s>Vt+2}> )ds
0 |z=Bs;
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t t
<efy tro,\*v*(mQ — m)es/ 1T, (exp {/ (m — 1)§(Br)dr} 1{Bf,>Vf,+2}) ds
0 0

< v PNV LK (1) — m)es.
Taking /> > I'gA\*v* + 1, we arrive at the desired conclusion. O

Now we estimate Eg(ﬁt) from below. Define

1
Gy = {Hk > pe Iny(k+1,-\*) —Tolnt, Vk=1,2, ..., [Vt]} ;
A(r,t) := {Bt >Vi+2, I[HII} ]BS >V, —3, Bs < ¢u(s), Vs € [r, t]}; (3.8)
sE€ft—1,t
K,
Iy = 2.
! A*u* +

For y € [—1, 1], by Proposition 1.2,
t
5(c0 =11, (exo{ [ m - DB (H.1) G
0
t
> 1I, <exp {/ (m — l)f(Bs)ds} s A (Hpyp,t)  Hy, €t =Tt — 1],Gt>
0

Hivy)
> 11, (exp{/ (m—l)f(Bs)dS};A(H[Vt],t),H[w] € [t—Fl,t—l],Gt> . (3.9)
0

By the definition of ¢;(s), we know that

1 1 1
e Iny(pe(s), =A")—Tolnt < s = e Iny(Vs, =A") < gt In(pe(s)+1, =A*)=ToInt.
It follows from Lemma 2.3(2) that for s € [0, ¢],
02 Y mt—1<gi(s)— Vs < 22 Int. (3.10)
1 2

By (2.20), when r € [t —['1,t — 1] and s € [r,t], 0 < V; =V, < 22(t —5) < 2207,

Ko Ko
Therefore, applying (3.10) for s € [r, t], we have
. ToA*v*
A(ryt) DBy >V, +2, min B>V, -3, Bi <V, + Int —1, Vs € [r,t]
s€t—1,t] K
I‘ A* * A* *
S3B,>V,+2 min By>V,—3, Bo<Vi+ - tnt—-1-2"1 Vse[r
seft—1,1] K K,
S LB > V)43, min B> [Vi]—2 Bo<[Vil+ 2t —1- 200 Vs e g
t = t 7s€[t—1,t] s Z t ) s t K1 K2 1 ) .

Hence, when r = Hyy,) € [t—I'1,t—1] and t is large enough so that % Int—1- AKZ ry >
10,

A(Hpy,,t) D {Bt > B, + 3, r[mrll ]BS >B,—2, B;<B,+10, Vse [r,t]}
sEft—1,t

r=Hpv,

Using (3.9) and the strong Markov property of Brownian motion B, we have for ¢ large,

Hyy,
Eg[ﬁt] >II, (exp{/o [ ](m— 1)£(B5)ds} Fy;Hy elt—T,t— 1}7Gt> , (3.11)
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where F; is defined by

T s€ft—r—1,t—7]

F, :=II, (Bt_r > 3, min B, > -2, B, <10, Vs € [0,t — r])
lr=Hpv,)

Forr = H[Vt] S [t—Fl,t— 1],

F,> inf Ilp | B->3, min By > -2, sup B; <10 | =:T5 > 0.
rel1,I'] s€[r—1,r] s€[0,r]

Plugging the lower bound of F; into (3.11), using (2.2) with A = —\*, for large ¢, we have
that

Hy,
Ei(ﬁt) Z FQHy (exp{/o [ ](m— l)g(Bé)dS} 7H[Vt] S [t—Fl,t— 1],Gt>

~ * . % —)\*
_ Fgﬂg’f)‘ (e)‘ v H[w]M;H[Vt] c [t,th, 1],Gt)

P([Vi], =A%)
> Tl (e””*““)M;H[W eft—Ty,t— 1],Gt>
> Ty ¥V T SIS~ (Hy, € [t — Tt — 1), Gy)
> T3l (H[Vt] elt—Ti,t—1],H, > ﬁlw(k, A= (To—1)Int, 1<k < [vg) .

(3.12)

Here in the penultimate inequality, we used Inv(V;, —A\*) = y(A\*)t and (2.19) with
2z =0,y = —1, and in the last, we used I's := I';e * *"T1¢~K1 and t is large enough so
that \*v*Int > K.

To continue the estimate of Ei(ﬁt), we will consider two independent copies of

(2, ﬁg*—”). For y € [-1,1], we enlarge the probability space and the corresponding
measure II5~": let =/, j = 1,2 be two independent copies of (Z;,II5~") and and

H;::inf{tzo: E{:x}, j=1,2,z € R.

For j = 1,2, define
1

A*v*

Bl =0, Bl:=H - In(k, —A*), k>1. (3.13)
Note that M*v*t — K7 < In¢([V;], —A*) < A*v*t, we have

(A (V-3 1] €= Tt -1

Meor U Nepr
Together with the definition of I'; in (3.8), we continue the estimate of (3.12) and get

ES(L0) 2 Talls ™ (B, € [-2,-10,80 = ~(T — )Int, 1<k < [V]), j=1,2

We first claim that, under ﬁf/‘”, { B,i, k > 0} has independent increments. The proof
of this claim is postponed to the Appendix. Let 7 := m; be a uniform random variable on
{2,...,[Vi] — 1} which is independent of =;,Z} and Z?. Define

PIo) .:{ B 1<k<m,
T BLH (B2 -8), m<k <[V
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We claim that

(B k=1 Vil TISY) & (B ke = 1, [V TS ). (3.14)
In fact, for real numbers ay, k = 1, ..., [V;], we have
V4]
52" | exp Zakﬁk B, Bi
[Vi]—1 m [Vi]
i) arfi+1 Y (B + Bt — o)
k=1 k=m+1

Thus, it suffices to show for any 2 <m < [V;] — 1,

(V2] t
5" [ exp Zakﬁk +10Y k(BB =B | =TS lexpi> by
k=m+1 k=1
(3.15)
Since under ﬁgv‘”, i, 7 = 1,2, are sums of independent random variables, we know
that, for k > m, 8}, — B}, is independent of 3}, r < m. Use this observation, the left-hand
side of (3.15) is

m [V4]
I [expqid anBi+i > aw (B + 87— B2)
k=1 k=m+1
_ m [Vi] _ [Vi]
= Hg"_A exp iZakB,i +1i Z akﬁ}n -Hg’_A exp{ i Z o (ﬁk 62 )
k=1 k=m+1 k=m+1
_ m (V4] _ V2]
= Hg"_A exp iZakﬁé +i Z akﬁ}n -Hg’_A exp i Z o (ﬁé — ﬁvln)
k=1 k=m+1 k=m-+1
_ m [Vi]
=057 expi> awBi+i Y o (B, + 8L —Br)
k=1 k=m+1

Hence we obtain (3.15), and thus the claim (3.14) holds.
Therefore, we have

ES(L,) > DIl (5{3] €[-2,-1,8" > Ty —1)Int, 1<k < [v;]) (3.16)

Now we are going to give a lower bound of the right hand side of (3.16). For a constant
C(¢') to be specified in Lemma 3.2(i) below, define

1= Bk - B3>0, V2 <k < Vi, By — 83 > Vi)V

L= {87 — By 2 0, V2 < k < [Vi], B - B3, > VIV )
I ::{ max |B — Ba_1| < C(C 1n[w]} (3.17)
3<k<[Ve]
I, = < C(')In[V
! {3<122?vt] |’B Bk 1| ) o] t]}
Iy == {8} € [-2+ 83 — By — B) + BY,—1+ B3 — B, — 85 + B3} ({m = 7}
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Here J :=sup{j < [V{] : =2+ 7 — B[zvt] — B} + B3 > 0}. To give a lower bound of (3.16),
we will prove that for sufficiently large ¢,

5
M o< {87 € -2,-1),8 > = (0o~ Dlnt, 1<k < [Vi]} (3.18)
n=1

By the definition of B,(:), we know that, when ﬂizl I,, occurs, we have 5,(:) = B} if
lgkgw:JandBl(f) zﬁ},—i—ﬂz— 2if J < k < [V,]. Note that on I; N I, we have

Bl — B3 = VIV, B3 —BRyy = VY™
This implies that for ¢ large enough so that [V;]'/* > 2,
—2+ 85 — i, — B3+ B3 >0and —2+ B, — BR, — Bl + B <0,
which implies that 2 < J < [V;]. When k£ < J, then on I; N I3 we have for k > 2,

(2, ) 2 (2, A > o]
v

() _ gl > gl _ gl _ _
/Bk; Bk —52 2 NEu* - )\*U*,

and for k = 1, 8 = gl = Hf — (\*v*)*Iny(1,-A*) > —K;/(A*v*). Choose Iy >
2C(¢")+1. Forlarge t, we have —2K; /(A*v*) > —(I'y—1) Int and hence B,(f) > —(To—1)Int.
Similarly, when J < k < [V, since -2+ 5, — 6[2\4] — B+ B3 <0and J+1>3, 0n
IhoNI3Nly,

W= BY 82— B3> BY + By — B3 > —20(¢) (Vi) + BY 4y + BBy — B3
2K,

> =2C() n[V] + 8y =2 > —20(¢) In[Vi] — S

-2

Since 'y > 2C(¢') + 1, we get that for large ¢, [3,(:) > —(T'o — 1)Int. Note that ﬂ[(‘t/i] =

BL + B[Qvt] — B2 and by the definition of I5, B[(‘t/z] € [-2, —1] and hence we get (3.18).
By (3.16) and (3.18), we have

ES (L) > Tl (M2 1) = DI~ (N, 1) - TS~ (1| niy 1) (3.19)

Since I; and I, are independent, we have

IS~ (N4, L) > TSN (N L) + 5™ (I;N1) — 1 (3.20)
> TS~ (1) - 157 () + IS (Isn L) — 1.

By our choice of J, conditioned on ﬂ?zlf j, we know that
w1 = =245 — B, — By + B3 €[0,2C(¢") In[Vi]] (3.21)

and z, is independent of 3;. Also note that 35 is independent of Nj_, I; by Lemma 4.1.
Thus,

o 1
5~ (Is| My 1) >

i s (Bl e 1]). 3.22
S E zle[o,Qg(le')ln[vt]] b (52 [x1,21 + D ( )

Thus, to continue the estimate in (3.19), we need to estimate ﬁg"” (I3 N 1),
Hj*y (B3 € [z,x + 1]) and 115" (I;) for j=1,2. Now we first estimate I1$~*" (131 14)
and [T (B3 € [z, 2 + 1]).
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Lemma 3.2. (i) For any ¢’ > 0, there exists a non-random constant C'(¢') > 0 so that for
large t,

yei[r_lfl ; IS (Isnly) >1- [V~ (3.23)

(ii) There exists a constant Cs > 0 such that for all x > 0,

inf inf I (Bl e 1]) > Cse /%5,
yEl[El,l]mlEr%O,x] Y (52 [$1,$1+ ])7 5

Proof. (i) By the definition of ﬂi and Lemma 2.3(2), for k > 3,
. ) ) ) K
8-l < H - + 1

For any 0 <7 < y(—=A*) — (m — 1)es = v(\*) — (m — 1)es, by the strong Markov property
of =7,

ﬁg,—)ﬁ (eXp {77(]—[,]C — Hiil)}) = ﬁi’:f‘ (exp {nH,i})

Hy, —\*
1, <exp { | =g =22 as + nHk} m>
< VTl (exp {((m — Des —7(~A%) + 1) H)

= exp {—\/2 (y(=A*)—(m—1)es—n) + Kl} =:¢; < +o00. (3.24)

Hence, for fixed n € (0,y(A\*) — (m — 1)es), we have for all y € [-1, 1],

5 (130 207) = 15 (o ma |3~ 31| > 01y i)

V] 2

<Y HE (|8l - 8| > o) mivi))
k=3 j=1
(V] 2

< Zze—ncw’)ln[w]ﬁg,—x <eXp {77 ’Bi _ 52.71‘}) < 2 m}l—nc(e’) K1 /(W)
k=3 j=1

Taking C'(¢') large so that nC(¢') — 1 > ¢, we get that (3.23) holds for sufficiently large ¢.
(ii) For simplicity, we set v := v(—=\*) — (m — 1)ei. By the definition of 33 and noting
that 0 < zg := 2= In (2, —A*) < 2K, /(A*v*), for z; € [0,z], we have

ﬁg,—k* (B3 € [x1,21 +1]) = ﬁg’_)‘* (Hs € [x1 4+ 20,21 + 20 + 1))

=1, <exp {/0 2 ((m — 1)&(Bs) — 7(_)\*))(15} s Hy € 21 4+ w0, 21 + 20 + 1])

> 11, (e "2, Hy € [21 + 20, 21 + 20 + 1))
> 6_70(x1+x0+1)H0 (HQ,y € [3?1 + o, T1 + T + 1])
> 6*70(:1:+2K1/()\*v*)+1)1‘[0 (Hy—y € [x1 + 20+ 1/2,71 + 70 + 1]) .

Since Hs_, has density py,_, (s) := %6_(2_9)2/(25), we have

I G Cy) R CYT
Ty (Hay € [w1 + 20 + 1/2, 21 + 30 + 1]) = e ds

z1+zo+1/2 V2183

1 1 -9 1 1 -9
Z 5 (& Z 5 (& .
V2 (21 + 14+ 2K /(o)) V2 (2 414+ 2K /(o))
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Since z < e? for z > 0, we have z73/2 > ¢73%/2 for z > 0, and thus there exist ¢s,c5 > 0
such that B
inf inf I (B ez ,x1 + 1)) > coe™ %, x> 0.
yel-1,1] 21 €[0,2] Yy (ﬁl [ 1,41 ]) - €2

Taking C'3 = min{cs, 1/c3}, we arrive at the desired conclusion. O

The estimates of IT{ " (I1) and I~ (1) are given below.

Lemma 3.3. There exists a non-random ¢" > 0 such that for t large,

inf TSN (L) > V)™ inf IS (L) > [V ™.

yel-1,1] T oyel-1)
We postpone the proof of Lemma 3.3 to Subsection 3.4.
Now we are ready to prove the following estimate on the first moment of £;:

Lemma 3.4. There exists a non-random constant {1 > 0 such that fort large,

inf ES(L,) >t b,
yel[Ijlvl] y( t) o

Proof. Recall the definition of x; in (3.21). By (3.22) and Lemma 3.2(ii),

7€, —\* 1 _ Y n ’ 200
Hlf/ A (IS‘ 0?21 I]) > mcge 2C(£") In[V]/Cs > 03“/;5] e 1
5] —

By (3.20), Lemma 3.2(i) and Lemma 3.3, we have

. TTE AT ([ —2¢” —
Snt I~ (N L) > Vi 720 — Vi) =° (3.25)
Note that ¢ > 0 in Lemma 3.2 is arbitrary. Letting ¢ > 2¢” and using (3.19), (3.22)
and (3.25), we finally get that

inf Eg(ﬁt) > 1—\303[‘4]—20([')/03—1—22// ) <1 _ [‘/t]_(e/_Qéu)) .
yel-1,1]

Combining this with the fact that V;/t — v*, and letting ¢; > 20" + 2C(¢')/C3 + 1, we get

the desired result. O

Lemma 3.5. There exists a non-random constant C, > 1 such that for sufficiently large
t/

supPS (#{re N@t): Xy e[z — 1Lz +1]} <C}) <C“

zeR
Proof. See [7, Lemma 6.8] for the case of continuous-time branching random walk in
random environment or [10, Lemma 4.7] for the case of branching Brownian motion in
random environment. O

Proof of Theorem 1.6. Let A = —\* and let Iy be a constant such that 'y In Cy > f5 + 2/4,
where Cj is the constant in Lemma 3.5. For any n € N, define r, := [['yInn]. For
simplicity, we will omit the subscript n from r,, in this proof. By (2.20), V; -V, < AK”Q (t—s)
fort >s. LetI' = Av*Ty/Ko+1,thenV, - V,,_,. < (I' = 1)Ilnn and

P§ ( inf M, —V, < Flnn)

n—1<t<n

i
ng(#{ueN(r):|XT”|§1}§CZ;)+sup {Pg( inf MtT—Vn<—Flnn>}

ly|<1 n—1<t<n
TLF4 In C’4/C4
<Cmn MO 4 osup PS( inf M, —V,., < -Inn . (3.26)
lyl<1 n-istsn
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Recall the definition of £; given by (3.6). For large n such that Inn > 3, we have
P ( inf My, —Vpp>—In n> > P ( inf My — Vo > 3>
n—1<t<n n—1<t<n
> PS(Ly—r > 0). (3.27)

On the other hand, by Lemmas 3.1 and 3.4, there exists ng such that for all n > ng and
Yy € [717 ”'

2
(BS (Lnr))
Ej (Ln—r)?)
Combining (3.26), (3.27) and (3.28), we get

Pg (‘CTL—’!' > 0) >

—0y—2¢ —ty—20,
; >(n—r) 27" >n7" . (3.28)

T'ylnCy C
Pg ( inf M; -V, < —Flnn) < Oyn TenCa 4 (1 _ n—£2—221)" / s
n—1<t<n

Since 1 — z < e~ * for x > 0, we have

P§ ( inf M, -V, < Flnn) < Cyn~ TG 4 exp {—plamCi—tz=20 /0y 1

n—1<t<n
Applying the Borel-Cantelli lemma, we get

infn—lgtgn Mt - Vn

lim inf > T, Pjas.

n— oo Inn

Since |V,, — V4| is uniformly bounded for n and ¢ satisfying |[n — t| < 1, we get that
Pg-almost surely,

M,; —
lim inf ——* Vi > —TI,
t—00 Int
which is equivalent to
Vi — M
lim sup M <T.
t—00 Int

By Theorem 1.4, lim,_,o, W;(—=\*) = 0. Since W;(—=\*) > ¥(M;, —\*)e~7*)t, we have
lim (M, —A*)e YAt = 0.
t—o00

Therefore lim;, oo (In (Mg, =A%) — Inp(Vi, =A%) = limyy oo (—y(A*)t + In (M, —A*)) =
—o0. By Remark 2.4, M; — V; — —o0, Pg—a.s. as t — oo, this completes the proof. O

3.3 Proof of Theorem 1.7

In this subsection, we also assume that (H1), (H2) and (H3) hold.
Lemma 3.6. Let s > 0. Suppose that W(z,w) : [0,00) x Q@ — R is a continuous process
on (2, F,P) such that, P-almost surely, W (0,w) = 0 and

lim L/'(x, w)

T—00 x

=0.

Suppose further that the family of processes {n_lW(mc, w)}zozl converges weakly as
n — oo to kB(x), where B(x) is a standard Brownian motion on the interval [0, M], for
any M, in the topology of uniform convergence. Define

hi(w) = sup {h > —\*v*t

W (h+A\v't)=h—1},

o0

Then as t — oo, the family of processes {m/ﬁhm}":l converges weakly asn — oo to

a standard Brownian motion on [0, M|, in the Skorohod space.
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Proof. See [21, Lemma 3.1]. O

Lemma 3.7. Let 6%/\* be the constant defined in Theorem 1.7. Under IP, we have

Vi —v*t
vt §>N(O,&EA*), ast — oo.
Vit
If&%» > 0, then the sequence of processes
Vot —v™nt
[0,00)BtHM, n e,
U_)\*\/ﬁ

converges weakly as n — oo to a standard Brownian motion on [0, ), in the Skorohod
topology.

Proof. Combining (2.1), Lemma 2.3(2) and the fact that ¥ (-, —\*) is strictly increasing,
we see that V; is the unique solution to In ¢ (x, —\*) = \*v*¢. Using Remark 2.7 and the
fact that ¢ (-, —\*) is strictly increasing, we get that, for any fixed y € R,

‘/I‘/_v*t _ * _ * ok * *
P<ﬁ§y> —IP(VtSU t—|—y\/i>—IP()\ v*t < Inp(v t+yVt, —\ ))

P (— oot +yvE -\") < Myvi)

P _1n¢(v*t+yﬁ,—A*)< o t
Vot + gV = Vo N i

t—o00 / )\* ~
— P{(c_,.)x < =P((6_x)x < ).
(@2 x = 2n) = Pe-sx <)
Here x is a standard normal random variable.
If6%,. >0, let W(z,w) :== —In¢ (&, —A*,w) and x := o’ ,./VA* > 0. It is easy to
see that

hi(w) = \* (VtJr(/\*v*)fl(w) — v*t) .

Using Lemma 3.6, we have that the sequence of processes

hnt ‘/TI,t-‘r()\*U*)*l —v*nt
0,00) >t — = nelN
Sy e A ey R

converges as n — oo weakly to a standard Brownian motion on [0, M], for any M > 0,
in the Skorohod topology. According to [2, Lemma 3, p.173], this is equivalent to the
weak convergence to a standard Brownian motion on [0, c0) in the Skorohod topology.
By Remark 2.4, |V, (\+y+)-1 — Vt’ < 1/K, all t > 0, hence the second conclusion of the
lemma is valid. O

Proof of Theorem 1.7. This follows from Theorem 1.6 and Lemma 3.7. O

3.4 Proof of Lemma 3.3
In this subsection we give the proof of Lemma 3.3. We first prove several lemmas.
Lemma 3.8. There exists a non-random constant C5 > 0 such that forj =1, 2,

: & — A" J J
ye[—1,1l]{lkfem,k22 T (6’c ~ B> 05) > Cs,

: e — 2" J J
yel-1 ll]nkfelN E>2 1L (6’“ ~ O < _05) > Cs.
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Proof. Since B! and 32 are identically distributed, we only prove the case j = 2. Recall
that 32 = H? L In¢(k,—A*) and 0 < Ky < In9p(k, —A*) — Inep(k — 1,-A\*) < K; for

T Xor

every k € Z and k > 2. Note that for any Borel set B C [0, +00) with m(B) > 0,
ﬁi’_l\* (Hf - Hi_, € B) =TI} (H} € B) > 1l (e_Hl(v(’\*)_(m_l)ei);Hl € B) .

For 0 < ¢ < K3/(A*v*), we have

Afo*

> HO (e—Hl(’Y()\*)_(m—l)ei);Hl < -6+ KQ/(A*’U*)) )

~ . ~ N K
TE—Y (82— 62, < —8) > IS, (H,g < g 2 )

Similarly;,
TS (82 = B2y > 0) 2 Ty (e OO0 00 by > 54y /(0") )
When § = 0, it holds that
I, (e_Hl('V()‘*)_(m_l)Ei);Hl < Kg/()\*v*)) >0=0,
0, (e—Hm“*)—(m—Uei); H > Kl/()\*v*)) >0=4.
Since H; has a density, the maps & — Iy (e=H1(VA)=0n=Debs i1 < 5 4+ K, /(A*v*)) and

§ = Mo (e" M1 =(m=Dels {y > § 4+ K, /(A*v*)) are continuous in § > 0. Thus there
exists C5 > 0 such that

I, (e*HMA*)*(m*UeU; Hy < —Cs + K> /()\*v*)) > Cs,
HO (eiHl(FY()\*)i(mil)ei); H1 > 05 + Kl/(/\*v*)) > 05.
This completes the proof. O
Lemma 3.9. For any k¢ > 0, there exist non-random constants N (k) > 0 and Cg =
Cs(ko) € (0,1) such that for allr > 2,k > N(ko) and j = 1,2,
inf [ (it (B, - BTSN (1), - H)) > —koVE ) > G
ye[—1,1] v r<m<r+k v
Proof. We only deal with j =1, the case 7 = 2 is similar. Define
AHy == H} - H_| -5 (H} - HL_,) (3.29)
and N
f(n) =I5 (exp {n(Hy — Hy_y)}) -
Note that by (2.2), (2.11) and (2.7), we have

et N % Hi "/)(kv_)‘*>
5= (Hy) =11, (H;c exp{—V(_)\ JHp +/0 (m — 1)$(Bs)d5} ¢(yA)>
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_ L ak—y, =N W)
A=—\* Y (=) Yk —y, =A%, Gyw)

Yk =y, =X\, 0,w) O 1

B — (=) A (w(k —v, /\,Hyw)>

_ 1 [wx(ky—xtw) 3 w(y,—A*,w)}
V(=) [k, =2 w) Py, =AM w) |

Thus

T (1) ~ i () = s () - o))
Yy ¢ Yy -

Y (=) \ Yk, —A*,w) Pk —1,—2* w)

Using Lemma 2.3(1), we obtain

g (1)~ g (1| < (3:30)

= AT
here C;(—\*) is the constant in Lemma 2.3.

By (3.24), we have, uniformly for any 0 < 7 < (y(A*) — (m — 1)es) /2 and k > 2,
_ ﬁfﬁ” (exp {W(Hli - Hli—1)} (H,i - Hli—1))

15 (exp {n(H} — H}_,)})

T HIVHY) <, -

My OB g (exp gt} 1)
I (exp {nH,})

< o (exp {—Hy (Y(A") — (m — 1)es —n)} Hy) - e
< o (exp {~Hy (y(A") = (m — 1)es) /2} Hy) - €' =t c1 < +o0.

f'(n)

This implies that f(n) < ne; for any 0 < n < (y(A*) — (m — 1)es) /2. Therefore, by (3.30),
5~ (en2l) < TE (exp {n(HE — HL_y)}) -exp {n [0S (1} — 1} _)|}
< exp{ner +n|CL(=A")/7'(=A")[}.

Thus, AH,, are sub-exponential random variables for £ > 1. By [25, Proposition 2.7.1],
there exists ¢ depending only on ¢; + C1(—A*)/ |7/ (—A*)| such that

ﬁg’ﬂ\* (B"AH’“) < exp{(cy])z}, In] < 1/co, k> 1. (3.31)

By martingale theory and Doob’s inequality, for 0 < n < 1/(2¢2),

ﬁi’_)‘* ( inf Z AH, > —mp/%) =1 _ﬁg,—)ﬁ < sup Z (—=AHy) > Ho\/E)

r<msrk l=r+1 r<m<r+k l=r+1
" m
=1- Hg’_)‘ sup exp<n Z (-AHy) » > enmoVk
r<m<r+k —

_ r+k

> 1 — 2oV, Hg’_’\ (exp {217 Z (—AHg)})
l=r+1
r+k ~

=1— ¢ 2moVk. H Hg’*)‘ (exp{2n(—AHy)}) > 1 —exp {4(62n)2k - 277/{0\/E} .

l=r+1

Taking 7 := ko/(4c3Vk) < 1/(2¢3) and N(kg) := (ko/(2¢2))?, then for k > N(ko),

Hg’_)‘* <T<7’illgr+kgz+l AHy > —mm/E) > Co(ko) =1 —exp {—r5/(4c3)} € (0,1).
=r

The proof is now complete. O

EJP 28 (2023), paper 65. https://www.imstat.org/ejp
Page 41/63


https://doi.org/10.1214/23-EJP956
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Invariance principle for the maximal position of BBMRE

Lemma 3.10. Let AH;. be defined by (3.29). There exist positive constants a* and C~,
independent of k and r, such that forall0 < z < a*k and k,r € ZT,

r+k 22
yel[nf1 | Hf =\ (S;1 AH, > x) > C’7exp{ C’7k}
Proof. We continue the constant label in the proof of Lemma 3.9. We claim that
c3 := essinfe ;115 ((AH)?) > 0. (3.32)
In fact, for x € (0,1), let
ApHy = Hy_yy, —Hi_ =T (H_,, — Hl_,).

By the strong Markov property, under H5 A" A, H; and AH,, — A, H, are independent.
Since AHj, and A, H}, are both centered we have

ﬁg’_)\* ((AHk)2) > ﬁg’_xf ((AIH]C)2>
1 <exp { [ - em —7(—/\*))618} e <HMI>2>

- . 2
- (Hi’” (Hi-140 — H/iq))
> o ((Hy)? exp {= (1(=") = (m — L)ei) H})
— M7 (Mg (Hy exp {— (7(=X") = (m — 1)es) H, }))”
1 1 T ~
_ 22 & =z 2us = —2z(V2u1— K1) —xzv2us __.
=z e — e + ————e¢ =: F(x),
(2U2 2uy ) 2./2u3 (@)
where u; 1= y(=A*) — (m — 1)es < y(=\*) — (m — 1)ei =: uo, and in the last equality
we used (2.16). Since lim,_,¢ Fff) > 0, there exists x such that for all £ € IN and all
realizations of ¢, II$ " ((AH})?) > F(z) > 0, which implies the claim holds.
By the sub-exponential property of A Hy, given by (3.31), there exists a constant K > 0,
independent of k, such that for all ¢ > 1, ﬁg’*’\* (|AH;€|£) < (K0)* (see [25, Proposition
2.7.1, (ii)]). Therefore, by the trivial inequality that ¢! > (¢/e)¢, when || < 1/(2¢K),

Y =g o= S IS
= AHg\ _ ,— ,— L
FS ™ (e13) = 1 ST (AH?) 2 + 30 2115 (A
(=3
(o) 1 Cs o0
S1+ 20225 (K =1+ 202 = S (eKn))"
+ 2?7 (z_;(ﬁ/e)”( (l)" =1+ Fn ;(e [nl)
1. oo (eK)’f (Bl o
R 1—eK\n|—1+ 2 A

where c; is given by (3.32). Now we choose ¢, > 0 and c5 such that (eK)3cy = c3/2 and
that 1 + c3¢2/4 = e, then for all ||<c4, we have

- ( (K]

2> 14 B2 > goon”
2 2 )77— tynr=eT

here in the last inequality we used the fact that the function h(x) := e%® — 1 — cgz /4 is
non-positive for x € (0, c3), which follows easily from our choice of c5 and c;. Thus we
have

IS (enH0) > e || < eq k> 1. (3.33)
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Now, using (3.31) and (3.33), the desired conclusion follows from [27, Theorem 4] by

taking M = c4 A (1/2¢2),a = 1,C; = (¢2)?,¢1 = C5,¢" = M?,uy =uy = --- = u, = 1 and
o* = ¢ Ma with ¢ > 0 being the constant in [27, Theorem 4], and ¢ is the constant
in (3.31). O
For ¢ € Z, let
Il —N*) —Inp (£ — 1, -\") 1 YA (l, =A%) B YAl —1,—\*)
pe= P v \ 9l —A) gl —1,-a) )

By (2.22),

ot oA) o - 1,4 | L (@(z,—m Oa (0 — 17_”)) . (3.34)
v

& Mot o6, ) ol—1,—2)

Taking logarithm and differentiating with respect to A in (2.7), and letting A = —\*,

we get
Hy
Nt pp = — T,y <exp {/0 (m = DE(BL) — 7(=A") ds}>
e (Hee {1 (Gm — e(B) — (-3 ds})
e (exp { fy" ((m = DE(BL) = 7(=X) ds })
Define

H,
<exp {A ((m - 1)§(Bs) - ’7(_)‘*» ds} ;Ogisnngg Bs > J) )
Ap(=X) =T, <exp { | m=vem) =53 ds} L nf B < j> ,

0<s<Hp

H,
Hyexp {/0 ((m — 1)&(Bs) —v(=A%)) ds}; inf Bg> j) ,

0<s<Hp

H,
Hyexp {/ ((m — 1)&(Bs) — (=A%) ds} ; inf B, < j> .
0
Then
1 A=) A=)
Ar(=A7) + Az (=A%)
Note that A;(—\*), A} (=\*) € F, N F7. Using the same notation in (2.24),

pe == Nfu*

Ar(=A") < Tpoy (exp{((m — 1)es —y(=A")) He})
= o (exp{((m — 1)es — y(=A")) H1}) = car(=A") < 1,

and when ¢ > j 4+ 2, we have j — ({ — 1) < —1 and thus
A1 (=X\*) > 1D,y <exp{((m —1)ei — (=A%) He}; oglsnngz Bs > ])

=TIl (exp{((m —1)ei —y(=2%)) H1};0§1n<fH1 Bs>j— (- 1)>

S

> I, (exp{((m — Dei—~(=\")) Hl};ogisnngl B > —1) = c(—A") > 0.

EJP 28 (2023), paper 65. https://www.imstat.org/ejp
Page 43/63


https://doi.org/10.1214/23-EJP956
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Invariance principle for the maximal position of BBMRE

If Hy > { — j, then by (H2),

Hy
exp {/0 ((m —1)&(Bs) —v(=A")) ds} < exp{((m—1)es —v(=A\*)) (£ — j)};

and if H, < ¢ — j, then

inf B, <}y inf  B,<7j,.
{0<lsn<Hg s = ]} < {OSE%E—]’ s = j}

Letting 79 := y(=A*) — (m — 1)es > 0, when ¢ > j + 2, by the reflection principle and
Markov’s inequality,

Ap(—X7) < 0D 411, ( f B,< j) =009 4TI, (O<in<f/ B, <j—((— 1))
S84

in
0<s<l—j
= e 00 Lol (B <j—L£+1)

Ho(e_B[*j/Q)

(=) et/ 12y~ (E—5)5
g gy ol —|—2€ < (1+2e7%)e

< e~ 10(=3) L 9 —G—7 <

with 6 := min{3/8,70}.
Now we take a constant )\ such that —p > A\g > —A* and v(—X*) > v(Xo) > (m — 1)es.
Then there is a constant ¢ > 0 such that sup, {me*(V(*’\*)*V(’\O))x} < ¢, and thus

0< AL (=X) <ellpy (exp {/0 Z ((m —1)&(Bs) —v(Ao)) ds} ; inf Bg > j) = cAi1(No),

0<s<H,
H,
0 § A/Q(f)\*) § C]-_-[l—l (exp {/ ((m — 1)£(BS) - "}/(AO)) dS} ’0<1£1<fH Bs S j) = CAQ()\()).
0 SSSHye

Noticing that v(Ao) > (m — 1)es, using argument similar to those used for A; and A,,
with —A\* replaced by )¢, we have that there exist positive constants 5, c3(Ag), cq such
that -

Al()\0> < Cg()\o), AQ()\()) < 046_(Z_j)5, Ve > j + 2.

Therefore, setting 4, = A;(—\*), A, = A}(—\*) for simplicity, we conclude that

Al —1n(A1 + Ag) — Mot ﬁlﬁ-A/z 1 Al
In(A L= 1+A> In(A 41
pet A*p* n(4r) Ay A*u* + A*u* n(An) + Ay
1 A1Ay + A2 A}
< In(1+ Ay/A _ =
- )\*’U* Il’l( + 2/ 1)‘ + (Al +A2)A1
< 1 & n cl(—/\*)004e_(£_j)s +(1+ 261/2)6_(£_j)5663()\0)
- A\ Al CQ(_)\*)2
1 (1+2e/2)e(t=0)0 n cl(f/\*)cczle’(e’j)g + (1 + 2eM/2)e= =D ces(N)
= Nrpr 02(_)\*) 02(_)\*)2 ’

Thus there exists some constant Cg > 0 such that for V/ > j + 2,

Al gy
In(A;) + =2 | < Cge= =99 3.35
pet A*u* n(Ar) + A |~ 8¢ ( )
with ' := min{4,} > 0. Define
.1 Il As(—\5)) — A (=A") Cre— (=D
Py o n(A;( ) 7141(7/\*) + Cge .
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Then by (3.35), for £ > j + 2, we have that

0<7 — po (Pff) A**ln(Al( )HM)

oy A=)
- <p£+)\* *hl(Al( A ))‘FW
<2Cge (=99 (3.36)

el

is uniformly bounded for all ¢ > j + 2:

() < 1 1 1 CCg(/\())
[P oo < e ca(=A*) (=A%)

+ Cg =: Mp.
By the definitions of A;(—X*) and A} (—)\*), we know that
2 e F;nF when (> j+2. (3.37)

For ¢ > 0and i > 1, let t; := 2’ and define

Cstt/?
16M,

ro =ti—1, L;:= {

b Cst/?
sg :=t; Ainf {k >rg+1: Z ﬁ?rmm) > 25N }, Tet1 = Sq + Li,

l=ro+1 16
k 1/2
. ——— Cst.
Sqr1:=Inf ¢k >rgyq +1: Z ﬁé a1~ [Li/2)) > 5176 A(rgg1 +ti —tiz1),
l:rq+1+1
= inf{k : sp > t;}, (3.38)

here C} is the constant defined in Lemma 3.8.
For ¢/ < t; —t;_1, define

= {w: zk:ﬁg_[L 2
r=1

1

i ~ i) 5 Ot
D k<, Y plB > 2
< 7pr 16 }

Also define

O 1/2
D(t; — { Zp a2 o« S5hi g oy }

Proposition 3.11. Fix: > 1.
(i) For any k > 1 and positive integers {y, ..., {1 < t; —t;_1, 0 < t; —t;_1,

out/2\\ "
P(s;—rj=0;,0<j<k)< (1“(331\1@)) [P (D). (3.39)
3=0

(ii) For any k > 1 and {y, ..., £}, < t; —t;_1, when i is sufficiently large so thatt, 1 > L;,
{R=k,sj—rj=10;,0<j<k}eFi-EAng . (3.40)
Proof. (i) By induction, we only need to prove that

IP(Sj—Tj:£j70§j§]{7—1,8k—7“k:£k)
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Cstl/?
SP@fﬂyz@ﬂngk—lﬂWD%m<1+<<$d[)). (3.41)
p

For integers r, s such that r < sand s — r < t; —t;_1, define

k 1/2 s 1/2
sy Cst. L Cst.
D = . —(r—[L;/2]) oYq Yk 1 —(r—[L;/2]) > ) .
(r,s) {w @ZET_HpZ < 16 elr+ 78)7€:§T+1 Py T

Also, when s —r = t; — t;_1, we define

S g Gty
D(T‘,S) = {UJ: Z_E;Llﬁz K <1é,Vk€[r+1,r+ti—ti1)}.

Then if ¢; <t; —t;_1 forall 0 < j <k, it is easy to see that
{Sj*’l”j :éj,ogjgk}
=D(ti—1,ti—1 + o) N D(ti—1 + Lo+ Ly, ti—1 + o+ Li + £1)
n---N D(tifl +kL;+40g+ ...+ lk_1,ti 1 +kL;+ 4o+ ...+ fk) (3.42)

It follows from (3.37) that D(r,s) € F, N F"~[Li/2 when s — r < t; — t;_;. Using (3.42),
we get

{sj—=rj=4;,0<j<k—=1} € Fyy 4 (k—1)Litlot.t0o_1>
{Sk = gk} e FtimitkLitlot..+le—1—[Li/2] (3.43)
By the definition of L;,
(tifl + kLz + (0 + ...+ Ek‘fl - [Ll/2]) - (t7;71 + (k - 1)L7, + g() + ...+ gkfl)

Cstl/?
— Ly —[L;/2] > =24
i~ L/ 2 320,

together with the (-mixing condition we conclude that

]P(sj—rjzéj,()gjgk)
§]P(sj—rj:€j,0§j§k—l)

Cst)/?
X P(D(ti—l +kL; +0ly+ ...+ 01, ti 1+ kL; + 4o+ ... —|—fk)) (1 +C ( 5 >>

320,
Ostl/?
=P (s = 4,05 <k DRD@) (1+¢ [ SE))
p

where in the last equality, we used the property that P(D(r,s)) = P(D(0,s —r)) =
P(D(s — r)). Thus (3.41) is valid.
(ii) Note that

{R=Fks5—r;=0;,0<j<k}={sp >ti,sp—1 <tij,s; —1r; =4;,0<j <k}

k1 k
= 851 =0;,0<j <k sp 1=t 14k — DL+ € <ti,sp=ti 1+kLi+» _{;>1;
Jj=0 j=0

The event in (3.40) is not empty only if ¢;_; + (k — 1)L; + Z?;é ¢; <tiandt;_1 +kL; +

Z?:o {; > t;. Combining this observation with (3.43), we get that, when ¢;_; > L,,

k

{R=k,sj—r;=14;,0<j<k}e U Flimitilitbot..tti—1—[Li/2] mftq‘,—l"rkl/i"r@()'f'...-i—fk
=0
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- -Ftiili[Li/Z] mei"Fek"Fti C f..tiili[Li/m ﬁ‘/_..Li+(ti_ti—1)+t'i - ‘Ftiili[Li/z] NF

it1”
The proof is now complete. O
Put
ag :=2a"/(3Cs), ag:=a*/(6Cs), (3.44)
where «o* is the constant in Lemma 3.10, and (5 the constant in Lemma 3.8. Define
r+k 1/2
. Cst,”
Gli=Qw: max ﬁ(t"’Q) < .
{ 7‘6[251—1,ti+1]70<k§t1/2/0¢1 @;1 ¢ 32

Lemma 3.12. (i) There exists a constant Cy > 0 such that for sufficiently large i, on G%,

. Cstl/? 1/
inf inf 116 1 _pls izl gl plsyl/4 g L.oti|BL  —Pa=
B (5 BE Ty AR S et P e

T>—

> Rt =: 7! 3.45
= Ug exp Z Cg T /r_] IR ( )

(ii) There exist constants ¢ > 0 and K = K (¢) such that for i large enough,
E (exp {—5161 In Z}}) < K.

Proof. (i) Step 1 Recall the definition of B,ﬁ in (3.13). For j > 0, define

N k
A=l bz ot ) () {B B+ Y ez ool

k:rj+1 f:’l“]‘Jrl
Ti+1 k 1 R R—-1
1. — 1_pl T 41/2 — ) 1.
A= () (8-0L+ 3 mz -0t 0, B= (A || A
k=s;+1 l=s;+1 J=0 Jj=0
Put
C5t1

’ ﬂk ﬂQ 2 t1/4 k= ti-1+1, ..,

(Z1) = inf, T (ﬁt —By2

561
x> 5

t; ﬁtl,i,l —B3= )

_Bl Cst; 2 1/2
2 7

~ * Cst;?
=T15 (ﬂa—ffé > ,6k Byt k=t 41,1

here the last equality follows from the following argument: since {ﬁ,i, k > 1} has
independent increments,

C5t 1/

ﬁg)i)\* <ﬁt11 - ﬁZl = ) ﬁk ﬁQ 2 t1/4 k=tii+1,..,

t; 537;_1 - By = x)

_men(p1 a1 C5ti1/2 S 1/ _ 1 1
*Hy t,;fﬂt,‘,_lz 2 -, 6k Btl 1_ z 7‘Tak*ti—1+17"'7ti ﬂti_1762 =

Cst;1/?
55 -, ﬂ]% ﬂtl 1 =2 5/4_I‘,k:ti_1+1,...,ti>

~ i (8- 8L, >

and the last quantity is decreasing in x.

EJP 28 (2023), paper 65. https://www.imstat.org/ejp
Page 47/63


https://doi.org/10.1214/23-EJP956
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Invariance principle for the maximal position of BBMRE

In this step we will show that

@) > 5 (o

05t1/2
B =B = 5 > . (3.46)

: =~ * C 1/2 ]
Given that B occurs, under 115~ (- |81 — 3 = 5;“1), we have, for 0 < j < £ and

rjgkgsj,

C’ 12
L+ Z pe Z Coli” on A;.
l=r;j+1

By the definition of s; we have that for all r; < k < s,

k k 1/2
_(rj—1L:/2) _ Csty
< p
§ P = § Pe < 16
l=r;j+1 l=r;j+1
and for k = s;,

sj—1 1/2

Cst;

< M, <M,
E pe E pe+ + — 6
L=r;j+1 L=r;j+1

Thus, for0 < j < Randr; <k < s;, we have

1/2
1 1 C5ti/

/Bk — Fry > - ] - Mp~ (3.47)
Note that 1/2 ,
Cst” C,t? 2
1 1 1 0Yq
_gl=pl _ = ) (3.48)
52 ﬂt1,1 52 2 2\/5
Alsofor R —1> 35 >0, on ./Z(j we have
Tit1 1/2 1/2 1/2 1/2
C’5t Cst. Cst, Cst,
—B > i |y, — 5> 5N 6z (3.4
7";+1 5 , ;1 pe — = ’V 16Mp —‘ 16 = ] 14 3 9)
and on A, ﬂslj — B3> O5t;/2. Hence, together with (3.49), we have
705t/ )
—By=(BL —BL )+ (B, —B3) > 581 -M, £>j>1 (3.50)

So, combining (3.47), (3.48) and (3.50), we have, for0 < j < Kandr; <k <sj,

Cstl? 10st? Cstl/? ur
T (T Ty T e

1 gl
ﬁk ﬁ2—mln{ 2\/§a R

Let ¢ be sufficiently large so that

1/2 1/2 1/2
{C’t Cst) Mp}—C%;i BRI

?

2v/2 7 8

Then 3 — 33 > t}/4 forall0 < j < fandr; <k < s; when i is sufficiently large. Similarly,
when0<j<R—-1lands; <k <rj, onA;

1/2 Tj+1 1/2 1/2
C l; Chst; Chst;
1 1 5 5 5
Be —Bs, 2 — E: pPe— E: M, — 1& 2 - 8Z — M,,
l=s;+1 l=s;+1
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which implies 8} — 8} > 7C5t1/? /8 — M,, since on A}, Bs,
that 7Cst,/?/8 — M, > t;/*, we also have S} —

- B3> C5t;/2. For large ¢ such
Bl >t/* holds forall 0 < j < & — 1 and

s; < k <rj;1. We have also proved that, for all s <k < sg,

1 1
_ >
ﬁk ﬁQ = ]

Finally, to show £,

7C5t,/?

Cstl/?

— M, — == = M,

— B21 > C’5t;/2/2 holds for large i, it suffices to prove that sy < t; < sg,

which is trivial by the definitions of s; and £,. Thus (3.46) is valid.
Step 2 In this step we will show that there exists a constant Cy > 0 such that

Bi_, B2 =

inf Hf’ (B
ye[-1,1]
By the strong Markov property,

. Cstl/?
H§A<B%A@ °

2

. et WP T
> Hy’ Ao -85 = 2 H ’ (.Ao
SN 70511
x 15~ (A hB =t = M, | X
. C5tj/2
i (sl 1 = 2 I

Note that JZJ- can be rewritten as

"’_ - . 1 . 1 o "'57_
A {Sj<1kréfrj+l (Hk HL T

This is because

k
§j+ Z pPe =

l=s;+1

k

l=sj+1
k

t1/2

Z (B: = Bi1 + pe)

>>C’R+1exp ZO — ¢ (351
o(s; —

J

- =Cst}?)

7C5t1
e B2 =—g——M,

7C5t1
r1] - 5% = - Mﬂ :

. X ﬁg’f)‘* (Aﬁ

| ﬁ(AJ

8
(3.52)

A" <H1% —H;J,)) > _05172/2}.

Pa(l, —A*
=2 (H2 Hi+ 35 (Jé,;vg_

l=s;+1

k Iy (He exp {fon ((m

Ses)

— DE(B.) —1(="))ds })

:Z th Hél

—\*
= Z (Hzl_Hel—1 H§ 1 )

., (exp {5 ((m

- 1)5(3.9)

— (=) ds} )

Z (H[ H}, — TS (H) - H}_l)) .
l=s5;+1

Also note that ;41 — s; < O5t1/2/(16Mp) + 1 < t; for sufficiently large ¢ and 7,41 — s; >

Cst 3/2/(16MP). Taking xo = C5/16 in Lemma 3.9, Cg := Cs(ko)

such that for large 1,
i
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Define dy = C5t,}£21/2 and d; = 7C5t,}/2/8 — M, for j > 1. Let f(X) = 21+ ... +
Ty, —r;,9(X) = inficp<s, v (1 + ... + 2) and X = (21, ..., 25, ;). By Harris’ inequal-
ity, see [5, Theorem 2.15], we have for all j > 0,

L O RO R G B

8L~ 8 = d;)

1/2
« TI&—" inf (Hl gl e (Hl _ gl )) > _05@'/
v ry<k<sy \OF T Y kTEn)) = 16

Seat (a1 1/2
— T ( fjjzcgt/fdj)

Sj

TS e ar Cst)/”
X TI5 ( inf (15{,1—1113.3_—I1§’*A (H;—Hl))z— 5%

ri<k<s; i 16

> 105 (8L - 81 = Cst}?)

~ ~ Cstl/?
i (e (ot () = C0)
= (I) x (II). (3.54)
We treat (I) first. Note that C5t3/2/16 +M, < C5t3/2/2 for large i. By the definition
of s;, we have 3,7 ., pr < st /2 and

83 Si
l=rj+1 l=rj+1
~ ~ 305t /?
>T15 2 (Hj,—fi£—-H5A (h@.—.ﬂj) > 250 ) (3.55)
J J J J 2

By the definitions of s; and r;, we have t; > s; —r; > C5t§/2/(16Mp). By (3.36) and the

definition of s;, for large 7 such that ZCgtie*Cﬁ;/z‘;'/(”Mﬂ) < C’5t3/2/32, when s; —7; <
ti —ti—1,

Cstl/?

d _(rj—=[Li/2 Sj
" §}2f§[/DéngHQ%@mhm{(m+l(m[MMDﬁ

.SJ Sj
’ 1/2 ¢/
< Z pe + 2Cste” (/2D < Z pe + 2Cst e~ Coti 0 /(32My)

f=r;+1 t=r;+1
85 1/2 sj 1/2
C5ti —(ti—2) C5ti
< Z pe+ 39 < Z Pe + 3y
l=r;j+1 L=rj+1

This implies that, on G}, s; —r; > t}/2/a1. When s; —r; =t; —t;_1, we can also take

i large so that s; —r; = t; —t;_1 > til/Q/al. By the definitions of o (see (3.44)) and
a*, we have a*(s; — r;) > 3C5t;/2/2 and hence by Lemma 3.10 (with k£ = s; — r; and
T = 3C5t3/2/2) and (3.55), the constant C; defined in Lemma 3.10 satisfies that on G}

and for any 7,

9C2t;

Now we treat (/). Taking ko = C5/16 in Lemma 3.9, we get

~ - C-t'/?
(1) = &= < inf (H;—fﬁj—rgfk Qﬁ;-ﬂ%))>-riﬁrf > Cs, (3.57)

ri<k<s; -
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where CG = CG(FL()) with Ry = C5/16 If S; =715 + 1t —ti—1, then S;— Ty > C5ti/2/(16Mp)
for large 7 and (3.57) also holds. Plugging (3.56) and (3.57) into (3.54), we obtain

. 9CEt, }
407(8]‘773) ’

Combining (3.52), (3.53) and (3.58), we conclude that on G%,

ﬁg,—x* (.A_j (3.58)

'rl‘j_ﬁézdj) ZC?'CGGXP{

R

9C3t;
Z} > C7 - C(Cr - (C)H)R - —5
0 2 07 Go(Cr - (Co)") " exp ;4C7(sj—7’j)
£
9C3t;
> (C7 - (Cs)*) M exp { — 5t
> (C7 - (C6)7) b ]222)407(%,,4],)

Since £ and s; — r; does not depend on y € [—1,1], (3.51) holds with Cy := (C7 - C3) A
(4C7/(9C3)).
Combining Step 1 and Step 2, we get (3.45).
(ii) Define
Je=inf{j:s; —r; >t; —ti_1}.
Then R < J. In fact, on the event & = k, we have s, > t; but s;_; < ¢;, and then for
all0 < j <k, sj —r; <sp_1—ti—1 <t;—t;—1, which implies that J > k. Fore € (0,1],
by (3.45),
J t
E(ex {—51 11nZZ-1})§E explela | —(3+1)InCy + S
p G} p G} ( ) 9 7_20 Cg(Sj _ Tj)
3 .
<E|expe|—-(F+1)InCy+ -
P G+ DG JE::O Co(s; —15)
0o 1 e(k+1) t: k—1 +
< — E|exp{e—"——+¢ — M1
kz_()(csa) P Colsk — o) ;Cg(sj—rj) L=r
By (3.39),

k—1
l; ti
E | exp 874-85 — > 1
Cg(Sk — Tk) = Cg(Sj — Tj) {3=k}

k—1
=E P et ot Ay
<eXp{€Cg(sk—Tk)} {sk—re=ti t,_l}jl:[()exp{scg(sj_rj)} {sj—r;<ti—t; 1})

k—1
< 628/09 Z Hexp {gctzg }]P(S] - Ty :KJ,O S]S k_l)
9tj

1<lo,....lx—1<ti—t;—1 j=0

ot/ \\ " = ti
TR (T

1<lo,....0x—1<ti—t;—1 j=0

— /0 (14 ¢ C5t3/2 k ti*tizflilex {g t; }IP(D(K))
32M, 2 TP\

Therefore,
E (exp {—5101 In Z} })
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k sti—t;_1—1 k
ZE/CQ C5t}/2 bi—ti—1 £
<Z SECEY 1+¢ 32M, ; eXP{€W}P(D(€)) . (359

Note that t; — t;_1 = ¢;/2, and D({) are disjoint for all ¢ < t;/2. Therefore, for all
q <t/2,

{=1

Zq:IP(D(@) =P (qu D(@) (ggg Zp B > 051t6 ) . (3.60)
/=1

Using (3.36), for any ¢ < t;/2 and large i such that C5t}/2/16 — 20ge~(Li/2+1)8" ¢ /9 >
C’5t;/2/32, we have

1/2

~(5/2) 5 Ost;”” 3 —(1+[Li/2))8"
P (f?;?i( Z” 16 ) (f?;?i‘q pr = ~20se q)
C5t1/2
(fg&i(qg pe > . (3.61)

Recall that py € F; and that E(p;) = 0, so for all k¥ < ¢, by (-mixing, we have that
|E (pr|F*)| < E(|px|)¢(¢ — k) and therefore, forall £ > 1,

£—1
i +2 E (pi|F*
o {7l pz,; (Pl F)
£—1
<M2+ S 2sz||ooZE\pk| ¢(f— k)<M2+2M22<
k=j k=0

By [23, Theorem 2.4], or more generally, [14, Theorem 1], there exists a constant ¢; such
that for any z > 0 and g € Z™,

k
P (max Zpg > x) < cie * */(erq) (3.62)

1<k<q

Using (3.60), (3.61) and (3.62), we conclude that, when i is large enough, for all ¢ < ¢;/2,

q 1/2
> P(D() < <max > pe> C5 ) < e~ Cti/(32%e1a) —, o pmeati/a (3,63)

— 1<k<q
Also, for ¢ = t;/2 — 1, we have that

ti/2—1 k Cstl/?
P(D(¢)) < P > .
> P(D() < (1;]?25/2;[)@_ o )

{=1

Recall the definition of p; given by (3.34). If 0’%/\* > 0, then by Lemma 2.6 and the
continuous mapping theorem,

1/2 C
z—)oo -, 5
<1<I]I€12§(/2 g Pe > ) I, ( sup o_x«Bi/(A\*v*) > 32> < 1.

0<t<1/2

Otherwise, if 02 ,. = 0, by Lemma 2.6, when C5t§/2/32 > supgez, |l 22:1 pelloo, we have
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In conclusion, there exists a constant ¢z € (0,1) such that for large ¢,

ti/2—1 1/2
> PD) < ( max pr 51 )ch. (3.64)

1<k<t;/2%
=1

Forisothatt; < 4(t;/2—1), by (3.63) and (3.64), applying Abel’s equation ZZ:1 apby =
Sisr(ak = ansn) g be + ag ¢, be, we get

ti—ti_1—1

EZ exp {659(} P (D(0))
Flotih o

qg=1
ti/2—
+exp{ Cs)(lﬁ/2*1 } ;
gy t t 4
< - — —eati/t — 5. 3.65
= X (e {eci1} exp{€09<é+ 1>}>°’16 reewleg ) 69
Noting that (e*/?)" = —az~2e%/*, we have

exp Ei — exp g# cle—czti/g
Cyl Co(l+1)

241 241
) et; et; _ti )
= et/ —e Cefdx <c L fTow g2t/ Ty,
¢ CgCL‘ ¢ CQCCQ

So by (3.65), we conclude that

ti_ti:l_lexp et P (D(0)) <1 /WQ 1 St g ey exp e
=1 Col B 1 Cox? Cy
— ti 4
i c1i/ e*e/C9=2) 4z 4 ¢y exp {6}
Co Je./(ti/2-1) Co
e 4
< cli / e#(e/Co—ca)qy c3 exp {5} =: F(e). (3.66)
Co Jo Co

Since F(0) < 1, we may take i; sufficiently large and ¢ sufficiently small such that

14¢ (05t§1/2/(32Mp))
(Co)®

Since ( is decreasing, for sufficiently small € and ¢ > i;, using (3.59) and (3.66), we get

E (exp {_516'} InZ} })

F(e) - <1.

acjon =, (1 ¢ (Ot /3204,))\ ot t :
€ i i
= ~ AP (D
<G & (Co)? ( > exp{fcgg} ( <)>>
k=0 =1
k
e2e/cn =, (1+¢ (st (32M,))
< Gy 2 F()
(CVQ>E =0 (09)5
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2e/C0 2 (14 (0515}1/ 2 /(32M,,))

= (Co)* (Co)e

“Fe) | =K < oo. O
k=0

Using similar arguments, we have the following lemmas 3.13-3.15. Since the argu-
ments are similar, we will only sketch the proofs.

In the following, C is a positive constant which will be specified later in the proof of
Lemma 3.3. Put

) C5C1 )
ry = [C'lnnl, Ll = —5= ) k(n) := [log, ([CInn]?)],
4M,
SR VIR P
55 = tg(n) Ninf kE>rg+1: Z Py’ " 2105011171 , r}ﬂ ::s}—l—L}L7
Z:r(l)Jrl

k
S 1 _
sjp=inf k> i+l Y P 1CsCmn 6 A (rjps + tigny — [Cnn]),

b=rjy
&Y i=1nf{k : sy >ty }-
Define
~ Ik (27" Cnn]) 1 -
G,1L = { B max B Z pm C’5C’1nn} ,
[C Inn]<r<2ty(ny,0<k<[CInn]/az e/ -8

where «» is defined in (3.44). Recall that Cy is the constant in Lemma 3.12.

Lemma 3.13. (i) When n is large enough, on é}L we have that

inf inf T {5,1 — BY >0, Vk such that [C'lnn] + 1 < k < ty ),
y€[—1,1] 2>C5[C In n]

1/2

5tk(n)

9 ’BClnn] ﬁz—x}

Btlk(n _ﬁ% >
. teim
>Cf e Z oot hn) — Y, (3.67)
9

(ii) There exist positive constants ¢ and K = K () such that for n large enough,
E (exp {—51@1 lnYnl}) < K.

Proof. For { < ty(,) — [C'lnn], define

£
1 -
DY(f) := { Zpr e 1 CsClnn, Wk € [1,0) Z L/2)>4C501nn}.

r=1 r=1

Using the (-mixing condition, similar to (3.41), we have

]P(S}—T}:éj,OSjSk—l,Sk—Tkzgk)

<SP(sj—rj=4;,0<j<k—1)P(D"({)) <1+g (%)) : (3.68)

As variants of A;, (A;) and B in Lemma 3.12, we define

1

J k
= {8~z acCmnl () () {8 -84+ X pz—(CsCin,

k:r]l. “+1 Z:r]l. +1
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Ti4+1 k 7! /-1

@)= () SA-A+ X pez—gGmng, Bl= (4| Ny

k:s}—i—l Z:s]l-&-l 7=0 7=0

Then repeating the arguments in Step 1 and Step 2 in the proof of Lemma 3.12, also
note that C5[C'Inn]/2 > C5tk(n)/2 we get (3.67).
Define

~1 .

J i=1inf{j: sjl - rjl- > tym) — [Clnn]},

and
bn = te(n) — [C_'lnn].

By repeating the argument of the proof of Lemma 3.12 (ii), we get that when n is large
enough so that t;(,) < 2 (txm) — [C'lnn]),

E (exp {—51@1 In Y;})
00 e(k+1) = k
1 tk(n) C;Clnn
< — - 1 _—
_,;)<C9> exp{609(tk(n)—[01nn])} ( +C( 8M, >>

tk(n)f[élnn]fl k

>, e {6%(9? } P (D'(6)

X

0o e(k+1) ~ k /bn—1 k
1 CsClnn t
< 2¢/Cy 5 k(n) 1
= <09> ‘ (1 C( 8M, )) (Z P {6 Gyt P (P°0)

{=1

HM

Since b, ~ ty(y), we have /b, ~ t1/2

q < by,

< C'lnn. Similar to (3.63) and (3.64), we have, for

P(D!(0)) < cre™eaten/a,

M=

~

e

by, —

k
1 _
1 _
> P(D'(¢) <P (ér]ljggn Z:lpm > 80501nn> <es <l

The same arguments as in (3.65) and (3.66) show that for large n such that thn) <
2(b, — 1),

bn—1
Z exp {5158(:2 } P (Dl(é))

{=1

by
k(n) tr(n) oty /¢ tr(n)
< M 2k (n) M\
Z (exp{ } p{an(ﬂ—i—l) cie + c3 exp ECg(bn—].)

2
< &7 (e/Co— 52)d —. Fl )
< A /1 z + c3 exp 6—09 ()

Thus, there exists ng > 0 such that when n > ny, it holds that

E(exp{ —elg llnY1}> e/ 2 <(1+<(CaClnn()/(SMﬂ)))Fl(s)>k.

(Cy)e (Co)*

The rest of the proof is the same as the proof of (ii) in Lemma 3.12. O
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Recall that t; = 2%, and L; is defined in (3.38). For n € N, define

T[()QJL) = ti*h
k Cst/?
s(()Z,n) = ti Ainf < k Z Té2,n) + 1: Z ﬁgf_}ki[l{i/z])) Z 71& y Tj(i-ﬂll) = S§-2’n)+Li,

E:réz’")—i-l

2n) . (2,m) u —(n—k—[Li/2]) 051?3/2 (2,n)
s;7y =inf ¢ k>0 + 1 Z I3 > —t— 3 A( +t;—ti—1),

J n—~{ - 16 A
A CRONE]
J+1
R = inf{k : s > ;).
Also define
ks 1/2
n—t; C tl_
aem = max > P < =g
re[ti—l’tz‘+1]a0<k§t:/2/al m=r+1 >

where «; is defined in (3.44).

When considering /5, we need to be more careful since the definition of 6,3 only makes
sense for k > 1. Note that our definition of S;Z,n) and 7“](-2’”) does not need any restriction
for n. Thus, the proof of (ii) for Lemma 3.14 below is the same as Lemma 3.12. Also
note that our proof for (i) in Lemma 3.12 only relies on the property that the sequence
of independent random variables H} — H} , — 15" [H} — H}_|],¢ > 2 is a sequence
of centered sub-exponential random variables satisfying (3.31) and (3.33). The strong
Markov property of =! only used for the independence of H}. Note that for k > 2, we
have B

B = By = —px + Hj, — Hi_y — Hf,’_/\* [Hi — Hi_i] = —pr + AH,

and for || < v(=\*) — (m — 1)es,
Té,— A" AHEY 16~ ([ ex 2 i alk, = A", w) B YAk =1, =\ w)
11 (e" ) =117 (e p{n (Hk+v* (1/)(]4:,)\*700) bk —1, A", w)
— 176 2 iwx\(la—)\*aek—lw)
TS (exp {n (Hk B ) })

_ n wk(17_)‘*79k—1w) H *
= exp {v* N Ow) }HO (exp {/0 ((m — 1)&(Bs, Op—1w) —y(=A") +1n) ds})
(3.69)

and the right-hand side of (3.69) also makes sense for k < 1. Therefore, to extend the
case of 37 for k < 1, we ignore the definition of 32 and 37 defined in (3.13), and we take
a sequence of independent random variables {AH ,f k< 1} independent to everything

else with Laplace function given in (3.69) under ﬁg’*’\*, then, or k < 1, define

2
Bri=B5+ Y (pe—AH7).
t=k+1
Replacing the definition of 32 and 37 defined in (3.13), by the above, Lemma 3.14(i) can

be proven by an argument similar to that of Lemma 3.12(i).

Lemma 3.14. (i) For sufficiently large i and n > 2'~!, on GEQ’"),

inf inf ﬁfﬁ’\*( g, —p2> CLZUQ
y€e[-1,1] C5t1/2 Y n—t; n = 2
> —t=1
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t;

N N G- zaMs,  -5-a)
k=t;_1+1
/(2n) ;
R(zv")_;’_l i . (277’7,)
> expd — Y I zZ>m, (3.70)
5 0 ()

here Cy is the constant in Lemma 3.12.
(ii) There exist constants ¢ > 0 and K = K (¢) such that for n large enough,

E (exp {~cl40m m 23 }) < K.

Proof. (i) For r < s define

(2, —(n—k—[Li/2]) 05 Y (L2 - Csti?
D Z pn ¢ < — VkE[TJrl S Z pn ¢ ZT .
l=r+1 l=r4+1

Then by (3.37) we see that D™ (r, s) € F,,_, N F*—s~ILi/2] Define

(2m) (g (n—k—[L/2) C5t (n—s—[Li/2]) Cst
D { Z Py T ,VEk €1, s) Zp Z 6 (-
Similar to (3.41) and (3.68), we have

J

W (e . Csty?
g]P(s§.2’ b =50 < gk:—l)]P(D(z’")(ék)) <1+<<3;]\} .
P

P (s =W =0 <G < k- 18P =P = 1)

Define
(2 n)
(2,n) 9 9 1/2 9 05151/2
Aj7 ::{Bn (2,n) — 5 >Ct }m ﬂ kT 5 (2n)+ Z Pn—t>— 16
(2 n)+1 = (2 7L>+1
T’ﬁ’;b) 1/2
2.n))’ y Cst,
(A_g )) = ﬂ 727.7]6 - 5,’21 (2 n) + Z Pn—t Z _17é )
k=s™ 41 o=s>" 11
/2mn) g@n)_q ,
2n) .__ (2,n) (2,n)
s (N0 N ()
=0 =0

Then repeating the proof of Lemma 3.12 (i), we get (3.70).
(ii) Define

(2,n) .

3@ = inf{j : S5 T§-2’n) >t —ti—1}.

Although 5(2 n) r§2’") may depend on n, we see that the upper bound of (3.63) and (3.64)

still hold 1f we replace D(/;,) by D™ (¢;) because of the stationarity of p. Repeating
the argument in the proof of Lemma 3.12 (ii), we get that (ii) holds. The proof is now
complete. O

Let L! be defined in Lemma 3.13. Define

ré2) :=[C'lnn,
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_(n—k—[L/2
p( (Lr/2]

k
1. -
si) = tk(n) A nf ¢ K > e 41 Z ) > 705Cn o, r = s§2) + L)

n—~0 A
Z:r62)+1
k
et 1, g
st ke Y I 2 1o Cmn A (g ~ ().
t=rFi+1
R = inf{k : 57 >ty }-
Also define
a2 .— max % ﬁ(niuk(n)) < 1056'111”
" [CInn]<r<2ty(n),0<k<[CInn]/as m=r+1 o 8 |

here a5 is defined in (3.44).
Lemma 3.15. (i) For sufficiently large n, on G2,

. : AT 2 2 052%720
yel[gfl,l] xZCir[leln n] Hy, {{ﬁnitk(”) — Bz T}
tr(n)
N N BB 20 e, — B =a)
k=[CInn]+1
/@
AT Y {5 P I G}

j=0 Co <8§»2) - T§»2))

here Cy is the constant in Lemma 3.12.
(ii) There exist positive constants ¢ and K = K () such that for n large enough,

E (exp {—Elég lnYnQ}> < K.

Proof. (i) Define

(2)
S]- k;
’ > ' 1
A; ) = {635;2) _6721 Z 4050111 n}ﬂ ﬂ ka—ﬂzi’r?) + Z Pn—1 Z —105011177, s
k:r](2)+1 Z:r;2)+1
(2)
oY _ A ) ) b 1
('47 ) = n -k — B, _ o T Z Pn—t 2 —chclnn ,
k=si 41 T =P
/@ ) /@ _q " .
2) . 2 2
B = (AN N (,4j>
Jj=0 =0

Repeating the proof of in Lemma 3.12 (i), we get that (i) holds.
(ii) Define
3@ = inf{j : 352) - r]@) > tym) — [Clnn]}.

Using an argument similar to that in the proof of Lemma 3.12 (ii), we get that (ii)
holds. H

Proof of Lemma 3.3. Recall the definitions of I; and I in (3.17). Recall that k(n) =
[log, ([C'Inn)?)]. Define j(n) := [logyn]. Let C be a constant to be specified later.
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By (3.36), there exists a large N; such that fori,n > N; and ¢ > t;.5 = 2/72, we have
that

r+k Cxt 1/2
{ max Z Pm < 564 }CG%?

re[ti71,ti+1]70<k§t:/2/a1 m=r+1

r+k
1 _ ~
max m < —C5Clnny C G,
{[Clnn]<r<2[Clnn]2,0<k<[Clnn]/a2 m=27~+1p =16 ° }
r+k 1/2
Cst,
max Po—m S E C Gz(?l)’
rE€[ti1,ti41),0<k<t) Jon m=r+1 64

r+k
n—m < 70 Cl - G2
{[Clnn]<r<2[ClrllT7ll?"}TO<k<[C1nn]/a2 Z P — 5 nn}

m=r-+1

Take an integer N> such that N, > oN1+2, By Lemma 3.8, (3.62) and the stationarity of
Pm., We have

00 j(n)
> Y r@en+ 3 3 p(ey)
n=N2 i=k(n) £=N2 i=k(¢)

0o j(n) C5t1/2
§ 2 Z Z ti+1IP ( max Z Pm > >

1/2
n:Nz z:k(n) 0<k7<t /Otl m=1

j(n) 04105 L
=2 Z 2n Z €1€xp 1/2

n=Naz i=k(n) 642
> C201
<4c Z nlogy(n) exp {W} < o0, (3.71)
’I'L:Nz

and

> p((@))+ > p(())

n:N1 n:N1

k
_ 1 _
2[C Inn]*P m > —C5C'1
2[C'lnn) <0§kgl[flcléﬁin]/a2 mZ::1p 165 nn)

a2C2[C'Inn)
[Clnn]? clexp{—mzc1 <

<2

Mg

n 1

||
8 2

M

0, (3.72)
n:N1

by taking C large enough.
Recall the definition of Z} and G} in Lemma 3.12. By (3.40), (3.37), we have that for
all i € Z, large enough such that ¢, 1 > L;, t; > t;/Q/al and ¢;_1 — [L;/2] > t;—o,
Gy € F' 0 F, 20, CF 20 Ftpyins
zZ}t e ik /21 NFriry CF 20 Fopyyits-

Then when i is large enough, Zj;, G}, € Fi,,,, 1, N F'4i-2. Together with Lemma 3.12,
for large ¢, we have

E(exp {—EIG}M In Zii} ‘ft4173_~_t4i74> <(1+ C(24i_4)) E(exp {—dg}u In Zii}> <K (14+¢(0)) .
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Thus, we have, for k =0,1,2,3,

[i(n)/4)-1 [i(n)/4)-
Elexpq—c > leWZugp | < ][] K(1+<( )) <
i=[k(n)/4] i=Th(n)/4]

for some constant ¢; > 0. Now for a constant ¢, > 0, we have

i(n) 3 [i(n)/4]-1 eaj(n)
Pl > dgmzl <-cjn)| <> P > ey Zig< —%
i=k(n)+1 k=0 i=[k(n)/4]
| lin) /411 | .
< 4e—ac2](n)/4 k:r{l’%?EAE exp{ —¢ ’—Z) ] 1G}“+k In Z4i+k < 46—802](n)/4 . le .
’ i=[k(n)/4

Letting ¢y be large enough so that —eca/4 + In¢; < —1n 2, there exists N3 such that
oo J(n)
P Y 1alnZ <-cjn Z demee2i(m/4 . Jn (3.73)

n=N3 i=k(n)+1 n=N3

Similarly, by Lemma 3.13, Lemma 3.14 and Lemma 3.15, we have

[e%s) e s} j(n)
S Pl ¥ <—cln)+ S P Y lhenmz® < —ajn)
n=N3 ) n=N3 i=k(n)+1 !
+ Z P (1@2 lnYn2 < —Co lnn) < Q. (3.74)
n=N3

Now define

i(n) ¢ ¢ .
Q: ng{ (GL)i0.}° ﬂ{ (GL)e 1o GEQ") i.o. ﬂ{(GfL)C i.o.}
= k(n
J(n) c
ﬂ Z g InZ} < —caj(n ﬂ lnY < —c2 lnn} i.o.}
i=k(n)+1
J(n) c
ﬂ Z IGEQ’”) In Zi( < —c2j(n 3le Yn2 < —cCo lnn} i.o.} .
i=k(n)+1
Then by (3.71), (3.72), (3.73) and (3.74), ]P = 1. By the construction of Q for every

w € , there exists N = N(w) such that when n > N, we have

J(n
lgy = 1@}1 = H loem = 15% =1,
i=k(n)+1

and
i(n)
Z lgiIn Z} > —caj(n), 157% InY,} > —cyInn,
i=k(n)+1
J(n)
Z 1G1(2,n) In Zf2’n) > —caj(n), 15% In Yn2 > —cylnn.
i=k(n)+1
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Now for w € Q and n > N, it holds that uniformly for y € [-1, 1],

5 (L= 8120, VI <k <n,B — B = n'/1)

[C_'lnn]N i j(n)
> I I G-sa>0) vy [ 2
k=1 i=k(n)+1

_ i(n)
> CéClnn] - exp {151 In Ynl} - exp Z IG} In Zil
" i=k(n)+1

> Céélnn] Lo e Inn efcgj(n) > Cinélanjfcgfcz/an’
5

where in the second inequality we used Lemma 3.8. Taking [V;] = n, and ¢/ > —C'InCs +
co + ¢/ In 2, we get the first result.

The second result can be proved similarly. Note that n > 27("~1 = tj(n)—1 holds for
every n > 2. When n > N(w), by Lemma 3.14, uniformly for y € [—1,1],

ﬁf/—x‘ ( 721—1« - ,Bi >0,Vl1<k<n, 55 _ ﬁi > n1/4>

[C1nn] i)
> H M (B2, — B > Cs) Y2 [] 702
i=k(n)+1

i(n)
C'[C innl - exp {152 In Y,LQ} - exp Z l,emIn Zi(2’n)

i=k(n)+1
> 1 ClnC5 Cco— 02/1n2
= 05
Taking [V;] = n and ¢’ > —C'InC5 + c2 + 2/ In 2 completes the proof. O

4 Appendix

Lemma 4.1. For j = 1,2, let 3} be define by (3.13). Under ﬁg,—x*, {B],k > 1} has
independent increments.

Proof. We only need to prove the result for j = 1. Foranyn > 2, 1 < kg < k1 < ... < kp,,
we only need to prove that H, — H}. ,...,H, — H, _ areindependent. For any bounded

measurable functions fi, ..., f,, by the strong Markov property of {Et,t > 0; ﬁi’*’\* }, we
have

ﬁzglﬁ/\* H fi (H’; - H,ij_1> "FHiO = ﬁif)\* f1 Hkl H Ji ( 1)
Jj=1 Jj=2
= ﬁif/\* fi (Hy,) ﬁi;ﬂ\* H (Hk Hk ’le

=T | A (H) TN | fo (HL) H (Hk

=TI (7 (1)) T | 1 (#) (Hk ~ Hj

vj— 1

H':]:
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=I5 (f (a3, )) T | o (k) T (T (s, — ) ’f%
=3

n

= 057 (7 (1)) T (o ()T (o () TT 05 (s, — 1)

Jj=4
o _TITe |
= =TI (5 ()
j=1
Taking expectation in the display above, we get
06\ T (k- md ) | =TI (5 (1) - (4.1)
j=1 j=1

In particular, taking f; = ... = f,—1 = 1, we get

5 (o (2, — HE L)) =182 (f (1))

Thus, (4.1) can be rewritten as

w5\ TL s (ah = mi ) | = TI0S (4 (md, - 12,L)), (4.2)
j=1 j=1
which says that (H} — H} ), ..., (H,%n — H,;il) are independent. O
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