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Abstract

Applying the Foster–Lyapunov type criteria and a martingale method, we study a two-dimensional
rocess (X, Y ) arising as the unique nonnegative solution to a pair of stochastic differential equations
riven by independent Brownian motions and compensated spectrally positive Lévy random measures.
oth processes X and Y can be identified as continuous-state nonlinear branching processes where the
volution of Y is negatively affected by X . Assuming that process X extinguishes, i.e. it converges to 0

but never reaches 0 in finite time, and process Y converges to 0, we identify rather sharp conditions under
which the process Y exhibits, respectively, one of the following behaviors: extinction with probability
one, extinguishing with probability one or both extinction and extinguishing occurring with strictly
positive probabilities.
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1. Introduction and main results

1.1. Introduction on the background, the model and the approach

Lotka–Volterra model serves as a fundamental ecological system. The deterministic Lotka–
olterra model for population dynamics describes the evolution of two species suffering

rom both self-regulations and interspecific competitions for limiting resources. A stochastic
otka–Volterra process generalizes the deterministic Lotka–Volterra population dynamics to

ncorporate the influence of demographic stochasticity or random environmental fluctuations. In
attiaux-Méléard [5], an interacting logistic Feller diffusion system is proposed as a stochastic

Lotka–Volterra dynamics whose quasi-stationary distribution is studied. Two different spatial
Lotka–Volterra type models are formulated in Blath et al. [4] as lattice-indexed interacting
Feller diffusions and lattice-indexed interacting Fisher-Wright diffusions, respectively, where
the persistence and long term coexistence of the populations are investigated. Evans et al. [9]
consider a two-dimensional diffusion that solves a system of stochastic differential equations
with Lotka–Volterra type drift and linear diffusion coefficients driven by a correlated two-
dimensional Brownian motion, and study its stationary distribution. Hening and Nguyen [11]
further generalize the model of Evans et al. [9] and prove results on the rate of convergence
to the stationary distribution. Similar models have also been studied systematically as solution
to a system of stochastic differential equations driven by both Brownian motions and Poisson
random measures. We refer to Zhu and Yin [26] and Bao et al. [1] and references therein for
previous work.

In the above mentioned models, the drift coefficients and (or) the diffusion coefficients are
ssumed to be of particular forms. Hening et al. [12] recently proposed populations dynamics
escribed by n-dimensional Kolmogorov systems with nonlinear interactions and driven by

white noise. Sharp conditions are found for the populations to converge exponentially fast to
their stationary distributions and for the populations to converge to 0 exponentially fast. We
refer to Benaı̈m [3] for a comprehensive study on stochastic persistence and related topics for
general interacting SDE systems.

On the other hand, progress has been made on the study of continuous-state branching
processes with generalized branching mechanism. The extinction, explosion and coming down
from infinity results for such processes are obtained in Li et al. [20] via martingale approaches.
This motivates us to further study similar behaviors for the general continuous-state branching
processes with interaction.

In this paper we consider a generalized version of the stochastic competitive Lotka–
Volterra process (X, Y ) arising as the non-negative, spectrally positive solution to a system
of stochastic differential equations (SDEs for short) driven by independent Brownian motions
and compensated Poisson random measures.

Intuitively, the process X represents the (re-scaled) size of a population with a certain type of
individuals whose evolution is described by a continuous-state branching process with a general
nonadditive branching mechanism that has been studied in Li et al. [20]. We also refer to Li [18]
for a review on continuous-state branching processes. Process Y represents a population of
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another type that is a continuous-state branching process experiencing a competition pressure
from X . From another point of view, one can also identify X as the environment that affects
he evolution of process Y .

Process (X, Y ) can also be treated as a generalized two-type continuous-state nonlinear
ranching process. The readers are referred to Ma [21] and Barczy et al. [2] for two-type
ontinuous-state branching processes, and to Li [16], Hong and Li [13], Chapter 6 of Li [17]
nd the references therein for two-type measure-valued branching processes.

In the study of the Lotka–Volterra process, people are often interested in whether the
wo different populations still coexist in the long run, or whether there is only a mono-
ype population left eventually. For a continuous-state branching process people also want to
istinguish between extinction and extinguishing that are two distinct ways of converging to 0
s time goes to infinity. We say extinction occurs if the process reaches 0 in finite time, and
xtinguishing occurs if the process converges to 0 but never reaches 0 in finite time. In this
aper we want to carry out more detailed analysis of the extinction-extinguishing behaviors for
rocess Y given that it converges to 0 eventually, and want to understand how the processes

X and Y jointly affect the extinction-extinguishing behaviors of process Y .
Note that in SDE terminology the above mentioned extinction and extinguishing behaviors

orrespond to the accessibility/inaccessibility of boundary 0 for the associated SDE. To our
est knowledge, such boundary classifications are rarely known for an interacting system of
DEs with jumps.

As a first attempt of studying such interacting population dynamics under general setting,
e first consider two populations that both undergo nonlinear subcritical branching. We further

ssume that the interaction between the two populations is one-sided, i.e. the evolution of
rocess Y is affected by process X while the impact of Y on X is negligible. We thus propose
nd study the following SDE system:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

X t = X0 −

∫ t

0
a1(Xs)ds +

∫ t

0
a2(Xs)1/2dBs +

∫ t

0

∫
∞

0

∫ a3(Xs−)

0
zM̃(ds, dz, du),

Yt = Y0 −

∫ t

0
[b1(Ys) + θ (Ys)κ(Xs)]ds +

∫ t

0
b2(Ys)1/2dWs

+

∫ t

0

∫
∞

0

∫ b3(Ys−)

0
z Ñ (ds, dz, du),

(1.1)

here functions ai , bi (i = 1, 2, 3) and θ, κ are nonnegative functions on [0,∞), (Bt )t≥0 and
Wt )t≥0 are Brownian motions, {M̃(dt, dz, du)} and {Ñ (dt, dz, du)} are compensated Poisson
andom measures with intensity dtµ(dz)du and dtν(dz)du, respectively, and with the σ -finite
on-zero measures µ and ν satisfying∫

∞

0
(z ∧ z2)µ(dz) +

∫
∞

0
(z ∧ z2)ν(dz) < ∞.

We also assume that (Bt )t≥0, (Wt )t≥0, {M̃(dt, dz, du)} and {Ñ (dt, dz, du)} are independent of
ach other.

Since (1.1) represents a stochastic continuous-state Lotka–Volterra population system, by a
olution (X, Y ) to (1.1) we mean a càdlàg R2

+
-valued process (X, Y ) that satisfies Eq. (1.1) up

o the minimum of the first time of either hitting zero or explosion for both processes X and Y ,
hich is a variation of the usual definition of solution to SDE; see Definition 1.1. Conditions
n the existence and uniqueness of the solution to (1.1) will be given in Lemma A.1. Since

e are only interested in the solution up to the first time of hitting 0, the uniqueness holds
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under mild conditions. The uniqueness of such a solution for SDE had been studied before in
Dawson et al. [8] and Li [19].

The extinction/extinguishing behaviors of the continuous-state nonlinear branching process
X have been studied in Li et al. [20] using a martingale approach. By imposing conditions
n SDEs (1.1) so that the solution X extinguishes with probability one and the solution Y
onverges to 0 in probability as time goes to infinity, in this paper we find conditions under
hich the process Y becomes extinct in finite time with probability one and zero, respectively.
e further show that under certain conditions, both extinction and extinguishing can happen

or Y each with a strictly positive probability, which is a remarkable phenomena.
For stable Poisson random measures with stable indices in (1, 2) and for power function

oefficients in the SDEs in (1.1), the conditions can be made more explicit in terms of the
owers and the stable indices, and they turn out to be quite sharp. We are not aware of similar
revious results on solutions to such a system of general SDEs with jumps.

Our main approach is different from that in Li et al. [20]. To prove the above mentioned
esults we first develop stochastic Foster–Lyapunov type criteria with localized conditions for
robability of finiteness of the first time of hitting 0 by either process X or Y . These criteria
an be compared with those in Li et al. [20] for solution to one-dimensional SDE and are of
ndependent interest. We refer to Chen [6] and Meyn and Tweedie [23] for the (deterministic)
oster–Lyapunov type criteria for explosion and stability of Markov chains. The proofs of most
f the main results then boil down to finding appropriate test functions in order to apply the
tochastic Foster–Lyapunov type criteria, and the localized conditions in the Foster–Lyapunov
riteria make it more convenient to construct the test functions.

It is remarkable that for the model in Li et al. [20] the Foster–Lyapunov criteria also produce
ery sharp results; see recent work in Ma et al. [22].

We apply the Foster–Lyapunov criteria to show most of the main results. The key is to
dentify the right test functions for which our approach is mostly ad hoc. We typically start
ith elementary functions such as power functions and exponential functions, then modify

nd (or) combine these functions in different ways to develop the sharpest possible results.
erification of the criteria often involve lengthy computations.

Among the main results, applying the stochastic Foster–Lyapunov criteria we identify
ufficient conditions for the process Y to become extinguishing with probability one or to
ecome extinct with a strictly positive probability.

To find conditions under which the process Y extinguishes with a strictly positive probability,
e adopt a different approach, where by first obtaining an estimate on the time dependent lower
ound of the sample paths of X , we apply a martingale argument similar to that in Li et al. [20]
ogether with a comparison theorem. We also use either the stochastic Foster–Lyapunov criteria
r the martingale method to study the extinction-extinguishing behaviors for some critical cases.

The rest of the paper is arranged as follows. We first present the main results together with an
xample of SDEs with power coefficients and stable Poisson random measures in Section 1.2.
he Foster–Lyapunov type criteria are proved in Section 2. Proofs of the main results are
eferred to Section 3.

.2. Main results

We first present some notations and assumptions. By Taylor’s formula (see (3.5) and (3.6)
n Section 3 of the following), for u, z > 0 and δ ≥ −1,

(1 + z)−δ − 1 + δz = δ(δ + 1)z2
∫ 1

(1 + zv)−δ−2(1 − v)dv

0
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and

ln(1 + z) − z = ln(1 + z) − ln 1 − z = −z2
∫ 1

0
(1 + zv)−2(1 − v)dv.

e also want to introduce several auxiliary functions. For δ ∈ (−1, 0) ∪ (0,∞), and u > 0
efine

H1,δ(u) :=
1

δ(δ + 1)

∫
∞

0
[(1 + zu−1)−δ − 1 + δzu−1]µ(dz)

= u−2
∫

∞

0
z2µ(dz)

∫ 1

0
(1 + zu−1v)−2−δ(1 − v)dv, (1.2)

H2,δ(u) :=
1

δ(δ + 1)

∫
∞

0
[(1 + zu−1)−δ − 1 + δzu−1]ν(dz)

= u−2
∫

∞

0
z2ν(dz)

∫ 1

0
(1 + zu−1v)−2−δ(1 − v)dv. (1.3)

For u > 0 let

H1,0(u) := −

∫
∞

0

(
ln(1 + zu−1) − zu−1

)
µ(dz)

= u−2
∫

∞

0
z2µ(dz)

∫ 1

0
(1 + zu−1v)−2(1 − v)dv, (1.4)

H2,0(u) := −

∫
∞

0

(
ln(1 + zu−1) − zu−1

)
ν(dz)

= u−2
∫

∞

0
z2ν(dz)

∫ 1

0
(1 + zu−1v)−2(1 − v)dv (1.5)

and

G1,0(u) := a1(u)u−1
+ 2−1a2(u)u−2

+ a3(u)H1,0(u), (1.6)

G2,0(u) := b1(u)u−1
+ 2−1b2(u)u−2

+ b3(u)H2,0(u). (1.7)

hese six functions will appear repeatedly throughout the paper. The functions H1,δ and H2,δ
re the same to the function δ(δ + 1)Hδ−1 defined in (2.1) of [20] which result from Ito’s

formula applied to power function of X . The functions G1,0 and G2,0 can be regarded as the
imits of (1 − a)−1Ga when a → 1 in (2.3) of [20]. They are also associated to Ito’s formula
pplied to logarithm function of X ; see [22]. To study the extinction-extinguishing phenomena
f Y we impose some conditions on G1,0,G2,0; see Condition 1.6.

Let C2((0,∞)) be the space of twice continuously differentiable functions on (0,∞) and
2((0,∞) × (0,∞)) denote space of functions on (0,∞) × (0,∞) with continuous second

artial derivatives.
For any generic stochastic process Z := (Z (t))t≥0 and constant w > 0, let

τ Z
0 := inf{t ≥ 0 : Z (t) = 0}, τ Z

w := τ Z (w) := inf{t ≥ 0 : Z (t) < w} (1.8)

nd

σ Z
w := σ Z (w) := inf{t ≥ 0 : Z (t) > w} (1.9)

ith the convention inf ∅ = ∞. In the following we state the definition of solution to SDE
1.1), which is defined before the minimum of the first time of either hitting zero or explosion
or the two processes.
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Definition 1.1. By a solution to SDE (1.1) we mean that a two-dimensional càdlàg process
X t , Yt )t≥0 satisfies SDE (1.1) up to γn := τ X

1/n ∧ τ Y
1/n ∧ σ X

n ∧ σ Y
n for each n ≥ 1 and

X t = lim supn→∞ Xγn− and Yt = lim supn→∞ Yγn− for t ≥ limn→∞ γn .

emark 1.2. The above definition of solution to SDE (1.1) allows weaker conditions for
niqueness of solution. In particular, the pathwise uniqueness holds if the functions ai , bi , θ

and κ are all locally Lipschitz on (0,∞); see Lemma A.1. Also observe that

τ X
0 ∧ τ Y

0 = lim
n→∞

τ X
1/n ∧ τ Y

1/n.

Throughout this paper we assume that the càdlàg R2
+

-valued process (X, Y ) is the unique
olution to (1.1), and consequently, the process (X, Y ) has the strong Markov property. We
lways assume that X0, Y0 > 0 and that all the stochastic processes are defined on the same
ltered probability space (Ω ,F ,Ft ,P). Let E be the corresponding expectation.

Throughout the paper we also assume that the following conditions hold.

C1) The functions ai , bi (i = 1, 2, 3), θ and κ are nonnegative and bounded on any bounded
interval;

C2) For each c′ > 0,

sup
0<u≤c′

[G1,0(u) + G2,0(u)] < ∞;

C3) For each 0 < c′ < c′′,

inf
x∈[c′,c′′]

{a2(x) + a3(x)} > 0, inf
x∈[c′,c′′]

{b2(x) + b3(x)} > 0 and µ((c′, c′′)) > 0.

emark 1.3. Under the above conditions, with probability one, both processes X t and Yt

onverge to 0 as t → ∞. But X t does not become extinct almost surely by [20, Theorem
.3 (i) and Proposition 2.6]; see also Lemma 3.2 in the following. In this situation we
ay extinguishing occurs for process X . Note that process Y also becomes extinguishing
nder the above conditions if κ ≡ 0. The following theorems give the conditions on the
xtinction-extinguishing phenomena of Y .

We first find conditions distinguishing between extinction with probability 0 and extinction
ith a positive probability for process Y .

heorem 1.4. If there exists a constant c∗ > 0 so that sup0<u≤c∗ θ (u)u−1 < ∞, then
{τ Y

0 < ∞} = 0.

heorem 1.5. Suppose that there exist constants c∗, c1 > 0, θ ∈ [0, 1) and δ > 1 so that

inf
c1≤u≤c∗

κ(u) > 0, inf
0<u≤c∗

θ (u)u−θ > 0, and inf
0<u≤c∗

[
a2(u)u−2−δ

+ a3(u)u−δ−1
]
> 0.

hen P{τ Y
0 < ∞} > 0.

From the above two theorems we find that the extinction of Y is caused by X through the
egative drift coefficient function −θ (v)κ(u) for u near zero, and not caused by the Brownian
riven or Poisson-random-measure driven components of the SDE for Y . Intuitively, process

Y becomes extinguishing or extinct depending on whether θ (u) converges to 0 fast enough or
55
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slow enough as u → 0+. Note that under the conditions on θ , the role of function κ in these
heorems is not essential.

To further study the extinction-extinguishing behaviors of process Y we need to introduce
ore sets of conditions. Since both X and Y have no negative jumps, we impose upper and

ower power function bounds on functions G i,0(u), θ (u) and κ(u) only for u close to 0. These
onditions help to simplify arguments in proofs and allow more transparent conditions (in terms
f powers of the power functions) for the extinction-extinguishing behaviors for Y .

ondition 1.6.

(i) There exist constants θ ∈ [0, 1), c∗, cθ , a, b, κ > 0 and p, q ≥ 0 so that

(ia) G1,0(u) ≤ au p for all 0 < u ≤ c∗;
(ib) G2,0(u) ≥ buq for all 0 < u ≤ c∗;
(ic) θ (u) ≥ cθuθ and κ(u) ≥ uκ for all 0 < u ≤ c∗.

(ii) There exist constants θ ∈ [0, 1), c∗, cθ , a, b, κ > 0 and p, q ≥ 0 so that

(iia) G1,0(u) ≥ au p for all 0 < u ≤ c∗;
(iib) G2,0(u) ≤ buq for all 0 < u ≤ c∗;
(iic) θ (u) ≤ cθuθ and κ(u) ≤ uκ for all 0 < u ≤ c∗.

(iii) Assume that the function u ↦→ b3(u) is nondecreasing and that the functions θ, b1, b2, b3

are locally Lipschitz, that is, for each closed interval [u, v] ⊂ (0,∞), there is a constant
C(u, v) ≥ 0 so that

|θ (x) − θ (y)| +

∑
i=1,2,3

|bi (x) − bi (y)| ≤ C(u, v)|x − y|

for all u ≤ x, y ≤ v.

We remark that Condition 1.6(iii) is needed for a comparison theorem,
roposition 3.6, which is applied in proofs for Theorems 1.8 and 1.10.

The following theorems further distinguish between extinction with a positive probability
nd extinction with probability one for Y . In particular, we identify conditions under which
oth extinction and extinguishing happen with a strictly positive probability.

heorem 1.7. Suppose that Condition 1.6(i) holds with
qκ

q + 1 − θ
< p. (1.10)

hen P{τ Y
0 < ∞} = 1.

heorem 1.8. Suppose that Condition 1.6(ii) and (iii) hold with
qκ

q + 1 − θ
> p > 0. (1.11)

hen P{τ Y
0 < ∞} < 1.

In the following we consider Condition 1.6 for either pq = 0 or qκ
q+1−θ

= p with p, q > 0.
Observe that the case for p > 0 and q = 0 is addressed in Theorem 1.7 on the extinction
behavior.
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Theorem 1.9. Suppose that Condition 1.6(i) holds for constants satisfying one of the following
onditions:

(i) p = q = 0 and b/a > κ/(1 − θ ),
(ii) p, q > 0, qκ

q+1−θ
= p, and

ap
q(q + 1 − θ )

<
( b

1 − θ

) 1−θ
q+1−θ

·

(cθ
q

) q
q+1−θ

. (1.12)

hen P{τ Y
0 < ∞} = 1.

heorem 1.10. Suppose that Condition 1.6(ii) and (iii) hold for constants satisfying one of
he following conditions:

(i) p = q = 0 and b/a < κ/(1 − θ ),
(ii) p = 0, q > 0.

hen P{τ Y
0 < ∞} < 1.

Given the above theorems, there are still cases for the parameters a, b, cθ , p, q, θ, κ in which
he extinction-extinguishing behaviors are unknown.

onjecture 1.11. We conjecture that P{τ Y
0 < ∞} < 1 if Condition 1.6(ii) and (iii) hold with

p, q > 0, qκ
q+1−θ

= p and

ap
q(q + 1 − θ )

>
( b

1 − θ

) 1−θ
q+1−θ

·

(cθ
q

) q
q+1−θ

.

To better understand the conditions, we next consider an example of SDE system (1.1) with
ower function coefficients and stable Poisson random measures.

xample 1.12. Suppose that there are constants ai , bi , θ ≥ 0, κ, η > 0, α1, α2 ∈ (1, 2) and
i , pi ≥ 0 so that κ(u) = uκ , θ (u) = ηuθ ,

ai (u) = ai u pi +i , bi (u) = bi uqi +i for i = 1, 2 and a3(u) = a3u p3+α1 , b3(u) = b3uq3+α2 ,

nd

µ(dz) =
α1(α1 − 1)
Γ (2 − α1)

z−1−α1dz, ν(dz) =
α2(α2 − 1)
Γ (2 − α2)

z−1−α2dz

ith Gamma function Γ . We also assume that a2 + a3 > 0 and b2 + b3 > 0. Then
H1,0(u) = Γ (α1)u−α1 , H2,0(u) = Γ (α2)u−α2 and

G1,0(u) = a1u p1 + 2−1a2u p2 + a3Γ (α1)u p3 , G2,0(u) = b1uq1 + 2−1b2uq2 + b3Γ (α2)uq3 .

et

p := min{p11{a1 ̸=0}, p21{a2 ̸=0}, p31{a3 ̸=0}},

q := min{q11{b1 ̸=0}, q21{b2 ̸=0}, q31{b3 ̸=0}}

nd

a := a11{p1=p} +
a2

2
1{p2=p} + a3Γ (α1)1{p3=p},

b := b11{q =q} +
b2 1{q =q} + b3Γ (α2)1{q =q}.
1 2 2 3
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Note that constants p and q are the minimum powers of the power functions in the expressions
f G1,0 and G2,0, respectively, and the associated power function or functions dominate the
ehaviors of the corresponding polynomial G i,0(u) for u near zero. The constants a and b

represent coefficients of the (possibly combined) dominant power functions, respectively. Since
processes X and Y have no negative jumps, these dominant power functions together determine
the extinction/extinguishing behaviors of Y .

Combining Theorems 1.4–1.5 and 1.7–1.10, we have

(i) P{τ Y
0 < ∞} = 0 if θ ≥ 1;

(ii) P{τ Y
0 < ∞} > 0 if 0 ≤ θ < 1;

(iii) P{τ Y
0 < ∞} = 1 if 0 ≤ θ < 1 and one of the following holds:

(iiia) p = q = 0 and b/a > κ/(1 − θ );
(iiib) p > 0 and q = 0;
(iiic) p, q > 0 and qκ

q+1−θ
< p;

(iiid) p, q > 0, qκ
q+1−θ

= p and

ap
q(q + 1 − θ )

<
( b

1 − θ

) 1−θ
q+1−θ

·

(η
q

) q
q+1−θ

;

(iv) 0 < P{τ Y
0 < ∞} < 1 if 0 ≤ θ < 1 and one of the following holds:

(iva) p = q = 0 and b/a < κ/(1 − θ );
(ivb) p = 0 and q > 0;
(ivc) p, q > 0 and qκ

q+1−θ
> p.

emark 1.13. From the above example we have the following insights. The extinction of
Y is caused by relatively large negative interaction −ηY θ

t Xκ
t . If θ > 0 is small enough, Y θ

t
ecreases slowly enough as Yt → 0+ and there is enough negative drift to cause extinction.

• If κ > 0 is further relatively small, then Xκ
t also decreases slowly enough as X t → 0+

so that there is a large enough negative drift −ηY θ
t Xκ

t that causes extinction for Y with
probability one.

• On the other hand, if κ > 0 is not relatively small, then the negative drift −ηY θ
t Xκ

t
becomes small enough when X t starts to take small values. In this case, Y can survive
with a positive probability.

. Two-dimensional stochastic Foster–Lyapunov type criteria

The study of boundary behaviors for Markov processes started with the boundary classifi-
ation of Markov chains and some Chinese probabilist had made important contributions on
t. Among them Mu-Fa Chen identified the explosion/non-explosion conditions for continuous
ime Markov chains and Markov jump processes in 1980s; see the review paper Chen [7] and
he book Chen [6] and references therein where the uniqueness and non-uniqueness problems
ssentially correspond to the non-explosion and the explosion, respectively, for Markov chains.
hasminskii [15] proved similar conditions for diffusion processes. These conditions were later

eferred to as Foster and Lyapunov criteria for more general Markov process; see e.g. Meyn
nd Tweedie [23].

Using one-dimensional Foster–Lyapunov type criteria, an estimate is found in Section 4

f [20] on the first passage probabilities for the continuous-state nonlinear branching process X .
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A Foster–Lyapunov type criterion is also identified in [22] for non-extinction of the continuous-
state nonlinear branching process. These criteria generalize similar results for Markov chains;
see Chen [6, Theorems 2.25 and 2.27]. The conditions for Propositions 2.1 and 2.2 in the
following are also similar to those of [6, Theorems 2.25 and 2.27] which are the criteria of
uniqueness of q-process.

In this section we establish the two-dimensional criteria, which will be used to prove
Theorems 1.4, 1.5, 1.7 and 1.9. In the following, let (xt , yt )t≥0 with x0, y0 > 0 denote a two-

imensional Markov process where (xt )t≥0 and (yt )t≥0 are two nonnegative processes defined
efore the minimum of their first times of hitting 0 or explosion. Let L t be an operator such

that for each g ∈ C2((0,∞) × (0,∞)) and m, n ≥ 1, the process t ↦→ Mg
t∧γm,n is a local

martingale, where

Mg
t := g(xt , yt ) − g(x0, y0) −

∫ t

0
Ls g(xs, ys)ds (2.1)

and γm,n := τn ∧ σm with τn := τ x
1/n ∧ τ

y
1/n and σm := σ x

m ∧ σ
y
m . Then a natural candidate for

L t is the generator of the process (xt , yt )t≥0. Define the stopping time τ0 := τ x
0 ∧ τ

y
0 . Since the

wo processes (xt )t≥0 and (yt )t≥0 are defined before the first time of hitting zero or explosion,

τ0 = lim
n→∞

τn. (2.2)

roposition 2.1. Suppose that there is a non-negative function g ∈ C2((0,∞) × (0,∞)) and
sequence of positive constants (dm)m≥1 satisfying

(i) limx∧y→0+ g(x, y) = ∞;
(ii) L t g(x, y) ≤ dm g(x, y) for all t > 0, x, y ∈ (0,m) and all large m ≥ 1.

hen P{τ0 < ∞} = 0.

roof. Observe that there is a sequence of stopping times (γk)k≥1 so that γk → ∞ almost surely
s k → ∞ and t ↦→ Mg

t∧γm,n,k is a martingale for each m, n, k ≥ 1, where γm,n,k := γm,n ∧ γk .
By (2.1) and condition (ii), for each m, n, k ≥ 1 and t ≥ 0,

E
[
g(xt∧γm,n,k , yt∧γm,n,k )

]
= g(x0, y0) +

∫ t

0
E

[
Ls g(xs, ys)1{s≤γm,n,k }

]
ds

≤ g(x0, y0) + dm

∫ t

0
E

[
g(xs, ys)1{s≤γm,n,k }

]
ds

≤ g(x0, y0) + dm

∫ t

0
E

[
g(xs∧γm,n,k , ys∧γm,n,k )

]
ds. (2.3)

sing (2.3) and Gronwall’s lemma we obtain that for all k ≥ 1,

E
[
g(xt∧γm,n,k , yt∧γm,n,k )

]
≤ g(x0, y0)edm t , t ≥ 0.

etting k → ∞ we have

E
[
g(xt∧γm,n , yt∧γm,n )

]
≤ g(x0, y0)edm t , t ≥ 0,

hich implies that for each m ≥ 1,

E
[

lim g(xt∧γ , yt∧γ )
]

≤ lim inf E
[
g(xt∧γ , yt∧γ )

]
≤ g(x0, y0)edm t (2.4)
n→∞
m,n m,n n→∞

m,n m,n
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by Fatou’s lemma. From condition (i) and (2.2) it follows that P{τ0 > t ∧ σm} = 1 for
ach m ≥ 1 and t > 0. Letting t → ∞ we get P{τ0 ≥ σm} = 1 for each m ≥ 1. Thus,
τ0 ≥ limm→∞ σm almost surely. Since these two processes are defined before the first time
of hitting zero or explosion, then P{τ0 = ∞ or limn→∞ σn = ∞} = 1. This concludes that
τ0 = ∞ almost surely. □

Proposition 2.2. Suppose that supt≥0(xt + yt ) < ∞ almost surely. We also assume that there
exist a nonnegative function g ∈ C2((0,∞)× (0,∞)) and a sequence of nonnegative processes
(dm)m≥1 satisfying the following conditions:

(i) 0 < supx,y>0 g(x, y) < ∞;
(ii)

∫
∞

0 dm(t)dt = ∞ almost surely for all m ≥ 1;
(iii) L t g(xt , yt ) ≥ dm(t)g(xt , yt ) for all 0 < t < σm and large m ≥ 1.

Then P{τ0 < ∞} ≥ g(x0, y0)/ supx,y>0 g(x, y).

Proof. Let Dm(t) :=
∫ t

0 dm(s)ds. Then for all m ≥ 1,

Dm(t) → ∞ almost surely as t → ∞ (2.5)

by condition (ii). Let ([Mg,Mg]t )t≥0 be the quadratic variation process of (Mg
t )t≥0. Then the

mapping t ↦→ [Mg,Mg]t is right continuous with left limits. It follows that

sup
s∈[0,t]

[Mg,Mg]s < ∞ (2.6)

almost surely for all t > 0. For n,m, k ≥ 1 define stopping times γn and γm,n,k by

γk := inf{t ≥ 0 : [Mg,Mg]t ≥ k}, γm,n,k := γm,n ∧ γk .

Then

[Mg,Mg]t ≤ k for all 0 ≤ t < γk and k ≥ 1 (2.7)

and

lim
k→∞

γk = ∞ (2.8)

almost surely by (2.6). One can see that by the assumptions,

lim
m→∞

P{σm < ∞} ≤ lim
m→∞

P
{
sup
t≥0

(xt + yt ) ≥ m
}

= 0. (2.9)

Moreover, by [24, p. 73], t ↦→ Mg
t∧γm,n,k is a martingale, where Mg

t is defined in (2.1). It follows
from integration by parts that

g(xt∧γm,n,k , yt∧γm,n,k )e−Dm (t)

= g(x0, y0) +

∫ t

0
g(xs∧γm,n,k , ys∧γm,n,k )d(e−Dm (s))

+

∫ t

0
e−Dm (s)d(g(xs∧γm,n,k , ys∧γm,n,k ))

= g(x0, y0) −

∫ t

0
g(xs∧γm,n,k , ys∧γm,n,k )dm(s)e−Dm (s)ds

+

∫ t

e−Dm (s)Ls g(xs, ys)1{s≤γm,n,k }ds +

∫ t

e−Dm (s)dMg
s∧γm,n,k . (2.10)
0 0
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By the Burkholder–Davis–Gundy inequality and (2.7), there is a constant C > 0 so that for all
T > 0,

E
[

sup
0≤t≤T

⏐⏐⏐ ∫ t

0
e−Dm (s)dMg

s∧γm,n,k

⏐⏐⏐2]
≤ CE

[⏐⏐⏐ ∫ T

0
e−2Dm (s)d[Mg,Mg]s∧γm,n,k

⏐⏐⏐]
≤ CE

[
[Mg,Mg]T ∧γm,n,k

]
≤ Ck.

It then follows from [24, p. 38] that t ↦→
∫ t

0 e−Dm (s)dMg
s∧γm,n,k is a martingale. Taking

xpectations on both sides of (2.10) we get∫ t

0
E

[
dm(s)e−Dm (s)g(xs∧γm,n,k , ys∧γm,n,k )

]
ds + E

[
g(xt∧γm,n,k , yt∧γm,n,k )e−Dm (t)

]
= g(x0, y0) +

∫ t

0
E

[
e−Dm (s)Ls g(xs, ys)1{s≤γm,n,k }

]
ds.

Letting t → ∞ and using condition (i), (2.5) and the dominated convergence theorem we get∫
∞

0
E

[
dm(t)e−Dm (t)g(xt∧γm,n,k , yt∧γm,n,k )

]
dt

= g(x0, y0) +

∫
∞

0
E

[
e−Dm (t)L t g(xt , yt )1{t≤γm,n,k }

]
dt.

sing condition (iii) we have∫
∞

0
E

[
dm(t)e−Dm (t)g(xt∧γm,n,k , yt∧γm,n,k )

]
dt

≥ g(x0, y0) +

∫
∞

0
E

[
dm(t)e−Dm (t)g(xt , yt )1{t≤γm,n,k }

]
dt,

hich implies

g(x0, y0) ≤ E
[∫ ∞

0
dm(t)e−Dm (t)g(xγm,n,k , yγm,n,k )1{t>γm,n,k }dt

]
≤ c0E

[∫ ∞

γm,n,k

dm(t)e−Dm (t)dt
]

= c0E
[
e−Dm (γm,n,k )]

y condition (i) and (2.5) again, where c0 := supx,y>0 g(x, y). Letting n, k → ∞ and using
2.2) and (2.8) we get

g(x0, y0) ≤ c0E
[
e−Dm (τ0∧σm )]

= c0E
[
e−Dm (τ0∧σm )(1{σm<∞} + 1{σm=∞})

]
≤ c0P{σm < ∞} + c0E

[
e−Dm (τ0)].

y (2.9), for each ε ∈ (0, 1), there is a large enough m ≥ 1 so that

c0P{σm < ∞} ≤ εg(x0, y0),

hich means that

(1 − ε)g(x0, y0) ≤ c0E
[
e−Dm (τ0)]

≤ c0E
[
e−Dm (τ0)1{τ0=∞} + 1{τ0<∞}

]
= c0P{τ0 < ∞},

here (2.5) is used in the last equation. Taking ε → 0 one ends the proof. □
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By an argument similar to that in the proof of Proposition 2.2, we obtain the next result.

orollary 2.3. Suppose that supt≥0(xt + yt ) < ∞ almost surely and g ∈ C2((0,∞) × (0,∞))
s a nonnegative function with 0 < supx,y>0 g(x, y) < ∞. If there exist a constant ε > 0 and

nonnegative function h on (0,∞) so that

L t g(xt , yt ) ≥ h(xt )g(xt , yt ), 0 < t < σε

nd
∫

∞

0 h(xt ∧ ε)dt = ∞ almost surely, then

P{τ0 ∧ σε < ∞} ≥ g(x0, y0)/ sup
x,y>0

g(x, y).

roof. We can prove the assertion with dm(t) and τ0 respectively replaced by h(xt ∧ ε) and
0 ∧ σε in the proof of Proposition 2.2. We leave the details of the proof to the readers. □

Similar to Propositions 2.1 and 2.2, we can also obtain the associated assertions for the
one-dimensional processes. Suppose that x := (xt )t≥0 is a non-negative Markov process and
the operator L t is defined in the following: for each g ∈ C2((0,∞)) and m, n ≥ 1, t ↦→ Mg

t∧γ̃m,n
s a local martingale, where

Mg
t := g(xt ) − g(x0) −

∫ t

0
Ls g(xs)ds

nd γ̃m,n := τ x
1/n ∧ σ x

m .

orollary 2.4. Suppose that there are a non-negative function g ∈ C2((0,∞)) and constants
m ≥ 0, m ≥ 1 satisfying limy→0 g(y) = ∞ and L t g(y) ≤ dm g(y) for all m ≥ 1, y ∈ (0,m)
nd t > 0. Then P{τ x

0 < ∞} = 0.

orollary 2.5. Suppose that supt≥0 xt < ∞ almost surely, and that there exist a nonnegative
unction g ∈ C2((0,∞)) and a sequence of nonnegative processes (dn)n≥1 so that 0 <

upy>0 g(y) < ∞,
∫

∞

0 dn(t)dt = ∞ almost surely and L t g(xt ) ≥ dn(t)g(xt ) for all 0 < t < σn

nd n ≥ 1. Then P{τ x
0 < ∞} ≥ g(x0)/ supx>0 g(x).

. Proofs of the main results

In this section we establish the proofs of Theorems 1.4–1.5 and 1.7–1.10. We first state
ome notations and assertions which will be used in the proofs. For g ∈ C2((0,∞) × (0,∞))
e define

K 1
z g(x, y) := g(x + z, y) − g(x, y) − zg′

x (x, y),

K 2
z g(x, y) := g(x, y + z) − g(x, y) − zg′

y(x, y)
(3.1)

or x, y, z > 0 and

Lg(x, y) := L1g(x, y) + L2g(x, y) (3.2)

ith

L1g(x, y) := −a1(x)g′

x (x, y) +
1

a2(x)g′′

xx (x, y) + a3(x)
∫

∞

K 1
z g(x, y)µ(dz) (3.3)
2 0
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and

L2g(x, y) := −[b1(y) + κ(x)θ (y)]g′

y(x, y)

+
1
2

b2(y)g′′

yy(x, y) + b3(y)
∫

∞

0
K 2

z g(x, y)ν(dz), (3.4)

here g′
x , g′′

xx and g′
y, g′′

yy denote the first and the second partial derivatives of g with respect
o x and y. By (1.1) and Itô’s formula, L is the generator of (X, Y ) and independent of time
. By Taylor’s formula, for any bounded continuous second derivative function g,

Kzg(x) = z2
∫ 1

0
g′′(x + zv)(1 − v)dv, (3.5)

here

Kzg(x) := g(x + z) − g(x) − zg′(x), x, z > 0. (3.6)

ince for all x ∈ R, ex
− 1 ≥ x , then by (3.5), for all x, y, z, λ > 0,

eλyr
[e−λ(y+z)r

− e−λyr
+ λr zyr−1e−λyr

]
= [eλyr

−λ(y+z)r
− 1 + λr zyr−1]

≥ −λ[(y + z)r
− yr

− r zyr−1]

= λr (1 − r )z2
∫ 1

0
(y + zv)r−2(1 − v)dv

= λr (1 − r )z2 yr−2
∫ 1

0
(1 + zy−1v)r−2(1 − v)dv. (3.7)

oreover, for 0 < r < 1,

eλyr
[e−λ(y+z)r

− e−λyr
+ λr zyr−1e−λyr

]

≥ λr (1 − r )z2 yr−2
∫ 1

0
(1 + zy−1v)−2(1 − v)dv. (3.8)

.1. Preliminary results

emma 3.1. For any u, v ≥ 0 and p̄, q̄ > 1 with 1/ p̄ + 1/q̄ = 1, we have

u + v ≥ p̄1/ p̄q̄1/q̄u1/ p̄v1/q̄ .

roof. The above inequality follows from the Young inequality. □

Recall the definitions of τ Z
0 and τ Z

w in (1.8) for the process Z and constant w > 0.

emma 3.2.

(i) For any 0 < w1 < X0 and 0 < w2 < Y0, we have τ X
w1
< ∞ and τ Y

w2
< ∞ almost surely.

Moreover, limt→∞ X t = 0 and limt→∞ Yt = 0 almost surely.
(ii) P{τ X

0 = ∞} = 1 and P{τ Y
0 = ∞} = 1 if κ(x) = 0 for all x > 0.

roof. Observe that for each w > 1, (1 + zu−1v)−1−w
≤ (1 + zu−1v)−2. Then

u−2
∫

∞

z2µ(dz)
∫ 1

(1 + zu−1v)−1−w(1 − v)dv ≤ H1,0(u),

0 0
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u−2
∫

∞

0
z2ν(dz)

∫ 1

0
(1 + zu−1v)−1−w(1 − v)dv ≤ H2,0(u),

here H1,0 and H2,0 are defined in (1.4) and (1.5). It is obvious that condition (C2) is stronger
han the assumption in Theorem 2.3 (i) of [20]. Thus, under conditions (C2) and (C3), applying
heorem 2.3 (i) and Proposition 2.6 of [20] we prove the assertions. □

The next result gives an estimate on the maximums of processes X and Y .

emma 3.3. Given X0, Y0 > 0, for any δ ∈ (0, 1/2) and ε > 0, there exists a constant C > 0
hat does not depend on ε, X0, Y0 so that

P
{

sup
t≥0

X t ≥ ε
}

≤ Cε−δX δ
0, P

{
sup
t≥0

Yt ≥ ε
}

≤ Cε−δY δ
0 .

roof. Observe that

(Xs + z)2δ
− X2δ

s − 2δX2δ−1
s z = X2δ

s

[
(1 + zX−1

s )2δ
− 1 + (−2δ)zX−1

s

]
nd then∫

∞

0

[
(Xs + z)2δ

− X2δ
s − 2δX2δ−1

s z
]
µ(dz) = −2δ(1 − 2δ)X2δ

s H1,−2δ(Xs),

here the function H1,−2δ is defined in (1.2). Then by (1.1) and Itô’s formula, we have

X2δ
t = X2δ

0 − 2δ
∫ t

0
a1(Xs)X2δ−1

s ds − δ(1 − 2δ)
∫ t

0
a2(Xs)X2δ−2

s ds

−2δ(1 − 2δ)
∫ t

0
a3(Xs)X2δ

s H1,−2δ(Xs)ds + 2δ
∫ t

0
a2(Xs)1/2 X2δ−1

s dBs

+

∫ t

0

∫
∞

0

∫ a3(Xs−)

0
[(Xs− + z)2δ

− X2δ
s−]M̃(ds, dz, du)

=: X2δ
0 −

5∑
i=1

Ai (t, 2δ). (3.9)

Since 0 < δ < 1/2 and a1, a2, a3 are nonnegative by condition (C1), then Ai (t, 2δ) ≥ 0 for
all t ≥ 0 and i = 1, 2, 3. With 2δ replaced by δ in (3.9) it follows that

X δ
t ≤ X δ

0 + |A4(t, δ)| + |A5(t, δ)|. (3.10)

For all n ≥ 1 let τ̃n := τ X
1/n ∧ σ X

n . Then

E[A4(t ∧ τ̃n, 2δ)] = E[A5(t ∧ τ̃n, 2δ)] = 0.

It follows from (3.9) that E[A2(t ∧ τ̃n, 2δ)] ≤ X2δ
0 . We then apply Fatou’s lemma to get

E
[
sup
t≥0

A2(t, 2δ)
]

= E
[

lim
t,n→∞

A2(t ∧ τ̃n, 2δ)
]

≤ lim inf
t,n→∞

E[A2(t ∧ τ̃n, 2δ)] ≤ X2δ
0 . (3.11)

Similarly, we can also get

E
[
sup A3(t, 2δ)

]
≤ X2δ

0 . (3.12)

t≥0
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By the Burkholder–Davis–Gundy inequality, the Hölder inequality and the estimate (3.11),
there is a constant C1 > 0 so that

E
[
sup
t≥0

|A4(t, δ)|
]

≤ δC1E
[⏐⏐⏐ ∫ ∞

0
a2(Xs)X2δ−2

s ds
⏐⏐⏐1/2]

≤ δC1

⏐⏐⏐E[∫ ∞

0
a2(Xs)X2δ−2

s ds
]⏐⏐⏐1/2

≤ δC1[δ(1 − 2δ)]−1/2
⏐⏐⏐E[

sup
t≥0

A2(t, 2δ)
]⏐⏐⏐1/2

≤ δC1[δ(1 − 2δ)]−1/2 X δ
0. (3.13)

For fixed z, x ≥ 0 and u ≥ 0 let h(u) = (1 + zx−1u)2δ−2. Then h is decreasing and
h(u) − h(1/2))(1/2 − u) ≥ 0 for all u ≥ 0. It follows that∫ 1

0
(h(u) − h(1/2))(1/2 − u)du ≥ 0.

Since
∫ 1

0 h(1/2)(1/2 − u)du = 0, then
∫ 1

0 h(u)(1/2 − u)du ≥ 0. Moreover,∫ 1

0
h(u)(1 − u)du =

1
2

∫ 1

0
h(u)du +

∫ 1

0
h(u)(1/2 − u)du ≥

1
2

∫ 1

0
h(u)du.

ombining this with Taylor’s formula and Hölder’s inequality we further have

[(x + z)δ − xδ]2
= δ2

⏐⏐⏐z ∫ 1

0
(x + zu)δ−1du

⏐⏐⏐2

= δ2x2δ−2z2
⏐⏐⏐ ∫ 1

0
(1 + zx−1u)δ−1du

⏐⏐⏐2

≤ δ2x2δ−2z2
∫ 1

0
(1 + zx−1u)2δ−2du

≤ 2δ2x2δ−2z2
∫ 1

0
(1 + zx−1u)2δ−2(1 − u)du.

Then by the Burkholder–Davis–Gundy inequality and the Hölder inequality, there are constants
2 > 0 and C3 = C3(δ) > 0 so that

E
[
sup
t≥0

|A5(t, δ)|
]

≤ δC2E
[⏐⏐⏐ ∫ ∞

0
a3(Xs)ds

∫
∞

0
[(Xs + z)δ − X δ

s ]2µ(dz)
⏐⏐⏐1/2]

≤ δC2

⏐⏐⏐E[∫ ∞

0
a3(Xs)ds

∫
∞

0
[(Xs + z)δ − X δ

s ]2µ(dz)
]⏐⏐⏐1/2

≤ 21/2δ2C2

⏐⏐⏐E[∫ ∞

0
a3(Xs)X2δ

s H1,−2δ(Xs)ds
]⏐⏐⏐1/2

= C3

⏐⏐⏐E[
sup
t≥0

A3(t, 2δ)
]⏐⏐⏐1/2

≤ C3 X δ
0, (3.14)

here (3.12) is used in the last inequality. Combining (3.14) with (3.10) and (3.13) we have

E
[
sup X δ

t

]
≤ C4 X δ

0

t≥0

65



Y.-X. Ren, J. Xiong, X. Yang et al. Stochastic Processes and their Applications 150 (2022) 50–90

I

a

M

T

w

w

for some constant C4 > 0 independent of X0. Then by the Markov inequality,

P
{

sup
t≥0

X t > ε
}

≤ ε−δE
[
sup
t≥0

X δ
t

]
≤ C4ε

−δX δ
0.

By the same argument we can show that

P
{

sup
t≥0

Yt > ε
}

≤ C5ε
−δY δ

0

for some constant C5 > 0. This concludes the proof. □

3.2. Proof of Theorem 1.4

Proof of Theorem 1.4. We apply Proposition 2.1 to prove Theorem 1.4. The key is to construct
a function g that satisfies the conditions (i) and (ii) in Proposition 2.1. For ρ > 0 we choose
the function g as

g(x, y) = x−ρ
+ y−ρ

+ 1, x, y > 0.

Then for all x, y > 0,

g′

x (x, y) = −ρx−ρ−1, g′′

xx (x, y) = ρ(ρ + 1)x−ρ−2,

g′

y(x, y) = −ρy−ρ−1, g′′

yy(x, y) = ρ(ρ + 1)y−ρ−2.

t thus follows that for x, y > 0,

−g′

x (x, y) ≤ ρx−1g(x, y), g′′

xx (x, y) ≤ ρ(ρ + 1)x−2g(x, y) (3.15)

nd

−g′

y(x, y) ≤ ρy−1g(x, y), g′′

yy(x, y) ≤ ρ(ρ + 1)y−2g(x, y). (3.16)

oreover, by (3.1), for x, y, z > 0,

K 1
z g(x, y) = z2

∫ 1

0
g′′

xx (x + zv, y)(1 − v)dv

= ρ(ρ + 1)z2
∫ 1

0
(x + zv)−ρ−2(1 − v)dv

≤ ρ(ρ + 1)g(x, y)x−2z2
∫ 1

0
(1 + zx−1v)−2(1 − v)dv.

hus ∫
∞

0
K 1

z g(x, y)µ(dz) ≤ ρ(ρ + 1)g(x, y)H1,0(x), x, y > 0, (3.17)

here the function H1,0 is defined in (1.4). Similarly, we can obtain∫
∞

0
K 2

z g(x, y)ν(dz) ≤ ρ(ρ + 1)g(x, y)H2,0(y), x, y > 0, (3.18)

here the function H2,0 is defined in (1.5).
Recalling (3.2)–(3.4) and combining (3.15)–(3.18), we get
L1g(x, y) ≤ ρ(ρ + 1)G1,0(x)g(x, y)
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and

L2g(x, y) ≤ ρ(ρ + 1)G2,0(y)g(x, y) + ρκ(x)θ (y)y−1g(x, y)

or x, y > 0, where G1,0 and G2,0 are defined in (1.6) and (1.7), respectively. Then under
onditions (C1) and (C2) and the assumption of the theorem, g(x, y)−1Lg(x, y) is bounded
or x, y in any bounded interval. Therefore, for each n ≥ 1, there is a constant dn > 0 so

that Lg(x, y) ≤ dng(x, y) for all x, y ∈ (0, n), which implies condition (ii) in Proposition 2.1.
y the definition of g, condition (i) in Proposition 2.1 are obvious. Since τ X

0 = ∞, P-a.s. by
emma 3.2(ii), we have τ0 = τ Y

0 , P-a.s., where τ0 = τ X
0 ∧ τ Y

0 by Remark 1.2. It follows from
he assertion in Proposition 2.1 that P{τ Y

0 = ∞} = 1. □

.3. Proof of Theorem 1.5

roof of Theorem 1.5. We want to apply Proposition 2.2 where the key is to construct a
unction g satisfying the conditions (i)–(iii) in Proposition 2.2. We assume that the constant c∗

n the assumption satisfies 0 < c∗ < 1. By condition (C3), there is a small enough constant
2 ∈ (0, c∗) so that

∫ c∗

c2
µ(dz) > 0. Let 0 < c1 < c2 < c3 < c∗. Choose a constant c0 > 0 so

hat

inf
c1≤u≤c∗

κ(u) ≥ c0, inf
0<u≤c∗

θ (u)u−θ
≥ c0 (3.19)

nd

inf
0<u≤c∗

[
a2(u)u−2−δ

+ a3(u)u−δ−1]
≥ c0, (3.20)

here δ > 1 is the constant appearing in the assumption. The proof is given in the following
hree steps.

Step 1. In this step we construct the function g and summarize some of its properties.
et g0 ∈ C2((0, c∗)) satisfy g0(x) = x−δ for x ∈ (0, c2) and g0(x) = (x − c∗)−2 for

x ∈ (c3, c∗). We choose function g0 so that g0, g′

0 and g′′

0 are all bounded in [c2, c3]. For
1, λ2 > 1, c̄ := π/(2c∗) and 0 < r < 1 − θ , define a nonnegative function g by

g(x, y) := exp{−λ1g0(x) − λ2(tan c̄y)r
}1{x,y<c∗}, x, y > 0,

here we only need the properties of a tan function such that it is equivalent to x near zero
nd is infinite at π/2. Then g ∈ C2((0,∞) × (0,∞)), and for 0 < x, y < c∗,

g′

x (x, y) = −λ1g′

0(x)g(x, y), g′

y(x, y) = −λ2c̄r (tan c̄y)r−1(cos c̄y)−2g(x, y), (3.21)

nd

g′′

xx (x, y) = λ1
[
λ1|g′

0(x)|2 − g′′

0 (x)
]
g(x, y), (3.22)

g′′

yy(x, y) = λ2r c̄2g(x, y)(sin c̄y)2r−2(cos c̄y)−2−2r [λ2r

+(1 − r )(sin c̄y)−r (cos c̄y)r
− 2(sin c̄y)2−r (cos c̄y)r ]

≥ λ2r c̄2g(x, y)(sin c̄y)2r−2(cos c̄y)−2−2r (λ2r − 2)

≥ 2−1(λ2r c̄)2g(x, y)(sin c̄y)2r−2 (3.23)

s λ2 ≥ 4r−1. Observe that the constant δ > 1 by the assumption of the theorem. Taking λ1
δ ∗ 2
arge enough so that λ1δ − (δ + 1)c2 ≥ λ1 and 2λ1 ≥ 3|c | in the following, by (3.22) we
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get

g′′

xx (x, y)/g(x, y) = λ2
1δ

2x−2δ−2
− λ1δ(δ + 1)x−δ−2

= λ1δx−2δ−2[λ1δ − (δ + 1)xδ]
≥ λ1δx−2δ−2[λ1δ − (δ + 1)cδ2]
≥ λ2

1δx−2δ−2, 0 < x < c2, y > 0 (3.24)

nd

g′′

xx (x, y)/g(x, y) = 2λ1(x − c∗)−6[2λ1 − 3(x − c∗)2] > 0, c3 < x < c∗, y > 0. (3.25)

n addition, since g0, g′

0 and g′′

0 are bounded on [c1, c3], then

C0 := sup
x≥c1,y>0

[
g(x, y) + |g′

x (x, y)| + |g′′

xx (x, y)|
]
< ∞. (3.26)

Step 2. In this step, we estimate L1g(x, y) which is defined in (3.3). Recall (3.1). Observe
hat g(u, y) ≥ g(x, y) for all 0 < x ≤ u < c2 and y > 0. It follows from (3.1), (3.5) and (3.24)
hat for x < c1, z < c2 − c1 and 0 < y < c∗ we have

g(x, y)−1 K 1
z g(x, y) = z2g(x, y)−1

∫ 1

0
g′′

xx (x + zu, y)(1 − u)du

≥ λ2
1z2g(x, y)−1

∫ 1

0
(x + zu)−2δ−2g(x + zu, y)(1 − u)du

≥ λ2
1z2

∫ 1

0
(x + zu)−2δ−2(1 − u)du

≥ λ2
1x−2δ−2z2

∫ x

0
(1 + c2 − c1)−2δ−2(1 − u)du ≥ λ2

1C1x−2δ−1z2

or some constant C1 > 0 independent of λ1 and λ2, which gives∫ c2−c1

0
K 1

z g(x, y)µ(dz) ≥ λ2
1C1

∫ c2−c1

0
z2µ(dz)x−2δ−1g(x, y), x ≤ c1, y > 0. (3.27)

Since λ1, δ > 1, then by (3.1) and (3.21),

K 1
z g(x, y) ≥ −g(x, y) − zg′

x (x, y) = −g(x, y) − λ1δzx−δ−1g(x, y)

≥ −λ1δx−δ−1g(x, y)(1 + z), x ≤ c1, y > 0,

hich implies that∫
∞

c2−c1

K 1
z g(x, y)µ(dz) ≥ −λ1δx−δ−1g(x, y)

∫
∞

c2−c1

(1 + z)µ(dz), x ≤ c1, y > 0. (3.28)

ombining (3.27) and (3.28) we get

g(x, y)−1
∫

∞

0
K 1

z g(x, y)µ(dz) ≥ λ2
1C1

∫ c2−c1

0
z2µ(dz)x−2δ−1

−λ1δx−δ−1
∫

∞

c2−c1

(1+z)µ(dz)

or 0 < x < c1 and 0 < y < c∗. Therefore, by (3.21) and (3.24),

g(x, y)−1L1g(x, y)

≥ λ1x−δ
[
−δa1(x)x−1

+ λ12−1δa2(x)x−2−δ

+

(
λ1C1

∫ c2−c1

z2µ(dz) − δxδ
∫

∞

(1 + z)µ(dz)
)

a3(x)x−δ−1
]

(3.29)

0 c2−c1

68



Y.-X. Ren, J. Xiong, X. Yang et al. Stochastic Processes and their Applications 150 (2022) 50–90

C

w

O
T

S
(

T

f

f

a

T

for all 0 < x < c1, 0 < y < c∗. Under condition (C2), C2 := sup0<x<c∗ a1(x)x−1 < ∞.
ombining this with (3.29) and (3.20), for all 0 < x < c1, 0 < y < c∗ and large enough λ1

with

2−1λ1C1

∫ c2−c1

0
z2µ(dz) > δcδ1

∫
∞

c2−c1

(1 + z)µ(dz),

e get

g(x, y)−1L1g(x, y)

≥ λ1c−δ
1

[
−C2δ + λ12−1δa2(x)x−2−δ

+

(
λ1C1

∫ c2−c1

0
z2µ(dz) − δcδ1

∫
∞

c2−c1

(1 + z)µ(dz)
)

a3(x)x−δ−1
]

≥ λ1c−δ
1

[
−C2δ + 2−1λ1a2(x)x−2−δ

+ 2−1λ1C1

∫ c2−c1

0
z2µ(dz)a3(x)x−δ−1

]
≥ λ1c−δ

1

[
−C2δ + 2−1λ1

[
1 ∧

(
C1

∫ c2−c1

0
z2µ(dz)

)][
a2(x)x−2−δ

+ a3(x)x−δ−1]]
≥ λ1c−δ

1

[
−C2δ + 2−1λ1c0

[
1 ∧

(
C1

∫ c2−c1

0
z2µ(dz)

)]]
. (3.30)

bserve that the term in the bracket of the above inequality is positive for large enough λ1.
hus for all large enough λ1 > 0 there is a constant d1 := d1(λ1) > 0 so that

g(x, y)−1L1g(x, y) ≥ d1, 0 < x < c1, 0 < y < c∗. (3.31)

ince g(x, y) = 0 for all x ≥ c∗ or y ≥ c∗, then L1g(x, y) = 0 for all x ≥ c∗ or y ≥ c∗. By
3.21) and (3.25), for large enough λ1,

− g′

x (x, y) = 2λ1(c∗
− x)−3g(x, y), g′′

xx (x, y) ≥ 2λ2
1(x − c∗)−6g(x, y),

c3 < x < c∗, y > 0.

hus, for large enough λ1 > 0 we have −g′
x (x, y) ≥ 0, g′′

xx (x, y) ≥ 0, and

K 1
z g(x, y) = z2

∫ 1

0
g′′

xx (x + zu, y)(1 − u)du ≥ 0

or all x > c3 and y > 0. Now by the definition of L1g(x, y) in (3.3),

L1g(x, y) ≥ 0, x ≥ c3, y > 0 (3.32)

or large enough λ1 > 0. By (3.26), for each c1 ≤ x ≤ c3, 0 < y < c∗ and z > 0,

|K 1
z g(x, y)| = z2

⏐⏐⏐ ∫ 1

0
g′′

xx (x + zu, y)(1 − u)du
⏐⏐⏐ ≤ C0z2

nd

K 1
z g(x, y) ≥ −g(x, y) − zg′(x, y) ≥ −C0(1 + z).

hen by (3.26) and the definition of L1g(x, y) in (3.3) again, for c1 ≤ x ≤ c3 and 0 < y ≤ c∗,

L1g(x, y) ≥ −C0

[
a1(x) + 2−1a2(x) + a3(x)

∫ 1
z2µ(dz) + a3(x)

∫
∞

(1 + z)µ(dz)
]
. (3.33)
0 1
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Since infc1≤x≤c3, 0<y<c∗ g(x, y) > 0, then by (3.33) and condition (C1), it is elementary to see
hat there is a constant d2 := d2(λ1) > 0 so that

g(x, y)−1L1g(x, y) ≥ −d2, c1 ≤ x ≤ c3, 0 < y < c∗. (3.34)

ombining the above inequality with (3.31) and (3.32) we obtain

L1g(x, y) ≥ −d2g(x, y), x ≥ c1, 0 < y < c∗,

L1g(x, y) ≥ d1g(x, y), 0 < x < c1, 0 < y < c∗.
(3.35)

Step 3. In this step we first estimate L2g(x, y) defined in (3.4) and then finish the proof.
y (3.21) and (3.23),

−g′

y(x, y) ≥ 0, g′′

yy(x, y) ≥ 0, 0 < x ≤ c∗, 0 < y < c∗, λ2 ≥ 4r−1. (3.36)

oreover, by (3.1) and (3.5),

K 2
z g(x, y) = z2

∫ 1

0
g′′

yy(x, y + zv)(1 − v)dv ≥ 0,

0 < x ≤ c∗, 0 < y < c∗, λ2 ≥ 4r−1. (3.37)

herefore, by the assumption of 0 < r < 1 − θ , (3.19) and (3.21) again,

L2g(x, y) ≥ −κ(x)θ (y)g′

y(x, y) = λ2r c̄κ(x)θ (y)(sin c̄y)r−1(cos c̄y)−1−r g(x, y)

≥ λ2r c̄κ(x)θ (y)(c̄y)r−1g(x, y) ≥ λ2r c̄r c2
0 yθ−1+r g(x, y) ≥ 2d2g(x, y) (3.38)

or all c1 ≤ x ≤ c∗, 0 < y < c∗ and for λ2 large enough, where the constant d2 > 0 is
etermined in (3.34). Since g(x, y) = 0 for x ≥ c∗ or y ≥ c∗, then L2g(x, y) = 0 for x ≥ c∗

r y ≥ c∗. It follows from (3.38) that

L2g(x, y) ≥ 2d2g(x, y), x ≥ c1, y > 0 (3.39)

nd L2g(x, y) ≥ 0 for all x, y > 0 by (3.36) and (3.37). Recalling (3.2). Combining (3.39)
ith (3.35) we get

Lg(x, y) = L1g(x, y) + L2g(x, y) ≥ d1g(x, y), 0 < x < c1, y > 0,
Lg(x, y) ≥ [2d2 − d2]g(x, y) = d2g(x, y), x ≥ c1, y > 0,

hich verifies condition (iii) of Proposition 2.2.
Therefore, by Proposition 2.2, P{τ X

0 ∧ τ Y
0 < ∞} ≥ g(x0, y0)/[supx,y>0 g(x, y)] for large

nough λ1, λ2 > 0 and X0, Y0 ∈ (0, c∗). Since τ X
0 = ∞ almost surely by Lemma 3.2(ii), we

ave P{τ Y
0 < ∞} > 0 for 0 < X0, Y0 < c∗. For general initial values X0 > c∗ or Y0 > c∗, let

:= τ X+Y
c∗ . By Lemma 3.2 we have τ < ∞ almost surely and then by the Markov property,

P{τ Y
0 < ∞} = P{τ Y

0 < ∞|(Xτ , Yτ )} > 0,

hich completes the proof. □

.4. Proof of Theorem 1.7

emma 3.4. Suppose that Condition 1.6(ib)–(ic) hold. Let g̃ be a nonnegative process∫
∞ δ
atisfying 0 g̃(s) ds = ∞ almost surely for some constant δ with q/(q + 1 − θ ) < δ ≤ 1. Let
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(ut )t≥0 be the non-negative solution to

ut = u0 −

∫ t

0
[b1(us) + θ (us)g̃(s)]ds

+

∫ t

0
b2(us)1/2dWs +

∫ t

0

∫
∞

0

∫ b3(us−)

0
z Ñ (ds, dz, du).

hen for each u0 > 0, we have P{τ u
0 < ∞} = 1.

roof. To establish the proof we apply Corollary 2.5. The key is to construct the function g
nd verify the conditions in Corollary 2.5. For r ∈ (0, 1 − θ ) and v, λ > 0 let g(v) = e−λvr

.
Then

g′(v) = −rλvr−1g(v), g′′(v) = rλ[rλvr
+ (1 − r )]vr−2g(v) ≥ r (1 − r )λvr−2g(v). (3.40)

y Itô’s formula we can see that the operator L t is given by

L t g(v) := −[b1(v) + θ (v)g̃(t)]g′(v) + 2−1b2(v)g′′(v) + b3(v)
∫

∞

0
Kzg(v)ν(dz),

here Kzg(v) is given in (3.6). In the following we find an estimation of L t g(v). It follows
rom (3.8) that∫

∞

0
Kzg(v)ν(dz) ≥ λr (1 − r )vr H2,0(v)g(v), (3.41)

here the function H2,0 is defined in (1.5). Therefore, by (3.40) and (3.41), for all n ≥ 1,

L t g(v) ≥ λrg(v)[b1(v)vr−1
+ (1 − r )2−1b2(v)vr−2

+ (1 − r )b3(v)vr H2,0(v)]

≥ λr (1 − r )g(v)vr G2,0(v) ≥ λr (1 − r )|c∗
|
r dng(v), c∗

≤ v < n, (3.42)

here the function G2,0 is defined in (1.7) and dn := infc∗≤v<n G2,0(v) > 0. Under
ondition 1.6(ib)–(ic), we have

L t g(v) ≥ λrvr g(v)
[
b1(v)v−1

+ (1 − r )2−1b2(v)v−2
+ (1 − r )b3(v)H2,0(v) + cθ g̃(t)vθ−1]

≥ λr (1 − r )vr g(v)
[
G2,0(v) + cθ g̃(t)vθ−1]

≥ λr (1 − r )g(v)
[
bvq+r

+ cθ g̃(t)vθ−1+r ], 0 < v ≤ c∗.

hen

L t g(v) ≥ λr (1 − r )cθg(v)g̃(t)|c∗
|
θ−1+r

, 0 < v ≤ c∗, (3.43)

nd by Lemma 3.1, there are constants C1 = C1(r ) > 0 and C2 = C2(r ) > 0 so that

g(v)−1L t g(v) ≥ C1λv
(1−1/q̄)(r+q)+(θ−1+r )/q̄ g̃(t)1/q̄

= C1λg̃(t)1/q̄vr+q−(q+1−θ )/q̄
≥ C2λg̃(t)1/q̄ , 0 < v ≤ c∗ (3.44)

or q̄ > 1 and r + q − (q + 1 − θ )/q̄ ≤ 0, which is equivalent to

1
q̄

≥
r + q

q + 1 − θ
.

It holds as long as r is small enough and

1
>

q
.

q̄ q + 1 − θ
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Combining Corollary 2.5 and (3.42)–(3.44) one gets P{τ u
0 < ∞} ≥ e−λur

0 if either∫
∞

0
g̃(s)ds = ∞, or

∫
∞

0
g̃(s)1/q̄ds = ∞ for 1 >

1
q̄
>

r + q
q + 1 − θ

.

Taking q̄ = 1/δ and letting λ → 0 we get P{τ u
0 < ∞} = 1 under the above conditions. This

finishes the proof. □

Lemma 3.5. Suppose that Condition 1.6(ia) holds. Then for 0 < p̄ < 1 and κ > 0 satisfying
κ p̄ ≤ p, we have

∫
∞

0 Xκ p̄
s ds = ∞ almost surely.

Proof. Let āi (x) = ai (x)/xκ p̄ for i = 1, 2, 3. Then by the same argument as in [20, Theorem
.15], there are, on an extended probability space, a Brownian motion (B̄t )t≥0 and compensated
oisson random measure {

˜̄M(dt, dz, du)} with intensity dtµ(dz)du so that there is a nonnegative
rocess (X̄ t )t≥0 solving:

X̄ t = X̄0−

∫ t

0
ā1(X̄s)ds +

∫ t

0
ā2(X̄s)1/2dB̄s +

∫ t

0

∫
∞

0

∫ ā3(X̄s−)

0
z ˜̄M(ds, dz, du).

oreover, by [20, Proposition 2.16],∫
∞

0
Xκ p̄

s ds = τ X̄
0 (3.45)

lmost surely. Recall the function H1,0 in (1.4). Since κ p̄ ≤ p, then under Condition 1.6(ia),
or all 0 < u < 1,

ā1(u)u−1
+ 2−1ā2(u)u−2

+ ā3(u)H1,0(u) = G1,0(u)u−κ p̄
≤ G1,0(u)u−p

≤ a.

ow by Lemma 3.2(ii), τ X̄
0 = ∞ almost surely. Then the assertion follows from (3.45)

mmediately. □

roof of Theorem 1.7. Let p̄ ∈ (0, 1) satisfy p̄κ ≤ p. By Lemmas 3.5 and 3.2(i) and
ondition 1.6(ic),∫

∞

0
κ(Xs) p̄ds = ∞

lmost surely. Taking δ = p̄ in Lemma 3.4, we have P{τ Y
0 < ∞} = 1 for

q
q + 1 − θ

< p̄ and p̄κ ≤ p,

hich finishes the proof. □

.5. Proof of Theorem 1.8

Different from proofs of the previous theorems, in Theorem 1.8 we adopt an approach
imilar to that in [20]. In the proof we first identify a power function X̂ t such that on one

hand, with a positive probability X̂ t stays above X t for all large t , and on the other hand, X̂ t

decreases faster enough for large t so that if the term κ(Xs) is replaced by κ(X̂ t ) in the SDE for
Y in (1.1), then Y becomes extinguishing with a strictly positive probability. To implement this
idea we further approximate X̂ by a step function and construct a process Ŷ as a piecewise
t t
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solution to a modified SDE for Y . The desired result then follows from a comparison theorem
or SDE.

We state the following comparison theorem with its proof postponed to Appendix. For
= 1, 2 let {Bi (t, u) : t ≥ 0, u ∈ R} be a two-parameter real-valued process with

(u, ω) ↦→ Bi (t, u, ω) measurable with respect to B(R) × Ft for each t ≥ 0. Let U and V
e Borel functions on R and V ≥ 0.

roposition 3.6. For i = 1, 2, let the càdlàg R-valued process (xi (t))t≥0 be the solution to
DE

xi (t) = xi (0) +

∫ t

0
Bi (s, xi (s))ds +

∫ t

0
U (xi (s))dWs

+

∫ t

0

∫
∞

0

∫ V (xi (s−))

0
z Ñ (ds, dz, du). (3.46)

uppose that B1(t, u) ≤ B2(t, u) for all t ≥ 0 and u ∈ R. In addition, assume that u ↦→ V (u)
s nondecreasing and that there exist a sequence of increasing stopping times (γn)n≥1 and a
equence of nonnegative constants (Cn)n≥1 so that

|B1(s, u) − B1(s, v)| + |U (u) − U (v)| + |V (u) − V (v)| ≤ Cn|u − v|

or all n−1
≤ |u|, |v| ≤ n and s ≤ γn . If P{x1(0) ≤ x2(0)} = 1, then

P{x1(t) ≤ x2(t) for all 0 < t < γ̃ } = 1,

here

γ̃ := lim
n→∞

γ̃n and γ̃n := γn ∧ τ
x1
1/n ∧ τ

x2
1/n ∧ σ x1

n ∧ σ x2
n (3.47)

ith τ xi
1/n := inf{t ≥ 0 : |xi (t)| ≤ 1/n} and σ xi

n := inf{t ≥ 0 : |xi (t)| ≥ n} for i = 1, 2.

Recall the constant c∗ in Condition 1.6 and the definitions of stopping times τ X
w = τ X (w)

nd σ X
w = σ X (w) in (1.8) and (1.9) for constant w > 0.

emma 3.7. Under Condition 1.6(iia) with p > 0, for any 0 < w < X0 and 0 < v ≤ c∗ we
ave

E
[
τ X
w ∧ σ X

v

]
≤ 2p(p ∧ 1)−1[1 − 2−1(p ∧ 1)]−1a−1(X0 − w)w−p−1.

roof. It is elementary to see that for δ > δ1 > 0 and u > 0,

(1 + u)−δ − 1 + δu ≥ (1 + u)−δ1 − 1 + δ1u ≥ −[(1 + u)δ1 − 1 − δ1u] ≥ 0,

hich implies that for p1 := 2−1(p ∧ 1),

p(p + 1)H1,p(u) ≥ p1(1 − p1)H1,−p1 (u) ≥ p1(1 − p1)H1,0(u), (3.48)

here the function H1,p and H1,0 are defined in (1.2) and (1.4), respectively.
By (1.1) and Itô’s formula,

X−p
t = X−p

0 + p
∫ t

0
a1(Xs)X−p−1

s ds +
p(p + 1)

2

∫ t

0
a2(Xs)X−p−2

s ds

+p(p + 1)
∫ t

0
a3(Xs)X−p

s H1,p(Xs)ds − p
∫ t

0
a2(Xs)1/2 X−p−1

s dBs

+

∫ t ∫
∞

∫ a3(Xs−)

[(Xs− + z)−p
− X−p

s− ]M̃(ds, dz, du).

0 0 0
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Since X−p
t ≤ w−p for 0 ≤ t ≤ τ X

w , then by (3.48), for 0 < p1 < p ∧ 1, we have

w−p
≥ E

[
X−p

t∧τ X
w ∧σ X

v

]
≥ X−p

0 + E
[ ∫ t∧τ X

w ∧σ X
v

(
pa1(Xs )X−p−1

s +
p(p+1)

2 a2(Xs )X−p−2
s

0

+p(p + 1)a3(Xs)X−p
s H1,p(Xs)

)
ds

]
≥ X−p

0 + p1(1 − p1)E
[∫ t∧τ X

w ∧σ X
v

0
G1,0(Xs)X−p

s ds
]

≥ X−p
0 + p1(1 − p1)aE

[
t ∧ τ X

w ∧ σ X
v

]
,

here Condition 1.6(iia) is used in the last inequality. Using Fatou’s lemma we get

E[τ X
w ∧ σ X

v ] ≤ lim inf
t→∞

E
[
t ∧ τ X

w ∧ σ X
v

]
≤ (p1(1 − p1)a)−1(w−p

− X−p
0 )

≤ p(p1(1 − p1)a)−1(X0 − w)w−p−1,

here we need the mean value theorem for the last inequality. This ends the proof. □

Since process X turns to decrease in the long run, we next find a power function of time
hat is uniformly larger than X t for all large t with a probability close to one. To this end,
e consider a partition of the duration of time into consecutive time intervals with partition
oints increasing geometrically. Then for an arbitrary time interval in the partition, we further
hoose three levels 0 < l1 < l2 < l3 properly so that, during this time interval, process

X typically reaches level l1 first before upcrossing level l3, and then it typically stays below
evel l2 continuously after having reached level l1. The above choices of time partition and the
ssociated levels allow us to show that process (X t )t≥0 typically stay below the desired power
unction of t for all large t .

emma 3.8. Under Condition 1.6(iia) with p > 0, for any δ > 0 and small enough ε ∈ (0, 1),
here are constants C(δ, ε) > 0 and δ1 ∈ (0, 1) that does not depend on ε so that for X0 = εm

ith large enough m ≥ 1, we have

P{X t ≤ t−
1

p+δ ∧ c∗ for all t > 0} ≥ 1 − C(δ, ε)εmδ1/8.

roof. In the following let εn := εn for n ≥ 1. For any δ > 0, let

δ1 :=
δ

2p + 2 + δ
< 1. (3.49)

or any fixed positive integer m define

K̄m :=

{
sup

t≤ε
−p−(p+2)δ1
m

X t ≤ ε1−δ1
m , X

ε
−p−(p+2)δ1
m

≤ εm+1

}
nd

K̄n :=

{
sup

ε
−p−(p+2)δ1
n−1 ≤t<ε

−p−(p+2)δ1
n

X t ≤ ε1−δ1
n , X

ε
−p−(p+2)δ1
n

≤ εn+1

}
or n > m. In the following we first show that X ≤ t−1/(p+δ)

∧ c∗ for all t > 0 on ∩
∞ K̄ .
t n=m n
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It is obvious that X t ≤ c∗ for all t ≥ 0 on event ∩
∞
n=m K̄n for ε small enough. Let r =

1
p+δ

.
y (3.49), it is easy to check that

−
1

p + δ
= −r = −

1 − δ1

p + (p + 2)δ1
. (3.50)

hus, for all n ≥ m we have (ε−p−(p+2)δ1
n )−r

= ε
1−δ1
n by (3.50). Therefore, on event ∩

∞
n=m K̄n ,

or any t > 0 with

ε
−p−(p+2)δ1
n−1 ≤ t < ε−p−(p+2)δ1

n , n ≥ m + 1, (3.51)

e have

X t ≤ ε1−δ1
n = ε−r (−p−(p+2)δ1)

n < t−r

by (3.50) again and (3.51), and for 0 ≤ t ≤ ε
−p−(p+2)δ1
m we also have

X t ≤ ε1−δ1
m = ε−r (−p−(p+2)δ1)

m ≤ t−r .

We now estimate the probability of ∩
∞
n=m K̄n . In the rest of the proof we use notations

Eε̄[ · ] = E
[
·|X0 = ε̄

]
and Pε̄{ · } = P

{
·|X0 = ε̄

}
, ε̄ > 0.

By Lemma 3.7, there is a constant c1 > 0 independent of ε and n so that

Eȳ

[
τ X (ε1+δ1

n+1 ) ∧ σ X
c∗

]
≤ c1a−1(εn − ε

1+δ1
n+1 )ε(1+δ1)(−p−1)

n+1 ≤ c1a−1ε−1ε
−p−(p+1)δ1
n+1 (3.52)

for all 0 < ȳ ≤ εn , where the constant a > 0 is determined in Condition 1.6(iia). Using the
Markov inequality and (3.52) we obtain

Pȳ

{
τ X (ε1+δ1

n+1 ) ∧ σ X
c∗ > ε−p−(p+2)δ1

n − ε
−p−(p+2)δ1
n−1

}
≤ [ε−p−(p+2)δ1

n − ε
−p−(p+2)δ1
n−1 ]−1Eȳ

[
τ X (ε1+δ1

n+1 ) ∧ σ X
c∗

]
≤ c1a−1(1 − ε p+(p+2)δ1 )−1ε−p−1+(n−p−1)δ1 (3.53)

for all 0 < ȳ ≤ εn . By Lemma 3.3, there is a constant C > 0 independent of ε and n so that

Pȳ

{
sup
t≥0

X t ≥ εδ1−1
n

}
≤ C(εδ1−1

n ȳ)1/4
≤ Cεnδ1/4 (3.54)

for all 0 < ȳ ≤ εn . By Fatou’s lemma and (1.1),

εnP
ε

1+δ1
n

{
σ X (εn) < ∞

}
≤ E

ε
1+δ1
n

[
Xσ X (εn )

]
≤ lim inf

t→∞
E
ε

1+δ1
n

[
X t∧σ X (εn )

]
≤ ε1+δ1

n ,

which implies

P
ε

1+δ1
n

{
σ X (εn) < ∞

}
≤ εδ1n . (3.55)

Similarly,

Pȳ
{
σ X

c∗ < ∞
}

≤ c∗−1 ȳ ≤ c∗−1
εn (3.56)

for all ȳ ≤ ε .
n
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To consider the complements of events K̄m and K̄n , in the following, for the fixed m ≥ 1,
we introduce

Em :=

{
sup

t≤ε
−p−(p+2)δ1
m

X t ≥ ε1−δ1
m

} ⋃{
τ X (ε1+δ1

m+1 ) ∧ σ X
c∗ > ε−p−(p+2)δ1

m

}
⋃{

τ X (ε1+δ1
m+1 ) ∧ σ X

c∗ < ∞, σ X (εm+1) ◦ ϑ(τ X (ε1+δ1
m+1 ) ∧ σ X

c∗ ) ≤ ε−p−(p+2)δ1
m

}
nd for n > m,

En :=

{
sup

ε
−p−(p+2)δ1
n−1 ≤t≤ε

−p−(p+2)δ1
n

X t ≥ ε1−δ1
n

}
⋃{

τ X (ε1+δ1
n+1 ) ∧ σ X

c∗ > ε−p−(p+2)δ1
n − ε

−p−(p+2)δ1
n−1

}
⋃{

τ X (ε1+δ1
n+1 ) ∧ σ X

c∗ < ∞, σ X
εn+1

◦ ϑ(τ X (ε1+δ1
n+1 ) ∧ σ X

c∗ ) ≤ ε−p−(p+2)δ1
n

}
,

here ϑ(t) denotes the usual shift operator. For 0 < ȳ ≤ εn , we have

Pȳ

{
τ X (ε1+δ1

n+1 ) ∧ σ X
c∗ < ∞, σ X (εn+1) ◦ ϑ(τ X (ε1+δ1

n+1 ) ∧ σ X
c∗ ) ≤ ε−p−(p+2)δ1

n

}
≤ Pȳ{σ

X
c∗ < ∞} + Pȳ

{
τ X (ε1+δ1

n+1 ) < ∞, σ X (εn+1) ◦ ϑ(τ X (ε1+δ1
n+1 )) ≤ ε−p−(p+2)δ1

n

}
≤ Pȳ{σ

X
c∗ < ∞} + P

ε
1+δ1
n+1

{
σ X (εn+1) ≤ ε−p−(p+2)δ1

n

}
≤ Pȳ{σ

X
c∗ < ∞} + P

ε
1+δ1
n+1

{
σ X (εn+1) < ∞

}
,

nd then by (3.53)–(3.56),

Pȳ{En}

≤ Pȳ

{
sup

t≤ε
−p−(p+2)δ1
n

X t ≥ ε1−δ1
n

}
+ Pȳ

{
τ X (ε1+δ1

n+1 ) ∧ σ X
c∗ > ε−p−(p+2)δ1

n − ε
−p−(p+2)δ1
n−1

}
+Pȳ

{
τ X (ε1+δ1

n+1 ) ∧ σ X
c∗ < ∞, σ X (εn+1) ◦ ϑ(τ X (ε1+δ1

n+1 ) ∧ σ X
c∗ ) ≤ ε−p−(p+2)δ1

n

}
≤ Pȳ

{
sup

t≤ε
−p−(p+2)δ1
n

X t ≥ ε1−δ1
n

}
+ Pȳ{σ

X
c∗ < ∞} + P

ε
1+δ1
n+1

{
σ X (εn+1) < ∞

}
+Pȳ

{
τ X (ε1+δ1

n+1 ) ∧ σ X
c∗ > ε−p−(p+2)δ1

n − ε
−p−(p+2)δ1
n−1

}
≤ Cεδ1/4n + εn/c∗

+ ε
δ1
n+1 + c1a−1(1 − ε p+(p+2)δ1 )−1ε−p−1+(n−p−1)δ1

≤ εnδ1/8(1 + ε−(p+1)(δ1+1)) =: Mn

or small enough ε. Similarly, for small enough ε and 0 < ȳ ≤ εm ,

Pȳ{Em} ≤ εmδ1/8(1 + ε−(p+1)(δ1+1)) =: Mm .

et K̄ c
n denote the complement of set K̄n . Note that K̄ c

n ⊂ En . Then Pȳ{K̄ c
n} ≤ Mn for all

≥ m and 0 < ȳ ≤ εn . It follows that

Pεm {∪
∞

n=m K̄ c
n} = Pεm {K̄ c

m} +

∞∑
n=m+1

Pεm {∩
n−1
i=m K̄i ∩ K̄ c

n}

= Pεm {K̄ c
m} +

∞∑
Eεm

[
1

∩
n−1
i=m K̄i

P
{

K̄ c
n |Xε

−p−(p+2)δ1
n−1

}]

n=m+1
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≤ Mm +

∞∑
n=m+1

MnEεm

[
1

∩
n−1
i=m K̄i

]
≤

∞∑
n=m

Mn = (1 − εδ1/8)−1(1 + ε−(p+1)(1+δ1))εmδ1/8.

hen

Pεm {∩
∞

n=m K̄n} = 1 − Pεm {∪
∞

n=m K̄ c
n},

hich finishes the proof. □

Using the estimate as function of time obtained in Lemma 3.8 we can construct a process Ŷ
hich does not become extinct with a positive probability and can be shown by the comparison

heorem to be uniformly smaller than process Y with a probability close to one.
For small enough δ, ϵ ∈ (0, c∗

∧ 1), suggested by Lemma 3.8 we define

X̂ (t) = t−
1

p+δ ∧ c∗ (3.57)

nd ϵn = ϵn2
. Let (Y1(t))t≥0 be the nonnegative solution to

Y1(t) = Y0 −

∫ t

0

[
b1(Y1(s)) + θ (Y1(s))X̂ (0)κ

]
ds

+

∫ t

0
b2(Y1(s))1/2dWs +

∫ t

0

∫
∞

0

∫ b3(Y1(s−))

0
z Ñ (ds, dz, du)

nd γ1 := inf{t ≥ 0 : Y1(t) < ϵ1}. Define Ŷ (t) := Y1(t) for t ∈ [0, γ1]. Suppose that Ŷ (t) has
een defined for t ∈ [0, Tn] with Tn :=

∑n
i=1 γi . Let (Yn+1(t))t≥0 be the nonnegative solution

o

Yn+1(t) = Yn(Tn) −

∫ t

0

[
b1(Yn+1(s)) + θ (Yn+1(s))X̂ (Tn)κ

]
ds

+

∫ t

0
b2(Yn+1(s))1/2dWs +

∫ t

0

∫
∞

0

∫ b3(Yn+1(s−))

0
z Ñ (ds, dz, du) (3.58)

nd γn+1 := inf{t ≥ 0 : Yn+1(t) < ϵn+1}. Define Ŷ (t) := Yn+1(t − Tn) for t ∈ (Tn, Tn + γn+1] =

Tn, Tn+1]. Then by the argument in [20, Theorem 3.1] and Condition 1.6(iii), Ŷ is a piecewise
ime homogeneous spectrally positive Markov process.

Choose l satisfying that

0 < l < q and
lκ

p + δ
− l + θ − 1 > 0. (3.59)

uch a value l exists if (1.11) holds and δ > 0 is small enough. In the next lemma, we want
o show that the process Ŷ reaches 0 with a small probability.

emma 3.9. Suppose that Condition 1.6(iib)–(iic) and condition (1.11) hold. For the constant
in (3.59) and small ϵ > 1, there is an integer n0 > 0 so that

P{τ Ŷ
0 = ∞} ≥ A0(ϵ) :=

∞∏
(1 − 2ϵδ(2n−1)

− ϵ2n−3).

n=n0
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Proof. In this proof we use Eε̄ and Pε̄ to denote the conditional expectation and conditional
robability with respect to F

Ŷ (τ Ŷ
ε̄

)
. We first estimate Pϵn {γn+1 > ϵ−l

n+1|γn > ϵ−l
n }. Recall that

σ Yn+1 (ϵn−1) := inf{t ≥ 0 : Yn+1(t) > ϵn−1}. By Fatou’s lemma and (3.58),

ϵn−1Pϵn
{
σ Yn+1 (ϵn−1) < γn+1

⏐⏐γn > ϵ−l
n

}
≤ Eϵn

[
Yn+1(σ Yn+1 (ϵn−1) ∧ γn+1)1

{σ
Yn+1 (ϵn−1)<γn+1}

⏐⏐γn > ϵ−l
n

]
≤ Eϵn

[
Yn+1(σ Yn+1 (ϵn−1) ∧ γn+1)

⏐⏐γn > ϵ−l
n

]
≤ lim inf

t→∞
Eϵn

[
Yn+1(t ∧ σ Yn+1 (ϵn−1) ∧ γn+1)

⏐⏐γn > ϵ−l
n

]
≤ ϵn,

hich implies

Pϵn
{
σ Yn+1 (ϵn−1) < γn+1

⏐⏐γn > ϵ−l
n

}
≤ ϵn/ϵn−1 = ϵ2n−1. (3.60)

ote that by (3.57),

X̂ (Tn) ≤ γ
−

1
p+δ

n < ϵ
l

p+δ
n given γn > ϵ−l

n (3.61)

or all n ≥ 1.
For δ > 0, by (3.58), the definition of the process (Yn(t))t≥0 and Itô’s formula, with respect

to {FYn (τYn
ϵn )} and for γn > ϵ−l

n ,

t ↦→ Yn+1(t ∧ γn+1)−δ exp
{
−

∫ t∧γn+1

0
Gδ(X̂ (Tn), Yn+1(s))ds

}
s a martingale, where

Gδ(u, v) := δ[b1(v) + θ (v)uκ ]v−1
+
δ(δ + 1)

2
b2(v)v−2

+ δ(δ + 1)b3(v)H2,δ(v)

with the function H2,δ defined in (1.3). Taking an expectation and using Fatou’s lemma, for all
n ≥ 1, we have

ϵ−δ
n = lim inf

t→∞
Eϵn

[
Yn+1(t ∧ γn+1)−δ exp

{
−

∫ t∧γn+1

0
Gδ(X̂ (Tn), Yn+1(s))ds

}⏐⏐γn > ϵ−l
n

]
≥ Eϵn

[
lim inf

t→∞
Yn+1(t ∧ γn+1)−δ exp

{
−

∫ t∧γn+1

0
Gδ(X̂ (Tn), Yn+1(s))ds

}⏐⏐γn > ϵ−l
n

]
= ϵ−δ

n+1Eϵn
[
exp

{
−

∫ γn+1

0
Gδ(X̂ (Tn), Yn+1(s))ds

}⏐⏐γn > ϵ−l
n

]
. (3.62)

Observe that under (3.59), there is a constant n0 > 1 so that for all n ≥ n0,

δ0(n) := (n + 1)2(−l + θ − 1) + n2 lκ
p + δ

= (n + 1)2[
lκ

p + δ
− l + θ − 1] − (2n + 1)

lκ
p + δ

> 0 (3.63)

nd

δ1(n) := −l(n + 1)2
+ q(n − 1)2

= (q − l)(n − 1)2
− 4nl > 0. (3.64)

Under Condition 1.6(iib) and (iic), for all 0 < u, v ≤ c∗, we have

G (u, v) ≤ δc uκvθ−1
+ δ(δ + 1)G (v) ≤ δ(δ + 1)(c ∨ b)[uκvθ−1

+ vq ]
δ θ 2,0 θ
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with G2,0 given in (1.7) and

ϵn+1 ≤ Yn+1(s) ≤ ϵn−1 for s < γn+1 ∧ σ Yn+1 (ϵn−1).

hen by (3.61), given γn > ϵ−l
n and for s < γn+1 ∧ σ Yn+1 (ϵn−1),

Gδ(X̂ (Tn), Yn+1(s)) ≤ δ(δ + 1)(cθ ∨ b)[X̂ (Tn)κYn+1(s)θ−1
+ Yn+1(s)q ]

≤ δ(δ + 1)(cθ ∨ b)[ϵ
κl

p+δ
n ϵθ−1

n+1 + ϵ
q
n−1].

t follows from (3.63) and (3.64) that, given γn > ϵ−l
n and γn+1 < ϵ−l

n+1 ∧ σ Yn+1 (ϵn−1),∫ γn+1

0
Gδ(X̂ (Tn), Yn+1(s))ds

≤ δ(δ + 1)(cθ ∨ b)γn+1[ϵ
κl

p+δ
n ϵθ−1

n+1 + ϵ
q
n−1]

≤ δ(δ + 1)(cθ ∨ b)ϵ−l
n+1

(
ϵ

κl
p+δ

n ϵθ−1
n+1 + ϵ

q
n−1

)
= δ(δ + 1)(cθ ∨ b)[ϵδ1(n)

+ ϵδ0(n)] ≤ ln 2 (3.65)

or all n ≥ n0 and small enough ϵ. From (3.62) and (3.65) it follows that all n ≥ n0 and small
nough ϵ,

ϵ−δ
n ≥ ϵ−δ

n+1Eϵn
[
exp

{
−

∫ γn+1

0
Gδ(X̂ (Tn), Yn+1(s))ds

}
1

{γn+1<ϵ
−l
n+1∧σ

Yn+1 (ϵn−1)}

⏐⏐γn > ϵ−l
n

]
≥ 2−1ϵ−δ

n+1Pϵn
{
γn+1 < ϵ−l

n+1 ∧ σ Yn+1 (ϵn−1)
⏐⏐γn > ϵ−l

n

}
≥ 2−1ϵ−δ

n+1

[
Pϵn

{
γn+1 < ϵ−l

n+1

⏐⏐γn > ϵ−l
n

}
− Pϵn

{
γn+1 > σ Yn+1 (ϵn−1)

⏐⏐γn > ϵ−l
n

}]
.

t follows from (3.60) that for all n ≥ n0 and small enough ϵ,

Pϵn
{
γn+1 < ϵ−l

n+1

⏐⏐γn > ϵ−l
n

}
≤ 2ϵ−δ

n ϵδn+1 + Pϵn
{
γn+1 > σ Yn+1 (ϵn−1)

⏐⏐γn > ϵ−l
n

}
≤ 2ϵδ(2n+1)

+ ϵ2n−1.

Observe that by the Markov property,

P{∩
m
n=n0

{γn > ϵ−l
n }} = E

[
Pϵm−1

{
γm > ϵ−l

m | ∩
m−1
n=n0

{γn > ϵ−l
n }

}
1

∩
m−1
n=n0 {γn>ϵ

−l
n }

]
= E

[
Pϵm−1

{
γm > ϵ−l

m |γm−1 > ϵ−l
m−1

}
1

∩
m−1
n=n0 {γn>ϵ

−l
n }

]
≥ (1 − 2ϵδ(2m−1)

− ϵ2m−3)P{∩
m−1
n=n0

{γn > ϵ−l
n }}

≥

m∏
n=n0

(1 − 2ϵδ(2n−1)
− ϵ2n−3).

etting m → ∞ we get

A0(ϵ) ≤ P
{
∩

∞

n=n0
{γn > ϵ−l

n }
}

≤ P{τ Ŷ
0 = ∞},

hich ends the proof. □

emma 3.10. Under Condition 1.6(iia) with p > 0 and (iic) and (iii), for each δ > 0 and
mall enough ε > 0, there are constants C(δ, ε) > 0 and δ1 ∈ (0, 1) that do not depend on ε
o that for all X0 = εm with large enough m we have

ˆ mδ1/8
P{Yt ≥ Y (t) for all t ≥ 0} =: P{B} ≥ 1 − C(δ, ε)ε . (3.66)
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Proof. By Lemma 3.8, there are constants C(δ, ε) > 0 and δ1 ∈ (0, 1) so that for all X0 = εm

ith large m we have

P{X t ≤ X̂ (t) for all t ≥ 0} =: P(A) ≥ 1 − C(δ, ε)εmδ1/8.

Observe that under Condition 1.6(iic), given A and s ≥ T , we have

κ(Xs) ≤ Xκ
s ≤ X̂ (s)κ ≤ X̂ (T )κ .

ince (Bt )t≥0, (Wt )t≥0, {M̃(dt, dz, du)} and {Ñ (dt, dz, du)} are independent, then by using
3.58), the definition of (Ŷ (t))t≥0, Condition 1.6(iii) and Proposition 3.6, P{B|A} = 1. It follows
hat

P{B} ≥ P{B|A} · P{A} ≥ 1 − C(δ, ε)εmδ1/8,

hich ends the proof. □

emma 3.11. Under Condition 1.6(iii), for each ε > 0, there is a constant t0 > 0 so that

P
{

sup
t≥t0

X t ≤ ε, Yt0 > 0
}
> 0. (3.67)

roof. Since X t → 0 as t → ∞ by Lemma 3.2(i), there are constants t0 > 0 and n ≥ 1 so
hat

P
{

sup
t≥t0

X t ≤ ε, sup
0≤t<t0

X t ≤ n
}
> 0. (3.68)

et (Ỹt )t≥0 be the nonnegative solution to

Ỹt =Y0 −

∫ t

0
[b1(Ỹs) + Cnθ (Ỹs)]ds +

∫ t

0
b2(Ỹs)1/2dWs

+

∫ t

0

∫
∞

0

∫ b3(Ỹs−)

0
z Ñ (ds, dz, du),

(3.69)

here Cn := supx∈[0,n] κ(x). Under Condition 1.6(iii), by the comparison theorem
Proposition 3.6),

P
{

Yt ≥ Ỹt for all 0 ≤ t ≤ t0
⏐⏐ sup

0≤t≤t0
X t ≤ n

}
= 1. (3.70)

t is easy to see that P{Ỹt0 > 0} > 0. Since (Ỹt )t≥0 and (X t )t≥0 are independent, then by (3.68)
e get

P
{

sup
t≥t0

X t ≤ ε, sup
0≤t<t0

X t ≤ n, Ỹt0 > 0
}

= P
{

sup
t≥t0

X t ≤ ε, sup
0≤t<t0

X t ≤ n
}

P{Ỹt0 > 0} > 0.

sing (3.70) we get

P
{

sup
t≥t0

X t ≤ ε, sup
0≤t<t0

X t ≤ n, Yt0 > 0
}
> 0,

hich implies (3.67). □

roof of Theorem 1.8. We first show that for given X0 = εm and Y0 with m large enough
nd ε small enough, there is a constant C(ε) > 0 so that

P{τ Y
= ∞} ≥ C(ε). (3.71)
0
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Let Bc denote the complementary set of B, which is given in (3.66). By Lemma 3.10, there
re constants C(δ, ε) > 0 and δ1 ∈ (0, 1) independent of δ so that

P{Bc
} ≤ C(δ, ε)εmδ1/8. (3.72)

bserve that

{τ Ŷ
0 = ∞} = ({τ Ŷ

0 = ∞} ∩ B) ∪ ({τ Ŷ
0 = ∞} ∩ Bc)

⊂ ({τ Y
0 = ∞} ∩ B) ∪ Bc

⊂ {τ Y
0 = ∞} ∪ Bc.

Therefore, by Lemma 3.9 and (3.72),

P{τ Y
0 = ∞} ≥ P{{τ Y

0 = ∞} ∪ Bc
} − P{Bc

}

≥ P{τ Ŷ
0 = ∞} − P{Bc

} ≥ A0(ϵ) − C(δ, ε)εmδ1/8 > 0

or m large enough and small enough ϵ and ε, which gives (3.71) for some constant C(ε) > 0.
By Lemma 3.11, for each ε > 0, there is a constant t0 := t0(ε) > 0 so that P{X t0 ≤ ε, Yt0 >

} > 0. By the Markov property and (3.71), for each t > 0 and small enough ε > 0, there is
constant C(ε) > 0 so that for X t ≤ ε and Yt > 0, we have

P{τ Y
0 = ∞|(X t , Yt )} ≥ C(ε).

t follows that

P
{
τ Y

0 = ∞
}

= P
{

X t0 ≤ ε, Yt0 > 0
}

· P
{
τ Y

0 = ∞|X t0 ≤ ε, Yt0 > 0
}
> 0,

hich ends the proof. □

.6. Proof of Theorem 1.9

For δ ∈ (−1, 0)∪ (0,∞), and i = 1, 2 recall the definitions of Hi,δ, Hi,0,G i,0 in (1.2)–(1.7).
or x, y, β > 0 and r ∈ (−(β−1

∧ 1), 1) define

Gr (x, y) := βG1,r (x) − G2,r (y) − κ(x)θ (y)y−1 (3.73)

ith

G1,r (x) := a1(x)x−1
+ (1 + βr )2−1a2(x)x−2

+ (1 + βr )a3(x)H1,βr (x) (3.74)

nd

G2,r (y) := b1(y)y−1
+ (1 − r )2−1b2(y)y−2

+ (1 − r )b3(y)H2,−r (y). (3.75)

hus,

G0(x, y) = βG1,0(x) − G2,0(y) − κ(x)θ (y)y−1. (3.76)

o prove Theorem 1.9, we first prove the following assertions.

emma 3.12. For any x, y > 0, we have

Gr (x, y) ≤ (1 − r )G0(x, y) + β(β + 1)rG1,0(x), r ∈ (0, 1) (3.77)

nd

G (x, y) ≥ (1 + βr )G (x, y) + (β + 1)rG (y) + βrκ(x)θ (y)y−1, r ∈ (−(β−1
∧ 1), 0). (3.78)
r 0 2,0
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Proof. Observe that for each i = 1, 2, x > 0 and r ≥ 0, we have

Hi,r (x) ≤ Hi,0(x), Hi,−r (x) ≥ Hi,0(x),

hich implies that

G1,r (x) ≤ (1 + βr )G1,0(x), G2,r (x) ≥ (1 − r )G2,0(x).

hen for x, y > 0,

Gr (x, y) ≤ β(1 + βr )G1,0(x) − (1 − r )G2,0(y) − (1 − r )κ(x)θ (y)y−1

= (1 − r )G0(x, y) + β(β + 1)rG1,0(x), r ∈ (0, 1)

nd

Gr (x, y) ≥ β(1 + βr )G1,0(x) − (1 − r )G2,0(y) − κ(x)θ (y)y−1

= (1 + βr )G0(x, y) + (β + 1)rG2,0(y) + βrκ(x)θ (y)y−1,

r ∈ (−(β−1
∧ 1), 0),

which finishes the proof. □

The following result is key to the proof of Theorem 1.9.

emma 3.13. Under the assumptions of Theorem 1.9, for any 0 < ε1 < ε, if X0, Y0 ≤ ε1,
hen we have

P{τ Y
0 ∧ σ X

ε ∧ σ Y
ε < ∞} = 1. (3.79)

roof. The proof is an application of Corollary 2.3. We first present the key function g
atisfying the conditions of Corollary 2.3. Define g(u) := e−λur

for u, λ > 0 and 0 < r < 1.
et 0 < ε < c∗ (determined in Condition 1.6(i)) and g(x, y) := g(x−β y) for all x, y > 0,
here the value of constant β > 0 is to be specified later. In the following we show that there

re constants d1, d2 > 0 so that for all 0 < x, y < ε, we have, respectively,

Lg(x, y) ≥ rλd1g(x, y) under condition (i) of Theorem 1.9
and Lg(x, y) ≥ rλd2x pg(x, y) under condition (ii) of Theorem 1.9.

(3.80)

Recall the definitions of K 1
z and K 2

z in (3.1) and Gr ,G1,r ,G2,r in (3.73)–(3.75). For
implicity we denote u = x−β y in the following. By (3.1) and (3.7)–(3.8),

g(u)−1 K 1
z g(x, y) ≥ −rβ(rβ + 1)λur z2x−2

∫ 1

0
(1 + zx−1v)−rβ−2(1 − v)dv

nd

g(u)−1 K 2
z g(x, y) ≥ r (1 − r )λur z2 y−2

∫ 1

0
(1 + zy−1v)r−2(1 − v)dv.

hen one can get

L1g(x, y) = −λrβg(u)ur a1(x)/x + 2−1[(λrβ)2g(u)u2r

−λrβ(1 + rβ)g(u)ur ]a2(x)/x2
+ a3(x)

∫
∞

0
K 1

z g(x, y)µ(dz)

r

≥ −λrβg(u)u G1,r (x)
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and

L2g(x, y) = λrg(u)ur [b1(y) + κ(x)θ (y)]/y + 2−1[(λr )2g(u)u2r

+λr (1 − r )g(u)ur ]b2(y)/y2
+ b3(x)

∫
∞

0
K 2

z g(x, y)ν(dz)

≥ λrg(u)ur [G2,r (y) + κ(x)θ (y)y−1].

hus,

Lg(x, y) = L1g(x, y) + L2g(x, y) ≥ −λrur g(u)Gr (x, y) = −λrur Gr (x, y)g(x, y). (3.81)

In the following we use the inequality (3.77) in Lemma 3.12 to estimate Gr . Recall the
definition of G0 in (3.76).

Under condition (i) of Theorem 1.9, taking β = κ/(1 − θ ), we have −βa + b > 0. Then
there exist small constants c1 > 0 and 0 < r < 1 − θ so that

(1 − r )(−βa + b) − aβ(β + 1)r ≥ c1 (3.82)

Under condition (i) of Theorem 1.9 we have p = q = 0 and then using Condition 1.6(i) we
obtain

− G0(x, y) = −βG1,0(x) + G2,0(y) + κ(x)θ (y)y−1

≥ −βa + b + cθ xκ yθ−1
= −βa + b + cθuθ−1 (3.83)

and G1,0(x) ≤ a for all 0 < x, y < ε. It thus follows from (3.77) and (3.82)–(3.83) that

−Gr (x, y) ≥ −(1 − r )G0(x, y) − β(β + 1)rG1,0(x)
≥ (1 − r )(−βa + b) + (1 − r )cθuθ−1

− aβ(β + 1)r
≥ c1 + (1 − r )cθuθ−1

for all 0 < x, y < ε. It then follows from Lemma 3.1 that

−ur Gr (x, y) ≥ c1ur
+ (1 − r )cθur+θ−1

≥ d1, 0 < x, y < ε

for some constant d1 > 0. Then the first part of (3.80) follows from (3.81).
Under condition (ii) of Theorem 1.9 and Condition 1.6(i), taking β = p/q , we have

p = βq = κ − β(1 − θ ) and then

− G0(x, y) ≥ −βax p
+ byq

+ cθ xκ yθ−1

= x p[−βa + bx−p yq
+ cθ xκ−p yθ−1]

= x p[−βa + buq
+ cθuθ−1], 0 < x, y < ε. (3.84)

For

p̄ := 1 + q/(1 − θ ) = [q + (1 − θ )](1 − θ )−1, q̄ := p̄/( p̄ − 1) = [q + (1 − θ )]q−1,

we have q/ p̄ + (θ − 1)/q̄ = 0 and then by Lemma 3.1,

buq
+ cθuθ−1

≥ p̄1/ p̄q̄1/q̄b1/ p̄c1/q̄
θ uq/ p̄+(θ−1)/q̄

= p̄1/ p̄q̄1/q̄b1/ p̄c1/q̄
θ

= [q + (1 − θ )]
( b

1 − θ

) 1−θ
q+1−θ

(cθ
q

) q
q+1−θ

=: c2. (3.85)

nder condition (1.12), we have c2 > βa. It follows from (3.84) that

−G (x, y)x−p
≥ −βa + buq

+ c uθ−1
≥ c − βa > 0, 0 < x, y < ε.
0 θ 2
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Then by (3.77) and Condition 1.6(i) again, there are constants 0 < r < 1 − θ and c3 :=

(c2 − βa)(1 − r ) so that c3 > rβ(β + 1)a and

− Gr (x, y)x−p
≥ −(1 − r )G0(x, y)x−p

− rβ(β + 1)G1,0(x)x−p

≥ c3 − rβ(β + 1)a > 0 (3.86)

for all 0 < x, y < ε. Then

−Gr (x, y)ur
≥ [c3 − rβ(β + 1)a]x p > 0, 0 < x, y < ε, u ≥ 1. (3.87)

et δ > 0 be a constant satisfying

((1 − δ)c2 − βa)(1 − r ) − rβ(β + 1)a > 0. (3.88)

y (3.84) and (3.85) we obtain

−G0(x, y) ≥ x p[
−βa + (1 − δ)(buq

+ cθuθ−1) + δ(buq
+ cθuθ−1)

]
≥ x p[((1 − δ)c2 − βa) + δcθuθ−1], 0 < x, y < ε

nd then by (3.88) and the same argument as in (3.86),

−Gr (x, y)ur
≥ x pur [((1 − δ)c2 − βa)(1 − r ) − rβ(β + 1)a + δcθuθ−1]
≥ δcθ x pur+θ−1

≥ δcθ x p, 0 < x, y < ε, u ≤ 1.

his and (3.87) imply the second part of (3.80) by (3.81).
Letting κ p̄ = p in Lemma 3.5, we have

∫
∞

0 X p
s ds = ∞ almost surely. Since X t → 0 as

→ ∞ by Lemma 3.2(i), then for all 0 < ε < c∗, we have
∫

∞

0 (X p
s ∧ ε)ds = ∞ almost surely.

sing the above assertions and Corollary 2.3, we have

P{τ X
0 ∧ τ Y

0 ∧ σ X
ε ∧ σ Y

ε < ∞} ≥ e−λ(X−β
0 Y0)r

or all 0 < ε1 < ε and λ > 0. Since τ Y
0 = ∞ almost surely by Lemma 3.2(ii), then letting

→ 0 in the above inequality we have (3.79). □

Now we are ready to prove Theorem 1.9.

roof of Theorem 1.9. For any 0 < ε1 < ε, if X0, Y0 ≤ ε1, by Lemma 3.3 we have

P{σ X
ε < ∞} = P

{
sup
t≥0

X t ≥ ε
}

≤ C(ε1/ε)1/4 and P{σ Y
ε < ∞} ≤ C(ε1/ε)1/4

or some constant C > 0, which implies

P{σ X
ε ∧ σ Y

ε < ∞} ≤ P{σ X
ε < ∞} + P{σ Y

ε < ∞} ≤ 2C(ε1/ε)1/4.

t follows from Lemma 3.13 that

P{τ Y
0 < ∞} ≥ P{τ Y

0 ∧ σ X
ε ∧ σ Y

ε < ∞} − P{σ X
ε ∧ σ Y

ε < ∞} ≥ 1 − 2C(ε1/ε)1/4. (3.89)

f X0 > ε1 or Y0 > ε1, (3.89) also holds following from Lemma 3.2(i) and the Markov property.
etting ε1 → 0 we finish the proof.

emark 3.14. Under Condition 1.6(i) and condition (1.10), for q > 0, take β = p/q and
> 0 small enough so that

ap
<

( b ) 1−θ
q+1−θ

·

(cθε−θ1 ) q
q+1−θ

,

q(q + 1 − θ ) 1 − θ q
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where θ1 := β(1 − θ ) − (κ − p) > 0. Then by an argument similar to that for (3.84), we get

−G0(x, y) ≥ x p[−βa + buq
+ cθε−θ1uθ−1], 0 < x, y < ε.

y essentially the same argument after (3.84) in the proof of Lemma 3.13, we can also obtain
3.79) for q > 0 and condition (1.10). Therefore, the method for the proof of Theorem 1.9 also

works for Theorem 1.7 except the case q = 0.

.7. Proof of Theorem 1.10

Recall the function Gδ in (3.73). We first prove Theorem 1.10 for small related initial values
f X0 and Y0, where the key idea, inspired by the proof of Lemma 3.13, is to consider ratio

Yt/Xβ
t process with the value of β > 0 properly selected using the conditions of Theorem 1.10.

e then formulate an exponential martingale that is similar to those in [20], and use the
artingale to obtain the desired estimate.

emma 3.15. Under the conditions of Theorem 1.10, there exist constants β > 0 and small
> 0 so that for X0 ≤ ε, Y0 = εβ , we have P{τ Y

0 = ∞} > 0.

Proof. First note that for any ε2 > 0 and ε = ε
1+β−1

2 for any β > 0, if X0 ≤ ε, Y0 = εβ , then
y Lemma 3.3 we have

P
{

sup
s≥0

Xs ≥ ε2

}
+ P

{
sup
s≥0

Ys ≥ ε2

}
≤ C[(εβε−1

2 )1/4
+ (εε−1

2 )1/4] ≤ C[εβ/42 + ε
1/(4β)
2 ], (3.90)

here C > 0 is a constant independent of ε2.
We first show that under conditions (i) or (ii) of Theorem 1.10, there are constants 0 < ω <

, β > 0 and small enough δ ∈ (0, 1), 0 < ε2 < c∗ so that

G−δ(x, y) ≥ 0, 0 < x, y ≤ ε2, x−β y ≥ ω (3.91)

nd

1 − ωδ − C[εβ/42 + ε
1/(4β)
2 ] > 0, (3.92)

here C > 0 is the constant determined by (3.90) and G−δ(x, y) is defined in (3.73).
Under condition (i) of Theorem 1.10 and Condition 1.6(ii), select β satisfying b/a < β <

κ/(1 − θ ). There are constants ω ∈ (0, 1) and small enough δ > 0, 0 < ε2 < c∗ so that (3.92)
olds and

(1 − βδ)[βa − b − cθωθ−1ε
κ−β(1−θ)
2 ] − (β + 1)δb − βδcθωθ−1ε

κ−β(1−θ )
2 > 0. (3.93)

Recall function G0 defined in (3.76). Under condition (i) of Theorem 1.10, p = q = 0 and
hen by Condition 1.6(ii), for all 0 < x, y ≤ ε2 and x−β y ≥ ω we have

G0(x, y) ≥ βa − b − cθ (x−β y)θ−1xκ−β(1−θ )
≥ βa − b − cθωθ−1ε

κ−β(1−θ )
2 , G2,0(y) ≤ b (3.94)

and

κ(x)θ (y)y−1
≤ cθ xκ yθ−1

= cθ (x−β y)θ−1xκ−β(1−θ )
≤ cθωθ−1ε

κ−β(1−θ )
2 . (3.95)

oreover, by (3.78) in Lemma 3.12, (3.93)–(3.95), for all 0 < x, y ≤ ε2 and x−β y ≥ ω, we
have

G−δ(x, y) ≥ (1 − βδ)G0(x, y) − (β + 1)δG2,0(y) − βδκ(x)θ (y)y−1

≥ (1 − βδ)[βa − b − cθωθ−1ε
κ−β(1−θ )
2 ] − (β + 1)δb − βδcθωθ−1ε

κ−β(1−θ )
2 > 0,

which gives (3.91).
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Under condition (ii) of Theorem 1.10 and Condition 1.6(ii), selecting 0 < β < κ/(1 − θ ),
ω ∈ (0, 1) and small enough δ > 0, 0 < ε2 < c∗ so that (3.92) holds and

(1 − βδ)[βa − bεq
2 − cθωθ−1ε

κ−β(1−θ )
2 ] − (β + 1)δbεq

2 − βδcθωθ−1ε
κ−β(1−θ )
2 > 0. (3.96)

ince p = 0, then under Condition 1.6(ii), similar to (3.94), for all 0 < x, y ≤ ε2 and x−β y ≥ ω

e have

G0(x, y) ≥ βa − bεq
2 − cθωθ−1ε

κ−β(1−θ )
2 , G2,0(y) ≤ bεq

2 . (3.97)

hus by (3.78) in Lemma 3.12, (3.95)–(3.97) and Condition 1.6(ii) again, for all 0 < x, y ≤ ε2
nd x−β y ≥ ω, we have

G−δ(x, y) ≥ (1 − βδ)G0(x, y) − (β + 1)δG2,0(y) − βδκ(x)θ (y)y−1

≥ (1 − βδ)[βa − bεq
2 − cθωθ−1ε

κ−β(1−θ )
2 ] − (β + 1)δbεq

2 − βδcθωθ−1ε
κ−β(1−θ )
2 > 0,

hich proves (3.91).
For v > 1 and ω > 0, define stopping times

τw := inf{t ≥ 0 : X−β
t Yt < w} and σv := inf{t ≥ 0 : X−β

t Yt > v},

espectively. In the following we show that P{τw = ∞} > 0, which implies the assertion of
he lemma.

Let ω, β, δ, ε > 0 be the constants determined in (3.91)–(3.92). Let T := τw ∧ σv . By (1.1)
nd Itô’s formula, for each δ > 0,

(X−β

t∧T Yt∧T )−δ exp
{
δ

∫ t∧T

0
G−δ(Xs, Ys)ds

}
s a martingale. It follows from Fatou’s lemma that

1 ≥ E[(X−β

0 Y0)−δ] = lim inf
t→∞

E
[
(X−β

t∧T Yt∧T )−δ exp
{
δ

∫ t∧T

0
G−δ(Xs, Ys)ds

}]
≥ E

[
lim inf

t→∞
(X−β

t∧T Yt∧T )−δ exp
{
δ

∫ t∧T

0
G−δ(Xs, Ys)ds

}]
= E

[
(X−β

T YT )−δ exp
{
δ

∫ T

0
G−δ(Xs, Ys)ds

}]
.

y (3.91) and (3.92), for s < τw and sups≥0(Xs ∨ Ys) ≤ ε2, we have G−δ(Xs, Ys) ≥ 0. Then

1 ≥ E
[
(X−β

T YT )−δ exp
{
δ

∫ T

0
G−δ(Xs, Ys)ds

}
1{sups≥0(Xs∨Ys )≤ε2,τw<σv}

]
≥ w−δP

{
sup
s≥0

(Xs ∨ Ys) ≤ ε2, τw < σv

}
.

y Lemma 3.2(i), we have limv→∞ σv = ∞ almost surely. Letting v → ∞ in the above
nequality we obtain

P
{

sup
s≥0

(Xs ∨ Ys) ≤ ε2, τw < ∞

}
≤ wδ.
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Combining (3.90) and (3.92) it follows that

P{τw = ∞} = 1 − P{τw < ∞}

≥ 1 − P
{

sup
s≥0

(Xs ∨ Ys) ≤ ε2, τw < ∞

}
− P

{
sup
s≥0

(Xs ∨ Ys) ≥ ε2

}
≥ 1 − wδ − C[εβ/42 + ε

1/(4β)
2 ] > 0,

hich implies P{τ Y
0 = ∞} > 0 and ends the proof. □

roof of Theorem 1.10. By Lemma 3.11, without loss of generality we assume that X0 < ε

nd P
{
supt≥0 X t ≤ ε

}
> 0. Let (Ȳt )t≥0 be the solution to (3.69) with Cn replaced by

ε := supx∈[0,ε] κ(x). By the comparison theorem (Proposition 3.6), we have

P
{

Yt ≥ Ȳt for all t ≥ 0
⏐⏐ sup

t≥0
X t ≤ ε

}
= 1.

ince P{σ Ȳ (εβ) < ∞} > 0 by [20, Proposition 2.11] and Ȳ is independent of X , then

P
{

X (σ Ȳ (εβ)) ≤ ε, Y (σ Ȳ (εβ)) ≥ εβ, σ Ȳ (εβ) < ∞
}

≥ P
{

X (σ Ȳ (εβ)) ≤ ε, Ȳ (σ Ȳ (εβ)) ≥ εβ, σ Ȳ (εβ) < ∞, sup
t≥0

X t ≤ ε
}

= P
{
sup
t≥0

X t ≤ ε, σ Ȳ (εβ) < ∞
}

= P
{
sup
t≥0

X t ≤ ε
}
P
{
σ Ȳ (εβ) < ∞

}
> 0.

Note that by Proposition 3.6 and Lemma 3.15, there exist constants β > 0 and small ε > 0
so that P{τ Y

0 = ∞} > 0 if X0 ≤ ε, Y0 ≥ εβ . Applying the strong Markov property to
process (X, Y ) at time σ Ȳ (εβ), we have P{τ Y

0 = ∞} > 0 for any Y0 > 0, and the proof is
completed. □

Remark 3.16. Under Condition 1.6(ii) and (iii), for p > 0, the corresponding estimate of
G0(x, y) in Step 1 of the proof of Lemma 3.15 is not easy to establish and thus the approach
of showing Theorem 1.10 does not appear to be valid for the proofs of Theorem 1.8 and
Conjecture 1.11.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We thank anonymous referees and Rugang Ma for very detailed and helpful comments. The
last two authors thank the support from a Foreign Experts Project of North Minzu University.

Appendix

In this section we present a proof of the comparison theorem in Proposition 3.6 and show
in Lemma A.1 that if all the functions in (1.1) are locally Lipschitz, then (1.1) has a pathwise
unique solution. Consequently, (X, Y ) is a Markov process.
87



Y.-X. Ren, J. Xiong, X. Yang et al. Stochastic Processes and their Applications 150 (2022) 50–90

F

F

F

(

w
o

w

F

a

Proof of Proposition 3.6. For k ≥ 1 define

hk := exp{−k(k + 1)/2}.

Let ψk be a nonnegative function on R with support in (hk, hk−1),
∫ hk−1

hk
ψk(x)dx = 1 and

0 ≤ ψk(x) ≤ 2k−1x−11(hk ,hk−1)(x).

or x ∈ R and k ≥ 1 let

φk(x) := 1{x>0}

∫ x

0
dy

∫ y

0
ψk(z)dz.

or k ≥ 1 and y, z ∈ R put

Dk(y, z) := φk(y + z) − φk(y) − zφ′

k(y). (A.1)

or t ≥ 0 let x̄(t) = x1(t) − x2(t), B̂(t) = B1(t, x2(t)) − B2(t, x2(t)), B̄(t) = B1(t, x1(t)) −

B1(t, x2(t)), Ū (t) = U (x1(t)) − U (x2(t)) and V̄ (t) = V (x1(t)) − V (x2(t)). It then follows from
3.46) that

x̄(t ∧ γ̃n) = x̄(0) +

∫ t∧γ̃n

0
[B̂(s) + B̄(s)]ds +

∫ t∧γ̃n

0
Ū (s)dWs

+

∫ t∧γ̃n

0

∫
∞

0

∫
∞

0
g(s−, u)z Ñ (ds, dz, du),

here γ̃n is defined in (3.47) and g(s, u) := 1{u≤V (x1(s))} − 1{u≤V (x2(s))}. Using Itô’s formula we
btain

φk(x̄(t ∧ γ̃n))

= φk(x̄(0)) +

∫ t∧γ̃n

0
φ′

k(x̄(s))[B̂(s) + B̄(s)]ds +
1
2

∫ t∧γ̃n

0
φ′′

k (x̄(s))Ū (s)2ds

+

∫ t∧γ̃n

0
ds

∫
∞

0
V̄ (s)Dk(x̄(s), sgn(V̄ (s))z)ν(dz) + mart.,

here sgn(x) = 1{x>0} − 1{x<0}. It follows that

E
[
φk(x̄(t ∧ γ̃n))

]
= φk(x̄(0)) + E

[∫ t∧γ̃n

0
φ′

k(x̄(s))B̂(s)ds
]

+E
[∫ t∧γ̃n

0
φ′

k(x̄(s))B̄(s)ds
]

+
1
2

E
[∫ t∧γ̃n

0
φ′′

k (x̄(s))Ū (s)2ds
]

+E
[∫ t∧γ̃n

0
ds

∫
∞

0
V̄ (s)Dk(x̄(s), sgn(V̄ (s))z)ν(dz)

]
=: φk(x̄(0)) +

4∑
i=1

I i
n,k(t). (A.2)

or x ∈ R, x+
:= x ∨ 0. By [25, Lemma 2.1],

lim
k→∞

φk(x) = x+, lim
k→∞

φ′

k(x) = 1{x>0}, |x |φ′′

k (x) ≤ 2k−1,

nd
−1 2
Dk(y, z) ≤ (2k z /y) ∧ (2|z|) for all k ≥ 1, x, y ∈ R and z ≥ 0 with y(y + z) > 0.
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Then using the assumptions and the dominate convergence,

lim
k→∞

E
[
φk(x̄(t ∧ γ̃n))

]
= E

[
x̄+(t ∧ γ̃n)

]
, lim

k→∞

I 1
n,k(t) = E

[∫ t∧γ̃n

0
1{x̄(s)>0} B̂(s)ds

]
≤ 0

nd

lim
k→∞

I 2
n,k(t) ≤ CnE

[∫ t∧γ̃n

0
x̄+(s)ds

]
, lim

k→∞

I 3
n,k(t) = lim

k→∞

I 4
n,k(t) = 0.

ombining with (A.2) we get

E
[
x̄+(t ∧ γ̃n)

]
≤ x̄+(0) + CnE

[∫ t∧γ̃n

0
x̄+(s)ds

]
≤ Cn

∫ t

0
E

[
x̄+(s ∧ γ̃n)

]
ds.

rom Gronwall’s lemma it follows that E
[
x̄+(t∧γ̃n)

]
= 0. Letting n → ∞ we get x̄+(t∧γ̃ ) = 0

lmost surely for each fixed t > 0. By the right continuity of t ↦→ xi (t) (i = 1, 2) we conclude
he proof. □

emma A.1. Suppose that the functions ai , bi , i = 1, 2, 3 and θ, κ in (1.1) are all locally
ipschitz, i.e., for each m, n ≥ 1, there is a constant Cm,n > 0 so that∑

i=1,2,3

[
|ai (x) − ai (y)| + |bi (x) − bi (y)|

]
≤ Cm,n|x − y|, x, y ∈ [n−1,m].

hen SDE (1.1) has a nonnegative pathwise unique solution.

roof. For n ≥ 1 and i = 1, 2, 3 let an
i (x) := ai ((x ∧n)∨n−1). Define bn

i and θn, κn , similarly.
nspired by the argument in [10, Theorem 3.1], let

U = {1, 2} × (0,∞)2, U0 =
(
{1} × (0, 1) × (0,∞)

)
∪

(
{2} × (0, 1) × (0,∞)

)
.

et

Ñ0(ds, dv, dz, du) := δ1(dv)M̃(ds, dz, du) + δ2(dv)Ñ (ds, dz, du).

hen Ñ0 is a compensated Poisson random measure on (0,∞) × U with intensity

ds[δ1(dv)µ(dz) + δ2(dv)ν(dz)]du.

efine functions f n
1 and f n

2 on [0,∞) × U by

f n
1 (x, v, z, u) := z1{v=1,u≤an

3 (x)}, f n
2 (x, v, z, u) := z1{v=2,u≤bn

3 (x)}.

rite u for (v, z, u). Then SDE (1.1) can be written into this form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X t = X0 −

∫ t

0

[
an

1 (Xs ) + an
3 (Xs )

∫
∞

1
zµ(dz)

]
ds +

∫ t

0
an

2 (Xs )1/2dBs

+

∫ t

0

∫
U0

f n
1 (Xs−,u)Ñ0(ds, du) +

∫ t

0

∫
U\U0

f n
1 (Xs−,u)N0(ds, du),

Yt = Y0 +

∫ t

0

[
−bn

1 (Ys ) − θn(Ys )κn(Xs ) + bn
3 (Xs )

∫
∞

1
zν(dz)

]
ds +

∫ t

0
bn

2 (Ys )1/2dWs

+

∫ t

0

∫
U0

f n
2 (Ys−,u)Ñ0(ds, du) +

∫ t

0

∫
U\U0

f n
2 (Ys−,u)N0(ds, du),

(A.3)

here N0 is the corresponding Poisson random measure of Ñ0. It follows from [14, p. 245]
hat (A.3) has a strong unique solution (Xn

t , Y n
t )t≥0. Letting n → ∞, by the same argument
n [20, Theorem 3.1 (i)], SDE (1.1) has a pathwise unique solution.
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