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Abstract. We consider the additive martingale Wt(λ) and the derivative martingale ∂Wt (λ) for one-dimensional supercritical super-
Brownian motions with general branching mechanism. In the critical case λ = λ0, we prove that

√
tWt (λ0) converges in probability to

a positive limit, which is a constant multiple of the almost sure limit ∂W∞(λ0) of the derivative martingale ∂Wt (λ0). We also prove
that, on the survival event, lim supt→∞

√
tWt (λ0) = ∞ almost surely.

Résumé. Nous considérons la martingale additive Wt(λ) et la martingale dérivée ∂Wt (λ) pour les super-mouvements browniens
surcritiques unidimensionnels avec mécanisme général de branchement. Dans le cas critique où λ = λ0, nous prouvons que

√
tWt (λ0)

converge en probabilité vers une limite positive, qui est un multiple constant de la limite presque sûre ∂W∞(λ0) de la martingale
dérivée ∂Wt (λ0). Nous prouvons également que, dans l’événement de survie, lim supt→∞

√
tWt (λ0) = ∞ presque sûrement.
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1. Introduction

Let {Zn,n ≥ 0} be a supercritical Galton–Waston process with Z0 = 1 and mean m = EZ1 ∈ (1,∞). It is well known
that {m−nZn;n ≥ 0} is a non-negative martingale and thus converges almost surely to a limit W . The Kesten–Stigum
theorem says that W is non-degenerate if and only if E[Z1 logZ1] < ∞. Seneta [25] and Heyde [16] proved that if
E[Z1 logZ1] = ∞, then there exists a non-random sequence {cn}n≥0 such that Zn/cn converges almost surely to a non-
degenerate random variable as n → ∞. This result is known as the Seneta–Heyde theorem and the sequence {cn} is
therefore called a Seneta–Heyde norming.

A branching random walk is defined as follows. At generation 0, there is a particle at the origin of the real line R.
At generation n = 1, this particle dies and splits into a finite number of offspring. The law of the number of offspring
and the positions of the offspring relative to their parent are given by a point process Z . Each of these offspring evolves
independently as its parent. Let Zn denote the point process formed by the position of the particles in the n-th gen-
eration. Biggins and Kyprianou [3,5] considered the non-negative martingale Wn(θ) := m(θ)−n

∫
exp(−θx)Zn(dx),

which is referred to as the additive martingale, where m(θ) = E
∫

exp(−θx)Z1(dx). They proved that, if m(0) > 1
and m(θ) < ∞ for some θ > 0, then the limit of Wn(θ), denoted by W(θ), is non-degenerate if and only if
logm(θ) − θm′(θ)/m(θ) > 0 (supercritical) and E[W1(θ) log+ W1(θ)] < ∞, where log+ x := max{logx,0}. They also
showed that, when logm(θ)− θm′(θ)/m(θ) > 0 holds but E[W1(θ) log+ W1(θ)] = ∞, there exist a Seneta–Heyde norm-
ing {cn}n≥0 and a non-degenerate random variable � such that Wn(θ)/cn converges to � in probability as n → ∞.

For the critical case of logm(θ) − θm′(θ)/m(θ) = 0, without loss of generality, we assume that m(θ) = θ = 1. Ac-
cording to [3,5], the additive martingale Wn := Wn(1) = ∫

exp(−x)Zn(dx) converges to 0 almost surely, as n → ∞. The
study of the additive martingale Wn in the critical case relies on analyzing another fundamental martingale. Under the
assumption that E[∫ x exp(−x)Z1(dx)] = 0, Dn := ∫

x exp(−x)Zn(dx) is a mean 0 martingale which is referred to as
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the derivative martingale. Convergence of the derivative martingale was studied by Biggins and Kyprianou [4]. In order
to state their result, we introduce the following integrability conditions:

σ 2 := E

[∫
x2e−xZ1(dx)

]
< ∞,(1.1)

E

[(∫
e−xZ1(dx)

)
log2+

(∫
e−xZ1(dx)

)]
< ∞,(1.2)

E

[(∫ (
(x)+e−x

)
Z1(dx)

)
log+

(∫ (
(x)+e−x

)
Z1(dx)

)]
< ∞.(1.3)

Biggins and Kyprianou [4] proved that under the assumptions (1.1)–(1.3), Dn converges almost surely to a non-degenerate
non-negative limit D∞ as n → ∞, see also Aïdekon and Shi [1, Theorem B]. Hu and Shi [17, Theorem 1.1] proved that
there exists a deterministic sequence (an)n≥1 such that, conditioned on survival, Wn

an
converges in distribution to some

random variable W with W > 0 a.s. It was further proved in Aïdékon and Shi [1] that, under the assumptions (1.1)–(1.3),

(1.4) lim
n→∞

√
nWn =

√
2

πσ 2
D∞ in probability.

They also proved that lim supn→∞
√

nWn = +∞ almost surely conditioned on survival. Under the assumption that the as-
sociated random walk is in the domain of attraction of an α-stable law, α ∈ (1,2), He, Liu and Zhang [15] proved n1/αWn

converges to CD∞(α) in probability, where C > 0 is a constant and D∞(α) is the limit of the derivative martingale under
different moment conditions. For the subcritical case logm(θ) − θm′(θ)/m(θ) < 0, Hu and Shi [17, Theorem 1.4] gave
some convergence results for logWn(θ).

A branching Brownian motion (BBM) can be defined as follows. Initially, there is a single particle at the origin. It
lives an exponential amount of time with parameter 1. Each particle moves according to a Brownian motion with drift
1 during its lifetime and then splits into a random number, say L, of new particles. These new particles start the same
process from their place of birth behaving independently of the others. The system goes on indefinitely, unless there is no
particle at some time. Assume that the BBM is supercritical, i.e., EL > 1, and 2E[L− 1] = 1. Let Zt be the point process
formed by the position of the particles at time t . The non-negative martingale Wt(θ) := e−(θ−1)2t/2

∫
exp(−θx)Zt (dx)

is called the additive martingale and plays an important role in the study of BBMs. It is known that the limit W(θ) of
Wt(θ) is non-degenerate if and only if |θ | < 1 (supercritical case) and E[L log+ L] < ∞, see [6,23]. Another key object
for BBMs is the derivative martingale Dt := ∫

x exp(−x)Zt (dx) in the critical case θ = 1. Yang and Ren [27] proved that
Dt converges almost surely to a non-degenerate non-negative limit D∞ as t → ∞ if and only if E[L log2+ L] < ∞, and
if E[L log2+ L] < ∞ holds, D∞ > 0 almost surely on the event of survival. Fluctuation of the derivative martingale Dt

around its limit D∞ was given by Maillard and Pain [22]. The analog of (1.4) is also valid for BBMs, see [22, (1.7)].
In this paper we consider supercritical super-Brownian motions in R. A super-Brownian motion arises as the high

density limit of branching Brownian motions or branching random walks. Let Bb(R) (respectively B+(R), respectively
B+

b (R)) be the set of all bounded (respectively non-negative, respectively bounded and non-negative) real-valued Borel
functions on R. Let M(R) denote the space of finite Borel measures on R. For any f ∈ B+

b (R) and μ ∈ M(R), we use
〈f,μ〉 or μ(f ) to denote the integral of f with respect to μ whenever the integral is well-defined. For simplicity, we
sometimes write ‖μ‖ := 〈1,μ〉.

We will always assume that B = {(Bt )t≥0;	x,x ∈ R} is a Brownian motion on R. Let the branching mechanism ψ

be given by

(1.5) ψ(λ) := −αλ + βλ2 +
∫

(0,∞)

(
e−λx − 1 + λx

)
ν(dx), λ ≥ 0,

where β ≥ 0, α = −ψ ′(0+) and ν is a σ -finite measure supported on (0,∞) with
∫
(0,∞)

(x ∧ x2)ν(dx) < ∞. There exists
an M(R)-valued Markov process X = {(Xt )t≥0;Pμ,μ ∈M(R)} such that

Pμ

[
e−Xt (f )

]= e−μ(Utf ), t ≥ 0, f ∈ B+
b (R),

where (t, x) �→ Utf (x) is the unique locally bounded non-negative map on R+ ×R such that

Utf (x) + 	x

[∫ t

0
ψ
(
Ut−sf (Bs)

)
ds

]
= 	x

[
f (Bt )

]
, t ≥ 0, x ∈ R.
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This process X is known as a super-Brownian motion with branching mechanism ψ . For the existence of X we refer our
readers to [9,10,12] or [21, Section 2.3].

The super-Brownian motion with branching mechanism ψ is called supercritical, critical or subcritical according to
ψ ′(0+) < 0, ψ ′(0+) = 0 or ψ ′(0+) > 0. In this paper we concentrate on supercritical super-Brownian motions, i.e., we
assume ψ ′(0+) < 0. We always assume that ψ(∞) = ∞ which guarantees that the event E := {limt→∞ ‖Xt‖ = 0} will
occur with positive probability. Let λ∗ be the largest root of the equation ψ(λ) = 0. For any μ ∈ M(R), Pμ(E) = e−λ∗‖μ‖.

In this paper we shall also assume that

(1.6)
∫ ∞ 1√∫ ξ

λ∗ ψ(u)du

dξ < ∞.

Under condition (1.6), it holds that (see, for instance, [20]) E = {∃t > 0 such that ‖Xt‖ = 0}.
Denote by 0 the null measure on R. Write M0(R) := M(R) \ {0}. Set cλ = −ψ ′(0+)/λ + λ/2 and define

Wt(λ) := e−λcλt
〈
e−λ·,Xt

〉
, t ≥ 0, λ ∈R.

Then according to [20], for any μ ∈ M0(R), W(λ) := {Wt(λ) : t ≥ 0} is a non-negative Pμ-martingale and thus has an
almost sure limit W∞(λ). W(λ) is called the additive martingale. By [20, Theorem 2.4], W∞(λ) is also an L1(Pμ) limit
if and only if |λ| < λ0 and

∫
[1,∞)

r(log r)ν(dr) < ∞, where λ0 =√−2ψ ′(0+).
Another important martingale ∂W(λ), called the derivative martingale, is defined as follows:

∂Wt(λ) := 〈
(λt + ·)e−λ(cλt+·),Xt

〉
, t ≥ 0.

Under condition (1.6), Kyprianou et al. [20, Theorem 2.4] proved that when |λ| ≥ λ0, ∂Wt(λ) has a Pμ almost surely
non-negative limit ∂W∞(λ) for any μ ∈ M0(R), and when |λ| > λ0, ∂W∞(λ) = 0 Pμ almost surely. When |λ| = λ0
(called the critical case), ∂W∞(λ) is almost surely positive on Ec if and only if

(1.7)
∫

[1,∞)

r(log r)2ν(dr) < ∞.

In this paper we concentrate on the critical case |λ| = λ0. Due to symmetry, without loss of generality, we assume
λ = λ0. The derivative martingale ∂Wt(λ0) plays an important role in the study of the extremal process of super-Brownian
motions, see [24].

The additive martingale Wt(λ0) converges to 0 as t → ∞. The goal of this paper is to find the rate at which Wt(λ0)

converges to 0. For simplicity, we write

Wt := Wt(λ0), ∂Wt := ∂Wt(λ0), ∂W∞ := ∂W∞(λ0).

Let {(Xλ0
t )t≥0;Pμ,μ ∈M(R)} be a superprocess with the same branching mechanism ψ in (1.5) and with a Brownian

motion with drift λ0 as spatial motion. Then 〈f,X
λ0
t 〉 = 〈f (λ0t + ·),Xt 〉 for any f ∈ B+

b (R). Note that cλ0 = λ0, we can
rewrite Wt and ∂Wt as

Wt = 〈
e−λ0·,Xλ0

t

〉
, ∂Wt = 〈·e−λ0·,Xλ0

t

〉
.

Write P as a shorthand for Pδ0 . Throughout this paper for a probability P , we will also use P to denote expectation with
respect to P . The main results of this paper are the following two theorems:

Theorem 1.1. If (1.6) and (1.7) hold, then

lim
t→∞

√
tWt =

√
2

π
∂W∞ in probability with respect to P.

The following result says that the above convergence in probability can not be strengthened to almost sure convergence.

Theorem 1.2. If (1.6) and (1.7) hold, then on Ec,

(1.8) lim sup
t→∞

√
tWt = +∞ P-almost surely.
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We end this section with a description of the strategy of the proofs of Theorems 1.1 and 1.2, and the organization
of this paper. In the remainder of this paper, we always assume that (1.6) and (1.7) hold. In Section 2, we introduce
the exit measures, the N-measures and the spine decomposition of super-Brownian motion. We also give some basic
properties of Bessel-3 processes. We also use exit measures to define a variant W

−y
t (see (2.9)) of the additive martingale

Wt and a variant V
−y
t (see (2.10)) of the derivative martingale ∂Wt by killing the particles hitting −y before time t . These

ingredients will be used in the proof of Theorem 1.1. In this section, we also introduce the skeleton decomposition for
super-Brownian motion, which is used in the proof of Theorem 1.2.

In Section 3, we prove Theorem 1.1. We will use the spine decomposition to give a copy of W
−y
t and a copy of V

−y
t ,

denoted as W̃
−y
t and Ṽ

−y
t , respectively. We first prove the mean of

√
tW̃

−y
t

W̃
−y
t +Ṽ

−y
t

converges to
√

2/π as t → ∞ in Lemma 3.2.

Then in Lemma 3.3, we prove that
√

tW̃
−y
t

W
−y
t +Ṽ

−y
t

converges to
√

2/π in L2, which is the key to the proof of Theorem 1.1. Due

to the weak moment condition on the Lévy measure ν in (1.7), to prove Lemma 3.3, we need to define a family of “good”
sets Et with probabilities tending to 1 as t → ∞ (see Lemma 3.6). On the set Et we prove a sharp upper bound for the
ratio of these two modified martingales in Lemma 3.7. This sharp upper bound is crucial for the proof of Lemma 3.3.
Although the proof of Theorem 1.1 is similar to that of the corresponding result for branching random walks given in
Aïdékon and Shi [1], more efforts are need to deal with Et since the spine decomposition of super-Brownian motion is
more complicated.

In Section 4, we prove Theorem 1.2. A key for the proof of the corresponding result for branching random walks given
in [1] is the asymptotic behavior for the minimal position of branching random walks given in [1, Theorem 6.1]. The
fact that the spatial displacement of a branching random walk in each generation can be regarded as a point process is
used crucially in the proof of [1, Theorem 1.2]. However, a super-Brownian motion in R has a density with respect to
the Lebesgue measure and thus can not be regarded as a point process. We overcome this difficulty by using the skeleton
process. Roughly speaking, we choose a sequence of random times and use the fact that the skeleton process observed
at these random times is a branching random walk. In Lemmas 4.1 and 4.2, we show that this branching random walk,
after a suitable translation, satisfies the conditions of [1, Theorem 6.1], i.e., conditions (1.1) (1.2) and (1.3) above. So we
can apply [1, Theorem 6.1] to get the asymptotic behavior of the minimal position of this shifted branching random walk,
which, in turn, is used to get the conclusion of Theorem 1.2.

2. Preliminaries

In this section, we will introduce some useful results that will be used later.
Recall that {(Bt )t≥0;	x,x ∈ R} is a Brownian motion. For any x ∈ R, we define τx = inf{t > 0 : Bt = x}. It is well

known that {eλ0Bt−λ2
0t/2, t ≥ 0} is a positive 	0-martingale with mean 1. We define a martingale change of measure by

(2.1)
d	

λ0
0

d	0

∣∣∣∣
σ(Bs :0≤s≤t)

= eλ0Bt−λ2
0t/2.

Under 	
λ0
0 , {Bt , t ≥ 0} is a Brownian motion with drift λ0 staring from 0. For any y > 0, we define 	̃y by

(2.2)
d	̃y

d	0

∣∣∣∣
σ(Bs :s≤t)

= y + Bt

y
1(t<τ−y).

Under 	̃y , {y + Bt : t ≥ 0} is a Bessel-3 process starting from y and the density of y + Bt is

(2.3) ft (x) = x

y
√

2πt
e−(x−y)2/2t

(
1 − e−2xy/t

)
1{x>0}.

2.1. Branching Markov exit measures

For any r ≥ 0 and x ∈ R, let {(Bt )t≥r ;	λ0
r,x} be a Brownian motion with drift λ0 started at x at time r . 	

λ0
0,x is the same as

	
λ0
x . Let S = [0,∞) ×R, B(S) be the Borel σ -field on S, O ⊂ B(S) the class of open subsets of S and M(S) the space

of finite Borel measures on S. A measure μ ∈ M(R) is identified with its corresponding measure on S concentrated on
{0} × R. According to Dynkin [11], there exists a family of random measures {(XQ,Pμ);Q ∈ O,μ ∈ M(S)} such that
for any Q ∈ O, μ ∈M(S) with suppμ ⊂ Q, and bounded non-negative Borel function f (t, x) on S,

Pμ

[
exp

{−〈f,XQ〉}]= exp
{−〈

V
Q
f ,μ

〉}
,
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where V
Q
f (s, x) is the unique positive solution of the equation

V
Q
f (s, x) + 	s,x

∫ τ

s

ψ
(
V

Q
f (r,Br)

)
dr = 	s,xf (τ,Bτ ),

with τ := inf{r : (r,Br) /∈ Q}. By [10, (1.20)], we have the following mean formula:

(2.4) Pμ〈f,XQ〉 =
∫

	s,x

[
eατ f (τ,Bτ )

]
μ(ds dx).

For y > 0, t ≥ 0, we define Dt−y := {(s, x) : s < t,−y < x}. Then the random measure X
λ0
Dt−y

is concentrated on

∂Dt−y := ([0, t) × {−y}) ∪ ({t} × [−y,+∞]), and for any μ ∈ M([0,∞) × R) with suppμ ⊂ [0, t) × [−y,+∞), and
f ∈ Cb(D

t−y) with f (s, x) = f (0, x) =: f (x) for all s ≥ 0,

Pμ

[
exp

{−〈
f,X

λ0
Dt−y

〉}]= exp
{−〈

U
−y,t
f (·),μ〉},

where U
−y,t
f (s, x) is the unique positive solution of the integral equation

(2.5) U
−y,t
f (s, x) + 	λ0

s,x

∫ t∧τ−y

s

ψ
(
U

−y,t
f (r,Br)

)
dr = 	λ0

s,x

[
f (Bt∧τ−y )

]
, (s, x) ∈ Dt−y,

with Dt−y being the closure of Dt−y . By (2.4) and the homogeneity of Brownian motion, for any x ∈ R, we have

(2.6) Pδx

〈
f,X

λ0
Dt−y

〉= 	λ0
x

[
eα(t∧τ−y)f (Bt∧τ−y )

]
.

By the time homogeneity of Brownian motion with drift λ0, (2.5) can be written as

U
−y,t
f (s, x) + 	λ0

x

∫ (t−s)∧τ−y

0
ψ
(
U

−y,t
f (r + s,Br)

)
dr = 	λ0

x

[
f (B(t−s)∧τ−y )

]
, (s, x) ∈ Dt−y.

Put u
−y
f (t − s, x) := U

−y,t
f (s, x). The above integral equation can be written as

u
−y
f (t − s, x) + 	λ0

x

∫ (t−s)∧τ−y

0
ψ
(
u

−y
f (t − r − s,Br)

)
dr = 	λ0

x

[
f (B(t−s)∧τ−y )

]
, (s, x) ∈ Dt−y,

which is equivalent to

(2.7) u
−y
f (s, x) + 	λ0

x

∫ s∧τ−y

0
ψ
(
u

−y
f (s − r,Br)

)
dr = 	λ0

x

[
f (Bs∧τ−y )

]
, (s, x) ∈ Dt−y.

The special Markov property (see [10, Theorem 1.3], for example) implies that, for all Dr−z ⊂ Dt−y ,

(2.8) Pμ

[〈
f,X

λ0
Dt−y

〉|Fλ0
Dr−z

]= P
X

λ0
Dr−z

〈
f,X

λ0
Dt−y

〉
,

where Fλ0
Dt−y

:= σ(X
λ0
Ds−x

: s ≤ t, x ≤ y).

In the proof of Theorem 1.1, we will use modifications of Wt defined below. For any y > 0, define

(2.9) W
−y
t := 〈

e−λ0·1(−y,∞)(·),Xλ0
Dt−y

〉
, t ≥ 0.

2.2. N-Measure and spine decomposition for Xλ0

Without loss of generality, we assume that X is the coordinate process on D := {w = (wt )t≥0 : w is an M(R)-valued
càdlàg function on [0,∞)}. We assume that (F∞, (Ft )t≥0) is the natural filtration on D, completed as usual with the
F∞-measurable and Pμ-negligible sets for every μ ∈M(R). Let W+

0 be the family of M(R)-valued càdlàg functions on
(0,∞) with 0 as a trap and with limt↓0 wt = 0. W+

0 can be regarded as a subset of D.
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Under condition (1.6), Pδx (Xt (1) = 0) > 0 for any x ∈R and t > 0, which implies that there exists a unique family of
σ -finite measures {Nx;x ∈R} on W+

0 such that for any μ ∈ M(R), if N (dw) is a Poisson random measure on W+
0 with

intensity measure

Nμ(dw) :=
∫
R

Nx(dw)μ(dx),

then the process defined by

X̂0 := μ, X̂t :=
∫
W

+
0

wtN (dw), t > 0,

is a realization of the superprocess X = {(Xt )t≥0;Pμ,μ ∈ M(R)}. Furthermore, Nx(〈f,wt 〉) = Pδx 〈f,Xt 〉 and Nx[1 −
exp{−〈f,wt 〉}] = − logPδx [exp{−〈f,Xt 〉}] for any f ∈ B+

b (R) (see [21, Theorems 8.22 and 8.23]). {Nx;x ∈ R} are
called the N-measures associated to {Pδx ;x ∈ R}. One can also see [13] for the definition of {Nx;x ∈ R}.

Next, we recall an important spine decomposition for super-Brownian motions. The spine decomposition is related to
a martingale change of measure. Fix y > 0, define V

−y
t by

(2.10) V
−y
t := 〈

(y + ·)e−λ0·,Xλ0
Dt−y

〉
, t ≥ 0.

From [20, Section 7], we know that V
−y
t is a positive P-martingale with mean y. Define Q−y by

(2.11)
dQ−y

dP

∣∣∣∣
Ft

:= 1

y
V

−y
t , t ≥ 0.

We say {(ξt )t≥0, (X
(n))t≥0, (X

(m))t≥0, (X
′
t )t≥0; P̃−y} is a spine representation of {(Xt )t≥0;Q−y} if the following are

true:
(i) The spine process is given by ξ := {ξt , t ≥ 0} such that {(ξt + λ0t + y)t≥0; P̃−y} is a Bessel-3 process starting

from y.
(ii) Given (ξ ; P̃−y), let N be a Poisson random measure on [0,∞) ×D with intensity 2β dtNξt (dw). For t ≥ 0, define

X
(n)
t = ∫

[0,t]
∫
D

wt−sN (dt × dw). X(n) is referred to as the continuous immigration.

(iii) Given (ξ ; P̃−y), let {Rt : t ≥ 0} be a point process such that the random counting measure
∑

t≥0 δ(t,Rt ) is a Poisson
random measure on (0,∞) × (0,∞) with intensity dtrν(dr), let Dm be the projection onto the first coordinate of the
atoms {(si , ri)} of this Poisson random measure and Dm

t := Dm ∩ [0, t]. Given ξ and R, independently for each s ∈ Dm

and r = Rs , a process {Xm,s ,Prδξs
} is issued at the time-space point (s, ξs). For t ≥ 0, define X

(m)
t =∑

s∈Dm
t

X
m,s
t−s . X(m)

is referred to as the discrete immigration.
(iv) (X′, P̃−y) is a copy of (X,P) and (X′, P̃−y) is independent of ξ , X(n) and Xm.
For t ≥ 0, define X̃t = X′

t + X
(n)
t + X

(m)
t . By [20, Theorem 7.2],

{
(X̃t )t≥0; P̃−y

} d= {
(Xt )t≥0;Q−y

}
.

{(X̃t )t≥0; P̃−y} is called a spine representation of {(Xt )t≥0;Q−y}.
Now we give a spine representation of {(Xλ0

t )t≥0;Q−y}. Define

ξλ0 := {
ξ

λ0
t , t ≥ 0

} := {ξt + λ0t, t ≥ 0},

then {ξλ0
t + y, t ≥ 0; P̃−y} is a Bessel-3 process starting from y.

We construct {(ξλ0
t )t≥0, (X

(n),λ0)t≥0, (X
(m),λ0)t≥0, ((X

λ0)′t )t≥0; P̃−y}, called a spine representation of {(Xλ0
t )t≥0}, as

follows:
(i) The spine is given by ξλ0 = {ξt + λ0t, t ≥ 0} such that (ξλ0 + y, P̃−y) is a Bessel-3 process starting from y.
(ii) Continuous immigration. Given ξλ0 , the continuous immigration X

(n),λ0
t is defined such that ∀f ∈ B+

b (R),

〈
f,X

(n),λ0
t

〉= ∫
[0,t]

∫
D

〈
f
(· + λ0(t − s) + λ0s

)
,wt−s

〉
N (ds × dw) = 〈

f (· + λ0t),X
(n)
t

〉
.
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Define wλ0 by 〈f,w
λ0
s 〉 = 〈f (· + λ0s),ws〉. Then the random measure N λ0 defined by∫

[0,t]

∫
D

〈
f (·),wλ0

t−s

〉
N λ0

(
ds × dwλ0

) :=
∫

[0,t]

∫
D

〈
f
(· + λ0(t − s) + λ0s

)
,wt−s

〉
N (ds × dw),

is a Poisson random measure with intensity 2β dtN
ξ

λ0
t

(dwλ0).

(iii) Discrete immigration. Given ξλ0 , the discrete immigration X
m,s,λ0
t immigrated at time s is defined such that

∀f ∈ B+
b (R), 〈

f,X
m,s,λ0
t−s

〉= 〈
f
(· + λ0(t − s) + λ0s

)
,X

m,s
t−s

〉= 〈
f (· + λ0t),X

m,s
t−s

〉
.

The almost surely countable set of the discrete immigration times in [0, t] is also given by Dm
t as in the spine decompo-

sition of {(Xt )t≥0;Q−y}. Define X
(m),λ0
t =∑

s∈Dm
t

X
m,s,λ0
t−s .

(iv) {(Xλ0)′t , t ≥ 0} is defined by 〈
f,
(
Xλ0

)′
t

〉= 〈
f (· + λ0t),X

′
t

〉
, f ∈ B+

b (R).

For any t ≥ 0, define

(2.12) X̃
λ0
t := (

Xλ0
)′
t
+ X

(n),λ0
t + X

(m),λ0
t .

Proposition 2.1.

(2.13)
{(

X̃
λ0
t

)
t≥0; P̃−y

} d= {(
X

λ0
t

)
t≥0;Q−y

}
.

Proof. By the definition of X̃
λ0
t , X

(n),λ0
t and X

m,s,λ0
t−s ,〈

f, X̃
λ0
t

〉= 〈
f (· + λ0t),X

′
t

〉+ 〈
f (· + λ0t),X

(n)
t

〉+ ∑
s∈Dm

t

〈
f (· + λ0t),X

m,s
t−s

〉
= 〈

f (· + λ0t), X̃t

〉
.

This says that {(X̃λ0
t )t≥0, P̃

−y} is a shift of {(X̃t )t≥0, P̃
−y} with constant speed λ0. Also note that

Q−y
[
exp

{−〈
f,X

λ0
t

〉}]=Q−y
[
exp

{−〈
f (· + λ0t),Xt

〉}]= P̃−y
[
exp

{−〈
f (· + λ0t), X̃t

〉}]
.

Thus we have

Q−y
[
exp

{−〈
f,X

λ0
t

〉}]= P̃−y
[
exp

{−〈
f, X̃

λ0
t

〉}]
,

which says that {(X̃λ0
t )t≥0, P̃

−y} and {(Xλ0
t )t≥0,Q

−y} have the same marginal distribution. By the Markov property of
both processes, we have (2.13). �

2.3. Skeleton decomposition for X

In this subsection, we recall the skeleton decomposition, which is also called the backbone decomposition in some papers,
see Eckhoff et al. [14] for an explanation of the terminologies. This decomposition was first proved by Duquesne and
Winkel [7, Theorem 5.6], where only the genealogical structure was considered, and later generalized by Berestycki et,
al [2]. This decomposition will be used in the proof of Theorem 1.2.

Recall that X = {(Xt )t≥0;Pμ,μ ∈ M(R)} is a supercritical super-Brownian motion and E = {limt→∞ ‖Xt‖ = 0}.
Under condition (1.6), E = {‖Xt‖ = 0 for some t > 0}. For any μ ∈ M(R), we define PEμ by

PEμ(·) := Pμ(·|E).

Then by [2, Lemma 2], {(Xt )t≥0;PEμ} is a super-Brownian motion with branching mechanism

ψ∗(λ) := ψ
(
λ + λ∗)= −α∗λ + βλ2 +

∫
(0,∞)

(
e−λx − 1 + λx

)
e−λ∗xν(dx),
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where

α∗ = α − 2βλ∗ −
∫

(0,∞)

x
(
1 − e−λ∗x)ν(dx) = −ψ ′(λ∗).

We denote by {NE
x : x ∈R} the N-measures associated to {PEδx

: x ∈R}.
Let Ma(R) be the space of finite atomic measures on R. According to Berestycki et al. [2], there exists a probability

space, equipped with probability measures {P(μ,η),μ ∈M(R), η ∈Ma(R)}, which carries the following processes:
(i) {(Zt )t≥0,P(μ,η)}, the skeleton, is a branching Brownian motion with initial configuration η, branching rate ψ ′(λ∗),

and offspring distribution with generating function

(2.14) F(s) := 1

λ∗ψ ′(λ∗)
ψ
(
λ∗(1 − s)

)+ s, s ∈ (0,1).

The law of this offspring, denoted by {pn : n ≥ 0}, satisfies p0 = p1 = 0 and for n ≥ 2,

pn = 1

λ∗ψ ′(λ∗)

{
β
(
λ∗)21{n=2} + (

λ∗)n ∫
(0,∞)

xn

n! e
−λ∗xν(dx)

}
.

For the individuals in Z, we will use the classical Ulam-Harris notation. Let T Z denote the set labels realized in Z and
let NZ

t ⊂ T Z denote the set of individuals alive at time t , for u ∈ NZ
t , we use zu(t) to denote the position of u at time t .

The birth time and the death time of a particle u are denoted by bu and du respectively.
(ii) {(XE

t )t≥0,P(μ,η)} is a copy of {(Xt )t≥0;PEμ).

(iii) Three different types of immigration on Z: IN
E = {INE

t , t ≥ 0}, IP
E = {IPEt , t ≥ 0} and IB = {IB

t , t ≥ 0}, which
are independent of XE and, conditioned on Z, are independent of each other. The three processes are described as follows:

• Given Z, independently for each u ∈ T Z , let N E,u be a Poisson random measure on (bu, du] × D with intensity
2β dt ×NE

zu(t)(dw). The continuous immigration IN
E

is a measure-valued process on R such that

IN
E

t :=
∑

u∈T Z

∫
(bu,du]∩[0,t]

∫
D

wt−sN E,u(ds × dw).

• Given Z, independently for each u ∈ T Z , let {Ru
t : t ∈ (bu, du]} be a point process such that the random counting

measure
∑

t∈(bu,du] δ(t,Ru
t ) is a Poisson random measure on (bu, du] × (0,∞) with intensity dtre−λ∗rν(dr) and let

{(s2,u
i , ri) : i ≥ 1} be the atoms of this Poisson random measure. The discrete immigration IP

E
is a measure-valued

process on R such that

IP
E

t :=
∑

u∈T Z

∑
i:s2,u

i ≤t

X
(2,u,i)

t−s
2,u
i

,

where X(2,u,i) is a measure-valued process with law PE
rizu(s

2,u
i )

.

• The branching point immigration IB is a measure-valued process on R such that

IB
t :=

∑
u∈T Z

1{du≤t}X(3,u)
t−du

,

here, given Z, independently for each u ∈ T Z with du ≤ t , X(3,u) is an independent copy of X issued at time du with
law PEYuδzu(du)

, where Yu is an independent random variable with distribution πOu(dy), Ou is the number of the offspring
of u and {πn(dy),n ≥ 2} is a sequence of probability measures such that

πn(dy) := 1

pnλ∗ψ ′(λ∗)

{
β
(
λ∗)2

δ0(dy)1{n=2} + (
λ∗)n yn

n! e
−λ∗yν(dy)

}
.

We define �t = {�t : t ≥ 0} on R by

�t := XE
t + IN

E
t + IP

E
t + IB

t , t ≥ 0.
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For μ ∈M(R), we denote the law of a Poisson random measure with intensity λ∗ dμ by Pμ, and define Pμ by

Pμ :=
∫

P(μ,η)Pμ(dη).

According to [2, Theorem 2], for any μ ∈ M(R), {(�t )t≥0;Pμ} is equal in law to {(Xt )t≥0;Pμ}. The branching Brow-
nian motion {Zt , t ≥ 0} is referred to as the skeleton process, and {(�t )t≥0;Pμ} is called a skeleton decomposition of
{(Xt )t≥0;Pμ}.

2.4. Properties of Brownian motion and Bessel-3 process

Recall B = {(Bt )t≥0;	x,x ∈R} is a Brownian motion and τ−y = inf{t > 0 : Bt = −y} for y ∈ R.

Lemma 2.2. For x ≥ −y,

	x(t < τ−y) = 2
∫ (y+x)/

√
t

0

1√
2π

e−z2/2 dz, t ≥ 0.

Proof. This can be easily obtained by the reflection principle of Brownian motion. �

Proposition 2.3. There exists a constant C such that∫ ∞

0
	z

(
Bs < x, min

r∈[0,s]Br > 0
)

ds ≤ C(1 + x)
(
1 + min{x, z}), x, z ≥ 0.

Proof. First note that, for any h, t > 0 and y ∈R, we have

(2.15) sup
r∈R

	y(r ≤ Bt ≤ r + h) = sup
r∈R

∫ r+h

r

1√
2πt

e−(u−y)2/(2t) du ≤ sup
r∈R

∫ r+h

r

du√
2πt

= h√
2πt

.

Next, for any 0 ≤ a < b, z ≥ 0, t > 0, by the Markov property, we have

	z

(
Bt ∈ [a, b], min

r∈[0,t]Br > 0
)

≤ 	z

(
min

r∈[0,t/3]Br > 0
)

sup
y>0

	y

(
B2t/3 ∈ [a, b], min

r∈[0,2t/3]Br > 0
)
.

(2.16)

It follows from Lemma 2.2 that

(2.17) 	z

(
min

r∈[0,t/3]Br > 0
)

≤
√

2

π

z√
t/3

=
√

6

π

z√
t
.

The second term of right-hand of (2.16) is bounded by

	y

(
B2t/3 ∈ [a, b], min

r∈[0,2t/3]Br > 0
)

≤ 	y

(
min

s∈[t/3,2t/3](Bs − B2t/3) > −b,B0 − B2t/3 ∈ [y − b, y − a]
)

= 	0

(
min

s∈[0,t/3] B̃s > −b, B̃2t/3 ∈ [y − b, y − a]
)

≤ 	0

(
min

s∈[0,t/3] B̃s > −b
)

sup
v∈R

	v

(
B̃t/3 ∈ [y − b, y − a])

≤
√

6

π

b√
t

b − a√
2πt/3

= 3

π

b(b − a)

t
,

(2.18)



1396 H. Hou, Y.-X. Ren and R. Song

where B̃s = B2t/3−s − B2t/3 is a Brownian motion for s ∈ [0,2t/3]; we used the Markov property of B̃ at time t/3 in
the second inequality of (2.18), and the last inequality of (2.18) is due to (2.17) and (2.15). Combining (2.16)–(2.18), we
obtain

(2.19) 	z

(
Bt ∈ [a, b], min

r∈[0,t]Br > 0
)

≤
√

54

π3

zb(b − a)√
t3

, z ≥ 0.

If x < z, by the strong Markov property at τx , we have

(2.20)

∫ ∞

0
	z

(
Bs < x, min

r∈[0,s]Br > 0
)

ds = 	z

[∫ ∞

0
1{Bs<x,minr∈[0,s] Br>0} ds

]
≤ 	z

[∫ ∞

τx

1{Bs<x,minr∈[τx ,s] Br>0} ds

]
= 	x

[∫ ∞

0
1{Bs<x,minr∈[0,s] Br>0} ds

]
=
∫ ∞

0
	x

(
Bs < x, min

r∈[0,s]Br > 0
)

ds.

Using (2.19) and (2.20), we obtain that∫ ∞

0
	z

(
Bs < x, min

r∈[0,s]Br > 0
)

ds ≤ x2 +
∫ ∞

x2
	x

(
Bs < x, min

r∈[0,s]Br > 0
)

ds

≤ x2 +
∫ ∞

x2

√
54

π3

x3

√
s3

ds ≤ C1(1 + x)2

(2.21)

for some constant C1 > 0. If x ≥ z, by (2.17) and (2.19), we also have∫ ∞

0
	z

(
Bs < x, min

r∈[0,s]Br > 0
)

ds

≤
∫ x2

0
	z

(
min

r∈[0,s]Br > 0
)

ds +
∫ ∞

x2
	z

(
Bs < x, min

r∈[0,s]Br > 0
)

ds

≤
∫ x2

0

√
6

π

z√
s

ds +
∫ ∞

x2

√
54

π3

zx2

√
s3

ds ≤ C2(1 + x)(1 + z)

(2.22)

for some constant C2 > 0. Combining (2.21) and (2.22), we arrive at the assertion of the proposition. �

The following is a direct consequence of [18, (3.1)]. From now on, we use R+ to denote [0,∞).

Lemma 2.4. Suppose that {(ηt )t≥0; 	̃x, x ∈ R+} is a Bessel-3 process. If F is a non-negative function on C([0, t],R),
then

	x

[
F
(
Bs, s ∈ [0, t])1{∀s∈[0,t],Bs>0}

]= 	̃x

[
x

ηt

F
(
ηs, s ∈ [0, t])], x ∈R+.

Lemma 2.5. If {(ηt )t≥0; 	̃y, y ∈R+} is a Bessel-3 process, then

	̃y

[
η−2

t

]≤ 2

t
, t > 0, y ≥ 0.

Proof. Using the inequality 1 − e−x ≤ x and the density of ηt given by (2.3), we have

	̃y

[
η−2

t

]=
∫ ∞

0
x−2fηt (x)dx ≤

∫ ∞

−∞
x−2 · 2x2

t
√

2πt
e−(x−y)2/2t dx = 2

t
. �

Lemma 2.6. Suppose that {(ηt )t≥0; 	̃y, y ∈R+} is a Bessel-3 process. Then for any event At with limt→∞ 	̃y(At ) = 1,
we have

(2.23) lim
t→∞ t	̃y

[
η−2

t 1Ac
t

]= 0.
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Proof. For any ε > 0, we have

	̃y

[
η−2

t 1Ac
t

]≤ 	̃y

[
η−2

t 1Ac
t
1{ηt≥ε

√
t}
]+ 	̃y

[
η−2

t 1{ηt<ε
√

t}
]

≤ 	̃y

(
Ac

t

) · 1

ε2t
+ 	̃y

[
η−2

t 1{ηt<ε
√

t}
]
.

(2.24)

By the same estimate for the density of ηt in Lemma 2.5,

	̃y

[
η−2

t 1{ηt<ε
√

t}
]=

∫ ε
√

t

0
x−2fηt (x)dx

≤ 2

t

∫ ε
√

t

0

1√
2πt

e−(x−y)2/2t dx ≤ 2

t

∫ ε
√

t

0

1√
2πt

dt = 2ε√
2π

1

t
.

(2.25)

Combining (2.24) and (2.25), letting t → ∞, we get

lim sup
t→∞

t	̃y

[
η2

t 1Ac
t

]≤ 2ε√
2π

.

Since ε is arbitrary, we get (2.23). �

3. Proof of Theorem 1.1

Proposition 3.1. For any y > 0, we have

P̃−y
[
ξ

λ0
t ∈ dx|X̃λ0

Dt−y

]=
e−λ0x(x + y)X̃

λ0
Dt−y

(dx)

Ṽ
−y
t

,

where

Ṽ
−y
t := 〈

(y + ·)e−λ0·, X̃λ0
Dt−y

〉
.

Proof. The main idea comes from [20, Theorem 5.1]. Let C+
b (∂Dt−y) be the set of bounded non-negative continuous

functions on ∂Dt−y . We only need to show that for any g ∈ C+
b (∂Dt−y),

(3.1) P̃−y
[
exp

{−θξ
λ0
t − 〈

g, X̃
λ0
Dt−y

〉}]= P̃−y

[
exp

{−〈
g, X̃

λ0
Dt−y

〉} 〈e−(λ0+θ)·(· + y), X̃
λ0
Dt−y

〉
Ṽ

−y
t

]
.

By (2.13) and the definition (2.11) of Q−y , the right hand side of (3.1) is equal to

1

y
P
[
exp

{−〈
g,X

λ0
Dt−y

〉} · 〈e−(λ0+θ)·(· + y),X
λ0
Dt−y

〉]= − 1

y
P

[
∂

∂γ

[
exp

{−〈
gγ ,X

λ0
Dt−y

〉}]∣∣∣∣
γ=0+

]
with gγ (t, x) = g(t, x) + γ e−(λ0+θ)x(x + y). Interchanging the order of expectation and differentiation, we get that

the right hand side of (3.1) = − 1

y

∂

∂γ
e
−u

−y
gγ (t,0)

∣∣∣∣
γ=0+

,

where u
−y
gγ

satisfies (2.7) and u
−y
g0 = u

−y
g . Thus,

(3.2) the right hand side of (3.1) = 1

y
e−u

−y
g (t,0) ∂

∂γ
u

−y
gγ

(t,0)

∣∣∣∣
γ=0+

.

Let m
−y
g (t, x) := ∂

∂γ
u

−y
gγ

(t, x)|γ=0+ . Replacing f by gγ in (2.7), taking derivative with respect to γ , and then letting

γ → 0+, we get that m
−y
g is the solution to the equation

m
−y
g (t, x) + 	λ0

x

∫ t∧τ−y

0
ψ ′(u−y

g (t − r,Br)
)
m

−y
g (t − r,Br)dr = 	λ0

x

[
e
−(λ0+θ)Bt∧τ−y (Bt∧τ−y + y)

]
.
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Note that Bt∧τ−y + y = 0 when t ≥ τ−y . The solution to the above integral equation is given by

(3.3) m
−y
g (t, x) = 	λ0

x

[
e−(λ0+θ)Bt (Bt + y) exp

{
−
∫ t

0
ψ ′(u−y

g (s,Bt−s)
)

ds

}
, t < τ−y

]
.

By the definitions (2.1) and (2.2), we have

m
−y
g (t,0) = 	0

[
e− 1

2 λ2
0t−θBt (Bt + y) exp

{
−
∫ t

0
ψ ′(u−y

g (s,Bt−s)
)

ds

}
, t < τ−y

]
= y	̃y

[
e− 1

2 λ2
0t−θBt exp

{
−
∫ t

0
ψ ′(u−y

g (s,Bt−s)
)

ds

}]
.

Using (3.2) and (3.3), we have

the right hand side of (3.1) = e−u
−y
g (0,t)	̃y

[
e−λ2

0t/2−θBt exp

{
−
∫ t

0
ψ ′(u−y

g (s,Bt−s)
)

ds

}]
.(3.4)

Next we deal with the left-hand of (3.1). Applying Campbell’s formula, we get

P̃−y
[
exp

{−〈
g,X

(n),λ0
Dt−y

〉}|ξλ0
]= P̃−y

[
exp

{
−
∫

[0,t]

∫
D

〈
g,w

λ0

Dt−s−y

〉
N λ0

(
ds × dwλ0

)}∣∣∣ξλ0

]
= exp

{
−2β

∫ t

0

∫
D

(
1 − exp

{−〈
g,w

λ0

Dt−s−y

〉})
dN

ξ
λ0
s

ds

}
= exp

{
−2β

∫ t

0
− logPδ

ξ
λ0
s

[
exp

{−〈
g,X

λ0

Dt−s−y

〉}]
ds

}
= exp

{
−2β

∫ t

0
u

−y
g

(
t − s, ξλ0

s

)
ds

}
= exp

{
−2β

∫ t

0
u

−y
g

(
s, ξ

λ0
t−s

)
ds

}
.

(3.5)

For X(m),λ0 , let ms := ‖Xm,s,λ0

D0−y

‖ denote by the initial mass of the discrete immigration for s ∈ Dm. Then {ms : s ≥ 0} is

a Poisson point process on (0,∞)2 with intensity dtrν(dr). We similarly have

P̃−y
[
exp

{−〈
g,X

(m),λ0
Dt−y

〉}|ξλ0
]= P̃−y

[
exp

{
−

∑
s∈Dm

t

msu
−y
g

(
t − s, ξλ0

s

)}∣∣∣ξλ0

]

= exp

{
−
∫ t

0

∫
(0,∞)

(
1 − exp

{−ru
−y
g

(
s, ξ

λ0
t−s

)})
rν(dr)ds

}
.

(3.6)

Combining (3.5) and (3.6), we get

(3.7) P̃−y
[
exp

{−〈
g,X

(n),λ0
Dt−y

+ X
(m),λ0
Dt−y

〉}|ξλ0
]= exp

{
−
∫ t

0

[
ψ ′(u−y

g

(
s, ξ

λ0
t−s

))− ψ ′(0)
]

ds

}
.

Note that (Xλ0)′ is independent of ξ and has the same law as Xλ0 . So by (3.7),

P̃−y
[
exp

{−θξ
λ0
t − 〈

g, X̃
λ0
Dt−y

〉}]
= P̃−y

[
e−θξ

λ0
t P̃−y

[
exp

{−〈
g,
(
Xλ0

)′
Dt−y

+ X
(n),λ0
Dt−y

+ X
(m),λ0
Dt−y

〉}|ξλ0
]]

= P̃−y
[
exp

{−〈
g,
(
Xλ0

)′
Dt−y

〉}]̃
P−y

[
e−θξ

λ0
t P̃−y

[
exp

{−〈
g,X

(n),λ0
Dt−y

+ X
(m),λ0
Dt−y

〉}|ξλ0
]]

= e−u
−y
g (t,0)P̃−y

[
e−θξ

λ0
t exp

{
−
∫ t

0

[
ψ ′(u−y

g

(
s, ξ

λ0
t−s

))− ψ ′(0+)]ds

}]
.

(3.8)

Recall that −ψ ′(0+) = λ2
0/2, {y + Bt , t ≥ 0; 	̃y} is a Bessel-3 process starting from y and {ξλ0

t + y, t ≥ 0; P̃−y} is also
a Bessel-3 process starting from y. Thus, by (3.4) and (3.8), (3.1) holds. �
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For t ≥ 0, define

(3.9) W̃
−y
t := (

W
−y
t

)′ + ∫
[0,t]

∫
D

〈
e−λ0·1(−y,∞)(·),wλ0

Dt−s−y

〉
N λ0

(
ds × dwλ0

)+
∑

s∈Dm
t

W
m,s,−y
t−s ,

where (
W

−y
t

)′ := 〈
e−λ0·1(−y,∞)(·),

(
Xλ0

)′
Dt−y

〉
, W

m,s,−y
t−s := 〈

e−λ0·1(−y,∞)(·),Xm,s,λ0

Dt−s−y

〉
.

By the spine decomposition (2.12), (W
−y
t , t ≥ 0;Q−y) has the same law as (W̃

−y
t , t ≥ 0; P̃−y). Recall the definition

(2.10) of V
−y
t and that (V

−y
t , t ≥ 0;Q−y) has the same law as (Ṽ

−y
t , t ≥ 0; P̃−y). Note also that

Ṽ
−y
t = (

V
−y
t

)′ + ∫
[0,t]

∫
D

〈
(y + ·)e−λ0·,wλ0

Dt−s−y

〉
N λ0

(
ds × dwλ0

)+
∑

s∈Dm
t

V
m,s,−y
t−s ,

where (
V

−y
t

)′ := 〈
(y + ·)e−λ0·,

(
Xλ0

)′
Dt−y

〉
, V

m,s,−y
t−s := 〈

(y + ·)e−λ0·,Xm,s,λ0

Dt−s−y

〉
.

Lemma 3.2. For any y > 0 fixed, we have

lim
t→∞

√
tP̃−y

[
W̃

−y
t

W̃
−y
t + Ṽ

−y
t

]
=
√

2

π
.

Proof. First notice that

P̃−y

[
W̃

−y
t

Ṽ
−y
t

]
=Q−y

[
W

−y
t

V
−y
t

]
= 1

y
P
[
W

−y
t

]
.

Using (2.6), and noting that λ2
0/2 = α, we have that for any f ∈ B+

b (R),

Pδx

[〈
f,X

λ0
Dt−y

〉]= 	λ0
x

[
eλ2

0(t∧τ−y)/2f (Bt∧τ−y )
]
.

Using the mean formula above with f (x) = e−λ0x1(−y,∞)(x), we obtain that

P̃−y

[
W̃

−y
t

Ṽ
−y
t

]
= 1

y
P
[
W

−y
t

]= 1

y
	

λ0
0

[
eλ2

0(t∧τ−y)/2e
−λ0Bt∧τ−y 1(−y,∞)(Bt∧τ−y )

]
= 1

y
	

λ0
0

[
eλ2

0t/2e−λ0Bt 1{t<τ−y }
]= 1

y
	0(t < τ−y) = 2

y

∫ y/
√

t

0

1√
2π

e− x2
2 dx.

Thus

(3.10) lim
t→∞

√
tP̃−y

[
W̃

−y
t

Ṽ
−y
t

]
=
√

2

π
.

To complete the proof of the lemma, it suffices to show that

lim sup
t→∞

√
tP̃−y

[
(W̃

−y
t )2

(Ṽ
−y
t + W̃

−y
t )Ṽ

−y
t

]
= lim sup

t→∞
√

t

{
P̃−y

[
W̃

−y
t

Ṽ
−y
t

]
− P̃−y

[
W̃

−y
t

W̃
−y
t + Ṽ

−y
t

]}
= 0.

It follows from Proposition 3.1 that

(3.11) P̃−y

[
1

ξ
λ0
t + y

∣∣∣X̃λ0
Dt−y

]
= W̃

−y
t

Ṽ
−y
t

.
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Under P̃−y , ξλ0 + y is a Bessel-3 process starting from y. So by Lemma 2.5, (3.11) and Jensen’s inequality, we have

P̃−y

[
(W̃

−y
t )2

(Ṽ
−y
t + W̃

−y
t )Ṽ

−y
t

]
≤ P̃−y

[(
W̃

−y
t

Ṽ
−y
t

)2]
= P̃−y

[(
P̃−y

[
1

ξ
λ0
t + y

∣∣∣X̃λ0
Dt−y

])2]

≤ P̃−y

[(
1

ξ
λ0
t + y

)2]
≤ 2

t
.

(3.12)

Therefore

√
tP̃−y

[
(W̃

−y
t )2

(Ṽ
−y
t + W̃

−y
t )Ṽ

−y
t

]
= o(1), as t → ∞.

This concludes the proof. �

Next we prove the following result:

Proposition 3.3.

(3.13) lim
t→∞ P̃−y

[( √
tW̃

−y
t

W̃
−y
t + Ṽ

−y
t

−
√

2

π

)2]
= 0.

To prove (3.13), we first prove some lemmas. Let Et be events with limt→∞ P̃−y(Et ) = 1. Combining (3.11) and the
estimate P̃−y[(W̃−y

t /Ṽ
−y
t )2] ≤ 2

t
in (3.12), we get

(3.14)

P̃−y

[(
W̃

−y
t

Ṽ
−y
t + W̃

−y
t

)2]
≤ P̃−y

[
W̃

−y
t

Ṽ
−y
t + W̃

−y
t

W̃
−y
t

Ṽ
−y
t

]

= P̃−y

[
W̃

−y
t

W̃
−y
t + Ṽ

−y
t

P̃−y

[
1

ξ
λ0
t + y

∣∣∣X̃λ0
Dt−y

]]

= P̃−y

[
W̃

−y
t

W̃
−y
t + Ṽ

−y
t

1

ξ
λ0
t + y

]
≤ P̃−y

[
W̃

−y
t

Ṽ
−y
t

1Ec
t

ξ
λ0
t + y

]
+ P̃−y

[
W̃

−y
t

W̃
−y
t + Ṽ

−y
t

1Et

ξ
λ0
t + y

]

≤
√√√√P̃−y

[(
W̃

−y
t

Ṽ
−y
t

)2]
P̃−y

[(
1Ec

t

ξ
λ0
t + y

)2]
+ P̃−y

[
W̃

−y
t

W̃
−y
t + Ṽ

−y
t

1Et

ξ
λ0
t + y

]

≤
√

2

t

√
P̃−y

[
1Ec

t

(ξ
λ0
t + y)2

]
+ P̃−y

[
W̃

−y
t

W̃
−y
t + Ṽ

−y
t

1Et

ξ
λ0
t + y

]
.

Note that, under P̃−y , ξλ0
t +y is a Bessel-3 process starting from y. Using Lemma 2.6 and the assumption that P̃−y(Et ) →

1 as t → ∞, we have

(3.15) P̃−y

[
1Ec

t

(ξ
λ0
t + y)2

]
= o

(
1

t

)
.

By (3.14) and (3.15), we conclude that

(3.16) P̃−y

[(
W̃

−y
t

Ṽ
−y
t + W̃

−y
t

)2]
≤ o

(
1

t

)
+ P̃−y

[
W̃

−y
t

W̃
−y
t + Ṽ

−y
t

1Et

ξ
λ0
t + y

]
.

Next, we need to construct Et such that the right-hand side of (3.16) is bounded by 2/(πt)+ o(1/t). Let [0,∞) � t �→ kt

be a positive function such that limt→∞ kt/(log t)6 = ∞ and limt→∞ kt/
√

t = 0. For instance, we can take kt = (log t)7

for large t . For t > 0 large, we define

W̃
−y,[0,kt )
t := (

W
−y
t

)′ + ∫
[0,kt )

∫
D

〈
e−λ0·1(−y,∞)(·),wλ0

Dt−s−y

〉
N λ0

(
ds × dwλ0

)+
∑

s∈Dm∩[0,kt )

W
m,s,−y
t−s ,
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W̃
−y,[kt ,t]
t :=

∫
[kt ,t]

∫
D

〈
e−λ0·1(−y,∞)(·),wλ0

Dt−s−y

〉
N λ0

(
ds × dwλ0

)+
∑

s∈Dm∩[kt ,t]
W

m,s,−y
t−s ,

Ṽ
−y,[0,kt )
t := (

V
−y
t

)′ + ∫
[0,kt )

∫
D

〈
(y + ·)e−λ0·,wλ0

Dt−s−y

〉
N λ0

(
ds × dwλ0

)+
∑

s∈Dm∩[0,kt )

V
m,s,−y
t−s ,

Ṽ
−y,[kt ,t]
t :=

∫
[kt ,t]

∫
D

〈
(y + ·)e−λ0·,wλ0

Dt−s−y

〉
N λ0

(
ds × dwλ0

)+
∑

s∈Dm∩[kt ,t]
V

m,s,−y
t−s .

Recall that ms = ‖Xm,s,λ0

D0−y

‖. Define

Et,1 := {
k

1/3
t ≤ ξ

λ0
kt

≤ kt

}∩
{

inf
s∈[kt ,t]

ξλ0
s ≥ k

1/6
t

}
, Et,2 :=

⋂
s∈Dm∩[kt ,t]

{
ms ≤ eλ0ξ

λ0
s /2},

Et,3 :=
{
Ṽ

−y,[kt ,t]
t + W̃

−y,[kt ,t]
t ≤ 1

t2

}
, Et := Et,1 ∩ Et,2 ∩ Et,3.

Lemma 3.4. For any fixed y > 0, it holds that

lim
t→∞ sup

u∈[k1/3
t ,kt ]

P̃−y
[
Ec

t,2|ξλ0
kt

= u
]= 0.

Proof. First, by Campbell’s formula, we have

P̃−y
[
Ec

t,2|ξλ0
kt

= u
]= P̃−y

[ ⋃
s∈Dm∩[kt ,t]

{
ms > eλ0ξ

λ0
s /2}∣∣∣ξλ0

kt
= u

]

≤ P̃−y

[ ∑
s∈Dm∩[kt ,t]

1
{ms>eλ0ξ

λ0
s /2}

∣∣∣ξλ0
kt

= u

]
≤ P̃−y

[ ∑
s∈Dm∩[kt ,∞)

1
{ms>eλ0ξ

λ0
s /2}

∣∣∣ξλ0
kt

= u

]

= P̃−y

[∫ ∞

kt

ds

∫ ∞

0
1{ξλ0

s <2 log r/λ0}rν(dr)

∣∣∣ξλ0
kt

= u

]
.

(3.17)

Since under P̃−y, ξ
λ0
s > −y for all s ≥ 0, it holds that

1{ξλ0
s <2 log r/λ0} = 1{ξλ0

s <2 log r/λ0} · 1{−y<2 log r/λ0} + 1{ξλ0
s <2 log r/λ0} · 1{−y≥2 log r/λ0}

= 1{ξλ0
s <2 log r/λ0} · 1{−y<2 log r/λ0} + 1{ξλ0

s <2 log r/λ0≤−y}
= 1{ξλ0

s <2 log r/λ0} · 1{−y<2 log r/λ0}.

(3.18)

Plugging (3.18) into (3.17) and noting that −y < 2 log r/λ0 ⇔ r > e−λ0y/2, we get that

P̃−y
[
Ec

t,2|ξλ0
kt

= u
]≤ P̃−y

[∫ ∞

kt

ds

∫ ∞

0
1{ξλ0

s <2 log r/λ0}rν(dr)

∣∣∣ξλ0
kt

= u

]
= P̃−y

[∫ ∞

kt

ds

∫ ∞

e−λ0y/2
1{ξλ0

s <2 log r/λ0}rν(dr)

∣∣∣ξλ0
kt

= u

]
=
∫ ∞

kt

ds

∫ ∞

e−λ0y/2
rν(dr)̃P−y

[
ξλ0
s < 2 log r/λ0|ξλ0

kt
= u

]
.

(3.19)

By the Markov property, when s ≥ kt ,

(3.20) P̃−y
[
ξλ0
s < 2 log r/λ0|ξλ0

kt
= u

]= P̃−(y+u)
[
ξ

λ0
s−kt

+ u < 2 log r/λ0
]
.
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So (3.19) and (3.20) yield that

P̃−y
[
Ec

t,2|ξλ0
kt

= u
]≤

∫ ∞

kt

ds

∫ ∞

e−λ0y/2
rν(dr)̃P−(y+u)

[
ξ

λ0
s−kt

+ u < 2 log r/λ0
]

=
∫ ∞

0
ds

∫ ∞

e−λ0y/2
rν(dr)̃P−(y+u)

[
ξλ0
s + u < 2 log r/λ0

]
.

(3.21)

Now by Lemma 2.4 and Proposition 2.3, (3.21) is bounded above by

P̃−y
[
Ec

t,2|ξλ0
kt

= u
]≤

∫ ∞

0
ds

∫ ∞

e−λ0y/2
rν(dr)̃P−(y+u)

[
ξλ0
s + u < 2 log r/λ0

]
=
∫ ∞

e−λ0y/2
rν(dr)

∫ ∞

0
ds

1

u + y
	u+y(Bs1{Bs<y+2 log r/λ0,s<τ0})

≤
∫ ∞

e−λ0y/2
rν(dr)

∫ ∞

0
ds

y + 2 log r/λ0

u + y
	u+y(Bs < y + 2 log r/λ0, s < τ0)

≤ C

u + y

∫ ∞

e−λ0y/2
r(1 + y + 2 log r/λ0)

2(1 + min{y + 2 log r/λ0, u + y})ν(dr).

(3.22)

For any fixed ε > 0, note that 2 log r/λ0 ≤ εu ⇐⇒ r ≤ eελ0u/2. We suppose that t is large enough such that for any
u ∈ [k1/3

t , kt ], u + y > 1 and 1 + εu + y ≤ 2ε(u + y). Thus,

P̃−y
[
Ec

t,2|ξλ0
kt

= u
]≤ C

u + y

∫ eελ0u/2

e−λ0y/2
r(1 + y + 2 log r/λ0)

2(1 + y + 2 log r/λ0)ν(dr)

+ C(1 + u + y)

u + y

∫ ∞

eελ0u/2
r(1 + y + 2 log r/λ0)

2ν(dr)

≤ C

u + y

∫ eελ0u/2

e−λ0y/2
r(1 + y + 2 log r/λ0)

2(1 + y + εu)ν(dr)

+ C(1 + u + y)

u + y

∫ ∞

eελ0u/2
r(1 + y + 2 log r/λ0)

2ν(dr)

≤ 2Cε

∫ ∞

e−λ0y/2
r(1 + y + 2 log r/λ0)

2ν(dr)

+ 2C

∫ ∞

eελ0k
1/3
t /2

r(1 + y + 2 log r/λ0)
2ν(dr).

(3.23)

Using condition (1.6) and taking t → ∞, (3.23) yields that

lim sup
t→∞

sup
u∈[k1/3

t ,kt ]
P̃−y

[
Ec

t,2|ξλ0
kt

= u
]≤ Cε

∫ ∞

e−λ0y/2
r(1 + y + 2 log r/λ0)

2ν(dr).

Since ε is arbitrary, the desired assertion is valid. �

Lemma 3.5. For any fixed y > 0, there exist constants T ,C′ > 0 such that for any t ≥ T ,

P̃−y
[
Et,1 ∩ Et,2 ∩ Ec

t,3|ξλ0
]≤ C′

t
, P̃−y-a.s.

Proof. Recall that W
−y
t is defined in (2.9). Define W−y

t by

W−y
t := 〈

e−λ0·,Xλ0
Dt−y

〉
.
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By (2.6), for any t, r > 0 and z ≥ −y, Prδz [W−y
t ] = re−λ0z, which does not depend on t . By this and the special Markov

property (2.8), we see that W−y
t is a non-negative Prδz -martingale. Note that W

−y
t ≤ W−y

t . Similarly to (3.9), we define

Wm,s,−y
t−s := 〈

e−λ0·,Xm,s,λ0

Dt−s−y

〉
.

Because Et,1 ∈ σ(ξt : t ≥ 0), by the martingale property of W−y
t , we obtain that

P̃−y

[
1Et,1

∫
[kt ,t]

∫
D

〈
e−λ0·1(−y,∞)(·),wλ0

Dt−s−y

〉
N λ0

(
ds × dwλ0

)∣∣∣ξλ0

]
≤ P̃−y

[
1Et,1

∫
[kt ,t]

∫
D

〈
e−λ0·,wλ0

Dt−s−y

〉
N λ0

(
ds × dwλ0

)∣∣∣ξλ0

]
= 2β1Et,1

∫ t

kt

N
ξ

λ0
s

(〈
e−λ0·,wλ0

Dt−s−y

〉|ξλ0
)

ds = 2β1Et,1

∫ t

kt

Pδ
ξ
λ0
s

(
W−y

t−s |ξλ0
)

ds

= 2β1Et,1

∫ t

kt

e−λ0ξ
λ0
s ds ≤ 2βte−λ0k

1/6
t ≤ 2βte−λ0k

1/6
t /4,

(3.24)

where the second to the last inequality of (3.24) holds because on Et,1 we have ξs ≥ k
1/6
t for all kt ≤ s ≤ t . Next, for

s ∈ Dm and recall that ms = ‖Xm,s

D0−y

‖, by the martingale property of W−y
t ,

P̃−y

[
1Et,1∩Et,2

∑
s∈Dm∩[kt ,t]

W
m,s,−y
t−s

∣∣∣ξλ0,m
]

≤ P̃−y

[
1Et,1∩Et,2

∑
s∈Dm∩[kt ,t]

Wm,s,−y
t−s

∣∣∣ξλ0,m
]

= 1Et,1∩Et,2

∑
s∈Dm∩[kt ,t]

Pmsδ
ξ
λ0
s

(
Wm,s,−y

t−s |ξλ0 ,m
)= 1Et,1∩Et,2

∑
s∈Dm∩[kt ,t]

e−λ0ξ
λ0
s ms

≤ 1Et,1

∑
s∈Dm∩[kt ,t]

e−λ0ξ
λ0
s /21{ms>1} + 1Et,1

∑
s∈Dm∩[kt ,t]

e−λ0ξ
λ0
s ms1{ms≤1}

≤ e−λ0k
1/6
t /2

∑
s∈Dm∩[kt ,t]

1{ms>1} + e−λ0k
1/6
t

∑
s∈Dm∩[kt ,t]

ms1{ms≤1}.

(3.25)

Taking expectation with respect to m in (3.25), we get

P̃−y

[
1Et,1∩Et,2

∑
s∈Dm∩[kt ,t]

W
m,s,−y
t−s

∣∣∣ξλ0

]

≤ e−λ0k
1/6
t /2P̃−y

[ ∑
s∈Dm∩[kt ,t]

1{ms>1}
∣∣∣ξλ0

]
+ e−λ0k

1/6
t P̃−y

[ ∑
s∈Dm∩[kt ,t]

ms1{ms≤1}
∣∣∣ξλ0

]

= e−λ0k
1/6
t /2

∫ t

kt

ds

∫ ∞

1
rν(dr) + e−λ0k

1/6
t

∫ t

kt

ds

∫ 1

0
r2ν(dr)

≤ te−λ0k
1/6
t /2

∫ ∞

1
rν(dr) + te−λ0k

1/6
t

∫ 1

0
r2ν(dr) ≤ C3te

−λ0k
1/6
t /4

(3.26)
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for some constant C3. Similarly, for large t such that for all u ≥ k
1/3
t , (y + u) ≤ eλ0u/4, we have

P̃−y

[
1Et,1

∫
[kt ,t]

∫
D

〈
(y + ·)e−λ0·,wλ0

Dt−s−y

〉
N λ0

(
ds × dwλ0

)∣∣∣ξλ0

]
= 2β1Et,1

∫ t

kt

N
ξ

λ0
s

(〈
(y + ·)e−λ0·,wλ0

Dt−s−y

〉|ξλ0
)

ds

= 2β1Et,1

∫ t

kt

Pδ
ξ
λ0
s

(
V

−y
t−s |ξλ0

)
ds = 2β1Et,1

∫ t

kt

e−λ0ξ
λ0
s
(
y + ξλ0

s

)
ds

≤ 2βte−3λ0k
1/6
t /4 ≤ 2βte−λ0k

1/6
t /4.

(3.27)

For large t such that for all u ≥ k
1/3
t , (y + u) ≤ eλ0u/4, we also have

P̃−y

[
1Et,1∩Et,2

∑
s∈Dm∩[kt ,t]

V
m,s,−y
t−s

∣∣∣ξλ0,m
]

= 1Et,1∩Et,2

∑
s∈Dm∩[kt ,t]

Pmsδ
ξ
λ0
s

(
V

m,s,−y
t−s |ξλ0,m

)
= 1Et,1∩Et,2

∑
s∈Dm∩[kt ,t]

e−λ0ξ
λ0
s
(
y + ξλ0

s

)
ms ≤ 1Et,1∩Et,2

∑
s∈Dm∩[kt ,t]

e−3λ0ξ
λ0
s /4ms

≤ e−λ0k
1/6
t /4

∑
s∈Dm∩[kt ,t]

1{ms>1} + e−3λ0k
1/6
t /4

∑
s∈Dm∩[kt ,t]

ms1{ms≤1}.

(3.28)

Taking expectation with respect to m in (3.28), we obtain that for some constant C4,

P̃−y

[
1Et,1∩Et,2

∑
s∈Dm∩[kt ,t]

V
m,s,−y
t−s

∣∣∣ξλ0

]
≤ te−λ0k

1/6
t /4

∫ ∞

1
rν(dr) + te−3λ0k

1/6
t /4

∫ 1

0
r2ν(dr)

≤ C4te
−λ0k

1/6
t /4.

(3.29)

Combining (3.24), (3.26), (3.27) and (3.29), we get that

P̃−y
[
1Et,1∩Et,2

(
Ṽ

−y,[kt ,t]
t + W̃

−y,[kt ,t]
t

)|ξλ0
]≤ (C3 + C4 + 4β)te−λ0k

1/6
t /4.

On Ec
t,3 we have Ṽ

−y,[kt ,t]
t + W̃

−y,[kt ,t]
t > 1/t2. Then for t large enough such that k

1/6
t > 16 log t/λ0, we have

P̃−y
[
1Et,1∩Et,2∩Ec

t,3
|ξλ0

]≤ t2P̃−y
[
1Et,1∩Et,2

(
Ṽ

−y,[kt ,t]
t + W̃

−y,[kt ,t]
t

)|ξλ0
]

≤ (C3 + C4 + 4β)t3e−λ0k
1/6
t /4 ≤ (C3 + C4 + 4β)t−1.

The proof is complete. �

Lemma 3.6. For any y > 0, we have

(3.30) lim
t→∞ P̃−y[Et ] = 1

and

(3.31) lim
t→∞ inf

k
1/3
t ≤u≤kt

P̃−y
[
Et |ξλ0

kt
= u

]= 1.

Proof. First, by Lemma 3.4,

(3.32) lim
t→∞ sup

u∈[k1/3
t ,kt ]

P̃−y
[
Ec

t,2|ξλ0
kt

= u
]= 0.
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By Lemma 3.5, we have

lim
t→∞ sup

u∈[k1/3
t ,kt ]

P̃−y
[
Et,1 ∩ Et,2 ∩ Ec

t,3|ξλ0
kt

= u
]= 0.

Note that

(3.33) � = Et ∪ Ec
t,2 ∪ Ec

t,1 ∪ (
Et,1 ∩ Et,2 ∩ Ec

t,3

)
.

To prove (3.31), we only need to prove that

(3.34) inf
u∈[k1/3

t ,kt ]
P̃−y

[
Et,1|ξλ0

kt
= u

]→ 1, as t → ∞.

Recall that under P̃−y , y + ξ
λ0
t is a Bessel-3 process starting from y. Now let ηt := ξ

λ0
t + y. Then (η, P̃−y) is equal in

law to (η, 	̃y). For any u ∈ [k1/3
t , kt ], by the Markov property and Lemma 2.4, we have

P̃−y
[
Et,1|ξλ0

kt
= u

]≥ 	̃y+u

(
min

r∈[0,t−kt ]
ηr ≥ k

1/6
t + y

)
= 1

y + u
	0

[
(Bt−kt + y + u)1{minr∈[0,t−kt ] Br≥k

1/6
t −u}

]
.

(3.35)

Set a = u − k
1/6
t ≥ 0. Then using the fact that 	0Bt∧τ−a = 0 for any t ≥ 0, we have

0 = 	0B(t−kt )∧τ−a = −a	0(τ−a < t − kt ) + 	0(Bt−kt 1{τ−a≥t−kt }).

Also note that by Lemma 2.2,

	0(τ−a ≤ t − kt ) = 2
∫ ∞

a/
√

t−kt

1√
2π

e−x2/2 dx.

Then the right-hand of (3.35) is equal to

1

y + u
	0

[
Bt−kt 1{τ−a≥t−kt } + (y + u)1{τ−a≥t−kt }

]
= 1 − 2(y + k

1/6
t )

y + u

∫ ∞

(u−k
1/6
t )/

√
t−kt

1√
2π

e−x2/2 dx.

(3.36)

By (3.35) and (3.36), we get

P̃−y
[
Et,1|ξλ0

kt
= u

]≥ 1 − 2(y + k
1/6
t )

y + k
1/3
t

∫ ∞

0

1√
2π

e−x2/2 dx.

By the assumption on kt , we get (3.34).
Now we prove (3.30). We claim that

(3.37) P̃−y
[
k

1/3
t ≤ ξ

λ0
kt

≤ kt

]= 	̃y

[
k

1/3
t + y ≤ ηkt ≤ kt + y

]→ 1, as t → ∞.

In fact, by Theorem 3.2 of [26], limt→∞ log(ηt )/ log t = 1/2, 	̃y -a.s. Using the fact that kt → ∞ as t → ∞, we get
(3.37) holds. Combining (3.37) and (3.32), we have

(3.38) lim
t→∞ P̃−y

[
Ec

t,2

]= 0.

Combining (3.37) and (3.34), we have

(3.39) lim
t→∞ P̃−y[Et,1] = 1.

It follows from Lemma 3.5 that

(3.40) lim
t→∞ P̃−y

[
Et,1 ∩ Et,2 ∩ Ec

t,3

]= 0.

Using (3.33), and combining (3.38)–(3.40), we obtain (3.30). �
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Lemma 3.7. For any y > 0, it holds that

lim sup
t→∞

tP̃−y

[
W̃

−y
t

W̃
−y
t + Ṽ

−y
t

1Et

ξ
λ0
t + y

]
≤ 2

π
.

Proof. First note that

P̃−y

[
W̃

−y
t

W̃
−y
t + Ṽ

−y
t

1Et

ξ
λ0
t + y

]
= P̃−y

[
W̃

−y,[kt ,t]
t

W̃
−y
t + Ṽ

−y
t

1Et

ξ
λ0
t + y

]
+ P̃−y

[
W̃

−y,[0,kt )
t

W̃
−y
t + Ṽ

−y
t

1Et

ξ
λ0
t + y

]
.

For the first term on the right hand, we have

P̃−y

[
W̃

−y,[kt ,t]
t

W̃
−y
t + Ṽ

−y
t

1Et

ξ
λ0
t + y

]
≤ P̃−y

[
1/t2

Ṽ
−y
t (y + k

1/6
t )

]
= 1

yt2(k
1/6
t + y)

,

here we used the property that Et ⊂ {ξλ0
t ≥ k

1/6
t }, Et ⊂ Et,3 and the equality P̃−y[ 1

Ṽ
−y
t

] =Q−y[ 1
V

−y
t

] = 1
y

. Hence,

lim
t→∞ tP̃−y

[
W̃

−y,[kt ,t]
t

W̃
−y
t + Ṽ

−y
t

1Et

ξ
λ0
t + y

]
= 0.

Therefore, we only need to prove that

(3.41) lim sup
t→∞

tP̃−y

[
W̃

−y,[0,kt )
t

W̃
−y
t + Ṽ

−y
t

1Et

ξ
λ0
t + y

]
≤ 2

π
.

Note that

(3.42)

P̃−y

[
W̃

−y,[0,kt )
t

W̃
−y
t + Ṽ

−y
t

1Et

ξ
λ0
t + y

]
≤ P̃−y

[
W̃

−y,[0,kt )
t

W̃
−y,[0,kt )
t + Ṽ

−y,[0,kt )
t

1Et

ξ
λ0
t + y

]

≤ P̃−y

[
W̃

−y,[0,kt )
t

W̃
−y,[0,kt )
t + Ṽ

−y,[0,kt )
t

1{ξλ0
kt

∈[k1/3
t ,kt ]}

]

× sup
u∈[k1/3

t ,kt ]
P̃−y

[
1

ξ
λ0
t + y

∣∣∣ξλ0
kt

= u

]
.

In the last inequality we used the Markov property of ξ . Let {(ηt )t≥0, 	̃u+y} be a Bessel-3 process starting from u + y.
By Lemmas 2.4 and 2.2, we have

P̃−y

[
1

ξ
λ0
t + y

∣∣∣ξλ0
kt

= u

]
= 	̃u+y

[
1

ηt−kt

]
= 1

u + y
	u+y[1{minr∈[0,t−kt ] Br>0}]

= 1

u + y
	0(τ−(y+u) > t − kt ) = 2

y + u

∫ (y+u)/
√

t−kt

0

1√
2π

e−x2/2 dx.

(3.43)

By (3.42) and (3.43), we get

P̃−y

[
W̃

−y,[0,kt )
t

W̃
−y
t + Ṽ

−y
t

1Et

ξ
λ0
t + y

]
≤ P̃−y

[
W̃

−y,[0,kt )
t

W̃
−y,[0,kt )
t + Ṽ

−y,[0,kt )
t

1{ξλ0
kt

∈[k1/3
t ,kt ]}

]

× sup
u∈[k1/3

t ,kt ]

2

y + u

∫ (y+u)/
√

t−kt

0

1√
2π

e−x2/2 dx.

(3.44)
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Because limε→0+ 2
ε

∫ ε

0 e−x2/2/
√

2π dx = √
2/π and (y + u)/

√
t − kt converges to 0 uniformly on u ∈ [k1/3

t , kt ] as t →
∞, we have

(3.45) sup
u∈[k1/3

t ,kt ]

2
√

t

y + u

∫ (y+u)/
√

t−kt

0

1√
2π

e−x2/2 dx →
√

2

π
.

Using the Markov property at time kt again, we get

P̃−y

[
W̃

−y,[0,kt )
t

W̃
−y,[0,kt )
t + Ṽ

−y,[0,kt )
t

1Et

]

≥ P̃−y

[
W̃

−y,[0,kt )
t

W̃
−y,[0,kt )
t + Ṽ

−y,[0,kt )
t

1{ξλ0
kt

∈[k1/3
t ,kt ]}

]
· inf
u∈[k1/3

t ,kt ]
P̃−y

[
Et |ξλ0

kt
= u

]
.

(3.46)

Because W̃
−y,[0,kt )
t /(W̃

−y,[0,kt )
t + Ṽ

−y,[0,kt )
t ) · 1Et ≤ 1, the left-hand of (3.46) is bounded above by

P̃−y

[
W̃

−y,[0,kt )
t

W̃
−y,[0,kt )
t + Ṽ

−y,[0,kt )
t

1Et

]

≤ P̃−y

[
W̃

−y,[0,kt )
t

W̃
−y,[0,kt )
t + Ṽ

−y,[0,kt )
t

1Et 1{Ṽ −y
t >1/t}

]
+ P̃−y

[
Ṽ

−y
t ≤ 1

t

]

≤ P̃−y

[
W̃

−y,[0,kt )
t

Ṽ
−y,[0,kt )
t

1Et 1{Ṽ −y
t >1/t}

]
+ 1

t
P̃−y

[
1

Ṽ
−y
t

]
= P̃−y

[
W̃

−y,[0,kt )
t

Ṽ
−y,[0,kt )
t

1Et 1{Ṽ −y
t >1/t}

]
+ 1

ty
,

(3.47)

where in the last inequality we used the Markov inequality for (Ṽ
−y
t )−1. Fix a constant η ∈ (0,1), on Et ∩ {Ṽ −y

t > 1/t},
we have, for large t such that t > η−1, Ṽ

−y,[kt ,t]
t ≤ ηṼ

−y
t . So when t is large, using (3.47), we have

P̃−y

[
W̃

−y,[0,kt )
t

W̃
−y,[0,kt )
t + Ṽ

−y,[0,kt )
t

1Et

]
≤ 1

ty
+ 1

1 − η
P̃−y

[
W̃

−y
t

Ṽ
−y
t

]
.

By (3.10), we have

(3.48) P̃−y

[
W̃

−y,[0,kt )
t

W̃
−y,[0,kt )
t + Ṽ

−y,[0,kt )
t

1Et

]
≤

√
2/π

(1 − η)
√

t
+ o

(
1√
t

)
, as t → ∞.

By (3.31), (3.44), (3.45), (3.46) and (3.48), we finally get that

lim sup
t→∞

tP̃−y

[
W̃

−y,[0,kt )
t

W̃
−y
t + Ṽ

−y
t

1Et

ξ
λ0
t + y

]
≤ 2

π(1 − η)
.

Since the above holds for any small η ∈ (0,1), (3.41) holds. The proof is complete. �

Proof of Proposition 3.3. Applying Lemmas 3.2 and 3.7, and (3.16), we get

lim sup
t→∞

P̃−y

[( √
tW̃

−y
t

Ṽ
−y
t + W̃

−y
t

−
√

2

π

)2]

= lim sup
t→∞

{
P̃−y

[( √
tW̃

−y
t

Ṽ
−y
t + W̃

−y
t

)2]
− 2

π

}
− 2

√
2

π
lim

t→∞

{
P̃−y

[ √
tW̃

−y
t

Ṽ
−y
t + W̃

−y
t

]
−
√

2

π

}
≤ 0,

which means that (3.13) holds. �

Proof of Theorem 1.1. Let Rλ0 and R̃λ0 be the smallest closed set containing
⋃

t≥0 suppX
λ0
t and

⋃
t≥0 supp X̃

λ0
t ,

respectively. Then by [20, Corollary 3.2], under condition (1.6), P(infRλ0 > −∞) = 1. So for any 0 < η < P(Ec),
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there exists K > 0 such that P(infRλ0 > −K) > 1 − η. Let y := K be fixed and define �k := {infRλ0 > −K} and
�̃k := {inf R̃λ0 > −K}. Then

P
(
�K ∩ Ec

)≥ P(�K) + P
(
Ec
)− 1 > 1 − η + P

(
Ec
)− 1 > 0.

For any ε > 0, put

Gt =
{∣∣∣∣ √

tW
−y
t

V
−y
t + W

−y
t

−
√

2

π

∣∣∣∣> ε

}
, G̃t =

{∣∣∣∣ √
tW̃

−y
t

Ṽ
−y
t + W̃

−y
t

−
√

2

π

∣∣∣∣> ε

}
.

Define P∗∗(·) = P(·|�K ∩ Ec). By (3.13) we have limt→∞ P̃−y[G̃t ] = 0. Thus,

P(�K ∩ Ec)

y
lim

t→∞P∗∗[V −y
t 1Gt

]= lim
t→∞ P̃−y

[
G̃t ∩ �̃K ∩ Ẽc

]= lim
t→∞ P̃−y[G̃t ] = 0,

where Ẽ := {∃t ≥ 0 such that ‖X̃λ0
t ‖ = 0} with P̃−y -probability 0. Then by Proposition 3.3, we have

(3.49) V
−y
t 1Gt −−−→

t→∞ 0 in probability with respect to P∗∗.

Notice that on the event �K = {infRλ0 > −K}, we have

V
−y
t = V −K

t = ∂Wt + KWt > 0, W
−y
t = W−K

t = Wt,

and limt→∞ V
−y
t = ∂W∞ > 0 P∗∗-a.s.. Together with (3.49) we get limt→∞ P∗∗[Gt ] = 0 for any ε > 0, which says

(3.50)

√
tW

−y
t

V
−y
t + W

−y
t

=
√

tWt

∂Wt + (K + 1)Wt

−−−→
t→∞

√
2

π
in probability with respect to P∗∗.

Recall that P(Ec) = 1 − e−λ∗
> 0 and P∗∗(Wt > 0,∀t > 0) = P∗∗(limt→∞ Wt > 0) = 1. According to (3.50) we get

∂Wt√
tWt

−−−→
t→∞

√
π

2
in probability with respect to P∗∗.

For any γ > 0, define

At =
{∣∣∣∣ ∂Wt√

tWt

−
√

π

2

∣∣∣∣> γ

}
.

Then limt→∞ P∗∗[1At ] = 0. Noticing that P∗(·) = P(·|Ec) and P∗[1At 1�K
] = P∗∗[1At ]P(�K ∩Ec)/P(Ec), we obtain that

1At 1�K
−−−→
t→∞ 0 in probability with respect to P∗,

which means lim supt→∞ P∗(At ) ≤ limt→∞ P∗(At ∩ �K) + P∗(�c
K) ≤ η/P(Ec). Since η is arbitrary, we deduce that

limt→∞ P∗(At ) = 0 for any γ > 0, which says

∂Wt√
tWt

−−−→
t→∞

√
π

2
in probability with respect to P∗.

This is also equivalent to say that, on the event Ec, we have

(3.51)
√

tWt −−−→
t→∞

√
2

π
∂W∞ in probability with respect to P

On E , (3.51) holds obviously. The proof is now complete. �
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4. Proof of Theorem 1.2

Recall the definitions of the process {(Zt ,�t )t≥0} and the probability measures P(μ,η) and Pμ with μ ∈ M(R) and
η ∈ Ma(R), defined in Section 2.3. Set P := Pδ0 . By the skeleton decomposition for X, (�t ,P) is equal in law to (X,P).
To prove Theorem 1.2, we only need to prove that on survival event (E�)c where E� := {limt→∞ ‖�t‖ = 0},
(4.1) lim sup

t→∞
√

t
〈
e−λ0(·+λ0t),�t

〉= +∞ P-almost surely.

The intuitive idea for proving the limit above is that the behaviour of � is determined by the skeleton Z. By branching
property of Z we only consider the law P(δ0,δ0). Let {en : n ≥ 1} be iid exponential random variables independent of Z.
Let T0 := 0 and Tn = ∑n

i=1 ei for n ≥ 1. If we look at Z at independent times {Tn : n = 1,2, . . .}, then {ZTn,n ≥ 1} is
a branching random walk. We expect the behavior of this branching random walk to dominate the behavior of �. Let
{Zn, n ≥ 1} be the translation of {ZTn,n ≥ 1} defined in (4.4) below. We will show that {Zn, n ≥ 1} satisfies conditions
of Aidekon and Shi [1]. Then by [1, Theorem 6.1],

lim inf
n→∞

(
LZ

n − 1

2
logn

)
= −∞ P(δ0,δ0)-almost surely,

where LZ
n is minimum of the support of Zn. Let LZ

t be minimum of the support of Zt . By definition (4.4), LZ
n =

λ0(L
Z
Tn

+ λ0Tn), and then we have

(4.2) lim inf
n→∞

(
λ0
(
LZ

Tn
+ λ0Tn

)− 1

2
logTn

)
= −∞ P(δ0,δ0)-almost surely.

We will bound 〈e−λ0(·+λ0Tn),�Tn〉 from below by immigrations along the path of LZ· , and then use the limit result (4.2)
for LZ

Tn
to get (4.1).

Now we prove the above rigorously. Note that

(4.3) P(·) =
∞∑

k=0

(λ∗)k

k! e−λ∗
P(δ0,kδ0)(·),

and P(E�) = P(E) = e−λ∗
. It is obvious that P(δ0,0δ0)(E�) = 1. Together with (4.3), we know that for k ≥ 1,

P(δ0,kδ0)(E�) = 0. Thus, to prove Theorem 1.2, it suffices to show that, for any k ≥ 1, the limsup in (1.8) is valid P(δ0,kδ0)-
almost surely. By the branching property, without loss of generality, we only need to deal with the case of k = 1.

Let {en : n ≥ 1} be iid exponential random variables with parameter κ ∈ (0,∞), independent of Z. Put T0 := 0 and
Tn =∑n

i=1 ei for n ≥ 1. Now for n ≥ 1, we define Zn so that, for any f ∈ B+
b (R),

(4.4) 〈f,Zn〉 = 〈
f
(
λ0(· + λ0Tn)

)
,ZTn

〉
.

Then {(Zn)n≥1,P(δ0,δ0)} is a branching random walk. Define m :=∑
n≥0 npn = F ′(1−), where we used (2.14). It is easy

to check that λ0 = √
2ψ ′(λ∗)(m − 1). We first check that the conditions of [1, Theorem 6.1] for Z are satisfied. More

precisely, under assumption (1.7), (1.1) (1.2) and (1.3) hold. For simplicity, we define

WZ
n := 〈

e−·,Zn

〉
, DZ

n := 〈·e−·,Zn

〉
, DZ,2

n := 〈
(·)2e−·,Zn

〉
, DZ,+

n := 〈
(·)+e−·,Zn

〉
.

The additive martingale associated to Z with parameter λ is defined as

(4.5) WZ
s (λ) := e−λcλs

〈
e−λ·,Zs

〉= e−(λ−λ0)
2s/2〈e−λ(·+λ0s),Zs

〉
,

where cλ := λ/2 + ψ ′(λ∗)(m − 1)/λ = (λ2 + λ2
0)/(2λ) and λcλ = (λ − λ0)

2/2 + λλ0.

Lemma 4.1. If
∑

n≥1 n(logn)2pn < ∞, then

(4.6) P(δ0,δ0)

[
WZ

1

]= 1, P(δ0,δ0)

[
DZ

1

]= 0, P(δ0,δ0)

[
D

Z,2
1

]
< ∞

and

(4.7) P(δ0,δ0)

[
WZ

1 log2+ WZ
1

]
< ∞, P(δ0,δ0)

[
D

Z,+
1 log+ D

Z,+
1

]
< ∞.
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Proof. Step 1: Define WZ
s and DZ

s by

WZ
s := 〈

e−λ0(·+λ0s),Zs

〉
, DZ

s := 〈
(· + λ0s)e

−λ0(·+λ0s),Zs

〉
.

Then by [19], WZ
s and DZ

s are the additive martingale and the derivative martingale associated to the branching Brownian
motion Z in the critical case λ = λ0 respectively.

By some direct calculation and the martingale property, we have

P(δ0,δ0)

[
WZ

1

]=
∫ ∞

0
κe−κsP(δ0,δ0)

[
WZ

s

]
ds =

∫ ∞

0
κe−κs ds = 1,

P(δ0,δ0)

[
DZ

1

]=
∫ ∞

0
κe−κsP(δ0,δ0)

[
DZ

s

]
ds = 0.

Now define

DZ,2
s := λ2

0

〈
(· + λ0s)

2e−λ0(·+λ0s),Zs

〉
.

Using the many-to-one formula, we get

P(δ0,δ0)

[
D

Z,2
1

]=
∫ ∞

0
κe−κsP(δ0,δ0)

[
DZ,2

s

]
ds =

∫ ∞

0
κe−κsλ2

0e
λ2

0s/2	0
[
(Bs + λ0s)

2e−λ0(Bs+λ0s)
]

ds

= λ2
0

∫ ∞

0
κe−κs	

−λ0
0

[
(Bs + λ0s)

2]ds = λ2
0

∫ ∞

0
κse−κs ds < ∞.

Thus, (4.6) holds.
Step 2: In this step we prove the first inequality of (4.7). Define a new probability QZ by

dQZ

dP(δ0,δ0)

∣∣∣∣
σ(Z1

r ,r≤s)

:= WZ
s , s ≥ 0.

Then under QZ , Z has the following spine decomposition:
(i) There is a initial marked particle moving as a Brownian motion with drift −λ0 starting from 0, we denote the

trajectory of this particle by ws .
(ii) The branching rate of this marked particle is ψ ′(λ∗)m and the offspring distribution of the marked particle is given

by p̃n := npn/m, n = 1,2, . . . .
(iii) When the marked particle dies, given the number of the offspring, mark one of its offspring uniformly.
(iv) The unmarked individuals evolve independently as Z under P(δ0,δ0).
Note that

(4.8) P(δ0,δ0)

[
WZ

1 log2+ WZ
1

]=
∫ ∞

0
κe−κsP(δ0,δ0)

[
WZ

s log2+ WZ
s

]
ds.

By a change of measure, we have

P(δ0,δ0)

[
WZ

s log2+ WZ
s

]=QZ
[
log2+ WZ

s

]
.

Let A > 4 be a constant such that

(4.9) logA(logA − 2 log 2) ≥ sup
a≥1

(
log2(a + 1) − log2 a

)
.

There exists such an A since for all a ≥ 1, by the inequality ln(x + 1) ≤ x, we have

log2+(a + 1) − log2+ a = (
log(a + 1) + loga

)(
log

(
1 + a−1))≤ (2a − 1) × a−1 < 2.

Now let b, c ≥ A. Using (4.9), it is easy to check that the inequality

(4.10) log2(b + c) ≤ log2 b + log2 c
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holds by assuming b ≥ c and b = ac. For � ≥ 1, we use �� to denote the �-th fission time of the spine under QZ , and O�

the number of offspring at the fission time ��. Then

WZ
s =

∑
�≥1

1{��≤s}e−λ2
0��W

Z,��

s−��
1{e−λ2

0��W
Z,��
s−��

<A}

+
∑
�≥1

1{��≤s}e−λ2
0��W

Z,��

s−��
1{e−λ2

0��W
Z,��
s−��

≥A} + e−λ0(ws+λ0s)

=: H1 + H2 + H3,

(4.11)

where, given the information along the spine, WZ,�� is the additive martingale associated with the branching Brown-
ian motion starting from the O� − 1 unmarked individuals. Note that for any x, y, z > 0, we have log2+(x + y + z) ≤
log2+(3x) + log2+(3y) + log2+(3z) and log2+ x ≤ 4x. Then (4.11) implies that

(4.12) log2+ WZ
s ≤ log2+(3H1) + log2+(3H2) + log2+(3H3) ≤ 12H1 + log2+(3H2) + log2+(3H3).

Since H1 ≤ A
∑

�≥1 1{��≤s}, we have

(4.13) QZ[H1] ≤ A

∫ s

0
ψ ′(λ∗)mdr = Aψ ′(λ∗)ms.

Also, note that ws + λ0s under QZ is a standard Brownian motion, so

QZ
[
log2+(3H3)

]≤ 2(log 3)2 + 2QZ
[
log2+(H3)

]
≤ 2(log 3)2 + 2λ2

0Q
Z(ws + λ0s)

2 = 2(log 3)2 + 2λ2
0s.

(4.14)

Here in the first inequality above we used the inequality

(4.15) log2+(ab) ≤ (log+ a + log+ b)2 ≤ 2 log2+ a + 2 log2+ b.

Define

W
Z,��

s−��
:= eλ0w�� W

Z,��

s−��
.

Using (4.10) and (4.15) again, we deduce that

log2+(3H2) ≤ 2(log 3)2 + 2 log2+(H2)

≤ 2(log 3)2 + 2
∑
�≥1

1{��≤s}1{e−λ2
0��W

Z,��
s−��

≥A} log2+
[
e−λ2

0��W
Z,��

s−��

]
≤ 2(log 3)2 + 4

∑
�≥1

1{��≤s} log2+ W
Z,��

s−��
+ 4

∑
�≥1

1{��≤s} log2+
(
e−λ0(w��

+λ0��)
)

≤ 2(log 3)2 + 4
∑
�≥1

1{��≤s} log2+ W
Z,��

s−��
+ 4λ2

0

∑
�≥1

1{��≤s}(w��
+ λ0��)

2.

(4.16)

Similarly, we have

(4.17) QZ

[∑
�≥1

1{��≤s}(w��
+ λ0��)

2
]

= ψ ′(λ∗)m∫ s

0
QZ

[
(wr + λ0r)

2]dr = ψ ′(λ∗)ms2/2.

Now given w, �� and O�, by the spatial homogeneity of branching Brownian motion, we have that QZ[WZ,��

s−��
|w,��,

O�] = O� − 1. By the branching property of Z, we have W
Z,��

s−��
= ∑O�−1

j=1 W
Z,��,j

s−��
, where W

Z,��,j

s−��
, j = 1, . . . ,O� − 1,

are independent and have the same distribution given w, �� and O�. Thus,

(4.18) QZ
[
log2+ W

Z,��

s−��
|w,��,O�

]≤ 2 log2+(O� − 1) + 2QZ
[
log2+

(
max

j≤O�−1
W

Z,��,j

s−��

)∣∣w,��,O�

]
.
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By the Markov inequality,

QZ
[
log2+

(
max

j≤O�−1
W

Z,��,j

s−��

)∣∣w,��,O�

]
=
∫ ∞

0
2y dyQZ

[
max

j≤O�−1
W

Z,��,j

s−��
> ey

∣∣w,��,O�

]
=
∫ ∞

0
2y dy

[
1 −

∏
j≤O�−1

(
1 −QZ

[
W

Z,��,j

s−��
> ey |w,��,O�

])]

≤
∫ ∞

0
2y dy

[
1 −

∏
j≤O�−1

(
1 − e−y

)]=
∫ ∞

0
2y
[
1 − (

1 − e−y
)O�−1]dy.

(4.19)

When O� − 1 < ey/2, using the fact that (1 − x)k ≥ 1 − kx for all x ≤ 1, we get

2y
[
1 − (

1 − e−y
)O�−1]≤ 2y(O� − 1)e−y ≤ 2ye−y/2;

while when O� − 1 ≥ ey/2, which is equivalent to y ≤ 2 log(O� − 1), we have

2y
[
1 − (

1 − e−y
)O�−1]≤ 2y ≤ 4 log(O� − 1).

Hence, combining (4.18) and (4.19), we get

(4.20) QZ
[
log2+ W

Z,��

s−��
|w,��,O�

]≤ 18 log2(O� − 1) +
∫ ∞

0
4ye−y/2 dy.

By (4.16), (4.17) and (4.20), we obtain

QZ
[
log2+(3H2)

]≤ 2(log 3)2 + 2λ2
0ψ

′(λ∗)ms2 + 4QZ

[∑
�≥1

1{��≤s}18 log2(O� − 1)

]

+ 4
∫ ∞

0
4ye−y/2 dyQZ

[∑
�≥1

1{��≤s}
]

= K1 + K2s + K3s
2,

(4.21)

here

K1 = 2(log 3)2, K2 = 4ψ ′(λ∗)m∫ ∞

0
4ye−y/2 dy + 72ψ ′(λ∗)∑

k≥2

k log2(k − 1)pk,

K3 = 2λ2
0ψ

′(λ∗)m.

By (4.8), (4.12), (4.13), (4.14) and (4.21), we deduce that P(δ0,δ0)[WZ
1 log2+ WZ

1 ] < ∞.
Step 3: In this step we prove the second inequality of (4.7). We use similar arguments as in Step 2. First we have

(4.22) P(δ0,δ0)

[
D

Z,+
1 log+ D

Z,+
1

]=
∫ ∞

0
κe−κs dsP(δ0,δ0)

[
DZ,+

s log+ DZ,+
s

]
,

here

DZ,+
s := λ0

〈
(· + λ0s)+e−λ0(·+λ0s),Zs

〉
.

For any ε > 0, there exists a constant Kε > 0 such that supx∈R[(x)+e−εx] ≤ Kε . Using the definition (4.5) of the additive
martingale WZ

t (λ), one can easily get that

DZ,+
s ≤ Kελ0

〈
e−(λ0−ε)(·+λ0s),Zs

〉= Kελ0e
ε2s/2WZ

s (λ0 − ε).
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By the inequality log+(xy) ≤ log+ x + log+ y and the equality P(δ0,δ0)[WZ
s (λ0 − ε)] = 1, we get

P(δ0,δ0)

[
DZ,+

s log+ DZ,+
s

]
≤ Kελ0e

ε2s/2 log+
(
Kελ0e

ε2s/2)+ Kελ0e
ε2s/2P(δ0,δ0)

[
WZ

s (λ0 − ε) log+ WZ
s (λ0 − ε)

]
.

(4.23)

By (4.22) and (4.23), to complete the proof, it suffices to prove that, for fixed ε2/2 < κ , we have

(4.24)
∫ ∞

0
e−(κ−ε2/2)s dsP(δ0,δ0)

[
WZ

s (λ0 − ε) log+ WZ
s (λ0 − ε)

]
< ∞.

As in Step 2, we define QZ,ε by

dQZ,ε

dP(δ0,δ0)

∣∣∣∣
σ(Zr ,r≤s)

:= WZ
s (λ0 − ε), s ≥ 0.

Then Z has another spine decomposition, which is the same as the spine decomposition at the beginning of Step 2 except
with λ0 replaced by λ0 − ε, also see [19, page 59–60]. Set g(t) = e−ε2t/2−(λ0−ε)λ0t . Using the same notation as in Step 2,
we have

WZ
s (λ0 − ε) =

∑
�≥1

1{��≤s}g(��)W
Z,��

s−��
(λ0 − ε)1{g(��)W

Z,��
s−��

(λ0−ε)<A}

+
∑
�≥1

1{��≤s}g(��)W
Z,��

s−��
(λ0 − ε)1{g(��)W

Z,��
s−��

(λ0−ε)≥A} + g(s)e−(λ0−ε)ws

=: H1 + H2 + H3,

where A > 1 is a constant such that logA > 1 ≥ supa≥1[log(1 + a) − loga], which means that log(b + c) ≤ logb + log c

for all b, c ≥ A. Also note that (4.12) and H1 ≤ A
∑

�≥1 1{��≤s} still hold. And we have

QZ,ε
[
log+(3H3)

]≤ log 3 + sε(λ0 − ε/2) + (λ0 − ε)QZ,ε
∣∣ws + (λ0 − ε)s

∣∣
= log 3 + sε(λ0 − ε/2) + (λ0 − ε)

√
2

π

√
s.

Similarly we define W
Z,��

s−��
(λ0 − ε) by

W
Z,��

s−��
(λ0 − ε) := e(λ0−ε)w�� W

Z,��

s−��
(λ0 − ε).

Then using an argument similar to (4.16), we have

log+(3H2) ≤ log 3 + log+ H2

≤ log 3 +
∑
�≥1

1{��≤s} log+
(
g(��)e

−(λ0−ε)w��

)+
∑
�≥1

1{��≤s} log+ W
Z,��

s−��
(λ0 − ε)

and

QZ,ε

[∑
�≥1

1{��≤s} log+
(
g(��)e

−(λ0−ε)w��

)]≤ ψ ′(λ∗)m∫ s

0

[
QZ,ε

∣∣wr + (λ0 − ε)r
∣∣+ ε

(
λ0 − ε

2

)
r

]
dr.

Since (4.18) and (4.19) hold with W
Z,��

s−��
replaced by W

Z,��

s−��
(λ0 − ε) (we only use the martingale property and branching

property), (4.20) holds for W
Z,��

s−��
(λ0 − ε). Applying Jensen’s inequality for W

Z,��

s−��
(λ0 − ε) in (4.20), we finally deduce

that there exist constants Kε
j , j = 1,2,3,4,5, such that for all s ≥ 0,

(4.25) P(δ0,δ0)

[
WZ

s (λ0 − ε) log+ WZ
s (λ0 − ε)

]≤ Kε
1 + Kε

2

√
s + Kε

3 s + Kε
4 s3/2 + Kε

5 s2.

Combining (4.23), (4.24) and (4.25), we obtain P(δ0,δ0)[DZ,+
1 log+ D

Z,+
1 ] < ∞. �
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Lemma 4.2. If (1.7) holds, then
∑

n≥1 n(logn)2pn < ∞.

Proof. By the definition of {pn : n ≥ 2}, we only need to prove that

(4.26)
∫

(0,∞)

∑
n≥2

n(logn)2 (λ∗x)n

n! e−λ∗xν(dx) < ∞.

Define h(x) := (log(1 + x))2, then h′′(x) = 2
(1+x)2 (1 − log(1 + x)). When x ≥ 2 > e − 1, h′′(x) < 0, which implies h is

concave in [2,∞). By Jensen’s inequality,∑
n≥3

n(logn)2 (λ∗x)n

n! e−λ∗x = λ∗x
∑
n≥2

(
log(1 + n)

)2 (λ∗x)n

n! e−λ∗x

≤ (
λ∗x

)[∑
n≥2

(λ∗x)n

n! e−λ∗x
]{

log

[∑
n≥2 n(λ∗x)ne−λ∗x/n!∑
n≥2(λ

∗x)ne−λ∗x/n! + 1

]}2

≤ λ∗x
{

log

[
λ∗x(1 − e−λ∗x)

1 − e−λ∗x − e−λ∗xλ∗x
+ 1

]}2

.

(4.27)

Since

lim
x→∞ log

[
λ∗x(1 − e−λ∗x)

1 − e−λ∗x − e−λ∗xλ∗x
+ 1

]
/ logx = 1,

there exists K > 0 such that when x ≥ K , we have

(4.28) log

[
λ∗x(1 − e−λ∗x)

1 − e−λ∗x − e−λ∗xλ∗x
+ 1

]
≤ 2 logx.

Together with (4.26), (4.27) and (4.28), we complete the proof. �

Proof of Theorem 1.2. By the first two paragraphs of this section, to prove Theorem 1.2, it suffices to show that, the
limsup in (1.8) is valid P(δ0,δ0)-almost surely.

Case 1: β �= 0. Let LZ
t be the left-most point of Zt . Note that, for any x ∈R,

NE
x

(〈1,w1〉 > 0
)= lim

θ→+∞NE
x

(
1 − e−θ〈1,w1〉)= lim

θ→+∞− logPEδx

[
e−θ〈1,X1〉]

= − logPEδ0

[‖X1‖ = 0
]=NE

0

(〈1,w1〉 > 0
) ∈ (0,∞).

Suppose that the continuous immigrations in the skeleton decomposition of X along the trajectory of LZ
t such that

〈1,w1〉 > 0 are given by {(τn, X̄
(1,τn)) : n = 1,2, . . .}. Then it is obvious that {τn − τn−1 : n = 1,2, . . .} are iid and

independent of Z. The law of τn − τn−1 is exponential with parameter 2βNE
0 (〈1,w1〉 > 0) and the law of the immigration

is
N
E
LZ

τn

(·∩{〈1,w1〉>0})
N
E
0 (〈1,w1〉>0)

.

Since (1.7) holds, using Lemmas 4.1 and 4.2 with Tn = τn, we know that Zn satisfies (1.1), (1.2) and (1.3). Noticing
that the left support of Zn is λ0(L

Z
τn

+ λ0τn), by [1, Theorem 6.1],

(4.29) lim inf
n→∞

(
λ0
(
LZ

τn
+ λ0τn

)− 1

2
logn

)
= −∞, P(δ0,δ0)-a.s.

By the strong law of large numbers, τn/n → (2β)−1 as n → ∞. Hence, (4.29) is equivalent to

(4.30) lim inf
n→∞

(
λ0
(
LZ

τn
+ λ0τn

)− 1

2
log τn

)
= −∞, P(δ0,δ0)-a.s.

Define W�
t by

W�
t := 〈

e−λ0(·+λ0t),�t

〉
.
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Then

(4.31)
√

τn + 1
〈
e−λ0(·+λ0(τn+1)),�τn+1

〉≥ √
τn

〈
e−λ0(·+λ0(τn+1)), X̄

(1,τn)
1

〉=: HnJn.

Here Hn and Jn are defined as

Hn := √
τne

−λ0(L
Z
τn

+λ0τn), Jn := e−λ2
0
〈
e−λ0(·−LZ

τn
), X̄

(1,τn)
1

〉
.

Then by the construction of the continuous immigration in the skeleton decomposition and the spatial homogeneity of
super-Brownian motion, we deduce that {Jn : n = 1,2, . . .} are iid and for every n, Jn is independent of σ(H�, � ≥ 1).
Define Gn := σ(H�,J� : 1 ≤ � ≤ n). By (4.30), we have lim supn→∞ Hn = +∞, P(δ0,δ0)-a.s., which together with the
second Borel–Cantelli lemma (see e.g. [8, Theorem 5.3.2]) is equivalent to that, for any K > 0,

(4.32)
∞∑

n=1

P(δ0,δ0)[Hn > K|Gn−1] = +∞, P(δ0,δ0)-a.s.

Now it is clear that P(δ0,δ0)(Jn > 0) = 1, so there exists a constant ε > 0 such that for all n ≥ 1, P(δ0,δ0)(Jn > ε) > 0. By
(4.32) and the independence between Jn and Gn−1, we deduce that, for any K > 0,

∞∑
n=1

P(δ0,δ0)[HnJn > K|Gn−1] ≥
∞∑

n=1

P(δ0,δ0)[Jn > ε,Hn > K/ε|Gn−1]

= P(δ0,δ0)[J1 > ε]
∞∑

n=1

P(δ0,δ0)[Hn > K/ε|Gn−1] = +∞, P(δ0,δ0)-a.s.,

which is, according to the second Borel–Cantelli lemma, equivalent to

(4.33) lim sup
n→∞

HnJn = +∞, P(δ0,δ0)-a.s.

In view of (4.31) and (4.33), we get

lim sup
t→∞

√
tW�

t ≥ lim sup
n→∞

√
τn + 1

〈
e−λ0(·+λ0(τn+1)),�τn+1

〉= +∞, P(δ0,δ0)-a.s.,

which implies the desired result.
Case 2: ν �= 0. Suppose that ν((ε,+∞)) > 0 for some ε > 0. Then ν((ε,+∞)) < ∞. Suppose that the times and

masses of the discrete immigration along the trajectory of LZ
t in the skeleton decomposition with initial immigration

mass large than ε are {(τ̃n,mn) : n = 1,2, . . .}. Then {τ̃n − τ̃n−1 : n = 1,2, . . .} are iid exponential random variables
with parameter κ = ∫

(ε,∞)
ye−λ∗yν(dy), mn > ε for all n ≥ 1 with law ye−λ∗y1{y>ε}ν(dy)/

∫
(ε,∞)

ye−λ∗yν(dy), and
{τ̃n : n = 1,2, . . .} is independent of Z. Applying Lemmas 4.1 and 4.2 with Tn = τ̃n, we get

(4.34) lim inf
n→∞

(
λ0
(
LZ

τ̃n
+ λ0τ̃n

)− 1

2
log τ̃n

)
= −∞, P(δ0,δ0)-a.s.

By the same argument as Case 1, we have

(4.35)
√

τ̃n

〈
e−λ0(·+λ0τ̃n),�τ̃n

〉≥√
τ̃ne

−λ0(L
Z
τ̃n

+λ0 τ̃n)
mn > ε

√
τ̃ne

−λ0(L
Z
τ̃n

+λ0 τ̃n)
.

Combining (4.34) and (4.35), we also get the desired results. �

A byproduct of the proof of Theorem 1.2 is the following result:

Corollary 4.3. Let Lt be the minimum of the support of Xt , i.e., Lt := inf{y ∈ R : Xt((−∞, y)) > 0}. If (1.6) and (1.7)
hold, then on Ec, it holds that

(4.36) lim inf
t→∞

(
Lt + λ0t − 1

2λ0
log t

)
= −∞ P-almost surely.



1416 H. Hou, Y.-X. Ren and R. Song

Proof. Let L�
t be the minimum of the support of �t . We keep the notation in the proof of Theorem 1.2.

If ν �= 0, by the definition of L�
τ̃n

, we have L�
τ̃n

≤ LZ
τ̃n

, ∀n ≥ 1, P(δ0,δ0)-a.s. By the branching property, we deduce that

on (E�)c , L�
τ̃n

≤ LZ
τ̃n

, ∀n ≥ 1, P(δ0,δ0)-a.s. Together with (4.34), we get (4.36).
If β �= 0, for a fixed constant A, define Jn by

Jn := 〈
1(−∞,A+LZ

τn
)(·), X̄(1,τn)

1

〉= 〈
1(−∞,A)

(· − LZ
τn

)
, X̄

(1,τn)
1

〉
.

Put Hn := λ0(L
Z
τn

+ λ0τn) − 1
2 log τn. By the spatial homogeneity of super-Brownian motion, {Jn} are iid and for ev-

ery n, Jn is independent of σ(H�, � ≥ 1). We also define G̃n := σ(H�,J�,1 ≤ � ≤ n). Since P(δ0,δ0)(‖X̄(1,τn)
1 ‖ > 0) =

P(δ0,δ0)(‖X̄(1,τ1)
1 ‖ > 0) = 1 and limA→+∞ Jn = ‖X̄(1,τn)

1 ‖,P(δ0,δ0)-a.s., there exists an A such that P(δ0,δ0)(Jn > 0) =
P(δ0,δ0)(J1 > 0) > 0. We see that for any K > 0,

∞∑
n=1

P(δ0,δ0)[Jn > 0,Hn < −K|G̃n−1] = P(δ0,δ0)[J1 > 0]
∞∑

n=1

P(δ0,δ0)[Hn < −K|G̃n−1] = +∞,

P(δ0,δ0)-a.s., where in the last equality we used (4.30) and the second Borel–Cantelli lemma. Therefore, for all K > 0,
P(δ0,δ0)(Jn > 0,Hn < −K i.o.) = 1. Note that

{Jn > 0,Hn < −K} ⊂
{
λ0
(
L�

τn+1 + λ0τn

)− 1

2
log τn < −K + λ0A

}
,

we get

P(δ0,δ0)

(
λ0
(
L�

τn+1 + λ0τn

)− 1

2
log τn < −K + λ0A i.o.

)
= 1.

Since (τn + 1)/τn → 1 as n → ∞ and K is arbitrary, we get that (4.36) holds P(δ0,δ0)-almost surely. By the branching
property argument, we get the desired result. �
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