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Abstract

In this paper, we establish limit theorems for the supremum of the support, denoted by Mt , of a
upercritical super-Brownian motion {X t , t ≥ 0} on R. We prove that there exists an m(t) such that
X t − m(t),Mt − m(t)) converges in law, and give some large deviation results for Mt as t → ∞. We

also prove that the limit of the extremal process Et := X t − m(t) is a Poisson random measure with
exponential intensity in which each atom is decorated by an independent copy of an auxiliary measure.
These results are analogues of the results for branching Brownian motions obtained in Arguin et al.
(2013), Aïdékon et al. (2013) and Roberts (2013).
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1. Introduction

1.1. Super-Brownian motion

Let ψ be a function of the form:

ψ(λ) = −αλ+ βλ2
+

∫
∞

0

(
e−λy

− 1 + λy
)

n(dy), λ ≥ 0,

here α ∈ R, β ≥ 0 and n is a σ -finite measure satisfying∫
∞

0
(y2

∧ y)n(dy) < ∞.

is called a branching mechanism. We will always assume that limλ→∞ ψ(λ) = ∞. Let
Bt ,Px } be a standard Brownian motion, and Ex be the corresponding expectation. In this
aper we will consider a super-Brownian motion X on R with branching mechanism ψ .

Let B+(R) (resp. B+

b (R)) be the space of non-negative (resp. non-negative bounded) Borel
unctions on R, and let MF (R) be the space of finite measures on R, equipped with the
opology of weak convergence. A super-Brownian motion X with branching mechanism ψ is a

arkov process taking values in MF (R). The existence of such superprocesses is well-known,
ee, for instance, [17,18] or [35]. For any µ ∈ MF (R), we denote the law of X with initial
onfiguration µ by Pµ, and the corresponding expectation by Eµ. As usual, we use the notation:
φ,µ⟩ :=

∫
R φ(x)µ(dx) and ∥µ∥ := ⟨1, µ⟩. Then for all φ ∈ B+

b (R) and µ ∈ MF (E),

− logEµ
(
e−⟨φ,X t ⟩

)
= ⟨uφ(t, ·), µ⟩, (1.1)

here uφ(t, x) is the unique positive solution to the equation

uφ(t, x) + Ex

∫ t

0
ψ(uφ(t − s, Bs))ds = Exφ(Bt ). (1.2)

ote that the integral equation (1.2) is equivalent to the equation:

∂

∂t
uφ(t, x) −

1
2
∂2

∂x2 uφ(t, x) = −ψ(uφ(t, x)), t > 0, x ∈ R, (1.3)

ith initial condition uφ(0, x) = φ(x). Moreover, limt→0 uφ(t, x) = φ(x), if φ is a nonnegative
ounded continuous function on R.

X is called a supercritical (critical, subcritical) super-Brownian motion if α > 0 (= 0, < 0).
n this paper, we only deal with the supercritical case, that is α > 0.

.2. Maximal position of super-Brownian motion

The maximal position Mt of branching-Brownian motions has been studied intensively.
ithout loss of generality, we assume in this subsection that the branching rate is 1, and the

ffspring distribution {pk} satisfies p0 = 0 and the mean of the offspring distribution is 2.
enote by Pδ0 the law of branching Brownian motion starting from one point located at 0.

n the seminal paper [28], Kolmogorov, Petrovskii and Piskounov proved that Mt/t →
√

2
n probability, which implies that the leading order of Mt is

√
2t . In [12], Bramson provided

log correction to the leading order of Mt . He proved in [12] (see also [13]) that, under
ome moment conditions, Pδ0 (Mt − m(t) ≤ x) → 1 − w(x) as t → ∞ for all x ∈ R, where

m(t) =
√

2t − 3
2
√

2
log t and w(x) is a traveling wave solution. In [31], Lalley and Sellke gave a

robabilistic representation of the traveling wave solution in terms of the limit of the derivative
2
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martingale of branching Brownian motion. In [42], Roberts gave another proof of Bramson’s
result and also an almost sure fluctuation result of Mt . Large deviation results for Mt were
obtained by Chauvin and Rouault in [15,16].

Beyond the behavior of the maximal displacement of branching Brownian motions, the full
statistics of the extremal configurations was studied in Arguin et al. [3–5] and Aı̈dékon et al. [2].

ssume the particles alive at time t are ordered decreasingly: x t
1 ≥ x t

2 ≥ · · · ≥ x t
n(t), where

(t) is the number of particles alive at time t . It is clear that x t
1 is the maximum position Mt

t time t . Arguin et al. [4,5] studied the limit property of the extremal process of branching
rownian motion, which is the random measure defined by

Et :=

n(t)∑
j=1

δx t
j −m(t).

Note that Et = Yt − m(t), where Yt is the measure corresponding to configuration of the
positions of the particles alive at time t . In [5], using the results of [13], Arguin et al. first
proved that Et converges in law, which implies the weak convergence of x t

k , the kth maximal
displacement for each fixed integer k ≥ 1, and then gave a rigorous characterization of the
limiting extremal process. It was proved in [5] that the limiting process is a (randomly shifted)
Poisson cluster process, where the positions of the clusters form a Poisson point process with an
exponential intensity measure. The law of the individual clusters is characterized as a branching
Brownian motion conditioned to perform unusually large displacements. Almost at the same
time, Aı̈dékon et al. [2] proved similar results using a totally different method.

In the recent paper [7], Berestycki et al. studied the asymptotic behavior of the extremal
particles of branching Ornstein–Uhlenbeck processes. For inhomogeneous branching Brownian
motions, many papers discussed the growth rate of the maximal position, see Bocharov
and Harris [9,10] and Bocharov [8] for the case with catalytic branching at the origin,
Shiozawa [44], Nishimori et al. [39], Lalley and Sellke [32,33] for the case with some general
branching mechanisms. For branching random walks, we refer the readers to Hu et al. [22],
Aı̈dékon [1], Madaule [36] and Carmona et al. [14].

Unlike the case of branching Brownian motions or branching random walks, there are very
few results for the supremum of super-Brownian motions, see [19,30]. Let X t be the super-
Brownian motion in Section 1.1 and let Mt be the supremum of the support of X t . We will
prove that, under some conditions, Pδ0 (Mt − m(t) ≤ x) → e−w(x) as t → ∞ for all x ∈ R,

here m(t) :=
√

2αt −
3

2
√

2α
log t and w is a traveling wave solution. We also give some large

deviation results for Mt . In analogy to the case of branching Brownian motions, we will call
the random measure Et := X t − m(t) the extremal process of the super-Brownian motion X ,
which is simply the super-Brownian motion seen from the position m(t). We will generalize
the results in [5] to super-Brownian motions and study the limit of Et . We will give the precise
statements of our main results in Section 1.4.

Our proofs depend heavily on the convergence of solutions of the Kolmogorov–Petrovsky–
Piscounov (KPP) equation (1.3), with general initial conditions not necessarily bounded
between 0 and 1, to traveling wave solutions.

1.3. KPP equation related to super-Brownian motion

The classical KPP equation is a semilinear equation of the form

ut (t, x) −
1

uxx (t, x) = f (u(t, x)), (t, x) ∈ (0,∞) × R. (1.4)

2

3
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The KPP equation has been studied for many years analytically, see for example, Kolmogorov
et al. [28], Fisher [20], Aronson et al. [6], Bramson [13], Lau [34], Volpert et al. [45].

In [13], the nonlinear function f can be any function on [0, 1] satisfying

f ∈ C1[0, 1], f (0) = f (1) = 0, f (u) > 0 for u ∈ (0, 1);
f ′(0) = 1, f ′(u) ≤ 1, for 0 < u ≤ 1, (1.5)

and

1 − f ′(u) = O(uρ) (as u → 0) for some ρ > 0. (1.6)

Kolmogorov et al. [28] showed that under condition (1.5) and with Heaviside initial condition
u(0, x) = 1(−∞,0)(x), (1.4) has a unique solution u(t, x) satisfying

lim
t→∞

u(t,m(t) + x) = w(x), uniformly in x ∈ R, (1.7)

for some centering term m(t), where m(t) satisfies m(t) =
√

2t + o(t) as t → ∞, and w
s a traveling wave solution, which is a function solving the ordinary differential equation
1
2wxx +

√
2wx + f (w) = 0, and satisfying 0 < w(x) < 1, limx→∞(x) = 0, limx→−∞w(x) = 1.

Bramson [13] improved the above result in two aspects: first the initial condition u(0, x) is a
general function between 0 and 1, not just the Heaviside initial condition u(0, x) = 1(−∞,0)(x);
econdly he proved that if in addition f satisfies (1.6) and the initial condition u(0, x) satisfy
ome integrability condition, (1.7) holds with m(t) =

√
2t −

3
2
√

2
log t . Note that, since 0 and

are two special solutions, it follows from the maximum principle that any solution of (1.4),
ith initial condition bounded between 0 and 1, must be bounded between 0 and 1.
An interesting link between branching Brownian motions and partial differential equations

as observed by McKean [38] (see also Ikeda, Nagasawa and Watanabe [23–25]): u(t, x) :=

δ0 (Mt > x) solves the KPP equation (1.4) with initial condition u(0, x) = 1(−∞,0)(x) and with
f (u) = (1 − u) −

∑
∞

k=0 pk(1 − u)k , where {pk, k ≥ 0} is the offspring distribution and the
ranching rate is 1. Moreover, if p0 = 0,

∑
k kpk = 2, and

∑
k k1+ρ pk < ∞, then f (u) satisfies

onditions (1.5) and (1.6). In probabilistic language, (1.7) gives the convergence in distribution
or Mt −m(t). There are also some papers using branching Brownian motions to study traveling
ave solutions to the KPP equation, see [21,29], for instance. For a nice exposition of extremal
rocesses of branching Brownian motions and their applications, see the book [11].

It follows from (1.3) that the super-Brownian motion X is related to the KPP equation with
f = −ψ . It is natural to use this relationship to investigate the maximal position of super-
rownian motions. Let λ∗ be the largest root of the equation ψ(λ) = 0. Since ψ ′(0) = −α < 0,
(∞) = ∞, it follows from the strict convexity of ψ that λ∗ > 0 exists. Note that 0 and λ∗

re two special solutions of (1.3). One might think that the role of 0 and λ∗ for the KPP
1.3) corresponding to super-Brownian motions is similar that of 0 and 1 for the KPP equation
1.4) corresponding to branching Brownian motions. However, for super-Brownian motions we
eed to consider general non-negative solutions of the corresponding KPP equation (1.3) with
nitial condition u(0, x) not necessarily bounded between 0 and λ∗. In this paper, we will first
eneralize Bramson’s results in [13] to general non-negative solutions of the KPP equation
1.3) associated with super-Brownian motions, with initial conditions not necessarily bounded
etween 0 and λ∗, see (1.18) for example. Let uφ(t, x) be a non-negative solution to (1.3)
ith initial condition φ. In this paper, we will prove that there also exists some function m(t)

uch that, for general initial condition φ, uφ(t,m(t) + x) converges to some traveling wave

olution. More precisely, we consider non-increasing traveling wave solutions w with speed

4
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√
2α to Eq. (1.3) such that

lim
x→∞

w(x) = 0, lim
x→−∞

w(x) = λ∗.

y a non-increasing traveling wave solution with speed
√

2α to (1.3), we mean a non-negative
on-increasing function w such that w(x −

√
2αt) is a solution to (1.3). Clearly, w satisfies

1
2
wxx +

√
2αwx − ψ(w) = 0.

e will give an exact asymptotic expression for m(t). We will then use these results to
tudy asymptotic properties of the supremum of the support and the extremal process of the
uper-Brownian motion X .

.4. Main results

We will assume that ψ satisfies the following two conditions:

(H1) There exists γ > 0 such that∫
∞

1
y(log y)2+γ n(dy) < ∞. (1.8)

(H2) ψ satisfies∫
∞ 1√∫ ξ

λ∗ ψ(u)du
dξ < ∞. (1.9)

Let R be the smallest closed set such that supp X t ⊆ R, t ≥ 0. It is known (cf. [43]) that
H2) implies Grey’s condition∫

∞ 1
ψ(λ)

dλ < ∞ (1.10)

nd that

Pµ(R is compact) = e−λ∗
∥µ∥.

t is well known that {∥X t∥} is a continuous state branching process and that, under condition
(1.10),

Pµ(∥X t∥ = 0) > 0 (1.11)

nd limt→∞ Pµ(∥X t∥ = 0) = e−λ∗
∥µ∥. Denote S := {∀t ≥ 0, ∥X t∥ > 0}.

For some of our results, we also need the following stronger assumption:

(H3) There exist ϑ ∈ (0, 1] and a > 0, b > 0 such that

ψ(λ) ≥ −aλ+ bλ1+ϑ , λ > 0.

learly, condition (H3) implies (H2). In particular, (H3) holds if β > 0. Actually, condition
(H3) is only used in proving Lemma 3.1.

Note that super-Brownian motions have been used to study traveling wave solutions to the
KPP equation (1.3), see [29,30], for instance. For convenience, we write P := Pδ0 and E := Eδ0 .
Define, for t ≥ 0,

Z := ⟨(
√

2αt − ·)e−
√

2α(
√

2αt−·), X ⟩.
t t

5
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It has been proven in [30] that {Z t , t ≥ 0} is a martingale, which is called the derivative
martingale, and that Z t has an almost sure non-negative limit Z∞ as t → ∞. Furthermore,
Z∞ is almost surely positive on S if and only if∫

∞

1
y(log y)2n(dy) < ∞. (1.12)

learly, (1.8) implies (1.12). Thus Z∞ is almost surely positive on S. The traveling wave
olution with speed

√
2α to (1.3) is given by

w(x) = − logE
[
exp

{
−cZ∞e−

√
2αx

}]
(1.13)

nd

lim
x→∞

w(x)

xe−
√

2αx
= c. (1.14)

or more details, we refer our readers to [30, Theorems 2.4 and 2.6]. Under condition (1.12),
Z∞ = ∆(

√
2α), where ∆(

√
2α) is defined in [30, (40)]. Eq. (1.14) follows from the last

quality in the proof of [30, Theorem 2.1(iii) and (iv)].
Let Cc(R)(C+

c (R)) be the class of all the (nonnegative) continuous functions with compact
support. Let MR(R) be the space of all the Radon measures on R equipped with the vague
topology, see [27, p. 12]. Recall that for any random measures µt , µ ∈ MR(R), µt→µ in
distribution if and only if for any f ∈ Cc(R), ⟨ f, µt ⟩→⟨ f, µ⟩ in distribution, see [27, Lemma
4.11]. It follows from [26, Corollary 4.5] that, for random measures µt , µ ∈ MR(R), µt→µ

in distribution is equivalent to ⟨ f, µt ⟩→⟨ f, µ⟩ in distribution for any f ∈ C+
c (R).

For any z ∈ R and function f on R, we define the shift operator θz f by θz f (y) := f (y + z),
nd for µ ∈ MR(R), we define Tzµ by

∫
f (y)Tzµ(dy) :=

∫
f (y + z)µ(dy). Sometimes,

e also write Tzµ as µ + z. We define the rightmost point M(µ) of µ ∈ MR(R) by
M(µ) := sup{x : µ(x,∞) > 0}. Here we use the convention that sup ∅ = −∞. The supremum
Mt of the support of our super-Brownian motion X t is simply M(X t ).

For any φ ∈ B+

b (R), we define

Uφ(t, x) := − logE
[
exp

{
−

∫
R
φ(y − x)X t (dy)

}]
; (1.15)

Vφ(t, x) := − logE
[
exp

{
−

∫
R
φ(y − x)X t (dy)

}
,Mt ≤ x

]
; (1.16)

V (t, x) := − logP(Mt ≤ x). (1.17)

y the spatial homogeneity of X , we have Uφ(t, x) = uφ(t,−x), and thus Uφ(t, x) is the unique
ositive solution to (1.3) with initial condition Uφ(0, x) = φ(−x).

By the Markov property of X , we have

Vφ(t + r, x) = − logEδ−x

[
e−

∫
φ(y)X t+r (dy),Mt+r ≤ 0

]
= lim

θ→∞

− logEδ−x

[
e−⟨φ+θ1(0,∞),X t+r ⟩

]
= lim

θ→∞

− logEδ−x

[
e−⟨uφ+θ1(0,∞) (r ),X t ⟩

]
= − logEδ−x

[
e−

∫
R Vφ (r,−y),X t (dy)

]
= UVφ (r,−y)(t, x).

hus, for any r > 0, (t, x) → Vφ(t + r, x) is a solution to (1.3) with initial condition Vφ(r, x).
hus Vφ(t, x) is a solution to (1.3) with initial condition

Vφ(0, x) =

{
φ(−x), x ≥ 0;

(1.18)

∞, x < 0.

6
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The constants introduced in the next result will be used in the statements of our main results.

roposition 1.1. Assume that φ ∈ B+(R) satisfies the following integrability condition at
∞: ∫

∞

0
ye

√
2αyφ(−y) dy < ∞. (1.19)

(1) If (H1) and (H2) hold, and φ is bounded, then the limit

C(φ) = lim
r→∞

√
2
π

∫
∞

0
Uφ(r,

√
2αr + y)ye

√
2αy dy

exists, C(θzφ) = C(φ)e
√

2αz for all z ∈ R and

lim
t→∞

t3/2

3
2
√

2α
log t

Uφ(t,
√

2αt + x) = C(φ)e−
√

2αx , x ∈ R. (1.20)

If φ is non-trivial, then C(φ) ∈ (0,∞).
(2) If (H1) and (H3) hold, and if there exists x0 < 0 such that φ is bounded on (−∞, x0],

then (1.20) holds, and the limit

C̃(φ) := lim
r→∞

√
2
π

∫
∞

0
Vφ(r,

√
2αr + y)ye

√
2αy dy ∈ (0,∞)

exists and

lim
t→∞

t3/2

3
2
√

2α
log t

Vφ(t,
√

2αt + x) = C̃(φ)e−
√

2αx , x ∈ R. (1.21)

It has been shown in [30] that Mt
t →

√
2α, P(·|S)-a.s. Next, we give some large deviation

results for Mt .

Theorem 1.2. Under (H1) and (H3), the following hold:

(1)

lim
t→∞

t3/2

3
2
√

2α
log t

P(Mt >
√

2αt) = C̃0, (1.22)

where C̃0 is the constant C̃(φ) with φ = 0.
(2) For any δ > 0, the limit

Ĉ(δ) := lim
r→∞

√
2
π
δe−

1
2 δ

2r
∫

∞

0
V (r,

√
2αr + y)ye(

√
2α+δ)y dy ∈ (0,∞)

exists and

lim
t→∞

√
te(δ2/2+

√
2αδ)tP(Mt > (

√
2α + δ)t) = Ĉ(δ). (1.23)

The analogue of the above results for branching Brownian motions was given in [15,16].
In the remainder of this paper, we define

m(t) :=
√

2αt −
3

2
√

2α
log t. (1.24)
7
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Theorem 1.3. Suppose that φ ∈ B+(R) satisfies the integrability condition (1.19) at −∞. Let
x(·) be a function on R satisfying limt→∞ x(t) = x ∈ R.

(1) If (H1) and (H2) hold, and φ is bounded, then

lim
t→∞

Uφ(t,m(t) + x(t)) = − logE
[
exp{−C(φ)Z∞e−

√
2αx

}

]
. (1.25)

(2) If (H1) and (H3) hold, and if there exists x0 < 0 such that φ is bounded on (−∞, x0],
then (1.25) holds, and

lim
t→∞

Vφ(t,m(t) + x(t)) = − logE
[
exp{−C̃(φ)Z∞e−

√
2αx

}

]
.

Remark 1.4. In the case when the nonlinear function f satisfies (1.5) and (1.6), Bramson [13]
studied the uniform convergence of solutions of the KPP equation (1.4) to traveling wave
solutions. More precisely, under the integrability condition (1.19) at −∞ and another growth
condition of φ at +∞, he proved that u(t,m(t) + x) converge uniformly in x ∈ R, where
u(t, x) is the solution of the KPP equation (1.4) with initial condition u(0, x) = φ(−x). In this
paper, our condition on the nonlinear function −ψ is weaker, and we will not study uniform
convergence of solutions of (1.3) to traveling wave solutions.

Remark 1.5. Applying Theorem 1.3(2) to φ = 0, we get that

lim
t→∞

P(Mt − m(t) ≤ x) = E(e−C̃0e−
√

2αx Z∞ ), x ∈ R. (1.26)

sing this, one can check that for any x ∈ R,

lim
t→∞

P(Mt − m(t) ≤ x |S) = lim
t→∞

P(Mt − m(t) ≤ x) − P(Sc)
1 − P(Sc)

= E(e−C̃0e−
√

2αx Z∞ |S).

Thus, Mt − m(t)|S converges in distribution to a random variable M∗.

Let H be the class of all the nonnegative bounded functions vanishing on (−∞, a) for
some a ∈ R. It is clear that the functions in H satisfy the integrability condition (1.19) at
−∞. In Lemma 3.3, we will prove that for any φ ∈ H, C(λφ) → 0, C̃(λφ) → C̃0 as
λ → 0. Recall that, for any t > 0, Et = T−m(t) X t is the extremal process of X t . Then
φ(t,m(t)) = − logE[exp{−⟨φ, Et ⟩}]. Using the above theorem, we get that, for any φ ∈ H,

(1) under (H1) and (H2), ⟨φ, Et ⟩ converges in distribution;
(2) under (H1) and (H3), (⟨φ, Et ⟩,Mt − m(t))|S jointly converges in distribution.

In Theorems 1.6 and 1.7, we will describe these limits.
In Proposition 3.4, we will prove that, conditioned on {Mt >

√
2αt + z}, X t − Mt converges

in distribution to a limit (independent of z) denoted by ∆. Let ∆i , i ≥ 1, be a sequence
f independent, identically distributed random variables with the same law as ∆. Given Z∞,

let
∑

∞

j=1 δe j be a Poisson random measure with intensity C̃0 Z∞

√
2αe−

√
2αx dx . Assume that

{∆i , i ≥ 1} and
∑

∞

j=1 δe j are independent.

Theorem 1.6. Assume that (H1) and (H2) hold. Then, as t → ∞, Et converges in law to a
andom Radon measure E∞ with Laplace transform

E
[
exp

{
−

∫
φ(y)E∞(dy)

}]
= E

[
exp {−C(φ)Z∞}

]
, φ ∈ H. (1.27)
8
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Moreover, if, in addition, (H3) holds, then

E∞

d
=

∑
j

Te j∆ j .

For any t > 0, we define E∗
t = X t − m(t) −

1
√

2
log Z∞. Then we have the following result.

Theorem 1.7. Assume that (H1) and (H3) hold. Conditioned on S, (E∗
t , Z t ) converges jointly

n distribution to (E∗
∞
, Z∗

∞
), where Z∗

∞
has the same law as Z∞ conditioned on S, E∗

∞
and

Z∗
∞

are independent, and the Laplace transform of E∗
∞

is given by

E[exp{−⟨φ, E∗

∞
⟩}] = exp{−C(φ)}, φ ∈ C+

c (R). (1.28)

oreover,

E∗

∞

d
=

∑
j

Te′
j
∆ j , (1.29)

here
∑

j δe′
j

is a Poisson random measure with intensity measure C̃0
√

2αe−
√

2αx dx, which is
independent of {∆ j , j ≥ 1}.

Following the arguments in Hu and Shi [22] for branching random walks (see also
Roberts [42] for branching Brownian motions), together with Lemmas 4.2 and 4.3, one can
prove some almost sure fluctuation results Mt . We will not pursue this in this paper.

Note that it suffices to prove the results of this paper for the case α = 1 and λ∗
= 1. For

the general case, let v(t, x) =
1
λ∗ u(α−1t, α−1/2x). If u is a non-negative solution of (1.3), then,

is a non-negative solution of (1.3) with ψ replaced by ψ∗(x) =
ψ(λ∗x)
αλ∗ . It is clear that −ψ∗

satisfies condition (1.5). Therefore, in the remainder of this paper, we assume that α = 1 and
λ∗

= 1.
The rest of the paper is organized as follows. In Section 2, we generalize some results

in [13] to the case when the nonlinear term satisfies a weaker condition and to general
initial conditions. In Section 3.1, we give the proofs of the large deviation results, including
Proposition 1.1 and Theorem 1.2. In Section 3.2, we study the convergence of the extremal
process. In Section 4, we give the proof of Lemma 3.1.

2. Some results on the KPP equation (1.3)

It follows from the Feyman–Kac formula that, if u is a non-negative solution to (1.3), then,
for any 0 ≤ r < t ,

u(t, x) = Ex

[
u(r, Bt−r ) exp

{∫ t−r

0
k(u(t − s, Bs)) ds

}]
, (2.1)

here k(λ) =
−ψ(λ)
λ

. Recall that we always assume that α = 1 and λ∗
= 1. Note that k(λ)

is decreasing and k(λ) ≤ 1 for all λ > 0. We first give some basic results on non-negative
solutions u of the KPP equation (1.3) with initial conditions u(0, ·) not necessarily bounded
between 0 and 1.

Lemma 2.1. Assume that u(t, x) is a solution to (1.3) with initial condition u(0, ·) ∈ B+

b (R)
satisfying the following integrability condition at ∞:∫

∞

ye
√

2yu(0, y) dy < ∞. (2.2)

0

9
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Then for any t > 0, u(t, ·) is a bounded function also satisfying the integrability condition
2.2) at ∞ and∫

∞

0
u(r,

√
2r + y)ye

√
2y dy < ∞. (2.3)

roof. By (2.1) with r = 0, we have that u(t, x) ≤ et Ex (u(0, Bt )). Thus, for any t > 0, u(t, ·)
is a bounded function. To finish the proof, it suffices to show that Ex (u(0, Bt )) satisfies (2.2).
Note that∫

∞

0
Ey(u(0, Bt ))ye

√
2y dy =

∫
R

∫
∞

0
u(0, x + y)ye

√
2y dyP0(Bt ∈ dx)

=

∫
R

∫
∞

x
u(0, y)(y − x)e

√
2(y−x) dyP0(Bt ∈ dx).

If x > 0, we have∫
∞

x
u(0, y)(y − x)e

√
2(y−x) dy ≤

∫
∞

0
u(0, y)ye

√
2y dy,

nd if x ≤ 0, we have∫
∞

x
u(0, y)(y − x)e

√
2(y−x) dy

=

∫ 0

x
u(0, y)(y − x)e

√
2(y−x) dy +

∫
∞

0
u(0, y)(y − x)e

√
2(y−x) dy

≤ ∥u0∥∞|x |e−x
√

2
+

∫
∞

0
u(0, y)ye

√
2y dye−x

√
2
+ |x |e−x

√
2
∫

∞

0
u(0, y)e

√
2y dy

≤ c(1 + |x |)e−x
√

2.

hus, ∫
∞

0
ye

√
2yu(t, y) dy ≤ et

∫
∞

0
Ey(u(0, Bt ))ye

√
2y dy < ∞.

sing a similar argument, we can get (2.3). The proof is now complete. □

emma 2.2 (Maximum Principle). Let v1(t, x) and v2(t, x) be non-negative functions satisfying

∂

∂t
v2(t, x) −

1
2
∂2

∂x2 v2(t, x) + ψ(v2(t, x)) ≥
∂

∂t
v1(t, x) −

1
2
∂2

∂x2 v1(t, x) + ψ(v1(t, x)),

t > 0, x ∈ (a, b),

nd

v1(0, x) ≤ v2(0, x), x ∈ (a, b),

here −∞ ≤ a < b ≤ ∞. Moreover, if a > −∞, we assume v1(t, a) ≤ v2(t, a) for all t > 0,
nd if b < ∞, we assume v1(t, b) ≤ v2(t, b) for all t > 0. Then we have that

v1(t, x) ≤ v2(t, x), t > 0, x ∈ (a, b).

roof. The proof is a slight modification of the proof of [13, Proposition 3.1], using [41,
heorem 3.4]. See also the proof of [11, Proposition 6.4]. We omit the details. □
10
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Lemma 2.3. Assume that u1, u2 and u3 are solutions to (1.3) with non-negative bounded
initial conditions.

(1) If for some c > 1, u1(0, ·) ≤ cu2(0, ·), then u1(t, x) ≤ cu2(t, x) for all (t, x) ∈

(0,∞) × R.
(2) If u3(0, ·) ≤ u1(0, ·) + u2(0, ·), then u3(t, x) ≤ u1(t, x) + u2(t, x) for all (t, x) ∈

(0,∞) × R.

roof. (1) Let v(t, x) = cu2(t, x). Then

vt −
1
2
vxx = −cψ(u2) ≥ −ψ(v),

ere we used the fact that ψ ′(λ) is increasing. Applying the maximum principle in Lemma 2.2,
e get that

u1(t, x) ≤ cu2(t, x), (t, x) ∈ (0,∞) × R.

(2) Let v(t, x) := u1(t, x) + u2(t, x). Since ψ ′(λ) is increasing, for any θ > 0, the function
→ ψ(λ+ θ ) −ψ(λ) −ψ(θ ) is increasing, which implies that ψ(λ+ θ ) ≥ ψ(λ) +ψ(θ ). Then

vt −
1
2
vxx = −ψ(u1) − ψ(u2) ≥ −ψ(v).

pplying the maximum principle in Lemma 2.2, we get that u3(t, x) ≤ u1(t, x) + u2(t, x) for
ll (t, x) ∈ (0,∞) × R. □

For any λ < 1 and y > e2+γ , one can easily check that (λy ∧ 1) ≤ | log λ|−2−γ (log y)2+γ .
hus, for any λ < 1,

0 ≤ 1 + ψ ′(λ) = 2βλ+

∫
∞

0
y(1 − e−λy)n(dy)

≤

(
2β +

∫ e2+γ

0
y2n(dy)

)
λ+ | log λ|−(2+γ )

∫
∞

e2+γ

y(log y)2+γ n(dy) ≤ c1| log λ|−(2+γ ),

here γ is the constant in (H1) and c1 > 0 is a constant. Thus (H1) implies

1 + ψ ′(λ) ≤ c1| log λ|−(2+γ ) for λ < 1. (2.4)

ince ψ ′(λ) is increasing, we have −k(λ) = ψ(λ)/λ ≤ ψ ′(λ). Thus

0 ≤ 1 − k(λ) ≤ c1| log λ|−(2+γ ), for λ < 1. (2.5)

In the remainder of this section, we will generalize [13, Proposition 8.3] to non-negative
olutions of (1.3) with initial conditions not necessarily bounded between 0 and 1. The main
dea of the proof is similar to that of [13]. For the KPP equation (1.3), −ψ plays the role of
f in [13]. Condition (1.6) is translated to the following condition on ψ :

1 + ψ ′(λ) = O(λρ) as λ → 0, for some ρ > 0. (2.6)

owever, many results in [13] still hold under the weaker condition (2.4). We will clearly spell
ut the reason when we apply results from [13] under this weaker condition.

In the rest of this section, we use u(t, x) to denote the solution to (1.3) with initial condition
(0, ·) ∈ B+

b (R). Let ũ(t, x) be the solution to (1.3) with ũ(0, ·) = u(0, ·) ∧ 1. Then, it is clear
hat

ũ(0, x) ≤ u(0, x) ≤ s ũ(0, x), x ∈ R,
u

11
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where su = supx u(0, x) ∨ 1. It follows from Lemma 2.3 that

ũ(t, x) ≤ u(t, x) ≤ su ũ(t, x), (t, x) ∈ (0,∞) × R. (2.7)

Since ũ(t, x) ∈ [0, 1], we have

0 ≤ u(t, x) ≤ su . (2.8)

(2.7) and (2.8) will play key roles later in this paper, they allow us to “scale” solutions to KPP
equations for Bramson’s results to carry over. Let m̃(t) be the median of ũ, that is

m̃(t) := sup{x : ũ(t, x) ≥ 1/2}.

It was proved in [13, (3.22’)], without using condition (1.6) (equivalently, (2.6)), that

m̃(t)/t →
√

2, t → ∞.

Now we recall some notation from [13], see [13, (6.11)–(6.14), (7.6)–(7.9), (7.42), (7.44)].
n the list of notation below, δ ∈ ( 1

2+γ
, 1/2), r > 1 and t > 3r .

• If L is a function on [0, t], define

θr,t ◦ L(s) :=

⎧⎨⎩L(s + sδ) + 4sδ, r ≤ s ≤ t/2;
L(s + (t − s)δ) + 4(t − s)δ, t/2 ≤ s ≤ t − 2r ;
L(s), otherwise.

• The inverse of θr,t is defined by

θ−1
r,t ◦ L := inf{l : θr,t ◦ l ≥ L},

that is

θ−1
r,t ◦ L(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−∞, r ≤ s < r + r δ;
L(u) − 4uδ, r + r δ ≤ s ≤ t/2 + (t/2)δ;
L(u) − 4(t − u)δ, t/2 + (t/2)δ ≤ s ≤ t − 2r;

(L(u) − 4(t − u)δ) ∨ L(s), t − 2r < s < t − 2r + (2r )δ;
L(s), otherwise,

(2.9)

where for r + r δ ≤ s ≤ t/2 + (t/2)δ , u is determined by s = u + uδ; for t/2 + (t/2)δ ≤

s ≤ t − 2r + (2r )δ , u is determined by s = u + (t − u)δ .
• Lr,t (s) := m̃(s) −

s
t m̃(t) +

t−s
t log r, 0 ≤ s ≤ t .

• Lr,t (s) := θ−1
r,t ◦ Lr,t (s).

• Lr,t (s) := θr,t ◦ Lr,t (s) ∨ Lr,t (s) ∨ Lr,t (s).
• For any x , define

Mx
r,t (s) :=

{
Lr,t (s) +

s
t m̃(t) −

t−s
t log r, 0 ≤ s ≤ t − 2r ;

x+m̃(t)
2 , t − 2r < s ≤ t .

(2.10)

•

M′

r,t (s) :=

{
Lr,t (s) +

s
t m̃(t) −

t−s
t log r, r + r δ ≤ s ≤ t − 2r ;

−∞, otherwise. (2.11)

•

nr,t (s) =
√

2r +
s − r
t − r

(m(t) −
√

2r ), s ∈ [r, t]. (2.12)
12
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The following lemma says that [13, Proposition 7.2] still holds without condition (2.6).

emma 2.4. Assume that (H1) holds. Let u(t, x) be a solution to (1.3) with initial condition
(0, ·) ∈ B+

b (R) satisfying the integrability condition (2.2) at ∞. For all t > 3r > 0, and
ontinuous function x(s) with x(s) >Mx

r,t (t − s) in [2r, t − r ], we have that

e3r−t
∫ t−r

2r
k(u(t − s, x(s))) ds → 1, r → ∞, (2.13)

uniformly in t.

Proof. First note that the proofs of [13, (7.16) and (7.18)] did not use (1.6) (equivalently
(2.6)). Thus there exists a constant C > 0 such that for r large enough, s ∈ [r, t − 2r ] and
y > m̃(s + (s ∧ (t − s))δ),

ũ(s, y) ≤ Ce−(s∧(t−s))δ .

It follows immediately from the key inequality (2.7) that

u(s, y) ≤ c2e−(s∧(t−s))δ . (2.14)

For r large enough and s ∈ [r, t − 2r ], by the definition of Mx
r,t , we have

Mx
r,t (s) ≥ θr,t ◦ Lr,t (s) +

s
t

m̃(t) −
t − s

t
log r

= Lr,t (s + (s ∧ (t − s))δ) + 4(s ∧ (t − s))δ +
s
t

m̃(t) −
t − s

t
log r

= m̃(s + (s ∧ (t − s))δ) + (s ∧ (t − s))δ(4 − log r/t − m̃(t)/t) ≥ m̃(s + (s ∧ (t − s))δ),

here in the last inequality, we use the fact that 4− log r/t − m̃(t)/t ≥ 4− log t/t − m̃(t)/t →

−
√

2 > 0 as t → ∞. Thus, by (2.14), for r large enough, we have

et−3r
≥ exp{

∫ t−r

2r
k(u(t − s, x(s))) ds}

≥et−3r exp
{
−

∫ t−r

2r
(1 − k(c2e−(s∧(t−s))δ )) ds

}
≥et−3r exp

{
−2

∫
∞

r
(1 − k(c2e−sδ )) ds

}
. (2.15)

or δ > 1
2+γ

, by (2.5),∫
∞

r
(1 − k(c2e−sδ )) ds ≤

∫
∞

r
c1|sδ − log c2|

−(2+γ )
ds → 0, r → ∞.

hus, the desired result follows immediately. □

The lemma above implies that, under (H1), (7.12) in [13, Proposition 7.2] is valid for ũ(t, x).
ince in the proofs of [13, Proposition 8.1, Corollary 1 on p. 125, Proposition 8.2, Corollary 1
n p. 130 and Corollary 2 on p. 133], only [13, (7.12)] was used, these results hold for ũ(t, x)
nder (H1). Thus,

m̃(t) = m(t) + O(1), (2.16)

here

m(t) =
√

2t −
3
√ log t. (2.17)
2 2
13
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Proposition 2.5. Assume that u(t, x) is a solution to (1.3) with initial condition u(0, ·) ∈
+

b (R) satisfying the integrability condition (2.2) at ∞. Define, for 0 ≤ r ≤ t ,

Ψ (r, t, x) :=
e−

√
2(x−

√
2t)

√
2π (t − r )

∫
∞

0
u(r,

√
2r + y)e

√
2ye−

(x−
√

2t−y)2
2(t−r ) (1 − e−2(x−m(t))y/(t−r )) dy,

(2.18)

where m(t) is defined in (2.17). Then for r large enough, t ≥ 8r and x ≥ m(t) + 9r ,

γ (r )−1Ψ (r, t, x) ≤ u(t, x) ≤ γ (r )Ψ (r, t, x), (2.19)

where γ (r ) ↓ 1 as r → ∞.

To prove the proposition above, we need the following lemma whose proof is similar to that
of [13, (8.62)]. Let (B t

x,y, P) be a Brownian bridge starting from x and ending at y at time t ,
and E be the expectation with respect to P .

Lemma 2.6. Assume that u(t, x) solves the KPP equation (1.3) with initial condition
u(0, ·) ∈ B+

b (R) satisfying the integrability condition (2.2) at ∞. Then for large r , t > 8r
and x ≥ m̃(t) + 8r ,

u(t, x) ≥ ψ1(r, t, x)

:= C1(r )et−r
∫

∞

−∞

u(r, y)
e−

(x−y)2
2(t−r )

√
2π (t − r )

P
[

B t−r
x,y (s) > M̄x

r,t (t − s), s ∈ [0, t − r ]
]

dy

(2.20)

nd

u(t, x) ≤ ψ2(r, t, x)

:= C2(r )et−r
∫

∞

−∞

u(r, y)
e−

(x−y)2
2(t−r )

√
2π (t − r )

P
[

B t−r
x,y (s) >M′

r,t (t − s), s ∈ [0, t − r ]
]

dy

(2.21)

ith C1(r ) → 1, C2(r ) → 1, as r → ∞. Moreover,

1 ≤
ψ2(r, t, x)
ψ1(r, t, x)

≤ γ (r ), (2.22)

ith γ (r ) ↓ 1, as r → ∞.

Proof. Let

A :=

{
B t−r

x,y (s) >Mx
r,t (t − s), s ∈ [0, t − r ]

}
.

t follows from (2.1) that

u(t, x) =

∫
∞

−∞

u(r, y)
e−

(x−y)2
2(t−r )

√
2π (t − r )

E
[
exp

{∫ t−r

0
k(u(t − s, B t−r

x,y (s))) ds
}]

dy

≥

∫
∞

−∞

u(r, y)
e−

(x−y)2
2(t−r )

√
2π (t − r )

E
[
exp

{∫ t−r

0
k(u(t − s, B t−r

x,y (s))) ds
}
,A

]
dy. (2.23)
14
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For r large enough, t > 8r , s ∈ [0, 2r ] and x ≥ m̃(t) + 8r , it holds that

Mx
r,t (t − s) = (x + m̃(t))/2 ≥ m̃(t) + 4r ≥ m̃(t − s) + r,

where in the last inequality, we used the fact that m̃(t) − m̃(t − s) = m(t) − m(t − s) + O(1)
s bounded from below, because m(t) is increasing on t ≥ 1. Thus, by (2.7) first, and then

applying [13, Proposition 8.2] to ũ, we get that on A,

u(t − s, B t−r
x,y (s)) ≤ su ũ(t − s, B t−r

x,y (s)) ≤ c3re−
√

2r .

t follows from (2.5) that for r large enough,

E
[
exp{

∫ 2r

0
k(u(t − s, B t−r

x,y (s))) ds},A
]

≥ e2r exp
{
−2rc1| log(c3re−

√
2r )|

−(2+γ )}
P(A). (2.24)

ote that 2r | log(c3re−
√

2r )|
−(2+γ )

→ 0 as r → ∞. By Lemma 2.4, we have

E
[
exp{

∫ t−r

2r
k(u(t − s, B t−r

x,y (s))) ds},A
]

≥et−3r
∫

∞

r
c1|sδ − log c2|

−(2+γ )
ds P(A). (2.25)

ombining (2.23)–(2.25), we immediately get (2.20). The proof of (2.21) is similar to that
f [13, Proposition 8.3(b)] and the proof of (2.22) is similar to that of [13, (8.62)]. Here we
mit the details. □

roof of Proposition 2.5. Recall that nr,t (·) is defined by (2.12). First, we claim that, for
∈ [r, t],

M′

r,t (s) ≤ nr,t (s) ≤ Mx
r,t (s). (2.26)

t has been proved in [13, Lemma 2.2] that for y >
√

2r and x > m(t),

P
[

B t−r
x,y (s) > nr,t (t − s), s ∈ [0, t − r ]

]
=P

[
B t−r

0,0 (s) > −
s

t − r
(y −

√
2r ) −

t − r − s
t − r

(x − m(t)), s ∈ [0, t − r ]
]

=1 − exp
{
−

2(x − m(t))(y −
√

2r )
t − r

}
,

and for y ≤
√

2r , P
[

B t−r
x,y (s) > nr,t (t − s), s ∈ [0, t − r ]

]
= 0. Thus, combining Lemma 2.6

nd (2.26), the desired result follows immediately.
Now we prove the claim. For r large enough, s ∈ [r + r δ, t/2] and u determined by

= u + uδ ,

M′

r,t (s) = Lr,t (u) − 4uδ +
s
t

m̃(t) −
t − s

t
log r

= m̃(u) − uδ(4 −
log r + m̃(t)

t
) ≤ m(u) ≤ m(s),

here in the last inequality we used that fact m(t) is increasing for t large enough. Similarly,
or s ∈ [t/2, t − 2r ], M′ (s) ≤ m(s). Thus, for all s ∈ [0, t], M′ (s) ≤ m(s).
r,t r,t

15
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By the definition of nr,t (s), for r large enough,

nr,t (s) =
√

2r +
s − r
t − r

(m(t) −
√

2r ) =
√

2s −
s − r
t − r

3

2
√

2
log t ≥ m(s),

here we used the fact that for large r , t → log t/(t − r ) is decreasing. Thus, we get that
′

r,t (s) ≤ nr,t (s), s ∈ [r, t].
Now we deal with Mx

r,t (s). For r large enough, s ∈ [r, t/2],

Mx
r,t (s) ≥ m(s + sδ) ≥

√
2s ≥ nr,t (s).

For r large enough, s ∈ [t/2, t − 2r ],

Mx
r,t (s) ≥ m(s + (t − s)δ) ≥

√
2s +

√
2(t − s)δ −

3

2
√

2
log t ≥ nr,t (s).

or r large enough, s ∈ [t − 2r, t] and x ≥ m(t) + 9r ,

Mx
r,t (s) =

m̃(t) + x
2

≥ m(t) ≥ nr,t (s),

where the last inequality follows from the fact that, for r large enough,
√

2r ≤ m(t). The proof
s now complete. □

. Proof of main results

We first give a useful lemma. The proof of this lemma will be given in Section 4.

emma 3.1. Assume that (H1) and (H3) hold. Then, for any t > 0 and θ > 0, we have that
V (t, ·) ∈ B+

b (R), and∫
∞

0
V (t, x)xeθx dx < ∞.

orollary 3.2. Assume that (H1) and (H3) hold. If φ ∈ B+(R) satisfies the integrability
ondition (1.19) at −∞ and if there exists x0 < 0 such that φ is bounded on (−∞, x0], then for
ny t > 0, we have that Uφ(t, ·) and Vφ(t, ·) are bounded functions satisfying the integrability
ondition (2.2) at ∞.

roof. First, we assume that φ ∈ B+

b (R) and satisfies the integrability condition (1.19) at −∞.
ote that Uφ(t, x) satisfies the KPP equation (1.3) with Uφ(0, x) = φ(−x) ∈ B+

b (R) satisfying
he integrability condition (2.2) at ∞, thus by Lemma 2.1, Uφ(t, x) is bounded and satisfies
2.2). For Vφ(t, x), it is clear that, by Lemma 2.3(2),

Vφ(t, x) = lim
θ→∞

Uφ+θ1(0,∞) (t, x)

≤ Uφ(t, x) + lim
θ→∞

Uθ1(0,∞) (t, x) ≤ Uφ(t, x) + V (t, x),

here V is defined in (1.17). By Lemma 3.1, V (t, x) is bounded and satisfies the integrability
ondition (2.2) at ∞. Thus Vφ is a bounded function satisfying the integrability condition (2.2)
t ∞, when φ ∈ B+

b (R) and satisfies the integrability condition (1.19) at −∞.
Now we assume that φ ∈ B+(R) satisfies the integrability condition (1.19) at −∞ and that

˜ +
here exists x0 < 0 such that φ is bounded on (−∞, x0]. Let φ(x) := φ(x)1x≤x0 ∈ Bb (R). Note

16
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that

Vφ(t, x) ≤ − logE
[
exp

{
−

∫
R
φ̃(y − x)X t (dy)

}
,Mt ≤ x + x0

]
= Vφ̃(·+x0)(t, x + x0).

hus Vφ is a bounded function satisfying the integrability condition (2.2) at ∞. Since
φ(t, x) ≤ Vφ(t, x), Uφ is also a bounded function satisfying the integrability condition (2.2)

t ∞. □

.1. Large deviation results

roof of Proposition 1.1. (1) Let Ψ be defined by (2.18) with u replaced by Uφ . We claim
hat

lim
t→∞

e
√

2x t3/2

3
2
√

2
log t

Ψ (r, t,
√

2t + x) =

√
2
π

∫
∞

0
Uφ(r,

√
2r + y)ye

√
2y dy =: C(φ, r ).

(3.1)

ote that, for r > 1 and t ≥ 8r ,

e
√

2x t3/2

3
2
√

2
log t

e−
√

2x

√
2π (t − r )

Uφ(r,
√

2r + y)e
√

2ye−
(x−y)2
2(t−r )

(
1 − e

−2(x+
3

2
√

2
log t)y/(t−r )

)
≤ c(1 + |x |)Uφ(r,

√
2r + y)ye

√
2y .

y (2.3), the right hand side of the inequality above is integrable. So by the dominated
onvergence theorem, we get that the claim is true and that C(φ, r ) ∈ (0,∞).

Since Uφ is the solution to (1.3) with Uφ(0, x) = φ(−x) satisfying the integrability condition
2.2) at ∞, by Proposition 2.5, for r large enough, t ≥ 8r and x ≥ −

3
2
√

2
log t + 9r ,

γ (r )−1Ψ (r, t,
√

2t + x) ≤ Uφ(t,
√

2t + x) ≤ γ (r )Ψ (r, t,
√

2t + x).

hus, by (3.1), we have

γ (r )−1C(φ, r ) ≤ lim inf
t→∞

e
√

2x t3/2

3
2
√

2
log t

Uφ(t,
√

2t + x)

≤ lim sup
t→∞

e
√

2x t3/2

3
2
√

2
log t

Uφ(t,
√

2t + x) ≤ γ (r )C(φ, r ). (3.2)

Letting r → ∞, by the fact that limr→∞ γ (r ) = 1, we get that

lim sup
r→∞

C(φ, r ) ≤ lim inf
t→∞

e
√

2x t3/2

3
2
√

2
log t

Uφ(t,
√

2t + x)

≤ lim sup
t→∞

e
√

2x t3/2

3
2
√

2
log t

Uφ(t,
√

2t + x) ≤ lim inf
r→∞

C(φ, r ).

t follows that C(φ) := limr→∞ C(φ, r ) exists, and then (1.20) follows immediately. Now we
show that C(φ) ∈ (0,∞) if φ is non-trivial. In fact, by (3.2), we have

0 < γ (r )−1C(φ, r ) ≤ C(φ) ≤ γ (r )C(φ, r ) < ∞.
17
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For any z, it is clear that Uθ−zφ(t, x) = Uφ(t, x + z), which implies that

C(φ)e−
√

2ze−
√

2x
= lim

t→∞

t3/2

3
2
√

2
log t

Uφ(t,
√

2t + x + z) = C(θ−zφ)e−
√

2x ,

hich further implies that C(θ−zφ) = C(φ)e−
√

2z , that is

C(θ−zφ) = lim
r→∞

√
2
π

∫
∞

0
Uφ(r,

√
2r + y + z)ye

√
2y dy = C(φ)e−

√
2z . (3.3)

(2) Recall that in this part we assume that (H1) and (H3) hold, and φ ∈ B+(R) satisfies the
ntegrability condition (1.19) at −∞ and that there exists x0 < 0 such that φ is bounded on
−∞, x0]. Note that, for t0 > 0, Uφ(t + t0, x +

√
2t0) and Vφ(t + t0, x +

√
2t0) are the solution

o (1.3) with initial data Uφ(t0, x +
√

2t0) and Vφ(t0, x +
√

2t0) respectively. By Corollary 3.2,
e have that Uφ(t0, x +

√
2t0) and Vφ(t0, x +

√
2t0) are bounded and satisfy the integrability

condition (2.2) at ∞. It follows from (1.20) (under the assumption of part (1)) that

lim
t→∞

t3/2

3
2
√

2
log t

Vφ(t, x +
√

2t) = lim
t→∞

t3/2

3
2
√

2
log t

Vφ(t + t0, x +
√

2t0 +
√

2t) = Ce−
√

2x ,

here

C = lim
r→∞

√
2
π

∫
∞

0
Vφ(r + t0,

√
2r +

√
2t0 + y)ye

√
2y dy

= lim
r→∞

√
2
π

∫
∞

0
Vφ(r,

√
2r + y)ye

√
2y dy := C̃(φ).

imilarly, we can show that

lim
t→∞

t3/2

3
2
√

2
log t

Uφ(t, x +
√

2t) = C(φ)e−
√

2x ,

.e., (1.20) also holds under the assumption of part (2). The proof is now complete. □

roof of Theorem 1.2. It is clear that (1.22) follows from (1.21) with φ = 0. Now we prove
(1.23). For t0 > 0, using Proposition 2.5 with u(0, x) = V (t0,

√
2t0 + x), we get that

γ (r )−1Ψ (r, t, x) ≤ V (t0 + t,
√

2t0 + x) ≤ γ (r )Ψ (r, t, x).

y Lemma 3.1 and the dominated convergence theorem, we have that

lim
t→∞

√
te(δ2/2+

√
2δ)tΨ (r, t, (

√
2 + δ)t + x)

=

√
2
π
δe−(δ+

√
2)x e−

1
2 δ

2r
∫

∞

0
V (t0 + r,

√
2r +

√
2t0 + y)ye(

√
2+δ)y dy ∈ (0,∞).

Now, using arguments similar to that used in the proof of Proposition 1.1(1), we get that

lim
t→∞

√
te(δ2/2+

√
2δ)t V (t0 + t, (

√
2 + δ)t +

√
2t0 + x)

=

√
2
π
δe−(δ+

√
2)x lim

r→∞
e−

1
2 δ

2r
∫

∞

0
V (t0 + r,

√
2r +

√
2t0 + y)ye(

√
2+δ)y dy

=

√
2
δe

1
2 δ

2t0e−(δ+
√

2)x lim e−
1
2 δ

2r
∫

∞

V (r,
√

2r + y)ye(
√

2+δ)y dy ∈ (0,∞),

π r→∞ 0

18
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where the limit above exists. Letting x = δt0, we get that

lim
t→∞

√
te(δ2/2+

√
2δ)t V (t, (

√
2 + δ)t)

=

√
2
π
δ lim

r→∞
e−

1
2 δ

2r
∫

∞

0
V (r,

√
2r + y)ye(

√
2+δ)y dy := Ĉ(δ).

t follows that

lim
t→∞

√
te(δ2/2+

√
2δ)tP(Mt > (

√
2 + δ)t) = Ĉ(δ). □

3.2. The extremal process

In this subsection we give the proofs of our main results–Theorems 1.3, 1.6 and 1.7. Recall
that m(t) is defined in (2.17).

3.2.1. Proofs of Theorems 1.3 and 1.6

roof of Theorem 1.3. (1) In this part, we assume that φ is bounded and satisfies the
ntegrability condition (1.19) at −∞. Define

wφ(x) := − logE(e−C(φ)Z∞e−
√

2x
). (3.4)

ecall that (cf. (1.13)–(1.14)) w is a traveling wave to (1.3) and satisfies

lim
x→∞

wφ(x)

xe−
√

2x
= C(φ). (3.5)

et Ψ be defined by (2.18) with u replaced by Uφ . We claim that, for any positive function
z(t) with limt→∞ z(t) = z > 0,

lim
t→∞

Ψ (r, t, z(t) + m(t)) = C(φ, r )ze−
√

2z . (3.6)

In fact, for any t ≥ 8r and y ≥ 0,

z(t)−1 t3/2

√
2π (t − r )

Uφ(r,
√

2r + y)e
√

2ye−
(z(t)+m(t)−

√
2t−y)2

2(t−r )
(
1 − e−2z(t)y/(t−r ))

≤ cUφ(r,
√

2r + y)ye
√

2y . (3.7)

hus, we can apply the dominated convergence theorem to get that

lim
t→∞

z(t)−1e
√

2z(t)Ψ (r, t, z(t) + m(t)) = C(φ, r ),

hich is the same as (3.6). Put

f (r,t)(x) := |Ψ (r, t, x + m(t)) − C(φ, r )xe−
√

2x
|, x > 0.

t follows from the key inequality (2.8) that Uφ(t, x) ≤ (∥φ∥∞ ∨ 1). Applying Proposition 2.5,
e get that, for r large enough, x > 9r and t ≥ 8r ,

Uφ(t,m(t) + x) ≤ γ (r )Ψ (r, t, x + m(t)).

hus, for any t ≥ 8r ,

U (t,m(t) + x) ≤ γ (r )C(φ, r )xe−
√

2x 1 + γ (r ) f (r,t)(x)1 + (∥φ∥ ∨ 1)1 .
φ x>9r x>9r ∞ x≤9r
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Let u1,r (s, x), u2,r (s, x) and vr,t (s, x) be the solutions to the KPP equation (1.3) with initial
conditions C(φ)xe−

√
2x 1x>9r , (∥φ∥∞ ∨ 1)1x≤9r and γ (r ) f (r,t)(x)1x>9r respectively. Then, by

Lemma 2.3, we have

Uφ(t + s,m(t) + x) ≤

(
γ (r )C(φ, r )

C(φ)
∨ 1

)
u1,r (s, x) + u2,r (s, x) + vr,t (s, x).

et a(r ) :=
γ (r )C(φ,r )

C(φ) ∨ 1. Applying (2.1) with r = 0 and using the fact that k(λ) ≤ 1, we get
that

vr,t (s, x) ≤ esγ (r )Ex ( f (r,t)(Bs)1Bs>9r ).

Thus,

Uφ(t + s,m(t + s) + x(t + s))

≤a(r )u1,r (s, x(t + s) + m(t + s) − m(t)) + u2,r (s, x(t + s) + m(t + s) − m(t))

+ esγ (r )E0( f (r,t)(m(t + s) − m(t) + x(t + s) + Bs),m(t + s) − m(t)

+ x(t + s) + Bs > 9r ).

Letting t → ∞ and using (3.6), we get

lim sup
t→∞

Uφ(t,m(t) + x(t)) ≤ a(r )u1,r (s, x +
√

2s) + u2,r (s, x +
√

2s).

ince (∥φ∥∞ ∨ 1)1x<9r satisfies the integrability condition (2.2) at ∞, we have by Proposi-
ion 1.1(1) that u2,r (s, x +

√
2s) → 0 as s → ∞. Since C(φ)xe−

√
2x/wφ(x) → 1 as x → ∞,

y [13, Lemma 3.4] (Note that our (1.14), which is exactly [13, (1.13)], holds under (H1)–(H2),
hus [13, Lemma 3.4] holds under (H1)–(H2)), we get that

u1,r (s, x +
√

2s) → wφ(x), s → ∞.

Now letting s → ∞ and then r → ∞, we get that

lim sup
t→∞

Uφ(t,m(t) + x(t)) ≤ lim
r→∞

a(r )wφ(x) = wφ(x).

On the other hand,

γ (r )−1C(φ, r )xe−
√

2x 1x>9r ≤ Uφ(t,m(t) + x) + γ (r )−1 f (r,t)(x)1x>9r .

sing arguments similar as above, we can get that

lim inf
t→∞

Uφ(t,m(t) + x(t)) ≥ wφ(x).

herefore, we have

lim
t→∞

Uφ(t,m(t) + x(t)) = wφ(x). (3.8)

(2) Recall that, in this part, φ is not necessarily bounded. Applying (3.8) to (t, x) →

Vφ(t + t0,
√

2t0 + x) and Proposition 1.1(2), we get that

lim
t→∞

Vφ(t + t0,m(t) +
√

2t0 + x(t)) = − logE(e−C̃(φ)Z∞e−
√

2x
).

ince m(t + t0) − m(t) −
√

2t0 + x(t) → x , we get that

lim Vφ(t + t0,m(t + t0) + x(t)) = − logE(e−C̃(φ)Z∞e−
√

2x
),
t→∞
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which implies the desired result. Similarly, applying Corollary 3.2 and (3.8) to (t, x) →

φ(t + t0,
√

2t0 + x), we can show that (3.8) also holds for φ satisfying the weaker condition
f this part. The proof is now complete. □

Using Theorem 1.3, we get the convergence of the Laplace transforms. To obtain weak
onvergence, we need to show the continuity of C(φ) and C̃(φ).

emma 3.3. Assume that (H1) and (H2) hold. Then for any φ ∈ H,

lim
λ↓0

C(λφ) = C(0) = 0. (3.9)

f, in addition, (H3) holds, then for any φ ∈ H,

lim
λ↓0

C̃(λφ) = C̃0. (3.10)

roof. For any φ ∈ H, choose mφ such that φ(x) = 0 for all x < mφ . Then we have for all
N > 0,

E(exp{−λ⟨φ, Et ⟩}) ≥ E(exp{−λ∥φ∥∞Et (mφ,∞)}) ≥ e−λ∥φ∥∞ NP(Et (mφ,∞) ≤ N ).

etting t → ∞, λ → 0 and then N → ∞, by Theorem 1.3 we see that, to prove (3.9), it
uffices to show that

lim
N→∞

lim sup
t→∞

P(Et (mφ,∞) > N ) = 0. (3.11)

et g(x) = 1(0,∞)(x), then ug(t, x) = − logE(exp{−X t (−x,∞)}) is increasing on x . For any
≥ 1,

E(Et (mφ,∞) > N , exp{−⟨θ−ng, Et+1⟩})

= E
(
Et (mφ,∞) > N ,EX t

(
exp

{
−

∫
g(y − n − m(t + 1))X1(dy)

}))
= E

(
Et (mφ,∞) > N , exp

{
−

∫
ug(1, x − n − m(t + 1) + m(t))Et (dx)

})
≤ E

(
Et (mφ,∞) > N , exp

{
−ug(1,mφ − n − m(t + 1) + m(t))Et (mφ,∞)

})
≤ exp{−ug(1,mφ − n − m(t + 1) + m(t))N }.

hus, we get that

lim sup
t→∞

P(Et (mφ,∞) > N )

≤ lim sup
t→∞

E(Et (mφ,∞) > N , exp{−⟨θ−ng, Et+1⟩})

+ 1 − lim
t→∞

E(exp{−⟨θ−ng, Et+1⟩})

≤ exp{−ug(1,mφ − n −
√

2)N } + 1 − E(exp{−C(g)e−
√

2n Z∞}).

etting N → ∞ and then n → ∞, (3.11) follows immediately. Thus (3.9) is valid.
Now we prove (3.10) under the additional assumption (H3). It is clear that
0 ≤ P(Mt − m(t) ≤ 0) − E(exp{−λ⟨φ, Et ⟩},Mt − m(t) ≤ 0) ≤ 1 − E(exp{−λ⟨φ, Et ⟩}).
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Thus, by (3.9) and Theorem 1.3(2) with x(t) = 0, we get that

E(exp{− lim
λ→0

C̃(λφ)Z∞}) = E(exp{−C̃0 Z∞}).

Now (3.10) follows immediately. The proof is now complete. □

For any t > 0, we define Ēt := T
−

√
2t X t .

roposition 3.4. Assume that (H1) and (H3) hold. For any z ∈ R, conditioned on {Mt >

2t + z}, (Ēt − z,Mt −
√

2t − z) converges in distribution to a limit (independent of z) (Ē∞, Y ),
here Y is an exponential random variable with parameter

√
2 and for any φ ∈ C+

c (R),

E
[
exp

{
−

∫
R
φ(y)Ē∞(dy)

}
, Y > x

]
=

C̃(θxφ)e−
√

2x
− C(φ)

C̃0
, x > 0.

oreover,

(X t − Mt ,Mt −
√

2t − z)|Mt>
√

2t+z

onverges in law to (∆, Y ), where the random measure ∆ = Ē∞ − Y is independent of Y .

emark 3.5. Define Yt := X t (
√

2t,∞) = ⟨h, Ēt ⟩, where h(x) = 1(0,∞)(x). It follows from
roposition 3.4 that Yt |Yt>0 converges weakly.

roof of Proposition 3.4. First, we show that Mt −
√

2t − z|Mt>
√

2t+z converges in distribution
o an exponential random variable with parameter

√
2. In fact, by (1.21) with φ = 0, we get

hat for any x > 0,

lim
t→∞

P(Mt −
√

2t − z > x |Mt >
√

2t + z) = lim
t→∞

t3/2
3

2
√

2
log t

P(Mt >
√

2t + z + x)

t3/2
3

2
√

2
log t

P(Mt >
√

2t + z)
= e−

√
2x .

or any x > 0 and φ ∈ B+

b (R) satisfying the integrability condition (1.19) at −∞, applying
roposition 1.1 several times, we get

lim
t→∞

E
(

e−
∫
R φ(y−

√
2t−z) X t (dy),Mt >

√
2t + z + x |Mt >

√
2t + z

)
= lim

t→∞

E
(

e−
∫
R φ(y−

√
2t−z) X t (dy),Mt >

√
2t + z + x

)
P(Mt >

√
2t + z)

= lim
t→∞

1 − E(e−
∫
R φ(y−

√
2t−z) X t (dy),Mt ≤

√
2t + z + x)

P(Mt >
√

2t + z)

− lim
t→∞

1 − E(e−
∫
R φ(y−

√
2t−z) X t (dy))

P(Mt >
√

2t + z)

= lim
t→∞

Vθxφ(t,
√

2t + z + x)

V (t,
√

2t + z)
− lim

t→∞

Uφ(t,
√

2t + z)

V (t,
√

2t + z)

=
C̃(θxφ)e−

√
2x

− C(φ)

C̃0
,
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where in the second to last equality above, we used L’Hospital’s rule and the facts that
Vθxφ(t,

√
2t + z + x) → 0 and Uφ(t,

√
2t + z) → 0 (which are consequences of (1.21) and

1.20) respectively). Now applying Lemma 3.3, we get that for any φ ∈ C+
c (R),

(⟨φ, Ēt − z⟩,Mt −
√

2t − z)|Mt>
√

2t+z

converges jointly in distribution. Thus the limit has the form (⟨φ, Ē∞⟩, Y ) (independent of z),
where the random measure Ē∞ ∈ MR(R).

It follows by [5, Lemma 4.13] that, conditioned on Mt >
√

2t + z, X t − Mt converges in
aw to Ē∞ − Y . Thus,

E
(

e−
∫
R φ(y−Mt ) X t (dy),Mt −

√
2t − z > x |Mt >

√
2t + z

)
= E

(
e−

∫
R φ(y−Mt ) X t (dy)

|Mt >
√

2t + z + x
)
P(Mt >

√
2t + z + x |Mt >

√
2t + z)

→ E(e−
∫
R φ(y−Y ) Ē∞(dy))P(Y > x).

The desired independence result follows immediately. □

roof of Theorem 1.6. The weak convergence of Et and (1.27) follow immediately from
Theorem 1.3(1) and Lemma 3.3. Now we assume that (H3) also holds and prove the second
assertion of Theorem 1.6. For any φ ∈ C+

c (R), choose mφ such that φ(y) = 0 for all y < mφ .
Then we have

C(φ)

C̃0
= lim

t→∞

1 − E
[
e−

∫
φ(y−

√
2t) X t (dy)

]
P(Mt >

√
2t)

= lim
t→∞

E
[
1 − e−

∫
φ(y−

√
2t) X t (dy),Mt >

√
2t + mφ

]
P(Mt >

√
2t)

= lim
t→∞

E
[
1 − e−

∫
φ(y−

√
2t) X t (dy)

|Mt >
√

2t + mφ

]P(Mt >
√

2t + mφ)

P(Mt >
√

2t)

= e−
√

2mφ lim
t→∞

E
[
1 − e−

∫
φ(y+mφ−

√
2t−mφ ) X t (dy)

|Mt >
√

2t + mφ

]
= e−

√
2mφE

[
1 − e−

∫
φ(y+mφ ) Ē∞(dy)

]
= e−

√
2mφ

∫
∞

0

√
2e−

√
2xE

[
1 − e−

∫
φ(y+mφ+x)∆(dy)

]
dx

=

∫
∞

−∞

√
2e−

√
2xE

[
1 − e−

∫
φ(y+x)∆(dy)

]
dx, (3.12)

here in the first, fifth and sixth equalities we used Proposition 3.4, and in the fourth equality
e used Proposition 1.1. By the definition of

∑
j ∆ j (dx + e j ), we deduce that

E
(

e−
∑

j φ(y+e j )∆ j (dy)
)

= E
∏

j

[
E

(
e−

∫
φ(y+x)∆(dy)

)]
x=e j

= exp
{
−

∫ (
1 − E

(
e−

∫
φ(y+x)∆(dy)

))
C̃0 Z∞

√
2e−

√
2x dx

}
= exp{−C(φ)Z∞}. (3.13)

he proof is now complete. □
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3.2.2. Proof of Theorem 1.7

emma 3.6. Assume that (H1) and (H3) hold, and that φ ∈ B+(R) satisfies the integrability
ondition (1.19) at −∞ and that there exists x0 < 0 such that φ is bounded on (−∞, x0].
hen

lim
s→∞

lim
t→∞

E
[
e
−

∫
φ(y−m(t)− 1√

2
log Zs )X t (dy)

e−θ Zs , Zs > 0
]

= e−C(φ)E
[
e−θ Z∞ , Z∞ > 0

]
.

roof. By the Markov property, we have for s < t ,

E
[
exp

{
−

∫
φ(y − m(t) −

1
√

2
log Zs)X t (dy)

}
exp{−θ Zs}, Zs > 0

]
= E

[
exp

{
−

∫
Uφ(t − s,m(t) +

1
√

2
log Zs − y)Xs(dy)

}
exp

{
−θ Zs

}
, Zs > 0

]
.

ow applying Theorem 1.3(2) and (3.4), we get that as t → ∞,

E
[
exp

{
−

∫
φ(y − m(t) −

1
√

2
log Zs)X t (dy)

}
exp{−θ Zs}, Zs > 0

]
→ E

[
exp

{
−

∫
wφ(

√
2s +

1
√

2
log Zs − y)Xs(dy)

}
exp

{
−θ Zs

}
, Zs > 0

]
.

or any L > 0, define A(s, L) := {Zs > 0, log Zs ∈ [−L , L],Ms ≤
√

2s − log s}. Then

E
[
exp

{
−

∫
wφ(

√
2s +

1
√

2
log Zs − y)Xs(dy)

}
exp

{
−θ Zs

}
, Zs > 0

]
≤ E

[
exp

{
−

∫
wφ(

√
2s +

1
√

2
log Zs − y)Xs(dy)

}
exp

{
−θ Zs

}
, A(s, L)

]
+ P(Zs > 0, | log Zs | > L) + P(Ms >

√
2s − log s) := (I ) + (I I ) + (I I I ).

ince {Z∞ = 0} = Sc and {Z∞ > 0} = S a.s., we have

lim
L→∞

lim sup
s→∞

P(Zs > 0, | log Zs | > L)

≤ lim
L→∞

lim sup
s→∞

(
P(Zs > 0, | log Zs | > L ,S) + P(Xs ̸= 0,Sc)

)
≤ lim

L→∞

P(| log Z∞| ≥ L ,S) = 0. (3.14)

y (1.26), we have

lim
s→∞

P(Ms >
√

2s − log s) = 0. (3.15)

ow we consider (I ). Since wφ (x)

xe−
√

2x
→ C(φ), as x → ∞, and on A(s, L), for y ∈ supp Xs ,

2s +
1

√
2

log Zs − y ≥ log s − L/
√

2, thus for any ϵ > 0, there exists N such that for s > N ,

(1 − ϵ)C(φ)
∫

(
√

2s +
1

√
2

log Zs − y)e
−

√
2(

√
2s+ 1√

2
log Zs−y)

Xs(dy)

≤

∫
wφ(

√
2s +

1
√

2
log Zs − y)Xs(dy)

≤ (1 + ϵ)C(φ)
∫

(
√

2s +
1

√ log Zs − y)e
−

√
2(

√
2s+ 1√

2
log Zs−y)

Xs(dy).

2
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Note that on A(s, L), for s large enough, | log Zs |√
2(

√
2s−y)

≤
L

√
2 log s

≤ ϵ. Thus (I ) is less than or
equal to

E
[
exp

{
−(1 − ϵ)2C(φ)(Zs)−1

∫
(
√

2s − y)e−
√

2(
√

2s−y) Xs(dy)
}

exp
{
−θ Zs

}
, A(s, L)

]
≤ exp

{
−(1 − ϵ)2C(φ)

}
E

[
exp

{
−θ Zs

}
, Zs > 0

]
. (3.16)

imilarly,

(I ) ≥ exp
{
−(1 + ϵ)2C(φ)

}
E

[
exp

{
−θ Zs

}
, A(s, L)

]
. (3.17)

ombining (3.14)–(3.17), letting s → ∞, then L → ∞, and then ϵ → 0, we get that

lim
s→∞

E
[
exp

{
−

∫
wφ(

√
2s +

1
√

2
log Zs − y)Xs(dy)

}
exp

{
−θ Zs

}
, Zs > 0

]
= exp

{
−C(φ)

}
E

[
exp

{
−θ Z∞

}
, Z∞ > 0

]
.

he proof is now complete. □

roof of Theorem 1.7. Using arguments similar to that leading to (3.13), we get that for any
∈ C+

c (R),

E
(

e−
∑

j φ(y+e′
j )∆ j (dy)

)
= exp

{
−

∫ (
1 − E

(
e−

∫
φ(y+x)∆(dy)

))
C̃0

√
2e−

√
2x dx

}
= exp{−C(φ)}.

ince Z t → Z∞, we only need to prove that, for any φ ∈ C+
c (R) and θ ≥ 0,

lim
t→∞

E
[
e−

∫
φ(y)E∗

t (dy)e−θ Z∞ , Z∞ > 0
]

= exp{−C(φ)}E[exp{−θ Z∞}, Z∞ > 0]. (3.18)

Step 1 Define, for any b > 1,

gb(x) :=

⎧⎨⎩0, |x | > b;
1, |x | < b − 1;
linear, otherwise.

It is clear that |gb(x) − gb(y)| ≤ |x − y|.
First, we consider φ(x) = | f (x)|gb(x) where f (x) =

∑n
i=1 θi eβi x and θi , βi ∈ R. Let

f (x) :=
∑n

i=1 |θi |eβi x . It is clear that φ ∈ C+
c (R). By Lemma 3.6, to prove (3.18), it suffices

to show that

lim
s→∞

lim sup
t→∞

⏐⏐⏐E[
e
−

∫
φ(y−m(t)− 1√

2
log Z∞)X t (dy)

e−θ Z∞ , Z∞ > 0
]

− E
[
e
−

∫
φ(y−m(t)− 1√

2
log Zs )X t (dy)

e−θ Zs , Zs > 0
]⏐⏐⏐ = 0. (3.19)

or any K > 0 and M > 0, let f
M

(y) = f (y)1|y|≤M+b and

A(s, t, K ,M) = {⟨ f
M
, Et ⟩ > K } ∪

{
1

√
2
| log Z∞| > M

}
∪

{
1

√
2
| log Zs | > M

}
.

ince ⟨ f
M
, Et ⟩ converges weakly and Zs → Z∞, a.s., for any ϵ > 0, there exist K ,M such

hat

lim lim supP(A(s, t, K ,M), Z∞ > 0) < ϵ. (3.20)

s→∞ t→∞
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Note that, if |y| > |x1| ∨ |x2| + b, φ(y − x1) − φ(y − x2) = 0; otherwise,

|φ(y − x1) − φ(y − x2)|

≤ | f (y − x1) − f (y − x2)| + | f (y − x2)||gb(y − x1) − gb(y − x2)|

≤ f (y)

⎡⎣∑
j

|e−β j x1 − e−β j x2 | +

∑
j

e−β j x2 |x1 − x2|

⎤⎦ =: f (y)H (x1, x2).

y the inequality |e−x
− e−y

| ≤ 1 − e−|x−y| for any x, y > 0, we get that on A(s, t, K ,M)c
∩

Zs > 0, Z∞ > 0},⏐⏐⏐e−
∫
φ(y−m(t)− 1√

2
log Z∞)X t (dy)

e−θ Z∞ − e
−

∫
φ(y−m(t)− 1√

2
log Zs )X t (dy)

e−θ Zs
⏐⏐⏐

≤ 1 − exp
{
−θ |Zs − Z∞| − ⟨ f

M
, Et ⟩H

(
1

√
2

log Z∞,
1

√
2

log Zs

)}
≤ 1 − exp

{
−θ |Zs − Z∞| − K H

(
1

√
2

log Z∞,
1

√
2

log Zs

)}
.

Since Zs → Z∞, the left hand side of (3.19) is no more than

lim
s→∞

lim sup
t→∞

[
P(Zs ≤ 0, Z∞ > 0) + P(A(s, t, K ,M), Z∞ > 0)

+ E
(

1 − exp
{
−θ |Zs − Z∞| − K H

(
1

√
2

log Z∞,
1

√
2

log Zs

)}
, Zs > 0, Z∞ > 0

)]
≤ ϵ.

ow (3.19) follows immediately. Thus, the result holds for φ(x) of the form specified at the
eginning of this step.

Step 2 We will show that (3.18) holds for φ ∈ C+
c (R). Choose b > 1 such that φ(x) = 0

or |x | > b − 1. According to the Stone–Weierstrass theorem, for any n ≥ 1, there exists a
olynomial Qn,b such that

sup
y∈[e−b,eb]

|Qn,b(y) − φ(log y)| ≤ n−1,

hich is equivalent to that

sup
y∈[−b,b]

|Qn,b(ey) − φ(y)| ≤ n−1.

et φn,b(y) := |Qn,b(ey)|gb(y), it is clear that all the functions φn,b satisfy the conditions in
tep 1, and |φn,b(y) − φ(y)| ≤ n−1gb(y). Thus⏐⏐⏐E[

e−
∫
φ(y)E∗

t (dy)e−θ Z∞ , Z∞ > 0
]

− E
[
e−

∫
φn,b(y)E∗

t (dy)e−θ Z∞ , Z∞ > 0
]⏐⏐⏐

≤ E
[
1 − e−

∫
|φ(y)−φn,b(y)|E∗

t (dy), Z∞ > 0
]

≤ E
[
1 − e−n−1 ∫

gb(y)E∗
t (dy), Z∞ > 0

]
.

n Step 1, we have shown that,

lim lim E
[
1−e−n−1 ∫

gb(y)E∗
t (dy), Z∞ > 0

]
= lim (1−exp{−C(n−1gb)})P(Z∞ > 0) = 0.
n→∞ t→∞ n→∞
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Thus we have

lim
t→∞

E
[
e−

∫
φ(y)E∗

t (dy)e−θ Z∞ , Z∞ > 0
]

= lim
n→∞

lim
t→∞

E
[
e−

∫
φn,b(y)E∗

t (dy)e−θ Z∞ , Z∞ > 0
]

= lim
n→∞

exp{−C(φn,b)}E
[
e−θ Z∞ , Z∞ > 0

]
.

Since |φn,b(y) − φ(y)| ≤ n−1gb(y), by Lemmas 2.3 and 3.3, we have

|C(φn,b) − C(φ)| ≤ C(n−1gb) → 0, n → ∞.

hus, (3.18) is valid for all φ ∈ C+
c (R). □

In fact, it is not surprising that E∗
∞

has the decomposition (1.29). A random measure M is
aid to be exp-

√
2-stable if any a, b satisfying e

√
2a

+ e
√

2b
= 1, it holds that

Ta M + Tb M̂ d
= M,

here M̂ is an independent copy of M . The following proposition shows that E∗
∞

satisfies the
xp-

√
2-stability:

roposition 3.7. Under (H1) and (H3), E∗
∞

satisfies the exp-
√

2-stability.

roof. The Laplace transform of TaE∗
∞

is given by

E(exp{−⟨φ, TaE∗

∞
⟩}) = E(exp{−⟨θaφ, E∗

∞
⟩}) = exp{−C(θaφ)} = exp{−C(φ)e

√
2a

},

φ ∈ C+

c (R).

Therefore, the desired result follows. □

Remark 3.8. Let M1, . . . ,Mn be a sequence of i.i.d. random measures with the same law as
T

− log n/
√

2E∗
∞

. Then, by Proposition 3.7, E∗
∞

is equal in law to M1 + · · · + Mn . Thus E∗
∞

is
infinitely divisible. Applying [37, Theorem 3.1], we get that for any φ ∈ C+

c (R),

C(φ) = − logE[exp{−⟨φ, E∗

∞
⟩}] =c

∫
R
φ(x)e−

√
2x dx

+

∫
R

e−
√

2x
∫
MR (R)\{0}

[1 − exp{−⟨φ,µ⟩}]

× TxΛ(dµ) dx,

or some constant c > 0 and some measure Λ on MR(R)\ {0} with the property that for every
ounded Borel set A ⊂ R,∫

R
e−

√
2x

∫
MR (R)\{0}

[1 ∧ µ(A − x)]Λ(dµ) dx < ∞.

ow we choose a function φ ∈ C+
c (R) such that φ(x) = 0 for any x < 0. It is clear that

λφ(t, x) ≤ V (t, x). Under (H1) and (H3), it holds that C(λφ) ≤ C̃0 ∈ (0,∞) for any λ > 0.
This implies that c = 0. Thus

E∗

∞

d
=

∑
j

Tξ j D j ,

where
∑

j δ(x j ,D j ) is Poisson point process with intensity measure e−
√

2x dx Λ(dµ). Theo-
em 1.7 says that Λ(dµ) =

√
2C̃0P(∆ ∈ dµ) where ∆ is the limit of X t − Mt conditioned on

Mt >
√

2t}.
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4. Proof of Lemma 3.1

In this section, we will give an upper estimate for − logPδx (Xs([−A, A]c) = 0, 0 ≤ s ≤ t),
hich implies Lemma 3.1. Pinsky [40] has proved a similar result for super-Brownian motions
ith quadratic branching mechanism. Here we use the idea of [40] to generalize the result to

uper-Brownian motions with more general branching mechanisms.

emma 4.1 (Maximum Principle). Let ψ̃(λ) := −aλ + bλ1+ϑ , where a > 0, b > 0, ϑ > 0.
ssume that v1(x) and v2(x) are two functions defined on (a1, a2) such that vi (x) ≥ (ab−1)1/ϑ ,
= 1, 2, v1(ai ) ≤ v2(ai ), i = 1, 2, and that

1
2

d2

dx2 v2(x) − ψ̃(v2(x)) ≤
1
2

d2

dx2 v1(x) − ψ̃(v1(x)), x ∈ (a1, a2).

hen we have that

v1(x) ≤ v2(x), x ∈ (a1, a2).

roof. The proof is a slight modification of the proof of [13, Proposition 3.1], using [41,
heorem 3.4]. See also the proof of [11, Proposition 6.4]. We omit the details. □

emma 4.2. Let ψ̃(λ) := −aλ + bλ1+ϑ , where a > 0, b > 0, ϑ ∈ (0, 1]. For any A > 0,
here exists an even function h A(x) on (−A, A) such that

1
2
∆h A(x) = ψ̃(h A(x)), |x | < A, (4.1)

and that limx→A h A(x) = limx→−A h A(x) = ∞. Moreover, there exist positive constants
c1 = c1(a, b, ϑ), c2 = c2(a, b, ϑ) and c3 = c3(a, b, ϑ) such that

(1) max{(ab−1)1/ϑ , c2 A2/ϑ (A2
− x2)−2/ϑ

} ≤ h A(x) ≤ (ab−1)1/ϑ (1 + c1 A2/ϑ (A2
− x2)−2/ϑ ) for

|x | < A;

(2) |h′
A(x)|

h A(x) ≤
c3

A−|x |
, for |x | < A.

Proof. Step 1: First, for any m > (ab−1)1/ϑ , let hm(x) be the solution to the problem:

1
2
∆hm(x) = ψ̃(hm(x)), |x | < A, (4.2)

hm(A) = hm(−A) = m. (4.3)

learly hm is even. Since (ab−1)1/ϑ is a solution of −aλ+ bλ1+ϑ
= 0, the maximum principle

n Lemma 4.1 implies that hm(x) ≥ (ab−1)1/ϑ for |x | < A.
Step 2 We claim that there exists c1 > 0 such that the function g(x) = (ab−1)1/ϑ (1 +

1 A2/ϑ (A2
− x2)−2/ϑ ) satisfies

1
2
∆g(x) ≤ ψ̃(g(x)) = −ag(x) + bg(x)1+ϑ , |x | < A.

Given this claim, we can use the maximum principle in Lemma 4.1 and the fact limx→A g(x) =

limx→−A g(x) = ∞ to get

g(x) ≥ h (x), |x | < A.
m
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Now we prove the claim. Since limλ↓0
−(1+λ)+(1+λ)1+ϑ

λ1+ϑ = ∞ and limλ→∞
−(1+λ)+(1+λ)1+ϑ

λ1+ϑ = 1,
we have

c4 := inf
λ≥0

−(1 + λ) + (1 + λ)1+ϑ

λ1+ϑ
∈ (0,∞).

Thus, we have that

−ag(x) + bg(x)1+ϑ
≥ c4a(ab−1)1/ϑc1+ϑ

1 A2+2/ϑ (A2
− x2)−2(1+ϑ)/ϑ .

t is clear that, for any x ∈ (−A, A),

1
2
∆g(x) = (ab−1)1/ϑc1 A2/ϑ2ϑ−1[A2

+ (4ϑ−1
+ 1)x2](A2

− x2)−2−2/ϑ

≤ (ab−1)1/ϑc12ϑ−1(4ϑ−1
+ 2)A2+2/ϑ (A2

− x2)−2−2/ϑ .

herefore it suffices to choose

c1 =

(
4c−1

4 a−1ϑ−1(
2
ϑ

+ 1)
)1/ϑ

.

Step 3 For any δ > 0, define gδ(x) :=
c2 A2/ϑ

((A+δ)2−x2)2/ϑ , where c2 > (ab−1)1/ϑ is a constant.
e claim that there exists c2 = c2(a, b, ϑ) > 0 such that

1
2
∆gδ(x) ≥ −agδ(x) + bgδ(x)1+ϑ , |x | < A + δ. (4.4)

iven this claim, we can apply the maximum principle in Lemma 4.1 to get that, for m large
nough,

hm(x) ≥ gδ(x), |x | < A.

ow we prove the claim. In fact,

1
2
∆gδ(x) ≥ c22ϑ−1 A2+2/ϑ ((A + δ)2

− x2)−2−2/ϑ

nd

−agδ(x) + bgδ(x)1+ϑ
≤ bgδ(x)1+ϑ

= bc1+ϑ
2 A2/ϑ+2((A + δ)2

− x2)−2−2/ϑ .

hus we only need to choose

c2 = (2b−1ϑ−1)1/ϑ .

Step 4 By the maximum principle in Lemma 4.1, hm is non-decreasing in m, thus h A(x) :=

imm→∞ hm(x) exists. Hence for any δ > 0,

gδ(x) ≤ h A(x) ≤ g(x).

etting δ → 0, we have that, for any |x | < A,

c2 A2/ϑ

(A2 − x2)2/ϑ ≤ h A(x) ≤ (ab−1)1/ϑ (1 + c1 A2/ϑ (A2
− x2)−2/ϑ ).

learly limx→A h A(x) = limx→−A h A(x) = ∞.
Step 5 Now we show that h A satisfies (4.1). By (4.2), we have that for any 0 < A′ < A,

hm(x) = −Ex

∫ τA′

ψ̃(hm(Bs)) ds + Ex (hm(BτA′ )), x ∈ (−A′, A′),

0
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where τA′ is the exit time of B from (−A′, A′). Letting m → ∞ and applying the dominated
onvergence theorem, we get that

h A(x) = −Ex

∫ τA′

0
ψ̃(h(Bs)) ds + Ex (h(BτA′ )), x ∈ (−A′, A′),

hich implies that h A satisfies (4.1) for x ∈ (−A′, A′). Since A′
∈ (0, A) is arbitrary, h A

satisfies (4.1) for x ∈ (−A, A).
Step 6 Finally, we prove that |h′

A(x)|
h A(x) ≤

c3
A−|x |

, |x | < A. Since h A is an even function, we

ave |h′
A(x)|

h A(x) =
|h′

A(|x |)|
h A(|x |) . To prove the desired result, we only need to consider x ≥ 0. Since

h A(x) ≥ (ab−1)1/ϑ and

1
2
∆h A(x) = ψ̃(h A(x)) ≥ 0, |x | < A,

we know that h′

A(x) is increasing on (−A, A). Since h A is an even function, we have h′

A(0) = 0.
hus, h′

A(x) ≥ 0 for x ∈ [0, A), which implies that

h′

A(x)
h A(x)

≥ 0, x ∈ [0, A). (4.5)

Define w1(x) =
2a(c1)ϑ

A−x −
h′

A(x)
h A(x) , for x ∈ [0, A). Then, for any x ∈ (0, A),

w′

1(x) =
2(c1)ϑ

(A − x)2 − 2(bh A(x)ϑ − a) +

(h′

A(x)
h A(x)

)2
≥ 0,

here the last inequality follows from the fact that

bh A(x)ϑ − a ≤ a(1 + c1 A2/ϑ (A2
− x2)−2/ϑ )ϑ − a ≤ acϑ1 A2(A2

− x2)−2
≤

a(c1)ϑ

(A − x)2 .

ince h′

A(0) = 0, then w1(0) > 0. Thus for any x ∈ (0, A), w1(x) ≥ w1(0) > 0, that is

2a(c1)ϵ

A − x
≥

h′

A(x)
h A(x)

, x ∈ [0, A). (4.6)

ombining (4.5) and (4.6), we get the desired result. □

Lemma 4.3. Assume (H1) and (H3) hold. Then, there exist positive constants c4 = c4(a, b, ϑ)
nd c5 = c5(a, b, ϑ) such that for any A > 0 and |x | < A,

− logPδx (Xs([−A, A]c) = 0,∀s ∈ [0, t]) ≤ h A(x) exp
{
−

(
c4

(A − |x |)2

t
− at − c5

)}
.

(4.7)

roof. Let X̃ be a super-Brownian motion with branching mechanism ψ̃(λ) := −aλ+ bλ1+ϑ .
efine

h(t, x) := − logPδx (X̃s([−A, A]c) = 0,∀s ≤ t)

nd

hm(t, x) := − logEδx

[
exp

{
−

∫ t

⟨φm, X̃s⟩ ds
}]
,

0
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where φm ∈ C∞(R) satisfies

φm(y) = 0, |y| < A, |y| > A + m + 1,

φm(y) = m, A +
1
m

≤ |y| ≤ A + m.

Then h(t, x) = limm→∞ hm(t, x) and hm(t, x) satisfies the equation

hm(t, x) + Ex

∫ t

0
ψ̃(hm(t − s, Bs)) ds = Ex

∫ t

0
φm(Bs) ds.

For the display above we refer the readers to [35, Corollay 5.17]. Thus,
∂hm

∂t
(t, x) −

1
2
∆hm(t, x) = −ψ̃(h(t, x)) + φm(x), t > 0,

hich implies that
∂hm

∂t
(t, x) −

1
2
∆hm(t, x) = −ψ̃(h(t, x)), |x | < A, t > 0.

ince ψ ≥ ψ̃ , then using arguments similar to that used in [35, Corollary 5.18], we get that

− logEδx

[
exp

{
−

∫ t

0
⟨φm, Xs⟩ ds

}]
≤ hm(t, x).

etting m → ∞, we get

− logPδx (Xs([−A, A]c) = 0,∀s ∈ [0, t]) ≤ h(t, x),

o it suffices to show that the result holds for h(t, x).
Let f be an even function satisfying

f ∈ C2([−1, 1]), f (y) > 0, if − 1 < y < 1;

f (0) = 1, f ′(0) = 0, f (1) = 0, f ′(1) = 0, f ′′(1) > 0.

sup
y∈[0,1]

( f ′(y))2

f (y)
< ∞. (4.8)

t has been proved in the proof of [40, Theorem 1] that such f exists. Define

v(t, x) := h A(x) exp
{

c5 + at −
δA2

t
f (

x
A

)
}
, |x | < A,

here c5, δ > 0 are to be fixed later. It is clear that limt→0 v(t, x) = 0, lim|x |→A v(t, x) = ∞,
ince lim|x |→A h A(x) = ∞.

To prove the result, we want to find suitable c5, δ such that
∂v

∂t
(t, x) −

1
2
∆v(t, x) ≥ av(t, x) − bv(t, x)1+ϑ , |x | < A. (4.9)

Once we have this, we can apply the maximum principle in Lemma 2.2 to get hm(t, x) ≤

(t, x). Letting m → ∞, we arrive at

h(t, x) ≤ v(t, x), |x | < A, t > 0.

ince f ′′(1) > 0, we have infy∈[0,1]
f (y)

(1−y)2 > 0. Thus,

h(t, x) ≤ v(t, x) ≤ h A(x) exp
{

c5 + at −
c4(A − |x |)2

t

}
,

here c = δ inf f (y)
> 0.
4 y∈[0,1] (1−y)2
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Now we prove (4.9). Note that, by (4.1), (4.9) is equivalent to, for x ∈ [0, A), y = x/A,

a +
δA2

t2 f (y) −
δ2 A2

2t2 ( f ′(y))2
+

h′

A(x)
h A(x)

δA
t

f ′(y) +
δ

2t
f ′′(y) ≥ −bv(t, x)ϑ + bh A(x)ϑ .

ote that ( f ′(y))2

f (y) , | f ′(y)|
1−y , and f ′′(y) are all bounded. Let K be the common upper bound. By

emma 4.2, |h′
A(x)|

h A(x) ≤ c3(A − x)−1. Choose δ ∈ (0, K −1). It suffices to show that

a +
δA2

2t2 f (y) −
c3 K δ

t
−

K δ
2t

≥ −bv(t, x)ϑ + bh A(x)ϑ . (4.10)

f δA2

t f (y) ≥ c5/2, then the left hand side of (4.10) is bigger than

a +
c5

4t
−

c3

t
−

1
2t
,

and by Lemma 4.2, the right hand side of (4.10) is less than

bh A(x)ϑ ≤ a(1 + c1 A2/ϑ (A2
− x2)−2/ϑ )ϑ ≤ a(1 + cϑ1 A−2(1 − y2)−2)

= a + acϑ1 ( f (y))−1 A−2 f (y)
(1 − y2)2 ≤ a + a

2δcϑ1 K
c5t

≤ a +
2acϑ1
c5t

.

hus, when we choose c5 large enough, (4.10) is true.
If c5/2 ≥

δA2

t f (y), then the left hand side of (4.10) is bigger than

a −
c3

t
−

1
2t
,

and the right hand side of (4.10) is less than

bh A(x)ϑ (1 − eϑc5/2) ≤ −(eϑc5/2 − 1)bcϑ2 A2(A2
− x2)−2

= −bcϑ2 (eϑc5/2 − 1)
1

f (y)A2

f (y)
(1 − y)2(1 + y)2

≤ −
bcϑ2 δ(e

ϑc5/2 − 1)
2c5

inf
y∈[0,1]

f (y)
(1 − y)2

1
t
.

ince infy∈[0,1]
f (y)

(1−y)2 > 0, we can choose c5 large enough such that (4.10) is true. The proof
s now complete. □

roof of Lemma 3.1. It is clear that

E
[
exp

{
−

∫
R
φ(y − x)X t (dy)

}
,Mt ≤ x

]
≥ P(∥X t∥ = 0) > 0,

here the last inequality follows from (1.11). Thus

V (t, x) ≤ − logP(∥X t∥ = 0) < ∞,

hich implies that V (t, ·) is a bounded function. For any x > 1, it follows from Lemma 4.3
hat

V (t, x) ≤ − logP(Xs([−x, x]c) = 0, s ≤ t) ≤ hx (0) exp{−
c4

t
x2

+ at + c5}

≤ c(t)e−c4x2/t ,

here c(t) is a constant which may depend on t . Thus, the desired result follows. □
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