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Abstract

Applying the Foster—Lyapunov type criteria and a martingale method, we study a two-dimensional
process (X, Y) arising as the unique nonnegative solution to a pair of stochastic differential equations
driven by independent Brownian motions and compensated spectrally positive Lévy random measures.
Both processes X and Y can be identified as continuous-state nonlinear branching processes where the
evolution of Y is negatively affected by X. Assuming that process X extinguishes, i.e. it converges to 0
but never reaches 0 in finite time, and process Y converges to 0, we identify rather sharp conditions under
which the process Y exhibits, respectively, one of the following behaviors: extinction with probability
one, extinguishing with probability one or both extinction and extinguishing occurring with strictly
positive probabilities.
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1. Introduction and main results

1.1. Introduction on the background, the model and the approach

Lotka—Volterra model serves as a fundamental ecological system. The deterministic Lotka—
Volterra model for population dynamics describes the evolution of two species suffering
from both self-regulations and interspecific competitions for limiting resources. A stochastic
Lotka—Volterra process generalizes the deterministic Lotka—Volterra population dynamics to
incorporate the influence of demographic stochasticity or random environmental fluctuations. In
Cattiaux-Mé€l€ard [5], an interacting logistic Feller diffusion system is proposed as a stochastic
Lotka—Volterra dynamics whose quasi-stationary distribution is studied. Two different spatial
Lotka—Volterra type models are formulated in Blath et al. [4] as lattice-indexed interacting
Feller diffusions and lattice-indexed interacting Fisher-Wright diffusions, respectively, where
the persistence and long term coexistence of the populations are investigated. Evans et al. [9]
consider a two-dimensional diffusion that solves a system of stochastic differential equations
with Lotka—Volterra type drift and linear diffusion coefficients driven by a correlated two-
dimensional Brownian motion, and study its stationary distribution. Hening and Nguyen [11]
further generalize the model of Evans et al. [9] and prove results on the rate of convergence
to the stationary distribution. Similar models have also been studied systematically as solution
to a system of stochastic differential equations driven by both Brownian motions and Poisson
random measures. We refer to Zhu and Yin [26] and Bao et al. [1] and references therein for
previous work.

In the above mentioned models, the drift coefficients and (or) the diffusion coefficients are
assumed to be of particular forms. Hening et al. [12] recently proposed populations dynamics
described by n-dimensional Kolmogorov systems with nonlinear interactions and driven by
white noise. Sharp conditions are found for the populations to converge exponentially fast to
their stationary distributions and for the populations to converge to 0 exponentially fast. We
refer to Benaim [3] for a comprehensive study on stochastic persistence and related topics for
general interacting SDE systems.

On the other hand, progress has been made on the study of continuous-state branching
processes with generalized branching mechanism. The extinction, explosion and coming down
from infinity results for such processes are obtained in Li et al. [20] via martingale approaches.
This motivates us to further study similar behaviors for the general continuous-state branching
processes with interaction.

In this paper we consider a generalized version of the stochastic competitive Lotka—
Volterra process (X, Y) arising as the non-negative, spectrally positive solution to a system
of stochastic differential equations (SDEs for short) driven by independent Brownian motions
and compensated Poisson random measures.

Intuitively, the process X represents the (re-scaled) size of a population with a certain type of
individuals whose evolution is described by a continuous-state branching process with a general
nonadditive branching mechanism that has been studied in Li et al. [20]. We also refer to Li [18]
for a review on continuous-state branching processes. Process Y represents a population of
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another type that is a continuous-state branching process experiencing a competition pressure
from X. From another point of view, one can also identify X as the environment that affects
the evolution of process Y.

Process (X, Y) can also be treated as a generalized two-type continuous-state nonlinear
branching process. The readers are referred to Ma [21] and Barczy et al. [2] for two-type
continuous-state branching processes, and to Li [16], Hong and Li [13], Chapter 6 of Li [17]
and the references therein for two-type measure-valued branching processes.

In the study of the Lotka—Volterra process, people are often interested in whether the
two different populations still coexist in the long run, or whether there is only a mono-
type population left eventually. For a continuous-state branching process people also want to
distinguish between extinction and extinguishing that are two distinct ways of converging to 0
as time goes to infinity. We say extinction occurs if the process reaches 0 in finite time, and
extinguishing occurs if the process converges to 0 but never reaches O in finite time. In this
paper we want to carry out more detailed analysis of the extinction-extinguishing behaviors for
process Y given that it converges to 0 eventually, and want to understand how the processes
X and Y jointly affect the extinction-extinguishing behaviors of process Y.

Note that in SDE terminology the above mentioned extinction and extinguishing behaviors
correspond to the accessibility/inaccessibility of boundary O for the associated SDE. To our
best knowledge, such boundary classifications are rarely known for an interacting system of
SDEs with jumps.

As a first attempt of studying such interacting population dynamics under general setting,
we first consider two populations that both undergo nonlinear subcritical branching. We further
assume that the interaction between the two populations is one-sided, i.e. the evolution of
process Y is affected by process X while the impact of ¥ on X is negligible. We thus propose
and study the following SDE system:

t t t oo a3(Xs—)
X, = xo_/ al(Xs)ds—i—/ ag(Xs)l/des—i—/ / / ZM(ds, dz, du),
0 0 0 0 0

Y, =Y — / [b1(Yy) + 0 (Yo (X;)]ds + / by(Y,)"/2dW; (1.1)
0 0

t o b3(Ys—) -
-I-f f / zN(ds, dz, du),
o Jo Jo

where functions a;, b; (i = 1,2, 3) and 6, ¢ are nonnegative functions on [0, 00), (B;);>0 and
(W;);>0 are Brownian motions, {M(dt, dz, du)} and {N(dt, dz, du)} are compensated Poisson
random measures with intensity dfu(dz)du and dfv(dz)du, respectively, and with the o-finite
non-zero measures p and v satisfying

f (z A ZHu(dz) + / (z A 22)v(dz) < oo.
0 0

We also assume that (B;);>0, (W;)i>0, {M(dt, dz, du)} and {1\7(dt, dz, du)} are independent of
each other.

Since (1.1) represents a stochastic continuous-state Lotka—Volterra population system, by a
solution (X, Y) to (1.1) we mean a cadlag Ri-valued process (X, Y) that satisfies Eq. (1.1) up
to the minimum of the first time of either hitting zero or explosion for both processes X and Y,
which is a variation of the usual definition of solution to SDE; see Definition 1.1. Conditions
on the existence and uniqueness of the solution to (1.1) will be given in Lemma A.l. Since
we are only interested in the solution up to the first time of hitting 0, the uniqueness holds
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under mild conditions. The uniqueness of such a solution for SDE had been studied before in
Dawson et al. [8] and Li [19].

The extinction/extinguishing behaviors of the continuous-state nonlinear branching process
X have been studied in Li et al. [20] using a martingale approach. By imposing conditions
on SDEs (1.1) so that the solution X extinguishes with probability one and the solution Y
converges to 0 in probability as time goes to infinity, in this paper we find conditions under
which the process Y becomes extinct in finite time with probability one and zero, respectively.
We further show that under certain conditions, both extinction and extinguishing can happen
for Y each with a strictly positive probability, which is a remarkable phenomena.

For stable Poisson random measures with stable indices in (1,2) and for power function
coefficients in the SDEs in (1.1), the conditions can be made more explicit in terms of the
powers and the stable indices, and they turn out to be quite sharp. We are not aware of similar
previous results on solutions to such a system of general SDEs with jumps.

Our main approach is different from that in Li et al. [20]. To prove the above mentioned
results we first develop stochastic Foster—Lyapunov type criteria with localized conditions for
probability of finiteness of the first time of hitting O by either process X or Y. These criteria
can be compared with those in Li et al. [20] for solution to one-dimensional SDE and are of
independent interest. We refer to Chen [6] and Meyn and Tweedie [23] for the (deterministic)
Foster—Lyapunov type criteria for explosion and stability of Markov chains. The proofs of most
of the main results then boil down to finding appropriate test functions in order to apply the
stochastic Foster—Lyapunov type criteria, and the localized conditions in the Foster—Lyapunov
criteria make it more convenient to construct the test functions.

It is remarkable that for the model in Li et al. [20] the Foster—Lyapunov criteria also produce
very sharp results; see recent work in Ma et al. [22].

We apply the Foster—Lyapunov criteria to show most of the main results. The key is to
identify the right test functions for which our approach is mostly ad hoc. We typically start
with elementary functions such as power functions and exponential functions, then modify
and (or) combine these functions in different ways to develop the sharpest possible results.
Verification of the criteria often involve lengthy computations.

Among the main results, applying the stochastic Foster—Lyapunov criteria we identify
sufficient conditions for the process Y to become extinguishing with probability one or to
become extinct with a strictly positive probability.

To find conditions under which the process Y extinguishes with a strictly positive probability,
we adopt a different approach, where by first obtaining an estimate on the time dependent lower
bound of the sample paths of X, we apply a martingale argument similar to that in Li et al. [20]
together with a comparison theorem. We also use either the stochastic Foster—Lyapunov criteria
or the martingale method to study the extinction-extinguishing behaviors for some critical cases.

The rest of the paper is arranged as follows. We first present the main results together with an
example of SDEs with power coefficients and stable Poisson random measures in Section 1.2.
The Foster-Lyapunov type criteria are proved in Section 2. Proofs of the main results are
deferred to Section 3.

1.2. Main results

We first present some notations and assumptions. By Taylor’s formula (see (3.5) and (3.6)
in Section 3 of the following), for u,z > 0 and § > —1,

1
(1+2)7° —14+6z=80+ 1)22/ (14 zv) 721 — v)dv
0
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and
1
Inl+z)—z=mIn(l+z)—Inl -z = —22/ (14 zv)"2(1 — v)dv.
0

We also want to introduce several auxiliary functions. For § € (—1,0) U (0, 00), and u > 0
define

Hys(u) = 8(6+1)/ (A4 zu™ ™ — 14 8zu™"u(dz)
= u—2/ zzu(dz)/ (1 +zu™'v)77(1 = v)dv, 1.2)
0
Hy 5(u) = ——— TEY, / (14 zu™ ™ — 1+ 8zu~"v(dz)
= u_Z/ zzv(dz)/ (14 zu'v)">7°(1 — v)dv. (1.3)
0 0
For u > 0 let

Hy o(u) = _fo (ln(l +zu") - zu’l)ﬂ(dz)

00 1
= M’Z/ zzu(dz)f (1 + zu"'v)2(1 — v)dv, (1.4)
0 0
H, o(u) = —/ <1n(1 +zu") - zufl)v(dz)
0
00 1
= M_Z/ ZZV(dZ)/ (1 + zu"'v)72(1 — v)dv (1.5)
0 0
and
Gio) = aiwu~" + 27 ax(w)u* + az(w) H o(u), (1.6)
Gao(u) = bi(wu~" + 27" by(u)u™? + b3(u) Hp o(u). (1.7

These six functions will appear repeatedly throughout the paper. The functions H; s and H; s
are the same to the function §(8§ + 1)Hs_; defined in (2.1) of [20] which result from Ito’s
formula applied to power function of X. The functions G, and G, can be regarded as the
limits of (1 —a)~'G, when a — 1 in (2.3) of [20]. They are also associated to Ito’s formula
applied to logarithm function of X; see [22]. To study the extinction-extinguishing phenomena
of Y we impose some conditions on G, G2,; see Condition 1.6.

Let C?((0, 00)) be the space of twice continuously differentiable functions on (0, oo) and
C2((0, 00) x (0, 00)) denote space of functions on (0, o) x (0, o) with continuous second
partial derivatives.

For any generic stochastic process Z := (Z(t));>0 and constant w > 0, let

=inf{r >0: Z(t) =0}, % :=7t%w):=inf{t >0:Z@) < w} (1.8)

w

and

oZ = oZ(w) =1inf{t > 0: Z(t) > w} (1.9)

w

with the convention inf@) = oo. In the following we state the definition of solution to SDE
(1.1), which is defined before the minimum of the first time of either hitting zero or explosion
for the two processes.
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Definition 1.1. By a solution to SDE (1.1) we mean that a two-dimensional cadlag process
(X,, Y,);>0 satisfies SDE (1.1) up to y, = rfjn A le/n A oX Aol for eachn > 1 and
X; =limsup,_, ., X,,_ and ¥; = limsup,_,  Y,,— for t > lim,_.c ¥y.

Remark 1.2. The above definition of solution to SDE (1.1) allows weaker conditions for
uniqueness of solution. In particular, the pathwise uniqueness holds if the functions a;, b;, 0
and « are all locally Lipschitz on (0, 00); see Lemma A.l. Also observe that

X Y : X Y
Tn AT, = lim © AT .
0 0 n 1/n 1/n

Throughout this paper we assume that the cadlag Ri—valued process (X, Y) is the unique
solution to (1.1), and consequently, the process (X, Y) has the strong Markov property. We
always assume that X, Yo > O and that all the stochastic processes are defined on the same
filtered probability space ({2, %, .%,, P). Let E be the corresponding expectation.

Throughout the paper we also assume that the following conditions hold.

(C1) The functions a;, b; (i = 1,2, 3), 6 and x are nonnegative and bounded on any bounded
interval;
(C2) For each ¢’ > 0,

sup [G10(u) + Goo(u)] < oo;

O<u<c
(C3) For each 0 < ¢’ < ¢”,
inf ]{az(x) + a3(x)} > 0, %nf ]{bg(x) +b3(x)} > 0 and u((c, ")) > 0.
S xXe C/.C//

xe[c,c

Remark 1.3. Under the above conditions, with probability one, both processes X, and Y,
converge to 0 as ¢+ — oo. But X; does not become extinct almost surely by [20, Theorem
2.3 (i) and Proposition 2.6]; see also Lemma 3.2 in the following. In this situation we
say extinguishing occurs for process X. Note that process Y also becomes extinguishing
under the above conditions if x = 0. The following theorems give the conditions on the
extinction-extinguishing phenomena of Y.

We first find conditions distinguishing between extinction with probability 0 and extinction
with a positive probability for process Y.

Theorem 1.4. [f there exists a constant ¢c* > 0 so that supy_, Owu~" < oo, then
P{z} < oo} =0.

Theorem 1.5. Suppose that there exist constants c*,c; >0, 0 € [0, 1) and § > 1 so that

inf k@) >0, 0 inf | O@u™" >0, and 0 inf ["Z(Lt)u_z_‘S + as(u)u_é_l] > 0.

cl<usc* <u<c*
Then P{t] < oo} > 0.

From the above two theorems we find that the extinction of Y is caused by X through the
negative drift coefficient function —6(v)x(u) for u near zero, and not caused by the Brownian
driven or Poisson-random-measure driven components of the SDE for Y. Intuitively, process
Y becomes extinguishing or extinct depending on whether 6(u) converges to O fast enough or
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slow enough as u — 0+. Note that under the conditions on 6, the role of function « in these
theorems is not essential.

To further study the extinction-extinguishing behaviors of process Y we need to introduce
more sets of conditions. Since both X and Y have no negative jumps, we impose upper and
lower power function bounds on functions G; ¢(«), 8(¢#) and «(u) only for u close to 0. These
conditions help to simplify arguments in proofs and allow more transparent conditions (in terms
of powers of the power functions) for the extinction-extinguishing behaviors for Y.

Condition 1.6.
(i) There exist constants 6 € [0, 1), ¢*, cy,a,b,k > 0 and p,q > 0 so that

(ia) G o(m) < au® forall 0 <u < c*;
(ib) Ga0(u) = bu? for all 0 < u < c*;
(ic) O(u) = cou® and k() > u* for all 0 < u < c*.
(ii) There exist constants 0 € [0, 1), ¢*, cg,a, b,k > 0 and p,q > 0 so that
(iia) Gy o(m) > au? for all 0 <u < c*;
(iib) Goo(u) < bu? for all 0 < u < c*;
(iic) O(u) < cou® and k(u) < u* for all 0 < u < c*.
(iii) Assume that the function u — bs(u) is nondecreasing and that the functions 0, by, by, bz

are locally Lipschitz, that is, for each closed interval [u, v] C (0, 00), there is a constant
C(u, v) > 0 so that

00) =0+ Y 1bi(x) = bi(y)| < Clu, v)|x — y|
i=1,2,3
forallu <x,y <w.
We remark that Condition 1.6(iii)) is needed for a comparison theorem,
Proposition 3.6, which is applied in proofs for Theorems 1.8 and 1.10.
The following theorems further distinguish between extinction with a positive probability

and extinction with probability one for Y. In particular, we identify conditions under which
both extinction and extinguishing happen with a strictly positive probability.

Theorem 1.7. Suppose that Condition 1.6(i) holds with

q(
e p. 1.10

Then P{t] < oo} = L.

Theorem 1.8. Suppose that Condition 1.6(ii) and (iii) hold with
qK
q+1—-06

Then P{‘L’OY < oo} < 1.

> p> 0. (1.11)

In the following we consider Condition 1.6 for either pg = 0 or p fl‘ie = p with p,q > 0.

Observe that the case for p > 0 and ¢ = 0 is addressed in Theorem 1.7 on the extinction
behavior.
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Theorem 1.9. Suppose that Condition 1.6(i) holds for constants satisfying one of the following
conditions:

(i) p=qgq=0and b/a > k/(1 —0),
(ii) p,gq > 0, q+q1K—0 = p, and
v (L) (et (112)
q(g+1—-06) 1—-6 q
Then P{rg <oo}=1.

Theorem 1.10. Suppose that Condition 1.6(ii) and (iii) hold for constants satisfying one of
the following conditions:

(i) p=qgq=0and b/a < k/(1 —0),
@) p=0,g > 0.

Then P{‘[OY < oo} < 1.
Given the above theorems, there are still cases for the parameters a, b, ¢y, p, g, 8, k in which

the extinction-extinguishing behaviors are unknown.

Conjecture 1.11. We conjecture that P{toy < 00} < 1 if Condition 1.6(ii) and (iii) hold with
p7q>0r q_gﬁ:pand

1-0 q
ap >( b )m(c_e>m
qlg+1-0) 1-6 q '

To better understand the conditions, we next consider an example of SDE system (1.1) with
power function coefficients and stable Poisson random measures.

Example 1.12. Suppose that there are constants a;, b;, 60 > 0, x,n > 0, o, 2y € (1,2) and
gi, pi = 0 so that «(u) = u*, 6(u) = nu’,

ai(u) = au” ™, bi(u) = biju¥t fori = 1,2 and asz(u) = azu”3 1, by(u) = byu®t2,

and

ajf(e —1) _,_ alapy —1) _,_
dg) = — “ldg, dz) = ———77'7%dz¢
u(dz) F(Z—al)z z, v(dz) F(2—a2)z Z
with Gamma function I'. We also assume that a, + a3 > 0 and b, + b3 > 0. Then
Hy o) = I'(a)u=, Hyo(u) = I'(p)u™"? and

quo(u) = Clll/tpl + 2_la2Mp2 + a3F(a1)u”3, Gg,()(bt) = bll/tql + 2_1b2u"2 + b3['(a2)u"3.

Let
p = min{p; 14, 20, P2liay20)> P3lias20})
q = min{q1 1,20}, @215, 20y, 431 (b3 20)}
and
ap
a = alp=p) + 2 lipp=p) + @@l (ps=p).
by
b = b] l{ql:q} + 51{(12:(1} + b3F(a2)1{q3:‘1}’
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Note that constants p and g are the minimum powers of the power functions in the expressions
of G0 and Gy, respectively, and the associated power function or functions dominate the
behaviors of the corresponding polynomial G;o(u) for u near zero. The constants a and b
represent coefficients of the (possibly combined) dominant power functions, respectively. Since
processes X and Y have no negative jumps, these dominant power functions together determine
the extinction/extinguishing behaviors of Y.

Combining Theorems 1.4-1.5 and 1.7-1.10, we have

@) P{r{ <o0}=0if 0 > 1;
(i) P{t{<oo}>0if0§9< 1;
(iii) P{t{ < oo} =1if 0 < < 1 and one of the following holds:

(iiia) p =g =0and b/a > «/(1 — 0);,
@iiib) p > 0 and g = O;

(iiic) p,q > 0 and q+q1’19 <p;

(iiid) p,q > 0, qfﬁ = p and

T _q
q(q —fll) —0) = (1 ﬁg)q“*f’ ’ (g)ﬁw;

@iv) 0 < P{tOY <00} < 1if 0 <0 < 1 and one of the following holds:

(iva) p=g=0and b/a < «k/(1 —0);
@ivb) p=0and g > 0;

(ive) p,q > 0 and q+q1l{79 > p.

Remark 1.13. From the above example we have the following insights. The extinction of
Y is caused by relatively large negative interaction —n¥?X*. If & > 0 is small enough, ¥/
decreases slowly enough as Y; — 0+ and there is enough negative drift to cause extinction.

o If ¥ > 0 is further relatively small, then X also decreases slowly enough as X, — 0+
so that there is a large enough negative drift —nY? X* that causes extinction for ¥ with
probability one.

e On the other hand, if x > 0 is not relatively small, then the negative drift —r/Yt"Xf
becomes small enough when X, starts to take small values. In this case, Y can survive
with a positive probability.

2. Two-dimensional stochastic Foster-Lyapunov type criteria

The study of boundary behaviors for Markov processes started with the boundary classifi-
cation of Markov chains and some Chinese probabilist had made important contributions on
it. Among them Mu-Fa Chen identified the explosion/non-explosion conditions for continuous
time Markov chains and Markov jump processes in 1980s; see the review paper Chen [7] and
the book Chen [6] and references therein where the uniqueness and non-uniqueness problems
essentially correspond to the non-explosion and the explosion, respectively, for Markov chains.
Khasminskii [15] proved similar conditions for diffusion processes. These conditions were later
referred to as Foster and Lyapunov criteria for more general Markov process; see e.g. Meyn
and Tweedie [23].

Using one-dimensional Foster—Lyapunov type criteria, an estimate is found in Section 4
of [20] on the first passage probabilities for the continuous-state nonlinear branching process X.
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A Foster—Lyapunov type criterion is also identified in [22] for non-extinction of the continuous-
state nonlinear branching process. These criteria generalize similar results for Markov chains;
see Chen [6, Theorems 2.25 and 2.27]. The conditions for Propositions 2.1 and 2.2 in the
following are also similar to those of [6, Theorems 2.25 and 2.27] which are the criteria of
uniqueness of g-process.

In this section we establish the two-dimensional criteria, which will be used to prove
Theorems 1.4, 1.5, 1.7 and 1.9. In the following, let (x;, y;);>0 With x¢, yo > O denote a two-
dimensional Markov process where (x;);>¢ and (y;);>o are two nonnegative processes defined
before the minimum of their first times of hitting O or explosion. Let L, be an operator such
that for each g € C2((0, 00) x (0, 00)) and m,n > 1, the process t +—> M,gAym_n is a local
martingale, where

t
MF = gxr. ) — g(xo0s yo) — / Lyg(x,, yo)ds @1
0

and Y. == T, A Oy With 7, = tf/n A rly/n and o, == o, A on. Then a natural candidate for
L; is the generator of the process (x;, ¥;);>0. Define the stopping time 1o := 75 A Tg . Since the
two processes (x;);>0 and (y;);>o are defined before the first time of hitting zero or explosion,

To = lim t,. 2.2)

n—o0

Proposition 2.1. Suppose that there is a non-negative function g € C*((0, 00) x (0, 00)) and
a sequence of positive constants (dy)m>1 satisfying

@) limx/\y%0+ g(x,y) =00,
(i) Ligx,y) <dngx,y) forallt >0, x,y € (0,m) and all large m > 1.

Then P{ty < oo} = 0.

Proof. Observe that there is a sequence of stopping times (yx)x>1 so that y, — oo almost surely
as k > oo and t — Mtg/\ym,n,k is a martingale for each m, n, k > 1, where y, .k ‘= Yimn A V-
By (2.1) and condition (ii), for each m,n,k > 1 and ¢t > 0,

t
E[g(xrAym,n,k 2 yt/\ym.n,k)] = g(xo’ yO) + / E[Lsg(xs, yS)l{JSVm,n,k}]ds
0

t
< g(xo,yo)+dmf E[g(xy, y) l{s<y, 001 ]ds
0

< g(x0, y0) + fo tE[g(stym,,,,k, YsAymmi) )48 (2.3)
Using (2.3) and Gronwall’s lemma we obtain that for all £ > 1,
E[8(Xtnynis Yerymn)] < 80, yo)e™', 1> 0.
Letting k — oo we have
E[8(Xtnypns Yinyma)] < 8(x0, yo)en!, t>0,
which implies that for each m > 1,
E[ 1M 8100 Yinm)| < B nFE[iny00 Viap,)] < 8o, yo)e 2.4)
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by Fatou’s lemma. From condition (i) and (2.2) it follows that P{ry > t A 0,} = 1 for
each m > 1 and ¢ > 0. Letting t — oo we get P{tg > 0,,} = 1 for each m > 1. Thus,
79 > lim,,_ 0, almost surely. Since these two processes are defined before the first time
of hitting zero or explosion, then P{ty = oo or lim,_, ., 0, = oo} = 1. This concludes that
79 = oo almost surely. 0

Proposition 2.2. Suppose that sup,.o(x; + y;) < 00 almost surely. We also assume that there
exist a nonnegative function g € C*((0, 00) x (0, 00)) and a sequence of nonnegative processes
(dn)m=1 satisfying the following conditions:

(1) 0 <sup, ,_(8(x,y) < o0;
(i) fooo d,,(t)dt = oo almost surely for all m > 1;
(iii) L,g(x;, y¢) = dpn(t)g(xs, yy) for all 0 < t < 0, and large m > 1.

Then P{ty < 00} > g(x0, y0)/ sup; -0 &(x, y).

Proof. Let D, (t) := fot d,,(s)ds. Then for all m > 1,
D,,(t) — oo almost surely as t — oo 2.5)

by condition (ii). Let ([M#8, M#],);>0 be the quadratic variation process of (M} )i>0. Then the
mapping t — [M$8, M#], is right continuous with left limits. It follows that

sup [M&, M®]; < oo (2.6)
s€[0,1]

almost surely for all ¢+ > 0. For n, m, k > 1 define stopping times y, and y,, ,x by

Yk = il’lf{l Z O . [Mgv Mg]t 2 k}, Ym.n,k = Vm,n AN Yk

Then

(M8, M8], <k forall0<t<py and k>1 2.7
and

kﬁi& Yk = 00 (2.8)

almost surely by (2.6). One can see that by the assumptions,

m—00

lim P{o, < oo} < lim P{sup(x, + y) = m} =0. 2.9)
m—00 >0

Moreover, by [24, p. 73], t — M,gAym% , 18 a martingale, where M is defined in (2.1). It follows
from integration by parts that

—Dp(t)
g('xlAymﬁ,k’ yl‘/\}’m.n,k)e e

t
= g(x()s yO) + / g(xs/\)’m,n,k’ yS/\Vm,n.k)d(e_Dm(S))
0
t
0

t
= g(XOs yO) - / g(sty,,,,n,p ys/\ym,n.k)dm(s)e_Dm(S)ds
0
t

t
+ f e PO L g(xy, yo) ls<yp n0ds + / e PnWdMs,, . (2.10)
0 0
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By the Burkholder—Davis—Gundy inequality and (2.7), there is a constant C > 0 so that for all
T >0,
]

T
= CEH / eisz(S)d[Mg, Mg]s/\ym nk
0 n,

t
E[ Sup ‘ / e_Dln (‘Y)dMYg/\ylﬂ n,k
; ”

0<t<T

]

< CE[[Mg, MS]TAMV,{] < Ck.

It then follows from [24, p. 38] that t fot e’Dm(S)dMsgAym,n.
expectations on both sides of (2.10) we get

, is a martingale. Taking

t
/(; E[dm(s)e_Dm(S)g(x”\ym.n,k’ yS/\)/m,n,k ):IdS + Elig(xMVm.n,k’ yf/\Vm.,z.k)e_Dm(t)]
t
0
Letting + — oo and using condition (i), (2.5) and the dominated convergence theorem we get

= g(x0, yo) +/ E[efD’"(s)Lxg(xm yS)l{S‘f)/m‘n,k}iIds'

[o.¢]
| B[0P0 i
0

o0
= g(xo, yo) + / E[eiDm(Z)Ltg(xn Yt)l{tfym,n.k}]dt'
0
Using condition (iii) we have
o0
/ E[dm (t)e_Dm(l)g('xt/\ym.n,k ’ yt/\ym.n,k ):Idt
0

o0
> g(xo,yo)+/ E[dm(t)e‘Dm(’)g(x,,yz)l{,gy,n.n.k}]dt,
0

which implies

IA

o0
g(xo’ yO) E[/ dM(t)e_Dm(t)g(me,n,k’ yym,n,k)l{t>7m.n.k}dt:|
0

[o¢]
CQE[/ dm(t)e_D"’(t)dt] = COE[e_Dm(Vin,n,k)]
Y

'm,n,k

IA

by condition (i) and (2.5) again, where ¢y := sup, ,.,&(x, y). Letting n, k — oo and using
(2.2) and (2.8) we get

COE[efDm(fo/\Um)] — COE[eiDm(IOAUm)(l{o‘m<oo} 4 l{amzoo})]

coPlo,, < oo} + COE[e’D’”(IO)].

IA

g(xo0, y0)

A

By (2.9), for each ¢ € (0, 1), there is a large enough m > 1 so that
coP{on, < oo} < eg(xo, yo),
which means that
(1 — &)g(x0, y0) < coE[e™ ™| < coE[e™ P ™1 ooy + Liry<o}] = coP{ro < 00},

where (2.5) is used in the last equation. Taking ¢ — O one ends the proof. [
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By an argument similar to that in the proof of Proposition 2.2, we obtain the next result.

Corollary 2.3. Suppose that sup,.(x; + y;) < 00 almost surely and g € C?((0, 00) x (0, 00))
is a nonnegative function with 0 < sup, \_, g(x, y) < 0o. If there exist a constant ¢ > 0 and
a nonnegative function h on (0, 00) so that

L;g(x:, y1) = h(x)g(xs, 1), 0<t<o;

and fooo h(x; A e)dt = oo almost surely, then

P{to A 0g < 00} > g(xo, yo)/ sup g(x, y).

x,y>0

Proof. We can prove the assertion with d,,(¢f) and 7y respectively replaced by h(x; A &) and
79 A 0, in the proof of Proposition 2.2. We leave the details of the proof to the readers. [

Similar to Propositions 2.1 and 2.2, we can also obtain the associated assertions for the
one-dimensional processes. Suppose that x := (x;);>0 is a non-negative Markov process and
the operator L, is defined in the following: for each g € C%*((0,00) andm,n > 1,t Mtgm?,,,_,,
is a local martingale, where

M§ = g(x;) — g(xo) — /O Lyg(x,)ds

and y,., = rf‘/n Aoy

Corollary 2.4. Suppose that there are a non-negative function g € C?((0, 00)) and constants
dn > 0, m > 1 satisfying limy_,o g(y) = oo and L,g(y) < dng(y) for all m > 1, y € (0, m)
and t > 0. Then P{zj < oo} = 0.

Corollary 2.5. Suppose that sup,.x; < 0o almost surely, and that there exist a nonnegative
function g € C%((0, 0)) and aisequence of nonnegative processes (d,),>1 so that 0 <
Sup,- g(y) < oo, fooo d,(t)dt = oo almost surely and L;g(x;) > d,(t)g(x;) for all 0 <t < o,
and n > 1. Then P{tj < 0o} > g(xo)/ sup,.q g(x).

3. Proofs of the main results

In this section we establish the proofs of Theorems 1.4-1.5 and 1.7-1.10. We first state
some notations and assertions which will be used in the proofs. For g € C2((0, 0o) x (0, 00))
we define

Klg(x,y)=g(x +z,y) — glx,y) — zg.(x, y),

2 , (3.1

Kig(x,y) =g, y+2)—gx,y)—zg8,(x,y)
for x, y,z > 0 and

Lg(x,y) = Lig(x,y)+ Lg(x,y) (3.2)
with

1 o0
Lig(x,y) = —ai(x)g,(x, y) + Eaz(x)g;’x(x, )+ as(x)/ K!g(x, y)u(dz) (3.3)
0
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and
Log(x,y) = —[b1(y) + k(x)0(»)]g) (x, y)
1 (o]
+5mwm;uyrumwﬁ K2g(x, y)v(da), (3.4)

where g/, g7, and g/, g7, denote the first and the second partial derivatives of g with respect
to x and y. By (1.1) and Itd6’s formula, L is the generator of (X, Y) and independent of time
t. By Taylor’s formula, for any bounded continuous second derivative function g,

1
K. g(x) = 12/ 8" (x + zv)(1 — v)dv, (3.5)
0
where
K.g(x) = gx +2) — g(x) — zg'(x), x,7>0. (3.6)

Since for all x € R, e* — 1 > x, then by (3.5), for all x, y,z,A > 0,
M [e P 0FD) e 4 arzy e
— [ek)"—k(y+z)' _ 1 + )\rzyr—l]

> Ay +2) —y —rzy’ 1

1
=x41—rn{/<y+zm“%1_umv
0

1
=rr(l — r)z2y’*2/ (14 zy ") 72(1 — v)dv. (3.7)
0
Moreover, for 0 <r < 1,
M [e P 0FD) e 4 arzy e

1
> ar(l — r)zzyr_Z/ (1 +zy 'v)72(1 — v)dv. (3.8)
0

3.1. Preliminary results

Lemma 3.1. Forany u,v>0and p,q > 1 with 1/p+1/q = 1, we have

w+v > gl iy,

Proof. The above inequality follows from the Young inequality. [J

z

Recall the definitions of 7 and 7/

in (1.8) for the process Z and constant w > 0.

Lemma 3.2.

(i) For any 0 < w; < Xg and 0 < w, < Yy, we have ru)fl < 00 and ru’fz < 00 almost surely.
Moreover, lim;_, oo X; = 0 and lim,_, o Y; = 0 almost surely.
(i) P{r = oo} =1 and P{t} = o0} =1 if k(x) = 0 for all x > 0.

Proof. Observe that for each w > 1, (1 + zu~'v)"'"% < (1 + zu~"v)"2. Then

[ee) 1
u72/ zz,u(dz)/ (14 zu™'v)™'7"(1 — v)dv < Hy o(u),
0 0
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[e%s) 1
u? / 2(dz) / (1 + zu~ )17 (1 — v)dv < Hao(w),
0 0

where H o and H, are defined in (1.4) and (1.5). It is obvious that condition (C2) is stronger
than the assumption in Theorem 2.3 (i) of [20]. Thus, under conditions (C2) and (C3), applying
Theorem 2.3 (i) and Proposition 2.6 of [20] we prove the assertions. [

The next result gives an estimate on the maximums of processes X and Y.

Lemma 3.3. Given Xy, Yy > 0, for any § € (0, 1/2) and & > 0, there exists a constant C > 0
that does not depend on ¢, X, Yo so that

P[supXr > 8} < Ce“SXS, P{sup Y, > 8} < Ce“SY{f.

t>0 t>0
Proof. Observe that
(X, +2)% — X2 —26X27 'z = X2[(1 +2X; )% — 1 +(-28)zX, ']
and then
o0
/ [(Xs + 2% = X2 — 26X 2] u(dz) = —28(1 — 28)X7° Hy —25(X,),
0
where the function H; _,;s is defined in (1.2). Then by (1.1) and Itd’s formula, we have
t t
X» = x¥ - 23/ a (X)X? s — 8(1 —25)/ a (X)) X2~ 2ds
0 0
t 1
—28(1 — 28) / a3(X)X® Hy _o5(X,)ds + 28 / ar(X )2 X*~'dB
0 0

t poo paz(Xs-) B
+ / / / [(X,— +2)* — X2 1M (ds, dz, du)
0 0 0
5

= X3' = > Ait,29). (3.9)

i=1
Since 0 < § < 1/2 and a4, a,, a3 are nonnegative by condition (C1), then A;(¢, 25) > 0 for
all r > 0and i =1, 2, 3. With 25 replaced by § in (3.9) it follows that

X3 < X3+ |Au(t, 8)| + |As(t, 8)]. (3.10)
For all n > 1 let 7, = tj}, A o,X. Then

E[AL(t A 7, 28)] = E[As(t A F,,26)] = 0.
It follows from (3.9) that E[Ax(f A T,,28)] < X°. We then apply Fatou’s lemma to get

E[fgg Ayt 25)] = E[mlqiinoo Ayt AFy, 25)] < liminfB[Ax( A 5,26 < X3 (Bu11)
Similarly, we can also get
E[sup As(t, 25)] < X%, (3.12)
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By the Burkholder-Davis—Gundy inequality, the Holder inequality and the estimate (3.11),
there is a constant C; > 0 so that

E[sup|A4(t,5)|] < 5C1EH/Ooaz(Xs)Xfa_zds‘l/z]
0

>0
© 26—2 12
< 6C1‘E[/ a(X,) X%~ ds]‘
0

= 8Ci[8(1 — 25)]’1/2‘E[sup Ax(t, 28)] ‘ "

>0

< 8Ci[8(1 —28)]7'2X). (3.13)
For fixed z,x > 0 and u > 0 let A(u) = (1 + zx~'u)®~2. Then h is decreasing and
(h(u) — h(1/2))(1/2 — u) > 0 for all u > 0. It follows that
1
/ (h(w) — h(1/2))(1/2 — u)du > 0.
0

Since [ h(1/2)(1/2 — u)du = 0, then [, h(u)(1/2 — u)du > 0. Moreover,

1 1 1 1
/ h(u)(1 — u)du = 1/ h(u)du +/ h(w)(1/2 — u)du > 1/ h(u)du.
0 2 Jo 0 2 Jo

Combining this with Taylor’s formula and Holder’s inequality we further have
1 2
[(x +2)° — x‘s]2 = 82‘1/ (x + zu)‘s_ldu‘
0
1 2
_ Szxza—zzz‘ / a —l—zx_lu)a_ldu‘
0
1
< 82x25‘212/ (1 + zx~'w)®2du
0

1
< 28%x2722 f (A 4+ zx ') 21 — w)du.
0

Then by the Burkholder-Davis—Gundy inequality and the Holder inequality, there are constants
C, > 0 and C3 = C3(6) > 0 so that

E[sup|A5(t, 5)|] < (SCZEH fooo@(xs)dsfom[(xs +2) — Xf]zu(dz)‘l/z]

t>0

* = 3 872 1/2
< sCa[E[ [ et [0+ 2 - xiPaa)|
0 0
00 12
= 228G, [B] [ X Hi (X
0

12
- Cg’E[sup As(t, 25)]’ < C5x3, (3.14)

t>0
where (3.12) is used in the last inequality. Combining (3.14) with (3.10) and (3.13) we have
E[sup Xf] < C4X3
t>0
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for some constant C4 > 0 independent of X,. Then by the Markov inequality,

P{sup X > s} < S’BE[sup Xf] < C4£’5X(‘S).

>0 >0

By the same argument we can show that

P{sup Y, > 8} < CS‘E"SYé3

t>0

for some constant Cs > 0. This concludes the proof. [J

3.2. Proof of Theorem 1.4

Proof of Theorem 1.4. We apply Proposition 2.1 to prove Theorem 1.4. The key is to construct
a function g that satisfies the conditions (i) and (ii) in Proposition 2.1. For p > 0 we choose
the function g as

g, ) =x""+y " +1, x,y > 0.
Then for all x,y > 0,

g, y) =—px "7 gl x,y) = plp+ Dx7"72,
gy =—py 7 gl y) = p(p+ Dy
It thus follows that for x, y > 0,

—gl(x,y) < px'g(x,y), &l.(x,y) <plp+ Dx2gx, ) (3.15)

and
—g,(x, y) < py'g(x,y), g (x,y) < plp+ Dy Pglx, y). (3.16)
Moreover, by (3.1), for x, y,z > 0,
1
Kzlg(xv y) = Zz/ g (x +zv, y)(1 — v)dv
0

1
= p(p+ 1)z2/ (x +zv)"72(1 — v)dv
0

1
< p(p + D)g(x, y)x*zzzf (14 zx ') — v)dv.
0
Thus
/ K!g(x, y)u(dz) < p(p + Dg(x, y)Hio(x), x,y >0, (3.17)
0

where the function H,  is defined in (1.4). Similarly, we can obtain

fo KZ2g(x, y)v(d2) < p(p + Dg(x, ) Hao(y), X,y >0, (3.18)

where the function H, is defined in (1.5).
Recalling (3.2)—(3.4) and combining (3.15)—(3.18), we get

Lig(x,y) < plp+ DG ox)g(x, y)
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and

Log(x,y) < p(p + DGao(»)glx, ) + pr(x)0(y)y~ ' g(x, )

for x,y > 0, where G| and G, are defined in (1.6) and (1.7), respectively. Then under
conditions (C1) and (C2) and the assumption of the theorem, g(x, y)~'Lg(x, y) is bounded
for x, y in any bounded interval. Therefore, for each n > 1, there is a constant d, > 0 so
that Lg(x, y) < d,g(x,y) for all x, y € (0, n), which implies condition (ii) in Proposition 2.1.
By the definition of g, condition (i) in Proposition 2.1 are obvious. Since rOX = oo, P-a.s. by
Lemma 3.2(ii), we have 1) = 7, P-a.s., where 70 = 7' A 7j by Remark 1.2. It follows from
the assertion in Proposition 2.1 that P{‘(OY =o0}=1. O

3.3. Proof of Theorem 1.5

Proof of Theorem 1.5. We want to apply Proposition 2.2 where the key is to construct a
function g satisfying the conditions (i)—(iii) in Proposition 2.2. We assume that the constant c*
in the assumption satlsﬁes 0 < ¢* < 1. By condition (C3), there is a small enough constant
¢ € (0, ¢*) so that f u(dz) > 0. Let 0 < ¢; < ¢ < ¢3 < ¢*. Choose a constant ¢y > 0 so
that

inf k()= co, inf O™ > ¢y (3.19)
c1<u<c* <u<c*
and
o inf *[az(u)u_z_‘s + a3(u)u_5_]] > ¢, (3.20)

where § > 1 is the constant appearing in the assumption. The proof is given in the following
three steps.

Step 1. In this step we construct the function g and summarize some of its properties.
Let go € C*((0,c*)) satisfy go(x) = x~° for x € (0,¢;) and go(x) = (x — ¢*)7? for
x € (c3,¢*). We choose function g so that go, g; and g are all bounded in [c;, ¢3]. For
A,A>1, ¢ :=7m/(2c*) and 0 < r < 1 — 0, define a nonnegative function g by

g(x, y) = exp{—218o(x) — Ax(tan cy) }x y<c* x,y >0,
where we only need the properties of a tan function such that it is equivalent to x near zero
and is infinite at /2. Then g € C%((0, 00) x (0, 00)), and for 0 < x, y < c*,
gr(x, y) = —higy(x)g(x,y),  gy(x,y) = —Ayér(tancy) '(coscy)g(x,y),  (3.21)

and

gl (. ) = M Mlghl” — gh(0)]gx. v, (3.22)
gy, (X, y) = Aaré*g(x, y)(sincy)” =2
+(1 — r)(sincy) "(coscy) — 2(sin Ey)zfr(cos cy)']
> Aorétg(x, y)(sinéy) “2(cos ¢y) 2 (Ayr — 2)
> 27 uré)’g(x, y)(sin éy)* 2 (3.23)

(cos&y) 22 [har

as A, > 4r~!. Observe that the constant § > 1 by the assumption of the theorem. Taking X,
large enough so that A16 — (6 + l)cg > A and 2, > 3|c*|? in the following, by (3.22) we
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get
g (x, y)/g(x, y) = Aj8%x P72 — 188 + Dx 72
= Mx P28 — (8 + Dx®]
> M8x 0728 — (8 + D]
> A2sx %72, O<x<cy,y>0 (3.24)
and

gl (x,v)/g(x, y) =201 (x — ) °[20 —3(x —c*)?*] >0, 3 <x<c* y>0. (325
In addition, since go, g; and g, are bounded on [cy, ¢3], then

Co= sup [g(x,y)+Ige(x, V) +Igr,(x, ] < o0. (3.26)

x>cq,y>0

Step 2. In this step, we estimate L;g(x, y) which is defined in (3.3). Recall (3.1). Observe
that g(u, y) > g(x,y) forall0 < x <u < ¢ and y > 0. It follows from (3.1), (3.5) and (3.24)
that for x < ¢,z <cy —cy and 0 < y < ¢* we have

1
g, 'Kl g(x, y) = 2glx, y)! / g (x4 zu, y)(1 — u)du
0
1
> g, 7! / (x + zu) P 2g(x + zu, y)(1 — u)du
0
1
> A2 / (x 4 zu) P21 — w)du
0

X
> A%x—”—zﬁ/ (14 ¢y —c) ™72 —uydu > A3Cx 27122
0

for some constant C; > 0 independent of A; and A,, which gives

fo T Kl yudo) = 26, /0 T Pux P gy, x < y>0. (327)
Since A1, 8 > 1, then by (3.1) and (3.21),
Klg(x,y) = —g(x,y) — 28, (x,y) = —g(x, y) — Midzx " 'g(x, y)
> —adx g, (1 +2),  x<cp, y>0,
which implies that

f K!g(x, y)u(dz) > —18x " 'g(x, y) (1+2pdz), x<cj, y>0.(3.28)

2—C1 0—C]

Combining (3.27) and (3.28) we get

o0 c—C1 o0
gl ! / K g(x yu(dz) = 22C, / 2u(de " —aysx! / (14+2)u(dz2)
0 0

c)—C1
for 0 < x < ¢y and 0 < y < ¢*. Therefore, by (3.21) and (3.24),
gx, y) "' Lig(x, )
> Ax? [—Sal(x)x_' 42 San(x)x 2

+(uc / T 2 pudz) — i f (1 + ) Jas(en " (3.29)
0 cp—Cq
68



Y-X. Ren, J. Xiong, X. Yang et al. Stochastic Processes and their Applications 150 (2022) 50-90

forall 0 < x < ¢1,0 < y < ¢* Under condition (C2), C; = supy_, = a(x)x~! < oo.
Combining this with (3.29) and (3.20), for all 0 < x < ¢;,0 < y < ¢* and large enough A,
with

c)—C] oo
271G / 22 u(dz) > 8¢t / (1 + z2)u(dz),
0 c—C]
we get
g(x, ) 'Lig(x, )
> ey’ [—CZ(S 427 San(x)x 2

cp—C]
+<MC1 / 2u(dz) — 8¢ /
0 c

2—C1

]

1+ Z)u(dz)>a3(x)x‘5_l]
cp—C]
> e[ <Co0 4 2 a2 4 26 [ Pnaston ]
0
cp—cy
> Aicy? [—CZ(S +27 [1 A (c1 / Zzu(dz))][az(x)x_z_a + a3(x)x—5—1]]
0

> hycp? [—c25 + 2*1A1c0[1 A (c1 focﬂl zzu(dz))]]. (3.30)

Observe that the term in the bracket of the above inequality is positive for large enough A;.
Thus for all large enough A; > O there is a constant d; := dj(A;) > 0 so that

g(x,y)_lng(x,y)zdl, O<x<c, 0<y<ch (3.31)

Since g(x,y) =0 for all x > c¢* or y > ¢*, then Lig(x,y) =0 for all x > ¢* or y > ¢*. By
(3.21) and (3.25), for large enough A,

— gl (x,y) =2x(c* —x)Pg(x, y), gl (x,y) =203 (x — ") Cg(x, y),
cg<x<ct, y>0.

Thus, for large enough A; > 0 we have —g’.(x,y) > 0, g7 (x, y) > 0, and
1
Kzlg(x, y) = ZZ/ gl (x +zu, y)1 —u)du >0
0
for all x > ¢3 and y > 0. Now by the definition of L;g(x, y) in (3.3),
Lig(x,y) =0, xX>c3,y>0 (3.32)
for large enough A; > 0. By (3.26), foreach ¢; <x <¢3,0 <y <c¢*and z > 0,
1
Kl g(x ) = 27| / gl +zu, y)(1 — w)du| < Coz?
0
and

Klg(x,y) = —g(x,y) = z8'(x, y) = =Co(l +2).
Then by (3.26) and the definition of L;g(x, y) in (3.3) again, forc; <x <c¢zand 0 < y < c¢*,

1 00
Lige ) = ~Co a0 +2 ) + e [ 2ud+aw [+ oue]. 639
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Since infe, <x<¢;, 0<y<ex £(x, y) > 0, then by (3.33) and condition (C1), it is elementary to see
that there is a constant d, := d>(A1) > 0 so that

g, ) 'Ligl, ) = ~db, g =x=c,0<y<ch (3.34)
Combining the above inequality with (3.31) and (3.32) we obtain

Lig(x,y) = —drg(x,y), x>c,0<y<c, (335)
Lig(x,y) > dig(x,y), O<x<c, 0<y<ch :

Step 3. In this step we first estimate L,g(x, y) defined in (3.4) and then finish the proof.
By (3.21) and (3.23),

—g,(x, y) =0, gl (x,»)=0, O<x=<c" 0<y<c =4\ (3.36)
Moreover, by (3.1) and (3.5),

1
Klg(x,y) = 22/ gh(x,y + zv)(1 — v)dv > 0,
0
O<x<c" 0<y<c* rp>dr . (3.37)
Therefore, by the assumption of 0 < r < 1 —6, (3.19) and (3.21) again,

Lyg(x,y) = —k(x)0(y)g}(x, y) = Aarck(x)0(y)(sincy) " (cos ¢y) ™'~ g(x, y)

Aarck(D)O(EY) 'g(x, ) = dard gy’ g(x, y) = 2drg(x,y)  (3.38)

v

forall c; < x <¢* 0 <y < ¢* and for X, large enough, where the constant d, > 0 is

determined in (3.34). Since g(x, y) = 0 for x > ¢* or y > ¢*, then L,g(x, y) = 0 for x > ¢*
or y > c*. It follows from (3.38) that

Lyg(x,y) > 2drg(x,y), x=>c, y>0 (3.39)

and Lyg(x,y) > 0 for all x,y > 0 by (3.36) and (3.37). Recalling (3.2). Combining (3.39)
with (3.35) we get
Lg(x,y) = Lig(x,y) + Lag(x, y) = dig(x,y), 0<x<ci,y>0,
Lg(x,y) = [2d, — dblg(x, y) = dog(x, y), x>cp,y>0,
which verifies condition (iii) of Proposition 2.2.
Therefore, by Proposition 2.2, P{r(f( A t{ < oo} > g(xop, yo)/[supx!y>O g(x, )] for large
enough A;, A, > 0 and Xy, Yy € (0, ¢*). Since ré( = 0o almost surely by Lemma 3.2(ii), we

have P{‘L’OY < oo} > 0 for 0 < Xy, Yy < c*. For general initial values Xy > ¢* or Yy > c*, let
T = rji”. By Lemma 3.2 we have T < oo almost surely and then by the Markov property,

P{‘L'(}/ < o0} = P{Tgl < 00|(X¢, Yo)} > 0,

which completes the proof. [J

3.4. Proof of Theorem 1.7

Lemma 3.4. Suppose that Condition 1.6(ib)—(ic) hold. Let g be a nonnegative process
satisfying fooo g(s)’ds = oo almost surely for some constant § with q/(q +1—0) <8 < 1. Let
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(us)i>0 be the non-negative solution to

U = g — / [b1(us) + 6u,)3(s)1ds
0

t t oo pby(us—)
+ / by (uy)'2dW, + / / / ZN(ds, dz, du).
0 0 0 0

Then for each ug > 0, we have P{ty < oo} = 1.

Proof. To establish the proof we apply Corollary 2.5. The key is to construct the function g
and verify the conditions in Corollary 2.5. For r € (0,1 —0) and v, A > 0 let g(v) = e M
Then

g W) = —ra " g), g'() =ralrav’ + 0 — v " 2g) = r(l — AV 2g(v). (3.40)

By It6’s formula we can see that the operator L, is given by

L;ig(v) == —[b1(v) + 0)Z(1)]g'(v) + 27 by (v)g" (v) + l?s(v)/O K:g(v)v(dz),

where K, g(v) is given in (3.6). In the following we find an estimation of L,g(v). It follows
from (3.8) that

/ K.g(w)v(dz) = Ar(1 — r)v" Hy o(v)g(v), (3.41)
0

where the function H,j is defined in (1.5). Therefore, by (3.40) and (3.41), for all n > 1,

Lig(v) = arg)[bi()v ™" + (1 — 127 ba()v" % + (1 — r)b3(v)v" Ha p(v)]
> ar(1 = r)g()v" Gao(v) > Ar(l — r)|c*|"d,g(v), ¢ <v<n, (3.42)

where the function G, is defined in (1.7) and d, := infi<y., G2o(v) > 0. Under
Condition 1.6(ib)—(ic), we have

Lig(v) = arv"g)[b1()v™" + (1 — r)27 ' bry(w)v ™% + (1 — 1b3(v) Hao(v) + cp ()0 ']
> ar(1 — rv g(W)[Gao(v) + cog(t* ']
> (L= r)g)[bv?™ +cpg(’ ], 0<v=ch

Then
Ligw) = ar(1 — r)cagE@)|c* 1”7, 0<v <, (3.43)
and by Lemma 3.1, there are constants C; = C{(r) > 0 and C; = C,(r) > 0 so that

g(v)_lL,g(v) > Cl)Lv(l—l/é)(r+q)+(9—1+r)/é§(t)1/é

= C)Ag(1)"/ Ay et =0/4 > Copgn)/i, 0 <v<c* (3.44)
forg>1landr+qg—(q+1—06)/q <0, which is equivalent to
1, rta
q q+1-0
It holds as long as r is small enough and
1 q
g g+1-6
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Combining Corollary 2.5 and (3.42)—(3.44) one gets P{rj < oo} > e M0 if either
oo B o B B 1 +
/ g(s)ds = oo, or / g(s)ids =00 forl > = > _ra
0 0 g q+1-0
Taking ¢ = 1/§ and letting A — 0 we get P{ry < oo} = 1 under the above conditions. This
finishes the proof. [l

Lemma 3.5. Suppose that Condition 1.6(ia) holds. Then for 0 < p < 1 and k > 0 satisfying
- o0 y kP
kp < p, we have fo Xs"ds = oo almost surely.

Proof. Let a;(x) = a;(x)/x“P for i = 1,2, 3. Then by the same argument as in [20, Theorem
2.15], there are, on an exten~ded probability space, a Brownian motion (B,),Zo and compensated
Poisson random measure {M(dz, dz, du)} with intensity dfu(dz)du so that there is a nonnegative
process ()_(t),zo solving:

_ _ ro t _ 1opoo pa3(Xsm) -
X, = Xo— f ai(X,)ds + / a(X,)"*dB, + / / f ZzM(ds, dz, du).
0 0 0 JO 0

Moreover, by [20, Proposition 2.16],
o0 _
f XPds = ¥ (3.45)
0

almost surely. Recall the function H, in (1.4). Since k p < p, then under Condition 1.6(ia),
forall0 <u <1,

awu™" + 27w + a3 H o(u) = Growu™ " < G owu™" < a.

Now by Lemma 3.2(ii), r({_‘ = oo almost surely. Then the assertion follows from (3.45)
immediately. [

Proof of Theorem 1.7. Let p € (0, 1) satisfy px < p. By Lemmas 3.5 and 3.2(i) and
Condition 1.6(ic),

/ k(X,)Pds = oo
0

almost surely. Taking § = p in Lemma 3.4, we have P{‘L’OY < oo} =1 for
_ p and pk < p,
q+1—-6 =r pe=p
which finishes the proof. [

3.5. Proof of Theorem 1.8

Different from proofs of the previous theorems, in Theorem 1.8 we adopt an approach
similar to that in [20]. In the proof we first identify a power function X, such that on one
hand, with a positive probability X ; stays above X, for all large ¢, and on the other hand, X P
decreases faster enough for large ¢ so that if the term « (Xj) is replaced by «(X,) in the SDE for
Y in (1.1), then Y becomes ext1ngu1sh1ng with a strictly positive probability. To implement this
idea we further approximate X, by a step function and construct a process Y, as a piecewise

72



Y-X. Ren, J. Xiong, X. Yang et al. Stochastic Processes and their Applications 150 (2022) 50-90

solution to a modified SDE for Y. The desired result then follows from a comparison theorem
for SDE.

We state the following comparison theorem with its proof postponed to Appendix. For
i = 1,2 let {Bi(t,u) : t > 0,u € R} be a two-parameter real-valued process with
(u, w) — B;(t, u, w) measurable with respect to Z(R) x %, for each t > 0. Let U and V
be Borel functions on R and V > 0.

Proposition 3.6. For i = 1,2, let the cadlag R-valued process (x;(t));>0 be the solution to
SDE

x(0) = x(0) + / Bi(s., x:(s))ds + / UG (s)dW,
0 0

topoo pV(iG=)
+/ [ / zN(ds, dz, du). (3.46)
0o Jo Jo

Suppose that By(t,u) < By(t,u) for all t > 0 and u € R. In addition, assume that u — V(u)
is nondecreasing and that there exist a sequence of increasing stopping times (y,),>1 and a
sequence of nonnegative constants (C,),>| so that

|Bi(s, u) — Bi(s, V)| + |[U@m) — U®)| + |V(u) — V(v)| < Cplu — v
forall n™" < |ul, [v| < n and s < y,. If P{x1(0) < x2(0)} = 1, then
P{x|(t) < x2(t) forall 0<t<yp}=1,
where

hm Vo and Y, = vy A rl/n A rl/n Aoyl Aoy (3.47)

with 1:1/" =inf{t > 0:|x;()] < 1/n} and o, =inf{t > 0: |x;(t)| = n} fori =1, 2.
Recall the constant ¢* in Condition 1.6 and the definitions of stopping times 7 = ¥(w)

and 0¥ = o*(w) in (1.8) and (1.9) for constant w > 0.

Lemma 3.7. Under Condition 1.6(iia) with p > 0, for any 0 < w < Xg and 0 < v < ¢* we
have

E[t) nof]<2p(p A DT =27"(p A D] a (X — wyw P
Proof. It is elementary to see that for § > §; > 0 and u > 0,
A4+ —14+8u>A4+uw)® —14+8u>—[14+u)’ —1—38u]l=>0,

which implies that for p; :==2"'(p A 1),

p(p+ DH; ,(u) > p1(1 — p)Hi _p, () = p1(1 — p)Hyo(u), (3.48)

where the function H; , and H, are defined in (1.2) and (1.4), respectively.
By (1.1) and It6’s formula,

, _ ! 1 (!
X" =X,"+p / a (X)X ;P ds + m / a) (X)X P~2ds

+P<P+1>/ @ (X)X Hy p(X,)ds — p fa2<x )\2x-P-14B,

a3(Xs—
/ / / [(Xsf +2)77 - S,]M(ds dz, du).
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Since X, ” <w™P for 0 <t < t¥, then by (3.48), for 0 < p; < p A 1, we have

w P > E[X_px x]

tAT AGY)

t/\ru)fmrvx <pa1(Xx)X;pil+7p(p2+l)az(x.v)xgp72
> X," +E [ f
0
+p(p + Das(X)X; " Hip(X,) ) ds |

tATY AOY
> X"+ pi(1— PI)E[/ Gl,o(Xs)X;pdS]
0
> X," 4+ pi(1 — paE[t Aty Ao)],
where Condition 1.6(iia) is used in the last inequality. Using Fatou’s lemma we get

Elr) A o] < liminfE[r A 1)) Ao )]

— 00
< (p(l = pa) ' w™? —X,")
< p(p1(1 = pa)~' (Xg — wyw "1,
where we need the mean value theorem for the last inequality. This ends the proof. [

Since process X turns to decrease in the long run, we next find a power function of time
that is uniformly larger than X, for all large ¢ with a probability close to one. To this end,
we consider a partition of the duration of time into consecutive time intervals with partition
points increasing geometrically. Then for an arbitrary time interval in the partition, we further
choose three levels 0 < [} < [, < I3 properly so that, during this time interval, process
X typically reaches level /; first before upcrossing level /3, and then it typically stays below
level I, continuously after having reached level /,. The above choices of time partition and the
associated levels allow us to show that process (X;);>¢ typically stay below the desired power
function of ¢ for all large 7.

Lemma 3.8. Under Condition 1.6(iia) with p > 0, for any § > 0 and small enough ¢ € (0, 1),
there are constants C(8, €) > 0 and &, € (0, 1) that does not depend on ¢ so that for Xo = &™
with large enough m > 1, we have

1
P{X, <t 7% Ac* forall t >0} >1—C(8,e)e™/3.

Proof. In the following let ¢, := ¢" for n > 1. For any § > 0, let
8
=—x<1
2p+2+6
For any fixed positive integer m define

8 (3.49)

. 1-6
K, = { sup X, <eg, ", XS—])7(1)+2)81 < 8m+1}
m

—p—(p+2)8
tﬁsmp (p+2)81

and
K, = { sup X; < 81*‘31, Xa—pf(p+2)5] < 8n+1}
n

— “n
—p—(p+2)8; —p—(p+2)8;
£, <t<eg,

for n > m. In the following we first show that X, < VP A c* forall + > 0 on N2 K

n=m-n-:
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It is obvious that X, < ¢* for all + > 0 on event N5,
By (3.49), it is easy to check that

1 1 -4

- =—7r=——
p+é p+(p+2)

K, for & small enough. Let r = ﬁ.

(3.50)

Thus, for all n > m we have (¢, "~ ?T"1)=" = £,™°! by (3.50). Therefore, on event N, Ky,
for any ¢ > 0 with
8;f;(ﬁ+2)31 <t< 8;17—(17‘5‘2)51’ n>m-+1, (3.51

we have
X, < 8’1—51 — sn—r(—p—(p+2)51) <t

by (3.50) again and (3.51), and for 0 < ¢ < 8,;’7_(””)6‘ we also have
X, < !0 = g Cp=(r28) < 4o

We now estimate the probability of N> K,. In the rest of the proof we use notations

E:[-1=E[|Xg=¢] and Pg{-}="P{-|Xo=¢}, g>0.

By Lemma 3.7, there is a constant ¢; > 0 independent of ¢ and n so that
Es[t* @) A o] = cia e — e fel ) s qa e e N0 352)

for all 0 < y < g,, where the constant a > 0 is determined in Condition 1.6(iia). Using the
Markov inequality and (3.52) we obtain

) ox 148 X —p—(p+2)8; —p—(p+2)8;
Py{r (E,41 YANOH > &, —&,5

n+1
—p—(p+2)8 —p—(p+2)81—1 X, 148 X
S[Snp (p+)l_8n—pl P 1] E}-[f (8n+ll)Aac'*]
< clcfl(l _ 8p+(p+2)51)*18*P*1+(’7*P*1)81 (3.53)

for all 0 < y < ¢,. By Lemma 3.3, there is a constant C > 0 independent of ¢ and n so that

Py{sup X, > e;il*l} < C(eN1§)/4 < cemti/t (3.54)

>0

for all 0 < y < ¢,. By Fatou’s lemma and (1.1),

X I 1+6
enP 115y {0 (en) < 00} < E sy [Xox,)] < HminfE sy [ X 5o, ] < 8,7

which implies

P i) {o%(en) < 00} <&l (3.55)
Similarly,
Pi{oX <o} <c* 7'y <, (3.56)

for all y < ¢,.
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To consider the complements of events K,, and I?n, in the following, for the fixed m > 1,
we introduce

E, = { sup X, >el” 51} U{‘L’X(é‘rln_fl]) AoX > sgp_(p“)‘sl}

ZSE;P*(IHZ)S]
X 1481 b'¢ X X 1481 +2)8
U{r (&1 ) N OG < 00,0 (Emg1) 0 V(T (8m+1)/\0' ) <e,’” (P+2)31
and for n > m,
— 1-8
E, = sup X, > ¢,

PO (2

X (o140 X —p—(p+2)8 —p=(p+2)8
U{t (Epp1 )N OG> g, PP —g T

U{rx(s;i‘il) Aok < oo, 0k "0 ﬂ(tx(srllifl) AoX) < g PmPTDN }
where ¥ (¢) denotes the usual shift operator. For 0 < y < ¢,, we have

1+ 148 e
Py{TX(Enill) Aok < 00,0%(enq1) 0 ﬁ(rx(snill) noX)<e (p+2)81}

< Pylo < 00) + Pe{r¥ (610 < 00, 0¥ (enn) 0 0T ey D) < 6,7 0020

= Pi{gc <oo}+P 101 {o’ (Ens1) < &, 7~ (p+2)51}
nt1

< Ps{of <00} + P i, [o (Eni1) < oo}
n+l

and then by (3.53)—(3.56),

P{E,}
< P X, > 1-61 P- X 1481 —p—(p+2)81 _ —p—(p+2)8;
sup =&, +P5it7 (e, YAGL > € €,2)

P20y

1+ X X X, 148 - 2)8
+P-[T (6,11 ) NG < 00,07 (g11) 0 D(T (8n+11)/\6*)<8 P (”+)1}

< P; { sup X, > 8’11—51} + Py{oc)i < 00} + P 144 {ox(e,,H) < oo}
ol (p+2)8; Entl

1+§ - 2)8 —p—(p+2)8
+P-{t (i) AN OK > g, P70t g ) '}

C861/4+8 /C +8 1+cla 1(1_8p+(p+2)81) 18717 14+(n—p—1)58;
8n51/8(1 + 87(p+1)(51+1)) —

IA

A

for small enough ¢. Similarly, for small enough ¢ and 0 < y < g,
P;{E,} < e™1/8(1 4 ¢~ PHDOFDy =

Let K¢ denote the complement of set K,. Note that K¢ C E,. Then P3{K¢} < M, for all
n>mand 0 <y <g,. It follows that

P, (U2, Ko} =P, (Ko} + D P (N, KiNKS)
n=m+1
o0
= Po, (Ro)+ D Eo[1y g PLREIX o |
n=m+1 = nl
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o
S Mm + Z MnESm[lﬂ?;anki]

n=m+1

o0
< Z Mn — (1 _ 85]/8)71(1 + 87(p+1)(1+51))5m3|/8‘

n=m

Then
Pé‘m {n;.,O:mEn} = 1 - Pam {Uso:mlez}’
which finishes the proof. [

Using the estimate as function of time obtained in Lemma 3.8 we can construct a process Y
which does not become extinct with a positive probability and can be shown by the comparison
theorem to be uniformly smaller than process Y with a probability close to one.

For small enough 6, € € (0, c* A 1), suggested by Lemma 3.8 we define

Rty =177 A (3.57)

2 . .
and €, = €. Let (Y1(#));>0 be the nonnegative solution to

Vi) = Yo— /0 [61(¥i(s) + O(F1(s) K (0)*|ds

: topoo pha(YiG-)
+ / ba(V1(s)2dW, + / / / N(ds. dz. du)
0 0 0 0

and y; ;= inf{t > 0 : Y1(¢) < €;}. Define f(t) = Y(¢) for ¢t € [0, y1]. Suppose that ?(t) has
been defined for t € [0, T,,] with T,, := Z?zl ;. Let (Y,41(2))>0 be the nonnegative solution
to

Yo (1) = Yu(T,) — / [51(Y1()) + 0(Ysa (DX (T ]ds
0

t t poo pb3(Y41(s—)
+ / by (Vg (s)2dW, + / / / ZN(ds, dz, du) (3.58)
0 0 0 0

and 41 = 1inf{t > 0: Y,+1(t) < €,41}. Define I?(t) =Y, 1t —T,) fort € (T,,, T, + Vuy1] =
(T, Ty+11- Then by the argument in [20, Theorem 3.1] and Condition 1.6(iii), Yisa piecewise
time homogeneous spectrally positive Markov process.

Choose [ satisfying that

!
0O<l<g and —— —[46—1>0. (3.59)
p+é

Such a value [ exists if (1.11) holds and § > 0 is small enough. In the next lemma, we want
to show that the process Y reaches 0 with a small probability.

Lemma 3.9. Suppose that Condition 1.6(iib)—(iic) and condition (1.11) hold. For the constant
6 in (3.59) and small € > 1, there is an integer ny > 0 so that

o0
P{‘Eg =00} > Agy(e) == 1_[ (1- 28@n=1) _ 62”_3)_

n=ng
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Proof. In this proof we use E; and P; to denote the conditional expectation and conditional
probability with respect to ﬂ}, oy We first estimate P, {yy+1 > en_frl [V > en‘l}. Recall that
o¥nti(e,_) == inf{t > 0 : Y,,H(tg) > €,_1}. By Fatou’s lemma and (3.58),

6n—ll)e,,{o—l/rl+l(ert—l) < Vn+1 |Vn > 6;1}
Y, -1
< Ee,, I:Yn+1(a ”*1(6”71) A J/n+1)1{gYn+1(6’171)<Vn+1} |yn > €, ]

<E, |:Yn+1(0'y"+l(en71) A VnJrl)\Vn > 6;1]

1—>00

< iminfEe, [ Y1t A 0" 60 A vl > '] < e,
which implies
Pen{aynﬂ(en—l) < Y+l |Vn > E;l} = En/‘gn—l = eZn—l. (360)

Note that by (3.57),

1 !

X(Tn) < )/,,_m <&l given y, > e;l (3.61)
for all n > 1.
For § > 0, by (3.58), the definition of the process (Y,(¢));>0 and It6’s formula, with respect

~
to {ﬁyn(ré,,)} and for y, > €,",

IAYnt1 R
s Vot A expf= [ GaRT). Tyatoas]
0

is a martingale, where
§(6+1
Gs(u, v) = 8[b,(v) + O v~ + ( 3 )

with the function H, ; defined in (1.3). Taking an expectation and using Fatou’s lemma, for all
n > 1, we have

by()v~? +8(8 + 1)b3(v) Ha 5(v)

IAYn+1 N
& = liminfE, [ Yuur(t A yasn) ™ exp| - / Go(R(T), Yo 6)ds v > €]
0

—00

v

IAYn+1 N
B, [limint Yy Ay exp|= [ GR@). Vao0ts | > €]
- 0

5 Yn+1 N ;
= 6n_-HEEn I:exp{_\/0 GS(X(TVL)’ Yn+l(s))ds} ’yn > En_ ] (362)

Observe that under (3.59), there is a constant ng > 1 so that for all n > ng,

8o(n) == (n + DX~ +6 — 1) + n?

p+d
_ 5 K B o Ik
=m+1 [_p+6 [+6—1] (2n+1)—p+8>0 (3.63)
and
Sitn) = —In+ 12> +qn— 172 = (g —DH(n —1)> —4nl > 0. (3.64)

Under Condition 1.6(iib) and (iic), for all 0 < u, v < ¢*, we have

Gs(u, v) < Scou V"™ +8(8 + 1)Gao(v) < 8(8 + (e V D) v"~" + v7]
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with G, given in (1.7) and
€ni1 < Yor1(s) < €1 for s < yup1 Aot (6,0).
Then by (3.61), given y, > €, and for s < y,11 A 0¥+l (g,_1),
G5(X(T), Yui1(9)) < 83 + Dieo V DX (L) Va1 ()™ + Yo ()]

«l

<806+ D(co vVhled el +el 1.

It follows from (3.63) and (3.64) that, given y, > €, and y,41 < e;frl Ao tnti(e, ),

Yn+1 N
f Gy(R(Ty), Ypi1(s))ds
0

Kl
<88+ D(co VB)uraled €l + €l ]

_kl
< 8@+ Dieo v b,y (6f €y +€)

=680 + D)(co v b)[eM™ 4 €M) < n2 (3.65)

for all n > n( and small enough €. From (3.62) and (3.65) it follows that all n > ny and small
enough €,

Yn+1 N
2z e [exp] - /O GoR(T), Yot DAs [t sl > &7

-1 s 1 Y, -1
2 €n+1Pen{Vn+l <€ NO n+1(€n—1)|7/n > €, }

v

€

v

> 2_16,;?1 [Pen{ynJrl < 6,;[1}%: > En_l} - Pen{ynJrl > Uy’1+l (enfl)iyn > En_l}:l-

It follows from (3.60) that for all n > ny and small enough ¢,

- 71 5.5 Y, 7/
P {vur1 < ii|vn > €'} < 26,%en ) + Par{yusr > 0" (€n)|yn > €}

< 2ed@n+D | 201,
Observe that by the Markov property,
me:no{?/n - 61;]}} = E[me—l {)/m > el;ll ﬂ?;nlo {y” > 6;1}}1ﬁnmgnlo{yn>e;l}]

—1 -1
= E[Pém_1 {ym > €, [Vin—1 > emfl}lﬂnm;,fo{ynx;l}]

> (1 _ 268(2}%71) _ e2m73)P{mm71 {yn > e;l}}

n=n
m
> 1_[ (1 _ 265(2}1—1) _ 62’1_3).
n=ng

Letting m — oo we get

Ag(e) < P{N3, [ > €71}) = Plr = oo},

n=ngq

which ends the proof. [

Lemma 3.10. Under Condition 1.6(iia) with p > 0 and (iic) and (iii), for each § > 0 and
small enough ¢ > 0, there are constants C(§, ) > 0 and &, € (0, 1) that do not depend on ¢
so that for all Xo = &™ with large enough m we have

P{Y, > Y(t) for all t >0} = P{B} > 1— C(8, &)e™/3. (3.66)
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Proof. By Lemma 3.8, there are constants C(8, ¢) > 0 and §; € (0, 1) so that for all X, = &"
with large m we have
P{X, < X(¢) for all 1 > 0} = P(A) > 1 — C(8, e)""/3.
Observe that under Condition 1.6(iic), given A and s > T, we have
K(X,) < X§ < X(s)* < X(T)".

Since (By)i=0, (Wi)i>0, {AI\;I(dt, dz, du)} and {N(dr, dz, du)} are independent, then by using
(3.58), the definition of (Y (¢));>0, Condition 1.6(iii) and Proposition 3.6, P{B|A} = 1. It follows
that

P{B} > P{(B|A} - P{A} > 1 — C(8, &)e""/3,
which ends the proof. [

Lemma 3.11. Under Condition 1.6(iii), for each ¢ > 0, there is a constant ty > 0 so that

P{supX, <& ¥, >0 >o0. (3.67)

t=1y
Proof. Since X, — 0 as t — oo by Lemma 3.2(i), there are constants fp > 0 and n > 1 so
that
P{supX, <eg, sup X, < n} > 0. (3.68)

=19 0<t<t

Let (17,),20 be the nonnegative solution to

t t
Y, =Y, — / [by(Y,) + C,0(Yy)lds + / by(Y,)' 2 dW,
0 0

t o b3(?s—) .
+ / / / zN(ds, dz, du),
o Jo Jo

where C, = sup,c, «(x). Under Condition 1.6(iii), by the comparison theorem
(Proposition 3.6),

(3.69)

P[Y,ZI?, forallO§t§t0’ sup X,ﬁn]:l. (3.70)

0<t<ry
It is easy to see that P{f’,o > 0} > 0. Since (?t),zo and (X,);>o are independent, then by (3.68)
we get

P[supXt <e, sup X; <n, 17,0 > O} = P{sup X, <e, sup X; < n}P{ﬁO > 0} > 0.

1=ty 0<t<tgy 1=ty 0<t<tgy

Using (3.70) we get
P{supX, <e, sup X; <n, Y, > 0} > 0,

t>1 0<t<t
which implies (3.67). O
Proof of Theorem 1.8. We first show that for given Xy = ¢” and Y, with m large enough
and & small enough, there is a constant C(g) > 0 so that
P{z] = oo} > C(e). (3.71)
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Let B¢ denote the complementary set of B, which is given in (3.66). By Lemma 3.10, there
are constants C(§, €) > 0 and §; € (0, 1) independent of § so that

P(B‘) < C(8, )™ /™. (3.72)
Observe that
() = o0} = ({r = 00} N B)U ({1} = o0} N B°)
C ({tOY =00}NB)UB° C {‘L’OYZOO}UBC.
Therefore, by Lemma 3.9 and (3.72),
P(r) = oo} = P{{r] = 00} U B} — P(B)
> Pz} = oo} — P{B} > Ag(e) — C(8, £)e™1/8 > 0

for m large enough and small enough € and ¢, which gives (3.71) for some constant C(g) > O.

By Lemma 3.11, for each & > 0, there is a constant #y := #o(¢) > 0 so that P{X;, <¢,Y;, >
0} > 0. By the Markov property and (3.71), for each ¢+ > 0 and small enough ¢ > 0, there is
a constant C(g) > 0 so that for X; < ¢ and Y; > 0, we have

P(r] = ool(X,, Y))} = C(e).
It follows that
P{/ = 0o} = P{X,, <& ¥, >0} - P{z) = oolX, <& ¥, >0} >0,

which ends the proof. [J
3.6. Proof of Theorem 1.9

For § € (—1,0)U (0, 00), and i = 1, 2 recall the definitions of H; s, H; o, Gio in (1.2)—(1.7).
For x,y,f >0and r € (=B~ A1), 1) define

G(x,y) = BG1,(x) = Gop(y) — k(X)O(y)y ™" (3.73)
with

G, (x) == a1 ()x " + (14 Br)2  ay(x)x ™% + (1 + Br)az(x)Hy p,(x) (3.74)
and

Gar(y) = b1y~ 4+ (1= )27 ba(y)y > + (1 = r)b3(y) Ha - (). (3.75)
Thus,

Go(x, y) = BG1,0(x) — Gao(y) — k(x)O()y . (3.76)

To prove Theorem 1.9, we first prove the following assertions.

Lemma 3.12. For any x,y > 0, we have
G, (x,y) < (1 =1r)Golx, y) + BB + DrGyo(x), re(0,1) 3.77)
and

Gr(x,y) = (1+ Br)Go(x, y) + (B + DrGao(y) + Bre(x)d(n)y~ ", r e (=(B~' A 1),0). (3.78)
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Proof. Observe that for eachi = 1,2, x > 0 and r > 0, we have
H;.(x) < Hio(x), H;_,(x)> H;o(x),
which implies that
Gi,,(x) <A+ Br)Giox), Go,(x) =1 —71)Gaolx).
Then for x,y > 0,
G,(x,y) < B(L+ Br)Gyo(x) — (1 — 1)Gao(y) — (1 — Px(x)O(y)y ™"
=1 =r)Gox,y)+ BB+ DrGokx), re(,1)
and
G(x,y) = B+ Br)Gio(x) — (1 = r)Gao(y) — k(x)0(y)y~"
= (14 Br)Go(x, y) + (B + DrGao(y) + Bre(x)0(y)y~",
re(=(B'AD,0),
which finishes the proof. [

The following result is key to the proof of Theorem 1.9.

Lemma 3.13. Under the assumptions of Theorem 1.9, for any 0 < ¢ < ¢, if Xo, Yo < €y,
then we have

P{t AoX Ano) <o} =1. (3.79)

Proof. The proof is an application of Corollary 2.3. We first present the key function g
satisfying the conditions of Corollary 2.3. Define g(u) := e for u,A > 0 and 0 < r < 1.
Let 0 < & < ¢* (determined in Condition 1.6(i)) and g(x, y) == g(x#y) for all x,y > 0,
where the value of constant 8 > 0 is to be specified later. In the following we show that there
are constants dj, d, > 0 so that for all 0 < x, y < ¢, we have, respectively,

Lg(x,y) > rid;g(x, y) under condition (i) of Theorem 1.9 (3.80)
and Lg(x,y) > rid,x”g(x, y) under condition (ii) of Theorem 1.9. '

Recall the definitions of KZ1 and K? in (3.1) and G,, G;,, Gy, in (3.73)—(3.75). For
simplicity we denote u = x 7y in the following. By (3.1) and (3.7)—(3.8),

gw) ' Klg(x, y) = —rp(rp + Diu'z°x > /0 l(1 +zx o) P21 — v)dv
and

g ' K2g(x,y) > r(l — r)xu’zzy—zfol(l + zy ") 73 (1 — v)dw.
Then one can get

Lig(x,y) = —ArBguu’ar(x)/x + 27 [(irB)* guyu™

CarB(L 4 rB) g Jar()/x + as(x) /O K g(x. yyu(dz)

> —arfguu" Gy (x)
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and
Log(x, y) = Argu[bi(y) + k()0 (M]/y + 27 [Or) gwyu
+ar(1 = r)gu’ ba(y)/y* + bs(x) /0 ) KZg(x, y)v(dz)
> Arg)u’ [Ga,r(y) + k()0(y)y~'].
Thus,
Lg(x,y) = Lig(x,y) + Lag(x,y) = —Aru" gu)G,(x, y) = —iru" G,(x, y)g(x,y). (3.81)

In the following we use the inequality (3.77) in Lemma 3.12 to estimate G,. Recall the
definition of G¢ in (3.76).

Under condition (i) of Theorem 1.9, taking 8 = x/(1 — ), we have —Ba + b > 0. Then
there exist small constants ¢; > 0 and 0 <r < 1 — 6 so that

(I =r)=pa+Db)—ap(B+ Dr =c (3.82)

Under condition (i) of Theorem 1.9 we have p = ¢ = 0 and then using Condition 1.6(i) we
obtain

—BG1.0(x) + Go0(y) + k(X)0(y)y ™"
> —Ba—+b+cox*y' ' = —Ba+ b+ cou’! (3.83)

and G p(x) <a for all 0 < x, y < ¢. It thus follows from (3.77) and (3.82)—(3.83) that
—=G,(x,y) =2 =(1 =r)Go(x, y) — B(B + DrG o(x)
(1 —r)(—Ba+b)+ (1 —r)ceu’" —ap(B + 1r

>c 4+ (- r)ceug_l

- GO(X’ )’)

\

for all 0 < x, y < ¢. It then follows from Lemma 3.1 that
—u'G.(x,y) = cru” + (1 —r)cou 071 > 4y, O<x,y<e
for some constant d; > 0. Then the first part of (3.80) follows from (3.81).
Under condition (ii) of Theorem 1.9 and Condition 1.6(i), taking 8 = p/q, we have
p =Bqg =« — B(l —6) and then
— Go(x, y) = —pax? + by’ + cox*y*~!
= xP[—Ba + bx"Pyd + cox*Pyo1]
= x?[—Ba+bu? +cou’'], 0<x,y<e (3.84)
For
p=1+q/1=0)=[g+1-OI1-6)" §:=p/(p-D=[g+1-0]g"",
we have g/p + (6 — 1)/g = 0 and then by Lemma 3.1,
bu? + cout=! > pUPGUIPYI LAl PHO-DIG — G1/bglapl sl
=[g+0- 9)](&)"lﬁ (2—9)"*(1‘9 = o5, (3.85)
Under condition (1.12), we have ¢, > Ba. It follows from (3.84) that
—Gox, y)x P> —Ba+bu? +cou’ ' >c,—Ba>0, 0<x,y<e.
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Then by (3.77) and Condition 1.6(i) again, there are constants 0 < r < 1 — 6 and ¢3 =
(c; — Ba)(1 —r) so that c3 > rB(B8 + 1)a and

= Gr(x, )x7" = =(1 =n)Go(x, y)x 7 = rp(B + 1)Gyo(x)x™"

>c—rB(B+1Da>0 (3.86)
for all 0 < x,y < ¢. Then
=G (x, yYu" = [c3 —rB(B + Dalx? > 0, O<x,y<e u>l. (3.87)

Let 6 > 0 be a constant satisfying

(1 =8)ca — pa)l —r)—rB(B+ 1)a > 0. (3.88)
By (3.84) and (3.85) we obtain

—Go(x,y) = xP[—Ba + (1 = 8)(bu + cou’™") + 8(bu? + cou’™")]

> xP[((1 = 8)ca — Ba) + Scou’ '], O<x,y<e

and then by (3.88) and the same argument as in (3.86),

—G,(x, yu" = xPu"[(1 = 8)cy — Ba)(1 —r) — rB(B + Da + Scou’ ']
ScoxPu 071 > §cox?, O<x,y<eu=<l

This and (3.87) imply the second part of (3.80) by (3.81).

Letting k p = p in Lemma 3.5, we have fooo X?ds = oo almost surely. Since X; — 0 as
t — oo by Lemma 3.2(i), then for all 0 < ¢ < ¢*, we have fOOO(XSp A g)ds = oo almost surely.
Using the above assertions and Corollary 2.3, we have

v

v

CaxByoy
P{r(f( A rg /\O’SX /\O'SY < oo} > e *¥o 0

forall 0 < &; < & and A > 0. Since 7} = oo almost surely by Lemma 3.2(ii), then letting
A — 0 in the above inequality we have (3.79). O

Now we are ready to prove Theorem 1.9.

Proof of Theorem 1.9. For any 0 < ¢ < ¢, if X, Yy < &, by Lemma 3.3 we have

P{ocX < oo} =P{supX, > ¢} < C(e;/e)"/* and P{o) < oo} < C(e1/e)"*

t>0
for some constant C > 0, which implies
P{oX Ao! < o0} <PloX < o0} +P{o) < 00} <2C(e1/e)"/*.
It follows from Lemma 3.13 that
P{t] < o0} > P{tf AoX no)l < oo} —PloX Aot < o0} > 1-2C(e1/e)".  (3.89)
If Xo > € or Yy > €1, (3.89) also holds following from Lemma 3.2(i) and the Markov property.
Letting &y — 0 we finish the proof.

Remark 3.14. Under Condition 1.6(i) and condition (1.10), for ¢ > 0, take 8 = p/q and
& > 0 small enough so that

ap - ( b )ql% _ (098’e'>q+‘179
qglg+1-6) \1-6 q ’
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where 0; := (1 —60) — (k — p) > 0. Then by an argument similar to that for (3.84), we get
—Go(x,y) = xP[—Ba + bu? +coe™Mu’ '], 0<x,y<e.

By essentially the same argument after (3.84) in the proof of Lemma 3.13, we can also obtain
(3.79) for g > 0 and condition (1.10). Therefore, the method for the proof of Theorem 1.9 also
works for Theorem 1.7 except the case g = 0.

3.7. Proof of Theorem 1.10

Recall the function G in (3.73). We first prove Theorem 1.10 for small related initial values
of X, and Yj, where the key idea, inspired by the proof of Lemma 3.13, is to consider ratio
Y./ X f process with the value of 8 > 0 properly selected using the conditions of Theorem 1.10.
We then formulate an exponential martingale that is similar to those in [20], and use the
martingale to obtain the desired estimate.

Lemma 3.15. Under the conditions of Theorem 1.10, there exist constants 8 > 0 and small
& > 0 so that for Xo < ¢, Yy = &, we have P{t] = oo} > 0.

—1
Proof. First note that for any &, > 0 and ¢ = syﬂ forany 8 > 0, if Xg <¢,Yy = &P, then

by Lemma 3.3 we have

P{sup X, > ez} +P{sup Y, > 82} < C[(s"‘"’sz_l)l/4 + (882_1)1/4] < C[e§/4 + Sé/(4ﬂ)], (3.90)

s>0 5s>0
where C > ( is a constant independent of &;.
We first show that under conditions (i) or (ii) of Theorem 1.10, there are constants 0 < w <
1, B > 0 and small enough § € (0, 1), 0 < &, < ¢* so that

G_s(x,y)=>0, O<x,y<e&, x Py>w (3.91)
and
1 - —Clef* +6)/“P1 > 0, (3.92)
where C > 0 is the constant determined by (3.90) and G_s(x, y) is defined in (3.73).
Under condition (i) of Theorem 1.10 and Condition 1.6(ii), select 8 satisfying b/a < B <

k /(1 — @). There are constants w € (0, 1) and small enough § > 0, 0 < &, < ¢* so that (3.92)
holds and

(1 —BOBa — b — co® &5 1P — (B + 1)8b — Bocy® e 17" > 0. (3.93)

Recall function G defined in (3.76). Under condition (i) of Theorem 1.10, p = g = 0 and
then by Condition 1.6(ii), for all 0 < x,y < & and x‘ﬁy > w we have

Go(x,y) = Ba —b —cox Py "k P > g —p — g 5P Gy o(y) < b (3.94)

and

k(O < coxy’ ! = cp(x P y) T PO < gy ey TP (3.95)

Moreover, by (3.78) in Lemma 3.12, (3.93)—(3.95), for all 0 < x, y < &, and x’ﬂy > w, we
have

G_s(x,y) = (1 — B8)Go(x, y) — (B + D8Ga0(y) — Bk (x)0(y)y "
> (1= B8)Ba — b —cpo’ &5 PID1 = (B 4+ 1)3b — Bscga’® e P17 5 0,

which gives (3.91).
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Under condition (ii) of Theorem 1.10 and Condition 1.6(ii), selecting 0 < 8 < «/(1 — 0),
w € (0, 1) and small enough § > 0, 0 < & < ¢* so that (3.92) holds and

(1 — BO)[Ba — bed — coa® e P11 — (B + 1)obed — Boco’ "5 77" > 0. (3.96)

Since p = 0, then under Condition 1.6(ii), similar to (3.94), forall 0 < x, y < &; and x Py > w
we have

Go(x.y) = pa — bed — coe® &5 P70 Gyo(y) < bel. (3.97)

Thus by (3.78) in Lemma 3.12, (3.95)—(3.97) and Condition 1.6(ii) again, for all 0 < x,y < &,
and x’ﬂy > w, we have

G_s(x,y) = (1 = BOGo(x, y) — (B + 1)8G2,0(y) — Bk (x)0(y)y~"
> (1 B8)Ba — beld — cgo’ e PI"D1— (B + 1)8bed — Bocge’ e P17 5 0,

which proves (3.91).
For v > 1 and w > 0, define stopping times

Ty :=inf{t20:X;’3Y, <w} and o, :=inf{tZO:XfﬂY, > v},
respectively. In the following we show that P{t,, = oo} > 0, which implies the assertion of
the lemma.

Let w, B, 6, ¢ > 0 be the constants determined in (3.91)—(3.92). Let T := 1, Ag,. By (1.1)
and It6’s formula, for each § > 0,

tAT
(X,}ﬂT Yirr)™? eXp{S / G_5(X;, Ys)ds}
0

is a martingale. It follows from Fatou’s lemma that
tAT
1 > E[(X;" o)™ =liminfE[(Xt_AﬂTY,AT)‘5 exp{(S / G_5(X,, Ys)ds”
11— 00 0
AT
> E[liminf(x;‘;y,ﬂ)*s exp{8 / G_s(X,, Ys)ds}]
11— 00 0

- E[(x;ﬁYT)*‘S exp{(S/OT G_5(X,, Ys)ds”.

By (3.91) and (3.92), for s < 7, and sup..((X; V Y) < &3, we have G_s(Xj, ¥;) > 0. Then

v

T
EI:(XT_'/S YT)_5 CXp{8 / G*S(XS’ YS)dS} 1{SUP5>0(XS\/XV)552aTw<Uv}:|
0 >

v

u)_‘sPlsup(Xs VY, <6, Ty < au}.

5s>0
By Lemma 3.2(i), we have lim,_ ., 0, = oo almost surely. Letting v — oo in the above

inequality we obtain

P{sup(Xs VY)<e&, 1 < oo} < w’.

5s>0 -
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Combining (3.90) and (3.92) it follows that
P{t, =00} =1—-P{r, < o0}
1— P{sup(XS VY, <6, Ty < oo} _ P{sup(Xs VY, > 52}

s>0 5>0

v

v

1 —w’ —C[ef“—i—eé/mﬁ)] > 0,

which implies P{r{ = oo} > 0 and ends the proof. [J

Proof of Theorem 1.10. By Lemma 3.11, without loss of generality we assume that Xo < &
and P{sup,.o X, < e} > 0. Let (¥,)=o be the solution to (3.69) with C, replaced by
Ce == sup, g € (x). By the comparison theorem (Proposition 3.6), we have

P[Y, > Y, forall r>0[supX, < 8} =1.

IZO
Since P{cr’_/(eﬁ) < 00} > 0 by [20, Proposition 2.11] and Y is independent of X, then
P{X(c" (") <& Y07 () = ¢, 07 () < o0}
> P[X(c" (") <&, V(67 (") = 6%, 67 (¢#) < 0o, sup X, < ¢}
t>0

= P{supX, <e, of(s’g) < oo} = P{supX, < S}P{of(s’g) < oo} > 0.
t>0 >0
Note that by Proposition 3.6 and Lemma 3.15, there exist constants 8 > 0 and small ¢ > 0
so that P{t} = oo} > 0if Xo < ¢, Yy > eP. Applying the strong Markov property to

process (X, Y) at time o (¢#), we have P{rg = oo} > 0 for any Yy > 0, and the proof is
completed. [

Remark 3.16. Under Condition 1.6(ii) and (iii), for p > 0, the corresponding estimate of
Go(x, y) in Step 1 of the proof of Lemma 3.15 is not easy to establish and thus the approach
of showing Theorem 1.10 does not appear to be valid for the proofs of Theorem 1.8 and
Conjecture 1.11.
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Appendix

In this section we present a proof of the comparison theorem in Proposition 3.6 and show
in Lemma A.1 that if all the functions in (1.1) are locally Lipschitz, then (1.1) has a pathwise
unique solution. Consequently, (X, Y) is a Markov process.
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Proof of Proposition 3.6. For k > 1 define
hy = exp{—k(k + 1)/2}.

Let 1 be a nonnegative function on R with support in (A, hg—1), f h’:"l Yi(x)dx =1 and
0 < Yr(x) < 2k~ o Mgy (x)

For x e Rand k > 1 let

x y
dr(x) = 1{x>0}/ dy/ Yr(z)dz.
0 0

For k > 1 and y, z € R put

Di(y, 2) = ¢ (y + 2) — e (y) — 20, (¥). (A.1)

For t > 0 let X(1) = x1(1) — x2(t), B(t) = Bi(t, x2(t)) — Ba(t, x2(1)), B(t) = Bi(t,x1(t)) —
Bi(t, x2(2)), U@t) = U(x1(t)) — U(x2(2)) and V(¢) = V(x1(t)) — V(x2(2)). It then follows from
(3.46) that

1AYn

tAVn n _ -
Rt AFa) = 5(0) + / [B(s) + B(s)lds + / T (s)dW,
0 0

tAYn 00 o) 5
+/ / / g(s—, u)zN(ds, dz, du),
0 0 0

where y, is defined in (3.47) and g(s, u) := lu<v(x, () — Liu=vinyy- Using Itd’s formula we
obtain

G(X(E A Vn))
AV

tAVn . _ 1 _
= ¢ (x(0) +/0 G (X(sNIB(s) + B(s)lds + 5/0 ¢ (X())U (s)ds

tAVn oo _
+/ dS/ V(s)Dy(x(s), sgn(V (s))z)v(dz) + mart.,
0 0
where sgn(x) = 1=0; — 1{x<0y. It follows that

E[¢u(X(1 A 7))]
tAYn R
= & (x(0)) + E[ /0 qb,g(f(s))B(s)ds]

IAYn _ 1 tAVn _
+E[ / GL(E(s)B(s)ds | + S E[ / 9{((5)0 ()%ds
0 B 0
tAVn 0 _
B[ [ o [ 70D sen@sname)]
0 0

4
= ¢e(¥(0) + Y I}, (0). (A2)

i=1
For x € R, x* := x v 0. By [25, Lemma 2.1],
lim ¢ (x) =x*,  lim ¢p(x) = 1m0y,  [x]¢{(x) < 2k,
k—o00 k—o00
and

Di(y,2) < @k '22/y) A2lz]) forall k>1,x,y e Randz>0 with y(y +2z) > 0.
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Then using the assumptions and the dominate convergence,
AT R
lim E[¢u(X(t A 7)) = E[xT(t A7), lim I, (1) = E[/ 1{,;(s>>0}B(s)ds] <0
k—00 k—o0 7 0
and
tAYn
lim 12,(1) < CnE[ / )E+(s)ds], lim 12,(6) = lim I, (1) = 0.
—00 0 —o00 —o00
Combining with (A.2) we get
tAVn t
E[fH(1 A 7)] < E7(0) + CE[/ )E+(s)ds] < c,,/ E[%*(s A 7,)]ds.
0 0

From Gronwall’s lemma it follows that E[x"(tA7,)] = 0. Letting n — oo we get X (tA7) =0
almost surely for each fixed ¢ > 0. By the right continuity of ¢t — x;(t) (i = 1, 2) we conclude
the proof. [J

Lemma A.1. Suppose that the functions a;, b;,i = 1,2,3 and 0,k in (1.1) are all locally
Lipschitz, i.e., for each m,n > 1, there is a constant Cy, , > 0 so that

Z [lai(x) — ai(P)] + [bi(x) = bi(V)]] < Cnnlx = 1, x.y€n ! ml
=123

Then SDE (1.1) has a nonnegative pathwise unique solution.
Proof. Forn > landi =1,2,3 leta(x) := a;((x An)Vn~). Define b! and 0", k", similarly.
Inspired by the argument in [10, Theorem 3.1], let
U=1{1,2} x(0,00)%, U= ({l} x (0, 1) x (0, oo)) U ({2} x (0, 1) x (0, oo)).
Let
No(ds, dv, dz, du) := 8;(dv)M(ds, dz, du) + 8,(dv)N(ds, dz, du).
Then 1(70 is a compensated Poisson random measure on (0, co) x U with intensity
ds[§1(dv)u(dz) + S2(dv)v(dz)]du.
Define functions f{' and fJ' on [0, c0) x U by
i v, zu) = 2lpmiuzatoy 2 (60,2, ) = 2l usp (o))

Write u for (v, z, u). Then SDE (1.1) can be written into this form

t [ee] t
X, :Xo—/ [a';(xs)+ag(xs)/ zu(dz)]ds—i—/ al(X,) 2dB,
0 1 0

t t
+ / FI(Xs—, u)No(ds, du) + [ / F1(Xs—, w)No(ds, du),
0 ljo o Ju\uy N t (A3)
Y, = Yo+ / [0 = " (V" (X) + X, / av(do)]ds + f by(¥y)!2aw,
0 1 0

t t
+ / £ (Y-, wio(ds, du) + / / F(Ys— . w)No(ds, du),
0 Juy 0 JU\Uy

where N is the corresponding Poisson random measure of ]\70. It follows from [14, p. 245]
that (A.3) has a strong unique solution (X7, Y¥/");~o. Letting n — oo, by the same argument
in [20, Theorem 3.1 (i)], SDE (1.1) has a pathwise unique solution.
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