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Abstract. In this paper, we provide a pathwise spine decomposition for superprocesses with both
local and non-local branching mechanisms under a martingale change of measure. This result com-
plements earlier results established for superprocesses with purely local branching mechanisms and
for multitype superprocesses. As an application of this decomposition, we obtain necessary/sufficient
conditions for the limit of the fundamental martingale to be non-degenerate. In particular, we obtain
extinction properties of superprocesses with non-local branching mechanisms as well as a Kesten-
Stigum L logL theorem for the fundamental martingale.

1. Introduction

The so-called spine decomposition for superprocesses was introduced in terms of a semigroup
decomposition by Evans (1993). To be more specific, Evans (1993) described the semigroup of
a superprocess with branching mechanism ψ(λ) = λ2 under a martingale change of measure in
terms of the semigroup of an immortal particle (called the spine) and the semigroup of the original
superprocess. Since then there has been a lot of interest in finding the spine decomposition for other
types of superprocesses due to a variety of applications. For example, Engländer and Kyprianou
(2004) used a similar semigroup decomposition to establish the L1-convergence of martingales for
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superdiffusions with quadratic branching mechanisms. Later, Kyprianou et al. (2012); Kyprianou
and Murillo-Salas (2013) obtained a pathwise spine decomposition for a one-dimensional super-
Brownian motion with spatially-independent local branching mechanism, in which independent
copies of the original superprocess immigrate along the path of the immortal particle, and they used
this decomposition to establish the Lp-boundedness (p ∈ (1, 2]) of martingales. A similar pathwise
decomposition was obtained by Liu et al. (2009) for a class of superdiffusions in bounded domains
with spatially-dependent local branching mechanisms, and it was used to establish a Kesten-Stigum
L logL theorem, which gives the sufficient and necessary condition for the martingale limit to
be non-degenerate. In the set-up of branching Markov processes, such as branching diffusions
and branching random walks, an analogous decomposition has been introduced and used as a
tool to analyze branching Markov processes. See, for example, Hardy and Harris (2009) for a
brief history of the spine approach for branching Markov processes. Until very recently such a
spine decomposition for superprocesses was only available for superprocesses with local branching
mechanisms. In the recent paper Kyprianou and Palau (2018), the authors established a spine
decomposition for a multitype continuous-state branching process (MCSBP) and used it to study
the extinction properties. Concurrently to their work, a similar decomposition has been obtained
by Chen et al. (2019a) for a multitype superdiffusion. However, in both papers, only a very special
kind of non-local branching mechanisms is considered. The first goal of this paper is to close the
gap by establishing a pathwise spine decomposition for superprocesses with both local and general
non-local branching mechanisms.

In this paper, the Schrödinger operator associated with the mean semigroup of the superprocess
is characterised by its bilinear form. Then some technical assumptions (Assumptions 1-2 below) are
imposed to ensure the existence of a principal eigenvalue λ1 and a positive ground state h, and hence
to ensure the existence of a fundamental martingale (Theorem 3.2 below). These assumptions may
look strong, but they hold for a large class of processes, and we illustrate this for several interesting
examples, including MCSBP, in Section 7. Our result (Theorem 4.6 below) shows that, for a
superprocess with both local and non-local branching, under a martingale change of measure, the
spine runs as a copy of a conservative process, which can be constructed by concatenating copies of a
subprocess of the h-transform of the original spatial motion via a transfer kernel determined by the
non-local branching mechanism, and the general nature of the branching mechanism induces three
different kinds of immigration: the continuous, discontinuous and revival-caused immigration. The
concatenating procedure and revival-caused immigration are consequences of non-local branching,
and they do not occur when the branching mechanism is purely local.

In connection with the limit theory, it is natural to ask whether or not the limit of the fundament
martingale is non-degenerate. Using the spine decomposition, we establish sufficient and necessary
conditions for the martingale limit to be non-degenerate, respectively, in Theorem 5.1 and Theorem
6.2. A similar idea was used in Engländer and Kyprianou (2004); Liu et al. (2009) for (purely
local branching) superdiffusions, and in Kyprianou and Palau (2018) for MCSBP. However, in this
paper, we extend this idea much further by considering superprocesses where the spatial motion
may be discontinuous and the branching mechanism is allowed to be generally non-local. Suppose
that {Zn : n ≥ 1} is a Galton-Watson branching process with offspring distribution {pn : n ≥ 0}.
Let L stand for a random variable with this offspring distribution. Let m :=

∑+∞
n=0 npn be the

mean of the offspring distribution. Then Zn/mn is a non-negative martingale. Kesten and Stigum
(1966) proved that when 1 < m < +∞, the limit of Zn/mn is non-degenerate if and only if
E
(
L log+ L

)
< +∞. This result is usually referred to as the Kesten-Stigum L logL theorem. Our

Corollary 6.5 shows that, in the case of λ1 < 0, the martingale limit is non-degenerate if and only if
an L logL-type condition holds. This result extends an earlier result obtained in Liu et al. (2009) for
superdiffusions and can be viewed as a natural analogue of the Kesten-Stigum L logL theorem for
superprocesses. Our Corollary 6.4 says that, under suitable assumptions, the non-local branching
superprocess exhibits weak local extinction if and only if λ1 ≥ 0. This result can be regarded as
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a general non-local branching counterpart of Engländer and Kyprianou (2004, Theorem 3), where
the same result is proved for a special class of superdiffusions in a domain D ⊂ Rd (the branching
mechanism considered in Engländer and Kyprianou (2004) is ψ(x, λ) = −β(x)λ+α(x)λ2 with α, β
being Hölder continuous functions in D with order η ∈ (0, 1], α > 0 in D and β being bounded from
above.)

In this paper we assume the spatial motion to be a symmetric Hunt process on a locally compact
separable metric space. This assumption is not really necessary. An extension is possible. One
direction is to assume the spatial motion to be a transient Borel right process on a Luzin space,
whose Dirichlet form satisfies Silverstein’s sector condition. Definitions of smooth measures and
Kato class can then be extended, while still preserving the properties used in this paper. We refer
to Chen (2002); Chen and Song (2003a) for Kato class measures defined in this way. Nevertheless,
we keep to the less general type of spatial motions to avoid unnecessary technicalities.

The rest of this paper is organized as follows. In Section 2 we review some basic definitions and
properties of non-local branching superprocesses, including the definition of Kuznetsov measures
which will be used later. In Section 3, we present our main working assumptions and the fundamental
martingale. Section 4 provides the spine decomposition and its proof. The proof of Proposition
4.3 is postponed to the Appendix. In Sections 5 and 6 we use the spine decomposition to find
sufficient and necessary conditions for the limit of the fundamental martingale to be non-degenerate
respectively. In particular, we obtain extinction properties of the non-local branching superprocess
as well as a Kesten-Stigum L logL theorem for the martingale. In the last section, we give some
concrete examples to illustrate our results.

Notation and basic setting: Throughout this paper we use “:=" as a definition. We always assume
that E is a locally compact separable metric space with Borel σ-algebra B(E) and m is a σ-finite
measure on (E,B(E)) with full support. Let E∂ := E ∪{∂} be the one-point compactification of E.
Any function f on E will be automatically extended to E∂ by setting f(∂) = 0. For a function f on
E, ‖f‖∞ := supx∈E |f(x)| and essupx∈Ef := infN :m(N)=0 supx∈E\N |f(x)|. Numerical functions f
and g on E are said to be m-equivalent (f = g [m] in notation) if m ({x ∈ E : f(x) 6= g(x)}) = 0. If
f(x, t) is a function on E × [0,+∞), we say f is locally bounded if supt∈[0,T ] supx∈E |f(x, t)| < +∞
for every T ∈ (0,+∞). We denote by f t(·) the function x 7→ f(x, t). LetM(E) denote the space
of finite Borel measures on E topologized by the weak convergence. Let M(E)0 := M(E) \ {0}
where 0 denotes the null measure on E. When µ is a measure on B(E) and f , g are measurable
functions, let 〈f, µ〉 :=

∫
E f(x)µ(dx) and (f, g) :=

∫
E f(x)g(x)m(dx) whenever the right hand sides

make sense. Sometimes we also write µ(f) for 〈f, µ〉. We use Bb(E) (respectively, B+(E)) to denote
the space of bounded (respectively, non-negative) measurable functions on (E,B(E)). For a, b ∈ R,
a ∧ b := min{a, b}, a ∨ b := max{a, b}, and log+ a := log(a ∨ 1).

2. Preliminaries

2.1. Superprocess with non-local branching mechanisms. Let

ξ = (Ω,H,Ht, θt, ξt,Πx, ζ)

be an m-symmetric Hunt process on E. Here {Ht : t ≥ 0} is the minimal admissible filtration, {θt :
t ≥ 0} the time-shift operator of ξ satisfying ξt ◦ θs = ξt+s for s, t ≥ 0, and ζ := inf{t > 0 : ξt = ∂}
the lifetime of ξ. Let {St : t ≥ 0} be the transition semigroup of ξ, i.e., for any non-negative
measurable function f ,

Stf(x) := Πx [f(ξt)] .

For α > 0 and f ∈ B+(E), let Gαf(x) :=
∫ +∞

0 e−αtStf(x)dt. It is known by Chen and Fukushima
(2012, Lemma 1.1.14) that {St : t ≥ 0} can be uniquely extended to a strongly continuous con-
traction semigroup on L2(E,m), which we also denote by {St : t ≥ 0}. By the theory of Dirichlet
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forms, there exists a regular symmetric Dirichlet form (E ,F) on L2(E,m) associated with ξ:

F =
{
u ∈ L2(E,m) : sup

t>0

1

t

∫
E

(u(x)−Stu(x))u(x)m(dx) < +∞
}
,

E(u, v) = lim
t→0

1

t

∫
E

(u(x)−Stu(x)) v(x)m(dx), ∀u, v ∈ F .

Moreover, for all f ∈ Bb(E) ∩ L2(E,m) and α > 0,

Gαf ∈ F satisfies that Eα(Gαf, v) = (f, v) ∀v ∈ F , (2.1)

where Eα(u, v) := E(u, v) + α(u, v). We assume that ξ admits a transition density p(t, x, y) with
respect to the measurem, which is symmetric in (x, y) for each t > 0. Under this absolute continuity
assumption, “quasi everywhere" statements can be strengthened to “everywhere" ones. Moreover,
we can define notions without exceptional sets, for example, positive continuous additive functionals
(PCAF in abbreviation) in the strict sense (cf. Fukushima et al., 1994, Section 5.1). In this paper,
we will only deal with notions in the strict sense and omit “in the strict sense”.

It is well known (see Fukushima et al., 1994, Theorem A.3.21, for instance) there exist a kernel
N(x, dy) on (E,B(E)) with N(x, {x}) = 0 for all x ∈ E and a PCAF H of ξ with

∫
E Πx(Ht)µ(dx) <

∞ for all t ≥ 0 and probability measure µ on (E,B(E)) such that for any x ∈ E, any t ≥ 0, and
any non-negative Borel function f on E × E vanishing on the diagonal {(y, y) : y ∈ E},

Πx

∑
s≤t

f(ξs−, ξs)

 = Πx

[∫ t

0

∫
E
f(ξs, y)N(ξs, dy)dHs

]
. (2.2)

The pair (N,H) is called a Lévy system of ξ.
In this paper, we consider a superprocess X := {Xt : t ≥ 0} with spatial motion ξ and a non-local

branching mechanism ψ given by

ψ(x, f) = φL(x, f(x)) + φNL(x, f) for x ∈ E, f ∈ B+
b (E). (2.3)

The first term φL in (2.3) is called the local branching mechanism and takes the form

φL(x, λ) = a(x)λ+ b(x)λ2 +

∫
(0,+∞)

(
e−λθ − 1 + λθ

)
ΠL(x, dθ), x ∈ E, λ ≥ 0, (2.4)

where a ∈ Bb(E), b ∈ B+
b (E) and (θ ∧ θ2)ΠL(x, dθ) is a bounded kernel from E to (0,+∞). The

second term φNL in (2.3) is called the non-local branching mechanism and takes the form

φNL(x, f) = −c(x)π(x, f)−
∫

(0,+∞)

(
1− e−θπ(x,f)

)
ΠNL(x, dθ), x ∈ E, (2.5)

where c(x) is a non-negative bounded measurable function on E, π(x,dy) is a probability kernel on
E with π(x, {x}) 6≡ 1, π(x, f) stands for

∫
f(y)π(x,dy) and θΠNL(x, dθ) is a bounded kernel from

E to (0,+∞). To be specific, X is anM(E)-valued Markov process such that for every f ∈ B+
b (E)

and every µ ∈M(E),

Pµ

(
e−〈f,Xt〉

)
= e−〈uf (·,t),µ〉 for t ≥ 0, (2.6)

where uf (x, t) := − log Pδx
(
e−〈f,Xt〉

)
is the unique non-negative locally bounded solution to the

integral equation

uf (x, t) = Stf(x)−Πx

[∫ t

0
ψ(ξs, u

t−s
f )ds

]
= Stf(x)−Πx

[∫ t

0
φL(ξs, uf (t− s, ξs))ds

]
−Πx

[∫ t

0
φNL(ξs, u

t−s
f )ds

]
. (2.7)



Spine decomposition and L logL criterion for superprocesses 167

We refer to the process described above as a (St, φ
L, φNL)-superprocess. Such a process is defined

in Li (2011) via its log-Laplace functional. Another usual way of constructing the (St, φ
L, φNL)-

superprocess is as the high intensity limit of a sequence of branching particle systems, where when-
ever a particle dies, it chooses from two different branching types: the local branching type (when
the particle dies at x, it is replaced by a random number of offspring situated at x), and the non-
local branching type (when the particle dies, it gives birth to a random number of particles in E,
and the offspring then start to move from their locations of birth). We refer to Li (2011); Dawson
et al. (2002) for such a construction.

We define for x ∈ E,

γ(x,dy) :=

(
c(x) +

∫
(0,+∞)

θΠNL(x,dθ)

)
π(x,dy), γ(x) := γ(x, 1). (2.8)

Clearly, γ(x) is a non-negative bounded function on E and γ(x, dy) is a bounded kernel on E.
Define A := {x ∈ E : γ(x) > 0}. Note that φNL(x, ·) = 0 for all x ∈ E \A. If A = ∅ (i.e., φNL ≡ 0),
we call ψ a (purely) local branching mechanism. Without loss of generality, we always assume that
A 6= ∅. The arguments and results of this paper also work for (purely) local branching mechanisms.

It follows from Li (2011, Theorem 5.12) that the (St, φ
L, φNL)-superprocess has a right realization

inM(E). Let W+
0 denote the space of right continuous paths from [0,+∞) toM(E) having zero

as a trap. We may and do assume that X is the coordinate process inW+
0 and that (F∞, (Ft)t≥0) is

the natural filtration onW+
0 generated by the coordinate process. The following proposition follows

from Li (2011, Proposition 2.27 and Proposition 2.29).

Proposition 2.1. For all µ ∈M(E) and f ∈ Bb(E),

Pµ (〈f,Xt〉) = 〈Ptf, µ〉,

where Ptf(x) is the unique locally bounded solution to the following integral equation:

Ptf(x) = Stf(x)−Πx

[∫ t

0
a(ξs)Pt−sf(ξs)ds

]
+ Πx

[∫ t

0
γ(ξs,Pt−sf)ds

]
. (2.9)

Moreover, for all µ ∈M(E), g ∈ B+
b (E) and f ∈ Bb(E),

Pµ

(
〈f,Xt〉e−〈g,Xt〉

)
= e−〈Vtg,µ〉〈V f

t g, µ〉,

where Vtg(x) := ug(x, t) is the unique non-negative locally bounded solution to (2.7) with initial
value g, and V f

t g(x) is the unique locally bounded solution to the following integral equation

V f
t g(x) = Stf(x)−Πx

[∫ t

0
Ψ(ξs, Vt−sg, V

f
t−sg)ds

]
, (2.10)

where

Ψ(x, f, g) := g(x)

(
a(x) + 2b(x)f(x) +

∫
(0,+∞)

θ
(

1− e−f(x)θ
)

ΠL(x,dθ)

)

− π(x, g)

(
c(x) +

∫
(0,+∞)

θe−θπ(x,f)ΠNL(x, dθ)

)
.

2.2. Kuznetsov measures. Let {Qt(µ, ·) := Pµ (Xt ∈ ·) : t ≥ 0, µ ∈ M(E)} be the transition kernel
of the (St, φ

L, φNL)-superprocess X. Then by (2.6), we have∫
M(E)

e−〈f,ν〉Qt(µ, dν) = exp (−〈Vtf, µ〉) for µ ∈M(E) and t ≥ 0.
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It implies that Qt(µ1 + µ2, ·) = Qt(µ1, ·) ∗Qt(µ2, ·) for all µ1, µ2 ∈ M(E), and hence Qt(µ, ·) is an
infinitely divisible probability measure onM(E). By the semigroup property of Qt, Vt satisfies that

VsVt = Vt+s for all s, t ≥ 0.

Moreover, by the infinite divisibility of Qt, each operator Vt has the representation

Vtf(x) = λt(x, f) +

∫
M(E)0

(
1− e−〈f,ν〉

)
Lt(x, dν), t > 0, f ∈ B+

b (E), (2.11)

where λt(x,dy) is a bounded kernel on E and (1 ∧ ν(1))Lt(x,dν) is a bounded kernel from E to
M(E)0. Let Q0

t be the restriction of Qt toM(E)0. Let

E0 := {x ∈ E : λt(x,E) = 0 for all t > 0}.
If x ∈ E0, then we get from (2.11) that

Vtf(x) =

∫
M(E)0

(
1− e−〈f,ν〉

)
Lt(x, dν) for t > 0, f ∈ B+

b (E).

It then follows from Li (2011, Proposition 2.8 and Theorem A.40) that for every x ∈ E0, the family
of measures {Lt(x, ·) : t > 0} on M(E)0 constitutes an entrance law for the restricted semigroup
{Q0

t : t ≥ 0}, and hence there corresponds a unique σ-finite measure Nx on (W+
0 ,F∞) such that

Nx({0}) = 0, and that for any 0 < t1 < t2 < · · · < tn < +∞,

Nx (Xt1 ∈ dν1, Xt2 ∈ dν2, · · · , Xtn ∈ dνn) = Lt1(x, dν1)Q0
t2−t1(ν1, dν2) · · ·Q0

tn−tn−1
(νn−1,dνn).

It immediately follows that for all t > 0 and f ∈ B+
b (E),

Nx
(

1− e−〈f,Xt〉
)

=

∫
M(E)0

(
1− e−〈f,ν〉

)
Lt(x,dν) = Vtf(x). (2.12)

This measure Nx is called the Kuznetsov measure corresponding to the entrance law {Lt(x, ·) : t > 0}
or the excursion law for the (St, φ

L, φNL)-superprocess. When µ ∈ M(E) is supported by E0 and
N(dw) is a Poisson random measure on W+

0 with intensity measure∫
E0

µ(dx)Nx(·),

the process defined by

X̃0 = µ; X̃t :=

∫
W+

0

wtN(dw), t > 0,

is a realization of the superprocess (X,Pµ). We refer to Li (2011, section 8.4) for more details on
the Kuznetsov measures. In the sequel, we assume that

Assumption 0. E+ := {x ∈ E : b(x) > 0} ⊂ E0.

Under this assumption, the Kuznetsov measure Nx exists for every x ∈ E+ when E+ is nonempty.
It is established in Chen et al. (2019b) that Assumption 0 is automatically true for superdiffusions
with a (purely) local branching mechanism. In the general case, Li (2011, Theorem 8.6) gives the
following sufficient condition for Assumption 0: If there is a spatially independent local branching
mechanism φ(λ) taking the form

φ(λ) = αλ+ βλ2 +

∫
(0,+∞)

(
e−λθ − 1 + λθ

)
n(dθ) for λ ≥ 0,

where α ∈ R, β ∈ R+ and (θ ∧ θ2)n(dθ) is a bounded kernel on (0,+∞), such that φ′(λ)→ +∞ as
λ→ +∞, and that the branching mechanism ψ of X is bounded below by φ in the sense that

ψ(x, f) ≥ φ(f(x)) for all x ∈ E and f ∈ B+
b (E),

then E0 = E.
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3. Fundamental martingale and weak local extinction

In this section we will establish a fundamental martingale of the form eλ1t〈h,Xt〉 for the super-
process X in terms of the principal eigenvalue λ1 and the corresponding positive eigenfunction h of
the Schrödinger operator associated with the mean semigroup. For a MCSBP (resp. a multitype
superdiffusion), if one considers the E-valued spatial motion on an enriched state space E×I, where
I is the finite or countable set of types, then the mutation in types is the jumps in the I-coordinate,
and the associated mean semigroup is generated by a matrix (resp. a coupled elliptic system). So,
the spectral theory of matrices (resp. the potential theory for elliptic systems) can be applied.
See, for example, Palau and Yang (2020, Examples 3.7 and 3.8). For a general non-local branch-
ing superprocess considered in Subsection 2.1, the associated Schrödinger operator takes the form
L−a+γ, where L is the generator of underlying spatial motion, and γ is an integral operator given
by γ(f)(x) = γ(x, f). Since the integral operator γ can be quite general, the method mentioned
above is not applicable. Instead we characterize the Schrödinger operator in terms of the associated
bilinear form, and impose some technical assumptions to ensure the existence of λ1 and h.

Definition 3.1. We call a non-negative measure µ on E a smooth measure of ξ if there is a PCAF
Aµt of ξ such that ∫

E
f(x)µ(dx) = lim

t→0

1

t
Πm

[∫ t

0
f(ξs)dA

µ
s

]
for all f ∈ B+(E).

Here Πm(·) :=
∫
E Πx(·)m(dx). This measure µ is called the Revuz measure of Aµt . Moreover, we

say that a smooth measure µ belongs to the Kato class K(ξ), if

lim
t↓0

sup
x∈E

∫ t

0

∫
E
p(s, x, y)µ(dy)ds = 0.

A function q is said to be in the class K(ξ) if q(x)m(dx) is in K(ξ).

Clearly all bounded measurable functions are included in K(ξ). It is known (see, e.g., Albeverio
and Ma, 1991, Proposition 2.1.(i) and Stollmann and Voigt, 1996, Theorem 3.1) that if ν ∈ K(ξ),
then for every ε > 0 there is some constant Aε > 0 such that∫

E
u(x)2ν(dx) ≤ εE(u, u) +Aε

∫
E
u(x)2m(dx) ∀u ∈ F . (3.1)

Assumption 1.
∫
E γ(x, ·)m(dx) ∈ K(ξ), where γ(x, ·) is the kernel defined in (2.8).

Under Assumption 1, it follows from (3.1), the boundedness of γ(x) and the inequality

|u(x)u(y)| ≤ 1

2
(u(x)2 + u(y)2)

that, for every ε > 0, there is a constant Kε > 0 such that∫
E

∫
E
u(x)u(y)γ(x,dy)m(dx) ≤ εE(u, u) +Kε

∫
E
u(x)2m(dx) ∀u ∈ F .

It follows that the bilinear form (Q,F) defined by

Q(u, v) := E(u, v) +

∫
E
a(x)u(x)v(x)m(dx)−

∫
E

∫
E
u(y)v(x)γ(x,dy)m(dx), u, v ∈ F ,

is closed and that there are positive constantsK and β0 such thatQβ0(u, u) := Q(u, u)+β0(u, u) ≥ 0
for all u ∈ F , and

|Q(u, v)| ≤ KQβ0(u, u)1/2Qβ0(v, v)1/2 ∀u, v ∈ F .



170 Yan-Xia Ren, Renming Song and Ting Yang

It then follows from Kunita (1970) that for such a closed form (Q,F) on L2(E,m), there are
unique strongly continuous semigroups {Tt : t ≥ 0} and {T̂t : t ≥ 0} on L2(E,m) such that
‖Tt‖L2(E,m) ≤ eβ0t, ‖T̂t‖L2(E,m) ≤ eβ0t, and

(Ttf, g) = (f, T̂tg) ∀f, g ∈ L2(E,m). (3.2)

Let {Uα}α>β0 and {Ûα}α>β0 be given by Uαf :=
∫ +∞

0 e−αtTtfdt and Ûαf :=
∫ +∞

0 e−αtT̂tfdt

respectively. Then {Uα}α>β0 and {Ûα}α>β0 are strongly continuous pseudo-resolvents in the sense
that they satisfy the resolvent equations

Uα − Uβ + (α− β)UαUβ = 0, Ûα − Ûβ + (α− β)ÛαÛβ = 0

for all α, β > β0, and

Qα(Uαf, g) = Qα(g, Ûαf) = (f, g) ∀f ∈ L2(E,m), g ∈ F . (3.3)

Recall from Proposition 2.1 that Pt is the mean semigroup of the (St,Φ
L,ΦNL)-superprocess, which

satisfies the equation (2.9). Since γ(x,dy) is a bounded kernel on E, by (2.9), we have for every
f ∈ Bb(E),

‖Ptf‖∞ ≤ ‖f‖∞ + (‖a‖∞ + ‖γ(·, 1)‖∞)

∫ t

0
‖Pt−sf‖∞ds.

By Gronwall’s lemma, ‖Ptf‖∞ ≤ ec1t‖f‖∞ for some constant c1 > 0. For f ∈ Bb(E) and α > c1,
define Rαf(x) :=

∫ +∞
0 e−αtPtf(x)dt. By taking Laplace transform on both sides of (2.9), we get

Rαf(x) = Gαf(x)−Gα (αRαf) (x) +Gα (γ(·, Rαf)) (x), (3.4)

where Gα is the α-resolvent of (St)t≥0. A particular case is when a(x), γ(x) ∈ L2(E,m). In this
case, for all f ∈ Bb(E) ∩ L2(E,m) and α sufficiently large, both a(x)Rαf(x) and γ(x,Rαf) are in
Bb(E) ∩ L2(E,m). Then it follows from (2.1) that Gαf , Gα (αRαf), Gα (γ(·, Rαf)) ∈ F , and then
by (3.4), (2.1) and (3.3),

Qα(Rαf, v) = (f, v) = Qα(Uαf, v) for all v ∈ F ,
which implies that Rαf is m-equivalent to Uαf for α sufficiently large. This indicates that there
is some strong relation between Pt and Tt. In fact we will show in Proposition 5.2 below that
Ptf = Ttf [m] for every t > 0 and every f ∈ Bb(E) ∩ L2(E,m). This means that Pt can be
regarded as a bounded linear operator on the space of bounded measurable functions in L2(E,m),
which is dense in L2(E,m). Hence Tt can be regarded as the unique bounded linear operator on
L2(E,m) which is an extension of Pt.

Assumption 2. There exist a constant λ1 ∈ (−∞,+∞) and positive functions h, ĥ ∈ F with h
bounded continuous, ‖h‖L2(E,m) = 1 and (h, ĥ) = 1 such that

Q(h, v) = λ1(h, v), Q(v, ĥ) = λ1(v, ĥ) ∀v ∈ F . (3.5)

In Theorem 3.2 below, we will prove that eλ1t〈h,Xt〉 is a non-negative martingale. To prove this
we first prove that h is invariant for some semigroup, see (3.13) below. Since h ∈ F is continuous,
it follows from Chen and Fukushima (2012, Theorem 4.2.6) that for every x ∈ E, Πx-a.s.

h(ξt)− h(ξ0) = Mh
t +Nh

t , t ≥ 0,

where Mh is a martingale additive functional of ξ having finite energy and Nh
t is a continuous

additive functional of ξ having zero energy. The formula above is usually called Fukushima’s de-
composition. It follows from (3.5) and Fukushima et al. (1994, Theorem 5.4.2) that Nh

t is of bounded
variation, and

Nh
t = −λ1

∫ t

0
h(ξs)ds+

∫ t

0
a(ξs)h(ξs)ds−

∫ t

0
γ(ξs, h)ds, ∀t ≥ 0.



Spine decomposition and L logL criterion for superprocesses 171

Following the idea of Chen et al. (2004, Section 2), we define a local martingale on the random time
interval [0, ζp) by

Mt :=

∫ t

0

1

h(ξs−)
dMh

s , t ∈ [0, ζp), (3.6)

where ζp is the predictable part of the lifetime ζ of ξ, that is,

ζp =

{
ζ if ζ <∞ and ξζ− = ξζ ,

∞, otherwise,

see Sharpe (1988, Theorem 44.5). Then the solution Ht of the stochastic differential equation

Ht = 1 +

∫ t

0
Hs−dMs, t ∈ [0, ζp), (3.7)

is a positive local martingale on [0, ζp) and hence a supermartingale. Consequently, the formula

dΠh
x = Ht dΠx on Ht ∩ {t < ζ} for x ∈ E

uniquely determines a family of subprobability measures {Πh
x : x ∈ E} on (Ω,H). Hence we have

Πh
x [f(ξt)] = Πx [Htf(ξt); t < ζ] , t ≥ 0, f ∈ B+(E).

Note that by (3.6), (3.7) and Doléan-Dade’s formula,

Ht = exp

(
Mt −

1

2
〈M c〉t

) ∏
0<s≤t

h(ξs)

h(ξs−)
exp

(
1− h(ξs)

h(ξs−)

)
∀t ∈ [0, ζp), (3.8)

where M c is the continuous martingale part of M . Applying Ito’s formula to log h(ξt), we obtain
that for every x ∈ E, Πx-a.s. on [0, ζ),

log h(ξt)− log h(ξ0) = Mt −
1

2
〈M c〉t +

∑
s≤t

(
log

h(ξs)

h(ξs−)
− h(ξs)− h(ξs−)

h(ξs−)

)

− λ1t+

∫ t

0
a(ξs)ds−

∫ t

0

γ(ξs, h)

h(ξs)
ds. (3.9)

Put

q(x) :=
γ(x, h)

h(x)
for x ∈ E. (3.10)

By (3.8) and (3.9), we get

Ht = exp

(
λ1t−

∫ t

0
a(ξs)ds+

∫ t

0
q(ξs)ds

)
h(ξt)

h(ξ0)
.

To emphasize, the process ξ under {Πh
x, x ∈ E} will be denoted as ξh. For a measurable function g,

we set

eg(t) := exp

(
−
∫ t

0
g(ξs)ds

)
∀t ≥ 0,

whenever it is well defined. Then we have for all f ∈ B+(E) and t ≥ 0,

Sh
t f(x) := Πh

x

[
f(ξht )

]
=

eλ1t

h(x)
Πx [ea−q(t)h(ξt)f(ξt)] . (3.11)

It follows from Chen et al. (2004, Theorem 2.6) that the transformed process ξh is a conservative
and recurrent (in the sense of Fukushima et al., 1994) m̃-symmetric right Markov process on E with
m̃(dy) := h(y)2m(dy). Thus

Sh
t 1 = 1 [m̃] for all t > 0. (3.12)
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Note that for all t > 0 and x ∈ E, the measure Sh
t (x, ·) := Πh

x

(
ξht ∈ ·

)
is absolutely continuous

with respect to m̃, since Sh
t (x, ·) is absolutely continuous with respect to the measure St(x, ·) :=

Πx(ξt ∈ ·) by (3.11) and the latter is absolutely continuous with respect to m. Moreover, by the
right continuity of the sample paths of ξh, one can easily verify that both 1 and Sh

t 1(x) are excessive
functions for {Sh

t : t > 0}. Thus by Chen and Fukushima (2012, Theorem A.2.17), (3.12) implies
that

1 = Sh
t 1(x) =

eλ1t

h(x)
Πx [ea−q(t)h(ξt)] for all x ∈ E. (3.13)

Theorem 3.2. Suppose Assumptions 1-2 hold. Then for every µ ∈ M(E), W h
t (X) := eλ1t〈h,Xt〉

is a non-negative Pµ-martingale with respect to the filtration {Ft : t ≥ 0}.

Proof : By the Markov property of X, it suffices to prove that for all x ∈ E and t ≥ 0,

Pth(x) = Pδx (〈h,Xt〉) = e−λ1th(x). (3.14)

Let A(s, t) := −
∫ t
s a(ξr)dr+

∫ t
s q(ξr)dr and u(t, x) := Πx

[
eA(0,t)h(ξt)

]
. Clearly by (3.13), u(t, x) =

e−λ1th(x). Note that

eA(0,t) − 1 = −(eA(t,t) − eA(0,t)) =

∫ t

0
(−a(ξs) + q(ξs)) e

A(s,t)ds. (3.15)

By (3.15), Fubini’s theorem and the Markov property of ξ, we have

u(t, x) = Sth(x) + Πx

[
(eA(0,t) − 1)h(ξt)

]
= Sth(x)−Πx

[∫ t

0
a(ξs)e

A(s,t)h(ξt)ds

]
+ Πx

[∫ t

0
q(ξs)e

A(s,t)h(ξt)ds

]
= Sth(x)−Πx

[∫ t

0
a(ξs)u(t− s, ξs)ds

]
+ Πx

[∫ t

0

γ(ξs, h)

h(ξs)
u(t− s, ξs)ds

]
= Sth(x)−Πx

[∫ t

0
a(ξs)u(t− s, ξs)ds

]
+ Πx

[∫ t

0
γ(ξs, u

t−s)ds

]
.

In the last equality above we use the fact that u(t − s, x) = e−λ1(t−s)h(x). Thus u(t, x) is a
locally bounded solution to (2.9) with initial value h. By the uniqueness of the solution, we get
u(t, x) = Pth(x) = Pδx (〈h,Xt〉). �

For µ ∈ M(E), we say that the process X exhibits weak local extinction (resp. local extinction)
under Pµ if for every nonempty relatively compact open subset B of E, Pµ (limt→+∞Xt(B) = 0) = 1
(resp. Pµ (Xt(B) = 0 for sufficitently large t) = 1). It is proved in Engländer and Pinsky (1999)
(see also Engländer and Kyprianou, 2004) that local extinction and weak local extinction coincide
for superdiffusions in a domainD ⊂ Rd with local branching mechanism ψ(x, λ) = −β(x)λ+α(x)λ2,
where α and β are Hölder continuous functions on D with order η ∈ (0, 1], α > 0 in D and β is
bounded from above. However the two notions are different in general. In this paper we are only
concerned with weak local extinction.

Corollary 3.3. Suppose Assumptions 1-2 hold. For all µ ∈M(E) and nonempty relatively compact
open subset B of E,

Pµ

(
lim sup
t→+∞

eλ1tXt(B) < +∞
)

= 1.

In particular, if λ1 > 0, then X exhibits weak local extinction under Pµ.

Proof : This corollary follows immediately from Theorem 3.2 and the fact that

eλ1tXt(B) ≤ eλ1t〈 h

infx∈B h(x)
1B, Xt〉 ≤

1

infx∈B h(x)
W h
t (X).
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�

Remark 3.4. Corollary 3.3 implies that the local mass of Xt grows subexponentially and the growth
rate can not exceed −λ1. However, when one considers the total mass process 〈1, Xt〉, the growth
rate may actually exceed −λ1. We refer to Engländer and Kyprianou (2004) and Engländer et al.
(2016) for more concrete examples.

4. Spine decomposition

4.1. Concatenation process. We assume Assumptions 1-2 hold. It is well-known (see, e.g., Sharpe,
1988, p. 286) that for every x ∈ E, there is a unique (up to equivalence in law) right process
((ξ̂t)t≥0; Π̂h

x) on E with lifetime ζ̂ and cemetery point ∂, such that

Π̂h
x

(
ξ̂t ∈ B

)
= Πh

x

[
eq(t); ξ

h
t ∈ B

]
∀B ∈ B(E),

where q is the nonnegative function defined in (3.10). ξ̂ is called the eq(t)-subprocess of ξh, which
can be obtained by killing ξh with rate q. In fact, a version of the eq(t)-subprocess can be obtained
by the following method of curtailment of the lifetime. Let Z be an exponential random variable,
of parameter 1, independent of ξh. Put

ζ̂(ω) := inf{t ≥ 0 :

∫ t

0
q
(
ξhs (ω)

)
ds ≥ Z(ω)} (= +∞, if such t does not exist),

and

ξ̂t(ω) :=

{
ξht (ω) if t < ζ̂(ω),

∂ if t ≥ ζ̂(ω).

Then the process ((ξ̂t)t≥0,Π
h
x) is equal in law to the eq(t)-subprocess of ξh. Now we define a

probability on E by

πh(x,dy) :=
h(y)γ(x,dy)

γ(x, h)
=
h(y)π(x,dy)

π(x, h)
for x ∈ E. (4.1)

Let ξ̃ := (Ω̃, G̃, G̃t, θ̃t, ξ̃t, Π̃x, ζ̃) be the right process constructed from ξ̂ and the instantaneous distri-
bution κ(ω,dy) := πh(ξ̂ζ̂(ω)−(ω), dy) by using the so-called “piecing out” procedure (cf. Ikeda et al.,
1966). We will follow the terminology of Sharpe (1988, Section II.14) and call ξ̃ a concatenation
process defined from an infinite sequence of copies of ξ̂ and the transfer kernel κ(ω,dy). One can
also refer to Li (2011, Section A.6) for a summary of concatenation processes. The intuitive idea of
this concatenation is described as follows. The process ξ̃ evolves as the process ξh until time ζ̂, it is
then revived by means of the kernel κ(ω,dy) and evolves again as ξh and so on, until a countably
infinite number of revivals have occurred. Clearly in the case of purely local branching mechanism
(i.e. γ(x) ≡ 0 on E), we have ζ̂ = +∞ almost surely and hence ξ̃ runs as a copy of ξh.

Let S̃t be the transition semigroup of ξ̃. It satisfies the following renewal equation.

S̃tf(x) = Πh
x

[
eq(t)f(ξht )

]
+ Πh

x

[∫ t

0
q(ξhs )eq(s)π

h(ξhs , S̃t−sf)ds

]
, f ∈ B+

b (E). (4.2)

By Li (2011, Proposition 2.9), the above equation can be rewritten as

S̃tf(x) = Πh
x

[
f(ξht )

]
−Πh

x

[∫ t

0
q(ξhs )S̃t−sf(ξhs )ds

]
+ Πh

x

[∫ t

0
q(ξhs )πh(ξhs , S̃t−sf)ds

]
.

Proposition 4.1. For all f ∈ B+
b (E), t ≥ 0 and x ∈ E,

S̃tf(x) =
eλ1t

h(x)
Pt(fh)(x). (4.3)
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In particular, S̃t1(x) ≡ 1, and hence ξ̃ has infinite lifetime. Moreover, for each t > 0 and x ∈ E, ξ̃
has a transition density p̃(t, x, y) with respect to the probability measure ρ(dy) := h(y)ĥ(y)m(dy).

Proof : By (4.2), (3.11), (2.8), (3.10) and (4.1), we have

S̃tf(x) =
eλ1t

h(x)
Πx [ea(t)h(ξt)f(ξt)]

+
eλ1t

h(x)
Πx

[∫ t

0
ea(s)q(ξs)h(ξs)e

−λ1(t−s)πh(ξs, S̃t−sf)ds

]
=

eλ1t

h(x)
Πx [ea(t)h(ξt)f(ξt)]

+
eλ1t

h(x)
Πx

[∫ t

0
ea(s)γ(ξs, e

−λ1(t−s)hS̃t−sf)ds

]
. (4.4)

Let u(t, x) := e−λ1th(x)S̃tf(x). Clearly u(t, x) is a locally bounded function on [0,+∞) × E.
Moreover, it follows from (4.4) and Li (2011, Proposition 2.9) that

u(t, x) = Πx [ea(t)h(ξt)f(ξt)] + Πx

[∫ t

0
ea(s)γ(ξs, u

t−s)ds

]
= Πx [h(ξt)f(ξt)]−Πx

[∫ t

0
a(ξs)u(t− s, ξs)ds

]
+ Πx

[∫ t

0
γ(ξs, u

t−s)ds

]
.

This implies that u(t, x) is a locally bounded solution to (2.9) with initial value fh. Hence we get
e−λ1th(x)S̃tf(x) = u(t, x) = Pt(fh)(x) by the uniqueness of the solution. It then follows from
(3.14) that S̃t1(x) ≡ 1 on E.

To prove the second part of this proposition, it suffices to prove that for all t > 0 and x ∈ E,
S̃t1B(x) = 0 for all B ∈ B(E) with ρ(B) = 0 (or equivalently, m(B) = 0). Note that

Πx [h1B(ξt)] =

∫
B
h(y)p(t, x, y)m(dy) = 0.

It follows from the above argument that e−λ1th(x)S̃t1B(x) = Pt(h1B)(x) is the unique locally
bounded solution to (2.9) with initial value 0. Thus S̃t1B(x) ≡ 0. �

Remark 4.2. The formula (4.3) can be written as

Pδx [〈fh,Xt〉]
Pδx [〈h,Xt〉]

= Π̃x

[
f(ξ̃t)

]
for f ∈ B+

b (E) and t ≥ 0, (4.5)

which enables us to calculate the first moment of the superprocess in terms of an auxiliary process.
An analogous formula for a special class of non-local branching Markov processes, which is called a
“many-to-one" formula, is established in Bansaye et al. (2011), but with a totally different method.
By (3.14), we may rewrite (4.5) as

Pδx [〈fh,Xt〉] = eλ1th(x)Π̃x

[
f(ξ̃t)

]
for f ∈ B+

b (E) and t ≥ 0.

Let τ1 be the first revival time of ξ̃. For n ≥ 2, define τn recursively by τn := τn−1 + τ1 ◦ θ̃τn−1 .
Since ξ̃ has infinite lifetime, Π̃x (limn→+∞ τn = +∞) = 1 for all x ∈ E.

Proposition 4.3. For all f(s, x, y), g(s, x, y) ∈ B+([0,+∞)× E × E), t > 0 and x ∈ E, we have

Π̃x

[∑
τi≤t

f(τi, ξ̃τi−, ξ̃τi)
]

= Π̃x

[∫ t

0
ds

∫
E
πh(ξ̃s, dy)q(ξ̃s)f(s, ξ̃s, y)

]
(4.6)
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and

Π̃x

[(∑
τi≤t

f(τi, ξ̃τi−, ξ̃τi)
)(∑

τj≤t
g(τj , ξ̃τj−, ξ̃τj )

)]
= Π̃x

[∑
τi≤t

fg(τi, ξ̃τi−, ξ̃τi)
]

+ Π̃x

[∫ t

0
ds

∫
E
πh(ξ̃s, dy)q(ξ̃s)f(s, ξ̃s, y)

· Π̃y

(∫ t−s

0
dr

∫
E
πh(ξ̃r, dz)q(ξ̃r)g(s+ r, ξ̃r, z)

)]
+ Π̃x

[∫ t

0
ds

∫
E
πh(ξ̃s, dy)q(ξ̃s)g(s, ξ̃s, y)

·Π̃y

(∫ t−s

0
dr

∫
E
πh(ξ̃r, dz)q(ξ̃r)f(s+ r, ξ̃r, z)

)]
. (4.7)

The proof of this proposition will be given in the Appendix below.

4.2. Spine decomposition. In this section we work under Assumptions 0-2. Recall from Theorem
3.2 that the process W h

t (X) is a non-negative Pµ-martingale for every µ ∈M(E). We can define a
new probability measure Qµ for every µ ∈M(E)0 by the following formula:

dQµ|Ft :=
1

〈h, µ〉
W h
t (X)dPµ

∣∣∣
Ft

for all t ≥ 0.

It then follows from Proposition 2.1 that for any f ∈ B+
b (E) and t ≥ 0,

Qµ

(
e−〈f,Xt〉

)
=

eλ1t

〈h, µ〉
Pµ

(
〈h,Xt〉e−〈f,Xt〉

)
=

eλ1t

〈h, µ〉
e−〈Vtf,µ〉〈V h

t f, µ〉,

where V h
t f(x) is the unique locally bounded solution to (2.10) with initial value h. In this subsection

we will establish the spine decomposition of X under Qµ.

Definition 4.4. For all µ ∈M(E) and x ∈ E, there is a probability space with probability measure
Pµ,x that carries the following processes.

(i) ((ξ̃t)t≥0;Pµ,x) is equal in law to ξ̃, a copy of the concatenation process starting from x;
(ii) (n;Pµ,x) is a random measure such that, given ξ̃ starting from x, n is a Poisson random measure

which issuesM(E)-valued processes Xn,t := (Xn,t
s )s≥0 at space-time points (ξ̃t, t) with rate

dN
ξ̃t
× 2b(ξ̃t)dt.

Here for every y ∈ E+ = {z ∈ E : b(z) > 0}, Ny denotes the Kuznetsov measure on W+
0

corresponding to the (St, φ
L, φNL)-superprocess, while for y ∈ E \ E+, Ny denotes the null

measure on W+
0 . Note that, given ξ̃, immigration happens only at space-time points (ξ̃t, t)

with b(ξ̃t) > 0. Let Dn denote the almost surely countable set of immigration times, and
Dn
t := Dn ∩ [0, t]. Given ξ̃, the processes {Xn,t : t ∈ Dn} are mutually independent.

(iii) (m;Pµ,x) is a random measure such that, given ξ̃ starting from x, m is a Poisson random
measure which issues M(E)-valued processes Xm,t := (Xm,t

s )s≥0 at space-time points (ξ̃t, t)
with initial mass θ at rate

θΠL(ξ̃t,dθ)× dPθδ
ξ̃t
× dt.

Here Pθδx denotes the law of the (St, φ
L, φNL)-superprocess starting from θδx. Let Dm denote

the almost surely countable set of immigration times, and Dm
t := Dm ∩ [0, t]. Given ξ̃, the

processes {Xm,t : t ∈ Dm} are mutually independent, also independent of n and {Xn,t : t ∈
Dn}.
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(iv) {((Xr,i
s )s≥0;Pµ,x), i ≥ 1} is a family ofM(E)-valued processes such that, given ξ̃ starting from

x (including its revival times {τi : i ≥ 1}), Xr,i := (Xr,i
s )s≥0 is equal in law to ((Xs)s≥0,Pπi)

where Pπi denotes the law of the (St, φ
L, φNL)-superprocess starting from πi(·) := Θiπ(ξ̃τi−, ·)

and Θi is a [0,+∞)-valued random variable with distribution η(ξ̃τi−,dθ) given by

η(x,dθ) :=
( c(x)

γ(x)
1A(x)+1E\A(x)

)
δ0(dθ)

+
1

γ(x)
1A(x)1(0,+∞)(θ)θΠ

NL(x,dθ). (4.8)

Moreover, given ξ̃ starting from x (including {τi : i ≥ 1}), {Θi : i ≥ 1} are mutually indepen-
dent, {Xr,i : i ≥ 1} are mutually independent, also independent of n, m, {Xn,t : t ∈ Dn} and
{Xm,t : t ∈ Dm}.

(v) ((Xt)t≥0;Pµ,x) is equal in law to ((Xt)t≥0; Pµ), a copy of the (St, φ
L, φNL)-superprocess start-

ing from µ. Moreover, ((Xt)t≥0;Pµ,x) is independent of ξ̃, n, m and all the immigration
processes.

We denote by

Ict :=
∑
s∈Dnt

Xn,s
t−s, Idt :=

∑
s∈Dmt

Xm,s
t−s and Irt :=

∑
τi≤t

Xr,i
t−τi

the continuous immigration, the discontinuous immigration and the revival-caused immigration,
respectively. We define Γt by

Γt := Xt + Ict + Idt + Irt , ∀t ≥ 0.

The process ξ̃ is called the spine process, and the process It := Ict +Idt +Irt is called the immigration
process.

For any µ ∈ M(E) and any measure ν on (E,B(E)) with 0 < 〈h, ν〉 < +∞, we randomize
the law Pµ,x by replacing the deterministic choice of x with an E-valued random variable having
distribution h(x)ν(dx)/〈h, ν〉. We denote the resulting law by Pµ,ν . That is to say,

Pµ,ν(·) :=
1

〈h, ν〉

∫
E
Pµ,x(·)h(x)ν(dx).

Clearly Pµ,δx = Pµ,x. Since the laws ofX and (ξ̃, I) under Pµ,ν do not depend on ν and µ respectively,
we sometimes write Pµ,· or P·,ν . For simplicity we also write Pµ for Pµ,µ. Here we take the convention
that P0(Γt = 0 ∀t ≥ 0) = 1.

For s ≥ 0, define

Λms := 〈1, Xm,s
0 〉, if s ∈ Dm and Λms := 0 otherwise. (4.9)

Then, given ξ̃, {Λms , s ≥ 0} is a Poisson point process with characteristic measure θΠL(ξ̃s, dθ). Let
G be the σ-field generated by ξ̃ (including {τi : i ≥ 1}), {Θi : i ≥ 1}, {Dm

t : t ≥ 0}, {Dn
t : t ≥ 0},

and {Λms , s ≥ 0}.

Proposition 4.5. For µ ∈M(E)0, f ∈ B+
b (E) and t ≥ 0, we have Pµ-a.s.

Pµ [〈f,Γt〉|G] = 〈Ptf, µ〉+
∑
s∈Dnt

Pt−sf(ξ̃s)

+
∑
s∈Dmt

Λms Pt−sf(ξ̃s) +
∑
τi≤t

Θiπ(ξ̃τi−,Pt−τif). (4.10)
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Proof : By (2.12), we have for every x ∈ E+ = {x ∈ E : b(x) > 0}, f ∈ B+
b (E) and t > 0,

Nx (〈f,Xt〉) = Pδx (〈f,Xt〉) = Ptf(x).

Let Dr
t := {τi : τi ≤ t}. Then by the definition of Γt, under Pµ,

Pµ [〈f,Γt〉|G] = Pµ (〈f,Xt〉) +
∑
s∈Dnt

Pµ
[
〈f,Xn,s

t−s〉|G
]

+
∑
s∈Dmt

Pµ
[
〈f,Xm,s

t−s 〉|G
]

+
∑

s=τi∈Drt

Pµ
[
〈f,Xr,i

t−s〉|G
]

= Pµ (〈f,Xt〉) +
∑
s∈Dnt

N
ξ̃s

(〈f,Xt−s〉)

+
∑
s∈Dmt

PΛms δξ̃s
(〈f,Xt−s〉) +

∑
s=τi∈Drt

Pπi (〈f,Xt−s〉)

= 〈Ptf, µ〉+
∑
s∈Dnt

Pt−sf(ξ̃s)

+
∑
s∈Dmt

Λms Pt−sf(ξ̃s) +
∑

s=τi∈Drt

Θiπ(ξ̃s−,Pt−sf). �

The following is our main result on the spine decomposition for the (St, φ
L, φNL)-superprocess.

Its proof will be given in the next subsection.

Theorem 4.6. Suppose that Assumptions 0-2 hold. For every µ ∈M(E)0, the process ((Γt)t≥0;Pµ)
is Markovian and has the same law as ((Xt)t≥0; Qµ).

Remark 4.7. In the case of a purely local branching mechanism, the revival-caused immigration does
not occur. To be more specific, in that case the spine runs as a copy of the h-transformed process
ξh while only continuous and discontinuous immigration occur along the spine. The concatenating
procedure and the revival-cased immigration are consequences of non-local branching. Similar
phenomenon has been observed in Kyprianou and Palau (2018) for multitype continuous-state
branching processes and in Chen et al. (2019a) for multitype superdiffusions.

Remark 4.8. The non-local branching mechanism ψ given by (2.3)-(2.5) is not the most general
form that can be assumed to establish a spine decomposition. In fact, we can establish a spine
decomposition for the class of branching mechanisms developed in Dawson et al. (2002):

ψ(x, f) = φL(x, f(x)) + φNL(x, f) for x ∈ E, f ∈ B+
b (E),

where φL takes the same form of (2.4) and

φNL(x, f) = −
∫
P(E)

c(x, π)π(f)G(x, dπ)

−
∫
P(E)

∫
(0,+∞)

(
1− e−θπ(f)

)
ΠNL(x, π,dθ)G(x,dπ),

where P(E) denotes the space of probability measures on E, G(x, dπ) is a probability measure from
E to P(E), c(x, π) is a nonnegative bounded measurable function on E×P(E), and θΠNL(x, π,dθ)
is a bounded kernel from E × P(E) to (0,+∞). It is easy to see that φNL has the form given in
(2.5) when G(x,dπ) is a Dirac measure on P(E).

To establish the spine decomposition, one should redefine γ(x,dy) as

γ(x, dy) =

∫
P(E)

r(x, π)π(dy)G(x,dπ),
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where r(x, π) := c(x, π)+
∫

(0,+∞) θΠ
NL(x, π,dθ). As a result, the instantaneous distribution, defined

by (4.1), of the concatenation process (the spine) ξ̃, changes with γ accordingly. Regarding the spine
decomposition for the above branching mechanism, there is a new feature of the revival-caused
immigration, which is described as follows: Given the spine ξ̃ (including its revival times), at each
revival time τi, a probability measure πi is chosen from P(E), independently, according to the
distribution G∗(ξ̃τi−, dπ), where

G∗(x,dπ) :=
π(h)r(x, π)G(x,dπ)

γ(x, h)
.

An immigration (Xr,i
s )s≥0 then occurs at τi, and it is equal in law to the process ((Xs)s≥0,PΘiπi),

where Θi is an independent [0,+∞)-valued random variable with distribution η(ξ̃τi−, πi, dθ) given
by

η(x, π,dθ) :=

(
c(x, π)

r(x, π)
1{r(x,π)>0} + 1{r(x,π)=0}

)
δ0(dy)

+
θ1{θ∈(0,+∞)}Π

NL(x, π,dθ)

r(x, π)
1{r(x,π)>0}.

We omit the details of the proof here for brevity.

4.3. Proof of Theorem 4.6. In this subsection, we give the proof of Theorem 4.6. In order to do
this, we prove a few lemmas first.

Lemma 4.9. For all x ∈ E, t ≥ 0 and f ∈ B+
b (E),

P·, x
[
exp

(
−〈f, Ict + Idt 〉

)
| ξ̃s : 0 ≤ s ≤ t

]
= exp

(
−
∫ t

0
Φ(ξ̃s, Vt−sf(ξ̃s))ds

)
,

where Φ(x, λ) := 2b(x)λ+
∫

(0,+∞) θ
(
1− e−λθ

)
ΠL(x, dθ) for x ∈ E and λ ≥ 0.

Proof : This lemma follows from an argument which is almost identical to the one leading to (59)–
(60) in Kyprianou et al. (2012). We omit the details here. �

Lemma 4.10. Suppose f, l ∈ B+
b (E) and (x, s) 7→ gs(x) is a non-negative locally bounded measurable

function on E × [0,+∞). For all x ∈ E and t > 0, let

e−w(x,t) := P·, x
[
exp

(
−
∫ t

0
gt−s(ξ̃s)ds− 〈f, Irt 〉 − l(ξ̃t)

)]
.

Then u(t, x) := e−λ1th(x)e−w(x,t) satisfies the following integral equation:

u(t, x) = Πx

[
e−l(ξt)h(ξt)

]
+ Πx

[ ∫ t

0
ds
(
Φ(ξs, Vt−sf(ξs))u(t− s, ξs)

−Ψ(ξs, Vt−sf, u
t−s)− gt−s(ξs)u(t− s, ξs)

)]
, (4.11)

where Ψ and Φ are defined in Proposition 2.1 and Lemma 4.9 respectively.

Proof : Following the idea of Evans and O’Connell (1994), it suffices to prove the result in the case
when g does not depend on the time variable. Let τ1 denote the first revival time of ξ̃. We have
the following fundamental equation:

e−w(x,t) = Πh
x

[
eq+g(t)e

−l(ξht )
]

+ Πh
x

[ ∫ t

0
ds q(ξhs )eq+g(s)

· πh(ξhs , e
−wt−s)

∫
[0,+∞)

e−θπ(ξhs ,Vt−sf)η(ξhs , dθ)
]
.
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The first term corresponds to the case when τ1 ≥ t, and the second term corresponds to the case
when the first revival happens at time s ∈ (0, t). It then follows from Fubini’s theorem and (3.11)
that

e−λ1th(x)e−w(x,t) = Πx

[
ea+g(t)h(ξt)e

−l(ξt)
]

+ Πx

[ ∫ t

0
ds ea+g(s)q(ξs)h(ξs)

· πh(ξs, e
−λ1(t−s)e−wt−s)

∫
[0,+∞)

e−θπ(ξs,Vt−sf)η(ξs,dθ)
]
.

We continue the above calculation by Li (2011, Proposition 2.9) and (4.8) to get

u(t, x) = e−λ1th(x)e−w(x,t)

= Πx

[
h(ξt)e

−l(ξt)
]
−Πx

[∫ t

0
(a(ξs) + g(ξs))e

−λ1(t−s)h(ξs)e
−w(ξs,t−s)ds

]
+ Πx

[∫ t

0
ds q(ξs)h(ξs)e

−λ1(t−s)πh(ξs, e
−wt−s)

∫
[0,+∞)

e−θπ(ξs,Vt−sf)η(ξs,dθ)
]

= Πx

[
h(ξt)e

−l(ξt)
]
−Πx

[∫ t

0
(a(ξs) + g(ξs))e

−λ1(t−s)h(ξs)e
−w(ξs,t−s)ds

]
+ Πx

[∫ t

0
ds π(ξs, e

−λ1(t−s)he−wt−s) ·
(
c(ξs) +

∫
(0,+∞)

re−θπ(ξs,Vt−sf)ΠNL(ξs,dθ)
)]
.

This directly leads to (4.11). �

Lemma 4.11. For all f, g ∈ B+
b (E), µ ∈M(E), x ∈ E and t ≥ 0,

Pµ,x
[
exp

(
−〈f,Γt〉 − g(ξ̃t)

)]
=

eλ1t

h(x)
e−〈Vtf,µ〉V he−g

t f(x), (4.12)

where V he−g
t f(x) is the unique locally bounded solution to (2.10) with initial value he−g.

Proof : Recall from Definition 4.4 that (X;Pµ,x) is independent of ξ̃ and all the immigration pro-
cesses. Moreover, given ξ̃ (including {τi : i ≥ 1}), Ir is independent of Ic and Id. It then follows
from Lemma 4.9 that

Pµ,x
[
exp

(
−〈f,Γt〉 − g(ξ̃t)

)]
= Pµ,x

[
exp

(
−〈f,Xt〉 − 〈f, Ict + Idt 〉 − 〈f, Irt 〉 − g(ξ̃t)

)]
= Pµ,x

[
e−〈f,Xt〉

]
Pµ,x

{
e−g(ξ̃t)Pµ,x

[
exp

(
−〈f, Ict + Idt 〉

)
| ξ̃s : 0 ≤ s ≤ t

]
·Pµ,x

[
exp (−〈f, Irt 〉) |{ξ̃s : 0 ≤ s ≤ t} ∪ {τi : τi ≤ t}

]}
= e−〈Vtf,µ〉P·, x

[
exp

(
−
∫ t

0
Φ(ξ̃s, Vt−sf(ξ̃s))ds− 〈f, Irt 〉 − g(ξ̃t)

)]
. (4.13)

Let v(t, x) := e−λ1th(x)P·, x
[
exp

(
−
∫ t

0 Φ(ξ̃s, Vt−sf(ξ̃s))ds− 〈f, Irt 〉 − g(ξ̃t)
)]

. One can easily verify
that (x, s) 7→ gs(x) := Φ(x, Vsf(x)) is a locally bounded function. Thus by Lemma 4.10, v(t, x) is a
locally bounded solution to the equation (2.10) with initial value he−g. By the uniqueness of such
a solution, we have v(t, x) = V he−g

t f(x). This and (4.13) lead to (4.12). �

Proof of Theorem 4.6: First we claim that for every µ ∈ M(E)0, ((Γt)t≥0;Pµ) has the same
one dimensional distribution as ((Xt)t≥0; Qµ). This would follow if for every f ∈ B+

b (E) and every
t ≥ 0,

Pµ
(
e−〈f,Γt〉

)
= Qµ

(
e−〈f,Xt〉

)
. (4.14)
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By the definition of Qµ and Proposition 2.1,

Qµ

(
e−〈f,Xt〉

)
=

eλ1t

〈h, µ〉
Pµ

[
〈h,Xt〉e−〈f,Xt〉

]
=

eλ1t

〈h, µ〉
e−〈Vtf,µ〉〈V h

t f, µ〉, (4.15)

where V h
t f(x) is the unique locally bounded solution to (2.10) with initial value h. By Lemma 4.11,

we have
Pµ,x [exp (−〈f,Γt〉)] = exp (λ1t− 〈Vtf, µ〉)h(x)−1V h

t f(x).

Thus

Pµ
(
e−〈f,Γt〉

)
=

1

〈h, µ〉

∫
E
Pµ,x

(
e−〈f,Γt〉

)
h(x)µ(dx)

=
eλ1t

〈h, µ〉
e−〈Vtf,µ〉〈V h

t f, µ〉. (4.16)

Combining (4.15) and (4.16), we get (4.14). It follows that for every µ ∈M(E)0,

Pµ(Γt = 0) = Qµ(Xt = 0)

=
1

〈h, µ〉
Pµ

(
W h
t (X);Xt = 0

)
= 0 ∀t > 0. (4.17)

It remains to prove the Markov property of ((Γt)t≥0;Pµ). To do this, we apply Evans and
O’Connell (1994, Lemma 3.3) here. Recall that E∂ = E ∪{∂} where ∂ is a cemetery point. We can
extend the probability measure Pµ,x onto µ× {∂} by defining that Pµ,∂(ξ̃t = ∂, It = 0 ∀t ≥ 0) = 1
for all µ ∈ M(E). In the remainder of this proof, we call J a Markov kernel if J is a map from
the measurable space (S,S) to the measurable space (S′,S ′) such that for every y ∈ S, J(y, ·) is a
probability measure on (S′,S ′), and for every B ∈ S ′, J(·, B) ∈ bS the space of bounded measurable
functions on S. The kernel J will also be viewed as an operator taking f ∈ bS ′ to Jf ∈ bS where
Jf(y) :=

∫
S′ f(z)J(y,dz).

Clearly ((Zt)t≥0 := ((Γt, ξ̃t))t≥0;Pµ,x) is a Markov process on M(E) × E∂ . Denote by St the
transition semigroup of Zt, by K the Markov kernel from M(E) × E∂ to M(E) induced by the
projection fromM(E)× E∂ ontoM(E), and by Q the Markov kernel fromM(E) toM(E)× E∂
given by

Q(ν1, d(ν2 × x)) := 1{ν1 6=0}δν1(dν2)× 1E(x)
h(x)ν1(dx)

〈h, ν1〉
+ 1{ν1=0}δ0(dν2)× δ∂(dx).

Let Rt := QStK for t ≥ 0. One can easily verify that QK is the identity kernel on M(E) and
Rt(ν1,dν2) = Pν1 (Γt ∈ dν2) for all ν1 ∈ M(E). By Evans and O’Connell (1994, Lemma 3.3),
((Γt)t≥0;Pµ) is Markovian as long as QSt = RtQ. This would follow if for all f, g ∈ B+

b (E) and
ν1 ∈M(E), ∫

M(E)

∫
M(E)×E∂

e−〈f,ν3〉−g(y)Q(ν2,d(ν3 × y))Rt(ν1, dν2)

=

∫
M(E)×E∂

∫
M(E)×E∂

e−〈f,ν3〉−g(y)St(ν2 × x,d(ν3 × y))Q(ν1, d(ν2 × x)). (4.18)

By the above definitions, we have

LHS of (4.18) = Pν1
[
e−〈f,Γt〉

〈he−g,Γt〉
〈h,Γt〉

1{Γt 6=0}

]
+ Pν1 (Γt = 0) ,

RHS of (4.18) = Pν1
[
e−〈f,Γt〉−g(ξ̃t)

]
1{ν1 6=0} + 1{ν1=0}.
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In view of (4.17), to show (4.18), it suffices to show that for all µ ∈M(E)0 and f, g ∈ B+
b (E),

Pµ
[
e−〈f,Γt〉−g(ξ̃t)

]
= Pµ

[
e−〈f,Γt〉

〈he−g,Γt〉
〈h,Γt〉

1{Γt 6=0}

]
. (4.19)

It follows from Lemma 4.11 that

Pµ
[
e−〈f,Γt〉−g(ξ̃t)

]
=

1

〈h, µ〉

∫
E
Pµ,x

[
e−〈f,Γt〉−g(ξ̃t)

]
h(x)µ(dx)

=
eλ1t

〈h, µ〉
e−〈Vtf,µ〉〈V he−g

t f, µ〉, (4.20)

where V he−g
t f(x) is the unique locally bounded solution to (2.10) with initial value he−g. On the

other hand, since (Γt,Pµ) and (Xt,Qµ) are identically distributed for each t ≥ 0, we have by the
definition of Qµ and Proposition 2.1 that

Pµ
[
e−〈f,Γt〉

〈he−g,Γt〉
〈h,Γt〉

1{Γt 6=0}

]
= Qµ

[
e−〈f,Xt〉

〈he−g, Xt〉
〈h,Xt〉

1{Xt 6=0}

]
=

eλ1t

〈h, µ〉
Pµ

[
e−〈f,Xt〉〈he−g, Xt〉

]
=

eλ1t

〈h, µ〉
e−〈Vtf,µ〉〈V he−g

t f, µ〉. (4.21)

Combining (4.20) and (4.21), we get (4.19). The proof is now complete. �

5. Sufficient conditions for a non-degenerate martingale limit

In this section, we will give sufficient conditions for the fundamental martingale to have a non-
degenerate limit. We start with an assumption.

Assumption 3.
(i) Either one of the following conditions holds.

(1) a(x), γ(x) ∈ L2(E,m).
(2) The Lévy system (N,H) of ξ is of the form (N, t), where N is given by

N(x, dy) = N(x, y)m(dy)

with N(x, y) being a symmetric Borel function on E ×E. The probability kernel π(x,dy)
has a density π(x, y) with respect to the measure m such that

γ(x)π(x, y) = F (x, y)N(x, y) ∀x, y ∈ E
for some non-negative bounded Borel function F (x, y) on E×E vanishing on the diagonal.

(ii) (1Aπ(·, h), ĥ) < +∞.
(iii) x 7→ π(x, h)/h is bounded from above on A.

It is easy to see that Assumption 3.(iii) implies Assumption 3.(ii). In this section we will use
the first two items of this assumption. In the next section we will use items (i) and (iii) of this
assumption. The following theorem, giving an L logL type criterion for the martingale limit to be
non-degenerate, is the main result of this section.

Theorem 5.1. Suppose Assumptions 0–2 and 3.(i)–(ii) hold. Let W h
∞(X) be the almost sure limit

of the non-negative martingale W h
t (X). Suppose that(∫

(0,+∞)
rh(·) log+(rh(·))ΠL(·, dr), ĥ

)
+
(∫

(0,+∞)
rπ(·, h) log+(rπ(·, h))ΠNL(·, dr), ĥ

)
< +∞. (5.1)

We have
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(i) if λ1 < 0, then W h
t (X) converges to W h

∞(X) as t → ∞ in L1(Pµ) for every µ ∈ M(E), and
W h
∞(X) is non-degenerate in the sense that Pµ(W h

∞(X) > 0) > 0 for µ ∈M(E)0;
(ii) if λ1 > 0, then W h

∞(X) = 0 Pµ-a.s. for every µ ∈M(E).

In the remainder of this section we will assume Assumptions 0-2 hold. Additional conditions used
are stated explicitly. To prove Theorem 5.1, we need a few preliminary results.

Proposition 5.2. Suppose Assumption 3.(i) holds. For all f ∈ Bb(E)∩L2(E,m) and s, t ∈ (0,+∞),

lim
s→t

Psf = Ptf in L2(E,m). (5.2)

Moreover,
Ptf = Ttf [m] for all t > 0, (5.3)

where (Tt)t≥0 is the semigroup associated with the bilinear form (Q,F) by (3.3).

Proof : First we suppose Assumption 3.(i2) holds. We note that γ(x,dy) = γ(x)π(x,dy) =
γ(x)π(x, y)m(dy). Then by Assumptions 1 and 3.(i2),∫

E
F (x, y)N(x, y)m(dx) =

∫
E
γ(x)π(x, y)m(dx) ∈ K(ξ).

Thus F is in the class J defined in Chen and Song (2003a). Let F̂ (x, y) := F (y, x). Then∫
E
F̂ (x, y)N(x, y)m(dx) =

∫
E
F (y, x)N(y, x)m(dx) =

∫
E
γ(y)π(y, x)m(dx) = γ(y).

Since γ is a bounded function on E, the above equation implies that F̂ is in the class J. One can
also show easily that the functions log(1 + F ) and log(1 + F̂ ) are in J. Define

As,t := −
∫ t

s
a(ξr)dr +

∑
s<r≤t

log (1 + F (ξr−, ξr)) ∀0 ≤ s < t < +∞.

It follows from Chen and Song (2003a, Theorem 4.8) (see also Chen and Song, 2003b, p. 275) that
the semigroup corresponding to the bilinear form (Q,F) defined by (3.3) is

Ttf(x) = Πx

[
eA0,tf(ξt)

]
∀t ≥ 0, x ∈ E, f ∈ B+(E).

Furthermore, for any 1 ≤ p ≤ +∞, (Tt)t≥0 is semigroup on Lp(E,m), and for 1 ≤ p < +∞, (Tt)t≥0

is strongly continuous semigroup on Lp(E,m). Similar to Chen and Song (2003a, (2.6)), we have

eA0,t − 1 = −
∫ t

0
eAs,ta(ξs)ds+

∑
s≤t

eAs,tF (ξs−, ξs).

Using this, the Markov property of ξ, (2.2) and Assumption 3.(i2), one can show that for any
f ∈ Bb(E) and x ∈ E,

Ttf(x) = Πx [f(ξt)]−Πx

[∫ t

0
a(ξs)Tt−sf(ξs)ds

]
+ Πx

[∫ t

0

∫
E
Tt−sf(y)F (ξs, y)N(ξs, y)m(dy)ds

]
= Πx [f(ξt)]−Πx

[∫ t

0
a(ξs)Tt−sf(ξs)ds

]
+ Πx

[∫ t

0

∫
E
Tt−sf(y)γ(ξs)π(ξs, y)m(dy)ds

]
= Πx [f(ξt)]−Πx

[∫ t

0
a(ξs)Tt−sf(ξs)ds

]
+ Πx

[∫ t

0

∫
E
Tt−sf(y)γ(ξs,dy)ds

]
.

This implies that Ttf(x) satisfies the integral equation (2.9). By uniqueness Ttf(x) = Ptf(x), and
thus we conclude the result of this proposition.

Now we suppose Assumption 3.(i1) holds. Fix f ∈ Bb(E) ∩ L2(E,m). We first prove (5.2).
Without loss of generality, we assume 0 < s < t < +∞. Let Fr(x) := −a(x)Prf(x) + γ(x,Prf).
We have shown in the argument below (3.3) that ‖Prf‖∞ ≤ ec1r‖f‖∞ for some constant c1 > 0.
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Thus by definition, |Fr(x)| ≤ (|a(x)| + γ(x))‖Prf‖∞ ≤ ec1r‖f‖∞(|a(x)| + γ(x)). Clearly by the
boundedness of a(x) and γ(x), (x, r) 7→ Fr(x) is locally bounded on E× [0,+∞) and by Assumption
3.(i), x 7→ Fr(x) ∈ Bb(E) ∩ L2(E,m). By (2.9), we have

Ptf(x)−Psf(x) = Stf(x)−Ssf(x) + Πx

[∫ t

s
Fr(ξt−r)dr

]
+ Πx

[∫ s

0
Fr(ξt−r)− Fr(ξs−r)dr

]
. (5.4)

Recall that {St : t ≥ 0} is a strongly continuous contraction semigroup on L2(E,m). Thus

‖Stf −Ssf‖L2(E,m) = ‖Ss (St−sf − f) ‖L2(E,m)

≤ ‖St−sf − f‖L2(E,m) → 0 as s→ t. (5.5)

Note that ∣∣∣∣Πx

[∫ t

s
Fr(ξt−r)dr

]∣∣∣∣ ≤ ∫ t

s
|Πx [Fr(ξt−r)]| dr =

∫ t

s
|St−rFr(x)| dr. (5.6)

We have by Minkowski’s integral inequality and the contractivity of St that

‖
∫ t

s
|St−rFr|dr‖L2(E,m) ≤

∫ t

s
‖St−rFr‖L2(E,m) dr ≤

∫ t

s
‖Fr‖L2(E,m)dr

≤ ‖f‖∞(‖a‖L2(E,m) + ‖γ‖L2(E,m))

∫ t

s
ec1rdr → 0

as s→ t. This together with (5.6) implies that

lim
s→t

∥∥∥∥Πx

[∫ t

s
Fr(ξt−r)dr

]∥∥∥∥
L2(E,m)

= 0. (5.7)

Note that by the Markov property of ξ,∣∣∣∣Πx

[∫ s

0
Fr(ξt−r)− Fr(ξs−r)dr

]∣∣∣∣ ≤ ∫ s

0
Πx

[∣∣Πξs−r(Fr(ξt−s))−Πξs−r(Fr(ξ0))
∣∣]dr

=

∫ s

0
Ss−r (|St−sFr − Fr|) (x)dr. (5.8)

It follows from the strong continuity and contractivity of the semigroup {St : t ≥ 0} that

lim
s→t
‖St−sFr − Fr‖L2(E,m) = 0, and

‖St−sFr − Fr‖L2(E,m) ≤ 2‖Fr‖L2(E,m) ≤ 2ec1r‖f‖∞(‖a‖L2(E,m) + ‖γ‖L2(E,m)).

Thus by Minkowski’s integral inequality and the dominated convergence theorem, we have∥∥∥∥∫ s

0
Ss−r (|St−sFr − Fr|) dr

∥∥∥∥
L2(E,m)

≤
∫ s

0
‖Ss−r (|St−sFr − Fr|)‖L2(E,m) dr

≤
∫ s

0
‖St−sFr − Fr‖L2(E,m) dr

→ 0 as s→ t.

This together with (5.8) implies that

lim
s→t

∥∥∥∥Πx

[∫ s

0
Fr(ξt−r)− Fr(ξs−r)dr

]∥∥∥∥
L2(E,m)

= 0. (5.9)
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Combining (5.4)–(5.9), we arrive at (5.2). To prove (5.3), it suffices to prove that for every t > 0
and every g ∈ L2(E,m), ∫

E
Ptf(x)g(x)m(dx) =

∫
E
Ttf(x)g(x)m(dx). (5.10)

Note that by Hölder’s inequality and (5.2), for s, t ∈ (0,+∞),∣∣∣∣∫
E
Ptf(x)g(x)m(dx)−

∫
E
Psf(x)g(x)m(dx)

∣∣∣∣
≤ ‖Ptf −Psf‖L2(E,m)‖g‖L2(E,m) → 0 (5.11)

as s → t. This implies t 7→
∫
E Ptf(x)g(x)m(dx) is a continuous function on (0,+∞). Similarly,

using the strong continuity of {Tt : t ≥ 0} on L2(E,m), one can prove that t 7→
∫
E Ttf(x)g(x)m(dx)

is also a continuous function on (0,+∞). By taking the Laplace transform of
∫
E Ptf(x)g(x)m(dx)

(resp.
∫
E Ttf(x)g(x)m(dx)), we get

∫
E Rαf(x)g(x)m(dx) (resp.

∫
E Uαf(x)g(x)m(dx)). It has been

shown in the argument below (3.3) that under Assumption 3.(i), Rαf = Uαf [m] for α sufficiently
large. So the Laplace transforms of both sides of (5.10) are identical for α sufficiently large. Hence
(5.10) follows from Post’s inversion theorem for Laplace transforms. �

Proposition 5.3. Under the assumptions of Proposition 5.2, the measure

ρ(dx) = h(x)ĥ(x)m(dx)

is an invariant probability measure for the semigroup {S̃t : t ≥ 0}, i.e., for all t ≥ 0 and f ∈ B+(E),∫
E
S̃tf(x)ρ(dx) =

∫
E
f(x)ρ(dx). (5.12)

Proof : By the monotone convergence theorem, we only need to prove (5.12) for f ∈ B+
b (E). Clearly

fh ∈ B+
b (E) ∩ L2(E,m). It follows by (4.3),(5.3) and (3.2) that∫

E
S̃tf(x)ρ(dx) =

∫
E
eλ1tPt(fh)(x)ĥ(x)m(dx)

=

∫
E
eλ1tTt(fh)(x)ĥ(x)m(dx)

=

∫
E
eλ1tf(x)h(x)T̂tĥ(x)m(dx)

=

∫
E
f(x)ρ(dx). �

Lemma 5.4. The function g(x) := h(x)−1Pδx
[
W h
∞(X)

]
satisfies that

Pµ

[
W h
∞(X)

]
= 〈gh, µ〉 for all µ ∈M(E). (5.13)

Moreover,
S̃tg(x) = g(x) for all t ≥ 0 and x ∈ E. (5.14)

Proof : To prove the first claim, we note that for an arbitrary constant λ > 0, by the bounded
convergence theorem,

Pµ

[
exp

(
−λW h

∞(X)
)]

= lim
t→+∞

Pµ

[
exp

(
−λW h

t (X)
)]

= lim
t→+∞

exp (−〈lλ(t, ·), µ〉)

= exp

(
− lim
t→+∞

〈lλ(t, ·), µ〉
)
, (5.15)
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where lλ(t, x) := − log Pδx
[
exp

(
−λW h

t (X)
)]
. Let

lλ(x) := lim
t→+∞

lλ(t, x) = − log Pδx

[
exp

(
−λW h

∞(X)
)]
.

We have by Jensen’s inequality that

lλ(t, x) ≤ λPδx

(
W h
t (X)

)
= λeλ1tPth(x) = λh(x) for all x ∈ E, t ≥ 0.

Hence lλ(x) ≤ λh(x) for all x ∈ E. This together with (5.15) and the dominated convergence
theorem yields that

Pµ

[
exp

(
−λW h

∞(X)
)]

= e−〈lλ,µ〉. (5.16)

Thus we get (5.13) by differentiating both sides of (5.16) with respect to λ and then letting λ ↓ 0.
Note that 0 ≤ g ≤ 1 by Fatou’s lemma. By the Markov property of X and (5.13), we have for all
t ≥ 0 and x ∈ E,

g(x) =
1

h(x)
Pδx

[
lim

s→+∞
eλ1(t+s)〈h,Xt+s〉

]
=

eλ1t

h(x)
Pδx

[
PXt

(
lim

s→+∞
W h
s (X)

)]
=

eλ1t

h(x)
Pδx

[
PXt

(
W h
∞(X)

)]
=

eλ1t

h(x)
Pδx [〈gh,Xt〉] =

eλ1t

h(x)
Pt(gh)(x) = S̃tg(x).

Here we used (4.3) in the last equality. �

Lemma 5.5. Suppose Assumption 3.(i) holds. Let Dm and Λms be as in Definition 4.4.(iii) and
(4.9) respectively. If condition (5.1) holds, then for m-almost every x ∈ E,

lim
Dm3s→+∞

log+(Λms h(ξ̃s))

s
= lim

i→+∞

log+ Θiπ(ξ̃τi−, h)

τi
= 0 P·, x-a.s. (5.17)

Proof : To prove (5.17), it suffices to prove that for any ε > 0 sufficiently small,

P·, x

( ∑
s∈Dm

1{Λms h(ξ̃s)>eεs} = +∞

)
and P·, x

(
+∞∑
i=1

1{Θiπ(ξ̃τi−,h)>eετi} = +∞

)
= 0. (5.18)

For any B ∈ B(E) with 0 < m(B) < +∞, let µB(dx) := ĥ(x)1B(x)m(dx). Clearly µB ∈ M(E)0.
Recall that given ξ̃, {Λms : s ≥ 0} is a Poisson point process with characteristic measure λΠL(ξ̃s,dλ).
Thus by Fubini’s theorem and the fact that ρ(dx) = h(x)ĥ(x)m(dx) is an invariant measure for S̃t,
we have

PµB
( ∑
s∈Dm

1{Λms h(ξ̃s)>eεs}

)
= PµB

(∫ +∞

0

∫
(0,+∞)

λ1{λh(ξ̃s)>eεs}Π
L(ξ̃s, dλ)ds

)
=

1

〈h, µB〉

∫
B
PµB ,x

(∫ +∞

0

∫
(0,+∞)

λ1{λh(ξ̃s)>eεs}Π
L(ξ̃s, dλ)ds

)
ρ(dx)

≤ 1

〈h, µB〉

∫ +∞

0
ds

∫
E
ρ(dx)

∫
(0,+∞)

λ1{λh(x)>eεs}Π
L(x, dλ)

=
1

〈h, µB〉

(∫
(0,+∞)

λΠL(·,dλ)

∫ log+ λh(x)/ε

0
ds, hĥ

)
=

1

ε〈h, µB〉

(∫
(0,+∞)

λh(·) log+(λh(·))ΠL(·,dλ), ĥ
)
. (5.19)



186 Yan-Xia Ren, Renming Song and Ting Yang

The right hand side of (5.19) is finite by (5.1). Thus we get

PµB
( ∑
s∈Dm

1{Λms h(ξ̃s)>eεs} < +∞
)

= 1.

Note that

PµB
( ∑
s∈Dm

1{Λms h(ξ̃s)>eεs} < +∞
)

= ρ(B)−1

∫
B
P·, x

( ∑
s∈Dm

1{Λms h(ξ̃s)>eεs} < +∞
)
ρ(dx).

Thus P·, x
(∑

s∈Dm 1{Λms h(ξ̃s)>eεs} < +∞
)

= 1 for m-almost every x ∈ B. Since B is arbitrary, the
first equality of (5.18) holds for m-almost every x ∈ E.

Recall from Definition 4.4 that given ξ̃ (including {τi : i ≥ 1}), Θi is distributed as η(ξ̃τi−, dθ)
given by (4.8). Thus by Fubini’s theorem and (4.6),

PµB

(
+∞∑
i=1

1{Θiπ(ξ̃τi−,h)>eετi}

)

= PµB

[
+∞∑
i=1

∫
θπ(ξ̃τi−,h)>eετi

η(ξ̃τi−,dθ)

]

= PµB

[
+∞∑
i=1

1

γ(ξ̃τi−)
1A(ξ̃τi−)

∫
θπ(ξ̃τi−,h)>eετi

θΠNL(ξ̃τi−, dθ)

]

= PµB

[∫ +∞

0
q(ξ̃s)

1

γ(ξ̃s)
1A(ξ̃s)ds

∫
θπ(ξ̃s,h)>eεs

θΠNL(ξ̃s,dθ)

]

=
1

〈h, µB〉

∫ +∞

0
ds

∫
B
Pµ,x

[
π(ξ̃s, h)

h(ξ̃s)
1A(ξ̃s)

∫
θπ(ξ̃s,h)>eεs

θΠNL(ξ̃s,dθ)

]
ρ(dx)

≤ 1

〈h, µB〉

∫ +∞

0
ds

∫
E

1A(x)π(x, h)ĥ(x)m(dx)

∫
θπ(x,h)>eεs

θΠNL(x,dθ)

=
1

〈h, µB〉

∫
E

1A(x)π(x, h)ĥ(x)m(dx)

∫
(0,+∞)

θΠNL(x,dθ)

∫ log+(θπ(x,h))
ε

0
ds

=
1

ε〈h, µB〉

(
π(·, h)

∫
(0,+∞)

θ log+(θπ(·, h))ΠNL(·, dθ), 1Aĥ

)
. (5.20)

The right hand side of (5.20) is finite by (5.1). Thus we get

PµB
(+∞∑
i=1

1{Θiπ(ξ̃τi−,h)>eετi} < +∞
)

= 1.

Using an argument similar to that at the end of the first paragraph of this proof, one can prove
that the second equality of (5.18) holds for m-almost every x ∈ E. �

Proof of Theorem 5.1: Recall that, by assumption, Assumptions 0-2 and 3.(i)-(ii) hold.
(i) Suppose λ1 < 0. Without loss of generality, we assume µ ∈ M(E)0. Since W h

t (X) is a non-
negative martingale, to show it is a closed martingale, it suffices to prove

Pµ

[
W h
∞(X)

]
= 〈h, µ〉. (5.21)

First we claim that (5.21) is true for µB(dy) := 1B(y)ĥ(y)m(dy) with B ∈ B(E) and 0 < m(B) <
+∞. It is straightforward to see from the change of measure methodology (see, for example, Durrett,



Spine decomposition and L logL criterion for superprocesses 187

2019, Theorem 5.3.3) that the proof for this claim is complete as soon as we can show that

QµB

(
lim sup
t→+∞

W h
t (X) < +∞

)
= 1. (5.22)

Since ((Xt)t≥0; QµB ) is equal in law to ((Γt)t≥0;PµB ), (5.22) is equivalent to that

PµB

(
lim sup
t→+∞

W h
t (Γ) < +∞

)
= 1. (5.23)

In the remainder of this proof, we define a function log∗ θ := θ/e if θ ≤ e and log∗ θ := log θ if
θ > e. Under the assumptions of Theorem 5.1, one can prove by elementary computation that (5.1)
implies(∫

(0,+∞)
rh(·) log∗(rh(·))ΠL(·,dr), ĥ

)
+
(∫

(0,+∞)
rπ(·, h) log∗(rπ(·, h))ΠNL(·, dr), 1Aĥ

)
< +∞. (5.24)

Recall that G is the σ-field generated by ξ̃ (including {τi : i ≥ 1}), {Dm
t : t ≥ 0}, {Dn

t : t ≥ 0},
{Θi : i ≥ 1} and {Λms : s ≥ 0}. By (4.10), for any t > 0,

PµB
(
W h
t (Γ) | G

)
= eλ1t

(
〈Pth, µB〉+

∑
s∈Dnt

Pt−sh(ξ̃s) +
∑
s∈Dmt

Λms Pt−sh(ξ̃s)

+
∑
τi≤t

Θiπ(ξ̃τi−,Pt−τih)
)

= 〈h, µB〉+
∑
s∈Dnt

eλ1sh(ξ̃s) +
∑
s∈Dmt

eλ1sΛms h(ξ̃s) +
∑
τi≤t

eλ1τiΘiπ(ξ̃τi−, , h)

≤ 〈h, µB〉+
∑
s∈Dn

eλ1sh(ξ̃s) +
∑
s∈Dm

eλ1sΛms h(ξ̃s) +

+∞∑
i=1

eλ1τiΘiπ(ξ̃τi−, , h). (5.25)

We begin with the second term on the right hand side of (5.25). Let ε ∈ (0,−λ1) be an arbitrary
constant. ∑

s∈Dn
eλ1sh(ξ̃s) =

∑
s∈Dn

eλ1sh(ξ̃s)1{h(ξ̃s)>eεs} +
∑
s∈Dn

eλ1sh(ξ̃s)1{h(ξ̃s)≤eεs} =: I + II.

Recall that given ξ̃, the random measure
∑

s∈Dn δs(·) on [0,+∞) is a Poisson random measure with
intensity 2b(ξ̃t)dt, and that ρ(dx) = h(x)ĥ(x)m(dx) is an invariant probability measure for S̃t. We
have by Fubini’s theorem,

PµB (II) = PµB
[
PµB

(∑
s∈Dn

eλ1sh(ξ̃s)1{h(ξ̃s)≤eεs}

∣∣∣ ξ̃r : r ≥ 0
)]

= PµB
(∫ +∞

0
2b(ξ̃s)e

λ1sh(ξ̃s)1{h(ξ̃s)≤eεs}ds
)

=
2

〈h, µB〉

∫ +∞

0
eλ1sds

∫
B
Pµ,x

[
b(ξ̃s)h(ξ̃s)1{h(ξ̃s) ≤ eεs}

]
ρ(dx)

≤ 2

〈h, µB〉

∫ +∞

0
eλ1sds

∫
E
b(x)h(x)1{h(x)≤eεs}ρ(dx)

≤ 2‖b‖∞
〈h, µB〉

∫ +∞

0
e(λ1+ε)sds

∫
E
ρ(dx) < +∞.
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Thus we have PµB (II < +∞) = 1. On the other hand,

PµB
(∑
s∈Dn

1{h(ξ̃s)>eεs}

)
= PµB

(∫ +∞

0
2b(ξ̃s)1{h(ξ̃s)>eεs}ds

)

=
2

〈h, µB〉

∫ +∞

0
ds

∫
B
Pµ,x

[
b(ξ̃s)1{h(ξ̃s)>eεs}

]
ρ(dx)

≤ 2

〈h, µB〉

∫ +∞

0
ds

∫
E
b(x)1{h(x)>eεs}ρ(dx)

=
2

〈h, µB〉

∫
E
b(x)ρ(dx)

∫ log+ h(x)
ε

0
ds

≤ 2

ε〈h, µB〉
‖b‖∞ log+ ‖h‖∞ < +∞.

This implies that I is the sum of finitely many terms. Thus PµB (I < +∞) = 1. For the third term
in (5.25), we have

∑
s∈Dm

eλ1sΛms h(ξ̃s) =
∑
s∈Dm

eλ1sΛms h(ξ̃s)1{Λms h(ξ̃s)≤eεs} +
∑
s∈Dm

eλ1sΛms h(ξ̃s)1{Λms h(ξ̃s)>eεs}

=: III + IV.

In view of Definition 4.4.(iii), for III, we have

PµB (III) = PµB

(∫ +∞

0

∫
E
eλ1sr2h(ξ̃s)1{rh(ξ̃s)≤eεs}Π

L(ξ̃s, dr)ds

)
=

1

〈h, µB〉

∫ +∞

0
eλ1sds

∫
B
Pµ,x

(∫
E
r2h(ξ̃s)1{rh(ξ̃s)≤eεs}Π

L(ξ̃s,dr)

)
ρ(dx)

≤ 1

〈h, µB〉

∫ +∞

0
eλ1sds

∫
E
ρ(dx)

∫
E
r2h(x)1{rh(x)≤eεs}Π

L(x,dr)

=
1

〈h, µB〉

∫
E
ρ(dx)

∫
(0,+∞)

r2h(·)ΠL(·,dr)
∫ +∞

log+ rh(·)/ε
eλ1sds

=
−1

λ1〈h, µB〉
( ∫

(0,+∞)
r2h2(·) (rh(·) ∨ 1)λ1/ε ΠL(·,dr), ĥ

)
=

−1

λ1〈h, µB〉
( ∫

(0,+∞)
ΠL(·, dr)rh(·) log∗(rh(·)) ·

(
rh(·)

(rh(·) ∨ 1)−λ1/ε log∗(rh(·))

)
, ĥ
)
. (5.26)

Note that the function r 7→ r
(r∨1)−λ1/ε log∗ r

is bounded from above on (0,+∞). This together with
(5.24) implies that the right hand side of (5.26) is finite. It follows that PµB (III < +∞) = 1. It has
been shown by (5.19) that

PµB
( ∑
s∈Dm

1{Λms h(ξ̃s)>eεs} < +∞
)

= 1.
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This implies that IV is the sum of finitely many terms. Thus we have PµB (IV < +∞) = 1. The
fourth term on the right hand side of (5.25) can be dealt with similarly. In fact, we have

+∞∑
i=1

eλ1τiΘiπ(ξ̃τi−, h) =
+∞∑
i=1

eλ1τiΘiπ(ξ̃τi−, h)1{Θiπ(ξ̃τi−,h)≤eετi}

+
+∞∑
i=1

eλ1τiΘiπ(ξ̃τi−, h)1{Θiπ(ξ̃τi−,h)>eετi}

=: V + VI.

Recall that given ξ̃ (including {τi : i ≥ 1}), Θi is distributed according to η(ξ̃τi−,dθ) given by (4.8).
Thus by Fubini’s theorem and (4.6),

PµB (V) = PµB
[+∞∑
i=1

eλ1τiπ(ξ̃τi−, h)

∫
[0,+∞)

θ1{θπ(ξ̃τi−,h)≤eετi}η(ξ̃τi−,dθ)
]

= PµB
[+∞∑
i=1

eλ1τi
π(ξ̃τi−, h)

γ(ξ̃τi−)
1A(ξ̃τi−)

∫
{0<θπ(ξ̃τi−,h)≤eετi}

θ2ΠNL(ξ̃τi−, dθ)
]

=
1

〈h, µB〉

∫
B
ρ(dx)Pµ,x

[∫ +∞

0
q(ξ̃s)e

λ1sπ(ξ̃s, h)

γ(ξ̃s)
1A(ξ̃s)ds ·

∫
{0<θπ(ξ̃s,h)≤eεs}

θ2ΠNL(ξ̃s,dθ)
]

=
1

〈h, µB〉

∫ +∞

0
eλ1sds

∫
B
ρ(dx)Pµ,x

[π(ξ̃s, h)2

h(ξ̃s)
1A(ξ̃s) ·

∫
{0<θπ(ξ̃s,h)≤eεs}

θ2ΠNL(ξ̃s,dθ)
]

≤ 1

〈h, µB〉

∫ +∞

0
eλ1sds

∫
E

1A(x)π(x, h)2ĥ(x)m(dx)

∫
{0<θπ(x,h)≤eεs}

θ2ΠNL(x,dθ)

=
1

〈h, µB〉

∫
E

1A(x)π(x, h)2ĥ(x)m(dx)

∫
(0,+∞)

θ2ΠNL(x, dθ)

∫ +∞

log+(θπ(x,h))
ε

eλ1sds

=
−1

λ1〈h, µB〉

(∫
(0,+∞)

1A(·)π(·, h)2θ2 (π(·, h)θ ∨ 1)λ1/ε ΠNL(·,dθ), ĥ
)

=
−1

λ1〈h, µB〉

(∫
(0,+∞)

ΠNL(·, dθ)1A(·)π(·, h)θ log∗(π(·, h)θ)

·
(

π(·, h)θ

(π(·, h)θ ∨ 1)−λ1/ε log∗(π(·, h)θ)

)
, ĥ
)
.

Since θ 7→ θ
(θ∨1)−λ1/ε log∗ θ

is bounded from above on (0,+∞), we get PµB (V) < +∞ by (5.24), and
hence PµB (V < +∞) = 1. We have shown in (5.20) that

PµB
(+∞∑
i=1

1{Θiπ(ξ̃τi−,h)>eετi} < +∞
)

= 1.

Thus VI is the sum of finitely many terms and PµB (VI < +∞) = 1. The above arguments show
that the right hand side of (5.25) is finite a.s., and hence

lim sup
t→+∞

PµB
(
W h
t (Γ) | G

)
< +∞ PµB -a.s.

By Fatou’s lemma, PµB
(
lim inft→+∞W

h
t (Γ) | G

)
< +∞ PµB -a.s. Let

An :=

{
PµB

(
lim inf
t→+∞

W h
t (Γ) | G

)
≤ n

}
∈ G for n ≥ 1.
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Then PµB (∪+∞
n=1An) = 1. Since∫

An

lim inf
t→+∞

W h
t (Γ)dPµB =

∫
An

PµB

(
lim inf
t→+∞

W h
t (Γ) | G

)
dPµB ≤ n,

we get lim inft→+∞W
h
t (Γ) < +∞ PµB -a.s on An for all n ≥ 1. Thus

PµB

(
lim inf
t→+∞

W h
t (Γ) < +∞

)
= 1.

Note that by Harris and Roberts (2009, Proposition 2) W h
t (Γ)−1 is a non-negative PµB -supermar-

tingale, which implies that limt→+∞W
h
t (Γ)−1 exists PµB -a.s. It follows that

PµB

(
lim sup
t→+∞

W h
t (Γ) < +∞

)
= 1.

This proves (5.23) and consequently PµB
[
W h
∞(X)

]
= 〈h, µB〉. Since PµB

[
W h
∞(X)

]
= 〈gh, µB〉,

where g(x) = h(x)−1Pδx
[
W h
∞(X)

]
, we have

〈gh, µB〉 = 〈h, µB〉. (5.27)

Note that 0 ≤ g(x) ≤ 1 for every x ∈ E. We get by (5.27) that g(x) = 1 m-a.e. on B.
Since B is arbitrary, g(x) = 1 m-a.e. on E. It then follows from (5.14) that g(x) = S̃tg(x) =∫
E p̃(t, x, y)g(y)ρ(dy) = 1 for every x ∈ E. Therefore by (5.13), Pµ

[
W h
∞(X)

]
= 〈h, µ〉 holds for all

µ ∈M(E). This completes the proof for Theorem 5.1.(i).

(ii) Suppose λ1 > 0. Clearly Pµ
(
W h
∞(X) = 0

)
= 1 if and only if Pµ

[
W h
∞(X)

]
= 0. By (5.13), this

would follow if g(x) = 0 for every x ∈ E. Recall that g(x) = S̃tg(x) =
∫
E p̃(t, x, y)g(y)ρ(dy). It

suffices to prove that g(x) = 0 for m-almost every x ∈ E, or equivalently,

Pδx

[
W h
∞(X)

]
= 0 for m-a.e. x ∈ E. (5.28)

By the change of measure methodology (see, for example, Durrett, 2019, Theorem 5.3.3), (5.28)
would follow if

Pδx(lim sup
t→+∞

W h
t (Γ) = +∞) = 1 for m-a.e. x ∈ E. (5.29)

By the definition of Γt, we have

W h
s (Γ) = eλ1s〈h,Γs〉 ≥ eλ1sΛms h(ξ̃s) for s ∈ Dm,

and
W h
τi(Γ) ≥ eλ1τiΘiπ(ξ̃τi−, h) for i ≥ 1.

Thus under Pδx ,

lim sup
t→+∞

W h
t (Γ) ≥ lim sup

Dm3s→+∞
eλ1sΛms h(ξ̃s)1{Λms h(ξ̃s)≥1}

∨ lim sup
i→+∞

eλ1τiΘiπ(ξ̃τi−, h)1{Θiπ(ξ̃τi−,h)≥1}. (5.30)

Lemma 5.5 implies that form-a.e. x ∈ E, both Θiπ(ξ̃τi−, h)1{Θiπ(ξ̃τi−,h)≥1} and Λms h(ξ̃s)1{Λms h(ξ̃s)≥1}
grow subexponentially. Thus when λ1 > 0, the right hand side of (5.30) goes to infinity. Hence we
get (5.29) for m-a.e. x ∈ E. �
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6. Necessary conditions for a non-degenerate martingale limit

In this section we will give necessary conditions for the fundamental martingale to have a non-
degenerate limit. Recall from Proposition 4.1 that p̃(t, x, y) is the transition density of the spine ξ̃
with respect to the measure ρ. We start with the following assumption.

Assumption 4.
lim

t→+∞
sup
x∈E

essupy∈E |p̃(t, x, y)− 1| = 0.

Proposition 6.1. Suppose that Assumptions 0-4 hold. Then ρ is an ergodic measure for (S̃t)t≥0,
that is, ρ is an invariant probability measure for (S̃t)t≥0 and for any invariant set B, either ρ(B) = 0
or ρ(B) = 1.

Proof : Recall from Proposition 5.3 that ρ is an invariant probability measure for (S̃t)t≥0. By
Da Prato and Zabczyk (1996, Theorem 3.2.4), it suffices to prove that for any ϕ ∈ L2(E, ρ),

lim
t→+∞

1

t

∫ t

0
S̃sϕds = 〈ϕ, ρ〉 in L2(E, ρ). (6.1)

It follows from Assumption 4 that for any ε > 0, there is t0 > 0 such that

sup
x∈E

essupy∈E |p̃(s, x, y)− 1| ≤ ε for all s ≥ t0. (6.2)

For x ∈ E and t > t0,

1

t

∫ t

0
S̃sϕds− 〈ϕ, ρ〉 =

1

t

∫ t0

0
S̃sϕds− t0

t
〈ϕ, ρ〉+

1

t

∫ t

t0

ds

∫
E

(p̃(s, x, y)− 1)ϕ(y)ρ(dy). (6.3)

By (6.2) and Jensen’s inequality, we have

‖1

t

∫ t

t0

ds

∫
E

(p̃(s, x, y)− 1)ϕ(y)ρ(dy)‖2L2(E,ρ)

=
1

t2

∫
E
ρ(dx)

(∫ t

t0

ds

∫
E

(p̃(s, x, y)− 1)ϕ(y)ρ(dy)

)2

≤ t− t0
t2

∫
E
ρ(dx)

∫ t

t0

ds

∫
E

(p̃(s, x, y)− 1)2 ϕ(y)2ρ(dy)

≤ (t− t0)2

t2
ε2‖ϕ‖2L2(E,ρ). (6.4)

Moreover, by Jensen’s inequality and (5.12),

‖1

t

∫ t0

0
S̃sϕds‖2L2(E,ρ) =

1

t2

∫
E
ρ(dx)

(∫ t0

0
S̃sϕ(x)ds

)2

≤ t0
t2

∫
E
ρ(dx)

∫ t0

0
S̃s(ϕ

2)(x)ds

=
t20
t2

∫
E
ϕ(x)2ρ(dx) =

t20
t2
‖ϕ‖2L2(E,ρ). (6.5)

By (6.3)–(6.5), we have

‖1

t

∫ t

0
S̃sϕds− 〈ϕ, ρ〉‖L2(E,ρ) ≤

t0
t
‖ϕ‖L2(E,ρ) +

t0
t
|〈ϕ, ρ〉|+ t− t0

t
ε‖ϕ‖L2(E,ρ)

≤ 2t0
t
‖ϕ‖L2(E,ρ) +

t− t0
t

ε‖ϕ‖L2(E,ρ).



192 Yan-Xia Ren, Renming Song and Ting Yang

Letting t→ +∞ and then ε→ 0, we get (6.1). �

Define

E1 := {x ∈ E : supp ΠL(x, ·) ⊇ [N,+∞) for some N ≥ 0}, (6.6)

E2 := {x ∈ A : supp ΠNL(x, ·) ⊇ [N,+∞) for some N ≥ 0}. (6.7)

The main result of this section is the following theorem.

Theorem 6.2. Suppose that Assumptions 0-4 hold. Then Pµ
(
W h
∞(X) = 0

)
= 1 for all µ ∈M(E)

if either (5.1) fails or the following conditions hold.

λ1 ≥ 0 and m(E1 ∪ E2) > 0.

To prove Theorem 6.2, we need the following lemma.

Lemma 6.3. Suppose that Assumptions 0-4 hold.
(i) If m(E1 ∪ E2) > 0, then for m-almost every x ∈ E,

lim sup
Dm3s→+∞

Λms h(ξ̃s) ∨ lim sup
i→+∞

Θiπ(ξ̃τi−, h) = +∞ P·, x-a.s.; (6.8)

(ii) if (5.1) fails, then for m-almost every x ∈ E,

lim sup
Dm3s→+∞

log+ Λms h(ξ̃s)

s
∨ lim sup

i→+∞

log+ Θiπ(ξ̃τi−, h)

τi
= +∞ P·, x-a.s. (6.9)

Proof : It is easy to see that (6.9) is equivalent to saying that for m-almost every x ∈ E and all
λ < 0,

lim sup
Dm3s→+∞

eλsΛms h(ξ̃s) ∨ lim sup
i→+∞

eλτiΘiπ(ξ̃τi−, h) = +∞ P·, x-a.s.

We divide the conditions of this lemma into two cases, and prove the results separately.
Case I: Suppose either one of the following conditions holds:
(I.a) m(E1) > 0;

(I.b)
(∫

(0,+∞)
rh(·) log+(rh(·))ΠL(·, dr), ĥ

)
= +∞.

Let λ < 0 be an arbitrary constant. To prove (6.8) ( resp. (6.9)) under condition (I.a) (resp. (I.b)),
it suffices to prove that for m-a.e. x ∈ E and any M ≥ 1,

P·, x

( ∑
s∈Dm

1{Λms h(ξ̃s)≥M} = +∞

)
= 1

(resp. P·, x

( ∑
s∈Dm

1{eλsΛms h(ξ̃s)≥M} = +∞

)
= 1 ). (6.10)

For 0 ≤ s ≤ t < +∞, θ ≤ 0 and M ≥ 1, let

Iθ(s, t) :=

∫ t

s
dr

∫
(0,+∞)

u1{eθruh(ξ̃r)≥M}Π
L(ξ̃r,du),

and Iθ(t) := Iθ(0, t). Recall that, given ξ̃, for any T > 0, #{s ∈ Dm
T : eθsΛms h(ξ̃s) ≥ M} is a

Poisson random variable with parameter Iθ(T ). Hence (6.10) would follow if for m-a.e. x ∈ E,

P·, x (I0(∞) = +∞) = 1 (resp. P·, x (Iλ(∞) = +∞) = 1) (6.11)
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under condition (I.a) (resp. (I.b)). Let ν(dx) := ĥ(x)m(dx). Clearly P·,ν =
∫
E P·, x ρ(dx). Recall

that ρ is an invariant measure for S̃t. By Fubini’s theorem,

P·,ν (Iθ(T )) =

∫
E
P·, x

[∫ T

0
dr

∫
(0,+∞)

u1{eθruh(ξ̃r)≥M}Π
L(ξ̃r,du)

]
ρ(dx)

=

∫ T

0
dr

∫
E
P·, x

[∫
(0,+∞)

u1{eθruh(ξ̃r)≥M}Π
L(ξ̃r,du)

]
ρ(dx)

=

∫ T

0
dr

∫
E
ρ(dx)

∫
(0,+∞)

u1{eθruh(x)≥M}Π
L(x, du). (6.12)

By the boundedness of h and x 7→
∫

(0,+∞)(u ∧ u
2)ΠL(x,du), we have

P·,ν
(

Iθ(T )
)
≤ T

∫
E
ĥ(x)m(dx)

∫
u≥M/h(x)

h(x)uΠL(x,du)

= T

∫
E
ĥ(x)m(dx)

∫
u≥M/h(x)

h(x)(1 ∨ 1

u
)(u ∧ u2)ΠL(x,du)

≤ T
(

1 ∨ ‖h‖∞
M

)
‖
∫

(0,+∞)
(u ∧ u2)ΠL(x,du)‖∞

∫
E
h(x)ĥ(x)m(dx) < +∞.

Thus P·,ν(Iθ(T ) < +∞) = 1. On the other hand, by the Markov property of ξ̃ and (6.12),

P·,ν
(

Iθ(T )2
)

=

∫
E
P·, x

(
Iθ(T )2

)
ρ(dx)

= 2

∫
E
ρ(dx)P·, x

[∫ T

0
ds

∫
(0,+∞)

u1{eθsuh(ξ̃s)≥M}Π
L(ξ̃s, du)

·
∫ T

s
dr

∫
(0,+∞)

v1{eθrvh(ξ̃r)≥M}Π
L(ξ̃r,dv)

]
= 2

∫
E
ρ(dx)P·, x

[∫ T

0
ds

∫
(0,+∞)

u1{eθsuh(ξ̃s)≥M}Π
L(ξ̃s, du)

· P·,ξ̃s
(∫ T−s

0
dr

∫
(0,+∞)

v1{eθ(r+s)vh(ξ̃r)≥M}Π
L(ξ̃r,dv)

)]
= 2

∫
E
ρ(dx)

∫ T

0
ds

∫
(0,+∞)

u1{eθsuh(x)≥M}Π
L(x,du)

· P·, x
(∫ T−s

0
dr

∫
(0,+∞)

v1{eθ(r+s)vh(ξ̃r)≥M}Π
L(ξ̃r,dv)

)
≤ 2

∫
E
ρ(dx)

∫ T

0
ds

∫
(0,+∞)

u1{eθsuh(x)≥M}Π
L(x,du)

· P·, x
(∫ T

0
dr

∫
(0,+∞)

v1{eθrvh(ξ̃r)≥M}Π
L(ξ̃r, dv)

)
= 2

∫
E
ρ(dx)

∫ T

0
ds

∫
(0,+∞)

u1{eθsuh(x)≥M}Π
L(x,du)P·, x

(
Iθ(T )

)
. (6.13)

Assumption 4 implies that there are constants t1, δ > 0 such that

sup
x∈E

essupy∈E p̃(t, x, y) ≤ 1 + δ for all t ≥ t1. (6.14)
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Using Fubini’s theorem, (6.14) and (6.12), we have for T > t1,

P·, x [Iθ(t1, T )] =

∫ T

t1

dr

∫
E
p̃(r, x, y)ρ(dy)

∫
(0,+∞)

v1{eθrvh(y)≥M}Π
L(y,dv)

≤ (1 + δ)

∫ T

t1

dr

∫
E
ρ(dy)

∫
(0,+∞)

v1{eθrvh(y)≥M}Π
L(y,dv)

≤ (1 + δ)P·,ν (Iθ(T )) . (6.15)

On the other hand, for x ∈ E,

P·, x (Iθ(t1)) = P·, x
[∫ t1

0
dr

∫
(0,+∞)

v1{eθrvh(ξ̃r)≥M}Π
L(ξ̃r,dv)

]
=

∫ t1

0
dr

∫
E
p̃(r, x, y)ρ(dy)

∫
(0,+∞)

v1{eθrvh(y)≥M}Π
L(y,dv)

≤
∫ t1

0
dr

∫
E
p̃(r, x, y)ρ(dy)

∫
v≥M/h(y)

(
1 ∨ 1

v

)(
v ∧ v2

)
ΠL(y,dv)

≤ t1
(

1 ∨ ‖h‖∞
M

)
‖
∫

(0,+∞)
(v ∧ v2)ΠL(·,dv)‖∞ =: c1 < +∞. (6.16)

It follows from (6.15) and (6.16) that for T > t1,

P·, x (Iθ(T )) = P·, x (Iθ(t1)) + P·, x (Iθ(t1, T )) ≤ c1 + (1 + δ)P·,ν (Iθ(T )) .

This together with (6.12) and (6.13) implies that

P·,ν
(
Iθ(T )2

)
≤ 2c1P·,ν (Iθ(T )) + 2(1 + δ)P·,ν (Iθ(T ))2 .

Hence by the Cauchy-Schwarz inequality, we have

P·,ν
(

Iθ(T ) ≥ 1

2
P·,ν(Iθ(T ))

)
≥ P·,ν(Iθ(T ))2

4P·,ν(Iθ(T )2)
≥ P·,ν(Iθ(T ))

8c1 + 8(1 + δ)P·,ν(Iθ(T ))
. (6.17)

Note that P·,ν(I0(T )) = T
∫
E ρ(dx)

∫
u≥h(x)/M uΠL(x,du). Condition (I.a) implies that the integral

on the right hand side is positive. Hence P·,ν(I0(T ))→ +∞ as T → +∞. On the other hand, note
that by (6.12) and Fubini’s theorem, for λ < 0,

P·,ν (Iλ(T )) ≤
∫
E
ĥ(x)m(dx)

∫
(0,+∞)

h(x)uΠL(x, du)

∫ T

0
1
{s≤ log+(h(x)u)−logM

−λ }
ds

=

∫
E
ĥ(x)m(dx)

∫
(0,+∞)

h(x)u

(
T ∧ log+(h(x)u)− logM

−λ

)+

ΠL(x,du).

Clearly condition (I.b) implies that limT→+∞ P·,ν(Iλ(T )) = +∞. Thus by letting T → +∞ in
(6.17), we get P·,ν(I0(∞) = +∞) > 0 (resp. P·,ν(Iλ(∞) = +∞) > 0) under condition (I.a) (resp.
(I.b)). Since {I0(∞) = +∞} (resp. {Iλ(∞) = +∞}) is an invariant event of the canonical dynamic
system associated with (S̃t)t≥0 and ergodic measure ρ, it follows from Da Prato and Zabczyk (1996,
Theorem 1.2.4) that P·,ν(I0(∞) = +∞) = 1 (resp. P·,ν(Iλ(∞) = +∞) = 1) under condition (I.a)
(resp. (I.b)). Hence we prove (6.11).

Case II. Suppose either one of the following conditions holds:
(II.a) m(E2) > 0;

(II.b)
(∫

(0,+∞)
π(·, h)r log+(π(·, h)r)ΠNL(·, dr), ĥ

)
= +∞.
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Let λ < 0 be an arbitrary constant. To prove (6.8) ( resp. (6.9)) under condition (II.a) (resp.
(II.b)), it suffices to prove that for m-a.e. x ∈ E and any M ≥ 1,

P·, x

(
+∞∑
i=1

1{Θiπ(ξ̃τi−,h)≥M} = +∞

)
= 1

(resp. P·, x

(
+∞∑
i=1

1{eλτiΘiπ(ξ̃τi−,h)≥M} = +∞

)
= 1 ). (6.18)

The main idea of this proof is similar to that of Case I. For all T > 0, θ ≤ 0 and M ≥ 1, let
IIθ(T ) :=

∑
τi≤T 1{eθτiΘiπ(ξ̃τi−,h)≥M}. For any s ≥ 0 and x ∈ E, define

fθ(s, x) :=

∫
[0,+∞)

1{eθsuπ(x,h)≥M}η(x,du)

=
1

γ(x)
1A(x)

∫
(0,+∞)

1{eθsuπ(x,h)≥M}uΠNL(x,du),

gθ(s, x) := q(x)fθ(s, x)

=
π(x, h)

h(x)
1A(x)

∫
(0,+∞)

1{eθsuπ(x,h)≥M}uΠNL(x, du).

Recall from Definition 4.4 that, given ξ̃ (including {τi : i ≥ 1}), Θi is distributed according to
η(ξ̃τi−,dr). By (4.6), we have for x ∈ E,

P·, x(IIθ(T )) = P·, x
[∑
τi≤T

∫
[0,+∞)

1{eθτirπ(ξ̃τi−,h)≥M}η(ξ̃τi−, dr)
]

= P·, x
[∑
τi≤T

fθ(τi, ξ̃τi−)
]

= P·, x
[∫ T

0
q(ξ̃s)fθ(s, ξ̃s)ds

]
= P·, x

[∫ T

0
gθ(s, ξ̃s)ds

]
. (6.19)

We still use ν to denote the measure ĥ(x)m(dx). Since ρ is an invariant measure for S̃t, by Fubini’s
theorem,

P·,ν (IIθ(T )) =

∫
E
P·, x (IIθ(T )) ρ(dx) =

∫ T

0
ds

∫
E
P·, x

(
gθ(s, ξ̃s)

)
ρ(dx)

=

∫ T

0
ds

∫
E
gθ(s, x)ρ(dx) (6.20)

=

∫
A
ĥ(x)m(dx)

∫
(0,+∞)

π(x, h)rΠNL(x, dr)

∫ T

0
1{eθsrπ(x,h)≥M}ds. (6.21)

It then follows by Assumption 3.(ii) that

RHS of (6.21) ≤ T‖
∫

(0,+∞)
yΠNL(·,dy)‖∞

∫
A
π(x, h)ĥ(x)m(dx) < +∞.
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Therefore P·,ν (IIθ(T ) < +∞) = 1. Recall that given ξ̃ (including {τi : i ≥ 1}), {Θi : i ≥ 1} are
mutually independent, we have

P·, x
(
IIθ(T )2

)
− P·, x (IIθ(T ))

= P·, x
[ ∑
τi,τj≤T,i6=j

1{eθτiΘiπ(ξ̃τi−,h)≥M}1{eθτjΘjπ(ξ̃τj−,h)≥M}

]
= P·, x

[ ∑
τi,τj≤T,i6=j

∫
[0,+∞)

1{eθτiyπ(ξ̃τi−,h)≥M}η(ξ̃τi−, dy)

·
∫

[0,+∞)
1{eθτj zπ(ξ̃τj−,h)≥M}η(ξ̃τj−,dz)

]
= P·, x

[ ∑
τi,τj≤T,i6=j

fθ(τi, ξ̃τi−)fθ(τj , ξ̃τj−)
]
.

Thus by (4.7),

P·, x
(
IIθ(T )2

)
− P·, x (IIθ(T ))

= 2P·, x
[∫ T

0
q(ξ̃s)fθ(s, ξ̃s)ds

∫
E

Π̃y

(∫ T−s

0
q(ξ̃r)fθ(s+ r, ξ̃r)dr

)
πh(ξ̃s, dy)

]
= 2P·, x

[∫ T

0
gθ(s, ξ̃s)ds

∫
E

Π̃y

(∫ T−s

0
gθ(s+ r, ξ̃r)dr

)
πh(ξ̃s,dy)

]
. (6.22)

Note that for all x ∈ E and θ ≤ 0, s 7→ gθ(s, x) is non-increasing. Thus it follows from (6.22) that

P·, x
(
IIθ(T )2

)
≤ 2P·, x

[∫ T

0
gθ(s, ξ̃s)ds

∫
E

Π̃y

(∫ T

0
gθ(r, ξ̃r)dr

)
πh(ξ̃s, dy)

]
+ P·, x (IIθ(T )) . (6.23)

By Fubini’s theorem, (6.14) and (6.20), we have for y ∈ E and T > t1,

Π̃y

(∫ T

t1

gθ(s, ξ̃s)ds

)
=

∫ T

t1

ds

∫
E
p̃(s, y, z)gθ(s, z)ρ(dz)

≤ (1 + δ)

∫ T

t1

ds

∫
E
gθ(s, z)ρ(dz)

≤ (1 + δ)P·,ν (IIθ(T )) . (6.24)

On the other hand, by Assumption 3.(iii),

sup
y∈E

Π̃y

(∫ t1

0
gθ(s, ξ̃s)ds

)
= sup

y∈E

∫ t1

0
ds

∫
A
p̃(s, y, z)

π(z, h)

h(z)
ρ(dz)

∫
(0,+∞)
r1{eθsrπ(z,h)≥M}Π

NL(z, dr)

≤ ‖π(·, h)

h
1A‖∞‖

∫
(0,+∞)
rΠNL(·, dr)‖∞ sup

y∈E

∫ t1

0
ds

∫
A
p̃(s, y, z)ρ(dz)

≤ c2t1 =: c3 < +∞.

This and (6.24) imply that

Π̃y

(∫ T

0
gθ(s, ξ̃s)ds

)
≤ c3 + (1 + δ)P·,ν(IIθ(T )) for all y ∈ E and T > t1.

This together with (6.23) and (6.19) implies that

P·, x
(
IIθ(T )2

)
≤ (1 + 2c3)P·, x (IIθ(T )) + 2(1 + δ)P·,ν (IIθ(T ))P·, x (IIθ(T )) .
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Consequently,

P·,ν
(
IIθ(T )2

)
=

∫
E
P·, x

(
IIθ(T )2

)
ρ(dx) ≤ (1 + 2c3)P·,ν (IIθ(T )) + 2(1 + δ)P·,ν (IIθ(T ))2 .

Recall that P·,ν(II0(T )) = T
∫
A π(x, h)ĥ(x)m(dx)

∫
r≥M/π(x,h) rΠ

NL(x,dr). Condition (II.a) implies
that the integral on the right hand side is positive. Thus P·,ν(II0(T ))→ +∞ as T → +∞. On the
other hand, note that by (6.21) and Fubini’s theorem, for λ < 0,

P·,ν (IIλ(T )) =

∫
A
ĥ(x)m(dx)

∫
(0,+∞)

ΠNL(x,dr)π(x, h)r

(
log+(π(x, h)r)− logM

−λ
∧ T

)+

.

Clearly condition (II.b) implies that limT→+∞ P·,ν(IIλ(T )) = +∞. Similarly by using the Cauchy-
Schwarz inequality and letting T → +∞, we get P·,ν(II0(∞) = +∞) > 0 (resp. P·,ν(IIλ(∞) =
+∞) > 0) under condition (II.a) (resp. (II.b)).

For each n ≥ 1, we denote by G̃n the σ-field generated by ξ̃ up to time τn (including {τ1, · · · , τn})
and {Θi : i ≤ n}. Obviously for each i ≥ 1, both

1{eθτiΘiπ(ξ̃τi−,h)≥M} and
∫

[0,+∞)
1{eθτirπ(ξ̃τi−,h)≥M}η(ξ̃τi−,dr)

are G̃i-measurable. Moreover, for every x ∈ E, under P·, x,

P·, x
(

1{eθτi+1Θi+1π(ξ̃τi+1−,h)≥M} | G̃i
)

= P·, x
(∫

[0,+∞)
1{eθτi+1rπ(ξ̃τi+1−,h)≥M}η(ξ̃τi+1−,dr) | G̃i

)
.

Applying the second Borel-Cantelli lemma (see, for example, Durrett, 2019, Corollary 5.3.2) to both
sides of the above equality, we get that{

+∞∑
i=1

1{eθτiΘiπ(ξ̃τi−,h)≥M} = +∞

}
=

{
+∞∑
i=1

∫
[0,+∞)

1{eθτirπ(ξ̃τi−,h)≥M}η(ξ̃τi−,dr) = +∞

}
under P·, x. It is easy to see from the above representation that {II0(∞) = +∞} (resp. {IIλ(∞) =

+∞}) is an invariant event of the canonical dynamic system associated with (S̃t)t≥0 and ergodic
measure ρ, so it follows from Da Prato and Zabczyk (1996, Theorem 1.2.4) that P·,ν(II0(∞) =
+∞) = 1 (resp. P·,ν(IIλ(∞) = +∞) = 1) under condition (II.a) (resp. (II.b)). Thus (6.18) is
valid. �

Proof of Theorem 6.2. Applying the same argument as in the beginning of the proof of Theorem
5.1.(ii) here, we only need to show that under the assumptions of Theorem 6.2,

Pδx(lim sup
t→+∞

W h
t (Γ) = +∞) = 1 for m-a.e. x ∈ E.

In view of (5.30), this would follow if for m-a.e. x ∈ E,

lim sup
Dm3s→+∞

eλ1sΛms h(ξ̃s) ∨ lim sup
i→+∞

eλ1τiΘiπ(ξ̃τi−, h) = +∞ P·, x-a.s.

which, under the assumptions of this theorem, is automatically true by Lemma 6.3. Hence we
complete the proof. �

The following corollaries follow directly from Theorem 5.1 and Theorem 6.2.

Corollary 6.4. Suppose that Assumptions 0-4 hold and that m(E1 ∪ E2) > 0 with E1 and E2

defined in (6.6) and (6.7) respectively. For every µ ∈ M(E)0, W h
∞(X) is non-degenerate if and

only if λ1 < 0 and condition (5.1) holds. Moreover, Xt under Pµ exhibits weak local extinction if
λ1 ≥ 0.
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Corollary 6.5. Suppose Assumptions 0-4 hold and λ1 < 0. For every µ ∈ M(E)0, W h
∞(X) is

non-degenerate if and only if condition (5.1) holds.

Remark 6.6. Note that in the case of purely local branching mechanism, Assumption 4 can be
written as

lim
t→+∞

sup
x∈E

essupy∈E

∣∣∣ph(t, x, y)− 1
∣∣∣ = 0,

where ph(t, x, y) denotes the transition density function of ξh with respect to the measure ρ. If E
is a bounded domain in Rd, m is the Lebesgue measure on Rd and ξ is a symmetric diffusion on E,
then a(x) ∈ Bb(E) ⊂ K(ξ) ∩ L2(E,m). Hence for the class of superdiffusions with local branching
mechanisms considered in Liu et al. (2009), our Assumptions 0-4 hold naturally and Corollary 6.5
generalizes Liu et al. (2009, Theorem 1.1).

7. Examples

In this section, we will give examples satisfying Assumptions 0-4. We will not try to give the
most general examples possible.

Example 7.1. Suppose E = {1, 2, · · · ,K} (K ≥ 2), m is the counting measure on E and Stf(i) =
f(i) for all i ∈ E, t ≥ 0 and f ∈ B+(E) (that is, there is no spatial motion). Suppose

φL(i, λ) := a(i)λ+ b(i)λ2 +

∫
(0,+∞)

(
e−λr − 1 + λr

)
ΠL(i,dr),

φNL(i, f) := −c(i)π(i, f)−
∫

(0,+∞)

(
1− e−rπ(i,f)

)
ΠNL(i,dr),

where for each i ∈ E, a(i) ∈ (−∞,+∞), b(i), c(i) ≥ 0, (r ∧ r2)ΠL(i,dr) and rΠNL(i,dr) are
bounded kernels from E to (0,+∞) with {i ∈ E :

∫
(0,+∞) rΠ

NL(i,dr) > 0} 6= ∅, and π(i, dj) is a
probability kernel on E with π(i, {i}) = 0 for every i ∈ E. As a special case of the model given
in Section 2.1, we have a non-local branching superprocess {Xt : t ≥ 0} in M(E) with transition
probabilities given by

Pµ [exp (−〈f,Xt〉)] = exp (−〈Vtf, µ〉) for µ ∈M(E), t ≥ 0 and f ∈ B+
b (E),

where Vtf(i) is the unique non-negative locally bounded solution to the following integral equation:

Vtf(i) = f(i)−
∫ t

0

(
φL(i, Vsf(i)) + φNL(i, Vsf)

)
ds for t ≥ 0, i ∈ E.

For every i ∈ E and µ ∈ M(E), we define µ(i) := µ({i}). The map µ 7→ (µ(1), · · · , µ(K))T is
clearly a homeomorphism betweenM(E) and the K-dimensional product space [0,+∞)K . Hence
{(X(1)

t , · · · , X(K)
t )T : t ≥ 0} is a Markov process in [0,+∞)K , which is called a K-type continuous-

state branching process. (Clearly the 1-type continuous-state branching process defined in a similar
way coincides with the classical one-dimensional continuous-state branching process, see, for exam-
ple, Li, 2011, Chapter 3.) For simplicity, we assume b(i) ≡ 0. For i, j ∈ E, let pij := π(i, {j})
and γ(i) := c(i) +

∫
(0,+∞) rΠ

NL(i,dr). Define the K ×K matrix M(t) = (M(t)ij)ij by M(t)ij :=

Pδi

[
X

(j)
t

]
for i, j ∈ E. Let Pt denote the mean semigroup of X, that is

Ptf(i) := Pδi [〈f,Xt〉] =
K∑
j=1

M(t)ijf(j) for i ∈ E, t ≥ 0 and f ∈ B+(E).

By the Markov property and (2.9), M(t) satisfies that

M(0) = I, M(t + s) = M(t)M(s) for t, s ≥ 0,



Spine decomposition and L logL criterion for superprocesses 199

and M(t)ij = δj(i)− a(i)

∫ t

0
M(s)ijds+ γ(i)

K∑
k=1

pik

∫ t

0
M(s)kjds

for i, j ∈ E. This implies that M(t) has a formal matrix generator A := (Aij)ij given by

M(t) = eAt =
+∞∑
n=0

tn
An

n!
, and Aij = γ(i)pij − a(i)δi(j) for i, j ∈ E.

We assume A is an irreducible matrix. It then follows by Barczy and Pap (2016, Lemma A.1) that
M(t)ij > 0 for all t > 0 and i, j ∈ E. Let Λ := supλ∈σ(A) Re(λ) where σ(A) denotes the set of
eigenvalues of A. The Perron-Frobenius theory (see, for example, Barczy and Pap, 2016, Lemma
A.3) tells us that for every t > 0, eΛt is a simple eigenvalue ofM(t), and there exist a unique positive
right eigenvector u = (u1, · · · , uK)T and a unique positive left eigenvector v = (v1, · · · , vK)T such
that

K∑
i=1

ui =

K∑
i=1

uivi = 1, M(t)u = eΛtu, vTM(t) = eΛtv.

Moreover it is known by Barczy and Pap (2016, Lemma A.3) that for each i, j ∈ E,

e−ΛtM(t)ij → uivj as t→ +∞. (7.1)

One can easily verify that Assumptions 0-3 hold with λ1 = −Λ, h(i) = cui and ĥ(i) = c−1vi, where

c :=
(∑K

j=1 u
2
j

)−1/2
is a positive constant. Thus W h

t (X) := ce−Λt
∑K

i=1 uiX
(i)
t is a non-negative

martingale. Applying Theorem 4.6 here, we can deduce that under the martingale change of measure
the spine process ξ̃ is a continuous-time Markov process on E with intensity matrix Q = (qij)ij
given by

qii := −
γ(i)

∑K
j=1 pijuj

ui
= −(Λ + a(i)), qij :=

γ(i)pijuj
ui

for i 6= j.

Let ρ(dj) := ujvjm(dj) =
∑K

i=1 ujvjδi(dj). Let S̃t denote the transition semigroup of the spine ξ̃
and p̃(t, i, j) denote its transition density with respect to ρ. It follows by Proposition 4.1 that for
each i, j ∈ E,

p̃(t, i, j)ujvj =

∫
E
p̃(t, i, k)δj(k)ρ(dk) = S̃tδj(i)

=
e−Λt

h(i)
Pt(hδj)(i) =

e−Λt

ui
M(t)ijuj . (7.2)

Thus p̃(t, i, j) = e−Λt(uivj)
−1M(t)ij . By (7.1), we have for each i, j ∈ E

p̃(t, i, j)→ 1 as t→ +∞.

Hence Assumption 4 also holds for this example. Applying Corollary 6.4 here, we conclude that for
every non-trivial µ ∈M(E), the martingale limit

W h
∞(X) := lim

t→+∞
W h
t (X) = lim

t→+∞
ce−Λt

K∑
i=1

uiX
(i)
t

is non-degenerate if and only if Λ > 0 and
K∑
i=1

uivi

∫
(0,+∞)
r log+(rui)Π

L(i,dr) +
K∑
i=1

K∑
j=1

pijujvi

∫
(0,+∞)
r log+(r

K∑
k=1

pikuk)Π
NL(i,dr) < +∞.
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Using elementary computation , one can reduce the above condition to∫
(0,+∞)

r log+ rΠL(i,dr) +

∫
(0,+∞)

r log+ rΠNL(i,dr) < +∞ ∀i ∈ E. (7.3)

In particular, under condition (7.3), Pµ

(
limt→+∞X

(i)
t = 0

)
= 1 for every i ∈ E and every non-

trivial µ ∈ M(E) if and only if Λ ≤ 0. This result is also proved in Kyprianou and Palau (2018,
Theorem 6).

Now we give some other examples.

Example 7.2. Suppose that E is a bounded C3 domain in Rd (d ≥ 1) , m is the Lebesgue measure on
E and that ξ = (ξt,Πx) is the killed Brownian motion in E. Suppose that φL and φNL are as given
in Subsection 2.1. We assume Assumption 0 holds. We further assume that the probability kernel
π(x, dy) has a bounded density with respect to the Lebesgue measure m, i.e., π(x,dy) = π(x, y)dy
with π(x, y) being bounded on E × E. Assumption 1 and Assumption 3.(i1) are trivially satisfied.
Let (Pt)t≥0 be the semigroup on Bb(E) uniquely determined by the integral equation (2.9). It
follows from Hering (1978, Theorem) that Assumption 2, Assumption 3.(ii) are satisfied, and that
(Pt)t≥0 is uniformly primitive in the sense of Hering (1978). Thus for all t > 0, f ∈ B+

b (E) and
x ∈ E, ∣∣∣Ptf(x)− e−λ1t(f, ĥ)h(x)

∣∣∣ ≤ cte−λ1t(f, ĥ)h(x), (7.4)

where ct ≥ 0 satisfying ct ↓ 0 as t ↑ +∞, λ1 is the constant in Assumption 2, and h, ĥ are the
functions in Assumption 2. Let S̃tf(x) := eλ1th(x)−1Pt(fh)(x) for f ∈ B+(E), t ≥ 0 and x ∈ E.
Let p̃(t, x, y) be the density of S̃P t with respect to the measure ρ(dy) := h(y)ĥ(y)dy on E. By
(7.4), we have for every t > 0, f ∈ B+

b (E) and x ∈ E,∣∣∣S̃tf(x)− 〈f, ρ〉
∣∣∣ =

∣∣∣∣∫
E

(p̃(t, x, y)− 1) f(y)ρ(dy)

∣∣∣∣ ≤ ct〈f, ρ〉.
It follows from this that

sup
x∈E

essupy∈E |p̃(t, x, y)− 1| ≤ ct → 0 as t→ +∞.

Hence Assumption 4 is satisfied. Assumption 3.(iii) will be satisfied if the function π(x, y) satisfies∫
E
π(x, y)h(y)dy ≤ ch(x) ∀x ∈ {z ∈ E : γ(z) > 0}

for some constant c > 0, where h is the function in Assumption 2 and γ(z) is as given in Subsection
2.1.

Example 7.3. Suppose that E is a bounded C1,1 open set in Rd (d ≥ 1), m is the Lebesgue measure
on E, α ∈ (0, 2), β ∈ [0, α∧d) and that ξ = (ξt,Πx) is an m-symmetric Hunt process on E satisfying
the following conditions: (1) ξ has a Lévy system (N, t) where N = N(x, dy) is a kernel given by

N(x,dy) =
C1

|x− y|d+α
dy x, y ∈ E

for some constant C1 > 0. (2) ξ admits a jointly continuous transition density p(t, x, y) with respect
to the Lebesgue measure and that there exists a constant C2 > 1 such that

C−1
2 qα,β(t, x, y) ≤ p(t, x, y) ≤ C2qα,β(t, x, y) ∀(t, x, y) ∈ (0, 1]× E × E,

where

qα,β(t, x, y) =

(
1 ∧ δE(x)

t1/α

)β (
1 ∧ δE(y)

t1/α

)β (
t−d/α ∧ t

|x− y|d+α

)
. (7.5)
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Here δE(x) stands for the Euclidean distance between x and the boundary of E. Suppose that
φL and φNL are as given in Subsection 2.1. We assume Assumption 0 holds. We further assume
that the probability kernel π(x, dy) has a density π(x, y) with respect to the Lebesgue measure m
satisfying the condition

π(x, y) ≤ C3|x− y|ε−d ∀x, y ∈ E
for some positive constants C3 and ε. Define

F (x, y) := C−1
1 |x− y|

d+αγ(x)π(x, y) ∀x, y ∈ E.
One can show easily that Assumption 1 and Assumption 3.(i2) are satisfied. Define

F ∗(x, y) := log (1 + F (x, y)) ∀x, y ∈ E.
It is obvious that there exists C4 > 0 such that

0 ≤ F ∗(x, y) ≤ C4

(
|x− y|ε+α ∧ 1

)
∀x, y ∈ E,

and thus, by Chen et al. (2015, Proposition 4.2), F ∗ belongs to the Kato class Jα,β defined in Chen
et al. (2015), i.e., limt↓0N

α,β
F ∗ (t) = 0, where

Nα,β
F ∗ (t) := sup

x∈E

∫ t

0

∫
E×E

qα,β(s, x, z)

(
1 +
|z − y| ∧ t1/α

|x− z|

)β
F ∗(y, z) + F ∗(z, y)

|z − y|d+α
dydzds.

The measure µ(dx) := −a(x)dx obviously belongs to the Kato class Kα,β defined in Chen et al.
(2015), i.e., limt↓0N

α,β
µ (t) = 0, where

Nα,β
µ (t) = sup

x∈E

∫ t

0

∫
E
qα,β(s, x, y)|a|(y)dyds,

since a is a bounded function. For 0 ≤ t < +∞, let At := −
∫ t

0 a(ξr)dr +
∑

0<r≤t F
∗(ξr−, ξr). Let

(Tt)t≥0 be the Feynman-Kac semigroup of ξ given by

Ttf(x) := Πx [exp (At) f(ξt)] , t ≥ 0, x ∈ E, f ∈ B+(E).

Now it follows from Chen et al. (2015, Theorem 1.3) that the semigroup (Tt)t≥0 has a jointly
continuous density q(t, x, y) with respect to the Lebesgue measure and there exists a constant
C5 > 1 such that

C−1
5 qα,β(t, x, y) ≤ q(t, x, y) ≤ C5qα,β(t, x, y) ∀(t, x, y) ∈ (0, 1]× E × E. (7.6)

Let (T̂t)t≥0 be the dual semigroup of (Tt)t≥0. By (7.6), one can easily show that for any f ∈
Bb(E), Ttf and T̂tf are bounded continuous functions on E, that Tt and T̂t are bounded operators
from L2(E,m) into L∞(E,m), and that (Tt)t≥0 and (T̂t)t≥0 are strongly continuous semigroups on
L2(E,m). Let L and L̂ be the generators of (Tt)t≥0 and (T̂t)t≥0 respectively. Let σ(L) and σ(L̂)

denote the spectrum of L and L̂ respectively. It follows from (7.6) and Jentzsch’s theorem (Schaefer,
1974, Theorem V.6.6, p. 337) that the common value −λ1 := sup Re(σ(L)) = sup Re(σ(L̂)) is an
eigenvalue of multiplicity 1 for both L and L̂, and that an eigenfunction h of L associated with −λ1

is bounded continuous and can be chosen strictly positive on E and satisfies ‖h‖L2(E,m) = 1, and
that an eigenfunction ĥ of L̂ associated with −λ1 is bounded continuous and can be chosen strictly
positive on E and satisfies (h, ĥ) = 1. Thus Assumption 2 and 3.(ii) are satisfied. It follows from
(7.6) and the equations e−λ1h = T1h, e−λ1 ĥ = T̂1h that there exists a constant C6 > 1 such that

C−1
6 δE(x)β ≤ h(x) ≤ C6δE(x)β, C−1

6 δE(x)β ≤ ĥ(x) ≤ C6δE(x)β ∀x ∈ E.

It follows from this, (7.6) and the semigroup properpty that the semigroups (Tt)t≥0 and (T̂t)t≥0 are
intrinsically ultracontractive. For the definition of intrinsic ultracontractivity, see Kim and Song
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(2008). Let S̃tf(x) := eλ1th(x)−1Tt(fh)(x) for f ∈ B+(E), t ≥ 0 and x ∈ E. Then S̃t admits a
density p̃(t, x, y) with respect to the probability measure h(y)ĥ(y)dy which is related to q(t, x, y) by

p̃(t, x, y) =
eλ1tq(t, x, y)

h(x)ĥ(y)
∀(t, x, y) ∈ (0,+∞)× E × E.

Now it follows from Kim and Song (2008, Theorem 2.7) that Assumption 4 is satisfied. As in the
previous example, Assumption 3.(iii) will be satisfied if the function π(x, y) satisfies∫

E
π(x, y)h(y)dy ≤ ch(x) ∀x ∈ {z ∈ E : γ(z) > 0}

for some constant c > 0, where γ(z) is as given in Subsection 2.1.
One concrete example of ξ is the killed symmetric α-stable process in E. In this case, (7.5) is

satisfied with β = α/2, a fact which was first proved in Chen et al. (2010a).
Another concrete example of ξ is the censored symmetric α-stable process in E introduced in

Bogdan et al. (2003) when α ∈ (1, 2). In this case, (7.5) is satisfied with β = α − 1, a fact which
was first proved in Chen et al. (2010b).

In fact, by using Chen et al. (2015), one could also include the case when E is a d-set, α ∈ (0, 2)
and ξ is an α-stable-like process in E introduced in Chen and Kumagai (2003). We omit the details.

Example 7.4. Suppose that E = Rd, m is the Lebesgue measure on Rd, α ∈ (0, 2) and that
ξ = (ξt,Πx) is a Markov process corresponding to the Feynman-Kac transform of a d-dimensional
isotropic α-stable process with killing potential η(x) = |x|β (β > 0). Let J(x) = J(|x|) be the
Lévy density of the isotropic α-stable process, i.e., J(x) = c(d, α)|x|−d−α for some positive constant
c(d, α) depending only on d and α. It is known that ξ has a Lévy system (N, t) where N(x,dy) =
2J(y − x)dy. Let (E ,F) be the Dirichlet form of ξ. Then E has the following form

E(u, v) =

∫
Rd

∫
Rd

(u(x)− u(y))(v(x)− v(y))J(y − x)dxdy +

∫
Rd
u(x)v(x)|x|βdx

for all u, v ∈ F . Suppose that the branching mechanisms φL and φNL are as given in Subsection
2.1. For simplicity we assume a(x) ≡ 0 and Assumption 0 holds. Let π(x) = π(|x|) be a probability
density on Rd such that the function π(x)/J(x) is bounded from above. We assume that the
probability kernel π(x,dy) has a density π(x, y) = π(y − x) with respect to the Lebesgue measure
and that the function γ(x) ≡ γ is a constant. Define γ(x, y) := γπ(y − x). Then

∫
Rd γ(x, y)dx =

γ
∫
Rd π(y − x)dx = γ, and Assumption 1 is trivially satisfied. Define

F (x, y) :=
γ(x, y)

2J(y − x)
=
γπ(y − x)

2J(y − x)
∀x, y ∈ Rd.

Then F is a bounded function on Rd × Rd vanishing on the diagonal, and thus Assumption 3.(i2)
is satisfied. Define

Ãt :=
∑
s≤t

log(1 + F (ξs−, ξs))− 2

∫ t

0

∫
Rd
F (ξs, y)J(y − ξs)dyds

=
∑
s≤t

log(1 + F (ξs−, ξs))− γ
∫ t

0

∫
Rd
π(y − ξs)dyds

=
∑
s≤t

log(1 + F (ξs−, ξs))− γt.

It follows from Chen and Song (2003a, Theorem 4.8) (see also Chen and Song, 2003b, p. 275) that
the bilinear form corresponding to the symmetric semigroup

T̃tf(x) = Πx

[
eÃtf(ξt)

]
∀t ≥ 0, x ∈ Rd, f ∈ Bb(Rd)
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is

Q̃(u, v) =

∫
Rd

∫
Rd

(u(x)− u(y))(v(x)− v(y))(1 + F (x, y))J(y − x)dxdy

+

∫
Rd
u(x)v(x)|x|βdx ∀u, v ∈ F .

This is the bilinear form of the stable-like Lévy process killed with the potential η(x) = |x|β . Now
we apply Kaleta and Lőrinczi (2015, Examples 4.5 and 4.8) to get that the symmetric semigroup
(T̃t)t≥0 is intrinsically ultracontractive. Define

At :=
∑
s≤t

log(1 + F (ξs−, ξs)).

Again by Chen and Song (2003a, Theorem 4.8) (see also Chen and Song, 2003b, p. 275) that the
bilinear form corresponding to the symmetric semigroup

Ttf(x) = Πx

[
eAtf(ξt)

]
∀t ≥ 0, x ∈ Rd, f ∈ Bb(Rd)

is

Q(u, v) = E(u, v)− 2

∫
Rd

∫
Rd
u(y)v(x)F (x, y)J(x− y)dxdy

= E(u, v)−
∫
Rd

∫
Rd
u(y)v(x)γ(x, y)dxdy ∀u, v ∈ F .

We observe that Ttf = eγtT̃tf . So the semigroup (Tt)t≥0 is also intrinsically ultracontractive.
Applying similar argument as in Example 7.3, one can show that Assumptions 2 and 4 are satisfied.
Finally, Assumption 3(iii) (and thus Assumption 3(ii)) will be satisfied if the function π(x) satisfies
that ∫

Rd
π(y − x)h(y)dy ≤ ch(x) ∀x ∈ Rd

for some positive constant c. Here h is the strictly positive eigenfunction associated with the
principal eigenvalue of the generator of the semigroup (Tt)t≥0.

Appendix

Proof of Proposition 4.3: We will prove (4.6) first. We claim that

Π̃x

[
f(τ1, ξ̃τ1−, ξ̃τ1)1{τ1≤t}

]
= Π̃x

[∫ t∧τ1

0
q(ξ̃s)ds

∫
E
f(s, ξ̃s, y)πh(ξ̃s,dy)

]
. (7.7)

It is easy to see from the construction of ξ̃ that

LHS of (7.7) = Πh
x

[∫ t

0
q(ξhs )eq(s)ds

∫
E
f(s, ξhs , y)πh(ξhs ,dy)

]
. (7.8)

On the other hand, by Fubini’s theorem, we have

RHS of (7.7) =

∫ t

0
ds Π̃x

[∫
E
q(ξ̃s)f(s, ξ̃s, y)πh(ξ̃s, dy)1{s<τ1}

]
=

∫ t

0
dsΠh

x

[∫
E
q(ξ̂s)f(s, ξ̂s, y)πh(ξ̂s, dy)1{s<ζ̂}

]
=

∫ t

0
dsΠh

x

[
eq(s)

∫
E
q(ξhs )f(s, ξhs , y)πh(ξhs ,dy)

]
= Πh

x

[∫ t

0
q(ξhs )eq(s)ds

∫
E
f(s, ξhs , y)πh(ξhs ,dy)

]
. (7.9)
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Combining (7.8) and (7.9) we arrive at the claim (7.7). Note that applying the shift operator θ̃τn
to f(τ1, ξ̃τ1−, ξ̃τ1)1{τ1≤t} gives f(τn+1, ξ̃τn+1−, ξ̃τn+1)1{τn+1≤t}. Using the strong Markov property of
ξ̃ and Fubini’s theorem, we can prove by induction that for all n ≥ 2,

Π̃x

[
f(τn, ξ̃τn−, ξ̃τn)1{τn≤t}

]
= Π̃x

[∫ t∧τn

t∧τn−1

q(ξ̃s)ds

∫
E
f(s, ξ̃s, y)πh(ξ̃s, dy)

]
.

Thus by the above equality, Fubini’s theorem and the fact that Π̃x(limn→+∞ τn = +∞) = 1, we
have

Π̃x

[∑
τi≤t

f(τi, ξ̃τi−, ξ̃τi)
]

= Π̃x

[+∞∑
i=1

f(τi, ξ̃τi−, ξ̃τi)1{τi≤t}

]
= Π̃x

[
lim

n→+∞

∫ t∧τn

0
q(ξ̃s)ds

∫
E
f(s, ξ̃s, y)πh(ξ̃s, dy)

]
= Π̃x

[∫ t

0
q(ξ̃s)ds

∫
E
f(s, ξ̃s, y)πh(ξ̃s,dy)

]
.

Hence we have proved (4.6). We next show (4.7). It is easy to see that

Π̃x

[(∑
τi≤t

f(τi, ξ̃τi−, ξ̃τi)
)(∑

τj≤t
g(τj , ξ̃τj−, ξ̃τj )

)]
= Π̃x

[∑
τi≤t

fg(τi, ξ̃τi−, ξ̃τi)
]

+

+∞∑
i=1

+∞∑
j=i+1

{
Π̃x

[
f(τi, ξ̃τi−, ξ̃τi)g(τj , ξ̃τj−, ξ̃τj )1{τj≤t}

]
+ Π̃x

[
g(τi, ξ̃τi−, ξ̃τi)f(τj , ξ̃τj−, ξ̃τj )1{τj≤t}

]}
. (7.10)

By the strong Markov property and (7.8), we have for j ≥ 2,

Π̃x

[
f(τ1, ξ̃τ1−, ξ̃τ1)g(τj , ξ̃τj−, ξ̃τj )1{τj≤t}

]
= Π̃x

[
f(τ1, ξ̃τ1−, ξ̃τ1)1{τ1≤t} Π̃

ξ̃τ1

(
g(τj−1 + s, ξ̃τj−1−, ξ̃τj−1)1{τj−1+s≤t}

)∣∣∣
s=τ1

]
= Πh

x

[ ∫ t

0
ds

∫
E
πh(ξhs , dy)q(ξhs )eq(s)f(s, ξhs , y)

· Π̃y

(
g(τj−1 + s, ξ̃τj−1−, ξ̃τj−1)1{τj−1≤t−s}

) ]
, (7.11)

and for j > i ≥ 2,

Π̃x

[
f(τi, ξ̃τi−, ξ̃τi)g(τj , ξ̃τj−, ξ̃τj )1{τj≤t}

]
= Π̃x

[
1{τ1≤t} ·Π̃ξ̃τ1

(
f(τi−1 + s, ξ̃τi−1−, ξ̃τi−1)g(τj−1 + s, ξ̃τj−1−, ξ̃τj−1)1{τj−1+s≤t}

)∣∣∣
s=τ1

]
= Πh

x

[ ∫ t

0
ds

∫
E
πh(ξhs ,dy)q(ξhs )eq(s)

· Π̃y

(
f(τi−1 + s, ξ̃τi−1−, ξ̃τi−1)g(τj−1 + s, ξ̃τj−1−, ξ̃τj−1)1{τj−1≤t−s}

) ]
. (7.12)
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By (7.11), Fubini’s theorem, the strong Markov property of ξ̃, (4.6) and (7.8),

+∞∑
j=2

Π̃x

[
f(τ1, ξ̃τ1−, ξ̃τ1)g(τj , ξ̃τj−, ξ̃τj )1{τj≤t}

]
= Πh

x

[ ∫ t

0
ds

∫
E
πh(ξhs , dy)q(ξhs )eq(s)f(s, ξhs , y)

· Π̃y

(+∞∑
j=2

g(τj−1 + s, ξ̃τj−1−, ξ̃τj−1)1{τj−1≤t−s}

)]
,

= Πh
x

[∫ t

0
ds

∫
E
πh(ξhs , dy)q(ξhs )eq(s)f(s, ξhs , y)Π̃y

( ∑
τk≤t−s

g(τk + s, ξ̃τk−, ξ̃τk)
)]

= Πh
x

[ ∫ t

0
ds

∫
E
πh(ξhs , dy)q(ξhs )eq(s)f(s, ξhs , y)

· Π̃y

(∫ t−s

0
dr

∫
E
πh(ξ̃r, dz)q(ξ̃r)g(r + s, ξ̃r, z)

)]
= Π̃x

[
f(τ1, ξ̃τ1−, ξ̃τ1) Π̃

ξ̃τ1

(∫ t−s

0
dr

∫
E
πh(ξ̃r, dz)q(ξ̃r)g(r + s, ξ̃r, z)

)∣∣∣∣
s=τ1

1{τ1≤t}

]
= Π̃x

[
f(τ1, ξ̃τ1−, ξ̃τ1)

∫ t

τ1

dr

∫
E
πh(ξ̃r,dz)q(ξ̃r)g(r, ξ̃r, z)1{τ1≤t}

]
.

Similarly, by (7.12), Fubini’s theorem, the strong Markov property of ξ̃, (4.6) and (7.8), we can
prove by induction that for i ≥ 1,

+∞∑
j=i+1

Π̃x

[
f(τi, ξ̃τi−, ξ̃τi)g(τj , ξ̃τj−, ξ̃τj )1{τj≤t}

]
= Π̃x

[
f(τi, ξ̃τi−, ξ̃τi)

∫ t

τi

dr

∫
E
πh(ξ̃r, dz)q(ξ̃r)g(r, ξ̃r, z)1{τi≤t}

]
.

By this, Fubini’s theorem, the strong Markov property of ξ̃ and (4.6), we get

+∞∑
i=1

+∞∑
j=i+1

Π̃x

[
f(τi, ξ̃τi−, ξ̃τi)g(τj , ξ̃τj−, ξ̃τj )1{τj≤t}

]

= Π̃x

[+∞∑
i=1

f(τi, ξ̃τi−, ξ̃τi)

∫ t

τi

dr

∫
E
πh(ξ̃r,dz)q(ξ̃r)g(r, ξ̃r, z)1{τi≤t}

]
= Π̃x

[∑
τi≤t

f(τi, ξ̃τi−, ξ̃τi)

∫ t

τi

dr

∫
E
πh(ξ̃r, dz)q(ξ̃r)g(r, ξ̃r, z)

]
= Π̃x

[∑
τi≤t

f(τi, ξ̃τi−, ξ̃τi) Π̃
ξ̃τi

(∫ t−s

0
q(ξ̃r)dr

∫
E
g(s+ r, ξ̃r, z)π

h(ξ̃r, dz)

)∣∣∣∣
s=τi

]
= Π̃x

[∫ t

0
ds

∫
E
πh(ξ̃s, dy)q(ξ̃s)f(s, ξ̃s, y) · Π̃y

(∫ t−s

0
dr

∫
E
πh(ξ̃r,dz)q(ξ̃r)g(s+ r, ξ̃r, z)

)]
. (7.13)

Combining (7.10) and (7.13), we arrive at (4.7). �
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