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1 Introduction and Main Result

Let d ∈ N := {1, 2, . . . } and R+ := [0,∞). Let ξ = {(ξt)t≥0; (Πx)x∈Rd} be an R
d-valued

Ornstein–Uhlenbeck process (OU process) with generator

Lf(x) =
1

2
σ2Δf(x) − bx · ∇f(x), x ∈ R

d, f ∈ C2(Rd),

where σ > 0 and b > 0 are constants. Let ψ be a function on R+ of the form

ψ(z) = −αz + ρz2 +

∫
(0,∞)

(e−zy − 1 + zy)π(dy), z ∈ R+,

where α > 0, ρ ≥ 0 and π is a measure on (0,∞) with
∫
(0,∞)

(y ∧ y2)π(dy) < ∞. ψ is referred

to as a branching mechanism and π is referred to as the Lévy measure of ψ. Denote by M(Rd)

(Mc(R
d)) the space of all finite Borel measures (of compact support) on R

d. Denote by B(Rd,R)

(B(Rd,R+)) the space of all R-valued (R+-valued) Borel functions on R
d. For f, g ∈ B(Rd,R)

and μ ∈ M(Rd), write μ(f) =
∫
f(x)μ(dx) and 〈f, g〉 =

∫
f(x)g(x)dx whenever the integrals

make sense. We say a real-valued Borel function f on R+ × R
d is locally bounded if, for each

t ∈ R+, we have sups∈[0,t],x∈Rd |f(s, x)| < ∞. For any μ ∈ M(Rd), we write ‖μ‖ = μ(1). For

any σ-finite signed measure μ, denote by |μ| the total variation measure of μ.

We say that an M(Rd)-valued Hunt process X={(Xt)t≥0; (Pμ)μ∈M(Rd)} is a super Ornstein–

Uhlenbeck process (super-OU process) with branching mechanism ψ, or a (ξ, ψ)-superprocess, if

for each non-negative bounded Borel function f on R
d, we have

Pμ[e−Xt(f)] = e−μ(Vtf), t ≥ 0, μ ∈ M(Rd),

where (t, x) 
→ Vtf(x) is the unique locally bounded non-negative solution to the equation

Vtf(x) + Πx

[ ∫ t

0

ψ(Vt−sf(ξs))ds

]
= Πx[f(ξt)], x ∈ R

d, t ≥ 0.

The existence of such super-OU process X is well known, see [8, 16] for instance.

There have been many central limit theorem type results for branching processes, branching

diffusions and superprocesses, under the second moment condition. See [1, 3–6, 9, 11–14, 18,

20–23]. For a detailed literature review, see [19, Section 1.1]. There are also central limit

theorem type results for supercritical branching processes and branching Markov processes

with branching mechanisms of infinite second moment. For earlier papers, see [2, 10]. Recently,

Marks and Mi�loś [17] established some spatial central limit theorems for supercritical branching

OU processes with a special stable offspring distribution. In [19], we established stable central

limit theorems for super-OU processes X with branching mechanisms ψ satisfying the following

two assumptions.

Assumption 1 (Grey’s condition) There exists z′ > 0 such that ψ(z) > 0 for all z > z′ and∫∞
z′ ψ(z)−1dz <∞.

Assumption 2 There exist constants η > 0 and β ∈ (0, 1) such that
∫
(1,∞)

y1+β+δ

∣∣∣∣π(dy) − ηdy

Γ(−1 − β)y2+β

∣∣∣∣ <∞

for some δ > 0.
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It is known (see [15, Theorems 12.5 & 12.7] for example) that, under Assumption 1, the

extinction event D := {∃t ≥ 0 such that ‖Xt‖ = 0} is non-trivial with respect to Pμ for each

μ ∈ M(Rd) \ {0}. It follows from [19, Lemma 2.2] that, if Assumption 2 holds, then η and β

are uniquely determined by the Lévy measure π. Throughout this paper, β and η always stand

for the constants in Assumption 2.

We now recall some notation and basic facts from [19]. We use (Pt)t≥0 to denote the

transition semigroup of ξ. Define Pα
t f(x) := eαtPtf(x) = Πx[eαtf(ξt)] for each x ∈ R

d, t ≥ 0

and f ∈ B(Rd,R+). It is known that Pμ[Xt(f)] = μ(Pα
t f) for all μ ∈ M(Rd), t ≥ 0 and

f ∈ B(Rd,R+). The OU process ξ has an invariant probability on R
d:

ϕ(x)dx :=

(
b

πσ2

)d/2

exp

(
− b

σ2
|x|2

)
dx.

Let L2(ϕ) be the Hilbert space with inner product

〈f1, f2〉ϕ :=

∫
Rd

f1(x)f2(x)ϕ(x)dx, f1, f2 ∈ L2(ϕ).

Let Z+ := N ∪ {0}. It is known that (Pt)t≥0 is a strongly continuous semigroup in L2(ϕ)

and its generator L has discrete spectrum σ(L) = {−bk : k ∈ Z+}. The eigenfunctions of

L consists of a family of polynomials {φp : p ∈ Z
d
+} which forms a complete orthonormal

basis of L2(ϕ). For each p ∈ Z
d
+, φp is an eigenfunction of L corresponding to the eigenvalue

b|p|, where |p| :=
∑d

k=1 pk. For each function f ∈ L2(ϕ), define the order of f as κf :=

inf
{
k ≥ 0 : ∃p ∈ Z

d
+, s.t. |p| = k and 〈f, φp〉ϕ �= 0

}
with the convention that inf ∅ = ∞.

For p ∈ Z
d
+, define Hp

t := e−(α−|p|b)tXt(φp), t ≥ 0. For each u �= −1, we write ũ = u/(1+u).

We have shown in [19, Lemma 3.2] that for any μ ∈ Mc(R
d), (Hp

t )t≥0 is a Pμ-martingale.

Furthermore, if αβ̃ > |p|b, then for every γ ∈ (0, β) and μ ∈ Mc(R
d), (Hp

t )t≥0 is a Pμ-martingale

bounded in L1+γ(Pμ); thus Hp
∞ := limt→∞Hp

t exists Pμ-almost surely and in L1+γ(Pμ). We

will write H0
t and H0

∞ as Ht and H∞, respectively.

Denote by P ⊂ L2(ϕ) the class of functions of polynomial growth on R
d, i.e., P := {f ∈

B(Rd,R) : ∃C > 0, n ∈ Z+ s.t. ∀x ∈ R
d, |f(x)| ≤ C(1+ |x|)n}. Define Cs := P ∩Span{φp : αβ̃ <

|p|b}, Cc := P ∩ Span{φp : αβ̃ = |p|b}, and Cl := P ∩ Span{φp : αβ̃ > |p|b}. Note that Cs is

an infinite dimensional space, Cl and Cc are finite dimensional spaces, and Cc might be empty.

Define a semigroup

Ttf :=
∑
p∈Z

d
+

e−||p|b−αβ̃|t〈f, φp〉ϕφp, t ≥ 0, f ∈ P, (1.1)

and a family of functionals

mt[f ] := η

∫ t

0

du

∫
Rd

(−iTuf(x))1+βϕ(x)dx, 0 ≤ t <∞, f ∈ P. (1.2)

Let us recall the definition of the non-integer power of complex numbers here. For each z ∈
C \ (−∞, 0], we define log z := log |z| + i arg z where arg z ∈ (−π, π) is uniquely determined so

that z = |z|ei arg z. For each z ∈ C \ (−∞, 0] and γ ∈ R, we define zγ := eγ log z. For each γ ≥ 0,

we define 0γ := limz→0,z∈C\(−∞,0] z
γ = 1γ=0.

We have shown in [19, Lemma 2.6 and Proposition 2.7] that, for each f ∈ P, there exists a
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(1 + β)-stable random variable ζf with characteristic function θ 
→ em[θf ], θ ∈ R, where

m[f ] :=

⎧⎨
⎩

lim
t→∞mt[f ], f ∈ Cs ⊕ Cl,
lim
t→∞

1

t
mt[f ], f ∈ P \ Cs ⊕ Cl.

(1.3)

For each μ ∈ M(Rd) \ {0}, write P̃μ(·) := Pμ(·|Dc). We also proved in [19, Theorem 1.6] that

if μ ∈ Mc(R
d) \ {0}, fs ∈ Cs, fc ∈ Cc and fl ∈ Cl, then under P̃μ,

e−αt‖Xt‖ a.s.−−−→
t→∞ H̃∞;

Xt(fs)

‖Xt‖1−β̃

d−−−→
t→∞ ζfs ;

Xt(fc)

‖tXt‖1−β̃

d−−−→
t→∞ ζfc ;

Xt(fl) − xt(fl)

‖Xt‖1−β̃

d−−−→
t→∞ ζ−fl , (1.4)

where H̃∞ has the distribution of {H∞; P̃μ}; ζfs , ζfc and ζ−fl are the (1 + β)-stable random

variables described in (1); and

xt(f) :=
∑

p∈Z
d
+:αβ̃>|p|b

〈f, φp〉ϕe(α−|p|b)tHp
∞, t ≥ 0, f ∈ P. (1.5)

Any f ∈ P can be decomposed as f = fs + fc + fl with fs ∈ Cs, fc ∈ Cc and fl ∈ Cl. In [19],

we were not able to establish a central limit theorem for f if ‖fs‖L2(ϕ) > 0, ‖fc‖L2(ϕ) = 0 and

‖fl‖L2(ϕ) > 0. We conjectured there that the limit random variables in (1) for fs ∈ Cs, fc ∈ Cc
and fl ∈ Cl are independent. Once this asymptotic independence is established, a central limit

theorem for Xt(f) for all f ∈ P would follow.

The main purpose of this note is to show that the limit random variables in (1) are inde-

pendent.

Theorem 1.1 If μ ∈ Mc(R
d) \ {0}, fs ∈ Cs, fc ∈ Cc and fl ∈ Cl, then under P̃μ,

S(t) :=

(
e−αt‖Xt‖, Xt(fs)

‖Xt‖1−β̃
,
Xt(fc)

‖tXt‖1−β̃
,
Xt(fl) − xt(fl)

‖Xt‖1−β̃

)
d−−−→

t→∞ (H̃∞, ζfs , ζfc , ζ−fl), (1.6)

where xt(fl) is defined in (1) with f replaced with fl; H̃∞ has the distribution of {H∞; P̃μ}; ζfs ,
ζfc and ζ−fl are the (1 + β)-stable random variables described in (1); H̃∞, ζfs , ζfc and ζ−fl

are independent.

As a corollary of this theorem, we get central limit theorems for Xt(f) for all f ∈ P.

Corollary 1.2 Let μ ∈ Mc(R
d) \ {0} and f ∈ P. Let f = fs + fc + fl be the unique

decomposition of f with fs ∈ Cs, fc ∈ Cc and fl ∈ Cl. Then under P̃μ, it holds that

(1) if fc ≡ 0, then
Xt(f) − xt(f)

‖Xt‖1−β̃

d−−−→
t→∞ ζfs + ζ−fl ,

where ζfs and ζ−fl are the (1 + β)-stable random variables described in (1), ζfs and ζ−fl are

independent;

(2) if fc �≡ 0, then
Xt(f) − xt(f)

‖tXt‖1−β̃

d−−−→
t→∞ ζfc ,

where ζfc is the (1 + β)-stable random variable described in (1).
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Remark 1.3 We mention here that the branching mechanism ψ considered in this paper can

be written in the form of ψ(z) = −αz + z1+β(η + ε(z)) where ε(z) → 0 as z → 0 (see [19,

Remark 1.3]). It would be interesting to consider the more general case ψ(z) = −αz+ z1+β l(z)

where l(z) is only assumed to be a slowly varying function. For this more general case, the

arguments of [19] and this paper no longer work. It seems that new ideas and treatments are

needed.

2 Proof of Main Result

We first make some preparations before proving Theorem 1.1. For every t ≥ 0 and f ∈ P,

define

Ztf :=

∫ t

0

Pα
t−s(η(−iPα

s f)1+β)ds, Υf
t :=

Xt+1(f) −Xt(P
α
1 f)

‖Xt‖1−β̃
.

From [19, Theorem 3.4] we know that, for each f ∈ P, 〈Z1f, ϕ〉 is the characteristic exponent

of the weak limit of Υf
t . For g = gs + gc + gl ∈ P with gs ∈ Cs, gc ∈ Cc and g1 ∈ Cl, we define

Pg := {θsTngs + θcTngc + θ1Tng1 : n ∈ Z+, θs, θc, θl ∈ [−1, 1]}, where Tn is the operator defined

in (1). The following Lemma 2.1 can be proved using an argument similar to that used in the

proof of [19, Lemma 2.9]. We omit the details here.

Lemma 2.1 For any g ∈ P there exists non-negative h ∈ P such that for all f ∈ Pg and

t ≥ 0, we have |Pt(Z1f − 〈Z1f, ϕ〉)| ≤ e−bth.

The following result is a generalization of [19, Proposition 3.5], whose proof is similar to

that of [19, Proposition 3.5], with Lemma 2.1 replacing the role of [19, Lemma 2.9]. Let (Ft)t≥0

be the natural filtration of X.

Proposition 2.2 For any μ ∈ Mc(R
d) and g ∈ P, there exist C, δ > 0 such that for all t ≥ 1

and f ∈ Pg, we have

Pμ

[|Pμ[eiΥ
f
t − e〈Z1f,ϕ〉;Dc|Ft]|

] ≤ Ce−δt.

The following generalization of [19, Proposition 3.5] will be used later in the proof of The-

orem 2.5, a special case of Theorem 1.1. Note that the constants C and δ in the next result

depend only on f, g ∈ P and μ ∈ Mc(R
d), do not depend on n1, n2, fj , gj and t (as long as

t ≥ n1 + 1).

Proposition 2.3 For any f, g ∈ P and μ ∈ Mc(R
d), there exist C, δ > 0 such that for all

n1, n2 ∈ Z+, (fj)
n1
j=0 ⊂ Pf , (gj)

n2
j=0 ⊂ Pg and t ≥ n1 + 1, we have

∣∣∣∣P̃μ

[( n1∏
k=0

eiΥ
fk
t−k−1

)( n2∏
k=0

eiΥ
gk
t+k

)]
−
( n1∏

k=0

e〈Z1fk,ϕ〉
)( n2∏

k=0

e〈Z1gk,ϕ〉
)∣∣∣∣ ≤ Ce−δ(t−n1). (2.1)

Proof In this proof, we fix f, g ∈ P, μ ∈ Mc(R
d), n1, n2 ∈ Z+, (fj)

n1
j=0 ⊂ Pf , (gj)

n2
j=0 ⊂ Pg

and t ≥ n1 + 1. For any k1 ∈ {−1, 0, . . . , n1} and k2 ∈ {−1, 0, . . . , n2}, define

ak1,k2
:= P̃μ

[( n1∏
j=k1+1

eiΥ
fj
t−j−1

)( k2∏
j=0

eiΥ
gj
t+j

)]( k1∏
j=0

e〈Z1fj ,ϕ〉
)( n2∏

j=k2+1

e〈Z1gj ,ϕ〉
)
,

where we used the convention that
∏−1

j=0 = 1. Then for all k2 ∈ {0, . . . , n2}, we have

a−1,k2
− a−1,k2−1 =

1

Pμ(Dc)

( n2∏
j=k2+1

e〈Z1gj ,ϕ〉
)
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× Pμ

[( n1∏
j=0

eiΥ
fj
t−j−1

)( k2−1∏
j=0

eiΥ
gj
t+j

)
Pμ[eiΥ

gk2
t+k2 − e〈Z1gk2

,ϕ〉;Dc|Ft+k2
]

]
. (2.2)

By Proposition 2.2, there exist C0, δ0 > 0, depending only on μ and g, such that for each

k2 ∈ {0, . . . , n2},

|a−1,k2
− a−1,k2−1|

(2)

≤ Pμ(Dc)−1
Pμ[|Pμ[eiΥ

gk2
t+k2 − e〈Z1gk2

,ϕ〉;Dc|Ft+k2
]|]

≤ C0e−δ0(t+k2). (2.3)

Similarly, for any k1 ∈ {0, . . . , n1},

ak1−1,−1 − ak1,−1

=
1

Pμ(Dc)

( k1−1∏
j=0

e〈Z1fj ,ϕ〉
)( n2∏

j=0

e〈Z1gj ,ϕ〉
)

× Pμ

[
Pμ[eiΥ

fk1
t−k1−1 − e〈Z1fk1

,ϕ〉;Dc|Ft−k1−1]

n1∏
j=k1+1

eiΥ
fj
t−j−1

]
. (2.4)

By Proposition 2.2, there exist C1, δ1 > 0, depending only on μ and f , such that for any

k1 ∈ {0, . . . , n1},

|ak1−1,−1 − ak1,−1|
(2)

≤ 1

Pμ(Dc)
Pμ

[|Pμ[eiΥ
fk1
t−k1−1 − e〈Z1fk1

,ϕ〉;Dc|Ft−k1−1]|]

≤ C1e−δ1(t−k1). (2.5)

Therefore, there exist C, δ > 0, depending only on f, g and μ, such that

LHS of (2.3) = |a−1,n2
− an1,−1| ≤

n1∑
k=0

|ak−1,−1 − ak,−1| +

n2∑
k=0

|a−1,k − a−1,k−1|

(2),(2)

≤
n1∑
k=0

C1e−δ1(t−k) +

n2∑
k=0

C0e−δ0(t+k) ≤ Ce−δ(t−n1). �

The following analytic result is elementary, and will also be used in the proof of Theorem 2.5.

Lemma 2.4 There exists a constant C > 0 such that for any x, y ∈ R,

|(ix+ iy)1+β − (ix)1+β − (iy)1+β | ≤ C(|x||y|β + |x|β|y|).

Proof Note the desired result holds if x = 0 or y = 0. So, we can assume |x| > 0 and |y| > 0.

Noticing also the symmetry between x and y, we can assume without loss of generality that

|x| ≥ |y|. Also note that z1+β = z1+β for each z ∈ C\(−∞, 0) where z̄ is the complex conjugate

of z. It is easy to see that

|(ix+ iy)1+β − (ix)1+β − (iy)1+β | = |(−ix− iy)1+β − (−ix)1+β − (−iy)1+β |.
Thus we can further assume without loss of generality that y > 0. Note that for any z ∈ C,

lim
r→∞,r>0

(r ± 1)1+β − r1+β − z

rβ
= lim

r→∞,r>0

(r ± 1)1+β − r1+β

rβ

= lim
r→∞,r>0

((1 ± r−1)1+β − 1)r = ±(1 + β).
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Combining the above with continuity, we get that for each z ∈ C there exists C(z) > 0 such

that for each r ≥ 1,

|(r ± 1)1+β − r1+β − z| ≤ C(z)|r|β .

One can easily check by definition that (iur)γ = (iu)γrγ for any u ∈ R \ {0}, r > 0 and γ ≥ 0.

Therefore for each r ≥ 1 we have

|(i(1 + r))1+β − (ir)1+β − i1+β | = |i1+β((r + 1)1+β − r1+β − 1)|
= |(r + 1)1+β − r1+β − 1|
≤ C(1)|r|β;

and for each r ≤ −1 we have

|(i(1 + r))1+β − (ir)1+β − i1+β | = |(−i)1+β((−r − 1)1+β − (−r)1+β − i2+2β)|
= |(−r − 1)1+β − (−r)1+β − i2+2β |
≤ C(i2+2β)|r|β.

Summarizing, we have that there exists a C1 > 0 such that for each r ∈ R with |r| ≥ 1,

|(i(1 + r))1+β − (ir)1+β − i1+β | ≤ C1|r|β.
Now it follows immediately that

|(ix+ iy)1+β − (ix)1+β − (iy)1+β | = |y1+β((i(1 + x/y))1+β − (ix/y)1+β − i1+β)|
= |y|1+β |(i(1 + x/y))1+β − (ix/y)1+β − i1+β |
≤ C1|y||x|β . �

In the remainder of this section, we fix μ ∈ Mc(R
d) \ {0}, fs ∈ Cs, fc ∈ Cc and fl ∈ Cl. For

every t ≥ 1, define

R(t) :=

(
Xt(fs)

‖Xt‖1−β̃
,
Xt(fc)

‖tXt‖1−β̃
,
Xt(fl) − xt(fl)

‖Xt‖1−β̃

)
,

R′(t) := (R′
s(t), R

′
c(t), R

′
l(t))

:=

( 	t−ln t
∑
k=0

ΥTk f̃s
t−k−1, t

β̃−1

	t−ln t
∑
k=0

ΥTk f̃c
t−k−1,

	t2
∑
k=0

Υ−Tk f̃l
t+k

)
,

where Tk is the operator defined in (1), xt(fl) is defined in (1) with f replaced with fl, f̃s :=

eα(β̃−1)fs, f̃c := eα(β̃−1)fc and f̃l :=
∑

p∈Z
d
+:αβ̃>|p|b e−(α−|p|b)〈fl, φp〉ϕφp. The following result is

a special case of Theorem 1.1.

Theorem 2.5 Under P̃μ, R(t)
d−−−→

t→∞ (ζfs , ζfc , ζ−fl), where ζfs , ζfc and ζ−fl are the (1 + β)-

stable random variables described in (1), and ζfs , ζfc and ζ−fl are independent.

Proof In this proof, we always work under P̃μ. According to the proof of [19, Theorem 1.6] and

the fact that the convergence in probability of random vectors to the zero vector is equivalent

to the convergence of each components of the random vectors to zero, we have

R(t) −R′(t)
in probability−−−−−−−−→

t→∞ 0.
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With the help of Slutsky’s theorem, what is left to show is that,

R′(t) d−−−→
t→∞ (ζfs , ζfc , ζ−fl). (2.6)

Now we prove (2). Since Υf
t is linear in f , for each t ≥ 1,

P̃μ

[
exp

(
i
∑

j=s,c,l

R′
j(t)

)]
= P̃μ

[
exp

(
i

	t−ln t
∑
k=0

Υ
Tk(f̃s+tβ̃−1f̃c)
t−k−1

)
exp

(
i

	t2
∑
k=0

Υ−Tk f̃l
t+k

)]
.

Note that {Tk(f̃s + tβ̃−1f̃c) : k ∈ Z+, t ≥ 1} ⊂ P f̃s+f̃c
and {−Tkf̃l : k ∈ Z+} ⊂ P f̃l

. Therefore,

we can use Proposition 2.3 with f taken as f̃s + f̃c and g taken as f̃l to get that there exist

C1, δ1 > 0 such that for every t > e (which implies t ≥ �t− ln t� + 1),

∣∣∣∣P̃μ

[
exp

(
i
∑

j=s,c,l

R′
j(t)

)]
− exp

( 	t−ln t
∑
k=0

〈Z1(Tk(f̃s + tβ̃−1f̃c)), ϕ〉
)

exp

( 	t2
∑
k=0

〈Z1(−Tkf̃l), ϕ〉
)∣∣∣∣

≤ C1e−δ1(t−	t−ln t
).

We claim that

lim
t→∞ exp

( 	t−ln t
∑
k=0

〈Z1(Tk(f̃s + tβ̃−1f̃c)), ϕ〉
)

exp

( 	t2
∑
k=0

〈Z1(−Tkf̃l), ϕ〉
)

= exp(m[fs] +m[fc] +m[−fl]). (2.7)

Given this claim, we have

P̃μ

[
exp

(
i
∑

j=s,c,l

R′
j(t)

)]
−−−→
t→∞ exp(m[fs] +m[fc] +m[−fl]).

Since R′
j(t) are linear in fj ∈ Cj (j = s, c, l), replacing fj with θjfj , we immediately get (2).

Now we prove the claim (2). For every f ∈ Cs ⊕ Cc and n ∈ Z+,

n∑
k=0

〈Z1Tkf̃ , ϕ〉 =
n∑

k=0

∫ 1

0

〈Pα
u (η(−iPα

1−uTkf̃)1+β), ϕ〉du

=
n∑

k=0

∫ 1

0

eαu〈η(−iPα
1−uTkf̃)1+β , ϕ〉du =

n∑
k=0

∫ 1

0

〈η(−iTk+1−uf)1+β , ϕ〉du

=

∫ n+1

0

〈η(−iTuf)1+β , ϕ〉du = mn+1[f ],

where f̃ = eα(β̃−1)f . Therefore, for any t ≥ 1,

	t−ln t
∑
k=0

〈Z1Tk(f̃s + tβ̃−1f̃c), ϕ〉 = η

∫ 	t−ln t
+1

0

〈(−iTu(fs + tβ̃−1fc))
1+β , ϕ〉du. (2.8)

Note that for each u ≥ 0, Tufc = fc. Also note that according to Step 1 in the proof of [19,

Lemma 2.6], there exist δ > 0 and h ∈ P (depending only on fs) such that for each u ≥ 0,

|Tufs| ≤ e−δuh. It follows from Lemma 2.4 that there exists C > 0 such that for all u ≥ 0 and

t ≥ 0,

|(−i(Tufs + tβ̃−1Tufc))
1+β − (−iTufs)

1+β − (−itβ̃−1Tufc)
1+β |



Stable CLT for super-OU processes, II 495

Lemma 2.4≤ C(t−
β

1+β |Tufs||Tufc|β + t−
1

1+β |Tufs|β |Tufc|)
≤ C(t−

β
1+β e−δuh|fc|β + t−

1
1+β e−δβuhβ|fc|). (2.9)

This means that there exists C1 > 0 such that for all t ≥ 1,

∣∣∣∣
( 	t−ln t
∑

k=0

〈Z1Tk(f̃s + tβ̃−1f̃c), ϕ〉
)
−m	t−ln t
+1[fs] − 1

t
m	t−ln t
+1[fc]

∣∣∣∣
(2),(1)

≤
∣∣∣∣η

∫ 	t−ln t
+1

0

〈(−iTu(fs + tβ̃−1fc))
1+β , ϕ〉du

− η

∫ 	t−ln t
+1

0

〈(−iTufs)
1+β , ϕ〉du− 1

t
η

∫ 	t−ln t
+1

0

〈(−iTufc)
1+β , ϕ〉du

∣∣∣∣
(2)

≤ C1

∫ 	t−ln t
+1

0

〈t− β
1+β e−δuh|fc|β + t−

1
1+β e−δβuhβ|fc|, ϕ〉du

≤ C1t
− β

1+β 〈h|fc|β , ϕ〉
∫ ∞

0

e−δudu+ C1t
− 1

1+β 〈hβ|fc|, ϕ〉
∫ ∞

0

e−δβudu

−−−→
t→∞ 0.

Combining this with (1), we get that

lim
t→∞ exp

( 	t−ln t
∑
k=0

〈Z1Tk(f̃s + tβ̃−1f̃c), ϕ〉
)

= exp(m[fs] +m[fc]). (2.10)

Also note that according to Step 1 in the proof of [19, Theorem 1.6 (3)], we have

lim
t→∞ exp

( 	t2
∑
k=0

〈Z1(−Tkf̃l), ϕ〉
)

= exp(m[−fl]). (2.11)

Thus the desired claim follows from (2) and (2). �
Proof of Theorem 1.1 We first recall some facts about weak convergence which will be used

later. For any bounded Lipschitz function f : Rd 
→ R, let

‖f‖L := sup
x�=y

|f(x) − f(y)|
|x− y|

and ‖f‖BL := ‖f‖∞ + ‖f‖L. For any probability distributions μ1 and μ2 on R
d, define

d(μ1, μ2) := sup

{∣∣∣∣
∫
fdμ1 −

∫
fdμ2

∣∣∣∣ : ‖f‖BL ≤ 1

}
.

Then d is a metric. It follows from [7, Theorem 11.3.3] that the topology generated by d is

equivalent to the weak convergence topology. Using the definition, we can easily see that, if μ1

and μ2 are the distributions of two R
d-valued random variables X and Y respectively, defined

on same probability space, then

d(μ1, μ2) ≤ E|X − Y |. (2.12)

In this proof, let us fix μ ∈ Mc(R
d) \ {0}, fs ∈ Cs, fc ∈ Cc and fl ∈ Cl. Recall that S(t) (t ≥ 0)

is given by (1.6). For every r, t > 0, let

S(t, r) :=

(
e−αt‖Xt‖, Xt+r(fs)

‖Xt+r‖1−β̃
,

Xt+r(fc)

‖(t+ r)Xt+r‖1−β̃
,
Xt+r(fl) − xt+r(fl)

‖Xt+r‖1−β̃

)
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and

S̃(t, r) := (e−α(t+r)‖Xt+r‖ − e−αt‖Xt‖, 0, 0, 0),

where, for any t > 0, xt(fl) is defined in (1) with f replaced with fl. Then S(t + r) =

S(t, r) + S̃(t, r). We claim that

for each t > 0, under P̃μ, we have

S(t, r)
d−−−→

r→∞ (H̃t, ζ
fs , ζfc , ζ−fl),

where H̃t has the distribution of {e−αt‖Xt‖; P̃μ}, ζfs , ζfc and ζ−fl are the (1+β)-stable

random variables described in (1), and H̃t, ζ
fs , ζfc and ζ−fl are independent.

(2.13)

For every r, t ≥ 0, let D(r) and D(r, t) be the distributions of S(r) and S(t, r) under P̃μ

respectively; let D̃(t) and D be the distributions of (H̃t, ζ
fs , ζfc , ζ−fl) and (H̃∞, ζfs , ζfc , ζ−fl),

respectively. Then for each γ ∈ (0, β), there exist constant C > 0 such that for every t > 0,

lim
r→∞ d(D(t+ r),D)

triangle inequality

≤ lim
r→∞(d(D(t+ r),D(t, r)) + d(D(t, r), D̃(t)) + d(D̃(t),D))

(2)

≤ lim
r→∞ P̃μ[|S(t+ r) − S(t, r)|] + lim

r→∞ d(D(t, r), D̃(t)) + P̃μ[|Ht −H∞|]
(2)

≤ lim
r→∞ P̃μ[|Ht −Ht+r|] + P̃μ[|Ht −H∞|]

Hölder inequality

≤ lim
r→∞Pμ(Dc)−1(‖Ht −Ht+r‖L1+γ(Pμ) + ‖Ht −H∞‖L1+γ(Pμ))

[19, Lemma 3.3]

≤ Ce−αγ̃t. (2.14)

Therefore,

lim
r→∞ d(D(r),D) = lim

t→∞ lim
r→∞ d(D(t+ r),D)

(2)

≤ lim
t→∞Ce−αγ̃t = 0.

The desired result now follows immediately.

Now we prove the claim (2). For every r, t > 0, let

θ, θs, θc, θl ∈ R 
→ k(θ, θs, θc, θl, r, t)

be the characteristic function of S(t, r) under P̃μ. Then for each θ, θs, θc, θl ∈ R and r, t > 0,

k(θ, θs, θc, θl, r, t) = P̃μ[exp(iθe−αt‖Xt‖ +A(θs, θc, θl, r, t,∞))]

bounded convergence
= lim

u→∞
1

Pμ(Dc)
Pμ[exp(iθe−αt‖Xt‖ +A(θs, θc, θl, r, t, u));Dc], (2.15)

where for each u ∈ [0,∞],

A(θs, θc, θl, r, t, u)

:= iθs
Xt+r(fs)

‖Xt+r‖1−β̃
+ iθc

Xt+r(fc)

‖(t+ r)Xt+r‖1−β̃
+ iθl

Xt+r(fl) − Pμ[xt+r(fl)|Fu]

‖Xt+r‖1−β̃

= iθs
Xt+r(fs)

‖Xt+r‖1−β̃
+

iθc

(t+ r)1−β̃

Xt+r(fc)

‖Xt+r‖1−β̃



Stable CLT for super-OU processes, II 497

+ iθl
Xt+r(fl) −

∑
p∈Z

d
+:αβ̃>|p|b〈fl, φp〉ϕe(α−|p|b)(t+r)Hp

u

‖Xt+r‖1−β̃
. (2.16)

Now for each t > 0, we get

lim
r→∞ k(θ, θs, θc, θl, r, t)

(2)
= lim

r→∞ lim
u→∞

1

Pμ(Dc)
Pμ[exp{iθe−αt‖Xt‖}1‖Xt‖>0Pμ[exp{A(θs, θc, θl, r, t, u)}1Dc |Ft]]

(2), Markov property
= lim

r→∞ lim
u→∞

1

Pμ(Dc)
Pμ

[
exp{iθe−αt‖Xt‖}1‖Xt‖>0

× PXt

[
exp

{
A

(
θs, θc

(
r

t+ r

)1−β̃

, θl, r, 0, u− t

)}
1Dc

]]

bounded convergence
= lim

r→∞Pμ

[
exp{iθe−αt‖Xt‖}1‖Xt‖>0

PXt
(Dc)

Pμ(Dc)

× P̃Xt

[
exp

{
A

(
θs, θc

(
r

t+ r

)1−β̃

, θl, r, 0,∞
)}]]

.

Theorem 2.5
= Pμ

[
exp{iθe−αt‖Xt‖}1‖Xt‖>0

PXt
(Dc)

Pμ(Dc)

]( ∏
j=s,c

exp{m[θjfj ]}
)

exp{m[−θlfl]}

= P̃μ[exp{iθe−αt‖Xt‖}]

( ∏
j=s,c

exp{m[θjfj ]}
)

exp{m[−θlfl]}. �
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Boston, Inc., Boston, MA, 1983

[4] Athreya, K. B.: Limit theorems for multitype continuous time Markov branching processes. I. The case of

an eigenvector linear functional. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 12, 320–332 (1969)

[5] Athreya, K. B.: Limit theorems for multitype continuous time Markov branching processes. II. The case of

an arbitrary linear functional. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 13, 204–214 (1969)

[6] Athreya, K. B.: Some refinements in the theory of supercritical multitype Markov branching processes. Z.

Wahrscheinlichkeitstheorie und Verw. Gebiete, 20, 47–57 (1971)

[7] Dudley, R. M.: Real Analysis and Probability. Revised reprint of the 1989 original. Cambridge Studies in

Advanced Mathematics, Vol. 74. Cambridge University Press, Cambridge, 2002

[8] Dynkin, E. B.: Superprocesses and partial differential equations. Ann. Probab., 21(3), 1185–1262 (1993)

[9] Heyde, C. C.: A rate of convergence result for the super-critical Galton–Watson process. J. Appl. Proba-

bility, 7, 451–454 (1970)

[10] Heyde, C. C.: Some central limit analogues for supercritical Galton–Watson processes. J. Appl. Probability,

8, 52–59 (1971)

[11] Heyde, C. C., Brown, B. M.: An invariance principle and some convergence rate results for branching

processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 20, 271–278 (1971)

[12] Heyde, C. C., Leslie, J. R.: Improved classical limit analogues for Galton–Watson processes with or without

immigration. Bull. Austral. Math. Soc., 5, 145–155 (1971)

[13] Kesten, H., Stigum, B. P.: A limit theorem for multidimensional Galton–Watson processes. Ann. Math.

Statist., 37, 1211–1223 (1966)



498 Ren Y. X. et al.

[14] Kesten, H., Stigum, B. P.: Additional limit theorems for indecomposable multidimensional Galton–Watson

processes. Ann. Math. Statist., 37, 1463–1481 (1966)
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