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Abstract

We consider a critical superprocess {X; Pµ} with general spatial motion and spatially dependent
stable branching mechanism with lowest stable index γ0 > 1. We first show that, under some conditions,
Pµ(|X t | ̸= 0) converges to 0 as t → ∞ and is regularly varying with index (γ0 − 1)−1. Then we show
that, for a large class of non-negative testing functions f , the distribution of {X t ( f ); Pµ(·|∥X t∥ ̸= 0)},
after appropriate rescaling, converges weakly to a positive random variable z(γ0−1) with Laplace
transform E[e−uz(γ0−1)

] = 1 − (1 + u−(γ0−1))−1/(γ0−1).
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1. Introduction

1.1. Background

The study of the asymptotic behaviors of critical branching particle systems has a long
history. It is well known that for a critical Galton–Watson process {(Zn)n≥0; P}, we have

n P(Zn > 0) −−−→
n→∞

2
σ 2 (1.1)

and { Zn

n
; P(·|Zn > 0)

}
law

−−−→
n→∞

σ 2

2
e, (1.2)

where σ 2 is the variance of the offspring distribution and e is an exponential random variable
with mean 1. The result (1.1) is due to Kolmogorov [17], and the result (1.2) is due to
Yaglom [33]. For further references to these results, see [10,13]. Since then, lots of analogous
results have been obtained for more general critical branching processes with finite 2nd
moment, see [1–3,12] for example.

Notice that (1.1) and (1.2) are still valid when σ 2
= ∞, see [13] for example. In this case,

the limits in (1.1) and (1.2) are degenerate, and thus more appropriate scalings are needed.
Research in this direction was first conducted by Zolotarev [34] in a simplified continuous time
set-up, which is then extended by Slack [30] to discrete time critical Galton–Watson processes
allowing infinite variance. The main result of [30] can be stated as follows. Consider a critical
Galton–Watson process {(Zn)n≥0; P}. Assume that the generating function f (s) of the offspring
distribution is of the form

f (s) = s + (1 − s)1+αl(1 − s), s ≥ 0, (1.3)

where α ∈ (0, 1] and l is a function slowly varying at 0. Then

P(Zn > 0) = n−1/αL(n), (1.4)

where L is a function slowly varying at ∞, and{
P(Zn > 0)Zn; P(·|Zn > 0)

} law
−−−→
n→∞

z(α), (1.5)

where z(α) is a positive random variable with Laplace transform

E[e−uz(α)
] = 1 − (1 + u−α)−1/α, u ≥ 0. (1.6)

In [31], Slack also considered the converse of this problem: In order for
{

P(Zn > 0)Zn; P(·|Zn
> 0)

}
to have a non-degenerate weak limit, the generating function of the offspring distribution

must be of the form of (1.3) for some 0 < α ≤ 1. For shorter and more unified approaches to
these results, we refer our readers to [5,22].

Goldstein and Hoppe [9] considered the asymptotic behavior of multitype critical
Galton–Watson processes without the 2nd moment condition. Their main result can be stated
as follows. Let Zn = (Z (1)

n , . . . , Z (d)
n ) be a d-type, nonsingular Galton–Watson process with

its mean matrix M := (E[Z ( j)
1 |Z (i)

0 = 1, Z (k)
0 = 0,∀k ̸= i])1≤i, j≤d being positive regular,

that is, all entries of M are finite and there exists a number n ≥ 1 such that all entries of
Mn are positive. Denote by F(s) = (F1(s), . . . ,Fd (s)) the generating function of the offspring
distribution, and by F(n)(s), n > 1, its nth iterates. Assume that the process is critical in the
sense that the maximal eigenvalue of M is 1. Let v and u be the left and right eigenvectors of
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M , respectively, corresponding to this maximal eigenvalue 1, and normalized so that v · u = 1
and 1 · u = 1, where 1 is the vector (1, . . . , 1). Suppose that

vG(1 − xu)u = xαl(x), x > 0, (1.7)

where 0 < α ≤ 1; l is slowly varying at 0; and the matrix G(s) is defined by

1 − F(s) = (M − G(s))(1 − s), s ∈ Rd
+
.

Let an := v · (1 − F(n)(0)), with 0 ∈ Rd
+

being the vector (0, . . . , 0). It was shown in [9] that,
for each i ∈ Nd

0 \ {0},

nl(an) P(Zn ̸= 0|Z0 = i)α −−−→
n→∞

(i · u)α

α
, (1.8)

and for each j ∈ Nd
0 ,

{anZn · j; P(·|Zn ̸= 0,Z0 = i)} law
−−−→
n→∞

(v · j)z(α), (1.9)

where z(α) is a random variable with Laplace transform given by (1.6). For the converse of this
problem, Vatutin [32] showed that in order for the left side of (1.9) to have a non-degenerate
weak limit, one must have (1.7) for some 0 < α ≤ 1. Vatutin [32] also considered analogous
results for continuous time multitype critical Galton–Watson processes.

Asmussen and Hering [1, Sections 6.3 and 6.4] discussed similar questions for critical
branching Markov processes (Yt ) in a general space E under some ergodicity condition (the
so-called condition (M), see [1, p. 156]) on the mean semigroup of (Yt ). When the second
moment is infinite, under a condition parallel to (1.7) (the so-called condition (S) [1, p. 207]),
results parallel to (1.8) and (1.9) were proved in [1, Theorem 6.4.2] for critical branching
Markov processes.

In this paper, we are interested in a class of measure-valued branching Markov processes
known as (ξ, ψ)-superprocesses: ξ , the spatial motion of the superprocess, is a Hunt process on
a locally compact separable metric space E ; ψ , the branching mechanism of the superprocess,
is a function on E × [0,∞) of the form

ψ(x, z) := −β(x)z + σ (x)2z2
+

∫
(0,∞)

(e−zy
− 1 + zy)π (x, dy), x ∈ E, z ≥ 0, (1.10)

where β, σ ∈ Bb(E) and π (x, dy) is a kernel from E to (0,∞) such that supx∈E

∫
(0,∞)(y ∧

y2)π (x, dy) < ∞. For the precise definition and properties of superprocesses, see [20].
Results parallel to (1.1) and (1.2) have been obtained for some critical superprocesses by

Evans and Perkins [8] and Ren, Song and Zhang [26]. Evans and Perkins [8] considered critical
superprocesses with branching mechanism of the form (x, z) ↦→ z2 and with the spatial motion
satisfying some ergodicity conditions. Ren, Song and Zhang [26] extended the results of [8] to a
class of critical superprocesses with general branching mechanism and general spatial motions.
The main results of [26] are as follows. Let {(X t )t≥0; Pµ} be a critical superprocess starting
from a finite measure µ on E . Suppose the spatial motion ξ is intrinsically ultracontractive with
respect to some reference measure m, and the branching mechanism ψ satisfies the following
second moment condition

sup
x∈E

∫
(0,∞)

y2π (x, dy) < ∞. (1.11)

For any finite measure µ on E and any measurable function f on E , we use ⟨ f, µ⟩ to denote
the integral of f with respect to µ. Put ∥µ∥ = ⟨1, µ⟩. Under some other mild assumptions, it
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was proved in [26] that

tPµ(∥X t∥ ̸= 0) −−−→
t→∞

c−1
⟨φ,µ⟩, (1.12)

and for a large class of testing functions f on E ,

{t−1 X t ( f ); Pµ(·|∥X t∥ ̸= 0)}
law

−−−→
t→∞

c⟨φ∗, f ⟩me. (1.13)

Here, the constant c > 0 is independent of the choice of µ and f ; ⟨·, ·⟩m denotes the inner
product in L2(E,m); e is an exponential random variable with mean 1; and φ (respectively, φ∗)
is the principal eigenfunction of (respectively, the dual of) the generator of the mean semigroup
of X . In [25], we provided an alternative probabilistic approach to (1.12) and (1.13).

It is natural to ask whether results parallel to (1.4) and (1.5) are still valid for some critical
superprocesses without the second moment condition (1.11). A simpler version of this question
has already been answered in the context of continuous-state branching processes (CSBPs)
which can be viewed as superprocesses without spatial movements. Kyprianou and Pardo [19]
considered CSBPs {(Yt )t≥0; P} with stable branching mechanism ψ(z) = czγ , where c > 0
and γ ∈ (1, 2]. They showed that for all x ≥ 0, with ct := (c(γ − 1)t)1/(γ−1),

{c−1
t Yt ; P(·|Yt > 0, Y0 = x)}

law
−−−→
t→∞

z(γ−1), (1.14)

where z(γ−1) is a random variable with Laplace transform given by (1.6) (with α = γ − 1)
and is independent of the initial position x . Recently, Ren, Yang and Zhao [28] studied CSBPs
{(Yt )t≥0; P} with branching mechanism

ψ(z) = czγ l(z), z ≥ 0, (1.15)

where c > 0, γ ∈ (1, 2] and l is a function slowly varying at 0. It was proved in [28] that for
all x ≥ 0, with λt := P1(Yt > 0),

{λt Yt ; P(·|Yt > 0, Y0 = x)}
law

−−−→
t→∞

z(γ−1) (1.16)

where the distribution of the random variable z(γ−1) is given by (1.6) (with α = γ − 1) and is
independent of the initial position x .

Later, Iyer, Leger and Pego [11] considered the converse problem: Suppose {(Yt )t≥0; P} is
a CSBP with critical branching mechanism ψ satisfying Grey’s condition. In order for the left
side of (1.16) to have a non-trivial weak limit for some positive constants (λt )t≥0, one must
have (1.15) for some 1 < γ ≤ 2.

In this paper, we will establish a result parallel to (1.14) for some critical (ξ, ψ)-
superprocesses {X; P} with spatially dependent stable branching mechanism. In particular, we
assume that the spatial motion ξ is intrinsically ultracontractive with respect to some reference
measure m, and the branching mechanism takes the form

ψ(x, z) = −β(x)z + κ(x)
∫

∞

0
(e−zy

− 1 + zy)
dy

Γ (−γ (x))y1+γ (x)

= −β(x)z + κ(x)zγ (x), x ∈ E, z ≥ 0,

where β ∈ Bb(E), γ ∈ B+

b (E), κ ∈ B+

b (E) with 1 < γ (·) < 2, γ0 := ess infm(dx) γ (x) > 1
and ess infm(dx) κ(x) > 0. Let µ be an arbitrary finite initial measure on E . We will show that
Pµ(∥X t∥ ̸= 0) converges to 0 as t → ∞ and is regularly varying at infinity with index 1

γ0−1 .
Furthermore, if m(x : γ (x) = γ0) > 0, we will show that

lim
t→∞

η−1
t Pµ(∥X t∥ ̸= 0) = µ(φ),
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and for a large class of non-negative testing functions f ,

{ηt X t ( f ); Pµ(·|∥X t∥ ̸= 0)}
law

−−−→
t→∞

⟨ f, φ∗
⟩mz(γ0−1), (1.17)

where ηt :=
(
CX (γ0 − 1)t

)−
1

γ0−1 , CX := ⟨1γ (·)=γ0κ · φγ0 , φ∗
⟩m and z(γ0−1) is a random variable

with Laplace transform given by (1.6) (with α = γ0 − 1). Notice that the distribution of the
weak limit ⟨ f, φ∗

⟩mz(γ0−1) does not depend on µ. Precise statements of the assumptions and the
results are presented in the next subsection. It is interesting to mention here that, even though
the stable index γ (x) is spatially dependent, the limiting behavior of the critical superprocess
{X; P} depends primarily on the lowest index γ0.

1.2. Model and results

We first fix our notation. Unless stated explicitly otherwise, E is assumed to be a locally
compact separable metric space. We use B(E) to denote the collection of all Borel subsets
of E and also the collection of all Borel functions on E . Define Bb(E) := { f ∈ B(E) :

supx∈E | f (x)| < ∞}, B+(E) := { f ∈ B(E) : ∀x ∈ E, f (x) ≥ 0} and B++(E) :=

{ f ∈ B(E) : ∀x ∈ E, f (x) > 0}. Define B+

b (E) := Bb(E) ∩ B+(E) and B++

b (E) :=

Bb(E) ∩ B++(E). Denote by ME the collection of all Borel measures on E . Denote by Mσ
E

the collection of all σ -finite Borel measures on E . For simplicity, we write µ( f ) and sometimes
⟨µ, f ⟩ for the integration of a function f with respect to a measure µ. For any f ∈ B+(E),
define M f

E := {µ ∈ ME : µ( f ) < ∞}. In particular, M1
E is the collection of all finite Borel

measures on E .
We now give the definition of a (ξ, ψ)-superprocess: Let the spatial motion ξ = {(ξt )t≥0;

(Πx )x∈E } be an E-valued Hunt process with its lifetime denoted by ζ , and the branching
mechanism ψ be a function on E × [0,∞) given by (1.10). We say an M1

E -valued Hunt
process X = {(X t )t≥0; (Pµ)µ∈M1

E
} is a (ξ, ψ)-superprocess if for each t ≥ 0, µ ∈ M1

E and
f ∈ B+

b (E), we have

Pµ[e−X t ( f )] = e−µ(Vt f ),

where the function (t, x) ↦→ Vt f (x) on [0,∞) × E is the unique locally bounded positive
solution to the equation

Vt f (x) + Πx

[∫ t∧ζ

0
ψ(ξs, Vt−s f )ds

]
= Πx [ f (ξt )1t<ζ ], t ≥ 0, x ∈ E . (1.18)

(In this paper, for any real-valued function F on E × [0,∞) and real-valued function f on E ,
we write F(x, f ) := F(x, f (x)) for simplicity.)

Recall that the branching mechanism ψ is given by (1.10) and its linear coefficient β is a
bounded Borel function on E . Define the Feynman–Kac semigroup

Pβ
t f (x) := Πx

[
e
∫ t

0 β(ξr )dr f (ξt )1t<ζ
]
, t ≥ 0, x ∈ E, f ∈ Bb(E).

It is known, see [20, Proposition 2.27] for example, (Pβ
t ) is the mean semigroup of the

superprocess {X; P} in the sense that

Pµ[X t ( f )] = µ(Pβ
t f ), µ ∈ M1

E , t ≥ 0, f ∈ Bb(E). (1.19)

The mean semigroup plays a central role in the study of the asymptotic behavior of superpro-
cesses. As discussed in [8], in order to have a result like (1.13) or (1.17), we have to establish
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the asymptotic behavior of the mean semigroup first. This can be done under the following
assumptions on the spatial motion ξ :

Assumption 1. There exist an m ∈ Mσ
E with full support on the state space E and a family

of strictly positive, bounded continuous functions {pt (·, ·) : t > 0} on E × E such that

Pt f (x) := Πx [ f (ξt )1t<ζ ] =

∫
E

pt (x, y) f (y)m(dy), t > 0, x ∈ E, f ∈ Bb(E);∫
E

pt (y, x)m(dy) ≤ 1, t > 0, x ∈ E;∫
E

∫
E

pt (x, y)2m(dx)m(dy) < ∞, t > 0;

and the functions x ↦→
∫

E pt (x, y)2m(dy) and x ↦→
∫

E pt (y, x)2m(dy) are both continuous.

We will write ⟨ f, g⟩m for
∫

E f gdm to emphasize that it is the inner product in the Hilbert
space L2(E,m). Let (P∗

t )t≥0 be the dual of the transition semigroup (Pt )t≥0, i.e.,

P∗

0 = I ; P∗

t f (x) :=

∫
E

pt (y, x) f (y)m(dy), t > 0, x ∈ E, f ∈ Bb(E).

Under Assumption 1, it is proved in [26,27] that (Pt )t≥0 and (P∗
t )t≥0 are both strongly

continuous semigroups of compact operators on L2(E,m). Let L̃ and L̃∗ be the generators
of the semigroups (Pt )t≥0 and (P∗

t )t≥0, respectively. Denote by σ (L̃) and σ (L̃∗) the spectra of
L̃ and L̃∗, respectively. According to [29, Theorem V.6.6], λ̃ := sup Re(σ (L̃)) = sup Re(σ (L̃∗))
is a common eigenvalue of multiplicity 1 for both L̃ and L̃∗. By the argument in [26],
the eigenfunctions φ̃ of L̃ and φ̃∗ of L̃∗ associated with the eigenvalue λ̃ can be chosen
to be strictly positive and continuous everywhere on E . We further normalize φ̃ and φ̃∗ by⟨
φ̃, φ̃

⟩
m =

⟨
φ̃, φ̃∗

⟩
m = 1 so that they are unique.

It is also proved in [26,27] that there exists a function pβt (x, y) on (0,∞) × E × E which
is continuous in (x, y) for each t > 0 such that

e−∥β∥∞t pt (x, y) ≤ pβt (x, y) ≤ e∥β∥∞t pt (x, y), t > 0, x, y ∈ E,

and that for any t > 0, x ∈ E and f ∈ Bb(E),

Pβ
t f (x) =

∫
E

pβt (x, y) f (y)m(dy).

(pβt )t≥0 is called the density of the semigroup (Pβ
t )t≥0. Define the dual semigroup (Pβ∗

t )t≥0 by

Pβ∗

0 = I ; Pβ∗

t f (x) :=

∫
E

pβt (y, x) f (y)m(dy), t > 0, x ∈ E, f ∈ Bb(E).

It is proved in [26,27] that (Pβ
t )t≥0 and (Pβ∗

t )t≥0 are both strongly continuous semigroups of
compact operators on L2(E,m). Let L and L∗ be the generators of the semigroups (Pβ

t )t≥0

and (Pβ∗

t )t≥0, respectively. Denote by σ (L) and σ (L∗) the spectra of L and L∗, respectively.
According to [29, Theorem V.6.6], λ := sup Re(σ (L)) = sup Re(σ (L∗)) is a common
eigenvalue of multiplicity 1 for both L and L∗. By the argument in [26], the eigenfunctions φ
of L and φ∗ of L∗ associated with the eigenvalue λ can be chosen to be strictly positive and
continuous everywhere on E . We further normalize φ and φ∗ by ⟨φ, φ⟩m = ⟨φ, φ∗

⟩m = 1 so
that they are unique. Moreover, for each t ≥ 0 and x ∈ E , we have Pβ

t φ(x) = eλtφ(x) and
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Pβ∗

t φ∗(x) = eλtφ∗(x). We refer to φ (resp. φ∗) and λ as the principal eigenfunction and the
principal eigenvalue of L (resp. L∗).

Now, from

Pµ[X t (φ)] = eλtµ(φ), t ≥ 0,

we see that, if λ > 0, the mean of X t (φ) will increase exponentially; if λ < 0, the mean
of X t (φ) will decrease exponentially; and if λ = 0, the mean of X t (φ) will be a constant.
Therefore, we say X is supercritical, critical or subcritical, according to λ > 0, λ = 0 or
λ < 0, respectively. Since we are only interested in the critical case, we assume the following:

Assumption 2. The superprocess X is critical, i.e., λ = 0.

Our next assumption is on the spatial motion ξ :

Assumption 3. φ̃ is bounded, and (Pt )t≥0 is intrinsically ultracontractive, that is, for each
t > 0, there is a constant ct > 0 such that for each x, y ∈ E , pt (x, y) ≤ ct φ̃(x)φ̃∗(y).

Under Assumption 3, it is proved in [26,27] that the principal eigenfunction φ of the
Feynman–Kac semigroup (Pβ

t )t≥0 is also bounded. Moreover, (Pβ
t )t≥0 is also intrinsically

ultracontractive, in the sense that for each t > 0, there is a constant ct > 0 such that for
each x, y ∈ E , pβt (x, y) ≤ ctφ(x)φ∗(y). In fact, it is proved in [14] that for each t > 0,
(pβt (x, y))x,y∈E is comparable to (φ(x)φ∗(y))x,y∈E in the sense that there is a constant ct > 1
such that

c−1
t ≤

pβt (x, y)
φ(x)φ∗(y)

≤ ct , x, y ∈ E . (1.20)

It is also shown in [14] that there are constants c0, c1 > 0 such that

sup
x,y∈E

⏐⏐⏐ pβt (x, y)
φ(x)φ∗(y)

− 1
⏐⏐⏐ ≤ c0e−c1t , t > 1. (1.21)

Assumption 3 is a pretty strong assumption on the semigroup {Pt : t ≥ 0}. For example, it
rules out the semigroup of Brownian motion on Rd and the semigroup of Ornstein–Uhlenbeck
process on Rd . However, this assumption is satisfied in a lot of cases. In [26], a list of examples
of processes satisfying Assumptions 1 and 3 were given. For the convenience of our readers,
we will briefly recall some of these examples in Appendix A.1.

Recall that the branching mechanism is given by (1.10). We assume the following:

Assumption 4. The branching mechanism ψ is of the form:

ψ(x, z) = −β(x)z + κ(x)
∫

∞

0
(e−zy

− 1 + zy)
dy

Γ (−γ (x))y1+γ (x)

= −β(x)z + κ(x)zγ (x), x ∈ E, z ≥ 0,

where γ ∈ B+

b (E), κ ∈ B++

b (E) with 1 < γ (·) < 2, γ0 := ess infm(dx) γ (x) > 1 and
κ0 := ess infm(dx) κ(x) > 0.

Here we used the definition of the Gamma function on the negative half line:

Γ (x) :=

∫
∞

0
t x−1

(
e−t

−

n−1∑
k=0

(−t)k

k!

)
dt, −n < x < −n + 1, n ∈ N. (1.22)

We now present the main result of this paper:
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Theorem 1.1. Suppose that {(X t )t≥0; (Pµ)µ∈M1
E
} is a (ξ, ψ)-superprocess satisfying Assump-

tions 1–4. Then,

(1) {X; P} is non-persistent, that is, for each t > 0 and x ∈ E, Pδx (∥X t∥ = 0) > 0.
(2) For each µ ∈ M1

E , Pµ(∥X t∥ ̸= 0) converges to 0 as t → ∞ and is regularly varying at
infinity with index −(γ0 − 1)−1. Furthermore, if m(x : γ (x) = γ0) > 0, then

lim
t→∞

η−1
t Pµ(∥X t∥ ̸= 0) = µ(φ).

(3) Suppose m(x : γ (x) = γ0) > 0. Let f ∈ B+(E) be such that ⟨ f, φ∗
⟩m > 0 and

∥φ−1 f ∥∞ < ∞. Then for each µ ∈ M1
E ,

{ηt X t ( f ); Pµ(·|∥X t∥ ̸= 0)}
law

−−−→
t→∞

⟨ f, φ∗
⟩mz(γ0−1).

Here, ηt :=
(
CX (γ0 − 1)t

)−
1

γ0−1 , CX := ⟨1γ (·)=γ0κ · φγ0 , φ∗
⟩m and z(γ0−1) is a random variable

with Laplace transform given by (1.6) (with α = γ0 − 1).

1.3. Methods and overview

To establish Theorems 1.1(2) and 1.1(3), we use a spine decomposition theorem for X .
Roughly speaking, the spine is the trajectory of an immortal moving particle and the spine
decomposition theorem says that, after a martingale change of measure, the transformed
superprocess can be decomposed in law as the sum of a copy of the original superprocess
and a measure-valued immigration process along this spine, see [6,7,21]. The martingale used
for the change of measure is (e−λt X t (φ))t≥0. Under Assumptions 1 and 3, the spine process
{ξ ;Π (φ)

} is an ergodic process. We take advantage of this ergodicity to study the asymptotic
behavior of the superprocess.

Similar idea has already been used by Powell [23] to establish results parallel to (1.12)
and (1.13) for a class of critical branching diffusion processes. Let {(Yt )t≥0; P} be a branching
diffusion process in a bounded domain with finite second moment. As have been discussed
in [23], a direct study of the partial differential equation satisfied by the survival probability
(t, x) ↦→ Pδx (∥Yt∥ ̸= 0) is tricky. Instead, by using a spine decomposition approach,
Powell [23] showed that the survival probability decays like a(t)φ(x), where φ(x) is the
principal eigenfunction of the mean semigroup of (Yt ) and a(t) is a function capturing the
uniform speed. Then the problem is reduced to the study of a single ordinary differential
equation satisfied by a(t). Later, inspired by [23], we gave in [25] a similar proof of (1.12)
for a class of general critical superprocesses with finite second moment. In this paper, we
will generalize these arguments to a class of general critical superprocesses without finite
second moment and establish Theorem 1.1(2). For the conditional weak convergence result,
i.e., Theorem 1.1(3), we use a fact that the Laplace transform given in (1.6) can be characterized
by a non-linear delay equation (see Lemma A.9). Using the spine method, we show that the
Laplace transform of the one-dimensional distributions of the superprocess, after a proper
rescaling, can be characterized by a similar equation (see (3.24)). Then, the desired convergence
of the distributions can be established by a comparison between the equations. Again, the
ergodicity of the spine process plays a central role in the comparison.

A similar idea for establishing weak convergence through a comparison of the equations
satisfied by the distributions has already been used by us in [24,25]. We characterized the
exponential distribution using its double size-biased transform; and to help us make the
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comparison, we investigated the double size-biased transform of the corresponding processes.
However, the double-size-biased transform of a random variable requires its second moment
being finite. Since we do not assume the second moment condition in this paper, we cannot
use the method of double size-biased transform.

In [23] (for critical branching diffusions in a bounded domain with finite variance) and
in [25,26] (for general critical superprocesses with finite variance), the conditional weak
convergence was proved in two steps. First, a convergence result was established for φ, the
principal eigenfunction of the mean semigroup of the corresponding process, and then the
second moment condition was used to extend the result to more general testing functions.
However, in the present case, since we are not assuming the second moment condition, this
type of argument does not work. Instead, we use a generalized spine decomposition theorem,
which is developed in [25], to establish Theorem 1.1(3) for a large class of general testing
functions in one stroke.

The rest of this paper is organized as follows: In Sections 2.1, 2.2 and 2.3, we give some
preliminary results about the asymptotic equivalence, regularly variation and superprocesses,
respectively. In Section 2.4, we present the generalized spine decomposition theorem. In
Section 2.5, we discuss the ergodicity of the spine process. In Sections 3.1 and 3.2 we give
the poofs of Theorem 1.1(1) and 1.1(2), respectively. In Section 3.3, we give the equation
that characterize the one-dimensional distributions. In Section 3.4, we give the proof of
Theorem 1.1(3). In Appendix A.2, we give the equation that characterizes the distribution with
Laplace transform (1.6), which is used in the proof of Theorem 1.1(3).

2. Preliminaries

2.1. Asymptotic equivalence

In this subsection, we give a lemma on asymptotic equivalence. Let t0 ∈ [−∞,∞]. In this
subsection, (E,E ) is assumed to be a measurable space. For any f0, f1 ∈ B++(R), we say
f0 and f1 are asymptotically equivalent at t0, if

⏐⏐ f0(t)
f1(t) − 1

⏐⏐ −−→
t→t0

0; and in this case, we write

f0(t) ∼
t→t0

f1(t). For any strictly positive measurable functions g0, g1 on R× E , we say g0 and

g1 are uniformly asymptotically equivalent at t0, if supx∈E

⏐⏐ g0(t,x)
g1(t,x) −1

⏐⏐ −−→
t→t0

0; and in this case,

we write g0(t, x)
x∈E
∼

t→t0
g1(t, x).

Lemma 2.1. Suppose that f0, f1 are bounded strictly positive measurable functions on R× E
and f0(t, x)

x∈E
∼

t→t0
f1(t, x). If ρ is a finite non-degenerate measure on (E,E ), then∫

E
f0(t, x)ρ(dx) ∼

t→t0

∫
E

f1(t, x)ρ(dx).

Proof. Since⏐⏐⏐ ∫E f0(t, x)ρ(dx)∫
E f1(t, x)ρ(dx)

− 1
⏐⏐⏐ =

⏐⏐⏐ ∫
E

f0(t, x)
f1(t, x)

f1(t, x)ρ(dx)∫
E f1(t, y)ρ(dy)

− 1
⏐⏐⏐

≤

∫
E

⏐⏐⏐ f0(t, x)
f1(t, x)

− 1
⏐⏐⏐ f1(t, x)ρ(dx)∫

E f1(t, y)ρ(dy)
≤ sup

x∈E

⏐⏐⏐ f0(t, x)
f1(t, x)

− 1
⏐⏐⏐ −−→

t→t0
0,

the assertion is valid. □
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2.2. Regular variation

In this subsection, we give some preliminary results on regular variation. We refer the reader
to [4] for more results on regular variation. For f ∈ B++((0,∞)) and α ∈ (−∞,∞), we say
f is regularly varying at ∞ (resp. at 0) with index α if for any u ∈ (0,∞),

lim
t→∞

f (ut)
f (t)

= uα
(

resp. lim
t→0

f (ut)
f (t)

= uα
)
.

In this case we write f ∈ R∞
α (resp. f ∈ R0

α). Further, if α = 0, then we say f is slowly
varying. According to [4, Theorem 1.3.1], if L is a function slowly varying at ∞, then it can
be written in the form

L(t) = c(t) exp
{∫ t

t0

ϵ(u)
du
u

}
, t ≥ t0,

for some t0 > 0, where (c(t))t≥t0 and (ϵ(t))t≥t0 are measurable functions with c(t) −−−→
t→∞

c ∈

(0,∞) and ϵ(t) −−−→
t→∞

0. In particular, we know that, there is t0 > 0 large enough such that L
is locally bounded on [t0,∞).

Lemma 2.2 ([4, Propositions 1.5.8 and 1.5.10]). Suppose that L ∈ R∞

0 .

• Let t0 ∈ (0,∞) be large enough so that L is locally bounded on [t0,∞). If α > 0, then∫ t

t0

L(u)duα ∼
t→∞

tαL(t).

• If α < 0 then
∫

∞

t L(u)duα < ∞ for t large enough, and

−

∫
∞

t
L(u)duα ∼

t→∞
tαL(t).

Corollary 2.3. Suppose that l ∈ R0
0.

• Let s0 ∈ (0,∞) be small enough so that l is locally bounded on (0, s0]. If α < 0, then

−

∫ s0

s
l(u)duα ∼

s→0
sαl(s).

• If α > 0, then
∫ s

0 l(u)duα < ∞ for s small enough, and∫ s

0
l(u)duα ∼

s→0
sαl(s).

Proof. Since l ∈ R0
0, we know that, if one defines L(t) := l(t−1) for each t ∈ (0,∞), then

L ∈ R∞

0 . Therefore, there exists t0 ∈ (0,∞) such that L is locally bounded on [t0,∞). Taking
s0 := t−1

0 , we then immediately get that l is locally bounded on (0, s0]. If α < 0, then according
to Lemma 2.2, we have∫ t

t0

L(u)du−α
∼

t→∞
t−αL(t).
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Replacing t with s−1, we have

−

∫ s0

s
l(u)duα =

∫ s−1

s−1
0

L(u)du−α
∼

s→0
(s−1)−αL(s−1) = sαl(s),

as desired. The second assertion can be proved similarly. □

Lemma 2.4 ([4, Theorem 1.5.12]). If f ∈ R∞
α with α > 0, there exists g ∈ R∞

1/α with

g( f (t)) ∼
t→∞

f (g(t)) ∼
t→∞

t.

Here g is determined uniquely up to asymptotic equivalence as t → ∞.

Corollary 2.5. If f ∈ R0
α with α < 0, there exists g ∈ R∞

1/α with

g( f (t)) ∼
t→0

t; f (g(t)) ∼
t→∞

t. (2.1)

Here g is determined uniquely up to asymptotic equivalence as t → ∞.

Proof. Since f ∈ R0
α , we know that f̃ ∈ R∞

−α with f̃ (t) := f (t−1). Noticing that −α > 0,
according to Lemma 2.4, there exists h ∈ R∞

−1/α such that

h( f̃ (t)) ∼
t→∞

t; f̃ (h(t)) ∼
t→∞

t. (2.2)

Denoting by g := h−1
∈ R∞

1/α , the above translates to (2.1).
Now, suppose that there is another g0 ∈ R∞

1/α satisfies (2.1) with g replaced by g0. Denoting
by h0 := g−1

0 , we can verify that (2.2) is valid with h replaced by h0. According to Lemma 2.4,
h and h0 are asymptotically equivalent at ∞. Hence, so are g and g0. □

Lemma 2.6. Let (E,E ) be a measurable space and ρ a finite non-degenerate measure on
(E,E ). Let α be a bounded measurable function on E with

α0 := ess inf
ρ(dx)

α(x) := sup{r : ρ(x : α(x) < r ) = 0} ∈ R.

Then
(∫

E tα(x)ρ(dx)
)

t∈(0,∞) ∈ R0
α0

. Further, if ρ{x : α(x) = α0} > 0, then∫
E

tα(x)ρ(dx) ∼
t→0

ρ{x : α(x) = α0}tα0 .

Proof. If u ∈ (0, 1], then we have∫
E uα(x)tα(x)ρ(dx)∫

E tα(x)ρ(dx)
≤

∫
E uα0 tα(x)ρ(dx)∫

E tα(x)ρ(dx)
= uα0 , t ∈ (0,∞).

This implies that

lim sup
(0,∞)∋t→0

∫
E uα(x)tα(x)ρ(dx)∫

E tα(x)ρ(dx)
≤ uα0 .
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Also, for any ϵ ∈ (0,∞), we have∫
E uα(x)tα(x)ρ(dx)∫

E tα(x)ρ(dx)
≥

∫
α(x)≤α0+ϵ

uα(x)tα(x)ρ(dx)∫
E tα(x)ρ(dx)

≥ uα0+ϵ

∫
α(x)≤α0+ϵ

tα(x)ρ(dx)∫
α(x)≤α0+ϵ

tα(x)ρ(dx) +
∫
α(x)>α0+ϵ

tα(x)ρ(dx)

= uα0+ϵ 1

1 +

∫
α(x)>α0+ϵ tα(x)−(α0+ϵ)ρ(dx)∫
α(x)≤α0+ϵ tα(x)−(α0+ϵ)ρ(dx)

, t ∈ (0,∞),

−−−−−−→
(0,∞)∋t→0

uα0+ϵ,

where the last convergence is due to the monotone convergence theorem. Therefore

lim inf
(0,∞)∋t→0

∫
E uα(x)tα(x)ρ(dx)∫

E tα(x)ρ(dx)
≥ uα0 .

Summarizing the above, we get

lim
(0,∞)∋t→0

∫
E uα(x)tα(x)ρ(dx)∫

E tα(x)ρ(dx)
= uα0 , u ∈ (0, 1].

If u ∈ (1,∞), taking f (x, t) := tα(x), from what we have proved, we also have that

lim
(0,∞)∋t→0

∫
E f (x, ut)ρ(dx)∫
E f (x, t)ρ(dx)

= lim
(0,∞)∋t→0

∫
E f (x, t)ρ(dx)∫

E f (x, u−1t)ρ(dx)
=

(
(u−1)α0

)−1
= uα0 .

This proved the first part of the lemma.
If further we have ρ(x : α(x) = α0) > 0, then by the monotone convergence theorem it is

easy to see that∫
E tα(x)ρ(dx)

tα0
−−−−−−→
(0,∞)∋t→0

ρ(x : α(x) = α0) ∈ (0,∞). □

2.3. Superprocesses

In this subsection, we recall some known results on the (ξ, ψ)-superprocess {X; P}. It is
known, see [20, Theorem 2.23] for example, that (1.18) can be written as

Vt f (x) +

∫ t

0
Pβ

t−rψ0(x, Vr f )dr = Pβ
t f (x), f ∈ B+

b (E), t ≥ 0, x ∈ E, (2.3)

where

ψ0(x, z) := ψ(x, z) + β(x)z, x ∈ E, z ≥ 0.

Suppose that Assumptions 1–2 hold. Since φ∗ is the principal eigenfunction of the semigroup
(Pβ∗

t )t≥0, we have

⟨Pβ
t f, φ∗

⟩m = ⟨ f, Pβ∗

t φ∗
⟩m = ⟨ f, φ∗

⟩m, f ∈ B+

b (E), t ≥ 0.

Therefore, integrating both sides of (2.3) with respect to the measure φ∗dm, we get that

⟨Vt f, φ∗
⟩m +

∫ t

0
⟨ψ0(·, Vr f ), φ∗

⟩mdr = ⟨ f, φ∗
⟩m, t ≥ 0, f ∈ B+

b (E).
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This can be rearranged as

⟨Vt f, φ∗
⟩m +

∫ t

s
⟨ψ0(·, Vr f ), φ∗

⟩mdr = ⟨Vs f, φ∗
⟩m, t ≥ s ≥ 0, f ∈ B+

b (E). (2.4)

Let W be the collection of all M1
E -valued càdlàg paths on [0,∞). We refer to W as the

canonical space of (X t )t≥0. In fact, (X t ) can be viewed as a W-valued random variable. We
denote the coordinate process of W by (Wt )t≥0.

We say that (X t )t≥0 is non-persistent if Pδx (∥X t∥ = 0) > 0 for all x ∈ E and t > 0. Suppose
that (X t )t≥0 is non-persistent, then according to [20, Section 8.4], there is a family of measures
(Nx )x∈E on W such that

• for each x ∈ E , Nx (∀t > 0, ∥Wt∥ = 0) = 0;
• for each x ∈ E , Nx (∥W0∥ ̸= 0) = 0;
• for any µ ∈ M1

E , if N is a Poisson random measure on W with intensity Nµ(·) :=∫
E Nx (·)µ(dx), then the superprocess {X; Pµ} can be realized by X̃0 := µ and X̃ t (·) :=

N [Wt (·)], t > 0.

We refer to (Nx )x∈E as the Kuznetsov measures of X . For the existence and further properties
of such measures, we refer our readers to [20].

From Campbell’s formula, see the proof of [18, Theorem 2.7] for example, we have

− log Pµ[e−X t ( f )] = Nµ[1 − e−Wt ( f )], µ ∈ M1
E , t > 0, f ∈ B+

b (E). (2.5)

For each x ∈ E and t ≥ 0, taking µ = δx and f = λ1E with λ > 0 in the above equation, and
letting λ → ∞, we get

vt (x) := lim
λ→∞

Vt (λ1E )(x) = − log Pδx (∥X t∥ = 0) = Nx (∥Wt∥ ̸= 0). (2.6)

For each µ ∈ M1
E and t > 0, by (2.5), (2.6) and the monotone convergence theorem, we have

Nµ(∥Wt∥ ̸= 0) = − log Pµ(∥X t∥ = 0) = lim
λ→∞

(− log Pµ[e−λX t (1E )])

= lim
λ→∞

⟨µ, Vt (λ1E )⟩ = µ(vt ). (2.7)

It is also known that for any f ∈ B+

b (E),

Nµ[Wt ( f )] = Pµ[X t ( f )] = µ(Pβ
t f ), t ≥ 0. (2.8)

2.4. Spine decompositions

Let (Ω ,F ) be a measurable space with a σ -finite measure µ. For any F ∈ F , we say µ
can be size-biased by F if µ(F < 0) = 0 and µ(F) ∈ (0,∞). In this case, we define the
F-transform of µ as the probability µF on (Ω ,F ) such that

dµF
=

F
µ(F)

dµ.

Let {X; P} be a non-persistent superprocess. Let µ ∈ M1
E and T > 0. Suppose that

g ∈ B+(E) satisfies that µ(Pβ

T g) ∈ (0,∞). Then, according to (2.8), Pµ (resp. Nµ) can be
size-biased by XT (g) (resp. WT (g)). Denote by PXT (g)

µ (resp. NWT (g)
µ ) the XT (g)-transform of

Pµ (resp. the WT (g)-transform of Nµ). The spine decomposition theorem characterizes the law
of {(X t )t≥0; PXT (g)

µ } in two steps. The first step of the theorem says that {(X t )t≥0; PXT (g)
µ } can

be decomposed in law as the sum of two independent measure-valued processes:
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Theorem 2.7 (Size-biased Decomposition, [25]).

{(X t )t≥0; PXT (g)
µ }

f.d.d.
= {(X t + Wt )t≥0; Pµ ⊗ NWT (g)

µ }.

The second step of the spine decomposition theorem says that {(Wt )0≤t≤T ;NWT (g)
µ } has a

spine representation, which intuitively says that, under probability NWT (g)
µ , the measure-valued

process (Wt )0≤t≤T can be decomposed as a measure-valued immigration process along the
trajectory of a spine process in a Poissonian way.

More precisely, we say {(ξt )0≤t≤T ,nT , (Yt )0≤t≤T ; Ṗ(g,T )
µ } is a spine representation of NWT (g)

µ

if:

• The spine process {(ξt )0≤t≤T ; Ṗ(g,T )
µ } is a copy of {(ξt )0≤t≤T ;Π

(g,T )
µ }, where Π

(g,T )
µ is the

g(ξT ) exp{
∫ T

0 β(ξs)ds}-transform of the measure Πµ(·) :=
∫

E µ(dx)Πx (·);
• Given {(ξt )0≤t≤T ; Ṗ(g,T )

µ }, the immigration measure {nT ; Ṗ(g,T )
µ [·|(ξt )0≤t≤T ]} is a Poisson

random measure on [0, T ] × W with intensity

mξ

T (ds, dw) := 2α(ξs)ds · Nξs (dw) + ds ·

∫
(0,∞)

yPyδξs (X ∈ dw)π (ξs, dy);

• {(Yt )0≤t≤T ; Ṗ(g,T )
µ } is an M1

E -valued process defined by

Yt :=

∫
(0,t]×W

wt−snT (ds, dw), 0 ≤ t ≤ T .

Theorem 2.8 (Spine Representation, [25]). Let {(Yt )0≤t≤T ; Ṗ(g,T )
µ } be the spine representation

of NWT (g)
µ defined above. Then we have

{(Yt )0≤t≤T ; Ṗ(g,T )
µ }

f.d.d.
= {(Wt )0≤t≤T ;NWT (g)

µ }.

Notice that PXT (g)
µ (X0 = µ) = 1. Also notice that Nµ is not a probability measure, but

after the size-biased transform, NWT (g)
µ is a probability measure. Since Nµ(∥W0∥ ̸= 0) = 0, we

have NWT (g)
µ (∥W0∥ = 0) = 1. Similarly, Πµ is not typically a probability measure, but after the

size-biased transform, Π (T,g)
µ is a probability measure. We note that

Π (T,g)
µ [ f (ξ0)] =

1

µ(Pβ

T g)
Πµ

[
g(ξT ) exp

{∫ T

0
β(ξs)ds

}
f (ξ0)

]
=

1

µ(Pβ

T g)

∫
E

(Pβ

T g)(x) · f (x)µ(dx),

which says that

Π (T,g)
µ (ξ0 ∈ dx) =

1

µ(Pβ

T g)
(Pβ

T g)(x)µ(dx), x ∈ E . (2.9)

Now, suppose that {ξ ;Π } satisfies Assumption 1. Recall that φ is the principal eigenfunction
of the mean semigroup of X . The classical spine decomposition theorem, see [6,7,21]
for example, considered the case g = φ only. In this case, the family of probabilities
(Π (φ,T )

µ )T ≥0 is consistent in the sense of Kolmogorov’s extension theorem, that is, the process
{(ξt )0≤t≤T ;Π (φ,T )

µ } can be realized as the restriction of some process, say {(ξt )t≥0;Π
(φ)
µ }, on the

finite time interval [0, T ]. In fact, one can also check that this consistency property is satisfied
by (PXT (φ)

µ )T ≥0, (NWT (φ)
µ )T ≥0 and (Ṗ(φ,T )

µ )T ≥0. Therefore, the actual statement of the classical
spine decomposition theorem is different from merely replacing g with φ in Theorems 2.7 and
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2.8: There is no need to restrict the corresponding processes on the finite time interval [0, T ].
Because of its theoretical importance, we state the classical spine decomposition theorem
explicitly here:

Corollary 2.9. For each µ ∈ Mφ

E ∩ M1
E , we have

{(X t )t≥0; P(φ)
µ }

f.d.d.
= {(X t + Wt )t≥0; Pµ ⊗ N(φ)

µ }.

Here, the probability P(φ)
µ is Doob’s h-transform of Pµ whose restriction on the natural filtration

(F X
t ) of the process (X t )t≥0 is

d(P(φ)
µ |F X

t
) =

X t (φ)
µ(φ)

d(Pµ|F X
t

), t ≥ 0;

and N(φ)
µ is a probability measure on W whose restriction on the natural filtration (F W

t ) of
the process (Wt )t≥0 is

d(N(φ)
µ |F W

t
) =

Wt (φ)
µ(φ)

d(Nµ|F W
t

), t ≥ 0.

Let µ ∈ M(φ)
µ , we say {(ξt )t≥0,n, (Yt )t≥0; Ṗ(φ)

µ } is a spine representation of N(φ)
µ if:

• The spine process {(ξt )t≥0; Ṗ(φ)
µ } is a copy of {(ξt )t≥0;Π

(φ)
µ } where the probability Π (φ)

µ is
Doob’s h-transform of Πµ whose restriction on the natural filtration (F ξ

t ) of the process
(ξt )t≥0 is

d(Π (φ)
µ |

F
ξ
t

) =
φ(ξt )e

∫ t
0 β(ξs )ds

µ(φ)
d(Πµ|F

ξ
t

), t ≥ 0;

• Conditioned on {(ξt )t≥0; Ṗ(φ)
µ }, the immigration measure {n; Ṗ(φ)

µ [·|(ξt )t≥0]} is a Poisson
random measure on [0,∞) × W with intensity

mξ (ds, dw) := 2α(ξs)ds · Nξs (dw) + ds ·

∫
(0,∞)

yPyδξs (X ∈ dw)π (ξs, dy);

• {(Yt )t≥0; Ṗ(φ)
µ } is an M1

E -valued process defined by

Yt :=

∫
(0,t]×W

wt−sn(ds, dw), t ≥ 0.

Corollary 2.10. Let {(Yt )t≥0; Ṗ(φ)
µ } be the spine representation of N(φ)

µ defined above. Then we
have

{(Yt )t≥0; Ṗ(φ)
µ }

f.d.d.
= {(Wt )t≥0;N(φ)

µ }.

For the sake of generality, the spine decomposition theorems above are all stated with respect
to a general initial configuration µ. If µ = δx for some x ∈ E , then by (2.9), we have
Π

(T,g)
δx

(ξ0 = x) = 1, so sometimes we write Π
(T,g)
x for Π

(T,g)
δx

. Similarly, we write Π
(φ)
x for

Π
(φ)
δx

.

2.5. Ergodicity of the spine process

In this subsection, we discuss the ergodicity of the spine process {(ξt )t≥0; (Π (φ)
x )x∈E } under

Assumptions 1–3. According to [14], {ξ ;Π
(φ)
x } is a time homogeneous Hunt process and its



Y.-X. Ren, R. Song and Z. Sun / Stochastic Processes and their Applications 130 (2020) 4358–4391 4373

transition density with respect to the measure m is

qt (x, y) :=
φ(y)
φ(x)

pβt (x, y), x, y ∈ E, t > 0.

Let c0 > 0 and c1 > 0 be the constants in (1.21), then we have

sup
x∈E

⏐⏐⏐ qt (x, y)
φ(y)φ∗(y)

− 1
⏐⏐⏐ ≤ c0e−c1t , t > 1. (2.10)

This implies that the process {ξ ;Π
(φ)
x } is ergodic. One can easily get from (2.10) that

(φφ∗)(x)m(dx) is the unique invariant probability measure of {ξ ;Π
(φ)
x }. The following two

lemmas are also simple consequences of (2.10). They will be needed in the proof of
Theorem 1.1(3).

Lemma 2.11 ([25, Lemma 5.1]). If F ∈ Bb(E × [0, 1] × [0,∞)) is such that F(y, u) :=

limt→∞ F(y, u, t) exists for each y ∈ E and u ∈ [0, 1], then∫ 1

0
F(ξ(1−u)t , u, t)du

L2(Π (φ)
x )

−−−−−→
t→∞

∫ 1

0
⟨F(·, u), φφ∗

⟩mdu, x ∈ E .

Lemma 2.12. Let F ∈ B+

b (E × [0, 1] × [0,∞)). Define F(y, u) := lim supt→∞ F(y, u, t) for
each y ∈ E and u ∈ [0, 1]. Then, for each x ∈ E and p ≥ 1,

lim sup
t→∞

 ∫ 1

0
F(ξ(1−u)t , u, t)du


Π

(φ)
x ;L p

≤

∫ 1

0
⟨F(·, u), φφ∗

⟩mdu, x ∈ E .

Proof. For each (y, u, t) ∈ E × [0, 1] × [0,∞), define F̄(y, u, t) := sups:s≥t F(y, u, s). Then
F̄ ∈ Bb(E × [0, 1] × [0,∞)) and

F(x, u) = lim
t→∞

F̄(x, u, t), x ∈ E, u ∈ [0, 1].

From Lemma 2.11, we know that∫ 1

0
F̄(ξ(1−u)t , u, t)du

L2(Π (φ)
x )

−−−−−→
t→∞

∫ 1

0
⟨F(·, u), φφ∗

⟩mdu, x ∈ E,

which implies convergence in probability. The bounded convergence theorem then gives that,
for each p ≥ 1,∫ 1

0
F̄(ξ(1−u)t , u, t)du

L p(Π (φ)
x )

−−−−−→
t→∞

∫ 1

0
⟨F(·, u), φφ∗

⟩mdu, x ∈ E .

Finally, noting that 0 ≤ F ≤ F̄ , we get

lim sup
t→∞

 ∫ 1

0
F(ξ(1−u)t , u, t)du


Π

(φ)
x ;L p

≤ lim sup
t→∞

 ∫ 1

0
F̄(ξ(1−u)t , u, t)du


Π

(φ)
x ;L p

=

∫ 1

0
⟨F(·, u), φφ∗

⟩mdu, x ∈ E . □

3. Proofs

3.1. Proof of Theorem 1.1 (1)

Let {X; P} be a (ξ, ψ)-superprocess satisfying Assumptions 1–4. In this subsection, we will
prove the following result stronger than non-persistency:
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Proposition 3.1. For each t > 0, infx∈E Pδx (∥X t∥ = 0) > 0.

Proof. Recall that κ0 = ess infm(dx) κ(x) and γ0 = ess infm(dx) γ (x). For each x ∈ E , let
κ̃(x) := κ(x)1κ(x)≥κ0 + κ01κ(x)<κ0 and γ̃ (x) := γ (x)1γ (x)≥γ0 + γ01γ (x)<γ0 . Then, we know that
m (̃κ ̸= κ) = 0 and m(γ̃ ̸= γ ) = 0. Define ψ̃(x, z) := −β(x)z + κ̃(x)zγ̃ (x) for each x ∈ E and
z ≥ 0, then for each z ≥ 0, ψ̃(·, z) = ψ(·, z), m-almost everywhere.

If we replace ψ with ψ̃ in (1.18), the solution Vt f (x) of Eq. (1.18) is also the solution of

Vt f (x) + Πx

[∫ t∧ζ

0
ψ̃(ξs, Vt−s f )ds

]
= Πx

[
f (ξt )1t<ζ

]
.

So, we can consider {X; P} as a superprocess with branching mechanism ψ̃ . Define

ψ̂(z) := −(∥β∥∞ + κ0)z + κ0zγ0 , z ≥ 0.

Using the fact that γ0 > 1 and κ0 > 0, it is easy to verify that

inf
x∈E

ψ̃(x, z) ≥ ψ̂(z), z ≥ 0;

∫
∞

1

1
ψ̂(z)

dz < ∞; ψ̂(+∞) = +∞.

Therefore ψ̃ satisfies the condition of [26, Lemma 2.3]. As a consequence, we have the desired
result. □

3.2. Proof of Theorem 1.1 (2)

Proof of Theorem 1.1(2). Let {X; P} be a (ξ, ψ)-superprocess satisfying Assumptions 1–4.
From Proposition 3.1, we know that

inf
x∈E

Pδx (∥X t∥ = 0) > 0, (3.1)

which implies that {X; P} is non-persistent. According to (1.19), Assumption 2 and the fact that
φ is the principal eigenfunction of the semigroup (Pβ

t )t≥0, we have Pδx [X t (φ)] = Pβ
t φ(x) =

eλtφ(x) = φ(x) > 0. Therefore,

Pδx (∥X t∥ = 0) < 1, t > 0, x ∈ E . (3.2)

From (3.1), (3.2) and (2.6), we have that vt ∈ B++

b (E) for each t > 0.
According to (2.6) and (2.3), by monotonicity, we see that (vt )t>0 satisfies the equation

vs+t (x) +

∫ t

0
Pβ

t−rψ0(x, vs+r )dr = Pβ
t vs(x) ∈ [0,∞), s > 0, t ≥ 0, x ∈ E .

Notice that, under Assumption 1, according to (1.20), dν := φ∗dm defines a finite measure
on E . Therefore, ⟨vt , φ

∗
⟩m < ∞ for each t > 0. According to (2.4), (2.6) and the monotone

convergence theorem, (vt )t>0 also satisfies the equation

⟨vt , φ
∗
⟩m +

∫ t

s
⟨ψ0(·, vt ), φ∗

⟩mdr = ⟨vs, φ
∗
⟩m ∈ [0,∞), s, t > 0. (3.3)

One of the consequences of this equation is that, see [25, Lemma 5.2] for example,

∥φ−1vt∥∞ −−−→
t→∞

0. (3.4)

However, to prove Theorem 1.1(2), we need to consider the speed of this convergence. This
is answered in the following two propositions whose proofs are postponed after this proof.
The first proposition says that (φ−1vt )(x) will converge to 0 with the same speed as ⟨vt , φ

∗
⟩m ,

uniformly in x ∈ E :
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Proposition 3.2. (φ−1vt )(x)
x∈E
∼

t→∞
⟨vt , φ

∗
⟩m .

The second proposition characterizes this speed:

Proposition 3.3. (⟨vt , φ
∗
⟩m)t>0 is regularly varying at ∞ with index −

1
γ0−1 . Furthermore, if

m(x : γ (x) = γ0) > 0, then

⟨vt , φ
∗
⟩m ∼

t→∞

(
CX (γ0 − 1)t

)−
1

γ0−1 ,

where CX := ⟨1γ=γ0κφ
γ0 , φ∗

⟩m .

It follows from (2.7) and (3.4) that

− log Pµ(∥X t∥ = 0) = µ(vt ) ≤ µ(φ)∥φ−1vt∥∞ −−−→
t→∞

0.

Therefore, since − log(1 − x) → 0 implies x → 0, we have Pµ(∥X t∥ ̸= 0) −−−→
t→∞

0.
It follows from the fact that x ∼

x→0
− log(1 − x), (2.7), Lemma 2.1 and Proposition 3.2 that

Pµ(∥X t∥ ̸= 0) ∼
t→∞

− log Pµ(∥X t∥ = 0) = µ(φφ−1vt ) ∼
t→∞

µ(φ)⟨vt , φ
∗
⟩m .

Then the desired result follows immediately from Proposition 3.3. □

Proof of Proposition 3.2. We use an argument similar to that used in [25] for critical
superprocesses with finite 2nd moment. We only need to prove that there exists a map t ↦→

at > 0 such that

sup
x∈E

⏐⏐⏐ (φ−1vt )(x)
at

− 1
⏐⏐⏐ −−−→

t→∞
0. (3.5)

In fact, once this is proved, we will have that⏐⏐⏐ ⟨vt , φ
∗
⟩m

at
− 1

⏐⏐⏐ ≤

∫ ⏐⏐⏐ (φ−1vt )(x)
at

− 1
⏐⏐⏐φφ∗(x)m(dx) (3.6)

≤ sup
x∈E

⏐⏐⏐ (φ−1vt )(x)
at

− 1
⏐⏐⏐ −−−→

t→∞
0.

Then, by (3.5), (3.6) and the property of uniform convergence, we will get the desired result:

sup
x∈E

⏐⏐⏐ (φ−1vt )(x)
⟨vt , φ∗⟩m

− 1
⏐⏐⏐ −−−→

t→∞
0.

For each µ ∈ Mφ

E , denote by {(Yt ), (ξt ),n; Ṗ(φ)
µ } the spine representation of N(φ)

µ . According
to (2.7), (2.8) and Theorem 2.8, we have that for each t > 0,

⟨µ, φ⟩Ṗ(φ)
µ [Yt (φ)−1] = Nµ[Wt (φ)]NWt (φ)

µ [Wt (φ)−1] = Nµ(Wt (φ) > 0) = µ(vt ). (3.7)

Taking µ = δx in (3.7), we get (φ−1vt )(x) = Ṗ(φ)
δx

[Yt (φ)−1]. Recall that dν = φ∗dm. Taking
µ = ν in (3.7), we get ⟨vt , φ

∗
⟩m = Ṗ(φ)

ν [Yt (φ)−1].
In order to construct an (at )t≥0 satisfying (3.5), we consider a decomposition of the

immigration process (Yt )t≥0. For any t > 0 and any G ∈ B((0, t]), define

Y G
t :=

∫
G×W

wt−sn(ds, dw).
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Then for any 0 < t0 < t , we can decompose Yt into

Yt = Y (0,t0]
t + Y (t0,t]

t .

Using this decomposition, for each 0 < t0 < t < ∞ and x ∈ E , we have

Ṗ(φ)
δx

[Yt (φ)−1] = Ṗ(φ)
ν [Y (t0,t]

t (φ)−1] + ϵ1
x (t0, t) + ϵ2

x (t0, t), (3.8)

where

ϵ1
x (t0, t) := Ṗ(φ)

δx
[Y (t0,t]

t (φ)−1] − Ṗ(φ)
ν [Y (t0,t]

t (φ)−1];

ϵ2
x (t0, t) := Ṗ(φ)

δx
[Yt (φ)−1

− Y (t0,t]
t (φ)−1].

By the construction of the spine representation {(Yt ), (ξt ),n; Ṗ(φ)
µ } and its Markov property,

we have that

Ṗ(φ)[Y (t0,t]
t (φ)−1

|F ξ
t0 ] = Ṗ(φ)

δξt0
[Yt−t0 (φ)−1] = (φ−1vt−t0 )(ξt0 );

Ṗ(φ)
ν [Y (t0,t]

t (φ)−1] = Π (φ)
ν [(φ−1vt−t0 )(ξt0 )] = ⟨vt−t0 , φ

∗
⟩m; (3.9)

Ṗ(φ)
δx

[Y (t0,t]
t (φ)−1] = Π (φ)

x [(φ−1vt−t0 )(ξt0 )] =

∫
E

qt0 (x, y)(φ−1vt−t0 )(y)m(dy). (3.10)

We will show that both ϵ1
x (t0, t) and ϵ2

x (t0, t) are very small compared to Ṗ(φ)
ν [Y (t0,t]

t (φ)−1]
provided t0 and t − t0 are large enough. This is done in the following two lemmas whose proofs
are postponed after this proof.

Let c0, c1 > 0 be the constants in (1.21).

Lemma 3.4. For each t > t0 > 1, we have that

|ϵ1
x (t0, t)| ≤ c0e−c1t0⟨vt−t0 , φ

∗
⟩m .

Lemma 3.5. For each t0 > 1 and t − t0 large enough, we have

|ϵ2
x (t0, t)| ≤ t0∥κγφγ−1

∥∞ · ∥φ−1vt−t0∥
γ0−1
∞

(1 + c0e−c1t0 )⟨vt−t0 , φ
∗
⟩m .

Now, for each t0 > 1 and t − t0 large enough, according to (3.7), (3.8), (3.9), Lemmas 3.4
and 3.5, we have⏐⏐⏐ (φ−1vt )(x)

⟨vt−t0 , φ
∗⟩m

− 1
⏐⏐⏐ ≤

|ϵ1
x (t0, t)|

⟨vt−t0 , φ
∗⟩m

+
|ϵ2

x (t0, t)|
⟨vt−t0 , φ

∗⟩m
(3.11)

≤ c0e−c1t0 + t0∥κγφγ−1
∥∞ · ∥φ−1vt−t0∥

γ0−1
∞

(1 + c0e−c1t0 ).

According to (3.4), there exists a map t ↦→ t0(t) such that,

t0(t) −−−→
t→∞

∞; t0(t)∥φ−1vt−t0(t)∥
γ0−1
∞

−−−→
t→∞

0.

Plugging this choice of t0(t) into (3.11) and taking t → ∞, we get the desired assertion (3.5)
with at := ⟨vt−t0(t), φ

∗
⟩m . □

Proof of Lemma 3.4. Note that c0, c1 > 0 are the constants in (1.21). Then for each t > t0 > 1,
we have that

|ϵ1
x (t0, t)| =

⏐⏐Ṗ(φ)
δx

[Y (t0,t]
t (φ)−1] − Ṗ(φ)

ν [Y (t0,t]
t (φ)−1]

⏐⏐
=

⏐⏐⏐ ∫
E

qt0 (x, y)(φ−1vt−t0 )(y)m(dy) − ⟨vt−t0 , φ
∗
⟩m

⏐⏐⏐
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≤

∫
y∈E

⏐⏐qt0 (x, y) − (φφ∗)(y)
⏐⏐(φ−1vt−t0 )(y)m(dy)

≤ c0e−c1t0⟨vt−t0 , φ
∗
⟩m . □

Proof of Lemma 3.5. Using the Markov property of the spine process and properties of
Poisson random measures, we have

|ϵ2
x (t0, t)| =

⏐⏐Ṗ(φ)
δx

[Yt (φ)−1
− Y (t0,t]

t (φ)−1]
⏐⏐ (3.12)

= Ṗ(φ)
δx

[Y (0,t0]
t (φ) · Yt (φ)−1

· Y (t0,t]
t (φ)−1]

≤ Ṗ(φ)
δx

[1
Y

(0,t0]
t (φ)̸=0

· Y (t0,t]
t (φ)−1]

= Ṗ(φ)
δx

[
Ṗ(φ)
δx

[1
Y

(0,t0]
t (φ)̸=0

|F ξ
t0 ] · Ṗ(φ)

δx
[Y (t0,t]

t (φ)−1
|F ξ

t0 ]
]
.

Since φ−1vs converges to 0 uniformly when s → ∞, we can choose s0 > 0 such that for
any s ≥ s0, we have ∥φ−1vs∥∞ ≤ 1. With this s0 > 0, we claim that for each t − t0 ≥ s0 the
following holds:

Ṗ(φ)
δx

[1
∥Y

(0,t0]
t ∦=0

|F ξ
t0 ] ≤ t0∥κγφγ−1

∥∞ · ∥φ−1vt−t0∥
γ0−1
∞

. (3.13)

We will verify this claim at the end of this proof.
On the other hand, according to (2.10) and (3.10), we know that

Ṗ(φ)
δx

[Y (t0,t]
t (φ)−1] ≤ (1 + c0e−c1t0 )⟨vt−t0 , φ

∗
⟩m . (3.14)

Therefore, from (3.12), (3.13) and (3.14), we get that

|ϵ2
x (t0, t)| ≤ t0∥κγφγ−1

∥∞∥φ−1vt−t0∥
γ0−1
∞

· Ṗ(φ)
δx

[
Y (t0,t]

t (φ)−1]
≤ t0∥κγφγ−1

∥∞∥φ−1vt−t0∥
γ0−1
∞

· (1 + c0e−c1t0 )⟨vt−t0 , φ
∗
⟩m,

as desired.
We now verify the claim (3.13). Note that, if t − s > t − t0 ≥ s0, using the fact that vt is

non-increasing in t , we get

κ(x)γ (x)vt−s(x)γ (x)−1
≤ ∥κγφγ−1

∥∞ · ∥φ−1vt−s∥
γ0−1
∞

≤ ∥κγφγ−1
∥∞ · ∥φ−1vt−t0∥

γ0−1
∞

.

Therefore, using Campbell’s formula, (1.22) and the fact that e−x
≥ 1 − x , we have, for

t − t0 ≥ s0,

Ṗ(φ)
δx

[1
∥Y

(0,t0]
t ∦=0

|F ξ
t0 ] ≤ − log

(
1 − Ṗ(φ)

δx
[1

∥Y
(0,t0]
t ∦=0

|F ξ
t0 ]

)
= − log lim

λ→∞

Ṗ(φ)
δx

[e−λY
(0,t0]
t (1E )

|F ξ
t0 ]

= − log lim
λ→∞

exp
{
−

∫
[0,t]×W

(
1 − exp{−1s≤t0wt−s(λ1E )}

)
mξ (ds, dw)

}
=

∫
[0,t]×W

1s≤t01∥wt−s∦=0mξ (ds, dw) =

∫ t0

0
ds

∫
(0,∞)

yPyδξs [1∥X t−s∦=0]π (ξs, dy)

=

∫ t0

0
ds

∫
(0,∞)

y(1 − e−yvt−s (ξs ))
κ(ξs)dy

Γ (−γ (ξs))y1+γ (ξs ) =

∫ t0

0

(
κγ v

γ−1
t−s

)
(ξs)ds

≤ t0∥κγφγ−1
∥∞ · ∥φ−1vt−t0∥

γ0−1
∞

.

This ends the verification of the claim (3.13), and thus also completes the proof of
Lemma 3.5. □
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Proof of Proposition 3.3. From (3.3) we know that ⟨vt , φ
∗
⟩m is continuous and strictly

decreasing in t ∈ (0,∞). Since the superprocess (X t )t≥0 is right continuous in the weak
topology with the null measure as an absorbing state, we have that, for each µ ∈ M1

E ,
Pµ(∥X t∥ ̸= 0) −−→

t→0
1. Taking µ = ν, according to (2.7), we have that ⟨vt , φ

∗
⟩m −−→

t→0
+∞. On

the other hand, according to (3.4), we have

⟨vt , φ
∗
⟩m = ⟨φ−1vtφ, φ

∗
⟩m ≤ ∥φ−1vt∥∞ · ⟨φ, φ∗

⟩m −−−→
t→∞

0.

Therefore, the map t ↦→ ⟨vt , φ
∗
⟩m has an inverse on (0,∞) which is denoted by

R : (0,∞) → (0,∞).

Now, if we denote by

ϵt (x) :=
vt (x)

⟨vt , φ∗⟩mφ(x)
− 1, t > 0, x ∈ E,

then we have

vt (x) =
(
1 + ϵR(⟨vt ,φ∗⟩m )(x)

)
⟨vt , φ

∗
⟩mφ(x), t > 0, x ∈ E . (3.15)

Further, by Proposition 3.2 and the fact that R(u) −−→
u→0

∞, we have

sup
x∈E

|ϵR(u)(x)| −−→
u→0

0. (3.16)

Now, by (3.3), we have

d⟨vr , φ
∗
⟩m

dr
= −⟨ψ0(·, vr ), φ∗

⟩m > 0 a.e..

Therefore,

s − t =

∫ s

t
dr =

∫ t

s
⟨ψ0(·, vr ), φ∗

⟩
−1
m d⟨vr , φ

∗
⟩m

by (3.15)
=

∫ t

s

⟨
ψ0

(
·, (1 + ϵR(⟨vr ,φ∗⟩m ))⟨vr , φ

∗
⟩mφ

)
, φ∗

⟩−1
m d⟨vr , φ

∗
⟩m

=

∫
⟨vt ,φ

∗
⟩

⟨vs ,φ∗⟩

⟨
ψ0

(
·, (1 + ϵR(u))uφ

)
, φ∗

⟩−1
m du.

Letting t → 0, we get

s =

∫
∞

⟨vs ,φ∗⟩

⟨
ψ0

(
·, (1 + ϵR(u))uφ

)
, φ∗

⟩−1
m du, s ∈ (0,∞).

Since R is the inverse of t ↦→ ⟨vt , φ
∗
⟩, the above implies that

R(r ) =

∫
∞

r

⟨
ψ0

(
·, (1 + ϵR(u))uφ

)
, φ∗

⟩−1
m du, r ∈ (0,∞). (3.17)

We now check the regularly varying property of R(r ) at r = 0. This can be done by
considering the regularly varying property of u →

⟨
ψ0

(
·, (1 + ϵR(u))uφ

)
, φ∗

⟩
m at 0. According

to (3.16), 1+ϵR(u)(x)
x∈E
∼

u→0
1. Since γ (·) is bounded, we have

(
1+ϵR(u)(x)

)γ (x) x∈E
∼

u→0
1. Therefore,
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from Lemma 2.1, we have that⟨
ψ0

(
·, (1 + ϵR(u))uφ

)
, φ∗

⟩
m (3.18)

=
⟨
κ(x)

(
1 + ϵR(u)(x)

)γ (x)uγ (x)φ(x)γ (x), φ∗(x)
⟩
m(dx)

∼
u→0

⟨uγ (x), κ(x)φ(x)γ (x)φ∗(x)⟩m(dx).

According to Lemma 2.6, and using the fact that κ(x)φ(x)γ (x) is bounded and the measure
φ∗dm is finite, we have that ⟨ψ0

(
·, (1 + ϵR(u))uφ

)
, φ∗

⟩m is regularly varying at u = 0 with
index γ0. Noticing that −(γ0 − 1) < 0, according to Corollaries 2.3 and 3.17, R is regularly
varying at 0 with index −(γ0 − 1). Therefore, from R(⟨vs, φ

∗
⟩m) = s and Corollary 2.5, we

have that (⟨vs, φ
∗
⟩m)s∈(0,∞) is regularly varying at ∞ with index −(γ0 − 1)−1.

Further, if m{x : γ (x) = γ0} > 0, then according to Lemma 2.6 and (3.18), we know that⟨
ψ0

(
·, (1 + ϵR(u))uφ

)
, φ∗

⟩
m ∼

u→0
⟨uγ (x), κ(x)φ(x)γ (x)φ∗(x)⟩m(dx)

∼
u→0

⟨1γ (x)=γ0 , κ(x)φ(x)γ0φ∗(x)⟩m(dx)uγ0 =: CX uγ0 .

Therefore, we have
⟨
ψ0

(
·, (1+ϵR(u))uφ

)
, φ∗

⟩−1
m = u−γ0l(u), where l(u) converges to the constant

C−1
X when u → 0. Now according to Corollary 2.3 and (3.17) we have that

R(r ) =

∫
∞

r

⟨
ψ0

(
·, (1 + ϵR(u))uφ

)
, φ∗

⟩−1
m du =

∫
∞

r
u−γ0l(u)du

= −
1

γ0 − 1

∫
∞

r
l(u)du−(γ0−1)

∼
r→0

C−1
X (γ0 − 1)−1r−(γ0−1).

Finally since r ↦→ ⟨vr , φ
∗
⟩m is the inverse of r ↦→ R(r ), from [4, Proposition 1.5.15.] and the

above, we have

⟨vr , φ
∗
⟩m ∼

r→∞

(
CX (γ0 − 1)r

)−
1

γ0−1 . □

3.3. Characterization of the one dimensional distribution

Let {(X t )t≥0; P} be a (ξ, ψ)-superprocess satisfying Assumptions 1–4. Suppose m(x :

γ (x) = γ0) > 0. Recall that we want to find a proper normalization (ηt )t≥0 such that{(
ηt X t ( f )

)
t≥0; Pµ

(
·|∥X t∥ ̸= 0

)}
converges weakly to a non-degenerate distribution for a large

class of functions f and initial configurations µ. Our guess of (ηt ) is

ηt := (CX (γ0 − 1)t)−
1

γ0−1 , t ≥ 0, (3.19)

because in this case

Pδx [ηt X t ( f )|∥X t∥ ̸= 0] =
Pδx [ηt X t ( f )1∥X t ∦=0]

Pδx (∥X t∥ ̸= 0)
=

ηt

Pδx (∥X t∥ ̸= 0)
Pβ

t f (x) ∼
t→∞

⟨ f, φ∗
⟩m .

Here we have used Theorem 1.1(2) and the fact that (see (1.21))

Pβ
t f (x) =

∫
E

pβt (x, y) f (y)dy −−−→
t→∞

φ(x)⟨ f, φ∗
⟩m .

From the point of view of Laplace transforms, the desired result that, for any f ∈

B+

b (E) and µ ∈ M1
E ,

{(
ηt X t ( f )

)
t≥0; Pµ(·|∥X t∥ ̸= 0)

}
converge weakly to some probability
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distribution F f is equivalent to the following convergence:

Pµ[1 − e−θηt X t ( f )
|∥X t∥ ̸= 0] =

1 − exp{−µ
(
Vt (θηt f )

)
}

Pµ(∥X t∥ ̸= 0)
−−−→
t→∞

∫
[0,∞)

(1 − e−θu)F f (du).

According to Theorem 1.1(2) and 1 − e−x
∼

x→0
x , this is equivalent to

µ
(
Vt (θηt f )

)
ηt

−−−→
t→∞

µ(φ)
∫

[0,∞)
(1 − e−θu)F f (du). (3.20)

Therefore, to establish the weak convergence of
{(
ηt X t ( f )

)
t≥0; Pµ(·|∥X t∥ ̸= 0)

}
, one only

needs to verify (3.20).
In order to investigate the convergence of µ

(
Vt (θηt f )

)
/ηt , we need to investigate the

properties of θ → Vt (θ f ). (Note that (2.3) only gives the dynamics of t → Vt (θ f ).) This
is done in the following proposition:

Proposition 3.6. For any f ∈ B+

b (E), θ ≥ 0, x ∈ E and T > 0, we have

VT (θ f )(x) = φ(x)
∫ θ

0
Π (φ)

x

[ f (ξT )
φ(ξT )

exp
{
−

∫ T

0

(
κγ VT −s(r f )γ−1)(ξs)ds

}]
dr. (3.21)

Proof. It follows from Theorems 2.7 and 2.8 that
Pδx [XT ( f )e−θXT ( f )]

Pδx [XT ( f )]
= PXT ( f )

δx
[e−θXT ( f )] = Pδx [e−θXT ( f )]Ṗ(T, f )

x [e−θYT ( f )],

where {(ξ )0≤t≤T ,nT , (Y )0≤t≤T ; Ṗ( f,T )
x } is the spine representation of NWT ( f )

x with mξ

T being the
intensity of the immigration measure nT conditioned on {(ξ )0≤t≤T ; Ṗ( f,T )

x }. From this, we have

∂

∂θ
(− log Pδx [e−θXT ( f )]) =

Pδx [XT ( f )e−θXT ( f )]
Pδx [e−θXT ( f )]

= Pβ

T f (x)Ṗ(T, f )
x [e−θYT ( f )]. (3.22)

On the other hand, if we write F(s, w) := 1s≤TwT −s( f ), then by Assumption 4, the spine
representation, Campbell’s formula and (1.22), we have

− log Ṗ(T, f )
x [e−θnT (F)

|mξ

T ] = mξ

T (1 − e−θF ) (3.23)

=

∫ T

0
ds

∫
(0,∞)

yPyδξs [1 − e−θXT −s ( f )]π (ξs, y)

=

∫ T

0
ds · κ(ξs)

∫
(0,∞)

(1 − e−yVT −s (θ f )(ξs ))
dy

Γ (−γ (ξs))yγ (ξs )

=

∫ T

0

(
κγ VT −s(θ f )γ−1)(ξs)ds.

Note that, since nT (F) = YT ( f ), we can derive from (3.22) and (3.23) that

VT (θ f )(x) = − log Pδx [e−θXT ( f )] =

∫ θ

0
Pβ

T f (x)Ṗ(T, f )
x [e−rYT ( f )]dr

= Pβ

T f (x)
∫ θ

0
Π (T, f )

x

[
exp

{
−

∫ T

0

(
κγ VT −s(r f )γ−1)(ξs) ds

}]
dr

= φ(x)
∫ θ

0
Π (φ)

x

[ f (ξT )
φ(ξT )

exp
{
−

∫ T

0

(
κγ VT −s(r f )γ−1)(ξs)ds

}]
dr,

as required. □
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Replacing θ with θηT in (3.21), we have
VT (θηT f )(x)

ηT
(3.24)

= φ(x)
1
ηT

∫ θηT

0
Π (φ)

x

[ f (ξT )
φ(ξT )

exp
{
−

∫ T

0

(
κγ VT −s(r f )γ−1)(ξs)ds

}]
dr

= φ(x)
∫ θ

0
Π (φ)

x

[ f (ξT )
φ(ξT )

exp
{
−

∫ T

0

(
κγ VT −s(rηT f )γ−1)(ξs)ds

}]
dr

= φ(x)
∫ θ

0
Π (φ)

x

[ f (ξT )
φ(ξT )

exp
{
−T

∫ 1

0

(
κγ VuT (rηT f )γ−1)(ξ(1−u)T )du

}]
dr.

3.4. Proof of Theorem 1.1 (3)

Consider the (ξ, ψ)-superprocess {X; P} which satisfies Assumptions 1–4. Suppose that
m(x : γ (x) = γ0) > 0. Let f ∈ B+(E) be such that ⟨ f, φ∗

⟩m > 0 and c f := ∥φ−1 f ∥∞ < ∞.
Without loss of generality, we assume that ⟨ f, φ∗

⟩m = 1. We claim that, in order to prove
Theorem 1.1(3), we only need to show that

g(t, θ, x) :=
Vt (θηt f )(x)
ηtφ(x)

−−−→
t→∞

G(θ ) :=

( 1
1 + θ−(γ0−1)

) 1
γ0−1

, x ∈ E, θ ≥ 0. (3.25)

In fact, by (3.24), we have ∥Vt (θηt f )/ηt∥∞ ≤ θ∥φ∥∞∥φ−1 f ∥∞. Therefore, if (3.25) is true,
then by the bounded convergence theorem, for each µ ∈ M1

E ,

µ
(
Vt (θηt f )

)
ηt

−−−→
t→∞

µ(φ)G(θ ),

which, by the discussion in Section 3.3, is equivalent to Theorem 1.1(3).
From Lemma A.9, we have that G satisfies

G(θ ) =

∫ θ

0
e−

1
γ0−1 JG (r )dr, θ ≥ 0, (3.26)

where

JG(r ) := γ0

∫ 1

0
G(ru

1
γ0−1 )γ0−1 du

u
, r ≥ 0. (3.27)

According to (3.24), we know that g satisfies

g(t, θ, x) =

∫ θ

0
Π (φ)

x [(φ−1 f )(ξt )e
−

1
γ0−1 Jg (t,r,ξ )]dr, t ≥ 0, θ ≥ 0, x ∈ E, (3.28)

where, for each t ≥ 0 and r ≥ 0,

Jg(t, r, ξ ) := (γ0 − 1)t
∫ 1

0

(
κγ · (φηut )γ−1g(ut, ru

1
γ0−1 , ·)γ−1)(ξ(1−u)t )du. (3.29)

For each t ≥ 0 and r ≥ 0, define

J ′

G(t, r, ξ ) := γ0(γ0 − 1)t
∫ 1

0

(
1γ (·)=γ0κ · (φηut )γ0−1G

(
ru

1
γ0−1

)γ0−1)(ξ(1−u)t )du (3.30)

and

J ′

g(t, r, ξ ) := γ0(γ0 − 1)t
∫ 1

0

(
1γ (·)=γ0κ · (φηut )γ0−1g

(
ut, ru

1
γ0−1 , ·

)γ0−1)(ξ(1−u)t )du. (3.31)
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The main idea is to show that JG, J ′

G, Jg and J ′
g are approximately equal in some sense when

t → ∞.
Step 1: We will give upper bounds for G, g, JG, J ′

G, Jg and J ′
g respectively. From (3.26) we

have

G(r ) ≤ r, r ≥ 0. (3.32)

From (3.27) and (3.32), we have

JG(r ) ≤ γ0rγ0−1, r ≥ 0. (3.33)

From (3.28), we have

g(t, r, x) ≤ c f r, t ≥ 0, r ≥ 0, x ∈ E . (3.34)

From (3.19), (3.29), (3.34) and the fact that γ (·) − 1 < 1, we have Π (φ)
·

-almost surely

Jg(t, r, ξ ) ≤ ∥κ · (c f φ)γ−1
∥∞

∫ 1

0

(
tηγ−1

ut (ru
1

γ0−1 )γ−1)(ξ(1−u)t
)
du

= ∥κ · (c f φ)γ−1
∥∞

∫ 1

0

(
rγ−1t1−

γ−1
γ0−1

(
CX (γ0 − 1)

)−
γ−1
γ0−1

)(
ξ(1−u)t

)
du

≤ max{1, r} · ∥κ · (c f φ)γ−1
∥∞

(
CX (γ0 − 1)

)−
γ−1
γ0−1


∞

=: c2 · max{1, r}, t ≥ 1, r ≥ 0.

From (3.19), (3.31) and (3.34), we have Π (φ)
·

-almost surely

J ′

g(t, r, ξ ) ≤ γ0(γ0 − 1)t
∫ 1

0

(
1γ (·)=γ0κ · (φηut )γ0−1(c f ru

1
γ0−1 )γ0−1)(ξ(1−u)t )du

≤ γ0(γ0 − 1)cγ0−1
f rγ0−1

∥1γ (·)=γ0κφ
γ0−1

∥∞

∫ 1

0
t
(
CX (γ0 − 1)ut

)−1udu

=: c3 · rγ0−1, t ≥ 0, r ≥ 0.

From (3.19), (3.30) and (3.32), we have Π (φ)
·

-almost surely

J ′

G(t, r, ξ ) ≤ γ0(γ0 − 1)t
∫ 1

0

(
1γ (·)=γ0κ · (φηut )γ0−1(ru

1
γ0−1 )γ0−1)(ξ(1−u)t )du (3.35)

≤ γ0(γ0 − 1)rγ0−1
1γ (·)=γ0κφ

γ0−1


∞

∫ 1

0
t
(
CX (γ0 − 1)ut

)−1udu

=: c4 · rγ0−1, t ≥ 0, r ≥ 0.

In the remainder of this proof, we use the following notation: If f is a measurable function
which is L p integrable on the measure space (S,S , µ) with p > 0, then we write

∥ f ∥µ;p :=

(∫
S
| f |

pdµ
) 1

p
.

Notice that, when p ≥ 1, ∥ f ∥µ;p is simply the L p norm of f with respect to the measure µ.
However, when p ∈ (0, 1), ∥ · ∥µ;p is not a norm.
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Step 2: We will show that, for each t ≥ 0, θ ≥ 0, and x ∈ E

|G(θ )γ0−1
− g(t, θ, x)γ0−1

|

≤ I1(t, θ, x) + cγ0−1
f I2(t, θ, x) + cγ0−1

f I3(t, θ, x) + cγ0−1
f I4(t, θ, x),

where

I1(t, θ, x) :=

e−JG (r )
− ∥(φ−1 f )(ξt )γ0−1e−JG (r )

∥
Π

(φ)
x ;

1
γ0−1


10≤r≤θ dr;

1
γ0−1

,

I2(t, θ, x) :=

∥JG(r ) − J ′

G(t, r, ξ )∥
Π

(φ)
x ;

1
γ0−1


10≤r≤θ dr;

1
γ0−1

,

I3(t, θ, x) :=

∥J ′

G(t, r, ξ ) − J ′

g(t, r, ξ )∥
Π

(φ)
x ;

1
γ0−1


10≤r≤θ dr;

1
γ0−1

,

and

I4(t, θ, x) :=

∥J ′

g(t, r, ξ ) − Jg(t, r, ξ )∥
Π

(φ)
x ;

1
γ0−1


10≤r≤θ dr;

1
γ0−1

.

In fact, we can rewrite (3.26) and (3.28) as:

G(θ )γ0−1
= ∥e−JG (r )

∥10≤r≤θ dr;
1

γ0−1
, θ ≥ 0,

and

g(t, θ, x)γ0−1
=

∥(φ−1 f )(ξt )γ0−1e−Jg (t,r,ξ )
∥
Π

(φ)
x ;

1
γ0−1


10≤r≤θ dr;

1
γ0−1

,

t ≥ 0, θ ≥ 0, x ∈ E .

Therefore, by Minkowski’s inequality we have that, for each t ≥ 0, θ ≥ 0 and x ∈ E ,

|G(θ )γ0−1
− g(t, θ, x)γ0−1

|

≤

e−JG (r )
− ∥(φ−1 f )(ξt )γ0−1e−Jg (t,r,ξ )

∥
Π

(φ)
x ;

1
γ0−1


10≤r≤θ dr;

1
γ0−1

≤ I1(t, θ, x) +

∥(φ−1 f )(ξt )γ0−1e−JG (r )
∥
Π

(φ)
x ;

1
γ0−1

−

∥(φ−1 f )(ξt )γ0−1e−Jg (t,r,ξ )
∥
Π

(φ)
x ;

1
γ0−1


10≤r≤θ dr;

1
γ0−1

≤ I1(t, θ, x) +

∥(φ−1 f )(ξt )γ0−1(e−JG (r )
− e−Jg (t,r,ξ ))∥

Π
(φ)
x ;

1
γ0−1


10≤r≤θ dr;

1
γ0−1

≤ I1(t, θ, x) + cγ0−1
f

∥JG(r ) − Jg(t, r, ξ )∥
Π

(φ)
x ;

1
γ0−1


10≤r≤θ dr;

1
γ0−1

≤ I1(t, θ, x) + cγ0−1
f I2(t, θ, x) + cγ0−1

f I3(t, θ, x) + cγ0−1
f I4(t, θ, x).

Step 3: We will show that, for each θ ≥ 0 and x ∈ E , I1(t, θ, x) −−−→
t→∞

0. Notice that, by
(1.21) and since ⟨ f, φ∗

⟩m = 1,

Π (φ)
x [(φ−1 f )(ξt )] = φ(x)−1Πx [ f (ξt )e−

∫ t
0 β(ξs )ds] = φ(x)−1 Pβ

t f (x) −−−→
t→∞

1, x ∈ E .



4384 Y.-X. Ren, R. Song and Z. Sun / Stochastic Processes and their Applications 130 (2020) 4358–4391

Therefore,

e−JG (r )
− ∥(φ−1 f )(ξt )γ0−1e−JG (r )

∥
Π

(φ)
x ;

1
γ0−1

= e−JG (r )
(

1 − Π (φ)
x [(φ−1 f )(ξt )]γ0−1

)
−−−→
t→∞

0, x ∈ E, r ≥ 0.

We also have the following bound:⏐⏐⏐e−JG (r )
− ∥(φ−1 f )(ξt )γ0−1e−JG (r )

∥
Π

(φ)
x ;

1
γ0−1

⏐⏐⏐ ≤ 1 + cγ0−1
f .

Therefore, by the bounded convergence theorem, we have that, for each θ ≥ 0 and x ∈ E ,
I1(t, θ, x) −−−→

t→∞
0.

Step 4: We will show that, for each θ ≥ 0 and x ∈ E , I2(t, θ, x) −−−→
t→∞

0. Notice that,
according to (3.27) and (3.30), for each t ≥ 0 and r ≥ 0,

JG(r ) − J ′

G(t, r, ξ )

=

∫ 1

0
γ0G

(
ru

1
γ0−1

)γ0−1(1 − (γ0 − 1)1γ (·)=γ0κφ
γ0−1tuηγ0−1

ut
)
(ξ(1−u)t )

du
u

=

∫ 1

0
γ0G

(
ru

1
γ0−1

)γ0−1(1 − C−1
X 1γ (·)=γ0κφ

γ0−1)(ξ(1−u)t )
du
u
.

Also notice that, according to (3.32), for each r ≥ 0, u ∈ [0, 1] and x ∈ E ,⏐⏐γ0G
(
ru

1
γ0−1

)γ0−1(1 − C−1
X 1γ (·)=γ0κφ

γ0−1)(x)
1
u

⏐⏐
≤
γ0

u
G

(
ru

1
γ0−1

)γ0−1⏐⏐(1 − C−1
X 1γ (·)=γ0κφ

γ0−1)(x)
⏐⏐

≤ γ0rγ0−1(1 +
C−1

X 1γ (·)=γ0κφ
γ0−1


∞

)
.

Therefore, according to Lemma 2.11 and the definition of CX , we have that, for each r ≥ 0
and x ∈ E ,

JG(r ) − J ′

G(t, r, ξ )
L2(Π (φ)

x )
−−−−−→

t→∞

∫ 1

0

γ0

u
G

(
ru

1
γ0−1

)γ0−1⟨1 − C−1
X 1γ (·)=γ0κφ

γ0−1, φφ∗
⟩
mdu = 0.

According to (3.33) and (3.35), we have that, for each r ≥ 0 and t ≥ 0,⏐⏐JG(r ) − J ′

G(t, r, ξ )
⏐⏐ ≤ (γ0 + c4)rγ0−1. (3.36)

Therefore, according to the bounded convergence theorem, we have that, for each r ≥ 0 and
x ∈ E ,JG(r ) − J ′

G(t, r, ξ )

Π

(φ)
x ;

1
γ0−1

−−−→
t→∞

0.

According to (3.36), we have that, for each θ ≥ 0, r ∈ [0, θ] and x ∈ E ,JG(r ) − J ′

G(t, r, ξ )

Π

(φ)
x ;

1
γ0−1

≤ (γ0 + c4)θγ0−1.

Finally, according to the bounded convergence theorem, we have that, for each θ ≥ 0 and
x ∈ E , I2(t, θ, x) −−−→

t→∞
0.
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Step 5: We will show that, for each θ ≥ 0 and x ∈ E , I4(t, θ, x) −−−→
t→∞

0. We first note that,
for each t ≥ 0 and r ≥ 0, we have

Jg(t, r, ξ )−J ′

g(t, r, ξ ) = (γ0−1)t
∫ 1

0

(
1γ (·)>γ0κγ ·(φηut )γ−1g(ut, ru

1
γ0−1 , ·)γ−1)(ξ(1−u)t

)
du.

(3.37)

We then note that, according to (3.34) and the definition of ηt , for each r ≥ 0, u ∈ (0, 1) and
x ∈ E , we have

(γ0 − 1)t1γ (x)>γ0κ(x)γ (x)
(
φ(x)ηut

)γ (x)−1g
(
ut, ru

1
γ0−1 , x

)γ (x)−1 (3.38)

≤ (γ0 − 1)
κγ · (c f rφ)γ−1


∞

1γ (x)>γ0 tηγ (x)−1
ut u

γ (x)−1
γ0−1

= (γ0 − 1)
κγ · (c f rφ)γ−1


∞

1γ (x)>γ0 t
(
CX (γ0 − 1)ut

)−
γ (x)−1
γ0−1 u

γ (x)−1
γ0−1

≤ (γ0 − 1)1γ (x)>γ0 t1−
γ (x)−1
γ0−1

κγ · (c f rφ)γ−1


∞
sup
x∈E

(
CX (γ0 − 1)

)−
γ (x)−1
γ0−1

−−−→
t→∞

0.

This also gives an upper bound: For each r ≥ 0, u ∈ (0, 1), x ∈ E and t ≥ 1, we have

(γ0 − 1)t1γ (x)>γ0κ(x)γ (x)
(
φ(x)ηut

)γ (x)−1g
(
ut, ru

1
γ0−1 , x

)γ (x)−1 (3.39)

≤ (γ0 − 1)
κγ · (c f rφ)γ−1


∞

sup
x∈E

(
CX (γ0 − 1)

)−
γ (x)−1
γ0−1 .

Now, with (3.37), (3.38) and (3.40), we can apply Lemma 2.11 to the function

(y, u, t) ↦→ (γ0 − 1)t1γ (y)>γ0κ(y)γ (y)
(
φ(y)ηut

)γ (y)−1g
(
ut, ru

1
γ0−1 , y

)γ (y)−1
,

which says that, for each r ≥ 0,

Jg(t, r, ξ ) − J ′

g(t, r, ξ )
L2(Π (φ)

x )
−−−−−→

t→∞
0.

According to (3.37) and (3.39), for each r ≥ 0 and t ≥ 1, we have that⏐⏐Jg(t, r, ξ ) − J ′

g(t, r, ξ )
⏐⏐ ≤ (γ0 − 1)

κγ · (c f rφ)γ−1


∞
sup
x∈E

(
CX (γ0 − 1)

)−
γ (x)−1
γ0−1 . (3.40)

Therefore, according to the bounded convergence theorem, for each r ≥ 0 and x ∈ E , we have
that J ′

g(t, r, ξ ) − Jg(t, r, ξ )

Π

(φ)
x ;

1
γ0−1

−−−→
t→∞

0.

According to (3.40), for each θ ≥ 0, r ∈ [0, θ], t ≥ 1 and x ∈ E , we have thatJ ′

g(t, r, ξ ) − Jg(t, r, ξ )

Π

(φ)
x ;

1
γ0−1

≤ (γ0 − 1)
κγ · (c f θφ)γ−1


∞

sup
x∈E

(
CX (γ0 − 1)

)−
γ (x)−1
γ0−1 .

Therefore, according to the bounded convergence theorem, for each θ ≥ 0 and x ∈ E , we have
that I4(t, θ, x) −−−→

t→∞
0.

Step 6: We will show that

lim sup
t→∞

I3(t, θ, x) ≤ γ0

(∫ θ

0
∥M(ru

1
γ0−1 )∥10≤u≤1

du
u ;γ0−1dr

)γ0−1
, θ ≥ 0, x ∈ E,
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where

M(t, r, x) := |G(r )γ0−1
− g(t, r, x)γ0−1

|
1

γ0−1 , t ≥ 0, r ≥ 0, x ∈ E,

and

M(r, x) := lim sup
t→∞

M(t, r, x); M(r ) := sup
x∈E

M(r, x), r ≥ 0, x ∈ E .

Notice that, according to (3.32) and (3.34), we have the following bound:

M(t, r, x) ≤ |rγ0−1
+ cγ0−1

f rγ0−1
|

1
γ0−1

=: c6r, (3.41)

where the constant c6 is independent of t and x . Therefore, we have

M(r, x) ≤ M(r ) ≤ c6r, r ≥ 0, x ∈ E .

From the definition of J ′

G, J ′
g and ηt , we have for each t ≥ 0 and r ≥ 0,

|J ′

G(t, r, ξ ) − J ′

g(t, r, ξ )| (3.42)

≤ γ0(γ0 − 1)t
∫ 1

0

(
1γ (·)=γ0κ · (φηut )γ0−1 M(ut, ru

1
γ0−1 , ·)γ0−1)(ξ(1−u)t )du

= γ0C−1
X

∫ 1

0

(
1γ (·)=γ0κφ

γ0−1u−1 M(ut, ru
1

γ0−1 , ·)γ0−1)(ξ(1−u)t )du.

According to (3.41), we have the following upper bound:

u−1 M(ut, ru
1

γ0−1 , x) ≤ c6ru
2−γ0
γ0−1 ≤ c6r, u ∈ (0, 1), r ≥ 0, t ≥ 0, x ∈ E .

Therefore, fixing an r ≥ 0, we can apply Lemma 2.12 to the function

(y, u, t) ↦→ γ0C−1
X 1γ (y)=γ0κ(y)φ(y)γ0−1u−1 M(ut, ru

1
γ0−1 , y)γ0−1

since it is a bounded Borel function on E × (0, 1) × [0,∞). Now, according to Lemma 2.12,
(3.42) and the definitions of M(r, x),M(r ) and CX , we have

lim sup
t→∞

∥J ′

G(t, r, ξ ) − J ′

g(t, r, ξ )∥
Π
φ
x ;

1
γ0−1

(3.43)

≤ γ0C−1
X

∫ 1

0

⟨
1γ (·)=γ0κφ

γ0−1 M(ru
1

γ0−1 , ·)γ0−1, φφ∗
⟩
m

du
u

≤ γ0

∫ 1

0
M(ru

1
γ0−1 )γ0−1 du

u
.

We recall the reverse Fatou’s lemma in L p with p ≥ 1: Let ( fn)n∈N be a sequence of non-
negative measurable functions defined on a measure space S with σ -finite measure µ. If there
exists a non-negative L p(µ)-integrable function g on S such that fn ≤ g for all n, then
according to the classical reverse Fatou’s lemma, we have

lim sup
n→∞

 fn

µ;p =

(
lim sup

n→∞

∫
f p
n dµ

) 1
p

≤

(∫
lim sup

n→∞

f p
n dµ

) 1
p

=
 lim sup

n→∞

fn

µ;p
.
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Using this version of the reverse Fatou’s lemma and (3.43), we get that

lim sup
t→∞

I3(t, θ, x) ≤
 lim sup

t→∞

∥J ′

G(t, r, ξ ) − J ′

g(t, r, ξ )∥
Π

(φ)
x ;

1
γ0−1


10≤r≤θ dr;

1
γ0−1

≤

γ0

∫ 1

0
M(ru

1
γ0−1 )γ0−1 du

u


10≤r≤θ dr;

1
γ0−1

= γ0

(∫ θ

0

(∫ 1

0
M(ru

1
γ0−1 )γ0−1 du

u

) 1
γ0−1

dr
)γ0−1

= γ0

(∫ θ

0
∥M(ru

1
γ0−1 )∥10≤u≤1

du
u ;γ0−1dr

)γ0−1
, θ ≥ 0, x ∈ E .

Step 7: We will show that M(θ ) = 0 for each θ ≥ 0. We first claim that

M(θ ) ≤ cM

∫ θ

0

M(ru
1

γ0−1 )


10≤u≤1
du
u ;γ0−1dr, θ ≥ 0,

for some constant cM > 0. In fact, a direct application of Steps 2–6 gives that, for each t ≥ 0
and x ∈ E :

M(r, x)γ0−1
= lim sup

t→∞

M(t, r, x)γ0−1
= lim sup

t→∞

|G(r )γ0−1
− g(t, r, x)γ0−1

|

≤ lim sup
t→∞

(
I1(t, θ, x) + cγ0−1

f I2(t, θ, x) + cγ0−1
f I3(t, θ, x) + cγ0−1

f I4(t, θ, x)
)

= cγ0−1
f lim sup

t→∞

I3(t, θ, x) ≤ cγ0−1
f γ0

(∫ θ

0

M(ru
1

γ0−1 )


10≤u≤1
du
u ;γ0−1dr

)γ0−1
.

Therefore, for each θ ≥ 0,

M(θ ) = sup
x∈E

M(r, x) ≤ c f γ

1
γ0−1

0

∫ θ

0

M(ru
1

γ0−1 )


10≤u≤1
du
u ;γ0−1dr.

According to that M(θ ) ≤ c6θ for each θ , we can apply Lemma A.8 to the above inequality
to get the desired result.

Step 8: Finally, M ≡ 0 clearly implies that limt→∞ I3(t, θ, x) = 0, and thus completes the
verification of (3.25).
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Appendix

A.1. Examples

In this subsection, we briefly recall from [26] some examples of Markov processes satisfying
Assumptions 1 and 3. We will not try to give the most general examples. For details and more
examples, we refer our readers to [26].
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Example A.1. Suppose that E is a finite state space and m is the counting measure on E . Let
ξ be an irreducible, continuous-time Markov chain. Then the semigroup (Pt )t≥0 of ξ satisfies
Assumptions 1 and 3.

Example A.2. Suppose that E is a bounded Lipschitz connected open set of Rd and that m
denotes the Lebesgue measure on E . Let ξ be the subprocess in E of a diffusion process in Rd

corresponding to a uniformly elliptic divergence form second order differential operator. Then
the semigroup (Pt )t≥0 of ξ satisfies Assumptions 1 and 3.

Example A.3. Suppose that E is the closure of a bounded C2 connected open set of Rd and
that m denotes the Lebesgue measure on E . Let ξ be the reflecting Brownian motion in E .
Then the semigroup (Pt )t≥0 of ξ satisfies Assumptions 1 and 3.

Example A.4. Suppose that E is a bounded open set of Rd and m denotes the Lebesgue
measure on E . ξ be the subprocesses in E of any of the subordinate Brownian motions studied
in [15,16]. Then the semigroup (Pt )t≥0 of ξ satisfies Assumptions 1 and 3.

Example A.5. Suppose a > 2 is a constant. Assume that E = Rd and m is the Lebesgue
measure on Rd . Let ξ be a Markov process on Rd corresponding to the infinitesimal generator
∆ − |x |

a . Then the semigroup (Pt )t≥0 of ξ satisfies Assumptions 1 and 3.

Example A.6. Assume that E = Rd and m is the Lebesgue measure on Rd . Suppose that V
is a nonnegative and locally bounded function on Rd such that there exist R > 0 and M ≥ 1
such that for all |x | > R,

M−1(1 + V (x)) ≤ V (y) ≤ M(1 + V (x)), y ∈ B(x, 1),

and that

lim
|x |→∞

V (x)
log |x |

= ∞.

Suppose β ∈ (0, 2) is a constant. Let ξ be a Markov process on Rd corresponding to
the infinitesimal generator −(−∆)β/2 − V (x). Then the semigroup (Pt )t≥0 of ξ satisfies
Assumptions 1 and 3.

Example A.7. Suppose that β ∈ (0, 2) and that ξ (1)
= {ξ

(1)
t : t ≥ 0} is a strictly β-stable

process in Rd . Suppose that, in the case d ≥ 2, the spherical part η of the Lévy measure µ of
ξ (1) satisfies the following assumption: there exist a positive function Φ on the unit sphere S
in Rd and κ > 1 such that

Φ =
dη
dσ

and κ−1
≤ Φ(z) ≤ κ on S

where σ is the surface measure on S. In the case d = 1, we assume that the Lévy measure of
ξ (1) is given by

µ(dx) = c1x−1−β1{x>0} + c2|x |
−1−β1{x<0}

with c1, c2 > 0. Suppose that E is a bounded open set in Rd and m is the Lebesgue measure
on E . Let ξ be the process in E obtained by killing ξ (1) upon exiting E . Then the semigroup
(Pt )t≥0 of ξ satisfies Assumptions 1 and 3.
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A.2. Analytical results

In this subsection, we give the proofs of the two lemmas used in the proof of Theorem 1.1(3).
We think these two lemmas are of independent interest.

We first recall the following notation: If f is a measurable function which is L p integrable
on the measure space (S,S , µ) with p > 0, then we write

∥ f ∥µ;p :=

(∫
S
| f |

pdµ
) 1

p
.

Notice that, when p ≥ 1, ∥ f ∥µ;p is simply the L p norm of f with respect to the measure µ.
However, when p ∈ (0, 1), ∥ · ∥µ;p is not a norm.

Lemma A.8. Suppose that α ∈ (1, 2). Suppose that F is a non-negative function on [0,∞)
satisfying the property that there exists a constant C > 0 such that F(θ ) ≤ Cθ for all θ ≥ 0
and

F(θ ) ≤ C
∫ θ

0
∥F(ru

1
α−1 )∥10<u<1

du
u ;α−1dr, θ ≥ 0. (A.1)

Then F ≡ 0.

Proof. We claim that for each k ∈ N, we have

F(θ ) ≤
Ckθ k

k!
, θ ≥ 0. (A.2)

In fact, when k = 1 this is trivial. Now if (A.2) is true for a fixed k ∈ N, then from

F(θ ) ≤ C
∫ θ

0

F(ru
1
α−1 )


10<u<1

du
u ;α−1dr ≤ C

∫ θ

0

 1
k!

(Cru
1
α−1 )k


10<u<1

du
u ;α−1

dr

≤
Ck+1

k!

(∫ θ

0
r kdr

)
· ∥u

k
α−1 ∥10<u<1

du
u ;α−1 ≤

Ck+1θ k+1

(k + 1)!
,

we have that (A.2) is true for k + 1. Therefore, by induction, (A.2) is true for all k ∈ N.
Letting k → ∞ in (A.2), we get that F(θ ) = 0 for each θ ≥ 0. □

Lemma A.9. Suppose that α ∈ (1, 2). The non-linear delay equation

G(θ ) =

∫ θ

0
exp

{
−

α

α − 1

∫ 1

0
G(ru

1
α−1 )α−1 du

u

}
dr, θ ≥ 0, (A.3)

has a unique solution:

G(θ ) =

( 1
1 + θ−(α−1)

) 1
α−1
, θ ≥ 0. (A.4)

Proof. We first verify that (A.4) is a solution of (A.3). In fact, if G(θ ) = ( 1
1+θ−(α−1) )

1
α−1 , then∫ θ

0
exp

{
−

α

α − 1

∫ 1

0
G(ru

1
α−1 )α−1 du

u

}
dr

=

∫ θ

0
exp

{
−

α

α − 1

∫ 1

0

du
u + r−(α−1)

}
dr =

∫ θ

0
exp

{
−

α

α − 1
log

1 + r−(α−1)

r−(α−1)

}
dr
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=

∫ θ

0

(1 + r−(α−1)

r−(α−1)

)−
α
α−1 dr =

∫ θ

0

(
1 + r−(α−1))−

α
α−1 r−αdr = G(θ ).

The last equality is due to G(0) = 0 and

d
dθ

G(θ ) = −
1

α − 1

(
1 + θ−(α−1))−

1
α−1 −1 d

dθ
θ−(α−1)

=
(
1 + θ−(α−1))−

α
α−1 θ−α.

Now assume that G0 is another solution to Eq. (A.3), we then only have to show that
G0 = G. This can be done by showing that F(θ ) = 0 where

F(θ ) := |G(θ )α−1
− G0(θ )α−1

|
1
α−1 , θ ≥ 0.

We claim that the non-negative function F satisfies the inequality (A.1) with C = α1/(α−1). In
fact, by the L p Minkowski inequality with p =

1
α−1 > 1, we have

|G(θ )α−1
− G0(θ )α−1

|

=

⏐⏐⏐∥e−α
∫ 1

0 G(ru
1
α−1 )α−1 du

u ∥10<r<θ dr;
1
α−1

− ∥e−α
∫ 1

0 G0(ru
1
α−1 )α−1 du

u ∥10<r<θ dr;
1
α−1

⏐⏐⏐
≤ ∥e−α

∫ 1
0 G(ru

1
α−1 )α−1 du

u − e−α
∫ 1

0 G0(ru
1
α−1 )α−1 du

u ∥10<r<θ dr;
1
α−1

≤

α ∫ 1

0
G(ru

1
α−1 )α−1 du

u
− α

∫ 1

0
G0(ru

1
α−1 )α−1 du

u


10<r<θ dr;

1
α−1

≤ α

(∫ θ

0

(∫ 1

0
|G(ru

1
α−1 )α−1

− G0(ru
1
α−1 )α−1

|
du
u

) 1
α−1

dr
)α−1

.

This implies the claim.
On the other hand, according to (A.3), we have that G(θ ) ≤ θ and G0(θ ) ≤ θ . Therefore,

we also have that there is a constant C1 > 0 such that F(θ ) ≤ C1θ . Therefore, according to
Lemma A.8, we have F ≡ 0 as desired. □
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