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Abstract. In this paper, we provide a pathwise spine decomposition for superprocesses with both
local and non-local branching mechanisms under a martingale change of measure. This result com-
plements earlier results established for superprocesses with purely local branching mechanisms and
for multitype superprocesses. As an application of this decomposition, we obtain necessary /sufficient
conditions for the limit of the fundamental martingale to be non-degenerate. In particular, we obtain
extinction properties of superprocesses with non-local branching mechanisms as well as a Kesten-
Stigum L log L theorem for the fundamental martingale.

1. Introduction

The so-called spine decomposition for superprocesses was introduced in terms of a semigroup
decomposition by Evans (1993). To be more specific, Evans (1993) described the semigroup of
a superprocess with branching mechanism () = A? under a martingale change of measure in
terms of the semigroup of an immortal particle (called the spine) and the semigroup of the original
superprocess. Since then there has been a lot of interest in finding the spine decomposition for other
types of superprocesses due to a variety of applications. For example, Englinder and Kyprianou
(2004) used a similar semigroup decomposition to establish the L!-convergence of martingales for
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superdiffusions with quadratic branching mechanisms. Later, Kyprianou et al. (2012); Kyprianou
and Murillo-Salas (2013) obtained a pathwise spine decomposition for a one-dimensional super-
Brownian motion with spatially-independent local branching mechanism, in which independent
copies of the original superprocess immigrate along the path of the immortal particle, and they used
this decomposition to establish the LP-boundedness (p € (1,2]) of martingales. A similar pathwise
decomposition was obtained by Liu et al. (2009) for a class of superdiffusions in bounded domains
with spatially-dependent local branching mechanisms, and it was used to establish a Kesten-Stigum
Llog L theorem, which gives the sufficient and necessary condition for the martingale limit to
be non-degenerate. In the set-up of branching Markov processes, such as branching diffusions
and branching random walks, an analogous decomposition has been introduced and used as a
tool to analyze branching Markov processes. See, for example, Hardy and Harris (2009) for a
brief history of the spine approach for branching Markov processes. Until very recently such a
spine decomposition for superprocesses was only available for superprocesses with local branching
mechanisms. In the recent paper Kyprianou and Palau (2018), the authors established a spine
decomposition for a multitype continuous-state branching process (MCSBP) and used it to study
the extinction properties. Concurrently to their work, a similar decomposition has been obtained
by Chen et al. (2019a) for a multitype superdiffusion. However, in both papers, only a very special
kind of non-local branching mechanisms is considered. The first goal of this paper is to close the
gap by establishing a pathwise spine decomposition for superprocesses with both local and general
non-local branching mechanisms.

In this paper, the Schrédinger operator associated with the mean semigroup of the superprocess
is characterised by its bilinear form. Then some technical assumptions (Assumptions 1-2 below) are
imposed to ensure the existence of a principal eigenvalue A\; and a positive ground state h, and hence
to ensure the existence of a fundamental martingale (Theorem 3.2 below). These assumptions may
look strong, but they hold for a large class of processes, and we illustrate this for several interesting
examples, including MCSBP, in Section 7. Our result (Theorem 4.6 below) shows that, for a
superprocess with both local and non-local branching, under a martingale change of measure, the
spine runs as a copy of a conservative process, which can be constructed by concatenating copies of a
subprocess of the h-transform of the original spatial motion via a transfer kernel determined by the
non-local branching mechanism, and the general nature of the branching mechanism induces three
different kinds of immigration: the continuous, discontinuous and revival-caused immigration. The
concatenating procedure and revival-caused immigration are consequences of non-local branching,
and they do not occur when the branching mechanism is purely local.

In connection with the limit theory, it is natural to ask whether or not the limit of the fundament
martingale is non-degenerate. Using the spine decomposition, we establish sufficient and necessary
conditions for the martingale limit to be non-degenerate, respectively, in Theorem 5.1 and Theorem
6.2. A similar idea was used in Englinder and Kyprianou (2004); Liu et al. (2009) for (purely
local branching) superdiffusions, and in Kyprianou and Palau (2018) for MCSBP. However, in this
paper, we extend this idea much further by considering superprocesses where the spatial motion
may be discontinuous and the branching mechanism is allowed to be generally non-local. Suppose
that {Z, : n > 1} is a Galton-Watson branching process with offspring distribution {p, : n > 0}.
Let L stand for a random variable with this offspring distribution. Let m := gi% np, be the
mean of the offspring distribution. Then Z,/m'™ is a non-negative martingale. Kesten and Stigum
(1966) proved that when 1 < m < +oo, the limit of Z,/m™ is non-degenerate if and only if
E (L log™ L) < +o00o. This result is usually referred to as the Kesten-Stigum L log L theorem. Our
Corollary 6.5 shows that, in the case of A\; < 0, the martingale limit is non-degenerate if and only if
an L log L-type condition holds. This result extends an earlier result obtained in Liu et al. (2009) for
superdiffusions and can be viewed as a natural analogue of the Kesten-Stigum L log L. theorem for
superprocesses. Our Corollary 6.4 says that, under suitable assumptions, the non-local branching
superprocess exhibits weak local extinction if and only if Ay > 0. This result can be regarded as
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a general non-local branching counterpart of Englinder and Kyprianou (2004, Theorem 3), where
the same result is proved for a special class of superdiffusions in a domain D C R (the branching
mechanism considered in Englinder and Kyprianou (2004) is (z, \) = —B(z)A + a(z)\? with a, 8
being Holder continuous functions in D with order n € (0, 1], & > 0 in D and f8 being bounded from
above.)

In this paper we assume the spatial motion to be a symmetric Hunt process on a locally compact
separable metric space. This assumption is not really necessary. An extension is possible. One
direction is to assume the spatial motion to be a transient Borel right process on a Luzin space,
whose Dirichlet form satisfies Silverstein’s sector condition. Definitions of smooth measures and
Kato class can then be extended, while still preserving the properties used in this paper. We refer
to Chen (2002); Chen and Song (2003a) for Kato class measures defined in this way. Nevertheless,
we keep to the less general type of spatial motions to avoid unnecessary technicalities.

The rest of this paper is organized as follows. In Section 2 we review some basic definitions and
properties of non-local branching superprocesses, including the definition of Kuznetsov measures
which will be used later. In Section 3, we present our main working assumptions and the fundamental
martingale. Section 4 provides the spine decomposition and its proof. The proof of Proposition
4.3 is postponed to the Appendix. In Sections 5 and 6 we use the spine decomposition to find
sufficient and necessary conditions for the limit of the fundamental martingale to be non-degenerate
respectively. In particular, we obtain extinction properties of the non-local branching superprocess
as well as a Kesten-Stigum L log L theorem for the martingale. In the last section, we give some
concrete examples to illustrate our results.

Notation and basic setting: Throughout this paper we use “:=" as a definition. We always assume
that F is a locally compact separable metric space with Borel o-algebra B(E) and m is a o-finite
measure on (E, B(E)) with full support. Let Ey := EU{0} be the one-point compactification of E.
Any function f on E will be automatically extended to Ey by setting f(J) = 0. For a function f on
E, [[fllec := supyep |f(z)| and essup,cpf = infn.pnnv)=o SuPze g\ | f(#)]. Numerical functions f
and g on F are said to be m-equivalent (f = ¢ [m] in notation) if m ({x € E': f(z) # g(x)}) = 0. If
f(z,t) is a function on E x [0, +00), we say f is locally bounded if sup,cpo 1) SupP,cp | f(2,1)] < +00
for every T € (0,+00). We denote by fi(-) the function x + f(x,t). Let M(E) denote the space
of finite Borel measures on E topologized by the weak convergence. Let M(E)" := M(E)\ {0}
where 0 denotes the null measure on E. When pu is a measure on B(E) and f, g are measurable
functions, let (f, u) := [ f(x)p(dz) and (f,9) == [5 f m(dz) whenever the right hand sides
make sense. Sometlmes we also erte w(f) for (f, ). We use Bb( ) (respectively, BY(F)) to denote
the space of bounded (respectively, non-negative) measurable functions on (E, B(FE)). For a,b € R,
a Ab:=min{a,b}, a Vb :=max{a,b}, and log™ a := log(a V 1).

2. Preliminaries

2.1. Superprocess with non-local branching mechanisms. Let

g = (QvHth 9t7£t7HIE7 C)

be an m-symmetric Hunt process on E. Here {H; : ¢t > 0} is the minimal admissible filtration, {6; :
t > 0} the time-shift operator of £ satisfying & 005 = &4 for s,¢ > 0, and ¢ :=inf{t > 0: & =0}
the lifetime of £. Let {&, : ¢ > 0} be the transition semigroup of &, i.e., for any non-negative
measurable function f,

S f(x) := T [f(&0)] -

For a > 0 and f € BT(E), let Go f(x f0+oo e~ S, f(x)dt. It is known by Chen and Fukushima
(2012, Lemma 1.1.14) that {S; : ¢ 2 O} can be uniquely extended to a strongly continuous con-
traction semigroup on L2(E,m), which we also denote by {&; : t > 0}. By the theory of Dirichlet
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forms, there exists a regular symmetric Dirichlet form (£, F) on L?(E,m) associated with :

F = {u € L*(E,m) : sup E /E (u(z) — Spu(z)) u(x)m(dz) < +OO},

t>0

E(u,v) = %1_{%% g (u(z) — Spu(x)) v(z)m(dx), Yu,v e F.

Moreover, for all f € By(E) N L*(E,m) and a > 0,
Gof € F satisfies that E,(Gof,v) = (f,v) Vv € F, (2.1)

where £ (u,v) = E(u,v) + a(u,v). We assume that £ admits a transition density p(¢,z,y) with
respect to the measure m, which is symmetric in (z,y) for each ¢ > 0. Under this absolute continuity
assumption, “quasi everywhere" statements can be strengthened to “everywhere" ones. Moreover,
we can define notions without exceptional sets, for example, positive continuous additive functionals
(PCAF in abbreviation) in the strict sense (cf. Fukushima et al.; 1994, Section 5.1). In this paper,
we will only deal with notions in the strict sense and omit “in the strict sense”.

It is well known (see Fukushima et al.; 1994, Theorem A.3.21, for instance) there exist a kernel
N(z,dy) on (E,B(E)) with N(z,{z}) = O for allz € E and a PCAF H of £ with [ IL,(H;)p(dx) <
oo for all £ > 0 and probability measure p on (E, B(E)) such that for any = € E, any t >0, and
any non-negative Borel function f on E x E vanishing on the diagonal {(y,y) : y € E},

e = U/fgs, N (&, dy)dH, (2:2)

s<t

The pair (N, H) is called a Lévy system of &.
In this paper, we consider a superprocess X := {X; : ¢ > 0} with spatial motion £ and a non-local
branching mechanism v given by

Uz, f) = o"(x, f(2)) + ¢V (a, f)  forz € B, feBf(E). (2.3)
The first term ¢ in (2.3) is called the local branching mechanism and takes the form

oF (2, N) = a(z)\ + b(2) N2 + /

(e—w 1+ AH) ' (z,df), =€ E, A>0, (2.4)
(0,4+00)

where a € By(E), b € B} (E) and (0 A 6?)ITE(z,df) is a bounded kernel from E to (0,+00). The
second term ¢™N% in (2.3) is called the non-local branching mechanism and takes the form

Nz, f) = —ele)m(z, f) - / (1= et @N) V(2 a6), @€ E, (2.5)
(0,400)

where ¢(z) is a non-negative bounded measurable function on E, w(x,dy) is a probability kernel on
E with 7(x, {z}) # 1, w(z, f) stands for [ f(y)n(z,dy) and HHNL(:): df) is a bounded kernel from
E to (0, +oo) To be specn‘ic X is an M(E)- Valued Markov process such that for every f € B (E)
and every u € M(E),

P, (e_<f’Xt>> — e (ur(tm) for ¢ >0, (2.6)

where us(x,t) := —logPs, (e*<f’Xf>) is the unique non-negative locally bounded solution to the
integral equation

uy(.t) = G f(a [/wss,” }

— &if(x [ / o 5S,Uf<t—sfs>>ds}— [ /thbNL(ss,u}S)ds L@
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We refer to the process described above as a (&, ol N L)—superprocess. Such a process is defined
in Li (2011) via its log-Laplace functional. Another usual way of constructing the (&, ¢*, p™VF)-
superprocess is as the high intensity limit of a sequence of branching particle systems, where when-
ever a particle dies, it chooses from two different branching types: the local branching type (when
the particle dies at x, it is replaced by a random number of offspring situated at z), and the non-
local branching type (when the particle dies, it gives birth to a random number of particles in F,
and the offspring then start to move from their locations of birth). We refer to Li (2011); Dawson
et al. (2002) for such a construction.
We define for z € F,

y(z,dy) = (c(:v) + /(0+ )GHNL(x,d9)> m(x,dy), ~(z):=~(x,1). (2.8)

Clearly, v(z) is a non-negative bounded function on F and v(z,dy) is a bounded kernel on FE.
Define A := {x € E: ~(z) > 0}. Note that ¢ (z,-) =0 for all z € E\ A. If A =0 (i.e., o'VF = 0),
we call ¥ a (purely) local branching mechanism. Without loss of generality, we always assume that
A # (). The arguments and results of this paper also work for (purely) local branching mechanisms.

It follows from Li (2011, Theorem 5.12) that the (&, ¢”, ¢’V ¥)-superprocess has a right realization
in M(E). Let W, denote the space of right continuous paths from [0, +00) to M(E) having zero
as a trap. We may and do assume that X is the coordinate process in WS’ and that (Foo, (Ft)t>0) is
the natural filtration on War generated by the coordinate process. The following proposition follows
from Li (2011, Proposition 2.27 and Proposition 2.29).

Proposition 2.1. For all p € M(E) and f € By(E),
P/J« (<f7 Xt>) = <§Btf> :u>7

where P f(x) is the unique locally bounded solution to the following integral equation:
t t
/) = &) -1 | [aerpeseaas| +1 | [semenas). @9
Moreover, for all pw € M(E), g € B} (E) and f € By(E),
Py (. Xpe 0¥ ) = =i (S g, ),

where Vig(x) = ug(x,t) is the unique non-negative locally bounded solution to (2.7) with initial
value g, and V;fg(x) 1s the unique locally bounded solution to the following integral equation

t
V/ g(z) = Sf (@) — 1L, [ [ wievies vyisgms} , (2.10)

where

U(x, f,g):=g(x) (a(az) +2b(z) f(z) + /(0 ] (1 - e—f(x)e) n*(z, d9)>

,+00)

—7(z,g) c(x)—l—/ 9e 0@ NINE (2, d6) | .
(0,400)

2.2. Kuznetsov measures. Let {Q¢(p,-) =P, (Xr €)1t >0, p € M(E)} be the transition kernel
of the (&, ¢, p™VF)-superprocess X. Then by (2.6), we have

/ e N Qy (1, dv) = exp (—(Vif, p))  for € M(E) and t > 0.
M(E)
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It implies that Q;(u1 + p2, ) = Qi(p1,+) * Q¢(ua, ) for all py, pe € M(E), and hence Q¢(u,+) is an
infinitely divisible probability measure on M(E). By the semigroup property of @, V; satisfies that

ViV = Viys  for all s,t > 0.
Moreover, by the infinite divisibility of ();, each operator V; has the representation
Vif(a) =Nl f) + [
M(E)°

where Ai(z,dy) is a bounded kernel on E and (1 A v(1))Li(z,dv) is a bounded kernel from E to
M(E)Y. Let QY be the restriction of @Q; to M(E)°. Let

Ey:={z € E: \(z,E) =0 for all t > 0}.
If x € Eyp, then we get from (2.11) that

Vif(z) = /M(E)O (1- ) Lie.dv) fort >0, f € B} (E).

(1 - e*<f7”>) Li(z,dv), t>0,f€ B (E), (2.11)

It then follows from Li (2011, Proposition 2.8 and Theorem A.40) that for every = € Ejy, the family
of measures {L;(x,-) : t > 0} on M(E)° constitutes an entrance law for the restricted semigroup
{QY : t > 0}, and hence there corresponds a unique o-finite measure N, on (W, Fo) such that
N, ({0}) =0, and that for any 0 < t; <ty <--- <t, < 400,

Ny (Xy, € dvr, Xy, € dva, -+, Xy, € dvy) = Ly (2, dn)QY,_y, (vi,dva) -+ QF _y  (Un—1,dwp).
It immediately follows that for all ¢ > 0 and f € B} (E),

N, (1—e_<f’Xt>) :/M( | (1—e_<f”’>)Lt(:L‘,d1/):V}f(ac). (2.12)
E)O

This measure N, is called the Kuznetsov measure corresponding to the entrance law {L;(x,-) : t > 0}
or the excursion law for the (&, ¢¥, p™NI)-superprocess. When p € M(E) is supported by Ey and
N(dw) is a Poisson random measure on W, with intensity measure

[ ntao)ra),
Ey
the process defined by
Xo=p Xi:= / weN(dw), t >0,
W+

0

is a realization of the superprocess (X,P,). We refer to Li (2011, section 8.4) for more details on
the Kuznetsov measures. In the sequel, we assume that

Assumption 0. Ey :={z € E: b(z) > 0} C Ey.

Under this assumption, the Kuznetsov measure N, exists for every x € E, when E is nonempty.
It is established in Chen et al. (2019b) that Assumption 0 is automatically true for superdiffusions
with a (purely) local branching mechanism. In the general case, Li (2011, Theorem 8.6) gives the
following sufficient condition for Assumption O: If there is a spatially independent local branching
mechanism ¢(A) taking the form

B(A) = aX + BN +/

(0,+00)
where o € R, B € R* and (6 A #%)n(d6) is a bounded kernel on (0, +00), such that ¢'(A\) — +oo as
A — 400, and that the branching mechanism v of X is bounded below by ¢ in the sense that

U(z, f) > ¢(f(z)) forall z € E and f € B} (E),

(e_)‘e -1+ )\9) n(dd) for A\ >0,

then Fy = E.
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3. Fundamental martingale and weak local extinction

In this section we will establish a fundamental martingale of the form e**(h, X;) for the super-
process X in terms of the principal eigenvalue A; and the corresponding positive eigenfunction h of
the Schrodinger operator associated with the mean semigroup. For a MCSBP (resp. a multitype
superdiffusion), if one considers the E-valued spatial motion on an enriched state space E x I, where
1 is the finite or countable set of types, then the mutation in types is the jumps in the I-coordinate,
and the associated mean semigroup is generated by a matrix (resp. a coupled elliptic system). So,
the spectral theory of matrices (resp. the potential theory for elliptic systems) can be applied.
See, for example, Palau and Yang (2020, Examples 3.7 and 3.8). For a general non-local branch-
ing superprocess considered in Subsection 2.1, the associated Schrédinger operator takes the form
L —a+-y, where L is the generator of underlying spatial motion, and + is an integral operator given
by v(f)(x) = (=, f). Since the integral operator 7 can be quite general, the method mentioned
above is not applicable. Instead we characterize the Schrédinger operator in terms of the associated
bilinear form, and impose some technical assumptions to ensure the existence of A\; and h.

Definition 3.1. We call a non-negative measure y on E a smooth measure of £ if there is a PCAF
Al' of ¢ such that

/f p(dz) —hm H [/ffsdA“] for all f € BY(E).

Here II,,,(-) := [ II;(-)m(dx). This measure p is called the Revuz measure of A’. Moreover, we
say that a smooth measure p belongs to the Kato class K(§), if

t
lim sup/ / p(s, z,y)u(dy)ds = 0.
t0 zcp E
A function g is said to be in the class K (&) if g(z)m(dz) is in K(&).

Clearly all bounded measurable functions are included in K(&). It is known (see, e.g., Albeverio
and Ma, 1991, Proposition 2.1.(i) and Stollmann and Voigt, 1996, Theorem 3.1) that if v € K(§),
then for every € > 0 there is some constant A; > 0 such that

/ u(z)?v(dz) < e€(u,u) + AE/ u(z)*m(dz) Yu e F. (3.1)
E

E

Assumption 1. [ ~y(z,-)m(dz) € K(€), where v(x,-) is the kernel defined in (2.8).

Under Assumption 1, it follows from (3.1), the boundedness of y(z) and the inequality

u(@uy)] < 5 @)? + uy)?)

that, for every € > 0, there is a constant K. > 0 such that

/ / v(z,dy)ym(dz) < e€(u,u) + K. / m(dz) Vue F.

It follows that the bilinear form (Q, F) defined by
Q(u,v) = 5(u,v)+/ a(z)u(x)v(z)m(dx) // v(z,dy)m(dz), wu,v e F,
E

is closed and that there are positive constants K and fy such that Qg (u, u) := Q(u, u)+ o (u,u) > 0
for all w € F, and

1Q(u, v)| < K Qpy(u,u) /2 Qg (v,0)/? Vu,v e F.
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It then follows from Kunita (1970) that for such a closed form (Q,F) on L?(E,m), there are
unique strongly continuous semigroups {7; : t > 0} and {T; : t > 0} on L%(E,m) such that
Tl r2(Em) < €70, [Tl L2(my < €F, and

(Tif.9) = (£, Trg) Vf.g € L*(E,m). (3:2)
Let {Us}a>p, and {ﬁa}a>,80 be given by Unf = f0+oo e~ T, fdt and Unf = f0+°° e~ T, fdt
respectively. Then {Uqs}a>3, and {Ua}a>g3, are strongly continuous pseudo-resolvents in the sense
that they satisfy the resolvent equations
Uo —Ug+ (@ — B)UsUs =0, Us —Ug+ (a— B)UsUs =0
for all o, 8 > By, and

Qu(Uaf,9) = Qalg,Uaf) = (f,9) Vf € L*(BE,m), g€ F. (3.3)

Recall from Proposition 2.1 that 93; is the mean semigroup of the (&;, ®*, ®V%)-superprocess, which
satisfies the equation (2.9). Since y(x,dy) is a bounded kernel on E, by (2.9), we have for every

f € Bb(E)’ .
1Beflloo < [[flloe + (lalloo + [17(-, 1)Hoo)/0 [Be—s flloods.

By Gronwall’s lemma, ||B:f]lco < €| f||oo for some constant ¢; > 0. For f € By(E) and a > c1,

define R, f(x) := 0+OO e~ BB, f(x)dt. By taking Laplace transform on both sides of (2.9), we get

Rof(z) = Gaf(x) = Ga (aRaf) (x) + Ga (7(+, Raf)) (z), (3.4)
where G, is the a-resolvent of (&;);>0. A particular case is when a(x),vy(x) € L?(E,m). In this
case, for all f € By(E) N L?*(E, m) and « sufficiently large, both a(z)R,.f(x) and v(z, R.f) are in
By(E)N L?(E, m). Then it follows from (2.1) that Gof, Ga (aRof), Ga (7(-, Raf)) € F, and then
by (3.4), (2.1) and (3.3),

Qu(Raf,v) = (f,v) = Qa(Uaf,v) forallve F,

which implies that R, f is m-equivalent to U, f for « sufficiently large. This indicates that there
is some strong relation between B; and T;. In fact we will show in Proposition 5.2 below that
Bif = Trf [m] for every t > 0 and every f € By(E) N L?(E,m). This means that §; can be
regarded as a bounded linear operator on the space of bounded measurable functions in L?(E,m),
which is dense in L?(E,m). Hence T; can be regarded as the unique bounded linear operator on
L?*(E,m) which is an extension of ;.

Assumption 2. There exist a constant A\; € (—o0,+00) and positive functions h,/ﬁ € F with h
bounded continuous, [|h||z2(gm) = 1 and (h,h) = 1 such that
Q(h,v) = M (h,v), Qv,h) = Ai(v,h) VveF. (3.5)

In Theorem 3.2 below, we will prove that e*(h, X;) is a non-negative martingale. To prove this
we first prove that h is invariant for some semigroup, see (3.13) below. Since h € F is continuous,
it follows from Chen and Fukushima (2012, Theorem 4.2.6) that for every z € E, II,-a.s.

h&) — h(&) = M+ N}, t>0,

where M" is a martingale additive functional of ¢ having finite energy and N/ is a continuous
additive functional of £ having zero energy. The formula above is usually called Fukushima’s de-
composition. Tt follows from (3.5) and Fukushima et al. (1994, Theorem 5.4.2) that N} is of bounded
variation, and

t t t
NP = n [ ae)ds+ [ aeanenas = [ (s, veo,
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Following the idea of Chen et al. (2004, Section 2), we define a local martingale on the random time
interval [0, (,) by

. ! 1 h
M, ._/O e e, (3.6)

where (, is the predictable part of the lifetime ¢ of &, that is,
¢ if ( <ooand §_ =&,
gp =

o0, otherwise,

see Sharpe (1988, Theorem 44.5). Then the solution H; of the stochastic differential equation
¢
H =1 +/ Ho dM,, te[0,6), (3.7)
0
is a positive local martingale on [0, (,) and hence a supermartingale. Consequently, the formula
dif” = Hydll, onH;N{t<(¢} forzeE

uniquely determines a family of subprobability measures {II" : € E} on (£2,H). Hence we have

I} [£(€)) = I [Hef (§):t < ¢, 120, f € BY(E).
Note that by (3.6), (3.7) and Doléan-Dade’s formula,

H, = exp <Mt _ %< Mc>t> Ollt hh((f_)) exp <1 - hh((f_))> vt e [0,6,), (3.8)

where M€ is the continuous martingale part of M. Applying Ito’s formula to log h(&;), we obtain
that for every z € F, Il;-a.s. on [0, (),

log (&) — log h(€0) = My — & (M%) + 3 <log ) _ Bler) — h<55_>>

2\ he. ) €-)
t t
i+ /0 a(€s)ds — /0 v}(f({ ;L) ds. (3.9)
Put
o) = 'Yf(LZ;L) for v € . (3.10)

By (3.8) and (3.9), we get
t t
H; = exp (Alt —/0 a(&s)ds —|—/0 q(fs)ds> ZEZ))

To emphasize, the process € under {II?, z € E} will be denoted as £". For a measurable function g,
we set

ey(t) == exp (- /0 t g(fs)ds> Vvt > 0,

whenever it is well defined. Then we have for all f € BT (E) and t > 0,
At

&1 f(@) =T [ F(e1)] = T—TLe [eaq(Dh(E) F(0). (3.11)

(z)
It follows from Chen et al. (2004, Theorem 2.6) that the transformed process £" is a conservative
and recurrent (in the sense of Fukushima et al., 1994) m-symmetric right Markov process on F with
m(dy) := h(y)?>m(dy). Thus

GM =1[m] forallt>D0. (3.12)
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Note that for all ¢ > 0 and = € F, the measure &} (x,-) := II” (ﬁf € ) is absolutely continuous
with respect to m, since &} (z,-) is absolutely continuous with respect to the measure &;(z,-) :=
I1,(& € -) by (3.11) and the latter is absolutely continuous with respect to m. Moreover, by the
right continuity of the sample paths of £, one can easily verify that both 1 and &?1(x) are excessive
functions for {&} : ¢t > 0}. Thus by Chen and Fukushima (2012, Theorem A.2.17), (3.12) implies
that
it

h(z)
Theorem 3.2. Suppose Assumptions 1-2 hold. Then for every u € M(E), WHX) := eMt(h, X;)
is a non-negative P -martingale with respect to the filtration {F; : t > 0}.

1=6(x) = I, [ea—q(t)h(&)]  forall x € E. (3.13)

Proof: By the Markov property of X, it suffices to prove that for all x € E and ¢t > 0,

Pih(x) = Ps, ((h, X)) = e Mh(2). (3.14)
Let A(s,t) := f (& dr—|—f q(&)dr and u(t,z) =11, [e A(0, >h(§t)]. Clearly by (3.13), u(t,z) =
e Mth(x ) Note that
M0 — 1 = (A1) — A0 Zl/ﬁ(—%déﬁ-+<K€SD<¥“&”d8~ (3.15)
0

By (3.15), Fubini’s theorem and the Markov property of £, we have
u(t,) = Gih(z) + L, [ (X — 1)a(g)|

r t b t
=@Mm—m /Mm&Wm@ms+m3/«mﬁwm@m%
LJO i 0

! Y(s, h)
o h)

-t 1 t
= Gih(z) — 11, /0 a(&s)u(t —s,&)ds| + 11, /0 ’y(fs,uts)ds] )

= Gih(z) — 11, :/Ot a(&s)u(t — s,ﬁs)ds: + 11, /0 u(t — s,§s)ds}

In the last equality above we use the fact that u(t — s,x) = e M=9)h(z). Thus u(t,z) is a
locally bounded solution to (2.9) with initial value h. By the uniqueness of the solution, we get
u(t, ) = Pih(x) = Ps, ((h, X4)). -

For u € M(E), we say that the process X exhibits weak local extinction (resp. local extinction)
under P, if for every nonempty relatively compact open subset B of E, P, (lim¢—, 400 X¢(B) =0) =1
(resp. P, (X¢(B) = 0 for sufficitently large t) = 1). It is proved in Englinder and Pinsky (1999)
(see also Engliander and Kyprianou, 2004) that local extinction and weak local extinction coincide
for superdiffusions in a domain D C RY with local branching mechanism (2, \) = —B8(z) A\ +a(z)\?,
where o and 3 are Holder continuous functions on D with order n € (0,1], @« > 0 in D and 3 is
bounded from above. However the two notions are different in general. In this paper we are only
concerned with weak local extinction.

Corollary 3.3. Suppose Assumptions 1-2 hold. For all p € M(E) and nonempty relatively compact
open subset B of F,
P, (hmsup eMUXy(B) < +oo> =1.
t—+o00
In particular, if \y > 0, then X ezhibits weak local extinction under P,,.

Proof: This corollary follows immediately from Theorem 3.2 and the fact that
h 1

g X)<
infyep h(z) 2 t)

MXUB) < MY = it h(2)

Wi (X).
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O

Remark 3.4. Corollary 3.3 implies that the local mass of X; grows subexponentially and the growth
rate can not exceed —\;. However, when one considers the total mass process (1, Xy), the growth
rate may actually exceed —A;. We refer to Englinder and Kyprianou (2004) and Englander et al.
(2016) for more concrete examples.

4. Spine decomposition

4.1. Concatenation process. We assume Assumptions 1-2 hold. It is well-known (see, e.g., Sharpe,
1988, p. 286) that for every x € E, there is a unique (up to equivalence in law) right process

((Et)tzo; ﬁﬁ) on F with lifetime Eand cemetery point 9, such that
i (5 € B) =11 [eq(t);gf c B} VB e B(E),

where ¢ is the nonnegative function defined in (3.10). € is called the eq(t)-subprocess of £", which
can be obtained by killing ¢” with rate ¢. In fact, a version of the eq(t)-subprocess can be obtained
by the following method of curtailment of the lifetime. Let Z be an exponential random variable,
of parameter 1, independent of ¢*. Put

t
((w):=inf{t >0: / q (52(0‘))) ds > Z(w)} (= +o0, if such ¢t does not exist),
0
and

“lw)=1, it ¢ > C(w).

Then the process ((a)tZO,H;‘) is equal in law to the e,(t)-subprocess of ¢". Now we define a
probability on E by

A {gf(m if ¢ < Cw),

_ h(@)y(z,dy) _ h(y)n(z,dy)
Y(x, h) m(z,h)
Let E = (Q G. Gy, 0y, {t, IL,, Z ) be the right process constructed from E and the instantaneous distri-
bution k(w,dy) := (fc _(w),dy) by using the so-called “piecing out” procedure (cf. Tkeda et al.,
1966). We will follow the terminology of Sharpe (1988, Section I11.14) and call £ a concatenation

process defined from an infinite sequence of copies of £ and the transfer kernel x(w,dy). One can
also refer to Li (2011, Section A.6) for a summary of concatenation processes. The intuitive 1dea of

forz € E. (4.1)

this concatenation is described as follows. The process f evolves as the process £ until time C , it is
then revived by means of the kernel x(w,dy) and evolves again as £ and so on, until a countably
infinite number of revivals have occurred. Clearly in the case of purely local branchlng mechanism
(i.e. 'y( ) =0 on E), we have C +00 almost surely and hence § runs as a copy of &".

Let 6t be the transition semigroup of { It satisfies the following renewal equation.

8ufe) = 1 [0 (€] + 102 | [ alehiea(on (€l Epias] . FeBTEL (2)

By Li (2011, Proposition 2.9), the above equation can be rewritten as

uste) =1t 6] — 1| [ aeh@iertelias| + | [ atehiat (et 8urias].

Proposition 4.1. For all f € B (E), t >0 and x € E,

e)\lt

&) =

PBi(fh) (). (4.3)
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In particular, étl(m) =1, and hence ghas infinite lifetime. Moreover, for each t > 0 and x € E, 5
has a transition density p(t,x,y) with respect to the probability measure p(dy) := h(y)h(y)m(dy).

Proof: By (1.2), (3.11), (2 8) (3 10) and (4.1), we have

&if(x) = ( ) I [ea(t) (&) f(&1)]
Alt t ~
+7 Hz /0 ea(8)q(€s)h(Es)e M) h(gs,@_sf)ds]
>\1t
= ) IL; [ea(t)R(&) f(&L)]
)\1t
- A8 pS s| . .
+ h(.%')Hx |:/0 a( ) (gsa thfsf)d :| (4 4)

Let u(t,z) = e Mth(z)S,f(x). Clearly u(t,z) is a locally bounded function on [0,400) x E.
Moreover, it follows from (4.4) and Li (2011, Proposition 2.9) that

ult, ) =, ea(O(E) 1))+ 11 | [ ea(s) (6 s
~ L, (e (@) - | [ (e ult - seas] +1 [ [ tv(fs,ut*)ds} .

This implies that u(t, x) is a locally bounded solution to (2.9) with initial value fh. Hence we get
e M (2)S f (z) = u(t,z) = Py(fh)(z) by the uniqueness of the solution. It then follows from
(3.14) that &;1(z) =1 on E.

To prove the second part of this proposition, it suffices to prove that for all t > 0 and =z € FE,
S:15(z) =0 for all B € B(E) with p(B) = 0 (or equivalently, m(B) = 0). Note that

M (115(60)) = [ hwp(t..pymidy) = .

It follows from the above argument that e *th(z)S,15(z) = P(hlp)(z) is the unique locally
bounded solution to (2.9) with initial value 0. Thus &;1p(z) = 0. O

Remark 4.2. The formula (4.3) can be written as

Ps, [(fh, X4)]

Péz [<h7 Xt>]
which enables us to calculate the first moment of the superprocess in terms of an auxiliary process.
An analogous formula for a special class of non-local branching Markov processes, which is called a
“many-to-one" formula, is established in Bansaye et al. (2011), but with a totally different method.
By (3.11), we may rewrite (1.5) as

Py, [(fh, Xi)] = Mh(@)Tl, [£(&)]  for f € B (E) and t 2 0.

— 11, [ f@)} for f € Bf (E) and t > 0, (4.5)

Let 71 be the first revival time of E For n > 2, define 7, recursively by 7, := 7,1 + 71 0 57%1.
Since ¢ has infinite lifetime, I, (lim;, 400 7 = +00) = 1 for all x € E.

Proposition 4.3. For all f(s,z,y), g(s z,y) € BY([0,400) x Ex E), t >0 and z € E, we have

L[S f(no 0] = [ [ s [ 2 Ecna@)s6.E) (16)

T <t
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and

0 [(3 16 60) (X 9.6, &) )|

T, <t TjSt

=[S oo ] 1 | s [ A wa€S6.En)

1, ([ i [ a6t +rés) )]

F 10, [/Ot ds/Eﬂh(fz,dy)Q(gs)g(&é,y)

. t—s -~ ~ ~
i, < | [ =@t + g z))] (4.7)
The proof of this proposition will be given in the Appendix below.

4.2. Spine decomposition. In this section we work under Assumptions 0-2. Recall from Theorem
3.2 that the process W/ (X) is a non-negative P,-martingale for every y € M(E). We can define a
new probability measure Q,, for every p € M(E)? by the following formula:

1
d = —— WHX)dP for all ¢ > 0.
QM‘]—} <h7M> t ( ) M 5 or a. =
It then follows from Proposition 2.1 that for any f € B, (E) and ¢ > 0,
A1t At
~(rx)) = © ~(fX0) = © Vi) yh
Q,u (e ) <h, /.L) P,u (<h" Xt>€ ) <h,,u>e <‘/t f) :LL>7

where V" f () is the unique locally bounded solution to (2.10) with initial value A. In this subsection
we will establish the spine decomposition of X under Q.

Definition 4.4. For all p € M(FE) and x € E, there is a probability space with probability measure
P, that carries the following processes.
(i) ((ft)tzo; P,.2) is equal in law to §~, a copy of the concatenation process starting from x;
(i) (n;P,4) is a random measure such that, given E starting from x, n is a Poisson random measure
which issues M (E)-valued processes X™! := (X"") >0 at space-time points (&, ¢) with rate

dNg, x 2b(&)dt.

Here for every y € By = {z € E: b(z) > 0}, N, denotes the Kuznetsov measure on W
corresponding to the (&, ¢%, ¢V L)—superprocess, while for y € E'\ E4, N, denotes the null
measure on War . Note that, given 5, immigration happens only at space-time points (é,t)
with b(é}) > 0. Let D™ denote the almost surely countable set of immigration times, and
D := D" N [0,t]. Given &, the processes {X™ : ¢ € D"} are mutually independent.

(iii) (m;P,z) is a random measure such that, given E starting from z, m is a Poisson random
measure which issues M (E)-valued processes X™! := (XI""),50 at space-time points (&, 1)
with initial mass 6 at rate _

01 (€, d0) x dPgs_ x dt.
Here Py;, denotes the law of the (&, ¢*, p™F)-superprocess starting from 65,. Let D™ denote
the almost surely countable set of immigration times, and D}" := D™ N [0,t]. Given §~, the

processes { X! : t € D™} are mutually independent, also independent of n and {X™! : ¢ €
D"}
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(iv) {((XE")sz0; Puz), i > 1} is a family of M(FE)-valued processes such that, given ¢ starting from
2 (including its revival times {r; : i > 1}), X" := (X["),>0 is equal in law to ((Xs)s>0, Pr,)
where P, denotes the law of the (&;, ¢*, ¢"VF)-superprocess starting from m;(-) := @m(gﬂ._, )
and ©; is a [0, 400)-valued random variable with distribution n(gﬂ_, dé) given by

n(z,do) = (s((i)) La(2)+1p,4(x) ) 60(d6)
+ 7(136)1 A L0 00 (O)BTIVE (2, ). (4.8)

Moreover, given ¢ starting from z (including {7 : i > 1}), {©; : i > 1} are mutually indepen-
dent, {X™ : i > 1} are mutually independent, also independent of n, m, {X™: ¢ € D"} and
{x™t:t e D™},

(v) ((Xt)1>0;Pp) is equal in law to ((Xt)i>0; Pp), a copy of the (&, ¢F, p™L)-superprocess start-

ing from p. Moreover, ((X¢)i>0;P,2) is independent of &, n, m and all the immigration
processes.

We denote by
Ife= > X2, If= >0 XM and I[:=) X[
seD} seD™ T <t

the continuous immigration, the discontinuous immigration and the revival-caused immigration,
respectively. We define I'y by

Dyi=Xe+IE+I8+17, Vt>0.

The process gis called the spine process, and the process Iy := If 4 I + I7 is called the immigration
process.

For any u € M(FE) and any measure v on (E,B(E)) with 0 < (h,v) < 400, we randomize
the law P, , by replacing the deterministic choice of x with an E-valued random variable having
distribution h(x)v(dx)/(h,v). We denote the resulting law by P, ,,. That is to say,

Pus) 1= ooy [ BusI(@(da).

Clearly P, 5, = P, ;. Since the laws of X and (E, I) under P, , do not depend on v and p respectively,
we sometimes write P, . or P. ,. For simplicity we also write P, for P, ,,. Here we take the convention
that Po(I'y =0Vt > 0) = 1.

For s > 0, define

AT = (1, X)), if se D™ and Al':=0 otherwise. (4.9)

Then, given E, {A™ s >0} is a Poisson point process with characteristic measure 911" (gg, df). Let
G be the o-field generated by ¢ (including {7; : ¢ > 1}), {©; : ¢ > 1}, {D]* : t > 0}, {D} : t > 0},
and {A", s > 0}.

Proposition 4.5. For p € M(E)°, f € B (E) and t > 0, we have P,-a.s.
Py (£, TOIG] = (Befo 1) + Y Beosf(E)

seD}

+ 3 ATP €D+ D Om(Ern Brori ) (4.10)

seDm Ti <t
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Proof: By (2.12), we have for every z € Ey = {x € E: b(z) >0}, f € Bf (E) and t > 0,

Ne ((f, Xe)) = Ps, ({f, X)) = B f(2).
Let Dj := {r; : 7; <t}. Then by the definition of I';, under P,

Pu (£, TG =Pu (£, X)) + > Py [(f. X[20)IG]
seDy
+ 3 P AXIG + Y B (£ XTI
seD™ s=r, €D}
(X)) + D Ne ((f, Xims))
seD}
Z PAm(5~ vat s + Z faXt s>)
se D" s=r, €Dy
mtfa Z mt sf gs
seD}
+ AP FE)+ D Om(Ee, Pisf). m
seDJ" s=r,€Dy

The following is our main result on the spine decomposition for the (S, oL, pNE )-superprocess.
Its proof will be given in the next subsection.

Theorem 4.6. Suppose that Assumptions 0-2 hold. For every u € M(E)°, the process ((T't)t>0; Py)
is Markovian and has the same law as ((X¢)¢>0; Qpu)-

Remark 4.7. In the case of a purely local branching mechanism, the revival-caused immigration does
not occur. To be more specific, in that case the spine runs as a copy of the h-transformed process
£" while only continuous and discontinuous immigration occur along the spine. The concatenating
procedure and the revival-cased immigration are consequences of non-local branching. Similar
phenomenon has been observed in Kyprianou and Palau (2018) for multitype continuous-state
branching processes and in Chen et al. (2019a) for multitype superdiffusions.

Remark 4.8. The non-local branching mechanism v given by (2.3)-(2.5) is not the most general
form that can be assumed to establish a spine decomposition. In fact, we can establish a spine
decomposition for the class of branching mechanisms developed in Dawson et al. (2002):

V(@ f) = o (@, f(2) + o™ (a, f) forze B, fe B (E),

where ¢! takes the same form of (2.4) and

No(x f) = — / (o, ) ()G, d)
P(E)

—/ / (1 - e_eﬂ(f)> IV (z, 7, d6)G (z, d),
P(E) J(0,+00)

where P(FE) denotes the space of probability measures on E, G(z,dr) is a probability measure from
E to P(E), c(x,7) is a nonnegative bounded measurable function on E x P(E), and 011V (z, 7, d6)
is a bounded kernel from E x P(E) to (0,+00). It is easy to see that ™' has the form given in
(2.5) when G(z,dn) is a Dirac measure on P(E).

To establish the spine decomposition, one should redefine v(z,dy) as

A dy) = /P PTG, dn),
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where r(z, ) := ¢(z, 7r)—|—f(0 +00) OTINL (2, w,df). As a result, the instantaneous distribution, defined

by (4.1), of the concatenation process (the spine) 5, changes with 7 accordingly. Regarding the spine
decomposition for the above branching mechanism, there is a new feature of the revival-caused
immigration, which is described as follows: Given the spine ¢ (including its revival times), at each
revival time 7;, a probability measure 7; is chosen from P(E), independently, according to the

distribution G*(&,,—, dm), where
m(h)r(z, )G (z,dr)
~(x, h)

An immigration (Xg’i)szo then occurs at 7;, and it is equal in law to the process ((Xs)s>0, Po,r;),

G*(z,dr) =

where ©; is an independent [0, +00)-valued random variable with distribution 7(&,,_, m;,d6) given
by

c(z,m)

77(1'7 T, de) = (’f‘(l’, 7T) 1{1”(:8,7r)>0} + 1{r(m,7r):0}> 50(dy)

+ 61{96(07+OO)}HNL ((E, T, de)

r(x,T)

1{r(a:,7r)>0} .

We omit the details of the proof here for brevity.

4.3. Proof of Theorem /.0. In this subsection, we give the proof of Theorem 4.6. In order to do
this, we prove a few lemmas first.

Lemma 4.9. Forallz € E,t>0 and f € BJ(E),

t
P.o |exp (—(f,If +11)) |&: 0<s<t|= <— (&, Vees (s d),
e (< a4 ) 16 0<s< ] e (= [ 9@ ViesE)as
where ®(x, A) := 2b(z)\ + f(07+oo) 0 (1—e M) I1E(2,df) for z € E and X > 0.

Proof: This lemma follows from an argument which is almost identical to the one leading to (59)—
(60) in Kyprianou et al. (2012). We omit the details here. O

Lemma 4.10. Suppose f,1 € B (E) and (z, s) — gs(z) is a non-negative locally bounded measurable
function on E x [0,+00). For allz € E and t > 0, let

e = fe (- g (@)ds — (1) 1@)|

Then u(t,z) := e Mth(x)e @) satisfies the following integral equation:

t
u(t, :L') =11, |:6_l(£t)h(£t):| + Hx[/o ds(q)(g& V;‘/fsf(gs))u(t -5, gs)
- ‘I’(fs, ‘/tfsfa ut_s) - gtfs(gs)u(t ey gs))] ) (411)
where ¥ and ® are defined in Proposition 2.1 and Lemma /.9 respectively.

Proof: Following the idea of Evans and O’Connell (1994), it suffices to prove the result in the case

when g does not depend on the time variable. Let 7 denote the first revival time of E We have
the following fundamental equation:

t
emul@) _qph [eq+g(t)e"(5f )} + 10 /0 ds q(El)eqrg(s)

b e [ eyl ).
[0,4-00)
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The first term corresponds to the case when 7 > ¢, and the second term corresponds to the case
when the first revival happens at time s € (0,¢). It then follows from Fubini’s theorem and (3.11)
that

t
e M (x)e @D = 1L, {eqqg(t)h(&)e ’“thﬂx[ /0 ds Carg(5)a(Es)P(ES)
wh (g5, e NS W) / e 0 Vize Dy (¢, dp)].

[0,+00)
We continue the above calculation by Li (2011, Proposition 2.9) and (4.8) to get

u(t,x) = e_)‘lth(x)e—w(m)
t
=TI, [A(g)e ™)) — 11, | /0 (al€s) + 9(&s))e ™ In(g)e E=)ds]
t
IT, R < —A1(t—s)._h 5, e W —0m(&s,Viesf) .
L[ [ dsagmere I e e | 1(6,00)

=10, [h(g)e @] ~ 10, [ /0 t(a(§S)+g(€s))eMts)h(gs)ew(ss,ts)ds}

+I0, [ / dsm(Es, e M=) pewi-s) . (c(gs) + / re*‘)’f(fsavt—sf)HNL(gs,de))].
(0,+00)
This directly leads to (4.11). O
Lemma 4.11. For all f,g € B} (E), p € M(E), z € E and t > 0,
. e)qt B _
B |oxp (=(£.10) = 9(&)) | = jose IV ), (4.12)

where V™7 f(x) is the unique locally bounded solution to (2.10) with initial value he™9.

Proof: Recall from Definition 4.4 that (X;P, ) is independent of fN and all the immigration pro-

cesses. Moreover, given E (including {7; : 4 > 1}), I" is independent of I° and I¢. It then follows
from Lemma 4.9 that

Pua [exp (—(£,T0) - 9(&))]
=Py [exp (~(£,X0) = (£ IE+ 1D = (£, 1) — 9(&)) |
= Pua [0 By { OB, [exp (~(£. 25+ 1) 16 :0 < s < 1]

Pua [exp (—(L I HE 0 s <} U{nm <8} |
=i fo (- [C0@isEnas— 1.1 - @) . (1.13

Let v(t,x) := e_)‘lth(w) x [exp (— fo 53, Vi Sf(fs))ds —(f, I}) — (é))} One can easily verify
that (x,s) — gs(x) := ®(x, Vsf(x)) is a locally bounded function. Thus by Lemma 4.10, v(¢, z) is a
locally bounded solution to the equation (2.10) with initial value he™9. By the uniqueness of such
a solution, we have v(t,z) = V;**"? f(z). This and (4.13) lead to (4.12). O

Proof of Theorem 4.6: First we claim that for every pu € M(E)?, ((I't)i>0;P,) has the same
one dimensional distribution as ((X;)¢>0; Q). This would follow if for every f € B, (E) and every

t>0,
P, (e—<fv“>) - Q, (e_(f’Xt>> . (4.14)
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By the definition of Q, and Proposition 2.1,

6)\1t At

Q, (e%f,Xt)) — o P, |(h, Xp)e X0 | = o

where V; f() is the unique locally bounded solution to (2.10) with initial value h. By Lemma 4.11,
we have

e VNV f ), (4.15)

P, [exp (—(f,T4))] = exp (A1t — (Vi f, ) h(z) V] f ().

P (¢0) = s [ B (674) hian)

M, h
= Wei( SV ). (4.16)

Combining (4.15) and (4.16), we get (4.14). It follows that for every u € M(E)?,

Pu(ly = 0) = Qu(X: = 0)
- Wlmp“ <Wth(X); X, = o) =0 Vt>0. (4.17)

It remains to prove the Markov property of ((I't)¢>0;Pu). To do this, we apply Evans and
O’Connell (1994, Lemma 3.3) here. Recall that Ey = EU{J} where 0 is a cemetery point. We can
extend the probability measure P, , onto u x {0} by defining that Pﬂ,a(é =0, ;=0Vt>0)=1
for all p € M(FE). In the remainder of this proof, we call J a Markov kernel if J is a map from
the measurable space (S,S) to the measurable space (S’,S’) such that for every y € S, J(y,-) is a
probability measure on (S, S’), and for every B € §’, J(-, B) € bS the space of bounded measurable
functions on S. The kernel J will also be viewed as an operator taking f € bS’ to Jf € bS where
If W) = Jo F(2)3(y,dz).

Clearly ((Z¢)e>0 := ((I't,€t))t>0; Puz) is @ Markov process on M(E) x Ey. Denote by S; the
transition semigroup of Z;, by & the Markov kernel from M(FE) x Ey to M(E) induced by the
projection from M(E) x Ey onto M(E), and by Q the Markov kernel from M(E) to M(E) x Ey
given by

Thus

h(zx)vi(dx)

<h7 V1>
Let Ry := QS8 for t > 0. One can easily verify that QR is the identity kernel on M(E) and
Ri(v1,dvs) = Py, (I'y € die) for all vy € M(E). By Evans and O’Connell (1994, Lemma 3.3),
((T4)¢>0;P,) is Markovian as long as Q5; = R;Q. This would follow if for all f,g € B, (E) and
IZNS M(E),

Q(l/l,d(yg X .%')) = 1{1,17é0}51,1 (dVQ) X lE(x) + 1{1/1:0}50((11/2) X 53((133‘)

/ / e~ ) =96 ) 1y, d(13 X 1)) Re(v1, dvn)
M(E) J M(E)x Ep

= / / eIl =9W) G, (1y x x, d(v3 x 1))Q(v1, d(vy X T)). (4.18)
M(E)XE@ M(E)XEB
By the above definitions, we have
, he=9,T)
LHS of (1.15) = B,, |-t {1 L)
S of (4.18) L [e T

RHS of (1.18) = Py, [ FT079€) | 10, Loy 410, gy,

1{rt¢0}] + Py, (It =0),
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In view of (4.17), to show (4.18), it suffices to show that for all u € M(E)" and f,g € B} (E),

_ —o(Z _ he 9,T

It follows from Lemma 4.11 that

~ 1 ~

—(fTe)—g(&) | — —(fiT'e)—g(&:)

P, {e } T /EIP’M@ {e } h(z)u(dzx)
e)\lt

_ ~(Viln) (ke 4.20

€ y ) s .
where V,¢™? f(z) is the unique locally bounded solution to (2.10) with initial value he™9. On the
other hand, since (I';,P,) and (X;,Q,) are identically distributed for each ¢t > 0, we have by the
definition of Q, and Proposition 2.1 that

—(fry (he™9,Ty) —(5.x,) (he™9, Xy)
Pule ! t>W1{n¢0} =Qu eV t>W1{X#o}
6)\1t
= P le (X (he 9. x
o )
I T ) (1.21)
(R )
Combining (4.20) and (4.21), we get (4.19). The proof is now complete. O

5. Sufficient conditions for a non-degenerate martingale limit

In this section, we will give sufficient conditions for the fundamental martingale to have a non-
degenerate limit. We start with an assumption.

Assumption 3.
(i) Either one of the following conditions holds.
(1) a(z),y(x) € L*(E,m).
(2) The Lévy system (N, H) of & is of the form (N, t), where N is given by
N(z,dy) = N(z,y)m(dy)

with N(z,y) being a symmetric Borel function on E x E. The probability kernel 7 (z, dy)
has a density 7(z,y) with respect to the measure m such that

y(z)m(z,y) = F(z,y)N(2,y) Yr,yeE

for some non-negative bounded Borel function F'(x,y) on E X E vanishing on the diagonal.

(11) (1A7T('7h)7ﬁ) < +o00.
(iii)  — m(x, h)/h is bounded from above on A.

It is easy to see that Assumption 3.(iii) implies Assumption 3.(ii). In this section we will use
the first two items of this assumption. In the next section we will use items (i) and (iii) of this
assumption. The following theorem, giving an L log L type criterion for the martingale limit to be
non-degenerate, is the main result of this section.

Theorem 5.1. Suppose Assumptions 0-2 and 3.(i)-(ii) hold. Let W (X) be the almost sure limit
of the non-negative martingale W*(X). Suppose that

(/(0 rh(-)1og+(rh(-))nL(-,dr),ﬁ) n (/(0 (-, h) 1og+(m(-,h))HNL(-,dr),E) < 4oo.  (5.1)

,+00) ,+00)
We have
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(i) if A1 < 0, then W(X) converges to W2 (X) ast — oo in LY(P,) for every p € M(E), and
W2 (X) is non-degenerate in the sense that P, (W (X) > 0) > 0 for up € M(E)°;
(i) if \1 > 0, then Wi (X) =0 P,-a.s. for every p € M(E).
In the remainder of this section we will assume Assumptions 0-2 hold. Additional conditions used
are stated explicitly. To prove Theorem 5.1, we need a few preliminary results.

Proposition 5.2. Suppose Assumption 3.(i) holds. For all f € By(E)NL*(E,m) and s,t € (0, +00),
im P f =Puf in L*(E,m). (5.2)

Moreover,
Bef =T f [m]  forallt >0, (5.3)
where (T})¢>0 is the semigroup associated with the bilinear form (Q,F) by (3.3).

Proof: First we suppose Assumption 3.(i2) holds. We note that v(z,dy) = ~(z)r(z,dy) =
v(z)m(z,y)m(dy). Then by Assumptions 1 and 3.(i2),

| PN ymids) = [ @ ym(s) € K(e)
E E
Thus F is in the class J defined in Chen and Song (2003a). Let F'(x,y) := F(y,z). Then
| N ym(n) = [ FooN@omdn = [ 1@rom(d) =),
E E

E

Since v is a bounded function on E, the above equation implies that Fis in the class J. One can
also show easily that the functions log(1 + F') and log(1 + F) are in J. Define

Agy ::—/ (&)dr + Z log (14 F(§—,&)) V0<s<t<+oo.

s<r<t

It follows from Chen and Song (2003a, Theorem 4.8) (see also Chen and Song, 2003b, p. 275) that
the semigroup corresponding to the bilinear form (Q, F) defined by (3.3) is

T,f(x) =10, e f(&)] Vt>0, z € E, feBY(E).

Furthermore, for any 1 < p < +o00, (1})t>0 is semigroup on LP(E, m), and for 1 < p < +o0, (T})t>0
is strongly continuous semigroup on LP(E,m). Similar to Chen and Song (2003a, (2.6)), we have

t
hor 1= = [ottaleds + Y e FE 6
0 s<t

Using this, the Markov property of &, (2.2) and Assumption 3.(i2), one can show that for any
fE€ByFE)and x € E,

iwm:mU@WMQAw@ﬂg@mﬁﬂm//ﬂ&f F(éoy)N @wmwm}

—mﬂ@wm{fw@ng@mﬁﬂm//n&f 6 pymany]

=10, [f(&)] — T, :/ta(és)Tt_sf(és)dS- + 11, / /Tt s () (&s, dy)d ]

This implies that T} f(x) satisfies the integral equation (2.9). By uniqueness T;f(x) = P¢f(z), and
thus we conclude the result of this proposition.

Now we suppose Assumption 3.(i1) holds. Fix f € By(E) N L?(E,m). We first prove (5.2).
Without loss of generality, we assume 0 < s < t < 400. Let F.(z) := —a(x)B, f(z) + v(z, B, f).
We have shown in the argument below (3.3) that ||B,f|lecc < €| f]|co for some constant ¢; > 0.
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Thus by definition, [F+(z)] < (Ja(@)] + 7)) [Beflloe < e [floo((a@)] +(x)). Clearly by the
boundedness of a(x) and y(x), (z,r) — F,(x) is locally bounded on E x [0, +00) and by Assumption
3.(), * = F.(z) € By(E) N L3*(E,m). By (2.9), we have

Bif(0) - Puf(2) = S (o) - Sf(o) +11 | [ t B
+ 11, [/08 Fr(&—r) — F?‘(gs—r)dT’:| : (5.4)

Recall that {&; : t > 0} is a strongly continuous contraction semigroup on L?(E,m). Thus

16tf — s fllr2mm) = 116s (St—sf — f) I L2(Em)
<|[St—sf — fllL2(gm) — 0 as s = t. (5.5)
t t
1, [/ (G ] / ML, [ (& )| dr _/ &1y ()] dr. (5.6)

We have by Minkowski’s integral inequality and the contractivity of &; that

Note that

t t t
H / S 1mr Fr| dr 2y < / 161 Foll o g my A < / 1Ful 228mydr

t
< 1 Flloo(lall 2z m) + [l z2(Em)) / e dr 5 0

as s — t. This together with (5.6) implies that

11, [/: Fr(gt—r)dr:|

Note that by the Markov property of &,

‘nx [ Bteen - Rear

It follows from the strong continuity and contractivity of the semigroup {S; : t > 0} that

lim
s—t

— 0. (5.7)
L2(E,m)

< / L [T, (Fr(6) — e, (Fr(€0))]] dr
0

= /Os Ssr (|6t—sFr - F?”|) (CL‘)dT (58)

lim HGt—SFT — FT'HL2(E,m) = 0, and
s—t

16t—sFr — Frll2(gm) < 2(1FrllL2(2m) < 26" (| flloo(lall L2 m) + 1Vl 22(E,m))-

Thus by Minkowski’s integral inequality and the dominated convergence theorem, we have

s—r (1G5 7 — Fy|)dr S/O [Ss—r (|S¢—sFr _FTD”LQ(E,m) dr

L2(E,m)

S

S/ ||6t—sFT_FT||L2(E,m)dT
0

—0 ass—t.

This together with (5.8) implies that

i, | [ R - Fear]

lim
s—t

—0. (5.9)
L2(E,m)
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Combining (5.4)—(5.9), we arrive at (5.2). To prove (5.3), it suffices to prove that for every ¢t > 0
and every g € L?(E,m),

[ Br@gtaimian) = [ Tip@gam(an) (5.10)
Note that by Holder’s inequality and (5.2), for s, ¢ € (0, +00),
[ es@ateimian - [ . @ma
E
< Bef = BsfllL2zm)l9llL2m) — 0 (5.11)

as s — t. This implies t — [P f(x)g(x)m(dx) is a continuous function on (0,+00). Similarly,
using the strong continuity of {7} : ¢ > 0} on L?(E,m), one can prove that ¢t — [ Ty f(x)g(z)m(dz)
is also a continuous function on (0,+0c). By taking the Laplace transform of [, 3, f(x)g(x)m(dx)

(resp. [5Tif(x)g(x)m(dx)), we get [ Rof(x)g(z)m(dx) (resp. [pUaf(x)g(z)m(dz)). It has been
shown in the argument below (3.3) that under Assumption 3.(i), Ry f = Uy f [m] for a sufficiently
large. So the Laplace transforms of both sides of (5.10) are identical for « sufficiently large. Hence
(5.10) follows from Post’s inversion theorem for Laplace transforms. u

Proposition 5.3. Under the assumptions of Proposition 5.2, the measure

() — B a)m(d)

is an invariant probability measure for the semigroup {ét :t >0}, i.e., forallt >0 and f € BT (E),

| Sut@itdn) = [ s@pldo) (5.12)
E E

Proof: By the monotone convergence theorem, we only need to prove (5.12) for f € B;r (E). Clearly
fh € B} (E)NL*(E,m). It follows by (1.3),(5.3) and (3.2) that

/ &.f(x /E MR, (£h) ()h()m(dz)
_ / MU (FR) (@) h(2)m(dz)

E
= [ M @)@ T()m(do)

E

~ [ s@plds) O
E
Lemma 5.4. The function g(z) := h(z)'Ps, [WL(X)] satisfies that
P, [W&(X)] = (gh,p)  for all u € M(E). (5.13)
Moreover, B
Sig(z) =g(z) forallt>0 andx € E. (5.14)

Proof: To prove the first claim, we note that for an arbitrary constant A > 0, by the bounded
convergence theorem,

P, [exp (—AW;";(X))] — lim P, [exp (—)\Wth(X))]

t—-+o0
= t—lg-noo exp (_<l)\(t7 ')7 :U'>)

= exp <— lim (I (t, .),m), (5.15)

t——+o00
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where [\ (t,z) := —log Py, [exp (—=AW/'(X))]. Let

Ix(z) := lim [\(t,x) = —logPy;, [exp (—)\WO}LO(X))] .

t—+o00

We have by Jensen’s inequality that
IA(t,x) < APs, (Wth(X)) = \eMUPh(z) = Ah(z) forallz € E, t > 0.

Hence [\(z) < Ah(z) for all x € E. This together with (5.15) and the dominated convergence
theorem yields that

P, [exp (—AW;Q(X))} = =), (5.16)

Thus we get (5.13) by differentiating both sides of (5.16) with respect to A and then letting A | 0.
Note that 0 < g < 1 by Fatou’s lemma. By the Markov property of X and (5.13), we have for all
t>0and x € F,

g(x) = LP&; [ lim e (h, Xt+s>]

h(a;) s—400
et . . ot .
e )] - o)
et At N
Here we used (4.3) in the last equality. .

Lemma 5.5. Suppose Assumption 3.(i) holds. Let D™ and AT be as in Definition /./.(iii) and
(4.9) respectively. If condition (5.1) holds, then for m-almost every x € E,

+Amp (£ + 0. (f
1im log (As h(és)) = lim log @lﬁ(gﬁ—ah)

D™m3s—+o0 S i—r+00 Ti

=0 P ,-as. (5.17)

Proof: To prove (5.17), it suffices to prove that for any € > 0 sufficiently small,

“+o00
P ( > Laph@sery = +°O> and P. 5 (Z Yo, my»emiy = +OO> = 0. (5.18)

seD™ =1

For any B € B(E) with 0 < m(B) < +o0, let pp(dz) := h(z)1p(z)m(dz). Clearly up € /\:l(E)O.
Recall that given &, {A™ : s > 0} is a Poisson point process with characteristic measure A% (&;, di\)

Thus by Fubini’s theorem and the fact that p(dz) = h(z)h(x)m(dx) is an invariant measure for Sy,
we have

+o0 fape
Bun (2 Liapa@yserny) = Pun </0 /<o,+oo> N6y eeey 11 (€, AN} )

seDm

1 - A Lig. d\)ds)p(d
- <h’”m/B[P)“B’I</o /(0,+oo) L@ ey 1 (6, AN ds ) p(d)

< — ds [ p(dx Al p(z)seesy I (2, dA
<h>/-LB> 0 E ( ) (0,4-00) (Ah(@)>e) ( )

log™ Ah(x)/e =
- 1(/ )\HL(-,d/\)/ ds,hh)
<h7 /~L3> (0,+00) 0

_ 1 Mo L -
= 2(h, ) (/m,m) Ah(-) log™ (Ah(-))IT (,dA),h>. (5.19)
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The right hand side of (5.19) is finite by (5.1). Thus we get

IPuB( > LarnE e < —l—oo) _ .
seD™
Note that

P“B( 2 Liagn@yseen < +°°> - p(B)l/BP’I< > Lamn@)sesy < +°O>P(dﬂf).

seD™ seDm

Thus P. , (ZseDm 1{Ag.nh(§s)>e58} < —i—oo) = 1 for m-almost every x € B. Since B is arbitrary, the

first equality of (5.18) holds for m-almost every x € E.
Recall from Definition 4.4 that given £ (including {7; : @ > 1}), ©; is distributed as n(&;,—, d0)
given by (4.8). Thus by Fubini’s theorem and (4.6),

“+o00
Pus <Z 1{@m<&,h)>efﬂ}>
=1
_p / (&, d0)
KB Z 9’”(&7‘1 , >€s‘rz ]

[+oo
1 ~ -
=P = 1A(§n—)/ - GHNL(gTi_,de)]
" _; Y(&n-) O (Er;— h)>eTi

fee 1 e NL/F
“Fup | [} € gyans [ om (5s,d9>]

+oo 58’ s
(h, ) / / Ho [ La(&) /ew(és,h)>ess 011 (fs,de)] p(dz)
+<>° h NL
", MB>/0 ds/ElA(I‘)Tr(x, h)h(z)m(dz) /gﬁ(%h»eas oIV E (2, d6)

logt (07 (z,h))

1 ~ <
(z)7(x, h)h(z)m(dz) / orIVE (2, dO) ds
(h, up) (0,400) 0
flogt (O (-, h))IIVE (-, d6), 14h | . (5.20)
h :U'B 0+oo
The right hand side of (5.20) is finite by (5.1). Thus we get

MB (Z 1{@i7r(gri—,h)>€”i} < +OO) =1.
i=1

Using an argument similar to that at the end of the first paragraph of this proof, one can prove
that the second equality of (5.18) holds for m-almost every z € E. g

Proof of Theorem 5.1: Recall that, by assumption, Assumptions 0-2 and 3.(i)-(ii) hold.
(i) Suppose A; < 0. Without loss of generality, we assume p € M(E)Y. Since W/(X) is a non-
negative martingale, to show it is a closed martingale, it suffices to prove

Py [WE(X)] = (.. (5.21)

First we claim that (5.21) is true for pg(dy) := 15(y)h(y)m(dy) with B € B(E) and 0 < m(B) <
+oo. It is straightforward to see from the change of measure methodology (see, for example, Durrett,
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2019, Theorem 5.3.3) that the proof for this claim is complete as soon as we can show that

t—+o00

Qus <lim sup W(X) < +oo> =1. (5.22)

Since ((X¢)i>0; Qup) is equal in law to ((I't)s>0;Puy), (5.22) is equivalent to that

t—+00

P, <lim sup WH(T) < +oo> = 1. (5.23)

In the remainder of this proof, we define a function log* 0 := /e if § < e and log* 6 := log# if
6 > e. Under the assumptions of Theorem 5.1, one can prove by elementary computation that (5.1)
implies

(/(O h() log? (rh(- DI dr). B + (/(O (e ) log” (e, I (. dr), 14B) < oo, (5.24)

,-‘rOO) 7+OO)

Recall that G is the o-field generated by & (including {7; : i > 1}), {Dj*:t > 0}, {D} : t > 0},
{©;:i>1} and {A]": s > 0}. By (4.10), for any t > 0,

Py (WD)G) = M (Behoum) + Y Proshl€) + D ATPech(E)

seD} seD
+ > Oim(&r Birh))
T <t
(h, up) Z e)‘lsh Z eMSAT h( {S +Z€>‘17’917T §rims s h)
seD} seDp i<t

(hyps) + > M h(E, + ) MIATR(E,) +Ze*mew &y h). (5.25)

seDmn seDm i=1

We begin with the second term on the right hand side of (5.25). Let € € (0, —A;) be an arbitrary
constant.

Z €>\1sh(£s) = Z eklsh(fs)l{h(gsbem} + Z €A1Sh(§s)1{h(§~s)gees} =:1+1IL

seDn seDn seDn

Recall that given £, the random measure > scpn 0s(-) on [0, +00) is a Poisson random measure with
intensity 2b(&;)d¢, and that p(dz) = h(x)h(z)m(dz) is an invariant probability measure for &;. We
have by Fubini’s theorem,

NT r> 0)]

Pup (I1) =Py, |:]PMB< Z e/\lsh<g<>‘)1{h(§5)i
seDm
+oo ~ ~
=Py ([ 2HEIMBE ey )
2

= [ s [ B BEMENHE) < )]l
2

+oo
< e)‘lsds/bafhxl <ees1p(dx
i | [ bo)h(@)1 01yl

+oo
< 2/[b]|s / €(>\1+5)5d3/ p(dz) < +oo.
<h),U’B> 0 E
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Thus we have P, (Il < 400) = 1. On the other hand,

Bus (2 Lin@yseeny) = B (/+OO bEN e >ess}d)

seDmn
2 too ~
N h,uB/ ds/ Pz b(fs)l{h(g >ess}] p(dz)

+oo
1 €S dx
< s / s [ W)l oysnyolca)

log+ h(xz)

2

< ———Iblloo log™ [|Alloe < 400
ey oo o™ ]

This implies that I is the sum of finitely many terms. Thus PP, (I < 4-00) = 1. For the third term
in (5.25), we have

A1S AM A1SAM A1S A™M
D EMATK(E) = Y eMTATR(E)] (Amh(E)<essy T > MATRE) {Ah(&s)>es}

seD™ seD™ seDm
=:1IT+1IV.

In view of Definition 4.4.(iii), for III, we have

+o0 - ~
PMB (HI) = ]P),U«B </0 /EeAlsTZh(&‘)1{rh(gs)§eES}HL(£S’dr)ds)
= 1/+<>o e)‘lsds/ P /7“ h(f) L(E dr) ) p(dz)
(h, ILLB> 0 B T E s {Th f )<€ES} 8
< 1

+oo
A1s 2 L
< e ds/ dx/rhxlr py<ees 1 (x, dr
<h,ﬂB>/0 Ep( ) E (@) rn@esr I )
1 oo
= (h/ p(da:)/ r2h(-)HL(-,dr)/ eMids
kuB) JE (0,+00) log* rh(-)/e

__71 7"22'7“- Al/sL'rA

= 5y UL PO @R v Nt an, )

— L T dryrh() log*(rh() - rh() "

= Nl (/(O,Eo)( ,dr)rh(-)log"(rh(-)) <(7“h(-)\/1)_>‘1/Elog*(rh(-))> ,h). (5.26)

Note that the function r — m is bounded from above on (0, 400). This together with

(5.24) implies that the right hand side of (5.26) is finite. It follows that P, (III < 4+00) = 1. It has
been shown by (5.19) that

P ( ZD: Lngh@yoersy < +50) = 1.
seDm™
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This implies that IV is the sum of finitely many terms. Thus we have P, (IV < +00) = 1. The
fourth term on the right hand side of (5.25) can be dealt with similarly. In fact, we have

+oo —+o00
Z MO (Er— h) = Z MO (&, h)l{em(&f,h)swi}
i=1

=1

+oo
MTi@Qor(E ~
—+ z_; et @zﬂ(gTi—v h)l{(aiﬂ—(g.,.i,,h)>e”i}

=:V+ VL

Recall that given ¢ (including {7; : i > 1}), ©; is distributed according to 1(&,—, df) given by (1.8).
Thus by Fubini’s theorem and (4.6),

+oo
Pup(V) =Py [Z M (Er -, h) /[0 ) 01 e my<oemiy(Emies de)}
i=1 ;oo ‘ -

+00 r
= P#B [Z eAlTi W(&’—i_’ h) 1A(g7'i—)
=1

i 6°TINE (&, -, )
Y(€ri—) /{o<e7r(g;i,h)<esn} ]

1 oo T, h) . = P
= d2)P,, . )M IS (€)ds - o211V E (€5, 0
i [ ot [ o e /{o<9ﬂ@;,h)gew} E.0)]
1

2 ~

+0o0 ¢
_ Misq dop, [Py 921IVL (€, A6

<h,uB>/0 ‘ S/B” (4P | ney A /{o<ew<£s,h>sw} &49)
1

+o00
eMids 2V (z, h)2h(2)m(dz 21IVL (o
= <h,ﬂB>/0 d [ElA( ) (@, h)“h(z)m(d )/{Mﬁ( 0> 11V E (1, d6)

$’h)§668}

_ 1 27 21 7NL /+OO Ais
B <h) IU’B> /E 1A(x)7r(x’ h) h(x)m(dx) /(0,+OO) 9 H (:1:7 de) 10g+(97‘r(z,h)) € dS

__ -1 N+ h)262 ((- M /e NL/. ~
/\1<hau3>(/(07+ )1,4() (-, h)26% (w(-, )0 v )M/ T (7d9)7h>
__ -1 NL. (- oo™ (rn(-
M (h, 1) (/(07+ )H (-,d0)14()w(-, h)0log* (m(-, h)H)

7'('( s h)H ﬁ)
WOV D) e log () ) ")
Since 0 — m is bounded from above on (0, +00), we get P, (V) < 400 by (5.24), and
hence P, ,(V < +00) = 1. We have shown in (5.20) that

“+o0o
B (D Lour(@, ey < +00) =1
i=1

Thus VI is the sum of finitely many terms and P, (VI < +00) = 1. The above arguments show
that the right hand side of (5.25) is finite a.s., and hence

limsup P, , <Wth(F) | g) < +oo P -as.

t—-+o0

By Fatou’s lemma, P, (liminf;, 1o W/(I') |G) < +00 Py ,-a.s. Let

Ay = {IP’“B (ltierianth(I‘) | Q) < n} €g forn>1
—+00
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Then P, (U5 A,) = 1. Since

/ lim inf W} (T')dP,,,, :/ P,y (hminf wh) | g> dP,, <n,
A ATL t——+o0

t—+o00
n

we get lim inf;, oo W) < +00 P, ,-a.s on A, for all n > 1. Thus

P,y <1tlmlant (I < —i—oo) =1

Note that by Harris and Roberts (2009, Proposition 2) W/(I")~! is a non-negative P, ,-supermar-
tingale, which implies that lim; o W/(I')~! exists P, ,-a.s. It follows that

Py (lim sup WH(T) < —i—oo) =1.

t—+00

This proves (5.23) and consequently P, [WZ(X)] = (h,up). Since P, [WL(X)] = (gh, up),
where g(z) = h(z) Py, [W(X)], we have

(gh,u) = (h, puB). (5.27)

Note that 0 < g(x) < 1 for every x € E. We get by (5.27) that g(z) = 1 m-a on B.
Since B is arbitrary, g(z) = 1 m-a.e. on E. It then follows from () 11) that g(z) = Gtg( ) =
[ b(t,z,y)g(y)p(dy) = 1 for every x € E. Therefore by (5.13), P, [WE(X)] = (h, ) holds for all
w € M(E). This completes the proof for Theorem 5.1.(i).

(ii) Suppose Ay > 0. Clearly P, (W[ (X) = 0) = 1 if and only if P, [Wh( )] = 0. By (5.13), this

would follow if g(z) = 0 for every z € E. Recall that g(z) = S.g(z = [Pt z,9)g(y)p(dy). Tt
suffices to prove that g(z) = 0 for m-almost every = € F, or equlvalently,

Ps. [W;(X)] =0 for mae. z€ E. (5.28)

By the change of measure methodology (see, for example, Durrett, 2019, Theorem 5.3.3), (5.28)
would follow if

Ps, (limsup W/*(T') = +o00) =1  for m-a.e. x € E. (5.29)

t—+00

By the definition of I'y, we have
W) = eM3(h,T) > eM*ATh(E,)  for s € D™,
and

W) > MO (&, h)  fori> 1.

Ti

Thus under Ps_,

limsup W/(I') > limsup eM*ATh(E)1

t——+o0 D™m3s—+o0o {AZ-"h(fs)Zl}
Vv 1?3-?201) 6>\1Ti@i7r(§ﬁ-_, h)l{e)m(gn_,h)zl}‘ (5.30)
Lemma 5.5 implies that for m-a.e. z € E, both @m(gﬂ._, h)l{(%m(gfﬁ,h)zl} and Ag”h({sﬂ{wh(gs)zu

grow subexponentially. Thus when A\; > 0, the right hand side of (5.30) goes to infinity. Hence we
get (5.29) for m-a.e. z € E. O
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6. Necessary conditions for a non-degenerate martingale limit

In this section we will give necessary conditions for the fundamental martingale to have a non-
degenerate limit. Recall from Proposition 4.1 that p(t,z,y) is the transition density of the spine &
with respect to the measure p. We start with the following assumption.

Assumption 4.
lim sup essup,cp|p(t, =, y) — 1| = 0.

t—4o00 =3 )

Proposition 6.1. Suppose that Assumptions 0-4 hold. Then p is an ergodic measure for (ét)tzo,

that is, p is an invariant probability measure for (ét)tZO and for any invariant set B, either p(B) = 0
or p(B) = 1.

Proof: Recall from Proposition 5.3 that p is an invariant probability measure for (Gt)tzo By
E

Da Prato and Zabezyk (1996, Theorem 3.2.4), it suffices to prove that for any ¢ € L?(E, p),
s _ T2
tligloo / Sspds = (p,p)  in L*(E, p). (6.1)
It follows from Assumption 4 that for any € > 0, there is ¢y > 0 such that
sup essup,cp|p(s, z,y) — 1| < e for all s > to. (6.2)

z€eE
For x € E and t > t,

1
t

to _

|| Sgts (o= ¢ [“Eigts = Pie 15 [ a5 [ Gsw) - Dptnn). 63
)

By (6.2) and Jensen’s inequality, we have

H/to ds/ (P(s,z,y) — 1)<P(Z/)P(dy)\|%2(E,p)
=y dx([bh/‘ Sxy-—nw<mmm)
t_to/ dx/tods/ (s, z,y) — 1) o(y)?p(dy)

t —to
<L hl o,y (6.4

Moreover, by Jensen’s inequality and (5.12),

L[~ 2 1 to _ 2
Ht/o 63410(13”[,2(]37” = tj Ep(d:t) </0 6380(25)(18)

t to
<13 [ ola) [ & @las
E 0
t 2 75(2)
— 2 [ ple2p(d) = SlolRae . (65)

By (6.3)—(6.5), we have

to to t—1o
I3 [ Sueds = (el < Lllelie + 2o+ 52 elilliagen

2t0 t—to
< —lellr2z,p) + " ellellrz(e,p)-
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Letting t — +o00 and then € — 0, we get (6.1). O
Define

Ey:={xz € E: suppIll¥(z,-) D[N, +o0) for some N > 0}, (6.6)

Ey:={ze A: supplIVL(z,.) D[N, +o0) for some N > 0}. (6.7)

The main result of this section is the following theorem.

Theorem 6.2. Suppose that Assumptions 0-4 hold. Then P, (W&(X) = 0) =1 for all p € M(E)
if either (5.1) fails or the following conditions hold.

A1 >0 and m(Ey U E) > 0.
To prove Theorem 6.2, we need the following lemma.

Lemma 6.3. Suppose that Assumptions 0-4 hold.
(i) If m(Ey U Eg) > 0, then for m-almost every x € E,

limsup ATh(&) V limsup ©;7(&,,—, h) = +oo P. z-a.s.; (6.8)

D™Mm3s—+o00 1——+00

(i) if (5.1) fails, then for m-almost every x € E,

+ AmML (e tao (F
lim sup M V lim sup log™ ©;m(&r,—, h)

D™M3s—400 S i—+00 Ti

=400 P ,-as. (6.9)

Proof: 1t is easy to see that (6.9) is equivalent to saying that for m-almost every z € E and all
A <0,

limsup e*AT™h(E) Vlimsup e’ O (E,_ h) = +o0 P -as.

DMm3s—+o00 i——+00

We divide the conditions of this lemma into two cases, and prove the results separately.
Case I: Suppose either one of the following conditions holds:

(I.a) m(Eq) > 0;

(Lb) ( /(Ofo}i)(-)log+(rh(-))HL(-,dT),ﬁ) = foo.

Let A < 0 be an arbitrary constant. To prove (6.8) ( resp. (6.9)) under condition (I.a) (resp. (I.b)),
it suffices to prove that for m-a.e. x € £ and any M > 1,

P ( > Yapn@zan = +°°> =1

seDm

(resp. P. 5 ( Z Lixsamp@ sy = +oo> =1). (6.10)

seDm

For0<s<t<+4o00,0<0and M >1, let

t ~
To(s, 1) = / dr /(0 . Wligorunzan L (6 du),

and Ig(t) := Ip(0,t). Recall that, given £, for any T > 0, #{s € D7 P A™h(E) > M} is a
Poisson random variable with parameter Iy(7T"). Hence (6.10) would follow if for m-a.e. x € E,

P. » (In(00) = +00) =1 (resp. P. ;, (Irn(o0) = +00) = 1) (6.11)
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under condition (L.a) (resp. (I.b)). Let v(dz) := ?L(a:)m(dav) Clearly P., = [ P. , p(dz). Recall
that p is an invariant measure for ét. By Fubini’s theorem,

T
_ _ Li¢
P., (Io(T)) = [E P.,x[ /0 dr /(Oym) WL @ o1 (§T,du)} p(da)
T L=
:/0 dr/EPw[/(O - WL o @ o1 (&,du)}p(da})

T
:/ dr/ p(dx)/ ul{eeruh(x)>M}HL(x,du). (6.12)
0 E (0,+00) -

By the boundedness of h and z — f(o +o00) (u A u?)II* (2, du), we have

IP).7,,(I¢9(T)) <T /E h(z)m(dz) /u e h(z)ull: (2, du)
= h T )midx xr l u u2 L xr u
=7 [ Hwym(a )/@M/hmh( AV ) A )T, du)
gT( ’hHOO)H/(07+Oo)(u/\u2)HL(x,du)Hoo/Eh(:n)ﬁ(x)m(dx) < +o0.

Thus P. ,(Ip(T) < +00) = 1. On the other hand, by the Markov property of gand (6.12),
o(10(?) = | B. (e< ?) o)
= ds/ ul s ﬁs,du
/ / I wh(E)> il 5 )
/ dr /0+ vl{e‘"vh >M} (gTadv)i|
E ( ) 0 (0,400) {ef5uh(&s)>M} ( )
T—s
~ - L -~
Pnés (/0 dr (0,400) Ul{e9(r+s>vh(5r)2M}H (fra dv))}
T
=2 [t [ [ utizan
E 0 (0,400)
T—s L~
P. . / dr V1, pras ~ e (g, dv
( 0 (0,400) {e?rt)uh(g,)>M} ( ))
T
= 2/ ’ (dx>/ as Ul {0y 2y 11 (2, du)
E 0 (0,400)
T o
g m(/o dr/(o,m) V1 eruneyzan T (6 dv))

T
—9 / p(de) / ds / ul{eesuh(x)zM}nL(x,du)P.,x(Ig(T)). (6.13)
E 0 (0,400)

Assumption 4 implies that there are constants t1,d > 0 such that

sug essupycpp(t, r,y) <1+46 forallt >t;. (6.14)
re
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Using Fubini’s theorem, (6.14) and (6.12), we have for T > t;,

T
P.o [lo(t1,T)] = / ar / B(r 2, y)p(dy) / oL georoniyyoan TTE (g, dv)
t1 E (0,+00)

T
<(1+9) dT/ P(dy)/ V1 {eorun(yyz a1 (y, dv)
t1 E (0,+OO)
< (1+8)P., (Tp(T)). (6.15)
On the other hand, for z € F,

t1
P, (TIg(t1)) / dr / 0Ly 1 (6 d0)|
0,+00)

t1
= / dr / p(r, =, y)p(dy) / 01 eorpn(y)san 17 (Y, dv)
0 E (0,4-00)

t1
< ["ar [ 50aotan [ (wl) (0 A 2?) T (g, o)
0 v>M/h(y) v
gtl( Hh”°°) [ @A = e < o (6.16)
(0,+00)

It follows from (6.15) and (6.16) that for 7" > t;,
P..(1o(T)) =P. o (Ig(t1)) + P. . To(t1,T)) < c1 + (L +6)P., (1o(T)).
This together with (6.12) and (6.13) implies that
P., (Io(T)?) < 2e1P.,, (Io(T)) + 2(1 + 8)P., (Io(T))*.
Hence by the Cauchy-Schwarz inequality, we have

| P, (1y(T))* P (1o(T))
P (WD) 2 52000 ) 2 B2 > G S i

Note that P.,(Io(T)) = T [ p(dx) fu>h(x)/M ull*(z,du). Condition (I.a) implies that the integral
on the right hand side is positive. Hence P. ,(Io(T")) — +00 as T — +o00. On the other hand, note
that by (6.12) and Fubini’s theorem, for A < 0,

(6.17)

~

T
P (@) < [ Remidn) [ bt o an) [ g

- /E R(z)m(dz) /(O ROE <T/\ 1"gﬂh@r)u)_logM>+HL(as,du).

-

Clearly condition (I.b) implies that lim7p_ o P.,(In(T)) = +oo. Thus by letting 7" — +o0 in
(6.17), we get P. ,(Ip(o0) = 400) > 0 (resp. P.,(Ix(c0) = +00) > 0) under condition (I.a) (resp.
(I.b)). Since {Ip(c0) = +o0} (resp. {Iy(oc0) = 4o00}) is an invariant event of the canonical dynamic
system associated with (ét)tzo and ergodic measure p, it follows from Da Prato and Zabczyk (1996,
Theorem 1.2.4) that P. ,(In(c0) = +00) = 1 (resp. P.,(Ix(c0) = +00) = 1) under condition (IL.a)
(resp. (I.b)). Hence we prove (6.11).

Case II. Suppose either one of the following conditions holds:
(IL.a) m(E2) > 0;

(1) ( /(Ofog-), nyrlog* (x(-, )N dr). B) = +oo.
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Let A < 0 be an arbitrary constant. To prove (6.8) ( resp. (6.9)) under condition (IL.a) (resp.
(ILb)), it suffices to prove that for m-a.e. x € E and any M > 1,

+o0
Pz (Z Lo, _myzmy = +°O> =1

i=1

+o00
(resp. P <Z Lo, (G m)2M) +oo> =1). (6.18)

The main idea of this proof is similar to that of Case I. For all T" > 0, 8§ < 0 and M > 1, let
Ho(T) =3, <1 L orioin(@, _ m>nry Forany s >0 and z € E, define

fo(s,x) == / Lfeosun(a, h)>M}77(£L‘ du)
[0,400)

1 / NL
Lsetsun(s ull™ ™ (x, du),
’y ~(x) 1y(x) (0.+00) { (z,h)>M} ( )

(
go(s, ) := q(x) fo(s, )
Wf(LZU;L) La(z) /(07+OO) 1{695u7r(m,h)2M}UHNL($, du).

Recall from Definition 4.4 that, given E (including {7; : i > 1}), ©; is distributed according to
n(&r,—,dr). By (4.6), we have for x € E,

Pl =P [ St o)

<T

=P..[ Y folm )] = IP‘W[/OT a(€) fo(s,&)ds]

<T

—P., /OT (s, £ (6.19)

We still use v to denote the measure /i\z(a:)m(dac) Since p is an invariant measure for &;, by Fubini’s
theorem,

P, (o(T)) = [ P... (0a(T)) p(da) / ds [ P (00 80) plda)
/ds/ggsx (dz) (6.20)

T
:/ h(z)m (d:z)/ w(z, h)rIIVE (z, dr)/ Lietspn(an)>nyds. (6.21)
A (0,400) 0 a
It then follows by Assumption 3.(ii) that

RHS of (6.21) < 7| JIVE (- dy) o / (W) h(@)m(dz) < 400,
(0,4-00) A
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Therefore P. , (IIg(T") < +00) = 1. Recall that given ¢ (including {7 : i > 1}), {©; : i > 1} are
mutually independent, we have

P. . (Iy(T)?) — P. , (Ilp(T))

:Pvl’[ Z 1{69Ti@¢7r(g-ri_,h)2M}1{e97—j®j7r(§~Tj,,h)2M}}
73,7 <Ti#]

=P . / | ,,757'7;77dy
[ Z [0,400) {e? ym(&r;— h)>M} ( )

73,7 <Ti#j
'/[OJFOO)1{eeTJ'z7r(§.rj_,h)>M}n(§Tj_’dz)}

b T am o hmE)

73,7 <Ti#jg
Thus by (4.7),
o (TTp( T)2 — P, (Iy(T))

)

- 21@735 [ [ (&) fo(s §s)ds/ (/OTSq(é)fa(S+T,5)dT> Wh(gs,dy)}

=P, [ OT /Eﬁy </OT sge(s+r,5)dr> wh(g,dy)]. (6.22)

Note that for all x € E and 6 <0, s — gg(s, =) is non-increasing. Thus it follows from (6.22) that

P. . (I(T)%) < 2P. , [/Ong(s,gs)ds/Eﬁy </Ong(r,§T)dr> nh(Es,dy)] + P, (Iy(T)). (6.23)

By Fubini’s theorem, (6.14) and (6.20), we have for y € E and T > t;,

i, ( /tlT%(s,é;)ds) = /: ds / 75,4 2)g0(5, 2)p(d2)

< (149) ds/ggsz (dz)
t1

(L+0)P., (IIy(T (6.24)
On the other hand, by Assumption 3.(iii)

- t1 t1 h
sSup Hy (/ g@( ) - Sup/ ds/ 59,2 ) (dz)/ rl efsrn(z, h)>M}1_I (Z dT)
yeE 0 yelR ) g
( "
<| ’I“HNL ,dr)loo Sup/ ds/ $,y,2)p(dz)

yel
< ot =:c3 < +OO.

This and (6.24) imply that

T ~
II, (/ gg(s,fs)ds) <cz+ (1+00)P.,(Iy(T)) foralye Eand T > t.
0
This together with (6.23) and (6.19) implies that
P. . (Tp(T)?) < (1+2¢3)P. ; (g(T)) + 2(1 + 8)P. , (Ilp(T)) P. ; (Tp(T)) .
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Consequently,
P., (Ily(T)?) = /EIP.,QC (T1g(T)?) p(da) < (1 + 2¢3)P., (Ip(T)) + 2(1 + 6., (Ip(T))*.

Recall that P.,(Ily(T)) = T [, 7(x, h)h(z)m(dz) f’l’>M/7r(x n) rIINE(z,dr). Condition (IL.a) implies
that the integral on the right hand side is positive. Thus P. ,(IIo(7")) — 400 as ' — 4o00. On the
other hand, note that by (6.21) and Fubini’s theorem, for A < 0,
- log™ (m(z, h)r) — log M "
P., (II\(T)) = / h(z)m(dz) / IVE (2, dr)r(z, h)r ( og" (m(, ); ) —logM | T> .
(0,400) -

A

Clearly condition (IL.b) implies that limp_, ;o P. ,(IIN(T")) = +o00. Similarly by using the Cauchy-
Schwarz inequality and letting T' — +o00, we get P. ,(Ilp(c0) = +o0) > 0 (resp. P.,(IIy(c0) =
+00) > 0) under condition (IL.a) (resp. (ILb)).

For each n > 1, we denote by Gy, the o-field generated by f up to time 7, (including {71, -+, 7 })
and {©; : i <n}. Obviously for each ¢ > 1, both

Yermiom(@,—m>my  2and /[0 +oo)1{e97im(§nf,h>2M}’7(5ﬂ'*vdr)

are G;-measurable. Moreover, for every z € E, under P. ;,

P.,:D (1{66Ti+1@i+17"(g‘ri+17,h)2M} ‘ gz) — [P'?:C (/

N(Erpi—dr) | G;).
- o 1 dr) | Gi)

1, or >
{6 TZ+1TW(§T¢+177

Applying the second Borel-Cantelli lemma (see, for example, Durrett, 2019, Corollary 5.3.2) to both
sides of the above equality, we get that

“+o00
{Z Yesriom(@,-my=my = +°O} - {Z/O Lieomivn(c,, _,h>>M}77(§n ,dr) = +OO}
=1

under P. ,. It is easy to see from the above representation that {IIp(co) = +oo} (resp. {II\(oc0) =
+o0}) is an invariant event of the canonical dynamic system associated with (ét)tzo and ergodic
measure p, so it follows from Da Prato and Zabczyk (1996, Theorem 1.2.4) that P.,(IIp(c0) =
+00) = 1 (resp. P.,(IIy(c0) = +00) = 1) under condition (IL.a) (resp. (ILb)). Thus (6.18) is

valid. O

Proof of Theorem 6.2. Applying the same argument as in the beginning of the proof of Theorem
5.1.(i1) here, we only need to show that under the assumptions of Theorem 6.2,

Ps, (limsup W/(T') = +00) =1  for m-a.e. z € E.

t—+o00
In view of (5.30), this would follow if for m-a.e. z € E,
limsup eMSATA(E,) V limsup MO (€, h) = 400 P -as
D™m3s—+o0 i——+00
which, under the assumptions of this theorem, is automatically true by Lemma 6.3. Hence we
complete the proof. U

The following corollaries follow directly from Theorem 5.1 and Theorem 6.2.

Corollary 6.4. Suppose that Assumptions 0-4 hold and that m(Ey U Eg) > 0 with E1 and Es
defined in (6.6) and (6.7) respectively. For every u € M(E)°, Wl (X) is non-degenerate if and
only if A1 < 0 and condition (5.1) holds. Moreover, Xy under P, exhibits weak local extinction if
A1 > 0.
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Corollary 6.5. Suppose Assumptions 0-4 hold and \; < 0. For every u € M(E)°, Wl (X) is
non-degenerate if and only if condition (5.1) holds.

Remark 6.6. Note that in the case of purely local branching mechanism, Assumption 4 can be
written as
. h 1l =
Jim SUp eSSUPyc ; |P (t,x,y) — 1] =0,

where p”(t, z,y) denotes the transition density function of £" with respect to the measure p. If E
is a bounded domain in R?, m is the Lebesgue measure on R? and ¢ is a symmetric diffusion on E,
then a(z) € By(E) C K(¢) N L2(E,m). Hence for the class of superdiffusions with local branching
mechanisms considered in Liu et al. (2009), our Assumptions 0-4 hold naturally and Corollary 6.5
generalizes Liu et al. (2009, Theorem 1.1).

7. Examples

In this section, we will give examples satisfying Assumptions 0-4. We will not try to give the
most general examples possible.

Ezxample 7.1. Suppose E = {1,2,--- | K} (K > 2), m is the counting measure on F and &,f(i) =
f@i) forallie E, t >0 and f € BY(E) (that is, there is no spatial motion). Suppose

¢ (i, \) := a(i)A + b(i) A2 + /

0.0 (e_M -1+ Ar) It (i, dr),

SN, f) = —e(iyn(i, f) - /

1
(0,4-00)
where for each i € E, a(i) € (—o0,+00), b(i),c(i) > 0, (r A r?)[I¥(i,dr) and rIINE(i,dr) are
bounded kernels from E to (0,+o0) with {i € E : f(07+oo) rTIINE(i, dr) > 0} # 0, and 7(i,dj) is a
probability kernel on E with «(i,{i}) = 0 for every i € E. As a special case of the model given
in Section 2.1, we have a non-local branching superprocess {X; : t > 0} in M(FE) with transition
probabilities given by

Py lexp (—(f, Xi))] = exp (—(Vif, ) for p € M(E), t >0 and [ € B (E),

where V. f(i) is the unique non-negative locally bounded solution to the following integral equation:

- e_”(i’f)> IVE (3, dr),

t
V@) = 1)~ [ (6 VS @) + "GV s for e 0, i€ E.
0
For every i € E and p € M(E), we define u := p({i}). The map p — (p®, - pFNT is
clearly a homeomorphism between M(E) and the K-dimensional product space [0, +00)%. Hence

{(Xt(l) e ,Xt(K))T .t >0} is a Markov process in [0, +00)%, which is called a K-type continuous-

Y

state branching process. (Clearly the 1-type continuous-state branching process defined in a similar
way coincides with the classical one-dimensional continuous-state branching process, see, for exam-
ple, Li, 2011, Chapter 3.) For simplicity, we assume b(i) = 0. For i,j € E, let p;; := 7(i,{j})
and (i) := c(i) + f(07+oo) rIIVL(i,dr). Define the K x K matrix M (t) = (M (t);;)ij by M(t);j :=

Ps, [Xt(j)} for i,j € E. Let B; denote the mean semigroup of X, that is

K
Bef (i) := P, [(f, X)) = > M(t)ijf(j) foric E, t>0and f B (E).
j=1

By the Markov property and (2.9), M (t) satisfies that
M@©)=1I, M(t+s)=M(t)M(s) fort,s>0,
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t K t
mdﬂmmzwmw@AM@mwwmzm%ﬁmm@
k=1

for i, j € E. This implies that M (t) has a formal matrix generator A := (A;;);; given by

M(t) = e? Zt” ,and Ay = y(i)pi; — a(i)di(4) for i,j € E.

We assume A is an irreducible matrix. It then follows by Barczy and Pap (2016, Lemma A.1) that
M(t)ij > 0 for all t > 0 and i,j € E. Let A := sup)c,(4)Re(A) where o(A) denotes the set of
eigenvalues of A. The Perron-Frobenius theory (see, for example, Barczy and Pap, 2016, Lemma
A.3) tells us that for every ¢ > 0, eM is a simple eigenvalue of M (t), and there exist a unique positive
right eigenvector w = (ug,--- ,ux)’ and a unique positive left eigenvector v = (vy,--- ,vg)T such
that

K K
Zui = Zuivi =1, M@)u=eMu, vIM(t) = o
i=1 i=1

Moreover it is known by Barczy and Pap (2016, Lemma A.3) that for each i,j € F,
e MM (t)i; — uw;  ast — +oo. (7.1)

One can easily verify that Assumptions 0-3 hold with Ay = —A, k(i) = cu; and h(i) = ¢ 'v;, where
—-1/2 )
c:i= (ZJK:1 u?) is a positive constant. Thus W}(X) := ce™ Zfil uiXt(Z) is a non-negative
martingale. Applying Theorem 4.6 here, we can deduce that under the martingale change of measure
the spine process £ is a continuous-time Markov process on E with intensity matrix Q = (gij)ij
given by
K
(1) Zj—l Pijuj

- . 1)Piju; .
i = =Y (6 ai), gy = TP o

Let p(dj) = ujvym(dj) = ZZKI u;v;0;(dj). Let &, denote the transition semigroup of the spine &
and p(t, i, j) denote its transition density with respect to p. It follows by Proposition 4.1 that for
each i,5 € F,

ﬂMMWWZAﬂMM%WWMZé@@

e—At e—At

= W‘Bt(h@)(i) = TiM(t)ijuj- (7.2)

Thus p(t,i,§) = e M (uv;) "L M(t);5. By (7.1), we have for each i, j € E
p(t,i,7) > 1 ast— 4oo.

Hence Assumption 4 also holds for this example. Applying Corollary 6.4 here, we conclude that for
every non-trivial u € M(FE), the martingale limit

K
WE(X) = lim WP(X)= lim ce™™ > ux”

t—+00 t—+00

is non-degenerate if and only if A > 0 and

K
Zuivi/ rlog™ (rul)HL(z dr) —I—ZZ]DUUJUZ/ rlog Zp rui) I (1, dr) < +oo.
i=1

(0,400) i=1 j=1
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Using elementary computation , one can reduce the above condition to

/ rlog™ rIIE (i, dr) +/ rlogT rIIVE(i,dr) < +o0 Vi€ E. (7.3)
(0,400) (0,400)

In particular, under condition (7.3), P, <limt_>+oo Xt(i) = 0) = 1 for every ¢ € E and every non-

trivial © € M(FE) if and only if A < 0. This result is also proved in Kyprianou and Palau (2018,
Theorem 6).

Now we give some other examples.

Ezample 7.2. Suppose that E is a bounded C® domain in R? (d > 1) , m is the Lebesgue measure on
E and that & = (&,11;) is the killed Brownian motion in E. Suppose that ¢ and ¢ are as given
in Subsection 2.1. We assume Assumption 0 holds. We further assume that the probability kernel
m(x,dy) has a bounded density with respect to the Lebesgue measure m, i.e., w(x,dy) = 7(z,y)dy
with 7(x,y) being bounded on E x E. Assumption 1 and Assumption 3.(il) are trivially satisfied.
Let (PBt)+>0 be the semigroup on By(E) uniquely determined by the integral equation (2.9). It
follows from Hering (1978, Theorem) that Assumption 2, Assumption 3.(ii) are satisfied, and that
(Be)i>o0 is uniformly primitive in the sense of Hering (1978). Thus for all t > 0, f € B, (E) and
rekl,

P f(x) — e MU M h(2)| < creME(f, h)h(z), (7.4)
where ¢; > 0 satisfying ¢; | 0 as ¢ T +00, A is the constant in Assumption 2, and h, h are the
functions in Assumption 2. Let &;f(x) := eMth(z) "B, (fh)(z) for f € BT (E),t >0 and x € E.

Let p(t,z,y) be the density of &P, with respect to the measure p(dy) := h(y)h(y)dy on E. By
(7.4), we have for every t > 0, f € B (E) and x € E,

&)~ U1.0) = | [ Bt = 1) Fotan)| < (7.

It follows from this that

SugessupyeE p(t,z,y) —1| < —0 ast— +oo.
Te

Hence Assumption 4 is satisfied. Assumption 3.(iii) will be satisfied if the function 7(z,y) satisfies

/ETr(:c,y)h(y)dy < ch(z) Vee{ze FE: v(z) >0}

for some constant ¢ > 0, where h is the function in Assumption 2 and ~(z) is as given in Subsection
2.1.
Ezample 7.3. Suppose that E is a bounded C*! open set in R? (d > 1), m is the Lebesgue measure

on B, a € (0,2), f € [0,aAd) and that £ = (&,11;) is an m-symmetric Hunt process on E satisfying
the following conditions: (1) £ has a Lévy system (N, ¢) where N = N(x,dy) is a kernel given by

Cq

for some constant C; > 0. (2) £ admits a jointly continuous transition density p(t, z,y) with respect
to the Lebesgue measure and that there exists a constant C > 1 such that

C{Ma,ﬂ(ﬁ%?/) < p(tax7y) < CQqOé,,B(t7x>y) V(t,x,y) € (07 1] x E x E7

op@\" (1 W\ (faja
qa,ﬁ(t7x7y> = (1/\ tl/oc ) 1A tl/oz t / /\W . (75)

where
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Here 0g(z) stands for the Euclidean distance between x and the boundary of E. Suppose that
¢ and ¢V are as given in Subsection 2.1. We assume Assumption 0 holds. We further assume
that the probability kernel 7(z,dy) has a density m(z,y) with respect to the Lebesgue measure m
satisfying the condition
m(z,y) < Cslz —y|"  Va,yeE

for some positive constants C3 and €. Define

F(z,y) = C7 Mo —y| ™y (2)m(z,y) Va,y € E.
One can show easily that Assumption 1 and Assumption 3.(i2) are satisfied. Define

F'(z,y) :=log (1 + F(z,y))  Va,y€E.

It is obvious that there exists C4 > 0 such that

0< F*(z,y) <Cy4(lz —y|/T* A1) Ve,y € E,

and thus, by Chen et al. (2015, Proposition 4.2), F™* belongs to the Kato class J, g defined in Chen
et al. (2015), ie., limyo N&2(t) = 0, where

B
—y| At/ F F*
NO"B = sup/ / dop(s,z,z) |1+ 1z =yl (. 2) +d+ (Z’y)dydzds.
z€E ExE |z — 2| |z — y|dte
The measure p(dz) := —a(z)dz obviously belongs to the Kato class K, g defined in Chen et al.

(2015), i.e., limy o NP (t) = 0, where

Na”B = sup/ /qag s, x,y)|al(y)dyds,

zeE
since a is a bounded function. For 0 < ¢t < +oo0, let A4; :== — fo a(&)dr + Zﬂ<r<t F*(&—,&). Let
(T¢)¢>0 be the Feynman-Kac semigroup of £ given by
Tif (x) := 11, [exp (Ay) f(&)] t>0, x€E, fecBT(E).

Now it follows from Chen et al. (2015, Theorem 1.3) that the semigroup (73):>0 has a jointly
continuous density q(t,x,y) with respect to the Lebesgue measure and there exists a constant
C5 > 1 such that

C5'qap(t,2,y) < qt,2,y) < Csqap(t,z,y)  V(t,2,y) € (0,1] x E x E. (7.6)

Let (ﬁ)t>0 be the dual semigroup of (73);>9. By (7.6), one can easily show that for any f €
By(E), T;f and Tt f are bounded continuous functions on F, that T; and Tt are bounded operators
from L?(E,m) into LOO(E m), and that (7});>0 and (Tt)t>0 are strongly continuous semigroups on
L2(E,m). Let L and L be the generators of (Ti)¢>0 and (Tt)t>0 respectively. Let o(L) and o(L)
denote the spectrum of L and L respectively. It follows from (7.6) and Jentzsch’s theorem (Schaefer,
1974, Theorem V.6.6, p. 337) that the common value —A; := sup Re(o(L)) = sup Re(a(f)) is an
eigenvalue of multiplicity 1 for both L and i, and that an eigenfunction h of L associated with —A;
is bounded continuous and can be chosen strictly positive on E and satisfies ||k z2(z,,) = 1, and
that an eigenfunction h of L associated with —); is bounded continuous and can be chosen strictly
positive on E and satisfies (h, h) = 1. Thus Assumption 2 and 3.(ii) are satisfied. It follows from
(7.6) and the equations e ™ h = T1h, e~h = Tih that there exists a constant Cg > 1 such that

C; 'op(z)’ < h(z) < Cedp(z)®, Cilép(x)’® <h(z) < Cedp(x)’  VzeE.

It follows from this, (7.6) and the semigroup properpty that the semigroups (73)¢>0 and (ﬁ)tzo are
intrinsically ultracontractive. For the definition of intrinsic ultracontractivity, see Kim and Song
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(2008). Let &,f(x) := eMh(z) ' T,(fh)(z) for f € BY(E), t > 0 and # € E. Then &, admits a
density p(t, z,y) with respect to the probability measure h(y )h( )dy which is related to (¢, z,y) by

Mlq(t, @, y)

h(z)h(y)
Now it follows from Kim and Song (2008, Theorem 2.7) that Assumption 4 is satisfied. As in the
previous example, Assumption 3.(iii) will be satisfied if the function 7(x,y) satisfies

/Eﬂ'(:v, y)h(y)dy < ch(z) Ve e{ze€ E:vy(z) >0}

for some constant ¢ > 0, where 7(z) is as given in Subsection 2.1.

One concrete example of £ is the killed symmetric a-stable process in E. In this case, (7.5) is
satisfied with f = a/2, a fact which was first proved in Chen et al. (2010a).

Another concrete example of £ is the censored symmetric a-stable process in E introduced in
Bogdan et al. (2003) when « € (1,2). In this case, (7.5) is satisfied with f = a — 1, a fact which
was first proved in Chen et al. (2010b).

In fact, by using Chen et al. (2015), one could also include the case when F is a d-set, a € (0,2)
and ¢ is an a-stable-like process in E introduced in Chen and Kumagai (2003). We omit the details.

p(t,z,y) = V(t,z,y) € (0,4+00) X E X E.

Example 7.4. Suppose that E = R? m is the Lebesgue measure on R%, o € (0,2) and that
¢ = (&,10,) is a Markov process corresponding to the Feynman-Kac transform of a d-dimensional
isotropic a-stable process with killing potential n(z) = |z|® (8 > 0). Let J(x) = J(|z|) be the
Lévy density of the isotropic a-stable process, i.e., J(z) = c(d, a)|z| =4~ for some positive constant
¢(d,«) depending only on d and «. It is known that & has a Lévy system (N, t) where N(z,dy) =
2J(y — x)dy. Let (€, F) be the Dirichlet form of {. Then £ has the following form

£ (u,v) / / 1)) (w(x) — v())J (y — 2)dady + / w(a)o() || de
R JRA R4

for all u,v € F. Suppose that the branching mechanisms ¢¥ and ¢N% are as given in Subsection
2.1. For simplicity we assume a(z) = 0 and Assumption 0 holds. Let m(z) = 7(]z|) be a probability
density on R? such that the function m(z)/J(z) is bounded from above. We assume that the
probability kernel m(z,dy) has a density 7(z,y) = m(y — ) with respect to the Lebesgue measure
and that the function y(x) = 7 is a constant. Define v(x,y) := yn(y — x). Then [p,v(z,y)dz =
vy fRd 7m(y — x)dx = v, and Assumption 1 is trivially satisfied. Define

oy ym(y— )
F(x’y)'_QJ(y—a:)_ZJ(y—a:) Va,y € R%

Then F is a bounded function on R% x R? vanishing on the diagonal, and thus Assumption 3.(i2)
is satisfied. Define

A=Y log(1+ F(6,,£)) — 2 / [ Pty = &)dyds

s<t

= log 1 -+ F é‘s 755 y gs dde
- < L

= Z log(1 + F(§s—, &) — 1t
s<t

It follows from Chen and Song (2003a, Theorem 4.8) (see also Chen and Song, 2003b, p. 275) that
the bilinear form corresponding to the symmetric semigroup

Tif(@) =T [ f(&)] W20, v eRY, feBRY
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Qu) = [ [ (ule) = ul))(0(w) = o)) (1 + Fa.9)) Ty = )y
—I—/Rd w(z)v(z)|z/Pdz Yu,v e F.

This is the bilinear form of the stable-like Lévy process killed with the potential n(z) = |z|®. Now
we apply Kaleta and Lorinezi (2015, Examples 4.5 and 4.8) to get that the symmetric semigroup

(T})e>0 is intrinsically ultracontractive. Define

Ay = Zlog(l + F(&s—,s))-

s<t

Again by Chen and Song (2003a, Theorem 4.8) (see also Chen and Song, 2003b, p. 275) that the
bilinear form corresponding to the symmetric semigroup

T, f(z) =10, [e f(&)] Vt>0, 2 €R?Y, f e By(RY
is

Qu,v) = E(u,v —2/ / u(y)v(x)F(z,y)J(z — y)dzdy
Re JRY

E(u,v) //uy v(x,y)dedy Vu,v € F.
Re JRd

We observe that T;f = T, +f. So the semigroup (73):>0 is also intrinsically ultracontractive.
Applying similar argument as in Example 7.3, one can show that Assumptions 2 and 4 are satisfied.
Finally, Assumption 3(iii) (and thus Assumption 3(ii)) will be satisfied if the function 7(z) satisfies
that

/Rd 7(y — 2)h(y)dy < ch(z) Yz e R?

for some positive constant c¢. Here h is the strictly positive eigenfunction associated with the
principal eigenvalue of the generator of the semigroup (7})¢>o.

Appendix

Proof of Proposition /.5: We will prove (41.6) first. We claim that

- - - - tAT1 - - -

Ine f(Tl?ng—?éTl)l{Tlgt}} =1, [/0 Q(§S)d3/Ef(sa§say>ﬂ—h(§sady):| ] (7.7)
It is easy to see from the construction of E that

LHS of (7.7) = T [ /0 2(€1)eq(5)ds /E f(s,gs,yw(gs,dy)]. (7.8)

On the other hand, by Fubini’s theorem, we have

t r ~ ~ ~
mits of (77) = [ asfi, | [ q<5s>f<s,§S,y>wh<ss,dy>1{s<n}]

t e ~ ~
:A dSH}xL /EQ(Ss)f(svgsay)wh(€57dy>1{s<2}:|

:/OtdsHZ eu(s )/ g€ f(s,€", y)m h(fs,dyﬂ

t
- /Oqfs eqls /f 5.€"y) fs,dy)] (7.9)
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Combining (7.8) and (7.9) we arrive at the claim (7.7). Note that applying the shift operator 0,
to f(m, {Tl ,57—1)1{7—1<t} gives f(Tni1, anH ,anH)l{Tan} Using the strong Markov property of
§ and Fubini’s theorem, we can prove by induction that for all n > 2,

tATn

IL, [f(Tnang—7ng)1{Tn§t}] =11, [/

tATh—1

9(€)ds [E £(5,E0 )7 (s, )]

Thus by the above equality, Fubini’s theorem and the fact that ﬁz(limn_>+oo Tn, = +00) = 1, we
have

03 £ )] = 1L, iof CRINS I
<t i=1
tATh

=0t [ 0@ [ ps 8t )]

Ln—+400 Jq
=11 [ s [ sls. &t €]

Hence we have proved (4.6). We next show (4.7). It is easy to see that

1L, [(Z G- gﬂ) (Z 9(75, éjffq))}

<t i<t
= ﬁz [Z fg(Tiv "g'i—7 ETZ):|
T <t
+ —ii.f —ii:.o {ﬁz [f('ria Eﬂ'—? gﬂ')g(’rj’ g7'3'_’ gTj)l{TjSt}}
i=1 j=i+1

1L (gm0, Er s G (7,6 &) L] - (710)

By the strong Markov property and (7.8), we have for j > 2,

1L,

[

f(Tlvé-le—7ng)g(Tj7ETj—vg'j)l{TjSt}}

Hac |:f(7'1a gﬁ—agﬂ)l{ngt} ﬁ~ (g(Tj—l + s, gTj—1_7 57']'_1)1{7'];1+3§t}) ‘s:n:|

/ ds / (€, dy)a(€l)eq(s)f (5.€2,y)

iy (9(m1+ 5.8, 008 D, <mn) | (7.11)

and for j > ¢ > 2,
L 770 80 810201
=1L, [ < -ﬁ~ (f(n_l +8,6r 1 &n)g(Ti1 + 8,grj_l—,grj_l)l{rj,ﬁsgt}) L:n ]
-1 / ds [ 7k dpa(€lea (s

(f(TZ 1+, gTz 1— 7€Tz 1) (Tj—l +S?E’/Tj—l—?gTj—l)l{Tj71§t75}>]' (712)
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By (7.11), Fubini’s theorem, the strong Markov property of &, (1.6) and (7.8),
too . " " .
an F(r & &9 & &) (21|
~tf [ as / (€8, dy)al€l)eq(s)f(5,€8,v)
Hy (Z g\Tj-1 + s, gTj_l—a gTj_1)1{Tj,1§t—s}>] )
j=2

t

=1 [ [ s [ (el dylaeleg(s) fs, )Ty (Y0 g(m+ 5,6 6]

0

=

T <t—s
t

=T [ [ ds [ 7"(El dy)a(€l)eq(s) f(s, €L y)

1, ([ o [ #Gta@tr+5.609) ]

1L, [f(ﬁ,fn &) i </t Sdr/ (&, d2)aE)g(r + 5, ))

L[ £ E) /dr/ (E.d2)a(E)g(r. & 2L <) |-

o
&

1{T1§t}}

S=T1

Similarly, by (7.12), Fubini’s theorem, the strong Markov property of E, (4.6) and (7.8), we can
prove by induction that for ¢ > 1,

+oo
Z ﬁx |:f(7_i7§7'i—>gTz‘)g(Tj7gTj—7£Tj)1{Tj§t}:|
j=it1

~ ~ 3 ~ ~ ~
=1L, |:f(7i7§7'i_7€7'i)/. dr/;Wh(fhdz)q(gr)g(rv&“?Z)1{7'¢<t}:| :

By this, Fubini’s theorem, the strong Markov property of E and (4.0), we get

+oo +o0

Z Z ﬁ:c |:f(7-i7g7'i—7gf’i)g(Tj7gTj_7é’j)1{Tj§t}:|
i=1 j=it1

t

_+o00 "
=T[5 &) [ ar [ 26 a2)a@o(r & ]
i=1

&

t

= ﬁm _Z f(TiagTi*7£Tl / dr 7Th g’r'vdz (7" gTa ):|

<t E

=[S fr e £ T ( / ols &t (o) )
<t

[ s [ i@ 1, ([ dr [ #Gana@ts +rn))] )

Combining (7.10) and (7.13), we arrive at (4.7). O

t—s

)

S=T;

N
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