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Abstract Suppose that X = {X;,t > 0;P,} is a supercritical superprocess in a locally compact separable
metric space E. Let ¢o be a positive eigenfunction corresponding to the first eigenvalue \g of the generator of
the mean semigroup of X. Then M; := e_)‘(’t(d)o, X¢) is a positive martingale. Let Moo be the limit of M;. It
is known (see Liu et al. (2009)) that Mo, is non-degenerate if and only if the Llog L condition is satisfied. In
this paper we are mainly interested in the case when the L log L condition is not satisfied. We prove that, under
some conditions, there exist a positive function ¢ on [0, c0) and a non-degenerate random variable W such that

for any finite nonzero Borel measure p on E,
th_fglo Yt{bo, Xt) =W, as.-Py.
We also give the almost sure limit of ¢ (f, X¢) for a class of general test functions f.
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1 Introduction

Suppose {Z,,,n > 0} is a supercritical Galton-Watson process with offspring number L. Let m := EL €
(1,00) be the mean of L. Then M, := i’;; is a non-negative martingale and thus has a finite limit M.
The well-known Kesten-Stigum theorem says that the following three statements are equivalent: (i)
P(Ms =0) = P(Z, =0 for large n), i.e., the events { M., = 0} and {Z,, = 0 for large n} are almost the
same; (ii) EMo = 1; (iii) E(Llog L) < co. For a classical proof of this result, the reader is referred to

the book [1] of Athreya and Ney. In 1995, Lyouns et al. [19] gave a probabilistic proof of the above L log L
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criterion of Kesten and Stigum [12]. If E(Llog L) = oo, then lim,, nZw = 0 almost surely, which says
that m™ does not give the right growth rate of Z,, conditional on non-extinction. It is natural to ask
what the right growth rate of Z,, is. In 1968, Seneta [27] proved that there is a sequence of positive
numbers ¢, such that ¢, Z,, converges to a non-degenerate random variable W in distribution. Heyde [10]
strengthened the convergence in distribution to almost sure convergence. Later the problem of finding ¢,
such that ¢, Z, converges to a non-degenerate limit is called the Seneta-Heyde norming problem.

Hoppe [11] generalized the result of Heyde [10] to supercritical multitype branching processes, Grey [8]
proved a similar result for continuous state branching processes and Hering [9] obtained a similar result
for supercritical branching diffusions. In this paper we are going to consider the Seneta-Heyde norming
problem for general superprocesses under some conditions which are easy to check and satisfied by many
superprocesses, including superdiffusions in a bounded domain and also superprocesses with discontinuous
spatial motions. We emphasize that we are mainly interested in the case when the Llog L condition
fails, since the norming problem is already solved in [17] for superdiffusions and [21] for more general
superprocesses when the Llog L condition holds.

1.1 Superprocesses and assumptions

In this subsection, we describe the setup of this paper and formulate our assumptions.

Suppose that F is a locally compact separable metric space. We will use B(E) (B*(F)) to denote the
family of (non-negative) Borel functions on E, By(E) (B, (E)) to denote the family of (non-negative)
bounded Borel functions on F, and C(E) (Cy(E), respectively) to denote the family of continuous func-
tions (vanishing at infinity, respectively) on E.

Suppose that 0 is a separate point not contained in E. We will use Ey to denote E U {0}. Every
function f on E is automatically extended to Ey by setting f(9) = 0. We will assume that £ = {&;, 11, }
is a Hunt process on F and ¢ := inf{t > 0 : & = 9} is the lifetime of £&. We will use {FP; : ¢ > 0} to
denote the semigroup of £. Suppose that m is a o-finite Borel measure on E with full support. We will
assume below that {P; : ¢ > 0} has a dual with respect to the measure m and the dual semigroup is
sub-Markovian.

The superprocess X = {X; : t > 0} we are going to work with is determined by two parameters: a
spatial motion £ = {&;,1I,} on E which is a Hunt process, and a branching mechanism ¢ of the form

o(x,s) = —a(z)s + B(z)s> +/ (e — 1+ sO)n(z,df), z€E, s=0, (1.1)
(0,+00)

where o € By(E), 8 € B} (E) and n is a kernel from E to (0,00) satisfying

sup/ (0 A 0*)n(x,df) < oc. (1.2)
z€E J(0,+00)

Then there exists M > 0 such that

la(z)| + B(x) + / (O A6*)n(x,dd) < M.
(0,400)
In this paper, we will exclude the case when 8(-) + n(-, (0,00)) = 0 m-almost everywhere.

Let Mp(E) be the space of finite measures on E, equipped with the topology of weak convergence.
The superprocess X with spatial motion £ and branching mechanism ¢ is a Markov process taking values
in Mp(E). The existence of such superprocesses is well known (see, for example, [5,6,16]). For any
1 € Mp(E), we denote the law of X with initial configuration p by P,,. As usual, (f, ) = [, f(z)p(dz)
and ||g| := (1, ). Throughout this paper, a real-valued function u(¢,z) on [0,00) x Ej is said to be
locally bounded if, for any ¢ > 0, sup,e(, 4 vep, |U(s, )| < 0o. According to [16, Theorem 5.12], there
is a Hunt process X = {Q,G,G, X;,P,} taking values in Mp(E) such that for every f € B, (E) and
1€ Mp(E),

—log P (e™ X)) = (Vi f, ), (1.3)
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where V; f(x) is the unique locally bounded non-negative solution to the equation

Vif(z) + 10, / D€ Vieaf(6))ds = L f(€), « € Ep, (1.4)

where we use the convention that ¢(9,s) = 0 for all s > 0. Since f(9) = 0, we have V,f(9) = 0 for any
t > 0. In this paper, the superprocess we deal with is always this Hunt realization.
For any f € By(E) and (t,z) € (0,00) X E, we define

T, f(x) := I, [efo @) (). (1.5)

It is well known that T} f(z) = Ps, (f, X¢) for every € E.
We will always assume that there exists a family of continuous and strictly positive functions {p(¢, z, y) :
t >0} on E X E such that for any ¢ > 0 and the non-negative function f on E,

Pf(z) = /E p(t, ) (y)m(dy).

Define
alz) = /E Ptz g mldy),  ay(z) = [E p(t. . ) m(dy).

Our first main assumption is as follows.

Assumption 1.1. (i) For anyt >0, [, p(t,z,y) m(dz) <1
(ii) For any t > 0, we have

/Eat(ac) m(dz) :/ m(dz) / / (t,z,y)* m(dy) m(dz) < oco. (1.6)

Moreover, the functions © — a4(x) and © — a:(z) are continuous on E.

Note that, in Assumption 1.1(i), the integration is with respect to the first space variable. It implies
that the dual semigroup {P; : t > 0} of {P; : t > 0} with respect to m defined by

Bf(z) = [E p(t,,2) f(y)m(dy)

is sub-Markovian. Assumption 1.1(ii) is a pretty weak L? condition and it allows us to apply results on
operator semigroups in Hilbert spaces. By Holder’s inequality, we have

Pt + 5,2,9) = [E p(t, 2, 2)p(s, 2, y) m(dz) < (ar(x))?(@a(y)) 2. (17)

It is well known and easy to check that {P, : ¢ > 0} and {P, : t > 0} are strongly continuous
contraction semigroups on L?(E, m) (see [23] for a proof). We will use (-, -),,, to denote the inner product
in L?(E,m). Since p(t,x,y) is continuous in (x,y), by (1.7), Assumption 1.1(ii) and the dominated
convergence theorem, we have that, for any f € L?(E,m), P,f anil P, f are continuous.

It followsA from Assumption 1.1(ii) that, for each ¢ > 0, P; and P, are compact operators on L?(E,m).
Let L and L be the infinitesimal generators of the semigroups {P;} and {ﬁt} in L2(E,m), respectively.
Define Ao := supR(c(L)) = supR(o(L)). By Jentzsch’s theorem (see [26, Theorem V.6.6, p.337]), Xo
is an eigenvalue of multiplicity 1 for both L and Z and an eigenfunction (EO of L corresponding to XO
can be chosen to be strictly positive m-almost everywhere with [|¢o/|2 = 1 and an eigenfunction Yo of L

corresponding to )\0 can be chosen to be strictly positive m-almost everywhere with (gbo, 7,/10>m = 1. Thus
for m-almost every x € F,

exogo(x) = Plgo(ﬂf), GX%ZO(??) = ﬁllzo(l‘)-

Hence 50 and {/;0 can be chosen to be continuous and strictly positive everywhere on E.
Our second assumption is as follows.
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Assumption 1.2. (i) ¢g is bounded.
(ii) The semigroup {P;,t > 0} is intrinsically ultracontractive, i.e., there exists ¢; > 0 such that

p(t,2,y) < codo()tho(y). (1.8)

Assumption 1.2 is a pretty strong assumption on the semigroup {P; : t > 0}. However, this assumption
is satisfied in a lot of cases. See [22, Subsection 1.4] for examples of Markov processes satisfying the
assumption above. The concept of intrinsic ultracontractivity was introduced by Davies and Simon [4] in
the setting of symmetric semigroups. This concept was extended to the non-symmetric setting in [13-15].
Intrinsic ultracontractivity has been studied intensively in the last 30 years and there are many results
on the intrinsic ultracontractivity of semigroups (see [13—15] and the references therein).

We have proved in [22, Lemma 2.1] that there exists a function ¢(¢,z,y) on (0,00) x E x E which is
continuous in (z,y) for each ¢ > 0 such that

Mip(t,z,y) < q(t,z,y) <eMip(t,z,y), (t,2,y) € (0,00) x Ex E, (1.9)

and that for any bounded Borel function f and any (¢,z) € (0,00) X E,

T,f(x) = /E a(t,z, ) f(y) m(dy).

It follows immediately that
ITefll2 < ™ Pefllz < ™| f]l2- (1.10)

In [23], we have proved that {7} : ¢ > 0} is a strongly continuous semigroup on L2(E,m). Let {T},t > 0}
be the adjoint semigroup on L?(E,m) of {T},t > 0}, i.e., for f € L*(E,m),

T, f(x) = /E a(t,y, ) f(y) m(dy).

We have proved in [23] that {7} : ¢ > 0} is also a strongly continuous semigroup on L2(E,m). We claim
that, for all t > 0 and f € L?(E,m), Ty f and ﬁf are continuous. In fact, since ¢(¢,z,y) is continuous in
(z,y), by (1.7), (1.9), Assumption 1.1(ii) and the dominated convergence theorem, we have that, for any
feL?E,m),T;f and T,f are continuous.

By Assumption 1.1(ii) and (1.9), we get that

// (t, z,y) m(dx) m(dy) < 2Mt// (t, z,y) m(dx) m(dy) <

Thus, for each ¢t > 0, T; and ﬁ are compact operators on L?(E,m). Let L and L be the infinitesimal
generators of the semigroups {T;} and {T;} in L2(E,m), respectively. Define Ao := supR(c(L)) =
sup %(J(Z)) By Jentzsch’s theorem, Ag is an eigenvalue of multiplicity 1 for both L and E, and an
eigenfunction ¢y of L corresponding to Ay can be chosen to be strictly positive m-almost everywhere
with ||¢oll2 = 1 and an eigenfunction g of L corresponding to A can be chosen to be strictly positive
m-almost everywhere with {(¢o, ¥o)m = 1. Thus for m-almost every = € E,

Mgo(x) = Tigo(x), e to(x) = Titho(x).

Hence 1y and ¢y can be chosen to be continuous and strictly positive everywhere on E.

Using Assumption 1.2, the boundedness of o and an argument similar to that used in the proof of [4,
Theorem 3.4], one can show the following:

(i) ¢o is bounded.

(ii) The semigroup {T},¢ > 0} is intrinsically ultracontractive, i.e., there exists ¢; > 0 such that

q(t,z,y) < cedo(x)o(y). (1.11)

The main interest of this paper is on supercritical superprocesses, so we assume as follows.
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Assumption 1.3. It holds that A\g > 0.

Define ¢;(x) := Ps_ (|| X¢|| = 0). Since Ps_ || X¢|| = T31(x) > 0, we have ¢:(x) < 1. Note that g;(x) is non-
decreasing in ¢. Hence the limit g(z) := lim; o0 g+ () exists. Then ¢(z) = Ps_{|| X¢|| = 0 for some ¢ > 0}
is the extinction probability. In this paper, we also assume as follows.

Assumption 1.4.  There exists tyg > 0 such that

:érele gt (z) > 0. (1.12)

In [22, Subsection 2.2], we gave a sufficient condition (in term of the branching mechnism ) for

Assumption 1.4. In particularly, if inf,cg S(x) > 0, then Assumption 1.4 holds. In Lemma 3.1, we will
show that, under our assumptions, ¢(z) < 1, for all z € E.

1.2 Main results

Define M; := e~ 2% (¢g, X;), t > 0. It is easy to prove that (see, for example, [21, Theorem 3.2]), for every
w€ Mp(E), {M,t > 0} is a non-negative P,-martingale with respect to the filtration {G, : ¢ > 0}. Thus
{M;,t > 0} has a P,-a.s. finite limit denoted as M.

Let n® (x,df) be the kernel from E to (0,00) defined by

oo oo
/ @)% (z, d) = / F(060(2))n(x, do).
0 0
By the boundedness of ¢y and the assumption (1.2), we get that there exists M > 0 such that

sup/ (6 A 0%)n? (z,do) < M. (1.13)
zelE JO

Let I(z) := floo 6 log 6 n?° (x,dd). The following L log L criterion was proved for superdiffusions in [17].

Llog L criterion. M, is non-degenerate under P, for all nonzero finite measures p on E if and
only if

/ Yo(z)l(z)m(dz) < oo. (1.14)
E

At first glance, the roles of ¢¢ and 1) are not symmetric in (1.14). This is not the case. In fact, (1.14)
is equivalent to

/ oo ()10 (z)m(dx) /00(0 log O)n(x,df) < oo, (1.15)
E 1

which says that the spatial average of the “flog6” moment floo(G log 8)n(x,dd) with respect to the
probability measure ¢g(x)to(z)m(dx) is finite. Note that

oo

I(z) = / " log 1% (, d6) = do(x) / 0(log 0 + log do(x)) n(x, db)
1 ¢o(z)~t
1

= ¢o(x) /OO Olog O n(x,dld) + (bo(m)/ 0logOn(x,dd)
1 bo(x)~ 1

oo

oo logontz) [ ona,as).

Since ¢g is bounded, ¢o(x)|log ¢o(x)| is bounded above, say by C. Thus,
sup ¢ (z)|log ¢0(z)|/ On(x,dd) < C sup/ On(x,dd) < oc.
€L $o(x)~1 T€E J| g0l

Note also that

sup ¢o(z)
z€E

1
/ 910g9n(w,d9)’
@

o(z)~!
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Sup¢o )| log ¢o(x |‘/ xd@)‘
ot

o(z)~
< Csup <1¢0(w)>1/ On(x,dl) + 1¢0(x)<1/ 9n(x,d9)> < 00
z€E lIolls" 1

In Section 2, we will show that ¢y € L'(E, m) (see the first paragraph of Section 2). Thus (1.14) is
equivalent to (1.15).

Recently, the Llog L criterion above was extended to more general superprocesses with possible non-
local branching mechanisms in [21].

The Llog L criterion above says that, under the condition (1.14), e*? gives the growth rate of (¢g, X¢)
as t — oo conditioned on non-extinction. However, when the condition (1.14) is not satisfied, the theorem
above does not provide much information about the growth rate of (¢g, X¢).

The first objective of this paper is to solve the Seneta-Heyde norming problem for the martingale M,
i.e., to find a positive function ~; on [0,00) such that v;(¢o, X;) has a non-degenerate limit as ¢t — oo.
Although our results (see Theorems 1.5, 6.10 and 6.12) also cover the case when (1.14) holds, only the
results in the case when (1.14) fails are new (see Theorem 1.6 below). It is easy to find examples such
that (1.14) fails. For example, if n(z,df) = c(z)[I(o2)(0) + Ij2,00)(0)02(log ) ~P]df with 8 € (1,2]
and ¢(x) being a strictly positive bounded measurable function on E, then (1.2) is satisfied, but (1.15),
which is equivalent to (1.14), fails.

Let v(z) := —logg(x). By the branching property of X, we have

P, (|| X¢|| = 0 for some t > 0) = e~ V1,

Theorem 1.5.  There exist a positive function y; on [0,00) and a non-degenerate random variable W
such that

lim 1t = M Vs >0,
t—=00 Yii s

and that for any nonzero p € Mp(E),
tllglo V{0, Xi) =W, a.s.-P,

and

P (W =0)=e @M P (W <o0)=1.
Moreover, we have the following Llog L criterion.

Theorem 1.6.  The following conditions are equivalent:
(1) My is non-degenerate for some nonzero i € Mp(E);

(2) My is non-degenerate for all nonzero p € Mp(E);

(3) lo == 11mt_>ooe Moty € (O 00);

(4) [, do(@)i(x)m(dz) <

(5) P,W < oo for some nonzero y € Mp(E);

(6 )IPHW<ooforallu€./\/lF( ).

Further properties of the limit random variable W, such as absolute continuity and tail probabilities,
are studied in [24], a sequel to the present paper.

The second objective of this paper is to study the almost sure limit behavior of ~:(f, X;) as
t — oo for a class of bounded continuous functions f. It turns out that, for f belonging to this class,
limy 00 v (f, Xt) = (f,%0)mW, P,-a.s. for any nonzero y € Mp(E) (see Theorems 6.10 and 6.12).

The rest of the paper is organized as follows. Section 2 contains our basic estimates and Section 3 deals
with some properties of the extinction probability. In Section 4, we will define and investigate backward
iterates, which is needed in the proof of Theorem 1.5. The proofs of Theorems 1.5 and 1.6 are given in
Section 5. We remark that we will prove Theorem 1.6 without using the Llog L criterion in [17]. The
strong limit behavior of v, (f, X;) as t — oo for a class of general bounded continuous functions f is given
in Section 6. In the last section, we give some concluding remarks.
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In the remainder of this paper, C' will stand for a constant whose value might change from one
appearance to the next.

2 Some estimates

According to [13, Thorem 2.7], under Assumptions 1.1-1.2, for any § > 0, there exist constants v =
~(6) > 0 and ¢ = ¢(d) > 0 such that, for any (¢,z,y) € [§,00) X E x E, we have

e q(t, 2, ) — do(@)vo(y)] < ce™ " go(2)th0 (y)- (2.1)

Take t large enough so that ce™7t < % Then we have

ey (t,2,9) > S do(@hin(y).

Since q(t,x,-) € L*(E,m), we have 1y € L'(E,m).
It follows from (2.1) that, if f € B} (E) then (f, ), < 0o and for any (¢,z) € [§,00) x E,

[T () — (f, Yo)mo(@)] < o™ (£, Yo)mebo(x) @2)

and
(1= ce )| f], Yo)mo(x) < e T fl(2) < (1+ )| ], to)meo(@). (2.3)
For x € F and s > 0, we define
r(z,s) = p(x,s) + a(x)s.

Lemma 2.1. Forany H > 1

0<r(x,s) <(3/2+ H/2)Ms* + / On(z,dd)s. (2.4)
H
Proof. By definition,
r(z,s) = B(x)s> +/ (7% — 1+ 0s)n(x,dd). (2.5)
0
Note that for any 6 > 0,
0<e—9—1+9<<§m>9. (2.6)

Thus for any H > 1

r(z,s) < Ms? +2 /92 xd9+s/ On(x,do)

1
<M52+2 {/ 62 n(x,d) +H/ Hnmdﬁ}—ks/ On(x,do)

< (3/2+ H/2)Ms? +/ On(z,do)s.
H
This completes the proof. O
For any f € By (E) satisfying m(f > 0) > 0, define, for any (¢,z) € [0,00) x E,
Rf(tvx) = th(x) - ‘/tf(x)v (27)
and

Rf(t x)
et (f, ho)mpo(x)”

gr(t, @) ==
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Lemma 2.2.  Assume that f € B (E) and m(f > 0) > 0. Then
Rs(t,x) >0, (t,z)€[0,00) X E, (2.9)

and

im gs ()]l =0, t3>0. (2.10)
[ flloo—0

Proof. It follows from [16, Theorem 2.23] and (1.4) that V;f(x) also satisfies

Vif(z) = - / Tor(,Vieaf())](@)ds + Tif(z), t>0, z€E, (2.11)

which implies that
t
Ry(t,z) = / Tr(,Vieaf()))(@)ds, t>0, z€E. (2.12)
0

Since r(z,s) > 0, we have Ry(t,x) > 0, i.e., (2.9) holds.
Since Ty f(z) = Vo f(x) = f(z), we have Rf(0,x) = 0, which implies that g¢(0,2) = 0. Thus, it suffices
to prove that, for any § > 0, (2.10) is true for ¢ > §. It follows from Lemma 2.1 that for any H > 1,

oo

F@ Vieof (1)) < 2+ H)M(Vieof(2))* + Vieof () /H 0z, do)

< (24 H)M(Th_of())* + Tr— o f(x) /H " On(e.do).

By (2.12), we have

Ry(t,z) < (2—|—H)M/O TS[(Tt_Sf)Q}(q;)dS—i—/O T, [Tt_sf/:en(.,de)} (x)ds
=: () + (II).

For Part (I), since T;—s f(z) < || f|lce™?, we have T4[(Ti—sf)?](z) < eM?| flleTrf(z). Thus, by (2.3),
we have that, for any ¢ > 4,

() < 2+ H)Me™'t|| || T2 f (2)

(2 + H)Me™'t(1 + ¢(8)e™" (f, o) mo (@)l f |-

N IN

Hence we have that, for any ¢ > 9,

. M B
0 590 T T, dohmdo@) (2.13)

Now we deal with Part (IT). For any H > 1, ¢t > ¢ and 0 < € < ¢,

</O + /t: )Ts [Tt_sf /HOO On(., dﬂ)} (z)ds < 2eM T, f(x) < 2eM (1 4 ¢(08))e* (f, o) mo(z). (2.14)
For any e < s <t —¢, by (2.3),

Tt—sf(x) < (]- + C(e))e)\Ot<fa ¢0>m¢0($)

/et—eTS [Ttsf /:en(.’dg)} (x)ds

< (1+ (€)™ (£, Vi) / n [ / T on(, d9>¢o] (2)ds

H

Hence, we have
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< (1+c(e))2e”°tt</H en(-,d9)¢o,¢0> (f100)mo(x). (2.15)
Thus, combining (2.14) and (2.15), we get that

lim sup sup ——; (ID
£ loe—0zcE €8 (f,%0)m o ()

<2eM(1+¢(d)+ (1 + c(e))2e>‘°tt< /HOO On(-, d9)¢0,w0>

m
Now, first letting H — oo and then e — 0, applying the monotone convergence theorem, we get that

(1)

lim limsup sup = 0. 2.16
H—=00 | f|| >0 zeE €U f, Y0)mbo(x) (2.16)
Combining (2.13) and (2.16), we get that
. Rf(t, x)
lim su =0.
I £lloo—0 J;Eg erot(f,10) mdo(z)
This completes the proof. O

3 Extinction probability
Recall that, for any t > 0 and = € F,
@(x) =Bo(1X, = 0) and q(z) = lim g,(a)

Lemma 3.1. Foranyz € E, q(z) < 1.

Proof.  Let vi(x) := —log q:(z). Recall that v(zr) = —logg(x). Since ¢:(x) < 1, we have v;(z) > 0. By
Assumption 1.4, we have for s > g,

olloe < lloslloe < v llow = —Tog ((inf gy, () < .
zEE

Recall that, for 8 > 0,
Vib(z) = —logPs, e~ (0X0),

By the Markov property of X,

Qt+s($) = glggo ]PJ(;I (e—9||Xt+sH) — eli{go ]Péz (e_<V59;Xt>) _ ]P)éz (e_<U57Xt>). (31)

It follows from (2.8) that, for any s > ¢,
Vs (@) = Vi(vs) (@) = Ti(vs) (2) = Ry, (t,2) = Ty(05)(2) = go, (£, 2)e™" (05, Y0)mpo (). (3.2)

Thus, for s > ty, we have
(VitssYo)m = (1 = |l gu, (t)HOO)e)\Ot<U87¢O>m'

Since vi(x) is positive and non-increasing in ¢, we have that for all ¢ > 0 and s > o,
(1= llgo. ()lloc)e™* < 1. (3-3)
We claim that (v, 9g)m > 0. Otherwise, (v, 1o)m = 0. By (3.2), we have
lvisslloe < 1T (vs)lloo < (1+€)e™ (v, Y0)m [ Polloc — O
as § — 0o0. Thus lim,_, ||vs||cc = 0. Hence by (2.10),

Tim g, (8)]c = 0.
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It follows from (3.3) that, for all t > 0, e*o* < 1, which leads to a contradiction to the assumption that
Ao > 0. Hence the claim above is valid.
By letting s — oo in (3.1), we get that

exp{—v(z)} = gq(z) = Ps, exp{—(v, X;)}. (3-4)

Let ¢ and ~ be the constants in (2.2) with § = 1. For ¢ large enough, we have 1 — ce™"* > 0. Thus for ¢
large enough, we have

Tio(x) > (1= ce™™)e" (v, 40) mebo(x) > 0.
Hence for all z € E and t large enough,
Ps, ({v, X;) > 0) > 0,

which implies that
q(z) = Ps, (e~ (X)) < 1.

The proof is now completed. O

Lemma 3.2. V :=lim; (v, X;) € [0,00] exists, and satisfies that, for all x € E,
Ps, (V =0) = exp{—v(z)} = q(z)

and
Ps, (V = 00) =1 —exp{—v(z)} = 1 — q().

Moreover, for any 0 > 0, we have

tl_lglo Vi(0v)(z) =v(z), =z € E. (3.5)

Proof. By (3.4) and the Markov property of X, {e=(»X¢)t+ > 0} is a bounded martingale. Thus
lim;_, oo exp{—(v, X3)} exists and is in [0, 1], which implies that V := lim;_, oo (v, X¢) € [0, 00] exists.
Since exp{—(v, X;)} < 1, we have
Ps, exp{—V} = exp{—v(z)}. (3.6)
On the other hand,
P (V = 0)> lim Py (X = 0) = exp{—v(a)},

which implies that
Ps, exp{—V} = Ps_(V =0) > exp{—v(z)}. (3.7)

It follows from (3.6) and (3.7) that
Ps, (V =0) =exp{—v(z)} and Ps (V =00)=1—exp{—v(z)}.
By the dominated convergence theorem, we get that, for any 6 > 0,
Jim V(00)(z) = — log B, (e=°) = ~ log By, (V = 0) = v().

This completes the proof. O
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4 Backward iterates

It is clear that V40 = 0. It follows from (3.4) that V;v = v. Thus v and 0 are two fixed points of V;.

Definition 4.1. A family (1:,¢ > 0) C B (E) is called a family of backward iterates if n; < v for all
t >0 and
ne(z) = Ve(Megs)(x), t,s>0, z€E.

A family (n:,t > 0) of backward iterates is said to be non-trivial if, for some ¢ > 0, neither 7; = 0, m-a.e.
nor 7; = v, M-a.e.

It is well known that (see, for example, [25, (1.44)]), there exists a metric d on C(FE) such that (C(E),d)
is a complete metric space, and convergence in (C(FE),d) is equivalent to uniform convergence on each

compact subset K of E.
For any a > 0, let Do(E) :={f € BT(E) : ||f]lco < a}.

Lemma 4.2. For anyt >0, Vi(Do(E)) is a relatively compact subset of C(E).

Proof.  Without loss of generality, we only prove the lemma for ¢ = 1 and a > 1. We first show that,
for any compact subset K C E, {Vif: f € D,(E)} are equicontinuous on K.
Recall that

Vif(z) =Tif(x) - /01 Ts(r(-, Viesf))(x)ds
It is clear that for f € D,(E),
[12f(@) = B W)I <a [ la(1,2,2) = a(1,.9) m(d2).
Note that by (1.11), we have
q(1, 2, 2) < c1f|dollootbo(2). (4.1)
Since 1o € L'(E, m), for any € > 0, we can choose a compact set K C E such that

2alldolle [ tn(mids) < 5.

Using the continuity of ¢(1,-,-) on K X K, (4.1) and the fact that ¢g € L'(E, m), we can find a § > 0
such that for any x,y € K with |z — y| < J,
€

/~ lg(1, 2, 2) — q(1,y, 2)| m(dz) < 5
K

Thus {Tif : f € Dy(E)} are equicontinuous on K. By (2.4) and the fact that V,f(z) < T;f(z) <
eM?|| f|loo, we have that for any f € D,(E), r(z, Vi—sf(z)) < 2M(e*a? + eMa). Thus

| / " ds — [ L Vi F)()ds
< pM(Ea +eMa)] [ 1 [ lats..2) =gt 2) midz)as

Note that, for n € (0, 1),

/01 /E lq(s, z, 2) — q(s,y,2)| m(dz)ds

</ ! [ ats.2.2) + als.p.2) mldz)ds + / 1 [ lats.2) = a(s. ) md)s

1
<2cMp + / / lq(s,,2) — qls,9, 2)| m(d=)ds
n E
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q(g,anw) - q(g,y,w> 'q(s - ng> m(dw) m(dz)ds.

For any € > 0, we choose n € (0,1) so that 2eMn < £. It follows from (2.1) that, for any s € [/2, 1),
3

o(5..2) < (1<) ) Ionllatiolc). (12)

T RS TR —
< (ree(Z))ertoot [ [ [ fa(3mm) =a( 3w ) miturun(z) iz

Applying (4.2) again, we can find a compact K C E such that

(o)t [ [ () () mcrmr <

Using the continuity of ¢(Z,-,-) on K x K, (4.2) and the fact that 1y € L'(E,m), we can find a § > 0
such that for any x,y € K with |z — y| < J,

(e )erote ) o)<

Thus {fo S Vies))(x)ds : f € Do(E)} are equicontinuous on K. It follows that {Vif : f € D, (E)}
are equlcontlnuous on K. In particular, V1(D,(E)) C C(E).

Let K, be an increasing sequence of compact subsets of E. Using the equicontinuity of {Vif : f €
D.(F)} on each K, and a routine diagonalization argument, we can easily show that any sequence of

Hence

functions in V1 (D, (E)) contains a subsequence which converges in C'(E). O
Proposition 4.3.  There exists a non-trivial family of backward iterates.
Proof. Let D= {f€BY(E): f<wv}. Forany f € D,0 < Vyf < Vv <wv. Thus Vi of = Vi(Vsf) €

Vi(D), which implies that ¢t — Vt( ) is decreasing.

For any g,h € D and t > 0, it is easy to see that A — Vi(Ag+ (1 —A)h), A € [0, 1], is a continuous curve
in V4(D) connecting Vig to Vih. Thus V;(D) is connected. Hence Do := [,y Va (D) is connected. Since
0,v € Dy, and v > 0, there exists an 1 € D, such that 0 < n < v on a set of positive measure. Thus, for
every n € N, there exists 1, , € D such that V,,(n,.,) = 1. Define n, ; = Vo j(Mnn), 7 =0,1,2,...,n—1.
Note that 7,0 = 7.

Since 0 < 1y,,; < v and 1y, ; = Vi(1n,j4+1), it follows from Lemma 4.2 that {n, ;,n > 0,0 < j < n} is
relatively compact in C(E). Thus there exists a sequence (), ;) such that n; := limlHOO Mny,; € C(E)ND
exists. Since 1y, ; = Vi(Mn, j+1), letting [ — oo, we get that n; = Vi(n;41).

Define 1y := Vjy417—¢(1t+1)), for ¢ > 0. Then

Vi(iys) = ‘/;‘/[t+s+1}—t—s(ﬂ[t+s+1]) = V[t+s+1}—t(77[t+s+1]) = V[t+1}—t(77[t+1]) = -

It follows from 7,0 = 7 that 99 = 7, which implies that the family {n;,¢ > 0} of backward iterates is
nontrivial. O

Lemma 4.4. If0< f <w, then
Vif(s) > e Tif(x), t>0, wek,

where a = 2M (1 + ||v]]s0)-
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Proof.  Using (2.4) with H = 1 and the fact that V;_, f(z) < Vi_,v(z) = v(z) < ||v]|oo forany 0 < s < ¢
and any = € E, we get

r(z, Vics f(2)) <S2M (1 + ||v]|oo)Vies f(x) = aVisf(z), 0<s<t, x€E.
Recall that .
Vif(@) = Tof(@) = [ Tulr Viea () @),

Thus we have

t t
Vif(e) = e D) [ T Vi SO @)ds +a [ e TV s
0 0
Consequently we have
Vif(z) > e Ty f(x), t>0, z€k.
This completes the proof. O

Lemma 4.5. If (n:,t > 0) is a non-trivial family of backward iterates, then
Tim [ = 0.

Proof.  Without loss of generality, we may and will assume that m(ny > 0) > 0 and m(ny < v) > 0.
We claim that (1, ¥o)m — 0 as t — co. Otherwise, there exist a sequence t; T 0o and a constant ¢y > 0
such that

<’7tj ) ¢O>m > Cp.-

Fix s > 1 large enough such that 1 — ce™7® > 0, where ¢ and ~ are the constants in (2.2) with § = 1.
Then, for j large enough so that t; > s, we have

mo(x) = Vi, (n;) () = Vi, —s(Va (e, ) (2), @ € E. (4.3)
By Lemma 4.4, we have
Vi, )(x) = e T(n, ) () = €% (L= ce™ %)X (i, ho)mo () > coe™ ** (1 — ce™ %)X o (x).
It follows from (2.7) and (2.8) that
v(x) = Viv(z) < Tyo(x) < (14 ¢)e (v, 90)meo (). (4.4)

Thus
Vi(ne; ) () = coe™ (1 — ce™71%)er% (1 4 ¢) e 20 (v, o) o(x) =: Cov(x). (4.5)

Combining (4.5), (4.3) and (3.5), we get

no(x) = lim Vi, (Csv)(x) = v(z),

Jj—o0

which contradicts the definition of 7g9. Thus the claim above is true.
Note that, for any s > 1 and t > 0,

() = Va(eys) (@) < Ta(mess) (2) < (14 ce™ 7)™ (p o, P0)m o (). (4.6)

Thus
[l < (1 + €)™ (nets, o) mlbolloc — O,

as t — oo. The proof is now completed. O
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Lemma 4.6.  If (n,t > 0) is a non-trivial family of backward iterates, then there exist {h; : t > 0} C
By(E) such that

77t(=’5) = (1 + ht(x))<77tvw0>m¢0($)v t = 07 VS Ea

and

Jim ] = 0.

Moreover,

Vs, t >0 and limM:e’\os, Vs >0. (4.7)

<77t71/)0>m > e’\"s
t—o0 <nt+saw0>m

<nt+s7w0>m ~ ’

Proof.  Since (nt,Yo)m¢o(x) > 0, we can define

o ne(z) _
) = e (20 e E

It follows from (2.2) and Lemma 2.2 that for s > 1,

1:(x) = V(i) (@) = Ts(e4) (@) = By, (5,) (4.82)
> e (1= e = |lgy, .. (8)lloc) (M-t o) mbo (), (4.8b)
where ¢ and «y are the constants in (2.2) with 6 = 1. In the remainder of this proof, we assume that s

is large enough such that 1 — ce™* > 0. By Lemma 4.5 and (2.10), lim; , /gy, (5)[|cc = 0. Thus, for
large enough ¢, 1 — ce™* — ||gy, ., (5)|lco > 0. It follows from (4.6) and (4.8b) that

_ 2ce™ 78 + Hgmﬁ (5)”00
14 ce™®

2ce™ -
) = — @y 2007 F lgns ()]

(Mt Vo) mPo () S 1l—ces — ||9m+s (S)HOO

Letting t — oo and then s — oo, we get that
lim [|A¢lec = 0.
t—o0

It follows from (4.8a) that

<77t7 w0>m = <Ts(77t+s)a w0>m - <Rm+3 (8,%),¢0>m
= e (Negs, Y0)m — € Met sy Y0)m (Gnes. (8) P05 Y0)m,

which implies that

(Me;0)m  ags

0 < erS - <nt+ ¢0> =¢ <g7]t+s (8)¢07¢0>’m < e)\05||g7lt+s (S)HOO — 07

as t — oo, where the last limit follows from (2.10) and Lemma 4.5. The proof is now completed. O

Remark 4.7.  Let L(t) := (0, g)m. It follows from (4.7) that ¢t — L(t) is nondecreasing and, for
any s = 0,
L
lim Lit+s)

=1.
t—o00 L(t)

Therefore, lo := lim;_,o L(t) € (0, 00] exists.

5 Seneta-Heyde norming for M

Lemma 5.1. If f € BT (E) satisfies f(z) < v(x) and f(x) = V,f(x) for allt > 0 and z € E, then
either f(x) = v(x) for allz € E or f(x) =0 for allx € E.
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Proof.  Let sg > 1 be such that 1 — ce™%0 > 0, where ¢ and + are the constants from (2.2) with 6 = 1.
By Lemma 4.4 and (4.4), we have

f(@) = Vi f(x) 2 e 0Ty, f(w) = e @0 (L — ce™ 7)™ (f,400)mo(w) = co(f,vo)mv(x)
for some constant ¢o > 0. If {f,1g),, > 0, then by (3.5) we have

f(x) = Jim Vif(z) > lim Vi(eo(f. do)mv)(x) = v(x),

t—o0

which implies that f(z) = v(x) for all x € E. If (f,¢0)m = 0, then
fla) T f(x) < (1+ ) (f, o) meo(x) = 0,
which implies that f(z) = 0 for all # € E. The proof is now completed. O

Theorem 5.2.  Let (n:,t > 0) be a non-trivial family of backward iterates and define v¢ := (N, Vo) m .-
Then there is a non-degenerate random variable W such that for any nonzero p € Mgp(E),

Jim Ye(po, Xo) =W, a.s.-P,

and
P, (W =0) =exp{—(v,)}, Pu(W <o0)=1 (5.1)

Proof. By the definition of 7, for any nonzero u € Mp(E),
P, (exp{—ntts, Xets}|Gi) = Px, (exp{—ns+s, Xs}) = exp{—(ns, X¢) },

which implies that {exp{—(n:, X¢)},t > 0} is a non-negative martingale. Thus, by the martingale conver-
gence theorem, lim;_, o, exp{—(n;, X;)} exists P, almost surely and hence W := limy;_, oo (n;, X¢) € [0, 00]
exists P, almost surely.

It follows from Lemma 4.6 that

(1 = [[helloo)ve(bo, Xe) < (e, Xe) < (14 |lhelloo) e (0, Xe)-
Since lim;—, o ||ht||cc = 0, we have 1 — ||h¢]|oo > 0 for ¢ large enough. Thus for large ¢,
(L4 [1Pelloo) ™ ey Xe) < (0, Xo) < (1= Nalloo) ™" ey X

Letting t — oo, we get that
tlim Ye(do, Xe) =W, as.-P,.
— 00

Define
O(s,x) := —logPs, exp{—sW}. (5.2)

Then
—logP, exp{—sW} = tlg(r)lo —log P, exp{—s7y:(po, X4)}
= Jim (~log B, exp{~s3(60. X,)}. ) = (®(s, ). 1.
Put @ () := lims_y00 P(s, ) and Po(z) = lim,_,0 P(s,x). Then
P,(W =0) = lim Py exp{—sW} = exp{—(Poo, 1)}

and
P, (W < o0) = lir% P, exp{—sW} = exp{—(Po, 1)}
S—

For any s,t > 0, we have

exp{—2(s, 1)} = lim Py, (exp{—s7+u (00, Xea)}
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= lim Ps, Px, (exp{=sYu¥s Yulbo, Xu)})
=P;,Px, exp{—se_)‘otW} =Ps, exp{—(@(se_)‘ot, 9, Xi)},

which implies that
O(s,z) = Vy(@(se™ ", ))(2). (5.3)

Thus, letting s — oo and s — 0, we get respectively
Doo(z) = Vi(Poo)(w),  Po(z) = Vi(Po)(2).
Since s — ®(s,x) is increasing, we have ®g(z) < ®(1,2) < Poo(x). Note that
®(1,2) = —logPs, exp{=W} = lim —logPs, exp{—(n, X¢)} = no().

On the other hand,
Ps, (W =0) 2Ps, (3¢ >0, || X¢]| =0) = exp{—v(x)},

which implies that, for all z € E, ®(z) < v(x). Thus, ®¢(z) < no(x) € Poo(x) < v(z). It follows from
Lemma 5.1 that &3 = 0, ®,, = v. The proof is now completed. O

Now Theorem 1.5 follows immediately from Lemma 4.6 and Theorem 5.2.

Proposition 5.3.  Let (n:,t > 0) be a non-trivial family of backward iterates and W be the limit in
Theorem 5.2 corresponding to (ni,t > 0). Then a family (nf,t > 0) is a non-trivial family of backward
iterates if and only if there exists a positive number a such that

Ny (z) = P(ae Mt x), t>0, z€E,
where ® is defined in (5.2). In particular,

n(x) = dle ™t z), t>0, xz€E. (5.4)
Proof.  For any a > 0, by (5.3), we have

Ve(@(ae 00T 1)) (z) = D(ae™ ", 2).

Thus (®(ae~0t, x),¢ > 0) is a non-trivial family of backward iterates.

If (nf,t > 0) is a non-trivial family of backward iterates, then it follows from Lemma 4.6 that, for any
520, (nf st > 0)is also a non-trivial family of backward iterates. Let W) be the limit in Theorem 5.2
corresponding to (1, ,,t > 0). By (5.1), we get that, for any s > 0,

(W >0 ={W® >0} ={Vt>0, || X;]| >0}, as-P,.
Thus, we have that, for any w € {W > 0} N {W) > 0},

W (w) (s Yo)m
W — tlgrolom =:e(s) >0,

where e(s) is deterministic. Therefore,

WE) =e(s)W, as-P,. (5.5)
By (4.7), we have that, for any s,r > 0,
W) = lim 7<77£+57¢0>mw(r) = e Mol () a.s.-P,.
t=00 (11, Yo)m

It follows that e(s) = e=*0(=")¢(r), which implies that there exists a constant a > 0 such that

e(s) = ae™ 0%,
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Note that, for any s > 0 and =z € E,

n: (@) = lim —logPs, exp{— (1. X;)} = —logPs, exp{~W )}
= —logPs, exp{—ae W} = ®(ae %, x).

The proof is now completed. O

Recall from Remark 4.7 that g = lim;_, o e)‘Ot% € (0, 00].

Proposition 5.4.  Let (n,t > 0) be a non-trivial family of backward iterates and W be the limit in
Theorem 5.2 corresponding to (n:,t = 0).

(1) If ly < o0, then P,W < oo for any p € Mp(E).

(2) If P,W < o0 for some nonzero p € Mp(E), then ly < co.
Moreover,

PW = tlir&Vth<¢o, Xt) = lo{do, 1) (5.6)

Proof. (1) Since W = lim;_, o +{¢0, X¢), we have by Fatou’s lemma that
PLW < lim Pyyi{o, Xo) = lim 5, (o, 1) = lo{o, p)-

Thus lp < co implies P, W < oo for any p € Mp(E).
(2) It follows from (5.4) and Lemma 4.6 that

P(s,-
lim (@), ) = lim e (®(e ! ), u) = 1tlim et (g, 1)
—00

s—0 S t—o00

= lim ey, (1 + hy)o, i) = lo{do, 1) (5.7)

t—o0

If P,W < oo for some nonzero p € Mp(E), then

— P, (exp{—sW}) (®(s,-), 1)

1 .
P,W = lim ; = lim ~——=— = lo(¢o, ),
which implies [y < co. The proof is now completed. O

It was shown in [1, Subsection 1.10, Lemma 1] that, if Y is a non-negative random variable with
EY < oo, then
EY log" Y < o0

if and only if, for some ag > 0,
ao
/ s2E(e™Y — 1+ sY)ds < <.
0

Recall that I(z) == [ 0log 6 n® (z,do).
Lemma 5.5. [, vo(z)l(z)m(dx) < co if and only if, for anyt >0,

/Elﬂo(a?)Pawamet) log™ (g0, X¢)Jm(dx) < oo.

Proof.  Without loss of generality, we only prove the result for ¢ = 1. Note that

/E Yo(x)Ps, {0, X1) log* (o, X1)Im(d) < o0

if and only if, for some ag > 0,

/ Yo(x)m(dz) /ao s72Ps, (e3P0 X0) 1 4 5(¢g, X)) ds < oo. (5.8)
B 0
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Put R(f)(z) := Ry(1,2) = T1 f(z) — Vi f(z). Then, we have

Ps, (e 7*(%0 X0 — 1 4 5(¢hg, X1)) = exp{—Vi(s¢o)(x)} — 1+ Vi(sdo)(x) + R(seo)(x)

5 Vi(s60)(2)? + R(s60)(2)

N

< 3Ti(s00)()? + R(s0)(0)
— 5ePs%0n(0)° + R(sto)()
On the other hand,
s, (700 — 1+ s(go, X1)) = exp{=Va(s0) ()} — 1+ Ti(s60) @) > Rlsc)(@).

Thus, (5.8) holds if and only if, for some ay > 0,
/an s 2(R(5¢0), Vo) mds < 00. (5.9)
By (2.5), we have
<7’(', Vl—t(5¢0)), ¢0>m
¢! o0
acstoon s+ ( ([T [ )@ Mo~ L 0V son)in.d8). v )
o _

0 m

=: J1(87t> + J2(87t) + Jg(s,t).

Thus, by (2.12), we have
/ S_2<R(S(250)7 w0>md8
0

ag 1
:/ 872d3/ (-, Vie(s¢0)), o) m dt
0 0

ao 1 ag 1
:/ S_QdS/ et J) (s, 1) dt—l—/ s_2ds/ et (s, t) dt
0 0 0 0
agp 1
+/ sfzds/ et (s, 1) dt.
0 0

Vi_e(sho)(x) < Ty_t(s¢0)(x) < sego(x), (5.10)
we have that Ji(s,t) < Me?*s2||¢]|oo. Thus

Since

aop 1
/ S_st/ et T (s, )dt < oo. (5.11)
0 0

Note that

—1

bq 1
J2<s,t><< / e?vl_t<s¢o>2n<-,d0>,wo> <e%52< / 02n¢ﬂ<~,d9>,¢o> <0,
0 m

m 0

which implies that

aop 1
/ s*QdS/ et Jy (s, t)dt < oo. (5.12)
0

0
Now we deal with J;. By Lemma 4.4 and (2.3) with sy > 1 large enough such that ¢(1)e= 7% < 1

1
0(@) = Vigu(e) > e "0 T0(z) > 506 a).
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We put Ag = %eo‘o’“)s‘). Hence by Lemma 4.4, for any s < Ay,
Viee(sdo)(x) = e “Ti_t(sdo)(x) = e “spo(x). (5.13)
Thus, combining (5.10) and (5.13), there exist Cy,Cy > 0 such that for any s < Ay,
</¢01

< nlet) < ([ @O 1k Casounta0). o )

0 m

(e= G100 1 4 C10s¢0)n(-,db), ¢O>

m

Note that for any C' > 0, we have

A() 1 o0
/ 572d3/ e)‘°t</
0 0 )

—1
0

(e=C0s%0 _ 1 4 cas¢0)n(-,da),wo> dt
1 00 Ao
— / eMotdt / Yo(z)m(dz) / n® (z,do) / s72(e79% — 14 COs)ds
0 E 1 0
1 0o Apb
:/ e’\otdt/ 1/}0(gc)m(dx)/ 0n¢°(x,d9)/ s72(e79 — 14+ Cs)ds.
0 E 1 0

Since "
0 — —C's

lim Jo s (e —1+4Cs)ds _c

60— 00 log 6
we have

Ao 1
/ 872d3/ et J3 (s, t)dt < 0o @/ 1(x)po(z)m(dz) < 0.
0 0 E

Now the conclusion follows immediately. O

Recall that
My = lim M, = lim e % (¢g, X;).

t—o0 t—o00
Proposition 5.6. If [, vo(z)l(x)m(dz) < oo, then for any nonzero p € Mp(E), My is non-
degenerate under P, and P, Mo, = (do, 1).

Proof.  Suppose p € Mp(E) is nonzero and fixed. For any 6 > 0, put
U, (0,2) := —logPs, (exp{—0M;}) and ¥(0,z):= —logPs, (exp{—0Mu.}).

Then for any = € E, U;(0, x) is non-increasing in ¢. By the dominated convergence theorem and monotone
convergence theorem, we have

—log P, (exp{—0M.c}) = lim (W, (6,-), ) = (¥(6, ), ). (5.14)

n—roo

We claim that there exists some 8 > 0 such that

<\I](9’ ')7w0>m > 0. (515)

By the Markov property of X, we have

Uy, 4(0,2) = —logPs, Px, (exp{—fe ! M,})
= —logPs, exp{—(¥ (fe="), X;)} = V(T (he ")) (x). (5.16)

Letting s — oo, we get
T(Ge, z) = Vy(2(0))(x).

If (5.15) holds, then by (2.3), we get that, for ¢ > 1 large enough,

Ps, (¥(0), Xy) = T,¥(0)(z) > 0,

x
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which implies that Ps_ ((¥(0), X;) > 0) > 0. Hence we have that, for any x € E,
(et ) = Vi(T(0))(z) > 0.

Thus, by (5.14),
P, exp{—0e* M.} = exp{— (¥ ("), 1)} < 1,

which implies that P, (M = 0) < 1.
Now we prove claim (5.15). Put R(f)(z) := R;(1,z). It follows from (5.16) and (2.7) that

<\Ijn(9a ')’ ¢o> = <V (\II ( Ao))a 0>
= (T2 (¥p—1(0e7)), Y0)m — (R(¥r_1(0e72°)), %0} m
= e (T, (0e),%0)m — (R(Tn1(072°)), o)

n—1
= (W (e ) — D ETI(R(T, g (0e7F)), o) e (5.17)
Note that, by Jensen’s inequality, we have
\Iln_k(ee_)‘ok)( ) = —logPs, exp{—0e~ rokpp k} <Ps fe” MRALL = Be Mk gy (x).

By the dominated convergence theorem, we get

lim e =D(Wy (™" 7D20) o), = O(Ps M, v0)m = 0.

n—oo

Thus we have

n—1

(L0, ), o) = lLim (Tp(6,-),%0)m > 0 — lim Y~ MR D) o). (5.18)

Since t — (R(8e= % ¢g), 1) is decreasing, we have
Ze’\o =D (R(0e™%¢0),v0)m
k=1
< [ X R 00) v
1
=" / sT2(R(s0¢0), o) mds
0
1
<" [T (00) = (1= exp{=V (900 )
1
=Xy / o (z)m(dx)Ps, / 572(s0(¢o, X1) — 1 + exp{—s0{¢o, X1)})ds.
0
Since e7* — 1+ s < s A (s2/2), there exists C' > 0 such that for any r > 0,

/0 s7%(rs — 1+ exp{—rs})ds = r/o s7(s — 14 exp{—s})ds

1 T
<= QL«<2+T<1+/ sldS>L«>2
2

1
< fr21T<2 + Crlogrl,~s.

[\

Thus,

ZGAO k=D (R(Ge™ "), 10} m
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<or! /2( /E Ps. (6(0, X1)%; 6(ch0, X1) < 2)ifo(2)m(dz)
+20 | B4, (60, X0 og(0(00, X2))i 000, 1) > 2>wo<m>m<dx>).

Using the dominated convergence theorem, we get

(}13% EIP’(;w(9<¢0,X1>2; 0(¢0, X1) < 2)o(z)m(dz) = 0.

By Lemma 5.5, we have

/E P, (g0, X1) 1og({(d0, X1)); (b0, X1} > 2)ebo(a)m(dz) < oo.

Applying the dominated convergence theorem again, we get
lim [ Bs, (60, X1) log(060, X1)): 060, X1) > 2)gho(w)m(d) = 0.
E

Therefore, there exists 6y > 0 such that for any 6 € (0, 6],

=D (R(Pe 2k gy) 1hg)m < 0/2.

[M]8

b
Il

1

It follows from (5.18) that, for 0 < @ < 6y,

(W(0,),%0)m >6/2 > 0.

Now the claim (5.15) is proved, and hence M, is non-degenerate.
It is easy to see that

Moo = lim ™" (g, X¢) = lim ™" () " (o, Xo) = I ' W. (5.19)
— 00 — 00

Since M, is non-degenerate, we have [y < oo. Thus by (5.6), P,Ms = (¢o, ). The proof is now
completed. O

Proof of Theorem 1.6. By (5.19), (1) & (2) < (3). By Propositions 5.4 and 5.6, (3) < (5) < (6) and
(4) = (2). Thus, we only need to show that (3) = (4).
By (2.11) and the fact that s = Vi(n:45), we have

mo(x) = Vi(ne) () = Ti(n:) () —/O T [r (s ms ()] () ds.

Thus, ,
51 = Ty vl =20+ [ dn(omde) [ (@),
which implies that
lo="0+ /E o(xz)m(dx) /000 e (x, s (x))ds. (5.20)
Recall that,

r(z,s) = B(z)s? Ooe_se— sO0)n(x .
(@9) = B@)s+ [ =14 ) n(a )

Hence,

| e reanends > [ vas [ (7745 ~ 14 b (2) (., df)
0 0 e

208 o (2) 1
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o (log(0¢o(x)))/Xo
= / n(z, d@)/ 03 (e (@) _ 1 4 g, (x))ds. (5.21)
$o (@)1 0

Choose sy > 1 large enough such that (1 — ce™7%) > 0, where ¢ = ¢(1) and v = (1) are the constants
in (2.3). By (2.3) and Lemma 4.4, we get that,

15(2) = Vg (Ms50) (@) = €700 Ty (155 (2) = 70 (1 = ce™7%0)e0%0 5, h0(2) 2= Csipsy b0 ().
Thus, by Remark 4.7, for any s < (log(6¢o(x)))/No, we have
Ons(z) = COYVey sy do(x) = Ce %,y = CL(s + s9) = CL(0) > 0,

where L(t) = e*o!v,. Therefore,

R R N e: NS N
5<(log(0¢0()))/ Ao Ons(z) r>CL(0) r

for some constant ¢ > 0. It follows that

oo (log(8¢0(x)))/ Ao
/ n(x, dH)/ e*os (e _ 1 4 gn,(2))ds
¢ 0

o(z)~!

oo (log(8¢0(2)))/ Ao
> c/ Gn(a:,dG)/ erosn,(z)ds
do(z)~? 0

o (log(6¢b0()))/ Ao
>C / On(z, do) / %yt 5o dso ()
¢o(z)~?t 0

oS] log 6/ Ao
> C/ Onoo (ac,dﬁ)/ L(s+ so)ds
1 0

> CL(O)/ 0log On? (x,df) > Cl(z). (5.22)
1

Combining (5.20)—(5.22), we get that Iy > C(l,%g)m. Thus (3) = (4).
The proof is now completed. O

6 Strong convergence with general test functions

In this section, we fix a non-trivial family (1, : ¢ > 0) of backward iterates and let v; := (1, ¥0)m. The
goal of this section is to determine the almost sure limit of v;(f, X;) for general test functions f.

6.1 The martingale problems of superprocesses

In this subsection, we recall the martingale problem for the superprocess X. Let J denote the set of jump

times of X, i.e.,
J={s20:AX,=X,— X,_ #0}.

Since X is a cadlag process in Mp(E), J is a countable set. Let N(ds,dv) be the optional random
measure on [0,00) X Mp(FE) defined by

N(ds,dv) := Z d(s,ax,)(ds,dv),

seJ

and N(ds,dv) be the predictable compensator of N(ds,dv) which satisfies that for any non-negative
predictable function F on Ry x Mp(E) x €,

/Ot /MF(E)F(S’V) N(ds, dv) = /Ot dS/EXs(dﬂf) /000 F(s,06,)n(x,db), (6.1)
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where 7 is the kernel in the branching mechanism ¢. Define
N(ds,dv) := N(ds,dv) — N(ds, dv).

Then N (ds,dv) is a martingale measure. The “stochastic integral”

/ /MF N(ds, dv)

can be defined for a wide class of Borel functions F on [0,¢] x Mp(E). In particular, if f is a bounded
Borel function on [0,¢] x E and Ff(s,v) := [ f(s,2)v(dx), then the integral fo Sty Fr(s,v)N(ds, dv)
is well defined. Let £% be the space of predlctable processes (F(s,v) : s > 0,v € Mp(E)) satisfying, for

all p € Mp(E),
t )
Pp/ ds/ Xs(d:r)/ F(s,00,)*n(z,df) < oo
0 E 0

t
:/ / F(s,v) N(ds,dv), t>0,
0 JMp(E)

is a square integrable martingale such that

P, (MMF {/ ds/ X, (dx) / F(s,06,)*n(x,do)|. (6.2)

For any F € L%

Note that Cy(E) is a Banach space under the supremum norm. In the remainder of this paper, we
assume as follows.

Assumption 6.1. (i) {P,,t > 0} is a Feller semigroup, i.e., {P;,t > 0} preserves Co(E) and [0,00) >
t — P.f € Co(E) is continuous for every f € Co(E).
(i)
lim sup/ On(z,dd) = 0. (6.3)

a—=0 gpcE Jq

In the reminder of this subsection, we will (also) use L to denote the infinitesimal generator of
{P;,t > 0} in the space Cy(F) and use Dom(L) to denote its domain. It is known (see, for example, [5,
Subsection 6.1]) that, for any f € Dom(L), we have that

(. X0) = (. Xo) + /0 (Lf - af, XJ)ds + ME(f) + M),

where M{(f) is a continuous local martingale with the quadratic variation fo (Bf? Xs)ds and

/ /MF(E) ()N (ds,dv)

is a purely discontinuous local martingale. Here we remark that if we assume that «, 8 € C(F) and that
x — (OA0%)n(z,dh) is continuous in the topology of weak convergence, then the above result follows from
[16, Theorem 7.25]. M¢(f) induces a worthy (G;)-martingale measure S (ds, dr) (see [16, Subsection 7.3]
for the definition of worthy martingale measure) satisfying

:/Ot/Ef(x)SC(ds,dx).

Standard arguments then show that the “stochastic integral”

[ [ 015 s, a0)
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can be defined for a wide class of integrands f on [0,t] x E (see, for example, [16, Theorem 7.25] or [7]
for more details). Thus, one can show that (see 7, Proposition 2.13] or [20, Exercise I1.5.2] for the case
when the branching mechanism has finite variance) for any bounded function g on E,

<g’Xt> = <,TtgvX0> +A /./\/l (E)<thsg,l/>.]\~f(d87dV) +/0 /ETt,sg((E)SC(dS,dCU). (64)

6.2 Discrete times

In this subsection, we show that for any § > 0 and f € B;(E), Yns{f b0, Xns) has an almost sure limit
as n — oo. We will extend this result to continuous times in two different scenarios in the next two
subsections.

Theorem 6.2.  For any § > 0, p € Mp(E) and f € B} (E), we have

nlggc Yns (Do f, Xns) = (foo, Yo)mW, a.s.-P,.

To prove Theorem 6.2, we first make some preparations. For any s > 0, we define

Doi(s) i ={v e Mp(E) : 0 < y5{¢o,v) < 1} (6.5)

and
Dz1(s) == {v € Mp(E) : vs(¢o,v) > 1}. (6.6)
For any m € N, § > 0, p € Mp(E) and f € B, (E), by (6.4), we have
Yintm)s (oS X(ntm)s)

(n+m)éd
= 7(n+m)5<T(n+m)6(¢0f)7 [L> + Y(n+m)s A A T(n-f—?n)é—s(d’ﬂf) (I)SC (dS, dl’)
(n+m)s _
s [ [ Brmssl60). )N (ds,dv)
0 D<i(s)

(n+m)s _
=+ Y(n+m)s / / <T(n+m)6—s(¢0f)7 V>N(d$, dV)
0 Dx1(s)
= ’y(n+m)5<T(n+m)5(¢0f)7 /J/> + C(n+m)5(f) + H(ner)S(f) + L(n+m)6(f)
Therefore,

Yntm)s (B0 fs Xntm)s) = PulYnam)s (o fs Xintm)s) | Gno)
= (Hm+m)s(f) = Pu(Hntrm)s (f) [Gns)) + (Lintm)s (f) = PulLntm)s(f) [ Gns))
+ (C(n+m)6(f) - Plt(c(n-&-m)é(f) | gn&))

We now deal with the three parts separately. Before doing this, we prove a lemma first.

Lemma 6.3. If {a, : n > 1} is a sequence of positive numbers such that lim, oo apy1/a, = a > 1,
then
0 An
sup Z a,? / 02n% (z,df) < oo (6.7)
ern:l 0
and -
sup Z an/ n® (x,df) < oco. (6.8)
zeE an

Proof.  Since lim,, o0 Gpt1/an, = a > 1, for any a* € (1,a), there exists K > 0 such that for any n > K,

Ap+1
Gp

*

>a
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Without loss of generality, we assume that a,, 1 co. For convenience, we put ay = 0. Then we have

ia;l/a 62n% (z, dh) Za_lz/ 62n? (z, d)
n=1 n=1 Ak —1

:Z/ ‘ 92n¢o(m,d9)2a;1
Ak—1 n==k
Z/ 6%n ¢°xd9 Za + Z / Qn%xdﬁakZa
ak—1 k=K+17 k-1 n=k

g/a 02¢°xd9§: +Z/ Gnd"’xdﬁakZa
0 a

n=1 k=K+1"Y%-1 n=~k

For any k£ > K, we have

Zaka < Z a )—(n—k) — Z(a*)—n < 0.
n==k n=1
Therefore,
o) an aK >
Za;l/ 02n?0 (z,df) < O[/ 0°n% (z,do) "’/ O (x,d@)}
n=1 0 0 o
< cgup/ (O A 6*)n? (z,dh) < oo.
z€E JO
Note that

i o, /°° n® (z,d0) = i an i /ak“ n® (z, df)
n= an n= =n" 2
1 oo1 al;l )
< z / On? (z,d6) <a;1 Z an) .
n=1

k=1 9k
Using elementary calculus, one can easily show that

a

. Ak+1
lim a, E a, = lim + = .
k—o0 k—oo Qg1 — G a—1

Thus sup>4 a;t Zﬁzl an < oo. It follows that

sup Zan/ n® (x,dd) < C’sup/ On?° (x,df) < oo.

el n—1 n z€E Ja,

The proof is now completed. O
Define "
I(a,z) := / 0>n% (x, df).
0

Lemma 6.4. For anym €N, § >0, p € Mp(E) and f € B (E), we have

nll)m H(n+m)5(f) ]P;L(H(n+m)6(f) | gn&) =0, a'&‘Pw
Proof. By the conditional Borel-Cantelli lemma, it suffices to prove that

Z P#([H(n-‘rm)é(f) - ]Pu(H(n+m)6(f) | gn&)]Q ‘ g(n—l)&) < 0. (69)

n=1
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Recall from (6.5) that

Dei(s) :i={v € Mp(E): 0 <7s(do,v) < 1}.

Since N(ds,dv) is a martingale measure, we have

nd
B, (Hism)(F) | Gns) = Yonsms / /D  Tiwsgs-s(60),v) Vs, av),

which implies that

(n+m)éd _
H(n+m)5(f) - P;L(H(ner)cS(f) | gn6) = Y(n+m)é /5 /D ( )<T(n+m)578(¢0f)7 V)N(ds, dV)- (6-10)

By (5.4),

v = (e, ), o) m,

which implies that ¢ — +; is non-increasing. Thus by (6.2) and (2.3), we have

Pu([Hnrm)s(f) = Pu(Hnm)s (F) 1 Gns)* | Gin—1)s)

) (14+m)é ’7;—1(71—1)5‘150(:”)71 5 9
S S Ay ey | P (T smys—o(60) 0P a0)|

1
+m)s

2 2 (m)o 2X0((14+m)é—s) Y
<|f||mv(n+m>5pst[ [ e [ ) [

(14+m)é
= \|f||§07(2n+m)5/6 e2Ro((IFm)o=s) <Ts[1(7(_nl+m)5)],X(n—1)5>d5

6?n® (z, d@)}

(1+m)é
< (1 + (B)) |2 e2roa+m /5 €052 s (TG s V0)im (B0, X 1ys)

< 0[7(n+m)6<¢0a X(n71)6>]’7(n+m)5<I(’Y(_ni+n)5)a 77D0>m

It follows from the fact that

(n+m—1)8

and Lemma 6.3 that

Since

Z 7(n+m)6<1(’7(7ni+n)5)a 7,/10>m < 00.
n=1

e*)\g(ﬂl%’l)é‘W

)

nlggo Y(n+m)s <¢07 X(n—1)6> =

combining (6.11) and (6.12), (6.9) follows immediately. The proof is now completed.

Lemma 6.5. Foranym €N, § >0, u € Mp(E) and f € B} (E), we have

Proof.

M Lipym)s(f) = Pu(Lngmys(f) | Gns) =0,  a.s.-Py.

n—00

Recall the definition of Ds;(s) in (6.6):

Doi(s) = {v € Mp(E) : (b0, v) > 1}.

Since N(ds,dv) is a martingale measure, we have

nd _
]P)H(L(n-‘rm)é(f) ‘ gné) = Y(n+m)s /0 /D ( )<T(n+m)6—s(¢0f)a V>N(d37 dy)’

(6.11)

(6.12)
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which implies that
Lintm)s(f) = Pu(Lintmys(f) [ Gno)

n+m)d ~
= Y(n+m)é ‘/5 / )<T(n+m)6—s(¢0f)v I/>(N(ds, dV) - N(dsv dV))'
n D>1(s

(n4+m)é
Pu(/ / N(ds,dv) > 0, i.o.) =0. (6.13)
néd Dx1(s)
In fact, since f (n+m)3 fD> N(ds,dv) is a non-negative integer, by the Markov property of X,
(n+m)s
[EDM </ / N(dS, dl/) >0 ‘ g(n1)5>
—_ nd Dx1(s)
) (n+m)s
([ Vs 6ns)
— né D>1(s)
) (14m)é
= ZIP’X(,"?I)[; (/ / N(ds,du))
n=1 g Dz1(s+(n—1)9)
) (1+m)é 0o
=Y Pxis [ / ds / X, (d) / n(x,d@)]
) E ¢>0(w)_1'y_1

We claim that

n—=1 s+ (n—1)5
) (14+m)é 0o
< Z/ d3<T5 |:/ n¢0('7d0):| 7X(n1)6>
n=179 "/;51
< (1 + ¢(8))ymderotm+1)e Z </ n® (-, d9)ﬂ/’0> (0, X(n—1)5) (6.14)
n=1 71751 m

where in the second to the last inequality, we use the fact that v,i(,—1)s < Yns, and the last inequality
follows from (2.3). It follows from (6.8) that

Z’Yn6</y L

né

¢O('7d0)7¢0> < 00. (615)

m

By Theorem 5.2, v,,5(¢0, X(n—1)5) —* e 9TV as n — oo. Therefore we have

i</ do), ¢o> (00, X(n—1)5) < 00

n=1

s (n4+m)é
ZP#(/ / N(ds,dv) >0 ‘ g(n_l)(;) < 0.
n=1 né Dxa(s)

Now using the the conditional Borel-Cantelli lemma, we immediately get the claim (6.13).
By (6.13), we get

which implies that

(n+m)s
M Ypgm)s /5 / (Tin4mys—s(dof), v)N(ds,dv) =0, P,-as. (6.16)
n D>1(s

n—oo

To complete the proof, we only need to show that

(n+m =R
nlglgo Y(n+m)s /6 A ( <T(n+m)5—s(¢0f)a Z/>N(d$, dV) =0, ]P),u_a's' (617)
n >1(S8
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By (6.1), we have

(n+m)é =
Y(n+m)s / / <T(n+m)5—s(¢0f)v I/>N(d$7 dV)
néd Dx>1(s)

o

(n+m)éd
s / s / Tonsmys—s (60f) (2) X, (d2) / On(z, o)
né E B0 ()~ Lyst

(n+m)s
< 1 loe ™ s / o / b0(x) X, (dz) / On (. do)
n E ¢

o(@) =1yt

né z€E doll=' s

(n+m)s S
< ||f||ooe)\om57(n+m)6/ <¢O7Xs>d5 sup (A Qﬂ(ﬂﬁ,de))

Note that

(n+m)d mé
W Y(npm)s /5 (¢o, Xs)ds = lim Vintm)s {0, Xsins)ds
n oo 0

n n—oo

mé
_ / ef)\o(méfs)dsw’
0

and by (6.3) we have

lim sup </ 9n(:c,d9)) =0.
"7 2eB \Jgoll= 105

Now we easily see that (6.17) holds. The proof is now completed. O

Lemma 6.6. Foranym €N, § >0, u € Mp(E) and f € B} (E), we have
nh—>H;o C(n+m)5(f) — PH(C(TL_._m)(;(f) ‘ gm;) = 0, a.s.—IE”#. (6.18)

Proof.  Let
N, = /0 /E Tismyi—s(0f) () SC (ds, de).

Then {M,;,0 <t < (n+ m)d} is a martingale with the quadratic variation

t
<M>t = 2/ </6(T(n+m)§fs(¢0f))2aX8>d3'
0
Note that
C(n+m)6(f) - ]P)M(C(n—&-m)&(f) | gné)
(n+m)éd o
= Y(n+m)s /5 / Tintmys—s(dof)(x)S” (ds, dx)
n E

= Y(m+n)s (M(n+m)6 - M, ) (619)

Using this we get

Py ([Cntm)s (f) = Pu(Clnsmys (f) [ Gro)* | Gin—1)s)
= 7(2m+n)5Pu(<M>(n+m)6 —(M)ns| g(n—1)6)

(n+m)é
= 7(2m+n)6]pli (2 /6 <ﬂ(T(n+m)6—s(¢0f))2a Xs>d3 | g(n—1)5>

(14m)é
= 7(2m+n)6]P>X(nf1)5 <2/6 <ﬂ(T(1+M)5*S(¢Of))2a Xé>ds> .
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Note that

B@)(Ta4mys—s(0f))2(x) < || fII2B(z)e2 o FmO=5) g0 ()2 || £1%|B¢ollsce®** ™ do ().

Thus we have

Pu([Clntm)s(f) = Pu(Clngmys (F) 1 Gno)l* | Ginm1)s)

) (14m)é ) (14m)é
< ny(er’ﬂ)(s]P)X(n—l)é /6 <¢0>X8>d3 = C'V(m+n)6/6 <TS¢0’X(n71)5>dS

(1+m)s
= C’Y(Qm+n)5/5 e**ds (¢o, X(n—1)5) < CY(m+n)s(Vm+n)s (B0 X(n—-1)s))-

By (4.7), we have that
lim Y(m+n)s _ e,)\og
n= Y(m4n—1)8

<1,

which implies that Y~ ° | Y(n4n)s < 00. By Theorem 5.2,

lim 7(m+n)5<¢07X(n_1)5> = e_)‘O(m+1)5W

n—oo
Thus we have Y7 1 Y(m4n)s (Vm4n)s(P0; X(n—1)s)) < 00, which implies that
oo
ZPM([C(ner)é(f) = Pu(Clntmys(£) |Gns))* | Gin—1)s) < o0.
n=1
Now using the conditional Bore-Cantelli lemma, we immediately get (6.18). O

Combining the three results above, we get the following lemma.
Lemma 6.7. Foranym €N, § >0, u € Mp(E) and f € B} (E), we have
T Y(ngm)s(@0fs Xnrmys) = BulVntm)s(@ofs Xinymya) [Gns] =0, a.s.-Py.

Proof of Theorem 6.2. By the Markov property of X, we have

Yintm)sPu (D0 f, Xntm)s) | Gns) = Vntm)s (Tms(@0f), Xns)-

It follows from (2.2) that there exist constants ¢ > 0 and 7 > 0 such that for any m > 1,

(1= ce™™)eX™ (£, o) mdo(x) < Trms(dof)(x) < (14 ce™ ™) ™ féo,10)mo(z).

Thus, by Lemma 6.7, we have that, for any m € N,

lim sup Yns{Po f, Xns) = Hmsup y(n4m)s(@0f, Xntm)s)

n—oo n— 00

= lim sup ’y(n+m)6<Tm5 (¢Of)v Xn6>
n—oo

< lim sup '7(n+m)6(]- + Cef'ymé)e)\gmé <f¢07 w0>m<¢07 Xn5>
n—o0o

- (1 + Cei’ymé)<f¢07 ¢O>mW

Letting m — oo, we get
lim sup Vns (B0 f, Xns) < (fbo, Yo)mW. (6.20)

n—oo
Similarly, we have
lim inf 5,5 (g0, Xns) > (1= ce™ ™) {fpo, o) mW.

Letting m — oo, we get
liminf 55 (b0 f, Xns) = ([0, o)mW. (6.21)

Combining (6.20) and (6.21), the conclusion follows immediately. O
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6.3 Continuous times: Case 1
Define a new semigroup (T7°,¢ > 0) by

e My (f o) ()

%0 f(z) =
10 () o= St S0

[ € By(E).

Then (Ttd)", t > 0) is a conservative semigroup with transition density

“Aolg(t,x, y)do(y)
Po(z) '

In this subsection, we also make the following assumption.

Y (t,x,y) =

Assumption 6.8.  For any f € Co(E),
lin (127 ~ fllo = 0. (6.22)
—0

See [2, Examples 4.4, 4.5, 4.7 and Remark 4.6] for examples satisfying the assumption above, and
Assumptions 1.1 and 1.2.

Theorem 6.9. Under Assumptions 1.1-1.4, 6.1 and 6.8, we have that, for any p € Mp(E) and
f € OO(E)7
Jim (6o, X0) = (fé0, do)mW, 0.5 By (6.23)

Proof.  First, we claim that

lim limsup  sup |’Yt<¢0T(4:LO+1)5_tf7 Xt) — v (dof, Xe)| = 0. (6.24)
=0 nooo te[nd,(n+1)d]

In fact, we have

sSup |7t<¢0T((€?+1)§_tfa Xt> _7t<¢0f7 Xt)l
te[nd,(n+1)4]

< swp |T9f = flo  sup  yeldo, Xo)-
r€(0,9) te[nd,(n+1)d]

Letting n — oo and then 6 — 0, using Assumption 6.8 and Theorem 5.2, one immediately arrives at the
claim (6.24). Thus, by (6.24), to obtain (6.23), we only need to prove that, for any f € Cy(FE),

lim 1 T X)) — =0. 2
jm i, sup 0TG- Xe) = {90, Yot W] =0 (6.25)

Since ¢OT((?;+1)67tf = e’AO((”“)‘s*t)T(nH)(;_t(¢0f), we only need to show that, for any f € Cy(F),

lim lim  sup (T ofs Xe) — (f0)m W] = 0. (6.26)

6—0n—oo te[nd, (n+1)4)

y (6.4), we have that, for any ¢ € [nd, (n + 1)d],

(Tins1yo—tfs Xo) = (Ts f, Xns) /5/ (Tiny1)5—s.f, V)N (ds, dv)
nd JDc1(s)

/ / T(n+1)6 sfa dS dl/ / /T(n+1)5 ef ) (dS,dﬁ)
nd JDx1(s)

= (T5f, Xus) + H"(f) + L (F) + C° ().

It follows from (2.2) that ¢o(x) 175 f(x) € By (E). Thus, by Theorem 5.2, we have

M yo5(Ts f, Xs) = (T f,100)mW = X (f,0)m W
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Note that v, 41)s < & < Yns- Thus,

lim lim sup [ve(Ts f, Xns) — {f,v0)mW| = 0.
d—0n—o0 te[né,(n—‘rl)é]

To finish the proof, it suffices to show that

lim sup 7(n+1)5\Hf’6<f)‘ =0,
n—00 te[nd,(n+1)4]

lim sup 7(n+1)5\L?76(f)| =0,
N=0 te[nd,(n+1)d]

and

lim sup V(n+1)5\Ctn’5(f)| =0.
n—oo te[nd,(n+1)d]

Using the Markov property of the superprocess X, we get that

2 n,d 2
Yin P sup H(f (gn,
e 50 (H(0) | Gononr)

t 2
= 7(2n+1)5PX(n71)5 ( sup [/ / (Tos—sf,v)N(ds, dz/)] v)
te6,26] LJs JDoy(s4+(n—1)5)

20 2
< 47(2n+1)5PX(",1>5 ( |:/5v /; ( +( 1)5) <T25—s.f7 V>N(d57 dl/):| >
<i(sT(n—

= AP, ([H(n11)5(f) = Pu(Hns1)5(f) 1 Gns)1* | Gin1)s)

where the second to the last lines follow from the fact that

t
(/ / (Tos—sf,v)N(ds,dv),t € |9, 25])
§ JDc1(s+(n—1)d)

is a martingale. Therefore, by (6.9), we have

S RenPul s (HP()? | Gnys) < oo
n=1

t€[nd,(n+1)d]

Using the conditional Borel-Cantelli lemma, (6.27) follows immediately.
Similarly, we can prove that (6.29) holds. We omit the details here.
Note that

s (n+1)6 R
i< [ [ e )N s, dv) + N (ds ).
néd Dx1(s)

Now using (6.16) and (6.17) with m = 1, we immediately get (6.28). The proof is now completed.

1549

(6.27)

(6.28)

(6.29)

O

Theorem 6.10.  Suppose that Assumptions 1.1-1.4, 6.1 and 6.8 hold. There exists Qo C 2 of probability
one (i.e., P,(Q) =1 for every p € Mp(E)) such that, for every w € Qo and for every bounded Borel
function f on E satisfying (a) |f| < cdg for some ¢ > 0 and (b) the set of discontinuous points of f has

ZETO T -Mmeasure, we have

tli)r&%<f7 Xt>(w) = <f7 1p0>7nVV((JJ)

Proof.  With the preparation above, the proof of this theorem is similar to that of [2, Theorem 1.4].

We omit the details here.

O
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6.4 Continuous times: Case 11

In this subsection, we will consider the almost sure limit of v:(f, X;) with f being a general bounded
continuous function for some class of superdiffusions. The underlying process ¢ is a diffusion satisfying
the following conditions.

Suppose that E is a domain of finite Lebesgue measure in R%. Denote by C}(E) the family of bounded
differentiable functions on E whose first order partial derivatives are all continuous. The underling process
{¢, 11, } is a killed diffusion process on E corresponding to the infinitesimal generator

1
L=3V-aV+b-7, (6.30)

where a and b satisfy the following conditions:
(a) a;; € CL(E), i,j =1,2,...,d, and the matrix a = (a;;) is symmetric satisfying, for all z € F and
v € RY,
CQ|U|2 § Zaijvivj,
i.J

for some positive constant cg.

(b) bj € By(E), j=1,...,d.

Using an argument similar to that in [3, section 3.2], one can easily show that P; has a bound-
ed continuous and strictly positive density p(t,z,y). Thus Assumption 1.1 holds immediately. Since
m(E) < oo and the first eigenfunction QgONG L2(E,m), we have that ¢y € L*(E,m). Then using the fact
that p(1, z,y) is bounded and quSO(x) = e~ Py (x), we get that ¢o is bounded on E. Similarly, ) is also
bounded, which shows that Assumption 1.2(i) holds. We assume that the semigroup P; is intrinsically
ultracontractive.

Let f € By(F), and U%f, ¢ > 0, be the ¢g-potential of f, i.e.,

U () = /O eI f(2)ds,
For any ¢ > 0,
e TP Uf)(2) = / b e~ 9T f(x)ds. (6.31)
t
Theorem 6.11.  For any ¢ > 0, p € Mp(E) and f € B} (E), we have
Jm Y(PoqU f, Xt) = (f 0, Yo)mW,  a.s.-P. (6.32)
Proof.  First, we claim that

lim i ~ T ), Xe) — 9f, X¢)| = 0. :
fi i sup 0T (U)X = (6o, 0] =0 (6:3)

For any r € [0, d], we have
q|TP (U f) (@) = U f(x)|

(e —1) /OO e_qufof(J;)ds — /OT e_quj’(’f(x)ds

o0 T
< ||f||oo(q(e‘”' 1) [T e | d)
r 0

= 2[[flloo(1 — ™).

=4q

Thus,

sup [y @T(r 1) (qU ), Xo) = 7e{boqU f, Xy)]
te[nd,(n+1)4)
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<2 floo(l—€"%)  sup (g0, X1).
te[nd,(n+1)4]

Letting n — oo and then 6 — 0, the claim (6.33) follows immediately. Note that

<quf¢0,wO>m = <f¢07w0>m~

Thus, applying (6.25) with f replaced by qU?f, we get

lim li TP )X, — =0. 34
fim i sup 90Ty (aU X0 = (G0, ol W] =0 (6:30)

Now combining (6.33) and (6.34), (6.32) follows immediately. O

Theorem 6.12.  Suppose X is a superdiffusion on a domain E C R?® of finite Lebesque measure with
spatial motion being a killed diffusion in E with generator L given in (6.30) satisfying the conditions (a)
and (b). Suppose that Assumption 1.1-1.4 and 6.1 hold. Then there exists Qo C Q of probability one (i.e.,
P.(0) =1 for every p € Mp(E)) such that, for every w € Qg and for every bounded Borel function f
on E satisfying (a) |f| < coo for some ¢ > 0 and (b) the set of discontinuous points of [ has zero
m-measure, we have limy_, oo v (f, X¢)(w) = (f, Vo) mW (w).

Proof. ~ 'With the preparation above, the proof of this theorem is similar to that of [18, Theorem 1.1].
We omit the details here. O

7 Concluding remarks

Suppose that X = {X;,t > 0;P,} is a supercritical superprocess in a locally compact separable metric
space E such that the generator of the mean semigroup of X has discrete spectrum. Let ¢y be a positive
eigenfunction corresponding to the first eigenvalue Ag of the generator of the mean semigroup of X. Then
M, := e~ (¢, X;) is a positive martingale. Let M, be the limit of M;. It is known (see [17]) that M
is non-degenerate if and only if the L log L condition is satisfied. In this paper, we prove that, under some
further conditions, there exist a positive function «; on [0, 00) and a non-degenerate random variable W
such that for any finite nonzero Borel measure y on F,

tll)f{.lo Ye{po, Xi) = W, a.s.-Py,.

We also give the almost sure limit of v (f, X;) for a class of general test functions f.

In [24], a sequel to the present paper, we studied properties of the limit random variable W, such as
absolute continuity and tail probabilities.

It would be interesting to extend the results of this paper and [24] to supercritical superprocesses with
immigration.

The assumptions of this paper, particularly Assumption 1.2(ii), are pretty strong. For example, su-
percrtical super Brownian motion in R? does not satisfy Assumption 1.2(ii). It would be interesting to
consider corresponding results of this paper and [24] for supercritical superprocesses under weaker condi-
tions. It would be very interesting to get rid of the assumption that the generator of the mean semigroup
of X has discrete spectrum.
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