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1 Introduction

1.1 Previous results

Suppose that {Zn, n > 1} is a Galton-Watson process with offspring distribution {pn}, i.e., each particle

lives for one unit of time; at the time of its death, it gives birth to k particles with probability pk for

k = 0, 1, . . . ; and Zn is the total number of particles alive at time n. Let L be a random variable with

distribution {pn} and m :=
∑∞

n=1 npn be the expected number of offspring per particle. Then Zn/m
n

is a non-negative martingale. Let W be the limit of Zn/m
n as n → ∞. Kesten and Stigum [16] proved

that, when 1 < m <∞ (i.e., in the supercritical case), W is non-degenerate (i.e., not almost surely zero)

if and only if

E[L log+ L] =

∞∑
n=1

pnn log n <∞. (1.1)
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This result is usually called the Kesten-Stigum L logL criterion. In [1], Asmussen and Hering generalized

this result to the case of branching Markov processes under some conditions.

In 1995, Lyons et al. [24] developed a martingale change of measure method to give a new proof for the

Kesten-Stigum L logL criterion for (single type) branching processes. Later this approach was applied

to prove the L logL criterion for multitype and general multitype branching processes in [3, 18].

In [23], the martingale change of the measure method was used to prove an L logL criterion for a class

of superdiffusions. In this paper, we will establish a pathwise spine decomposition for multitype superdif-

fusions with purely non-local branching mechanisms. Our non-local branching mechanisms are special in

the sense that the types of the offspring are different from their mother, but their spatial locations at birth

are the same as their mother’s spatial location immediately before her death. We will see below that, a

multitype superdiffusion with a purely non-local branching mechanism given by (1.4) below can also be

viewed as a superprocess having a switched diffusion as its spatial motion and ψ̂(x, i; ·) defined in (1.20)

as its (non-local) branching mechanism. Using a non-local Feynman-Kac transform, we prove that,

under a martingale change of measure, the spine runs as a copy of an h-transformed switched-diffusion,

which is a new switched diffusion. The non-local nature of the branching mechanism induces a different

kind of immigration—the switching-caused immigration. That is to say, whenever there is a switching

of types, new immigration happens and the newly immigrated particles choose their types according to

a distribution π. The switching-caused immigration is a consequence of the non-local branching, and it

does not occur when the branching mechanism is purely local. Note that in this paper we do not consider

branching mechanism with a local term. It is interesting to consider superprocesses with a more general

non-local branching mechanism and with a local branching mechanism. For this case, one can see the

recent preprint [26], where the spine is a concatenation process.

Concurrently to our work, Kyprianou and Palau [21] considered super Markov chains with local and

non-local branching mechanisms. Note that if particles do not move in space, our model reduces to the

model considered in [21] with a purely non-local branching mechanism. Kyprianou and Palau [21] also

found that immigration happens when particle jumps (they call this immigration jump immigration),

which corresponds to our switching-caused immigration.

1.2 Model: Multitype superdiffusions

For integer K > 2, a K-type superdiffusion is defined as follows. Let S := {1, 2, . . . ,K} be the set of

types. For each k ∈ S, Lk is a second order elliptic differential operator of divergence form

Lk =

d∑
i,j=1

∂

∂xi

(
akij

∂

∂xj

)
on Rd, (1.2)

with Ak(x) = (akij(x))16i,j6d being a symmetric matrix-valued function on Rd that is uniformly elliptic

and bounded:

Λ1|v|2 6
d∑

i,j=1

aki,j(x)vivj 6 Λ2|v|2 for all v ∈ Rd and x ∈ Rd

for some positive constants 0 < Λ1 6 Λ2 < ∞, where akij(x) ∈ C2,γ(Rd), 1 6 i, j 6 d for some γ ∈ (0, 1).

Throughout this paper, for i = 1, 2, . . . , Ci,γ(Rd) stands for the space of i times continuously differentiable

functions with all their ith order derivatives belonging to Cγ(Rd), the space of γ-Hölder continuous

functions on Rd.

Suppose that for each i ∈ S, ξi := {ξit, t > 0;Πi
x, x ∈ Rd} is a diffusion process on Rd with generator Li,

independent to each other. In this paper, we always assume that D is a domain of finite Lebesgue measure

in Rd. For x ∈ D, denote by ξi,D := {ξi,Dt , t > 0;Πi
x, x ∈ D} the subprocess of ξi killed upon exiting D,

i.e.,

ξi,Dt =

{
ξit, if t < τ iD,

∂, if t > τ iD,
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where τ iD = inf{t > 0; ξit /∈ D} is the first exit time of D and ∂ is a cemetery point.

Let M1(S) denote the set of all probability measures on S, and MF (D×S) denote the space of finite

measures on D × S. For any measurable set E, we use Bb(E) (resp. B+
b (E)) to denote the family of

bounded (resp. bounded positive) B(E)-measurable functions on E. Any function f onD is automatically

extended to D∂ := D ∪ {∂} by setting f(∂) = 0. Similarly, any function f on D × S is automatically

extended to D∂ ×S by setting f(∂, i) = 0, i ∈ S. If f(t, x, i) is a function on [0,+∞)×D×S, we say f is

locally bounded if supt∈[0,T ] sup(x,i)∈D×S |f(t, x, i)| < +∞ for every finite T > 0. For a function f(s, x, i)

defined on [0,+∞)×D × S and a number t > 0, we denote by ft(·) the function (x, i) 7→ f(t, x, i). For

convenience we use the following convention throughout this paper: For any probability measure P, we

also use P to denote the expectation with respect to P. When there is only one probability measure

involved, we sometimes also use E to denote the expectation with respect to that measure.

We consider a multitype superdiffusion {χt, t > 0} on D, which is a strong Markov process taking

values in MF (D × S). We can represent χt by (χ1
t , . . . , χ

K
t ) with χi

t ∈ MF (D) for 1 6 i 6 K. For

f ∈ B+
b (D × S), we often use the convention

f(x) = (f(x, 1), . . . , f(x,K)) = (f1(x), . . . , fK(x)), x ∈ D,

and ⟨f, χt⟩ =
∑K

j=1⟨fj , χ
j
t ⟩ . Suppose that F (x, i; du) is a kernel from D×S to (0,∞) such that, for each

i ∈ S, the function

m(x, i) :=

∫ ∞

0

uF (x, i; du)

is bounded on D. Let n be a bounded Borel function on D × S such that n(x, i) > m(x, i) for every

(x, i) ∈ D× S, and p
(i)
j (x), i, j ∈ S, be non-negative Borel functions on D with

∑K
j=1 p

(i)
j (x) = 1. Define

π(x, i; ·) =
K∑
j=1

p
(i)
j (x)δ(x,j)(·),

where δ(x,j) denotes the unit mass at (x, j). Then π(x, i; ·) is a Markov kernel on D × S. For any

f ∈ B+
b (D × S), we write π(x, i; f) =

∑K
j=1 p

(i)
j (x)fj(x). Define

ζ(x, i; f) = n(x, i)π(x, i; f) +

∫ ∞

0

(1− e−uπ(x,i;f) − uπ(x, i; f))F (x, i; du).

Note that we can rewrite ζ(x, i; f) as

ζ(x, i; f) = ñ(x, i)π(x, i; f) +

∫ ∞

0

(1− e−uπ(x,i;f))F (x, i; du),

where

ñ(x, i) := n(x, i)−m(x, i) > 0. (1.3)

ζ(x, k; f) serves as the non-local branching mechanism, which is a special form of [8, (3.17)] with d

(corresponding to n in the present paper) and n (corresponding to F in the present paper) independent

of π, andG(x, i; dπ) being the unit mass at some π(x, i; ·) ∈ M1(S), i.e., the non-locally displaced offspring

born at (x, i) ∈ D × S choose their types independently according to the (non-random) distribution

π(x, i; ·). Suppose b(x, i) ∈ B+
b (D × S). Put

ψ(x, i; f) = b(x, i)(fi(x)− ζ(x, i; f)), (x, i) ∈ D × S, f ∈ B+
b (D × S). (1.4)

Without loss of generality, we suppose that p
(i)
i (x) = 0 for all (x, i) ∈ D × S, which means that ψ is a

purely non-local branching mechanism. The Laplace-functional of χ is given by

Pµ exp⟨−f, χt⟩ = exp⟨−uft (·), µ⟩, (1.5)
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where uft (x, i) is the unique locally bounded positive solution to the evolution equation

uft (x, i) + Πi
x

[ ∫ t

0

ψ(ξi,Ds , i;uft−s)ds

]
= Πi

xfi(ξ
i,D
t ), for t > 0, (1.6)

where we use the convention that uft (x) = (uft (x, 1), . . . , u
f
t (x,K)). This process is called an

((L1, . . .LK), ψ)-multitype superdiffusion in D. It is well known (see, e.g., [14]) that for any non-negative

bounded function f on D×S, the uft (x, i) in (1.6) is a locally bounded positive solution to the following

system of partial differential equations: for each i ∈ S,
∂uf (t, x, i)

∂t
= Li(t, x, i)− ψ(x, i;uft ), (t, x) ∈ (0,∞)×D,

uf (0, x, i) = fi(x), x ∈ D,

uf (t, x, i) = 0, (t, x) ∈ (0,∞)× ∂D.

(1.7)

Multitype superdiffusions can be obtained as a scaling limit of a sequence of multitype branching

diffusions (see [8] for details). The multitype superdiffusion χ considered in this paper are the scaling

limits of multitype branching diffusions whose types can change only at branching times.

Define

ril(x) = n(x, i)p
(i)
l (x), x ∈ D, i, l ∈ S. (1.8)

Let v(t, x, i) = Pδ(x,i)
⟨f, χt⟩. Using (1.5) and (1.6), we see that for all (t, x, i) ∈ (0,∞)×D × S,

vt(x, i) = Πi
xfi(ξ

i,D
t ) + Πi

x

∫ t

0

b(ξs, i)

( K∑
l=1

ril(ξ
i,D
s )vt−s(ξ

i,D
s , l)− vt−s(ξ

i,D
s , i)

)
ds. (1.9)

Then v(t, x, i) is the unique locally bounded solution to the following linear system (see, e.g., [14]): for

each i ∈ S,
∂v(t, x, i)

∂t
= Liv(t, x, i) + b(x, i)

K∑
l=1

(ril(x)− δil)v(t, x, l), (t, x) ∈ (0,∞)×D,

v(0, x, i) = fi(x), x ∈ D,

v(t, x, i) = 0, (t, x) ∈ (0,∞)× ∂D.

(1.10)

Letting v(t, x) = (v(t, x, 1), . . . , v(t, x,K))T, we can rewrite the partial differential equations in (1.10) as

∂

∂t
v(t, x) = Lv(t, x) +B(x) · (R(x)− I)v(t, x), (1.11)

where

L =


L1 0 · · · 0

0 L2 · · · 0
...

...
. . .

...

0 0 · · · LK

 ,

B(x) =


b(x, 1) 0 · · · 0

0 b(x, 2) · · · 0
...

...
. . .

...

0 0 · · · b(x,K)


and

R(x) =


r11(x) r12(x) · · · r1d(x)

r21(x) r22(x) · · · r2d(x)
...

...
. . .

...

rK1(x) rK2(x) · · · rKK(x)

 .
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In this paper we assume that B(x) ·R(x) is symmetric, i.e.,

b(x, i)n(x, i)p
(i)
j (x) = b(x, j)n(x, j)p

(j)
i (x), for all i, j ∈ S, x ∈ D. (1.12)

We remark that we assume the symmetry of B(x) ·R(x) and the symmetry of the operators Lk (i.e., Lk is

given by the divergence form (1.2)) for simplicity. If the Lk’s are of non-divergence form and B(x) ·R(x)
is not symmetric, we can use the intrinsic ultracontractivity introduced in [17].

Note that

R(x)− I = R(x)−N(x) + (N(x)− I), (1.13)

where

N(x) = diag(n(x, 1), . . . , n(x,K)), x ∈ D.

Then by (1.8) and (1.13),

B(x) · (R(x)− I) = B̂(x) · (P (x)− I) +B(x)(N(x)− I), (1.14)

where

B̂(x) = diag(b(x, 1)n(x, 1), . . . , b(x,K)n(x,K))

and

P (x) = (pij(x))i,j∈S , pij(x) = p
(i)
j (x).

Put Q(x) = (qij(x))i,j∈S = B̂(x) · (P (x) − I). We assume that the matrix Q is irreducible on D in the

sense that for any two distinct k, l ∈ S, there exist k0, k1, . . . , kr ∈ S with ki ̸= ki+1, k0 = k, kr = l such

that {x ∈ D : qkiki+1(x) > 0} has positive Lebesgue measure for each 0 6 i 6 r− 1. Let {(Xt, Yt), t > 0}
be a switched diffusion with generator A := L+Q(x) killed upon exiting from D × S, and Π(x,i) be its

law starting from (x, i). {(Xt, Yt), t > 0} is a symmetric Markov process on D×S with respect to dx×di,
the product of the Lebesgue measure on D and the counting measure on S.

Define

ζ1(x, i; f) = n(x, i)π(x, i; f) = n(x, i)
K∑
i=1

p
(i)
l (x)fl(x) =

K∑
l=1

ril(x)fl(x) (1.15)

and

ζ2(x, i; f) =

∫ ∞

0

(1− e−uπ(x,i;f) − uπ(x, i; f))F (x, i; du). (1.16)

Then

ζ(x, i; f) = ζ1(x, i; f) + ζ2(x, i; f). (1.17)

Letting

uf (t, x) = (uf (t, x, 1), . . . , uf (t, x,K))T and ζ2(x, f) = (ζ2(x, 1; f), . . . , ζ2(x,K; f))T,

in view of (1.4) we can rewrite the partial differential equation in (1.7) as

∂

∂t
uf (t, x) = Luf (t, x) +B(x) · (R(x)− I)uf (t, x) +B(x) · ζ2(x, uft ), (1.18)

which, by (1.13), is equivalent to

∂

∂t
uf (t, x) = Luf (t, x) + B̂(x) · (P (x)− I)uf (t, x)

+B(x) · [(N(x)− I)uf (t, x) + ζ2(x, u
f
t )]. (1.19)

For f ∈ B+
b (Rd × S), define

ψ̂(x, i; f) := −b(x, i)n(x, i)fi(x) + b(x, i)(fi(x)− ζ2(x, i; f)). (1.20)
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Then applying the strong Markov property of the switched diffusion process (X,Y ) at its first switching

time and using the approach from [5] (see in particular [5, p. 296, Proposition 2.2 and Theorem 2.5])

and [14], one can verify using (1.19) that uft (x, i) satisfies

uft (x, i)+ Π(x,i)

[ ∫ t

0

ψ̂(Xs, Ys;u
f
t−s)ds

]
= Π(x,i)f(Xt, Yt), t > 0. (1.21)

This means that {χt, t > 0} can be viewed as a superprocess with the switched diffusion (Xt, Yt) as its

spatial motion on the space D × S and ψ̂(x, i; ·) as its (non-local) branching mechanism. See [10, 11] for

a definition of superprocesses with general non-local branching mechanisms.

2 Main result

It follows from [5, Theorem 5.3] that the switched diffusion {(Xt, Yt), t > 0} in D has a transition density

p(t, (x, k), (y, l)), which is positive for all x, y ∈ D and k, l ∈ S. Furthermore, for any k, l ∈ S and t > 0,

(x, y) 7→ p(t, (x, k), (y, l)) is continuous. Let {Pt : t > 0} be the transition semigroup of {(Xt, Yt), t > 0}.
For any t > 0, Pt is a compact self-adjoint operator. Let {eνkt : k = 1, 2, . . .} be all the eigenvalues

of Pt arranged in decreasing order, each repeated according to its multiplicity. Then limk→∞ νk = −∞
and the corresponding eigenfunctions {φk} can be chosen so that they form an orthonormal basis of

L2(D× S, dx× di). All the eigenfunctions φk are continuous. The eigenspace corresponding to eν1t is of

dimension 1 and φ1 can be chosen to be strictly positive.

Let {PA+B·(N−I)
t , t > 0} be the Feynman-Kac semigroup defined by

P
A+B·(N−I)
t f(x, i) := Π(x,i)

[
f(Xt, Yt) exp

(∫ t

0

b(Xs, Ys)(n(Xs, Ys)− 1)ds

)]
.

Then, by (1.13), P
A+B·(N−I)
t f(x, i) is the unique solution to (1.10) and thus

Pδ(x,i)
⟨f, χt⟩ = P

A+B·(N−I)
t f(x, i). (2.1)

Under the assumptions above, P
A+B·(N−I)
t admits a density p̃(t, (x, i), (y, j)), which is jointly contin-

uous in (x, y) ∈ D ×D, such that

P
A+B·(N−I)
t f(x, i) =

∑
j∈S

∫
D

p̃(t, (x, i), (y, j))f(y, j)dy,

for every f ∈ B+
b (D × S). {PA+B·(D−I)

t , t > 0} can be extended to a strongly continuous semigroup on

L2(D × S, dx× di). The semigroup {PA+B·(N−I)
t , t > 0} is symmetric in L2(D × S, dx× di), i.e.,∑

i∈S

∫
D

f(x, i)P
A+B·(N−I)
t g(x, i)dx =

∑
i∈S

∫
D

g(x, i)P
A+B·(N−I)
t f(x, i)dx

for f, g ∈ L2(D×S, dx×di). For any t > 0, P
A+B·(N−I)
t is a compact self-adjoint operator. The generator

of the semigroup {PA+B·(N−I)
t } is A+B · (N − I) = L+B · (R− I).

Let {eλkt : k = 1, 2, . . .} be all the eigenvalues of P
A+B·(N−I)
t arranged in decreasing order, each

repeated according to its multiplicity. Then limk→∞ λk = −∞ and the corresponding eigenfunctions {ϕk}
can be chosen so that they form an orthonormal basis of L2(D×S, dx×di). All the eigenfunctions ϕk are

continuous. The eigenspace corresponding to eλ1t is of dimension 1 and ϕ1 can be chosen to be strictly

positive. For simplicity, in the remainder of this paper, we will denote ϕ1 as ϕ.

Throughout this paper we assume that {χt, t > 0} is supercritical and ϕ is bounded on D× S, i.e., we

assume the following assumption.

Assumption 2.1. λ1 > 0 and its corresponding positive eigenfunction ϕ is bounded.
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Define

Rϕ(x) := (rϕij(x)), rϕij(x) := rij(x)
ϕ(x, j)

ϕ(x, i)
= n(x, i)

p
(i)
j (x)ϕ(x, j)

ϕ(x, i)
(2.2)

and

π(ϕ)(x, i) := π(x, i;ϕ) =
K∑
j=1

p
(i)
j (x)ϕ(x, j), (x, i) ∈ D × S. (2.3)

Let {Et; t > 0} be the minimal augmented filtration generated by the switched diffusion (X,Y ) in D.

Define a measure Πϕ
(x,i) by

dΠϕ
(x,i)

dΠ(x,i)

∣∣∣∣
Et

= e−λ1t
ϕ(Xt, Yt)

ϕ(x, i)
exp

(∫ t

0

b(Xs, Ys)(n(Xs, Ys)− 1)ds

)
. (2.4)

Then {(X,Y ),Πϕ
(x,i)} is a conservative Markov process which is symmetric with respect to the measure

ϕ2(x, i)dx × di. The process {(X,Y ),Πϕ
(x,i)} has a transition density pϕ(t, (x, i), (y, j)) with respect to

dy × dj given by

pϕ(t, (x, i), (y, j)) =
e−λ1tϕ(y, j)

ϕ(x, i)
p̃(t, (x, i), (y, j)), (x, i) ∈ D × S.

Let {Pϕ
t : t > 0} be the transition semigroup of (X,Y ) under Πϕ

(x,i). Then ϕ2 is the unique invariant

probability density of {Pϕ
t : t > 0}, i.e., for any f ∈ B+

b (D × S),

K∑
i=1

∫
D

ϕ2(x, i)Pϕ
t f(x, i)dx =

K∑
i=1

∫
D

f(x, i)ϕ(x, i)2dx.

Since the infinitesimal generator of {(X,Y ),Π(x,i)} is L+ B̂(x) · (P (x)− I) with zero Dirichlet boundary

condition on ∂D × S, it follows from [25, Theorem 4.2] that the generator of {(X,Y ),Πϕ
(x,i)} is

1

ϕ
[L(uϕ) + B̂(x) · (P (x)− I)(uϕ)− u(L(ϕ) + B̂(x) · (P (x)− I)ϕ)]

=
1

ϕ
[L(uϕ) + B̂(x) · (P (x)− I)(uϕ) +B(x) · (N(x)− I)(uϕ)− λ1uϕ]

=
1

ϕ
[L(uϕ) +B(x) · (R(x)− I)(uϕ)]− λ1u

= Lϕu+B(x) · (Rϕ(x)− I)u− λ1u,

where in the first equality above we used the fact that ϕ is an eigenfunction of P
A+B·(N−I)
t and (1.14).

Define

p̃ij(x) =
ϕ(x, i)

n(x, i)π(x, i;ϕ)
rϕij(x) =

p
(i)
j (x)ϕ(x, j)

π(x, i;ϕ)
, i, j ∈ S, x ∈ D

and

P̃ (x) = (p̃ij(x))i,j∈S .

Note that

B(x) · (Rϕ − I)− λ1 = diag

(
bnπ(ϕ)

ϕ
(x, 1), . . . ,

bnπ(ϕ)

ϕ
(x,K)

)
(P̃ (x)− I)

+B(x)

[
diag

(
nπ(ϕ)

ϕ
(x, 1), . . . ,

nπ(ϕ)

ϕ
(x,K)

)
− I

]
− λ1

= diag

(
bnπ(ϕ)

ϕ
(x, 1), . . . ,

bnπ(ϕ)

ϕ
(x,K)

)
(P̃ (x)− I).
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Thus the generator of {(X,Y ),Πϕ
(x,i)} is

Lϕ + diag

(
bnπ(ϕ)

ϕ
(x, 1), . . . ,

bnπ(ϕ)

ϕ
(x,K)

)
(P̃ (x)− I), (2.5)

which is the generator of a new switched diffusion. Here,

Lϕ =


Lϕ(·,1)
1 0 · · · 0

0 Lϕ(·,2)
2 · · · 0

...
...

. . .
...

0 0 · · · Lϕ(·,K)
K


with

Lϕ(·,k)
k v(x) :=

1

ϕ(x, k)
Lk(ϕ(x, k)v(x)).

For any measure µ on D × S such that ⟨ϕ, µ⟩ <∞, define

Πϕ
ϕµ =

1

⟨ϕ, µ⟩

∫
ϕ(x, i)Πϕ

(x,i)dµ.

By (2.5), the jumping intensity of (X,Y ) under Πϕ
ϕµ is bnπ(ϕ)

ϕ (x, i) at (x, i) ∈ D × S.

Throughout this paper, we assume the following assumption.

Assumption 2.2. The semigroup {Pt : t > 0} is intrinsically ultracontractive, i.e., for any t > 0,

there exists ct > 0 such that

p(t, (x, k), (y, l)) 6 ctϕ(x, k)ϕ(y, l), x, y ∈ D, k, l ∈ S.

It follows from [7, Theorem 3.4] that the semigroup {PA+B·(N−I)
t : t > 0} is also intrinsically ultra-

contractive, i.e., for any t > 0, there exists ct > 0 such that

p̃(t, (x, k), (y, l)) 6 ctϕ(x, k)ϕ(y, l), x, y ∈ D, k, l ∈ S.

As a consequence, one can easily show (see, for example, [2]) that for any t0 > 0, there exists c > 0 such

that for all t > t0, ∣∣∣∣e−λ1tp̃(t, (x, k), (y, l))

ϕ(x, k)ϕ(y, l)
− 1

∣∣∣∣ 6 ce(λ2−λ1)t, x, y ∈ D, k, l ∈ S.

Hence for any δ ∈ (0, 1), there exists t0 > 0 such that for all t > t0,∣∣∣∣e−λ1tp̃(t, (x, k), (y, l))

ϕ(x, k)ϕ(y, l)
− 1

∣∣∣∣ 6 δ, x, y ∈ D, k, l ∈ S.

Thus for any f ∈ Bb(D × S), t > t0 and (x, i) ∈ D × S,∣∣∣∣Pϕ
t f(x, i)−

∫
D×S

f(y, j)ϕ(y, j)2dydj

∣∣∣∣ 6 δ

∫
D×S

f(y, j)ϕ(y, j)2dydj. (2.6)

It follows from (2.6) that for any f ∈ B+
b (D × S) ∩ L1(ϕ2(x, i) dx× di), t > t0 and (x, i) ∈ D × S,

(1− δ)

∫
D×S

f(y, j)ϕ(y, j)2dydj 6 Pϕ
t f(x, i) 6 (1 + δ)

∫
D×S

f(y, j)ϕ(y, j)2dydj. (2.7)

Lemma 2.3. Define

Wt(ϕ) := e−λ1t⟨ϕ, χt⟩. (2.8)

Then {Wt(ϕ), t > 0} is a non-negative Pµ-martingale for each nonzero µ ∈ MF (D × S) and therefore

there exists a limit W∞(ϕ) ∈ [0,∞) Pµ-a.s.
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Proof. By the Markov property of χ and (2.1), and using the fact that ϕ is an eigenfunction corre-

sponding to λ1, we get that for any nonzero µ ∈MF (D × S),

Pµ[Wt+s(ϕ) | Ft] =
1

⟨ϕ, µ⟩
e−λ1tPχt [e

−λ1s⟨ϕ, χs⟩]

=
1

⟨ϕ, µ⟩
e−λ1t⟨e−λ1sPA+B·(N−I)

s ϕ, χt⟩

=
1

⟨ϕ, µ⟩
e−λ1t⟨ϕ, χt⟩ =Wt(ϕ).

This proves that {Wt(ϕ), t > 0} is a non-negative Pµ-martingale, so it has an almost sure limit W∞(ϕ) ∈
[0,∞) as t→ ∞.

We define a new kernel Fπ(ϕ)(x, i; dr) from D×S to (0,∞) such that for any non-negative measurable

function f on (0,∞),∫ ∞

0

f(r)Fπ(ϕ)(x, i; dr) =

∫ ∞

0

f(π(x, i;ϕ)r)F (x, i; dr), (x, i) ∈ D × S.

Define

l(x, i) :=

∫ ∞

0

r log+(r)Fπ(ϕ)(x, i; dr). (2.9)

The main result of this paper is the following theorem.

Theorem 2.4. Suppose that {χt; t > 0} is a multitype superdiffusion and that Assumptions 2.1 and 2.2

hold. Assume that µ ∈MF (D×S) is non-trivial. Then W∞(ϕ) is non-degenerate under Pµ if and only if∫
D

ϕ(x, i)b(x, i)l(x, i)dx <∞ for every i ∈ S, (2.10)

where l is defined in (2.9). Moreover, when (2.10) is satisfied, Wt(ϕ) converges toW∞(ϕ) in L1 under Pµ.

Since (2.10) does not depend on µ, it is also equivalent to that W∞(ϕ) is non-degenerate under Pµ for

every non-trivial measure µ ∈MF (D × S).

The proof of this theorem is accomplished by combining the ideas from [24] with the “spine decompo-

sition” of [12, 23]. The new feature here is that we consider a different type of branching mechanisms.

The new type of branching mechanisms considered here is non-local as opposed to the local branching

mechanisms in [12,23]. The non-local branching mechanisms we consider here result in a kind of non-local

immigration, as opposed to the local immigration in [23].

In the next section, we show that when D is a bounded C1,1 domain in Rd, Assumption 2.2 holds.

In Section 4, we give our spine decomposition of the superdiffusion χ under a martingale change of

measure with the help of Poisson point processes. In Section 5, we use this spine decomposition to prove

Theorem 2.4.

3 Intrinsic ultracontractivity

In this section, we show that when D is a bounded C1,1 domain in Rd, Assumption 2.2 holds, i.e., the

semigroup {Pt : t > 0} is intrinsically ultracontractive and the first eigenfunction is bounded.

Throughout this section, we assume that D is a bounded C1,1 domain in Rd. Let p0(t, x, y) be the

transition density of the killed Brownian motion in D. For each i ∈ S, let pi(t, x, y) be the transition

density of ξi,Dt , the process obtained by killing the diffusion with generator Li upon exiting from D.

It is known (see [6]) that there exist positive constants Ci, i = 1, 2, 3, 4, such that for all t ∈ (0, 1],

j = 0, 1, . . . ,K and x, y ∈ D,

pj(t, x, y) > C1

(
δD(x)√

t
∧ 1

)(
δD(y)√

t
∧ 1

)
t−d/2e−

C2|x−y|2
t , (3.1)
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pj(t, x, y) 6 C3

(
δD(x)√

t
∧ 1

)(
δD(y)√

t
∧ 1

)
t−d/2e−

C4|x−y|2
t . (3.2)

Using these we can see that there exists C5 > 0 such that for any t ∈ (0, C4/C2] and x, y ∈ D,

pj(t, x, y) 6 C5p0(C2t/C4, x, y). (3.3)

It follows from [5, Theorem 5.3] that for any x, y ∈ D and k, l ∈ S,

p(t, (x, k), (y, l)) = δklpk(t, x, y)

+
∞∑

n=0

∑
16l1,l2,...,ln6K
l1 ̸=k,ln ̸=l,li ̸=li+1

∫
· · ·

∫
0<t1<t2<···<tn<t

∫
D

· · ·
∫
D

pk(t1, x, y1)qkl1(y1)

× pl1(t2 − t1, y1, y2)ql1l2(y2) · · · qlnl(yn)
× pl(t− tn, yn, y)dyn · · · dy1dtn · · · dt1. (3.4)

Let M > 0 be such that

|qkl(x)| 6M, x ∈ D, k, l ∈ S.

Then it follows from (3.3) and (3.4) that for t ∈ (0, C4/C2], x, y ∈ D and k, l ∈ S,

p(t, (x, k), (y, l)) 6 C5p0(C2t/C4, x, y)

+
∞∑

n=0

(MKC5)
n

∫
· · ·

∫
0<t1<t2<···<tn<t

∫
D

· · ·
∫
D

p0(C2t1/C4, x, y1)

× p0(C2(t2 − t1)/C4, y1, y2) · · · p0(C2(t−tn)/C4, yn, y)dyn · · · dy1dtn · · · dt1

6 C5p0(C2t/C4, x, y) +

∞∑
n=0

(MKC5t)
n

n
p0(C2t/C4, x, y).

Thus there exists t0 ∈ (0, C4/C2) such that for t ∈ (0, t0], x, y ∈ D and k, l ∈ S,

p(t, (x, k), (y, l)) 6 C6p0(C2t/C4, x, y) (3.5)

for some C6 > 0.

Now we prove a similar lower bound. It follows from (3.4) that for any t ∈ (0, 1], x, y ∈ D and k ∈ S,

p(t, (x, k), (y, k)) > pk(t, x, y). (3.6)

Now suppose k ̸= l. Let l0, l1, . . . , ln ∈ S with li ̸= li+1, l0 = k, ln = l such that {x ∈ D : qlili+1(x) > 0}
has positive Lebesgue measure for i = 0, 1, . . . , n− 1. Then it follows from (3.4) that

p(t, (x, k), (y, l)) >
∫

· · ·
∫
0<t1<t2<···<tn<t

∫
D

· · ·
∫
D

pk(t1, x, y1)qkl1(y1)

× pl1(t2 − t1, y1, y2)ql1l2(y2) · · · qlnl(yn)
× pl(t− tn, yn, y)dyn · · · dy1dtn · · · dt1.

Thus it follows from (3.1) that there exists C7 > 0 such that for any t ∈ (0, 1], x, y ∈ D,

p(t, (x, k), (y, l)) > C7

(
δD(x)√

t
∧ 1

)
. (3.7)

Combining (3.6) and (3.7) we get that for any t ∈ (0, 1], x, y ∈ D and k, l ∈ S,

p(t, (x, k), (y, l)) > C8

(
δD(x)√

t
∧ 1

)
(3.8)
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for some C8 > 0.

It follows from (3.5) and (3.8) that there exist positive constants C9 < C10 such that for all (x, k) ∈
D × S,

C9δD(x) 6 ϕ(x, k) 6 C10δD(x).

Combining this with (3.5), and using the semigroup property, we immediately get the intrinsic ultarcon-

tractivity of {Pt : t > 0}. The boundedness of ϕ is an immediate consequence of the display above.

4 Spine decomposition

Let {Ft; t > 0} be the minimal augmented filtration generated by {χt, t > 0}. We define a probability

measure P̃µ by

dP̃µ

dPµ

∣∣∣∣
Ft

=
1

⟨ϕ, µ⟩
Wt(ϕ). (4.1)

The purpose of this section is to give a spine decomposition of {χt, t > 0} under P̃µ. This decomposition

will play an important role in proving Theorem 2.4

The spine decomposition is roughly as follows: Under P̃µ, {χt, t > 0} has the same law as the sum of

the following two independent measured-valued processes: the first process is a copy of χ under Pµ, and

the second process is, roughly speaking, obtained by taking an “immortal particle” that moves according

to the law of {(X,Y ),Πϕ
ϕµ} and spins off pieces of mass that continue to evolve according to the dynamics

of χ.

Define

η(x, i;λ) =

∫ ∞

0

e−uλuF (x, i; du), λ > 0, (x, i) ∈ D × S. (4.2)

We first give a formula for the one-dimensional distribution of χ under P̃µ.

Theorem 4.1. Suppose µ ∈MF (D×S) and g ∈ B+
b (D×S). Let DJ be the set of jump times of (X,Y ).

Then

P̃µ(exp⟨−g, χt⟩)

= Pµ

(
exp⟨−g, χt⟩

)
Πϕ

ϕµ

[
exp

( ∑
s∈DJ ,0<s6t

log

(
η(Xs, Ys;π(Xs, Ys;u

g
t−s))

n(Xs, Ys)
+
ñ(Xs, Ys)

n(Xs, Ys)

))]
, (4.3)

where ugt−s is the unique locally bounded positive solution of (1.6) with f replaced by g.

Proof. By (4.1),

P̃µ(exp⟨−g, χt⟩) =
e−λ1t

⟨ϕ, µ⟩
Pµ(⟨ϕ, χt⟩ exp⟨−g, χt⟩)

=
e−λ1t

⟨ϕ, µ⟩
∂

∂θ
Pµ(exp⟨−g − θϕ, χt⟩) |θ=0

=
e−λ1t

⟨ϕ, µ⟩
∂

∂θ
exp⟨−ug+θϕ

t , µ⟩ |θ=0

=
e−λ1t

⟨ϕ, µ⟩
exp⟨−ugt , µ⟩

⟨
∂

∂θ
ug+θϕ
t

∣∣∣∣
θ=0

, µ

⟩
. (4.4)

Note that exp⟨−ugt , µ⟩ = Pµ exp⟨−g, χt⟩, and ug+θϕ
t is the unique locally bounded positive solution of the

integral equation

ug+θϕ
t (x, i) + Π(x,i)

[ ∫ t

0

ψ̂(Xs, Ys;u
g+θϕ
t−s )ds

]
= Π(x,i)[(g + θϕ)(Xt, Yt)], t > 0.
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Taking derivative with respect to θ on both sides of the above equation, and then letting θ = 0, we have

that vt(x, i) :=
∂
∂θu

g+θϕ
t |θ=0 satisfies

vt(x, i)−Π(x,i)

∫ t

0

b(Xs, Ys)(n(Xs, Ys)− 1)vt−s(Xs, Ys)ds

+Π(x,i)

∫ t

0

b(Xs, Ys)(m(Xs, Ys)− η(Xs, Ys;π(Xs, Ys;u
g
t−s)))

K∑
j=1

p
(Ys)
j (Xs)vt−s(Xs, j)ds

= Π(x,i)[ϕ(Xt, Yt)]. (4.5)

Let

J((x, k), d(y, l)) = δ(x− y)qkl(x)1{k ̸=l}dydl, (x, k) ∈ D × S, (4.6)

where dl stands for the counting measure on S. Then (J((x, k), d(y, l)), t) is a Lévy system of (X,Y ).

Define

F (t− s, (x, i), (y, j)) := log

(
η(x, i;π(x, i;ugt−s)

n(x, i)
− m(x, i)

n(x, i)
+ 1

)
1i̸=j . (4.7)

Clearly, F 6 0. We would like to apply Lemma A.1 with ξ = (X,Y ), q(t− s, (x, i)) = b(x, i)(n(x, i)− 1),

J given by (4.6) and F given by (4.7). Since qij(x), i, j ∈ S, are bounded in D and D has finite Lebesgue

measure, we have sup(x,i)∈D×S J((x, k), D × S) <∞. By Remark A.2(iii), (A.1) and (A.2) are satisfied.

Thus we can apply Lemma A.1 to get

vt(x, i) = Π(x,i)

[
exp

{ ∑
s∈DJ ,0<s6t

log

(
η(Xs, Ys;π(Xs, Ys;u

g
t−s))

n(Xs, Ys)
− m(Xs, Ys)

n(Xs, Ys)
+ 1

)

+

∫ t

0

b(Xs, Ys)(n(Xs, Ys)− 1)ds

}
ϕ(Xt, Yt)

]
= eλ1tϕ(x, i)Πϕ

(x,i)

[
exp

{ ∑
s∈DJ ,0<s6t

log

(
η(Xs, Ys;π(Xs, Ys;u

g
t−s))

n(Xs, Ys)
+
ñ(Xs, Ys)

n(Xs, Ys)

)}]
. (4.8)

Combining (4.4) and (4.8), we obtain

P̃µ(exp⟨−g, χt⟩) = Pµ(exp⟨−g, χt⟩)

×Πϕ
ϕµ

[
exp

{ ∑
s∈DJ ,0<s6t

log

(
η(Xs, Ys;π(Xs, Ys;u

g
t−s))

n(Xs, Ys)
+
ñ(Xs, Ys)

n(Xs, Ys)

)}]
.

This completes the proof.

Define

F̃ (x, i; du) =
1

n(x, i)
(ñ(x, i)δ0 + I(0,∞)uF (x, i; du)). (4.9)

Then, by (1.3) and (4.2), F̃ (x, i; ·) is a probability measure on [0,∞) for any (x, i) ∈ D × S and

η(x, i;λ)

n(x, i)
+
ñ(x, i)

n(x, i)
=

∫
[0,∞)

e−uλF̃ (x, i; du) for every λ > 0.

Thus we may rewrite (4.3) as

P̃µ(exp⟨−g, χt⟩)

= Pµ(exp⟨−g, χt⟩) ·Πϕ
ϕµ

[ ∏
s∈DJ ,0<s6t

∫ ∞

0

exp(−uπ(Xs, Ys;u
g
t−s))F̃ (Xs, Ys; du)

]
. (4.10)

From (4.10) we see that the superdiffusion {χt, t > 0; P̃µ} can be decomposed into two independent

parts. The first part is a copy of the original superdiffusion and the second part is an immigration process.
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To describe the second part precisely, we need to introduce another measure-valued process {χ̂t, t > 0}.
Now we construct the measure-valued process {χ̂t, t > 0} as follows:

(i) Suppose that (X̂, Ŷ ) = {(X̂t, Ŷt), t > 0} is defined on some probability space (Ω,Pµ,ϕ), and (X̂, Ŷ )

has the same law as ((X,Y ); Πϕ
ϕµ). (X̂, Ŷ ) serves as the spine or the immortal particle, which visits every

part of D × S for large times since it is an ergodic process. Let DJ be the set of jump points of (X̂, Ŷ ).

DJ is countable.

(ii) Conditioned on s ∈ DJ , a measure-valued process χs started at msδ(X̂s,l)
(l ∈ S) is immigrated at

the space position X̂s and the new immigrated particles choose their types independently according to

the (nonrandom) distribution π(x, i; ·). We suppose {ms; s ∈ DJ} is also defined on (Ω,Pµ,ϕ) such that,

given s ∈ DJ and (X̂s, Ŷs), the distribution of ms is F̃ (X̂s, Ŷs; dr).

(iii) Once the particles are in the system, they begin to move and branch according to the ((X,Y ),

ψ̂(x, i, ·))-superprocess independently.
We use (χs

t , t > s) to denote the measure-valued process generated by the mass immigrated at time s

and spatial position X̂s. Conditional on {(X̂t, Ŷt), t > 0;ms, s ∈ DJ}, {χs
t , t > s} for different s ∈ DJ are

independent ((X,Y ), ψ̂(x, i, ·))-superprocesses. Set

χ̂t =
∑

s∈(0,t]∩DJ

χs
t . (4.11)

The Laplace functional of χ̂t is described in the following proposition.

Proposition 4.2. The Laplace functional of χ̂t under Pµ,ϕ is equal to

Πϕ
ϕµ

{ ∏
s∈(0,t]∩DJ

∫
[0,∞)

exp(−rπ(Xs, Ys;u
g
t−s))F̃ (Xs, Ys; dr)

}
.

Proof. For any g ∈ B+
b (D × S), using (1.5), we have

Pµ,ϕ[exp(−⟨g, χ̂t⟩)] = Pµ,ϕ

{
Pµ,ϕ

[
exp

(
−

∑
σ∈(0,t]∩DJ

⟨g, χσ
t ⟩
) ∣∣∣∣σ((X̂, Ŷ ),m)

]}

= Pµ,ϕ

[ ∏
s∈(0,t]∩DJ

exp(−msπ(X̂s, Ŷs, u
g
t−s))

]

= Pµ,ϕ

{
Pµ,ϕ

[ ∏
s∈(0,t]∩DJ

exp(−msπ(X̂s, Ŷs, u
g
t−s))

∣∣∣∣σ((X̂, Ŷ ))

]}

= Πϕ
ϕµ

{ ∏
s∈(0,t]∩DJ

∫
[0,∞)

exp(−rπ(Xs, Ys, u
g
t−s))F̃ (Xs, Ys; dr)

}
.

This completes the proof.

Without loss of generality, we suppose {χt, t > 0; Pµ,ϕ} is a multitype superdiffusion defined on

(Ω,Pµ,ϕ), having the same law as {χt, t > 0; Pµ} and independent of χ̂ = {χ̂t, t > 0}. Proposition 4.2

says that we have the following decomposition of {χt, t > 0} under P̃µ: for any t > 0,

(χt, P̃µ) = (χt + χ̂t, Pµ,ϕ) in distribution. (4.12)

Since {χt, t > 0; P̃µ} is generated from the time-homogeneous Markov process {χt, t > 0; Pµ} via a

non-negative martingale multiplicative functional, {χt, t > 0; P̃µ} is also a time-homogeneous Markov

process (see [27, Section 62]). From the construction of {χ̂t, t > 0; Pµ,ϕ} we see that {χ̂t, t > 0; Pµ,ϕ} is a

time-homogeneous Markov process. For a rigorous proof of {χ̂t, t > 0; Pµ,ϕ} being a time-homogeneous

Markov process, we refer our readers to [13]. Although the paper [13] dealt with the representation of

the superprocess conditioned to stay alive forever, one can check that the arguments there work in our

case. Therefore, (4.12) implies the following theorem.

Theorem 4.3. It holds that

{χt, t > 0; P̃µ} = {χt + χ̂t, t > 0; Pµ,ϕ} in law. (4.13)



1452 Chen Z-Q et al. Sci China Math August 2019 Vol. 62 No. 8

5 L logL criterion

In this section, we give a proof of the main result of this paper, Theorem 2.4. First, we make some

preparations.

Proposition 5.1. Let h(x, i) = 1
ϕ(x,i)Pδ(x,i)

(W∞(ϕ)). Then

(i) h is a non-negative invariant function for the process ((X,Y ); Πϕ
(x,i)).

(ii) Either W∞ is non-degenerate under Pµ for all nonzero µ ∈ MF (D × S) or W∞ is degenerate

under Pµ for all µ ∈MF (D × S).

Proof. (i) By the Markov property of χ,

h(x, i) =
1

ϕ(x, i)
Pδ(x,i)

[
lim
s→∞

⟨e−λ1(t+s)ϕ, χt+s⟩
]

=
e−λ1t

ϕ(x, i)
Pδ(x,i)

[
Pχt

(
lim
s→∞

⟨e−λ1sϕ, χs⟩
)]

=
e−λ1t

ϕ(x, i)
Pδ(x,i)

[Pχt(W∞)]

=
e−λ1t

ϕ(x, i)
Pδ(x,i)

[⟨(hϕ), χt⟩]

=
e−λ1t

ϕ(x, i)
P

A+B·(N−I)
t (hϕ), x ∈ D.

By the definition of Πϕ
(x,i), we get that h(x, i) = Πϕ

(x,i)[h(Xt, Yt)]. So h is an invariant function of the

process ((X,Y ); Πϕ
(x,i)). The non-negativity of h is obvious.

(ii) Since h is non-negative and invariant, if there exists (x0, i) ∈ D × S such that h(x0, i) = 0, then

h ≡ 0 on D × S. Since Pµ(W∞(ϕ)) = ⟨hϕ, µ⟩, we then have Pµ(W∞(ϕ)) = 0 for any µ ∈MF (D × S). If

h > 0 on D × S, then Pµ(W∞(ϕ)) > 0 for any nonzero µ ∈MF (D × S).

Using Proposition 5.1 we see that, to prove Theorem 2.4, we only need to consider the case dµ =

ϕ(x, i)dxdi, where di is the counting measure on S. So in the remaining part of this paper we always

suppose that dµ = ϕ(x, i)dxdi.

Recall from (2.3) and (2.9) that

π(x, i;ϕ) =
K∑
j=1

p
(i)
j (x)ϕ(x, j), (x, i) ∈ D × S

and

l(x, i) =

∫ ∞

0

r log+(r)Fπ(ϕ)(x, i; dr) =

∫ ∞

0

rπ(x, i, ϕ) log+(rπ(x, i, ϕ))F (x, i; dr).

Lemma 5.2. Let (mt; t ∈ DJ) be the Poisson point process constructed in Section 4, given the path

of (X̂s, Ŷs), s > 0. Define

σ0 = 0, σi = inf{s ∈ DJ ; s > σi−1,msπ(X̂s, Ŷs;ϕ) > 1}, ηi = mσi , i = 1, 2, . . .

(i) If
∑K

i=1

∫
D
ϕ(y, i)b(y, i)l(y, i)dy <∞, then∑

s∈DJ

e−λ1smsπ(X̂s, Ŷs;ϕ) <∞, Pµ,ϕ-a.s. (5.1)

(ii) If
∑K

i=1

∫
D
ϕ(y, i)b(y, i)l(y, i)dy = ∞, then

lim sup
i→∞

e−λ1σiηiπ(X̂σi , Ŷσi ;ϕ) = ∞, Pµ,ϕ-a.s. (5.2)
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Proof. Since ϕ is bounded from above, σi is strictly increasing with respect to i.

(i) Suppose that
∑K

i=1

∫
D
ϕ(y, i)b(y, i)l(y, i)dy <∞. For any ε > 0, we write the sum in (5.1) as∑

s∈DJ

e−λ1smsπ(X̂s, Ŷs;ϕ) =
∑
s∈DJ

e−λ1smsπ(X̂s, Ŷs;ϕ)1{msπ(X̂s,Ŷs;ϕ)6eεs}

+
∑
s∈DJ

e−λ1smsπ(X̂s, Ŷs;ϕ)1{msπ(X̂s,Ŷs;ϕ)>eεs}

=
∑
s∈DJ

e−λ1smsπ(X̂s, Ŷs;ϕ)1{π(X̂s,Ŷs;ϕ)ms6eεs}

+
∞∑
i=1

e−λ1σiηiπ(X̂σi , Ŷσi ;ϕ)1{ηiπ(X̂σi
,Ŷσi

;ϕ)>eεσi}

=: I + II. (5.3)

Note that the jumping intensity of {(X̂, Ŷ ),Pµ,ϕ} is bnπ(ϕ)
ϕ (x, i) at (x, i) ∈ D × S. Thus

∞∑
i=1

Pµ,ϕ(ηiπ(X̂σi , Ŷσi ;ϕ) > eεσi)

=
∞∑
i=1

Pµ,ϕ[Pµ,ϕ(ηiπ(X̂σi , Ŷσi ;ϕ) > eεσi |σ(X̂, Ŷ ))]

= Pµ,ϕ

[
Pµ,ϕ

( ∞∑
i=1

1{ηi>eεσiπ(X̂σi
,Ŷσi

;ϕ)−1}

∣∣∣∣σ(X̂, Ŷ )

)]
= Πϕ

ϕµ

[ ∫ ∞

0

(bnπ(ϕ)/ϕ)(Xs, Ys)

(∫ ∞

π(Xs,Ys;ϕ)−1eεs
F̃ (Xs, Ys; dr)

)
ds

]
.

Recall that under Πϕ
ϕµ, (X,Y ) starts at the invariant measure ϕ2(x, i)dxdi. By the definition of F̃ given

in (4.9), we get

∞∑
i=1

Pµ,ϕ(ηiπ(Xσi , Yσi ;ϕ) > eεσi)

=

∫ ∞

0

ds
K∑
j=1

∫
D

dy(bϕ)(y, j)

∫ ∞

π(y,j;ϕ)−1eεs
π(y, j;ϕ)r F (y, j; dr)

=

K∑
j=1

∫
D

(bϕ)(y, j)dy

∫ ∞

π(y,j;ϕ)−1

π(y, j;ϕ)r F (y, j; dr)

∫ log(rπ(y,j;ϕ))
ε

0

ds

= ε−1
K∑
j=1

∫
D

(bϕ)(y, j)l(y, j)dy.

By the assumption that
∑K

j=1

∫
D
(bϕ)(y, j)l(y, j)dy <∞ and the Borel-Cantelli lemma, we get

Pµ,ϕ(ηiπ(X̂σi , Ŷσi ;ϕ) > eεσi i.o.) = 0 (5.4)

for all ε > 0, which implies that

II <∞, Pµ,ϕ-a.s. (5.5)

Meanwhile for ε < λ1,

Pµ,ϕI = Pµ,ϕ

[ ∑
s∈DJ

e−λ1smsπ(X̂s, Ŷs;ϕ)1{ms6eεsπ(X̂s,Ŷs;ϕ)−1}

]

= Πϕ
ϕµ

∫ ∞

0

dte−λ1t

∫ π(Xt,Yt;ϕ)
−1eεt

0

bnπ(ϕ)

ϕ
(Xt, Yt)π(Xt, Yt;ϕ)rF̃ (Xt, Yt; dr)
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6 Πϕ
ϕµ

∫ ∞

0

dte−(λ1−ε)t

∫ ∞

0

bπ(ϕ)

ϕ
(Xt, Yt)rF (Xt, Yt; dr),

where for the inequality above we used the fact that r 6 π(Xt, Yt, ϕ)
−1eεt implies that rπ(Xt, Yt, ϕ) 6 eεt.

By the assumption that sup(x,i)∈D×S

∫∞
0
rF (x, i, dr) <∞, we have

Pµ,ϕI 6 1

λ1 − ε

K∑
i=1

∫
D

b(y, i)π(y, i;ϕ)ϕ(y, i)

∫ ∞

0

rF (y, i, dr)dy

6 1

λ1 − ε

∥∥∥∥∫ ∞

0

rF (y, i, dr)

∥∥∥∥
∞
∥b∥∞ <∞.

Thus

I <∞, Pµ,ϕ-a.s. (5.6)

Combining (5.3), (5.5) and (5.6), we obtain (5.1).

(ii) Next, we assume
∑K

i=1

∫
D
(bϕ)(y, i)l(y, i)dy = ∞. To establish (5.2), it suffices to show that for

any L > 0,

lim sup
i→∞

e−λ1σiηiπ(X̂σi , Ŷσi ;ϕ) > L, Pµ,ϕ-a.s. (5.7)

Put L0 := 1 ∨ (max(x,i)∈D×S ϕ(x, i)). Then for L > L0,

L inf
(x,i)∈D×S

ϕ(x, i)−1 > 1.

Note that for any T ∈ (0,∞), conditional on σ(X̂, Ŷ ),

♯{i : σi ∈ (0, T ]; ηi > Lπ(X̂σi , Ŷσi ;ϕ)
−1eλ1σi}

is a Poisson random variable with parameter∫ T

0

dt(bπ(ϕ)/ϕ)(X̂t, Ŷt)

∫ ∞

Lπ(X̂t,Ŷt;ϕ)−1eλ1t

rF (X̂t, Ŷt; dr).

Since (X̂, Ŷ ; Pµ,ϕ) has the same law as (X,Y ; Πϕ
µϕ), we have

Pµ,ϕ

∫ T

0

dt
bπ(ϕ)

ϕ
(X̂t, Ŷt)

∫ ∞

Lπ(X̂t,Ŷt;ϕ)−1eλ1t

rF (X̂t, Ŷt; dr)

=

∫ T

0

dt

K∑
j=1

∫
D

dy(bπ(ϕ)ϕ)(y, j)

∫ ∞

Lπ(y,j;ϕ)−1eλ1t

rF (y, j; dr) <∞.

Thus ∫ T

0

dt
bπ(ϕ)

ϕ
(X̂t, Ŷt)

∫ ∞

Lπ(X̂t,Ŷt;ϕ)−1eλ1t

rF (X̂t, Ŷt; dr) <∞, Pµ,ϕ-a.s.

Consequently, we have

♯{i : σi ∈ (0, T ]; ηi > Lπ(X̂t, Ŷt;ϕ)
−1eλ1σi} <∞, Pµ,ϕ-a.s. (5.8)

So, to prove (5.7), we need to prove∫ ∞

0

dt
bπ(ϕ)

ϕ
(X̂t, Ŷt)

∫ ∞

Lπ(X̂t,Ŷt;ϕ)−1eλ1t

rF (X̂t, Ŷt; dr) = ∞, Pµ,ϕ-a.s.,

which is equivalent to∫ ∞

0

dt
bπ(ϕ)

ϕ
(Xt, Yt)

∫ ∞

Lπ(Xt,Yt;ϕ)−1eλ1t

rF (Xt, Yt; dr) = ∞, Πϕ
ϕµ-a.s. (5.9)
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For this purpose we first prove that

Πϕ
ϕµ

[ ∫ ∞

0

dt
bπ(ϕ)

ϕ
(Xt, Yt)

∫ ∞

Lπ(Xt,Yt;ϕ)−1eλ1t

rF (Xt, Yt; dr)

]
= ∞. (5.10)

Applying Fubini’s theorem, we get

Πϕ
ϕµ

[ ∫ ∞

0

dt
bπ(ϕ)

ϕ
(Xt, Yt)

∫ ∞

Lπ(Xt,Yt;ϕ)−1eλ1t

rF (Xt, Yt; dr)

]

=
K∑
j=1

∫
D

b(y, j)π(y, j;ϕ)ϕ(y, j)dy

∫ ∞

0

dt

∫ ∞

Lπ(y,j;ϕ)−1eλ1t

rF (y, j; dr)

=
K∑
j=1

∫
D

b(y, j)π(y, j;ϕ)ϕ(y, j)dy

∫ ∞

Lπ(y,j;ϕ)−1

rF (y, j; dr)

∫ 1
λ1

log(
rπ(y,j;ϕ)

L )

0

dt

=
K∑
j=1

1

λ1

∫
D

b(y, j)π(y, j;ϕ)ϕ(y, j)dy

∫ ∞

Lπ(y,j;ϕ)−1

(log[rπ(y, j;ϕ)]− logL)rF (y, j; dr)

>
K∑
j=1

1

λ1

∫
D

b(y, j)π(y, j;ϕ)ϕ(y, j)dy

[ ∫ ∞

Lπ(y,j;ϕ)−1

r log[rπ(y, j;ϕ)]F (y, j; dr)−A

]

=
K∑
j=1

1

λ1

∫
D

(bϕ)(y, j)dy

∫ ∞

L

r log r Fπ(ϕ)(y, j; dr)−
K∑
j=1

A

λ1

∫
D

(bϕ)(y, j)π(y, j;ϕ)dy,

for some constant A > 0, where in the inequality we used the facts that Lπ(y, j;ϕ)−1 > 1 for any

(y, j) ∈ D × S and sup(y,j)∈D×S

∫∞
1
rF (y, j; dr) <∞. It is easy to see that

K∑
j=1

A

λ1

∫
D

(bϕ)(y, j)π(y, j;ϕ)dy 6 A

λ1
∥b∥∞ <∞.

Since
K∑
j=1

∫
D

(bϕ)(y, j)dy

∫ ∞

1

r log r Fπ(ϕ)(y, j; dr) = ∞

and

K∑
j=1

∫
D

(bϕ)(y, j)dy

∫ L

1

r log r Fπ(ϕ)(y, j; dr)

6 L logL
K∑
j=1

∫
D

(bϕ)(y, j)F (y, j; [∥ϕ∥−1
∞ ,∞))dy <∞,

we get that
K∑
j=1

∫
D

(bϕ)(y, j)dy

∫ ∞

L

r log r Fπ(ϕ)(y, j; dr) = ∞,

and therefore, (5.10) holds.

By (2.7), there exists a constant t0 > 0 such that for any t > t0 and any f ∈ B+
b (D × S),

1

2

∫
D×S

ϕ2(y, j)f(y, j)dydi 6
∫
D×S

pϕ(t, (x, i), (y, j))f(y, j)dydi

6 2

∫
D×S

ϕ2(y, j)f(y, j)dydi (5.11)



1456 Chen Z-Q et al. Sci China Math August 2019 Vol. 62 No. 8

holds for any (x, i) ∈ D × S. For T > t0, we define

ξT =

∫ T

0

dt
bπ(ϕ)

ϕ
(Xt, Yt)

∫ ∞

Lπ(Xt,Yt;ϕ)−1eλ1t

rF (Xt, Yt; dr)

and

AT =

K∑
j=1

∫ T

t0

dt

∫
D

(bϕ)(y, j)dy

∫ ∞

Leλ1t

rFπ(ϕ)(y, j; dr).

Our goal is to prove (5.9), which is equivalent to

ξ∞ :=

∫ ∞

0

dt
bπ(ϕ)

ϕ
(Xt, Yt)

∫ ∞

Lπ(Xt,Yt;ϕ)−1eλ1t

rF (Xt, Yt; dr) = ∞, Πϕ
ϕµ-a.s. (5.12)

Since {ξ∞ = ∞} is an invariant event, by the ergodic property of {(X,Y ),Πϕ
ϕµ}, it is enough to prove

Πϕ
ϕµ(ξ∞ = ∞) > 0. (5.13)

Note that

Πϕ
ϕµξT =

K∑
j=1

∫ T

0

dt

∫
D

(bϕ)(y, j)dy

∫ ∞

Leλ1t

rFπ(ϕ)(y, j; dr) > AT (5.14)

and

lim
T→∞

Πϕ
ϕµξT > A∞ =

K∑
j=1

∫ ∞

t0

dt

∫
D

(bϕ)(y, j)dy

∫ ∞

Leλ1t

rFπ(ϕ)(y, j; dr)

=

K∑
j=1

∫
D

(bϕ)(y, j)dy

∫ ∞

Leλ1t0

(
1

λ1
(log r − logL)− t0

)
rFπ(ϕ)(y, j; dr)

> c

K∑
j=1

∫
D

(bϕ)(y, j)l(y, j)dy = ∞, (5.15)

where c is a positive constant. By [9, Exercise 1.3.8],

Πϕ
ϕµ

(
ξT > 1

2
Πϕ

ϕµξT

)
>

(Πϕ
ϕµξT )

2

4Πϕ
ϕµ(ξ

2
T )
. (5.16)

If we can prove that there is a constant ĉ > 0 such that for all T > t0,

(Πϕ
ϕµξT )

2

4Πϕ
ϕµ(ξ

2
T )

> ĉ, (5.17)

then by (5.16) we would get

Πϕ
ϕµ

(
ξT > 1

2
Πϕ

ϕµξT

)
> ĉ,

and therefore

Πϕ
ϕµ

(
ξ∞ > 1

2
Πϕ

ϕµξT

)
> Πϕ

ϕµ

(
ξT > 1

2
Πϕ

ϕµξT

)
> ĉ > 0.

Since limT→∞ Πϕ
ϕµξT = ∞ (see (5.15)), the above inequality implies (5.13). Now we only need to

prove (5.17). For this purpose we first estimate Πϕ
ϕµ(ξ

2
T ):

Πϕ
ϕµξ

2
T = Πϕ

ϕµ

∫ T

0

dt

∫ ∞

Lπ(Xt,Yt;ϕ)−1eλ1t

bπ(ϕ)

ϕ
(Xt, Yt)rF (Xt, Yt; dr)
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×
∫ T

0

ds

∫ ∞

Lπ(Xs,Ys;ϕ)−1eλ1s

bπ(ϕ)

ϕ
(Xs, Ys)uF (Xs, Ys; du)

= 2Πϕ
ϕµ

∫ T

0

dt

∫ ∞

Lπ(Xt,Yt;ϕ)−1eλ1t

bπ(ϕ)

ϕ
(Xt, Yt)rF (Xt, Yt; dr)

×
∫ T

t

ds

∫ ∞

Lπ(Xs,Ys;ϕ)−1eλ1s

bπ(ϕ)

ϕ
(X̂s, Ŷs)uF (Xs, Ys; du)

= 2Πϕ
ϕµ

∫ T

0

dt

∫ ∞

Lπ(Xt,Yt;ϕ)−1eλ1t

bπ(ϕ)

ϕ
(Xt, Yt)rF (Xt, Yt; dr)

×
∫ (t+t0)∧T

t

ds

∫ ∞

Lπ(Xs,Ys;ϕ)−1eλ1s

bπ(ϕ)

ϕ
(Xs, Ys)uF (Xs, Ys; du)

+ 2Πϕ
ϕµ

∫ T

0

dt

∫ ∞

Lπ(Xt,Yt;ϕ)−1eλ1t

bπ(ϕ)

ϕ
(Xt, Yt)rF (Xt, Yt; dr)

×
∫ T

(t+t0)∧T

ds

∫ ∞

Lπ(Xs,Ys;ϕ)−1eλ1s

bπ(ϕ)

ϕ
(Xs, Ys)uF (Xs, Ys; du)

=: III + IV,

where

III = 2Πϕ
ϕµ

∫ T

0

dt

∫ ∞

Lπ(Xt,Yt;ϕ)−1eλ1t

bπ(ϕ)

ϕ
(Xt, Yt)rF (Xt, Yt; dr)

×
∫ (t+t0)∧T

t

ds

∫ ∞

Lπ(Xs,Ys;ϕ)−1eλ1s

bπ(ϕ)

ϕ
(Xs, Ys)uF (Xs, Ys; du)

and

IV = 2Πϕ
ϕµ

∫ T

0

dt

∫ ∞

Lπ(Xt,Yt;ϕ)−1eλ1t

bπ(ϕ)

ϕ
(Xt, Yt)rF (Xt, Yt; dr)

×
∫ T

(t+t0)∧T

ds

∫ ∞

Lπ(Xs,Ys;ϕ)−1eλ1s

bπ(ϕ)

ϕ
(Xs, Ys)uF (Xs, Ys; du)

= 2

K∑
j=1

∫ T

0

dt

∫
D

(bϕ)(y, j)dy

∫ ∞

Lπ(y,j;ϕ)−1eλ1t

rπ(y, j;ϕ)F (y, j; dr)

×
∫ T

(t+t0)∧T

ds

∫
D

pϕ(s− t, (y, j), (z, k))
bπ(ϕ)

ϕ
(z, k)dz

∫ ∞

Lπ(z,k;ϕ)−1eλ1s

uF (z, k; du).

By our assumption we have ∥
∫∞
1
rF (·; dr)∥∞ <∞. Since L inf(x,i)∈D×S ϕ(x, j)

−1 > 1, we have

III 6 c1Π
ϕ
ϕµξT ,

for some positive constant c1 which does not depend on T . Using (5.11) and the definition of nπ(ϕ), we

get that ∫ T

(t+t0)∧T

ds

∫
D

pϕ(s− t, (y, j), (z, k))
bπ(ϕ)

ϕ
(z, k)dz

∫ ∞

Lπ(z,k;ϕ)−1eλ1s

uF (z, k; du)

6 2

∫ T

(t+t0)∧T

ds

∫
D

(bϕ)(z, k)dz

∫ ∞

Lϕ(z,k;ϕ)−1eλ1s

π(z, k;ϕ)uF (z, k; du)

6 2

∫ T

t0

ds

∫
D

(bϕ)(z, k)dz

∫ ∞

Leλ1s

rFπ(ϕ)(z, k; dr)

= 2
K∑

k=1

∫ T

t0

ds

∫
D

(bϕ)(z, k)dz

∫ ∞

Leλ1s

rFπ(ϕ)(z, k; dr) = 2AT .
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Then using (5.14), we have

IV 6 4ATΠ
ϕ
ϕµξT 6 4(Πϕ

ϕµξT )
2.

Combining the estimates above on III and IV , we get that there exists a c2 > 0 independent of T such

that for T > t0,

Πϕ
ϕµ(ξ

2
T ) 6 4(Πϕ

ϕµ(ξT ))
2 + c1Π

ϕ
ϕµ(ξT ) 6 c2(Π

ϕ
ϕµ(ξT ))

2.

Then we have (5.17) with ĉ = 1/c2, and the proof of the theorem is now completed.

Definition 5.3. Suppose that (Ω,F ,P) is a probability space, {Ft, t > 0} is a filtration on (Ω,F)

and G is a sub-σ-field of F . A real valued process Ut on (Ω,F ,P) is called a P(· | G)-martingale (resp.

submartingale, supermartingale) with respect to {Ft, t > 0} if (i) it is adapted to {Ft ∨G, t > 0}; (ii) for
any t > 0, E(|Ut| | G) <∞ and (iii) for any t > s,

E(Ut | Fs ∨ G) = (resp. >,6) Us, a.s.

We need the following result. For its proof, see [23, Lemma 3.3].

Lemma 5.4. Suppose that (Ω,F ,P) is a probability space, {Ft, t > 0} is a filtration on (Ω,F) and G
is a σ-field of F . If Ut is a P(· | G)-submartingale with respect to {Ft, t > 0} satisfying

sup
t>0

E(|Ut| | G) <∞ a.s., (5.18)

then there exists a finite random variable U∞ such that Ut converges a.s. to U∞.

We are now in the position to prove the main result of this paper.

Proof of Theorem 2.4. Recall that, by Proposition 5.1, to prove Theorem 2.4, we only need to consider

the case dµ = ϕ(x, i)dxdi, where di is the counting measure on S.

We first prove that if
∑K

i=1

∫
D
ϕ(x, i)b(x, i)l(x, i)dx <∞, then W∞ is non-degenerate under Pµ. Since

Wt(ϕ) is a non-negative martingale, to show it is a closed martingale, it suffices to prove Pµ(W∞(ϕ)) =

Pµ(W0(ϕ)) = ⟨ϕ, µ⟩. SinceW−1
t (ϕ) is a positive supermartingale under P̃µ,Wt(ϕ) converges to some non-

negative random variable W∞(ϕ) ∈ (0,∞] under P̃µ. By [9, Theorem 5.3.3], we only need to prove that

P̃µ (W∞(ϕ) <∞) = 1. (5.19)

By (4.12), (χt, t > 0; P̃µ) has the same law as (χt + χ̂t, t > 0; Pµ,ϕ), where {χt, t > 0; Pµ,ϕ) is a copy of

(χt, t > 0; Pµ), and χ̂t =
∑

s∈(0,t]∩DJ
χs
t . Put

Mt(ϕ) :=
∑

s∈(0,t]∩DJ

⟨ϕ, χs
t ⟩ e−λ1t. (5.20)

Then

(Wt(ϕ), t > 0; P̃µ) = (Wt(ϕ) +Mt(ϕ), t > 0; Pµ,ϕ) in law, (5.21)

where {Wt(ϕ), t > 0} is a copy of the martingale defined in (2.8) and is independent of Mt(ϕ). Let G be

the σ-field generated by {Yt,mt, t > 0}. Then, conditional on G, (χs
t , t > s,Pµ,ϕ) has the same law as

(χt−s, t > s,PmsδŶs
) and (χs

t , t > s,Pµ,ϕ) are independent for s ∈ DJ . Then we have

Mt(ϕ)
d
=

∑
s∈(0,t]∩DJ

e−λ1sW s
t−s(ϕ), (5.22)

where for each s ∈ DJ ,W
s
t (ϕ) is a copy of the martingale defined by (2.8) with µ = msδŶs

, and conditional

on G, {W s
t (ϕ), t > 0} are independent for s ∈ DJ . To prove (5.19), by (5.21), it suffices to show that

Pµ,ϕ

(
lim
t→∞

[Wt(ϕ) +Mt(ϕ)] <∞
)
= 1.
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Since (Wt(ϕ), t > 0) is a non-negative martingale under the probability Pµ,ϕ, it converges Pµ,ϕ almost

surely to a finite random variable W∞(ϕ) as t→ ∞. So we only need to prove

Pµ,ϕ

(
lim
t→∞

Mt(ϕ) <∞
)
= 1. (5.23)

Define Ht := G ∨ σ(χσ
(s−σ);σ ∈ [0, t] ∩ Dm, s ∈ [σ, t]). Then (Mt(ϕ)) is a Pµ,ϕ(· | G)-non-negative sub-

martingale with respect to (Ht). By (5.22) and Lemma 5.2,

sup
t>0

Pµ,ϕ(Mt(ϕ) | G) = sup
t>0

∑
s∈[0,t]∩DJ

e−λ1smsϕ(X̂s, Ŷs)

6
∑
s∈DJ

e−λ1smsϕ(X̂s, Ŷs) <∞, Pµ,ϕ-a.s.

Then by Lemma 5.4, Mt(ϕ) converges Pµ,ϕ-a.s. to M∞(ϕ) as t→ ∞ and Pµ,ϕ(M∞(ϕ) <∞) = 1, which

establishes (5.23).

Now we prove the other direction. Assume that
∑K

i=1

∫
D
ϕ(y, i)b(y, i)l(y, i)dy = ∞. We are go-

ing to prove that W∞(ϕ) := limt→∞Wt(ϕ) is degenerate with respect to Pµ. By [15, Proposition 2],
1

Wt(ϕ)
is a supermartingale under P̃µ, and thus 1/[Mt(ϕ) + Wt(ϕ)] is a non-negative supermartingale

under Pµ,ϕ. Recall that Wt(ϕ) is a non-negative martingale under Pµ,ϕ. Then the limits limt→∞Wt(ϕ)

and 1/ limt→∞[Mt(ϕ)+Wt(ϕ)] exist and finite Pµ,ϕ-a.s. Therefore limt→∞Mt(ϕ) exists in [0,∞] Pµ,ϕ-a.s.

Recall the definition of (ηi, σi; i = 1, 2, . . .) in Lemma 5.2, and note that limi→∞ σi = ∞. By Lemma 5.2,

lim sup
t→∞

Mt(ϕ) > lim sup
i→∞

Mσi(ϕ) > lim sup
i→∞

e−λ1σiηiϕ(X̂σi , Ŷσi) = ∞, Pµ,ϕ-a.s.

So we have

lim
t→∞

Mt(ϕ) = ∞, Pµ,ϕ-a.s.

By (5.21),

P̃µ(W∞(ϕ) = ∞) = 1.

It follows from [9, Theorem 5.3.3] that Pµ(W∞ = 0) = 1.
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Appendix A Non-local Feynman-Kac transform

In this appendix, we establish a result on time-dependent non-local Feynman-Kac transform, which has

been used in the proof of Theorem 4.1.

Let E be a Lusin space and B(E) be the Borel σ-field on E, and let m be a σ-finite measure on B(E)

with supp[m] = E. Let {ξt, t > 0;Πx} be an m-symmetric Borel standard process on E with the Lévy

system (J, t), where J(x, dy) is a kernel from (E,B(E)) to (E ∪ {∂},B(E ∪ {∂})).
Lemma A.1. Suppose that {ξt, t > 0;Πx} is an m-symmetric Borel standard process on E with Lévy

system (J, t). Assume that q is a locally bounded function on [0,∞) × E and that F is a non-positive,

B([0,∞)× E × E)-measurable function vanishing on the diagonal of E × E so that for any x ∈ E,∑
0<s6t

F (t− s, ξs−, ξs) > −∞ for every t > 0, Πx-a.s., (A.1)

and

sup
x∈E

Πx

[ ∫ t

0

∫
E∂

(1− eF (t−s, ξs, y))J(ξs, dy)ds

]
<∞ for every t > 0. (A.2)

For any x ∈ E, t > 0 and f ∈ B+
b (E), define

h(t, x) := Πx[e
∫ t
0
q(t−s,ξs)ds+

∑
0<s6t F (t−s, ξs−, ξs)f(ξt)]. (A.3)

Then h is the unique locally bounded positive solution of the following integral equation:

h(t, x) = Πxf(ξt) + Πx

∫ t

0

q(t− s, ξs)h(t− s, ξs)ds
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+Πx

[ ∫ t

0

∫
E

(eF (t−s, ξs, y) − 1)h(t− s, y)J(ξs, dy)ds

]
. (A.4)

Proof. Note that under the locally boundedness assumption of q(t, x) and (A.1), the function h of (A.3)

is well defined and positive, and there exists c > 0 such that

h(t, x) 6 ectΠx[f(ξt)].

Thus h(t, x) is bounded on [0, T ] × E for any T > 0. The assumption (A.2) implies that the last term

of (A.4) is absolutely convergent and defines a bounded function on [0, T ]×E for every T > 0. For s 6 t,

define

As,t =

∫ t

s

q(t− r, ξr)dr +
∑

s<r6t

F (t− r, ξr−, ξr),

which is right continuous and has left limits as a function of s. Note that

eA0,t − 1 = −(eAt,t − eA0,t)

=

∫ t

0

eAs−,tq(t− s, ξs)ds−
∑

0<s6t

(eAs,t − eAs−,t)

=

∫ t

0

eAs,tq(t− s, ξs)ds+
∑

0<s6t

eAs,t(eF (t−s, ξs−, ξs)) − 1).

Hence we have

Πx[(e
A0,t − 1)f(ξt)]

= Πx

[ ∫ t

0

eAs,tq(t− s, ξs)f(ξt)ds

]
+Πx

[ ∑
0<s6t

eAs,t(eF (t−s, ξs−, ξs) − 1)f(ξt)

]
.

By the Markov property of ξ and the fact that

As,t =

(∫ t−s

0

q(t− s− r, ξr)dr +
∑

0<r6t−s

F (t− s− r, ξr−, ξr)

)
◦ θs,

we have

h(t, x) = Πxf(ξt) + Πx

[ ∫ t

0

q(t− s, ξs)Πξs(e
∫ t−s
0

q(t−s−r,ξr)dr+
∑

0<r6t−s F (t−s−r, ξr−, ξr)f(ξt−s))

]
+Πx

[ ∑
0<s6t

(eF (t−s, ξs−, ξs) − 1)Πξs [e
∫ t−s
0

q(t−s−r,ξr)dr+
∑

0<r6t−s F (t−s−r, ξr−, ξr)f(ξt−s)]

]

= Πxf(ξt) + Πx

∫ t

0

q(t− s, ξs)h(t− s, ξs)ds+Πx

[ ∑
0<s6t

(eF (t−s, ξs−, ξs) − 1)h(t− s, ξs)

]

= Πxf(ξt) + Πx

∫ t

0

q(t− s, ξs)h(t− s, ξs)ds

+Πx

[ ∫ t

0

∫
E

(eF (t−s, ξs, y) − 1)h(t− s, z)J(ξs, dy)ds

]
.

Thus h(t, x) defined by (A.3) is a locally bounded positive solution of (A.4).

It follows from [22, Proposition 2.15] that (A.4) has a unique locally bounded positive solution.

Remark A.2. (i) Lemma A.1 can be easily extended to signed F (with the same argument) by

replacing (A.1) and (A.2) by∑
0<s6t

F−(t− s, ξs−, ξs) <∞ for every t > 0, Πx-a.s., (A.1′)
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and

sup
x∈E

Πx

[ ∫ t

0

∫
E∂

|1− eF (t−s, ξs, y)|(ξs, dy)ds
]
<∞ for every t > 0. (A.2′)

(ii) If F does not depend on t, the above result follows easily from the results of [4].

(iii) If supx∈E J(x,E ∪ {∂}) <∞, or if

sup
x∈E

Πx

[ ∫ t

0

∫
E∂

|F (t− s, ξs, y)|J(ξs, dy)ds
]
<∞ for every t > 0, (A.5)

then (A.1) and (A.2) are satisfied.
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