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Abstract. In Li (2011, Example 2.2), the notion of a multi-type continuous-state
branching process (MCSBP) was introduced with a finite number of types, with
the countably infinite case being proposed in Kyprianou and Palau (2018+). One
may consider such processes as a super-Markov chain on a countable state-space
of types, which undertakes both local and non-local branching. In Kyprianou and
Palau (2018+) it was shown that, for MCSBPs, under mild conditions, there exists
a lead eigenvalue which characterises the spectral radius of the linear semigroup
associated to the process. Moreover, in a qualitative sense, the sign of this eigen-
value distinguishes between the cases where there is local extinction and exponential
growth. In this paper, we continue in this vein and show that, when the number
of types is finite, the lead eigenvalue gives the precise almost sure rate of growth of
each type. This result matches perfectly classical analogues for multi-type Galton–
Watson processes.

1. Introduction

Let d ∈ N be a natural number and put E = {1, · · · , d}. For x = (x1, · · · , xd)
T ∈

R
d we use the notation x(i) := xi for i ∈ E and denote by ‖x‖ the Euclidean norm.

We consider a multi-type continuous state branching process with d types with
branching mechanism ψ, henceforth referred to as a ψ-MCSBP. This is to say, we
are interested in a [0,∞)d-valued strong Markov process X := (Xt, t ≥ 0), with
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probabilities {Px,x ∈ R
d
+} such that the following branching property hold: for all

x,y ∈ R
d
+,

Ex+y

[
e−〈f ,Xt〉

]
= Ex

[
e−〈f ,Xt〉

]
Ey

[
e−〈f ,Xt〉

]
, t ≥ 0, f ∈ R

d
+.

Its branching mechanism is a vectorial function ψ : E × R
d
+ → R

d such that

ψi(u) := −〈u, B̃ei〉+ciu
2
i +

∫

R
d
+

(e−〈u,z〉−1+ui(zi∧1))µi(dz), u ∈ R
d
+, i ∈ E,

where ci ∈ R+, B̃ is a d × d matrix such that B̃i,j1{i6=j} ∈ R+, e1, · · · , ed is the

natural basis in R
d, and µi is a measure concentrated on R

d
+ \ {0} such that

∫

R
d
+


‖z‖ ∧ ‖z‖2 +

∑

j∈E

1{j 6=i}zj


µi(dz) <∞.

The process X is characterized by its Laplace transform:

Ex

[
e−〈f ,Xt〉

]
= e−〈x,v(t,f)〉, x,f ∈ R

d
+, t ∈ R+, (1.1)

where, for any f ∈ R
d
+, the continuous differentiable function

t 7→ v(t,f ) = (v1(t,f), · · · , vd(t,f))
T ,

is the unique locally bounded non-negative solution to the system of integral equa-
tions

vi(t,f) = fi −

∫ t

0

ψi(v(s,f))ds, i ∈ E. (1.2)

According to Barczy et al. (2015), this process can be seen as a strong solution of
a stochastic differential equation (SDE). More precisely, let W t be a d-dimensional
standard Brownian motion, and for each i ∈ E, let Ni be a Poisson random measure

on R+×R
d
+×R+ with intensity measure dsµi(dz)dr, and denote by Ñi its compen-

sated measure. Suppose that W and (Ni)i∈E are independent of each other. Then,
a MCSBP with branching mechanism ψ is characterized as the unique R

d
+-valued

strong solution to the SDE

Xt =X0 +

∫ t

0

BXsds+
∑

i∈E

ei

∫ t

0

√
2ciXs,idWs,i

+
∑

i∈E

∫ t

0

∫

R
d
+

∫ ∞

0

z1{r≤Xs−,i}Ñi(ds, dz, dr),

(1.3)

where the matrix B is given by

Bi,j = B̃i,j +

∫

R
d
+

(zi − δi,j)
+µj(dz).

Moreover, they proved in Barczy et al. (2015, Formula (2.15) and the later compu-
tations) that ψ can be written as

ψi(u) = −〈u,Bei〉+ ciu
2
i +

∫

Rd

(e−〈u,z〉 − 1 + 〈u, z〉)µi(dz), u ∈ R
d
+, i ∈ E.

(1.4)
We additionally assume that Pei

(〈1, Xt〉 = 0) > 0 for all t > 0, i = 1, · · · , d.



A.s. growth of supercritical multi-type cont.-state branching process 411

Remark 1.1. Thanks to the relation betweenB and B̃, when we write the branching
mechanism as in (1.4), the matrix B satisfies

∫

R
d
+

z(i)µj(dz) ≤ Bij for all i 6= j. (1.5)

Remark 1.2. If we regard E as the space where particles located, the model we de-
scribed above can be seen as a special case of a superprocess in which the associated
Markov movement is that of a Markov chain on E. Indeed, for such a process, from
e.g. Dynkin (1991), the log-Laplace semigroup, V t : Rd

+ 7→ R
d
+, which similarly

to (1.1), satisfies 〈x,V tf〉 = − logEx

[
e−〈f ,Xt〉

]
, for f ,x ∈ R

d
+, and is the unique

solution to

V tf(i) = [etQf ](i)−

∫ t

0

e(t−s)Qψi(Vsf )ds

where f = (f(1), · · · , f(d))T ∈ R
d
+ and Q is the infinitesimal generator of the

associated Markov chain. Note that a straightforward manipulation in the spirit of
Theorem 3.1.2 of Dynkin (2002) implies that

V tf(i) = f(i) +

∫ t

0

[QVsf ](i)−

∫ t

0

ψi(Vsf)ds

= f(i) +

∫ t

0

〈Vsf ,Q
T ei〉 −

∫ t

0

ψi(Vsf)ds,

where QT is the transpose matrix of Q. In turn, we note that this is equiva-
lent to the unique semigroup evolution that solves (1.2), albeit that the branching
mechanism

ψ̃i(u) := −〈u,QTei〉+ ψi(u) u ∈ R
d
+, i ∈ E.

We therefore suppose in the remaining part of this paper that {Xt, t ≥ 0} is a
ψ-MCSBP. Denote by M(t) := (M(t)i,j)d×d the matrix with elements

M(t)i,j := Eei
[〈ej ,Xt〉] , i, j ∈ E, t ≥ 0.

By Barczy et al. (2015, Lemma 3.4) we have

M(t) = etB
T

, t ≥ 0, (1.6)

where BT is the transpose of B. Observe that for any initial vector x0 and any
x ∈ R

d
+,

Ex0
[〈x,Xt〉] = xT

0 M(t)x, t ≥ 0.

Moreover, by (1.3) and the Itô calculus, for all x ∈ R
d and s ≤ r ≤ t, we obtain

〈M (t− r)x,Xr〉 = 〈M (t− s)x,Xs〉+
∑

i∈E

∫ r

s

[M (t− u)x]i
√
2ciXu,idWu,i

+
∑

i∈E

∫ r

s

∫

R
d
+

∫ ∞

0

〈M(t− u)x, z〉1{l≤Xu−,i}Ñi(du, dz, dl).

(1.7)
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In particular, if we take r = t, we get the following equation

〈x,Xt〉 =〈M(t− s)x,Xs〉+
∑

i∈E

∫ t

s

[M(t− u)x]i
√
2ciXu,idWu,i

+
∑

i∈E

∫ t

s

∫

R
d
+

∫ ∞

0

〈M (t− u)x, z〉1{l≤Xu−,i}Ñi(du, dz, dl).

(1.8)

A vector u ∈ R
d is called a λ-right (resp. left) eigenvector if for all t ≥ 0,

M(t)u = eλtu, (resp. uTM(t) = eλtuT ).

If u is a λ-right eigenvector, define

Wλ
t (u) := e−λt〈u,Xt〉, t ≥ 0.

Then it was shown in Proposition 3 of Kyprianou and Palau (2018+) that if u
is a λ-right eigenvector with λ ∈ R, then for any x ∈ R

d
+, {W

λ
t (u), t ≥ 0} is a

martingale under Px.
Suppose that M (t) is irreducible (exists t0 > 0 such that M(t0)i,j > 0 for all

i, j ∈ E). The Perron-Frobenius theory implies that there exist λ1 ∈ R and right

and left associated eigenvectors φ, φ̂ ∈ R
d
+ with all coordinates strictly positive

such that M(t)φ = eλ1tφ and φ̂
T
M(t) = eλ1tφ̂

T
, for all t ≥ 0. We note from (1.6)

that this is equivalent to the statement that φ and φ̂ are right and left eigenvectors

for BT with common eigenvalue λ1. For convenience we shall normalise φ and φ̂

such that 〈φ,1〉 = 1 = 〈φ, φ̂〉. Moreover, any other eigenvalue λ satisfies λ1 > ℜ(λ)
and

lim
t→∞

M(t)e−λ1t = P := (φiφ̂j)i,j∈E×E .

In addition, Barczy and Pap (2016, Lemma A.3) proved that there exist c1, c2, c3 >
0 such that

‖M(t)e−λ1t − P ‖ ≤ c1e
−c2t and ‖M(t)‖ ≤ c3e

λ1t for all t ∈ R+.
(1.9)

In order to simplify notation, we will denote by

Wt :=Wλ1

t (φ) = e−λ1t〈φ,Xt〉, t ≥ 0. (1.10)

Observe that Wt is a non-negative martingale and has a limit a.s. that we will
denote by W∞.

We say that the ψ-MCSBP is subcritical, critical, or supercritical according as
λ1 < 0, λ1 = 0, or λ1 > 0. This classification is consistent with the corresponding
classification for single-type continuous state branching processes, see, e.g., Li (2011,
Page 58). With the use of (1.10), it was proved in Kyprianou and Palau (2018+),
that in the subcritical and critical cases the process has extinction a.s. In this
paper, we want to find the asymptotic behaviour in the supercritical case.

The following Theorem 1.3 gives a relationship between the L
1-convergence of

the martingale {Wt, t ≥ 0} and the following condition:
∑

i∈E

∫

1≤〈1,z〉<∞

〈1, z〉 ln(〈1, z〉)µi(dz) <∞. (x log x condition)

If µi(dz) = πΠi(dr), where z = rπ with Πi being a measure on (0,∞) and π a
fixed probability mass function on the type space E in vector form, the following
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theorem comes from Theorem 5.1 and Theorem 6.2 in Ren et al. (2016). See also
Kyprianou and Palau (2018+, Theorem 6).

Theorem 1.3. Suppose that λ1 > 0. The following assertions hold:

(1) If (x log x condition) holds, then for any Px, W∞ is the L
1(Px) limit of Wt

as t→ ∞.
(2) If (x log x condition) doesn’t hold, then for any x ∈ R

d
+, W∞ = 0, Px a.s.

We will prove this theorem in Section 2. By using this theorem we obtain a
strong law of large numbers for MCSBPs. This result matches perfectly classical
analogues for multi-type Galton–Watson processes; see for example Theorem V.6.1
of Athreya and Ney (2004).

Theorem 1.4. Suppose that X is a MCSBP with principal eigenvalue λ1 > 0 and

right and left associated eigenvectors φ, φ̂ ∈ R
d
+. Then for any x ∈ R

d
+,

lim
t→∞

e−λ1tXt =W∞φ̂, Px a.s.

As a corollary we obtain the following convergence on rates of types.

Theorem 1.5. For any x ∈ R
d
+ \ {0} we have, conditional on non-extinction,

lim
t→∞

Xt

〈1,Xt〉
=

φ̂

〈1, φ̂〉
, Px a.s.

The remainder of this paper is structured as follows. In Section 2 we prove
Theorem 1. The proof of Theorem 2 is given in Section 3.

2. Spine decomposition

A now classical way to prove Theorem 2 is to find a spine decomposition for
{Xt, t ≥ 0} under the Doob h-transform associated with W . More precisely, for
any x ∈ R

d
+, using the martingale (Wt, t ≥ 0) we define a new probability measure

via
dP̃x

dPx

∣∣∣∣∣
Ft

=
1

〈φ,x〉
Wt, t ≥ 0.

Where {Ft, t ≥ 0} is the natural filtration generated by X.
Let (ηt, t ≥ 0) be a Markov chain on E with infinitesimal generator L, a d × d

matrix defined by

Lij =
1

φ(i)

(
BT

ij − 1{i=j}λ1
)
φ(j), i, j ∈ E.

Denote by (P φ
i , i ∈ E) the probabilities of η such that Pφ

i (η0 = i) = 1 for all i ∈ E.

Theorem 2.1. If X is a MCSBP, then for any x ∈ R
d
+ and f ∈ R

d
+,

Ẽx

[
e−〈f ,Xt〉

]
= Ex

[
e−〈f ,Xt〉

]
×

E
φ
φx

[
exp

{
−

∫ t

0

(
2c(ηs)vηs

(t− s,f) +

∫

R
d
+

z(ηs)(1 − e−〈v(t−s,f),z〉)µηs
(dz)

)
ds

}
×

∏

s≤t

At−s
ηs−,ηs

]
,
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where the matrices {As : s ≥ 0} are given by

As
i,j =

(
1{i6=j}

1

BT
ij

∫

R
d
+

z(j)(e−〈v(s,f),z〉 − 1)µi(dz) + 1

)
, i, j ∈ E,

and

P
φ
φx(·) =

∑

i∈E

φ(i)x(i)

〈φ,x〉
P

φ
i (·)

with associated expectation operator E
φ
φx(·).

Proof : We start by noting that

Ẽx

[
e−〈f ,Xt〉

]
=

e−λ1t

〈φ,x〉
Ex

[
〈φ,Xt〉e

−〈f ,Xt〉
]
.

Replacing f by f + λφ in (1.1) and (1.2) and differentiating with respect to λ and
then setting λ = 0, we obtain

Ẽx

[
e−〈f ,Xt〉

]
= Ex

[
e−〈f ,Xt〉

]∑

i∈E

φ(i)x(i)

〈φ,x〉
θt(i)

= Ex

[
e−〈f ,Xt〉

] 〈θt,φ ◦ x〉

〈φ,x〉
,

(2.1)

where ◦ denotes element wise multiplication of vectors and, for t ≥ 0, θt is the
vector with entries

θt(i) :=
1

φ(i)
e−λ1t

∂

∂λ
vi(t,f + λφ)

∣∣∣∣
λ=0

.

By an integration by parts, using (1.2) and (1.4) and that (Bei)j = BT
ij , we get

that θt(i) is also the unique vector solution to

θt(i) = 1 +

∫ t

0

1

φ(i)

[
(BT − λ1I)(φ ◦ θs)

]
(i)ds−

∫ t

0

θs(i)2c(i)vi(s,f )ds

+

∫ t

0

∫

R
d
+

〈θs,
φ ◦ z

φ(i)
〉(e−〈v(s,f),z〉 − 1)µi(dz)ds.

Recall the definition of L and note that it conforms to the definition of an intensity
matrix of a Markov chain, thanks to the fact that φ is an eigenvector of BT . A
(vectorial) integration by parts in the spirit of Theorem 3.1.2 of Dynkin (2002),

[θt](i) =[etL1](i)−

∫ t

0

e(t−s)L [θs(·) ◦ (2c(·)v·(s,f))] (i)ds

+

∫ t

0

e(t−s)L

[∫

R
d
+

〈θs,φ ◦ z〉(e−〈v(s,f),z〉 − 1)
µ·(dz)

φ(·)

]
(i)ds,

where 1 = (1, · · · , 1)T ∈ R
d
+. Then appealing to the fact that {etL : t ≥ 0} is the

semigroup of (η,Pφ
i ), i ∈ E,

θt(i) = E
φ
i [1]−

∫ t

0

E
φ
i

[
2θs(ηt−s)c(ηt−s)vηt−s

(s,f))
]
ds

+

∫ t

0

E
φ
i

[∫

R
d
+

〈θs,φ ◦ z〉(e−〈v(s,f),z〉 − 1)
µηt−s

(dz)

φ(ηt−s)

]
ds. (2.2)
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Next, we make a change of variable u = t − s and separate the last inner product
into two parts. For all s ≤ t and z ∈ R

d
+

〈θt−s,φ ◦ z〉 = θt−s(ηs)φ(ηs)z(ηs) +
∑

j 6=ηs

θt−s(j)φ(j)z(j).

Therefore, (2.2) is transformed into

θt(i) =E
φ
i [g(ηt)]−

∫ t

0

E
φ
i

[
2θt−s(ηs)c(ηs)vηs

(t− s,f))
]
ds

+

∫ t

0

E
φ
i

[
θt−s(ηs)

∫

R
d
+

z(ηs)(e
−〈v(t−s,f),z〉 − 1)µηs

(dz)

]
ds

+

∫ t

0

E
φ
i



∑

j 6=ηs

θt−s(j)
φ(j)

φ(ηs)

∫

R
d
+

z(j)(e−〈v(t−s,f),z〉 − 1)µηs
(dz)


ds.

Recall that (1.5) holds and hence, by applying Chen et al. (2018+, Lemma 6.1)
to the Lévy system associated to L, using, in their notation, the functions

q(s, i) = 2c(i)vi(s,f ) +

∫

R
d
+

z(i)(1− e−〈v(s,f),z〉)µi(dz)

and

F (s, i, j) = ln

(
1{i6=j}

1

Bji

∫

R
d
+

z(j)(e−〈v(s,f),z〉 − 1)µi(dz) + 1

)
,

we obtain

θt(i) =E
φ
i

[
exp

{
−

∫ t

0

(
2c(ηs)vηs

(t− s,f ) +

∫

R
d
+

z(ηs)(1 − e−〈v(t−s,f),z〉)µηs
(dz)

)
ds

}

∏

s≤t

At−s
ηs−,ηs

]
.

�

Theorem 2.1 suggests that the process (Xt, P̃x) is equal in law to a process
{Γt : t ≥ 0}, whose law is henceforth denoted by Px, x ∈ R

d
+, where

Γt = X ′
t +

∑

s≤t:c

X
c,s
t−s +

∑

s≤t:d

X
d,s
t−s +

∑

s≤t:j

X
j,s
t−s, t ≥ 0,

such that X ′ is an independent copy of (Xt,Px) and the processes Xc,s
· , Xd,s

· and

X j,s
· are defined through a process of immigration as follows: Given the path of the

Markov chain (η,P φ
φx),

[continuous immigration] in a Poissonian way a ψ-MCSBP Xc,s
· immigrates at

(s, ηs) with rate ds× 2c(ηs)dNηs
,

[discontinuous immigration] in a Poissonian way a ψ-MCSBP Xd,s
· immigrates

at (s, ηs) with rate ds×
∫
R

d
+

z(ηs)µηs
(dz)Pz
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[jump immigration] at each jump time s of η, a ψ-MCSBP X j,s
· immigrates at

(s, ηs) with law
∫
R

d
+

νηs−,ηs
(dz)Pz, where for each i, j ∈ E,

νi,j(dz) = 1{i6=j}
1

BT
ij

z(j)µi(dz) +

(
1− 1{i6=j}

1

BT
ij

∫

R
d
+

v(j)µi(dv)

)
δ0(dz).

Given η, the above three immigration processes are independent.

In the above description, the quantity Ni is the excursion measure of the ψ-
MCSBP corresponding to Pei

. To be more precise, Dynkin and Kuznetsov (2004)
showed that associated to the laws {Pei

: i ∈ E} are the measures {Ni : i ∈ E},
defined on the same measurable space, which satisfy

Ni(1 − e−〈f ,Xt〉) = − logEei
(e−〈f ,Xt〉),

for all t ≥ 0. A particular feature of Ni that we shall use later is that

Ni(〈f ,Xt〉) = Eei
(〈f ,Xt〉). (2.3)

Note, in order for the measures Ni, i = 1, · · · , d, to be well defined, we need
the assumption made in the introduction that Pei

(〈1, Xt〉 = 0) > 0 for all t > 0,
i = 1, · · · , d.

Observe that the processes Xc, Xd and Xj are initially zero valued, therefore,
if Γ0 = x then X ′

0 = x. The following result corresponds to a classical spine
decomposition, albeit now for the setting of an MCSBP. Note, we henceforth refer to
the process η as the spine. By following the same proof as Theorem 5 in Kyprianou
and Palau (2018+) we can easily establish the next result.

Theorem 2.2 (Spine decomposition). For any x ∈ R
d
+, (Γt, t ≥ 0; Px) is equal in

law to (Xt, t ≥ 0; P̃x).

For the sake of brevity, we leave the proof to the reader.

2.1. Proof of Theorem 1.3. We follow a well established line of reasoning. We know

that 1/Wt is a positive P̃x-supermartingale and hence limt→∞Wt exists P̃x-almost
surely. Therefore Wt converges in L

1(Px) to a non-degenerated limit as soon as we

prove that P̃x(lim inf t→∞Wt <∞) = 1.
We consider the spine decomposition in Theorem 2.2. Given the spine η, let us

write (s, Id
s , I

j
s)s≥0 for the process of immigrated vector along the spine (i.e. Id

s =

X
d,s
0 and I j

s = X
j,s
0 ). Then (s, Id

s ) is Poissonian with intensity ds × z(ηs)µηs
(dz)

and, if s is such that ηs− 6= ηs then I j
s is distributed according to νηs−,ηs

. Let

S = σ(ηs, (s, I
d
s , I

j
s), s ≥ 0) be the sigma algebra which informs the location of the

spine and the vector issued at each immigration time and write

Zt := e−λ1t〈φ,Γt〉.

Since (Γ·,Px) is equal in law to (X ·, P̃x), to prove P̃x(lim inft→∞Wt <∞) = 1,
we only need to prove that

Px(lim inf
t→∞

Zt <∞) = 1. (2.4)

By Fatou’s Lemma
Ex[lim inf

t→∞
Zt|S] ≤ lim inf

t→∞
Ex[Zt|S].

It therefore remains to show that lim inft→∞ Ex[Zt|S] <∞, P̃x a.s.
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By using that the processes Xc,s
· , Xd,s

· conditioned on S are Poissonian, the

description of X j,s
· , I j

· and Id
· , formula (2.3) and that W is a martingale, we have

that for t ≥ 0 and x ∈ R
d
+,

lim inf
t→∞

Ex[Zt|S]

= 〈φ,x〉+

∫ ∞

0

2c(ηs)e
−λ1sφ(ηs)ds+

∑

0≤s

e−λ1s〈φ, Id
s〉+

∑

0≤s

e−λ1s〈φ, Ij
s〉.

Since λ1 > 0, the first integral is finite. We need to prove that the other sums are
finite a.s. In order to do it, we will decompose the sum in small jumps: {(s, Id

s ) :

〈1, Id
s 〉 ≤ eλ1s} and big jumps: {(s, Id

s ) : 〈1, Id
s 〉 > eλ1s}, and we handle I j

s in
similar way. Denote Mφ := max{φ(i) : i ∈ E}. For the small jumps, by the
definition of ν,

Ex


∑

0≤s

e−λ1s〈φ, Id
s 〉1{〈1,Id

s〉≤eλ1s} +
∑

0≤s

e−λ1s〈φ, I j
s〉1{〈1,Ij

s〉≤eλ1s}




=Ex

[∫ ∞

0

∫

〈1,z〉≤eλ1s

e−λ1sz(ηs)〈φ, z〉µηs
(dz)ds

+

∫ ∞

0

∫

〈1,z〉≤eλ1s

e−λ1s〈φ, z〉νηs−,ηs
(dz)ds

]

≤CMφ

∑

i∈E

∫ ∞

0

∫

〈1,z〉≤eλ1s

e−λ1s〈1, z〉2µi(dz)ds,

where C is a positive constant. For each i ∈ E,
∫ ∞

0

∫

〈1,z〉≤eλ1s

e−λ1s〈1, z〉2µi(dz)ds

≤

∫

〈1,z〉≤1

〈1, z〉2µi(dz) +

∫

〈1,z〉>1

〈1, z〉µi(dz) <∞.

Therefore,
∑

0≤s

e−λ1s〈φ, Id
s 〉1{〈1,Id

s 〉≤eλ1s} +
∑

0≤s

e−λ1s〈φ, I j
s〉1{〈1,Ij

s〉≤eλ1s} <∞, Px a.s.

For the big jumps, using Fubini’s Theorem, we get

Ex



∑

0≤s

1{〈1,Id
s〉>eλ1s} +

∑

0≤s

1{〈1,Ij
s〉>eλ1s}




=Ex

[∫ ∞

0

∫

〈1,z〉>eλ1s

z(ηs)µηs
(dz)ds+

∫ ∞

0

∫

〈1,z〉>eλ1s

νηs−,ηs
(dz)ds

]

≤C
∑

i∈E

∫ ∞

0

∫

〈1,z〉>eλ1s

〈1, z〉µi(dz)ds

=
C

λ1

∑

i∈E

∫

〈1,z〉>1

〈1, z〉 ln(〈1, z〉)µi(dz) <∞.



418 A. E. Kyprianou, S. Palau and Y.-X. Ren

This implies that Px a.s. we have finitely many big jumps and therefore
∑

0≤s

e−λ1s〈φ, Id
s 〉1{〈1,Id

s 〉>eλ1s} +
∑

0≤s

e−λ1s〈φ, I j
s〉1{〈1,Ij

s〉>eλ1s} <∞, Px a.s.

So, lim inft→∞ Ex[Zt|S] <∞, Px a.s.
Now, we will prove the second part of the Theorem. Since

P̃x(lim sup
t→∞

Wt = ∞) = Px(lim sup
t→∞

Zt = ∞),

if we prove that

lim sup
t→∞

Zt = ∞ Px a.s. (2.5)

then P̃x and Px are singular and hence

Px(lim sup
t→∞

Wt = 0) = 1.

It remains to show (2.5). Suppose that for a fixed i ∈ E,
∫

〈1,z〉>1

〈1, z〉 ln(〈1, z〉)µi(dz) = ∞.

We will divide the proof in two parts.

(i) First assume that
∫

〈1,z〉>1

z(i) ln(〈1, z〉)µi(dz) = ∞.

Denote by T the set of times at which we immigrate (s,Xd,s
· ) along the spine,

then for s ∈ T ,

Zs ≥ e−λ1s〈φ,Xd,s
0 〉.

To prove (2.5), we only need to prove that

lim sup
T ∋s→∞

e−λ1s〈φ,Xd,s
0 〉 = ∞.

Since e−λ1s〈φ,Xd,s
0 〉 ≥ mφe

−λ1s〈1,Xd,s
0 〉, where mφ := min{φ(i) : i ∈ E}, we only

need to prove that

lim sup
T ∋s→∞

e−λ1s〈1,Xd,s
0 〉 = ∞. (2.6)

For T,K > 1, define the subsets

AT,K := ♯{s ∈ T ∩ (T,∞) : 〈1,Xd,s
0 〉 > Keλ1s}.

Then, given the Markov chain (η,P φ
φx), AT,K is a Poisson random variable with

parameter
∫∞

T

∫
〈1,z〉>Keλ1s

z(ηs)µηs
(dz)ds. To prove (2.6), we only need to prove

that ∫ ∞

T

ds

∫

〈1,z〉>Keλ1s

z(ηs)µηs
(dz) = ∞, P

φ
φx a.s.

for all T,K > 1. Observe that η is ergodic. Then there exists Ci > 0 and random
S such that

∫ t

0

1{ηs=i}ds ≥ Cit for all t ≥ S P
φ
φx a.s.



A.s. growth of supercritical multi-type cont.-state branching process 419

Let us denote by R = max{Keλ1T ,Keλ1S}. Then, by Fubini’s Theorem and the
previous inequality,
∫ ∞

T

∫

〈1,z〉>Keλ1s

z(ηs)µηs
(dz)ds ≥

∫ ∞

T

∫

〈1,z〉>Keλ1s

z(ηs)1{ηs=i}µηs
(dz)ds

≥
Ci

λ1

∫

〈1,z〉>R

z(i) ln(〈1, z〉)µi(dz)−D = ∞,

where D = (λ−1
1 ln(K) + T )

∫
〈1,z〉>R

z(i)µi(dz) <∞. Therefore we have (2.5).

(ii) Next suppose that, for j 6= i,
∫

〈1,z〉>1

z(j) ln(〈1, z〉)µi(dz) = ∞.

By inequality (1.5) and the ergodicity of η, the set τ := {s ≥ 0 : ηs− = i, ηs = j} is
not bounded. For all s ∈ T

Zs ≥ e−λ1s〈φ,Xj,s
0 〉

Let us denote by τ1, τ2, · · · a enumeration of this times in increasing order. By
applying the distribution of Xj,· in the jump times τn we have that for all K > 0,
∑

n≥1

Px(e
−λ1τn〈1,Xj,τn

0 〉 ≥ K) =
∑

n≥1

Ex[Px(e
−λ1τn〈1,Xj,τn

0 〉 ≥ K | τn)]

=
1

BT
ij

∑

n≥1

Ex

[∫

R
d
+

1{e−λ1τn 〈1,z〉≥K}z(j)µi(dz)

]

=
1

BT
ij

Ex


∑

n≥1

∫

R
d
+

1{e−λ1τn 〈1,z〉≥K}z(j)µi(dz)




By renewal theory, there exist A ∈ (0,∞) and a subset Ω1 with Px(Ω1) = 1 such
that for all ω ∈ Ω1 there exists N = N(ω) > 0 such that

τn ≤ An, for all n ≥ N.

Then,
∑

n≥1

∫

R
d
+

1{e−λ1τn 〈1,z〉≥K}z(j)µi(dz) ≥
∑

n≥N

∫

R
d
+

1{e−λ1An〈1,z〉≥K}z(j)µi(dz).

By the integral test criterion for series, the previous series is divergent since
∫ ∞

N

∫

R
d
+

1{e−λ1As〈1,z〉≥K}z(j)µi(dz)ds

=
1

Aλ1

∫

〈1,z〉>K

z(j) ln(〈1, z〉)µi(dz)−D = ∞,

where D = ((λ1A)
−1 ln(K) +N)

∫
〈1,z〉>K z(i)µi(dz) <∞. This implies

∑

n≥1

Px(e
−λ1τn〈1,Xj,τn

0 〉 ≥ K)

= Ex


∑

n≥1

∫

R
d
+

1{e−λ1τn 〈1,z〉≥K}z(j)µi(dz)


 = ∞.
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Therefore, by the Borel Cantelli Lemma,

lim sup
n→∞

e−λ1τn〈1,Xj,τn
0 〉 ≥ K, Px a.s.

for any K > 0, and then

lim sup
n→∞

e−λ1τn〈1,Xj,τn
0 〉 = ∞.

Hence we have

lim sup
s→∞

Zs ≥ lim sup
n→∞

e−λ1τn〈φ,Xj,τn
0 〉 = ∞,

which says that (2.5) holds. �

3. Proof of Theorem 1.4

Suppose that (x log x condition) doesn’t hold, then

lim sup
t→∞

e−λ1tXt(i) ≤ lim
t→∞

1

φ(i)
e−λ1t〈φ,Xt〉 = 0 Px a.s.

We therefore focus on the case when (x log x condition) holds. In order to do
this, we will separate small jumps from big jumps in the Poisson measures. More
precisely, for each i ∈ E, let us define the Poisson random measures

N
(1)
i (ds, dz, dr) := 1{〈1,z〉≤eλ1s}Ni(ds, dz, dr)

and

N
(2)
i (ds, dz, dr) := 1{〈1,z〉>eλ1s}Ni(ds, dz, dr)

and denote by Ñ
(1)
i and Ñ

(2)
i their compensated versions, respectively.

We are going to compute the proof of Theorem 1.4 in three steps. First, in lattice
times, we will approximate the value of the limit by the value of the limit of a
conditional expectation. With this relation, we are going to find our limit in lattice
times. And finally in the third step, we will extend the result to continuous times.

3.1. Proof for lattice times. First, we will prove Theorem 1.4 in lattice times. For
each δ > 0, consider the lattice times nδ, n ∈ N. We will approximate the value of
the limit by the value of the limit of a conditional expectation.

Lemma 3.1. If (x log x condition) holds, then for any m ∈ N, σ > 0 and x ∈ R
d
+,

lim
n→∞

e−λ1(n+m)σX(n+m)σ − Ex

[
e−λ1(n+m)σX(n+m)σ

∣∣Fnσ

]
= 0,

in L
1(Px) and Px a.s.

Proof : The result is true if we prove that for all k ∈ E,

lim
n→∞

e−λ1(n+m)σ〈ek,X(n+m)σ〉 − Ex

[
e−λ1(n+m)σ〈ek,X(n+m)σ〉

∣∣Fnσ

]
= 0,

in L
1(Px) and Px a.s. Let s, t ≥ 0. By the Markov property we have

e−λ1(t+s)〈ek,Xt+s〉 − Ex

[
e−λ1(t+s)〈ek,Xt+s〉

∣∣Ft

]

= e−λ1(t+s)〈ek,Xt+s〉 − e−λ1(t+s)〈M(s)ek,Xt〉.
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Now, applying equation (1.8) to the times t and t+ s, we obtain

e−λ1(t+s)〈ek,Xt+s〉 − e−λ1(t+s)〈M(s)ek,Xt〉

=
∑

i∈E

e−λ1(t+s)

∫ t+s

t

[M(t+ s− u)ek]i
√
2ciXu,idWu,i

+
∑

i∈E

e−λ1(t+s)

∫ t+s

t

∫

R
d
+

∫ ∞

0

〈M (t+ s− u)ek, z〉1{l≤Xu−,i}Ñi(du, dz, dl)

=Ct,t+s(ek) + St,t+s(ek) +Bt,t+s(ek), (3.1)

where

Ct,t+s(ek) :=
∑

i∈E

e−λ1(t+s)

∫ t+s

t

[M(t+ s− u)ek]i
√
2ciXu,idWu,i,

St,t+s(ek) :=
∑

i∈E

e−λ1(t+s)

∫ t+s

t

∫

R
d
+

∫ ∞

0

〈M (t+s−u)ek, z〉1{r≤Xu−,i}Ñ
(1)
i (du, dz, dr),

Bt,t+s(ek) :=
∑

i∈E

e−λ1(t+s)

∫ t+s

t

∫

R
d
+

∫ ∞

0

〈M (t+s−u)ek, z〉1{r≤Xu−,i}Ñ
(2)
i (du, dz, dr).

To complete the proof, we need to control the convergence of the above three terms.

(i) Lattice convergence of Ct,t+s(ek): We will show that for any k ∈ E, m ∈ N,

σ > 0 and x ∈ R
d
+

lim
n→∞

Cnσ,(n+m)σ(ek) = 0, in L
2(Px) and Px a.s.

First note that for t ∈ [nσ, (n+m)σ], the process

C
(n,m,σ)
t :=

∑

i∈E

e−λ1(n+m)σ

∫ t

nσ

[M((n+m)σ − u)ek]i
√
2ciXu,idWu,i (3.2)

is a continuous local martingale with quadratic variation given by

∑

i∈E

e−2λ1(n+m)σ

∫ t

nσ

([M ((n+m)σ − u)ek]i)
22ciXu,idu.

Then, by taking t = (n+m)σ, we have

Ex

[(
Cnσ,(n+m)σ(ek)

)2]

= e−2λ1(n+m)σ
Ex

[
∑

i∈E

∫ (n+m)σ

nσ

([M ((n+m)σ − u)ek]i)
22ciXu,idu

]
.

Denote by C = max{ci : i ∈ E}. Observe that (M (t)ek)i = M(t)i,k and by
equation (1.9) exists C1 > 0 such that ‖M(t)‖ ≤ C1e

λ1t. Recall that mφ =
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min{φ(i) : i ∈ E}. Then

Ex

[(
Cnσ,(n+m)σ(ek)

)2]

≤
2CC2

1

mφ

e−2λ1(n+m)σ
Ex

[∫ (n+m)σ

nσ

e2λ1[(n+m)σ−u]〈φ,Xu〉du

]

=
2CC2

1 〈φ,x〉

λ1mφ

[e−λ1nσ − e−λ1(n+m)σ]

=
2CC2

1 〈φ,x〉

λ1mφ

[1− e−λ1mσ]e−λ1nσ,

where in the first equality we used the fact thatWu = e−λ1u〈φ,Xu〉 is a martingale.
Therefore

∞∑

n=1

Ex

[(
Cnσ,(n+m)σ(ek)

)2]
<∞. (3.3)

Then we have the L
2(Px)-convergence. The Px a.s. convergence follows from

Chebyshev’s inequality, Borel-Cantelli Lemma and the previous inequality.

(ii) Lattice convergence of St,t+s(ek): We will show that, if (x log x condition)

holds, then for any k ∈ E, m ∈ N, σ > 0 and x ∈ R
d
+,

lim
n→∞

Snσ,(n+m)σ(ek) = 0, in L
2(Px) and Px a.s.

Similar to the proof in (i) above, for t ∈ [nσ, (n+m)σ], the process,

S
(n,m,σ)
t

:= e−λ1(n+m)σ
∑

i∈E

∫ t

nσ

∫

R
d
+

∫ ∞

0

〈M ((n+m)σ − u)ek, z〉1{r≤Xu−,i}Ñ
(1)
i (du, dz, dr)

(3.4)

is a martingale with quadratic variation given by

e−2λ1(n+m)σ
∑

i∈E

∫ t

nσ

∫

R
d
+

∫ ∞

0

〈M ((n+m)σ − u)ek, z〉
2

1{r≤Xu,i}1{〈1,z〉≤eλ1u}drµi(dz)du.

Then, by taking t = (n+m)σ, we have

Ex

[(
Snσ,(n+m)σ(ek)

)2]

= e−2λ1(n+m)σ
∑

i∈E

Ex

[ ∫ (n+m)σ

nσ

∫

R
d
+

〈M ((n+m)σ − u)ek, z〉
2

Xu,i1{〈1,z〉≤eλ1u}µi(dz)du

]
.

By equation (1.9), there exists C > 0 such that for all t ≥ 0,

〈M(t)ek, z〉 ≤ Ceλ1t〈1, z〉. (3.5)
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Therefore, by using the definition of mφ

Ex

[(
Snσ,(n+m)σ(ek)

)2]

≤
C2

mφ

∑

i∈E

Ex

[∫ (n+m)σ

nσ

∫

R
d
+

e−2λ1u〈1, z〉2〈φ,Xu〉1{〈1,z〉≤eλ1u}µi(dz)du

]

=
C2〈φ,x〉

mφ

∑

i∈E

∫ (n+m)σ

nσ

∫

R
d
+

e−λ1u〈1, z〉21{〈1,z〉≤eλ1u}µi(dz)du,

where in the first equality we used the fact thatWu = e−λ1u〈φ,Xu〉 is a martingale.
Taking sum over n, we get

∞∑

n=1

Ex

[(
Snσ,(n+m)σ(ek)

)2]

≤
C2〈φ,x〉

mφ

∞∑

n=1

∑

i∈E

∫ ∞

nσ

∫

R
d
+

e−λ1u〈1, z〉21{〈1,z〉≤eλ1u}µi(dz)du.

By Fubini’s Theorem applied to the Lebesgue measure in R and the countable
measure in N, we get

∞∑

n=1

Ex

[(
Snσ,(n+m)σ(ek)

)2]

≤
C2〈φ,x〉

mφ

∑

i∈E

∫ ∞

σ

⌊u/σ⌋∑

n=1

∫

R
d
+

e−λ1u〈1, z〉21{〈1,z〉≤eλ1u}µi(dz)du

≤
C2〈φ,x〉

σmφ

∑

i∈E

∫ ∞

0

∫

R
d
+

ue−λ1u〈1, z〉21{〈1,z〉≤eλ1u}µi(dz)du.

By Fubini’s Theorem, for each i ∈ E,
∫ ∞

0

∫

R
d
+

ue−λ1u〈1, z〉21{〈1,z〉≤eλ1u}µi(dz)du

=

∫

〈1,z〉≤1

∫ ∞

0

ue−λ1u〈1, z〉2µi(dz)du

+

∫

〈1,z〉>1

∫ ∞

λ−1
1 ln(〈1,z〉)

ue−λ1u〈1, z〉2duµi(dz)

=
1

λ21

(∫

〈1,z〉≤1

〈1, z〉2µi(dz) +

∫

〈1,z〉>1

〈1, z〉(ln(〈1, z〉) + 1)µi(dz)

)
<∞.

Since (x log x condition) holds,

∞∑

n=1

Ex

[(
Snσ,(n+m)σ(ek)

)2]
<∞ (3.6)

and we have the convergence in L
2(Px). By Chebyshev’s inequality and Borel-

Cantelli Lemma we have the Px a.s. convergence.
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(iii) Lattice convergence of Bt,t+s(ek): We show that if (x log x condition) holds,

then for any k ∈ E, m ∈ N, σ > 0 and x ∈ R
d
+,

lim
n→∞

Bnσ,(n+m)σ(ek) = 0, in L
1(Px) and Px a.s.

Note that for any random measure N , we have Ñ(A) ≤ N(A) + N̂(A), where

Ñ is the compensated measure and N̂ the intensity measure. Then, by inequality
(3.5)

|Bnσ,(n+m)σ(ek)|

≤ C
∑

i∈E

∫ (n+m)σ

nσ

∫

R
d
+

∫ ∞

0

e−λu〈1, z〉1{r≤Xu,i}1{〈1,z〉>eλ1u}(dNi + drµi(dz)du)

≤ C
∑

i∈E

∫ ∞

nσ

∫

R
d
+

∫ ∞

0

e−λu〈1, z〉1{r≤Xu,i}1{〈1,z〉>eλ1u}(dNi + drµi(dz)du).

(3.7)

Using the fact that W is a martingale, we have

Ex

[
|Bnσ,(n+m)σ(ek)|

]

≤
2C

mφ

∑

i∈E

Ex

[∫ ∞

nσ

∫

R
d
+

e−λu〈1, z〉〈φ, Xu〉1{〈1,z〉>eλ1u}µi(dz)du

]

=
2C〈φ,x〉

mφ

∑

i∈E

∫ ∞

nσ

∫

R
d
+

〈1, z〉1{〈1,z〉>eλ1u}µi(dz)du.

.

By Fubini’s Theorem,

Ex

[
|Bnσ,(n+m)σ(ek)|

]
≤

2C〈φ,x〉

mφλ1

∑

i∈E

∫

〈1,z〉>eλ1σn

〈1, z〉 ln(〈1, z〉)µi(dz).

Recall that
∫
1≤〈1,z〉<∞

〈1, z〉 ln(〈1, z〉)µi(dz) <∞. Therefore

lim
n→∞

Ex

[
|Bnσ,(n+m)σ(ek)|

]
= 0,

which says limn→∞Bnσ,(n+m)σ(ek) = 0 in L
1(Px). The Px a.s. convergence follows

from the fact that

n 7→

∫ ∞

nσ

∫

R
d
+

∫ ∞

0

e−λu〈1, z〉1{r≤Xu,i}1{〈1,z〉>eλ1u}(dNi + drµi(dz)du)

is decreasing and inequality (3.7).

Now applying (i)-(iii) to (3.1), the proof is complete. �

Proposition 3.2. If (x log x condition) holds, then for any σ > 0,

lim
n→∞

e−λ1nσXnσ =W∞φ̂, in L
1(Px) and Px a.s.

Proof : Let k ∈ E and n,m > 0. By the Markov property, we have

Ex

[
e−λ1(n+m)σ〈ek,X(n+m)σ〉

∣∣Fnσ

]
= e−λ1(n+m)σ〈M (mσ)ek,Xnσ〉. (3.8)
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Let

rm =

(
1−

c1e
−c2mσ

max{φ(i)φ̂(k) : i, k ∈ E}

)

and

Rm =

(
1 +

c1e
−c2mσ

min{φ(i)φ̂(k) : i, k ∈ E}

)
.

Observe that rm → 1 and Rm → 1 as m → ∞. Moreover, by limit (1.9), for all
i ∈ E

rmφ(i)φ̂(k) ≤ e−λ1mσ(M(mσ)ek)i = e−λ1mσM(mσ)ik ≤ Rmφ(i)φ̂(k).

Hence,

rmφ̂(k)e
−λ1nσ〈φ,Xnσ〉 ≤ e−λ1(n+m)σ〈M(mσ)ek,Xnσ〉

≤ Rmφ̂(k)e
−λ1nσ〈φ,Xnσ〉.

Now, applying Lemma 3.1, the previous equation and equation (3.8), we get

lim sup
n→∞

e−λ1nσXnσ(k) = lim sup
m→∞

lim sup
n→∞

e−λ1(n+m)σ〈ek,X(n+m)σ〉

= lim sup
m→∞

lim sup
n→∞

e−λ1(n+m)σ〈M(mσ)ek,Xnσ〉

≤ lim
m→∞

lim
n→∞

Rmφ̂(k)Wnσ

=φ̂(k)W∞, Px a.s.

In a similar way,

lim inf
n→∞

e−λ1nσXnσ(k) = φ̂(k)W∞, Px a.s.

Therefore, the a.s. assertion is true. Recall that mφ := min{φ(k), k ∈ E} > 0.

Observe that 0 ≤ e−λ1nσXnσ(k) ≤Wnσm
−1
φ and by Theorem 1.3 the martingaleWt

converges in L
1(Px). Then by the Generalized Dominated Convergence Theorem,

the L1(Px) assertion holds. (see for instance Dudley, 2002, Problem 12, p. 133), �

3.2. From lattice times to continuous times. In this section, we extend the conver-
gence along lattice times in Theorem 1.4 to convergence along continuous times
and conclude our main results.

Proof of Theorem 1.4: Since φ is a positive vector, then for any a ∈ R
d we have

|〈a,Xt〉| ≤
‖a‖
mφ

〈φ,Xt〉, where mφ := min{φ(i) : i ∈ E}. Therefore Px- a.s.

lim
σ→0

lim
n→∞

sup
t∈[nσ,(n+1)σ]

|e−λ1t〈M((n+ 1)σ − t)ek,Xt〉 − e−λ1t〈ek,Xt〉|

≤ lim
σ→0

lim
n→∞

sup
t∈[nσ,(n+1)σ]

e−λ1t〈φ,Xt〉
‖M((n+ 1)σ − t)ek − ek‖

mφ

≤

(
lim
σ→0

lim
n→∞

sup
t∈[nσ,(n+1)σ]

Wt

)(
lim
σ→0

sup
u∈[0,σ]

‖M(u)ek − ek‖

mφ

)
= 0.

So, in order to have our result, it is enough to prove that

lim
σ→0

lim
n→∞

sup
t∈[nσ,(n+1)σ]

e−λ1t〈M((n+ 1)σ − t)ek,Xt〉 = φ̂(k)W∞ Px a.s.
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By applying equation (1.7) to ek and nσ ≤ t ≤ (n+ 1)σ, we obtain

e−λ1t〈M ((n+ 1)σ − t)ek,Xt〉

=e−λ1t〈M (σ)ek,Xnσ〉

+ e−λ1t
∑

i∈E

∫ t

nσ

[M ((n+ 1)σ − u)ek]i
√
2ciXu,idWu,i

+ e−λ1t
∑

i∈E

∫ t

nσ

∫

R
d
+

∫ ∞

0

〈M((n+ 1)σ − u)ek, z〉1{l≤Xu−,i}Ñ
(1)
i (du, dz, dl)

+ e−λ1t
∑

i∈E

∫ t

nσ

∫

R
d
+

∫ ∞

0

〈M((n+ 1)σ − u)ek, z〉1{l≤Xu−,i}Ñ
(2)
i (du, dz, dl)

=:e−λ1t〈M (σ)ek,Xnσ〉+ Cσ
n,t(ek) + Sσ

n,t(ek) +Bσ
n,t(ek). (3.9)

By the result for lattice times (Proposition 3.2), Px a.s.

lim
σ→0

lim
n→∞

sup
t∈[nσ,(n+1)σ]

e−λ1t〈M (σ)ek,Xnσ〉 = lim
σ→0

lim
n→∞

e−λ1σn〈M(σ)ek,Xnσ〉

= φ̂(k)W∞.

Hence, to complete the proof, we only need to prove that the last three terms on
the right-hand side of (3.9) converge uniformly for t ∈ [nσ, (n+1)σ] first as n→ ∞
and then σ → 0.

(i) Convergence of Cσ
n,t(ek): We show that for any k ∈ E and x ∈ R

d
+,

lim
σ→0

lim
n→∞

sup
t∈[nσ,(n+1)σ]

Cσ
n,t(ek) = 0 Px a.s.

Recall the definition of the martingale C
(n,1,σ)
t given by (3.2). And note that

|Cσ
n,t(ek)| ≤ eλ1σ|C

(n,1,σ)
t |

Then, by the maximal inequality for martingales, for all ǫ > 0 we have that for

Px

(
sup

t∈[nσ,(n+1)σ]

|Cσ
n,t(ek)| > ǫ

)
≤ Px

(
sup

t∈[nσ,(n+1)σ]

eλ1σ|C
(n,1,σ)
t | > ǫ

)

≤
e2λ1σ

ǫ2
Ex

[∣∣∣C(n,1,σ)
(n+1)σ

∣∣∣
2
]

Note that C
(n,1,σ)
(n+1)σ = Cnσ,(n+1)σ(ek), therefore by (3.3),

∞∑

n=1

Px

(
sup

t∈[nσ,(n+1)σ]

|Cσ
n,t(ek)| > ǫ

)
<∞.

By Borel-Cantelli we have the result.

(ii) Convergence of Sσ
n,t(ek): We show that, if (x log x condition) holds, then for

any k ∈ E and x ∈ R
d
+,

lim
σ→0

lim
n→∞

sup
t∈[nσ,(n+1)σ]

Sσ
n,t(ek) = 0 Px a.s.

The proof is analogous to the previous one. But this time we use the martingale

S
(n,1,σ)
t given by (3.4) and equation (3.6).
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(iii) Convergence of Bσ
n,t(ek): We show that, if (x log x condition) holds, then for

any k ∈ E and x ∈ R
d
+,

lim
σ→0

lim
n→∞

sup
t∈[nσ,(n+1)σ]

Bσ
n,t(ek) = 0 Px a.s.

By inequality (3.5),

|Bσ
n,t(ek)| ≤ Ce−λ1(t−(n+1)σ)×

∑

i∈E

∫ t

nσ

∫

R
d
+

∫ ∞

0

e−λu〈1, z〉1{r≤Xu,i}1{〈1,z〉>eλ1u}(dNi + drµi(dz)du)

≤ Ce−λ1(t−(n+1)σ)×

∑

i∈E

∫ ∞

nσ

∫

R
d
+

∫ ∞

0

e−λu〈1, z〉1{r≤Xu,i}1{〈1,z〉>eλ1u}(dNi + drµi(dz)du).

Then,

sup
t∈[nσ,(n+1)σ]

|Bσ
n,t(ek)|

≤ Ceλ1σ
∑

i∈E

∫ ∞

nσ

∫

R
d
+

∫ ∞

0

e−λu〈1, z〉1{r≤Xu,i}1{〈1,z〉>eλ1u}(dNi + drµi(dz)du).

The claim is true by following the same steps after equation (3.7). We omit the
details here.

Putting the above three conclusions together, we now conclude

lim
t→∞

e−λ1t〈ek,Xt〉 = φ̂(k)W∞, Px a.s.

as required. �
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