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Skeleton decomposition and law of large numbers for

supercritical superprocesses

Zhen-Qing Chen∗, Yan-Xia Ren † and Ting Yang‡

Abstract

The goal of this paper has two-folds. First, we establish skeleton and spine decompositions for

superprocesses whose underlying processes are general symmetric Hunt processes. Second, we use these

decompositions to obtain weak and strong law of large numbers for supercritical superprocesses where

the spatial motion is a symmetric Hunt process on a locally compact metric space E and the branching

mechanism takes the form

ψβ(x, λ) = −β(x)λ+ α(x)λ2 +

∫
(0,∞)

(e−λy
− 1 + λy)π(x,dy)

with β ∈ Bb(E), α ∈ B
+
b (E) and π being a kernel from E to (0,∞) satisfying supx∈E

∫
(0,∞)

(y ∧

y2)π(x, dy) <∞. The limit theorems are established under the assumption that an associated Schrödinger

operator has a spectral gap. Our results cover many interesting examples of superprocesses, including

super Ornstein-Uhlenbeck process and super stable-like process. The strong law of large numbers for

supercritical superprocesses are obtained under the assumption that the strong law of large numbers for

an associated supercritical branching Markov process holds along a discrete sequence of times, extending

an earlier result of Eckhoff, Kyprianou and Winkel [16] for superdiffusions to a large class of superpro-

cesses. The key for such a result is due to the skeleton decomposition of superprocess, which represents

a superprocess as an immigration process along a supercritical branching Markov process.
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1 Introduction

Recently there is a lot of work (see [9, 16, 17, 19, 20, 21, 24, 28, 33] and the references therein) on limit

theorems for superprocesses using the principal eigenvalue and ground state of the corresponding Schrödinger

equations. For superdiffusions, weak (convergence in law or in probability) and strong (almost sure conver-

gence) laws of large numbers have been established successively in [16, 17, 19, 20, 21, 28, 33]. That the

underlying process is a diffusion plays an essential role in these papers. We refer to [16] for a survey on

the recent developments of limit theorems for superdiffusions. Unlike the case for superdiffusions, there is

much less work on limit theorems for superprocesses when the spatial motion is a general Hunt process. As

far as we know, [9] is the first paper to establish strong law of large numbers (SLLN in brief) for super-

processes. The spatial motions in [9] are symmetric Hunt processes which can have discontinuous sample

paths. Amongst other assumptions, a spectral gap condition was used in [9] to obtain a Poincaré inequal-

ity, which is the main ingredient in the proof of almost sure convergence along lattice times. Later [24]

∗The research partially supported by Simons Foundation grant 520542 and NNSFC Grant 11731009.
†The research of this author is supported by NNSFC (Grant No. 11731009 and 11671017).
‡Corresponding author. The research of this author is supported by NNSF of China (Grant No. 11501029).
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used a Fourier analysis approach to establish a SLLN for super-stable processes with spatially independent

quadratic branching mechanisms. Very recently, SLLN is obtained in [8] for a class of superprocesses where

the spatial motion can be a non-symmetric Hunt process. In [8], the mean semigroup of the superprocess is

assumed to be compact in L2 space and the branching mechanism is assumed to satisfy a second moment

condition. Under these conditions, the mean semigroup of the superprocess automatically has a spectral gap.

In the existing literature for almost sure convergence, either the spatial motion has to be a diffusion, or the

branching mechanism has to obey restrictive conditions (in [9] the coefficients of the branching mechanism

have to satisfy a Kato class condition, while in [24, 33] the branching mechanisms are spatially independent,

in [8, 9] the branching mechanisms have to satisfy a second moment condition, and in [16] it has to satisfy

a p th-moment condition for some p ∈ (1, 2]).

The present paper is devoted to establish weak and strong laws of large numbers for superprocesses where

the underlying spatial motions are symmetric Hunt processes and the branching mechanisms are general.

A key ingredient of our approach is a skeleton decomposition for superprocesses, which provides a pathwise

description of the superprocess in terms of immigration along a branching Markov process, called skeleton.

The skeleton decomposition for superdiffusions was developed in [2, 26]. Very recently this decomposition was

used in [16] to study limit theorems for superdiffusions. In the present paper we extend this decomposition

to superprocesses whose spatial motion can be discontinuous, and use it to make a connection between the

asymptotic behavior of a branching Markov process and that of a superprocess. Our proof of SLLN follows

two main steps, first to obtain SLLN along lattice times and then extend it to all times. Our approach to

SLLN along lattice times is different from that of [16]. Motivated by [10], where we established laws of large

numbers for branching symmetric Hunt processes under a Kesten-Stigum L logL type condition, we use only

L1-convergence technique to establish the SLLN along lattice times, whereas the approach in [16] involves

a p-th moment calculation for some p ∈ (1, 2]. As a result, the branching mechanism in the present paper

has to obey an L logL type condition, while the branching mechanism in [16] has to obey a p-th moment

condition with p ∈ (1, 2]. So even within the superdiffusion case, our milder moment assumptions include

superprocesses where the assumptions in [16] may fail (see, for example, Example 8.3 in Section 8 below). For

the transition from discrete to continuous time, [16] adapted the idea of [28], where this transition is obtained

through approximation of the indicator functions by resolvent functions. This idea works for superdiffusions

because the spatial motion has continuous sample paths. But it is not applicable for superprocesses when

the underlying motion is a general symmetric Hunt process. We overcome this difficulty by imposing a

continuity condition on the h-transformed process. Examples which satisfy these assumptions are given in

Section 8. In particular, the spatial motions in Example 8.4 and Example 8.5 have discontinuous paths.

The remainder of this paper is organized as follows. We start Section 2 with a review on definitions

and basic properties of symmetric Hunt processes and superprocesses. A key ingredient in constructing

skeleton as well as spine decomposition of superprocesses is the Kuznetsov measures or excursion measures

(also known as N-measures in literature) for the superprocesses. However, the existence of such a measure

was taken for granted in [2, 16, 26]. In Subsection 2.3 and Appendix A.1 of this paper, we give sufficient

conditions for the existence of such measures for general superprocesses and superdiffusions, respectively, and

thus also filling the missing pieces in [2, 16, 26]. We then present our working hypothesis and main results

in Subsection 2.4. We give a spine decomposition for the superprocess in Section 3, and then use it to prove

the L1-convergence of an associated martingale in Section 4. In Section 5 we give a detailed description of

the skeleton space for superprocesses and show that the martingale limits for the superprocess and skeleton

coincide. The proofs of weak and strong laws of large numbers are given, respectively, in Section 6 and

Section 7. We present several examples to illustrate our results in Section 8 and give a detailed verification

of those examples in Appendix A.2 of this paper.

Throughout this paper, we use “:=” as a way of definition. For a function f , ‖f‖∞ := sup |f(x)|. For
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a, b ∈ R, a ∧ b := min{a, b} and a ∨ b := max{a, b}. log+ x := log(x ∨ 1) and

log∗ x :=

{
x/e, x ≤ e,

log x, x > e.

For two positive functions f and g, we use f
c
≍ g to denote that there is a positive constant c such that

c−1f ≤ g ≤ cf on their common domain of definition. We also write ≍ for
c
≍ if c is unimportant. We use

B(x, r) to denote the ball in Rd centered at x with radius r.

2 Preliminary

2.1 Spatial process

Suppose E is a locally compact separable metric space. Let E∂ := E∪{∂} be its one point compactification.

Denote by B(E) the Borel σ-field on E. The notation B ⋐ E means that its closure B̄ is compact in E.

We use Bb(E) (respectively, B+(E)) to denote the space of bounded (respectively, nonnegative) measur-

able functions on (E,B(E)). The space of continuous (and compactly supported) functions on E will be

denoted as C(E) (and Cc(E) resp.). Any functions f on E will be automatically extended to E∂ by setting

f(∂) = 0. Suppose that m is a σ-finite nonnegative Radon measure on E with full support. When µ is a

measure on B(E) and f is a measurable function, let 〈f, µ〉 :=
∫
E f(x)µ(dx) whenever the right hand side

makes sense. In particular, if µ has a density ρ with respect to the measure m, we write 〈f, ρ〉 for 〈f, µ〉. If

g(t, x) is a measurable function on [0,∞) × E, we say g is locally bounded if supt∈[0,T ] supx∈E g(t, x) < ∞

for every T ∈ (0,∞).

Let ξ = (Ω,H,Ht, θt, ξt,Πx, ζ) be an m-symmetric Hunt process on E. Here {Ht : t ≥ 0} is the minimal

admissible filtration, {θt : t ≥ 0} the time-shift operator of ξ satisfying ξt ◦ θs = ξt+s for s, t ≥ 0, and

ζ := inf{t > 0 : ξt = ∂} the life time of ξ. Suppose for each t > 0, ξ has a transition density function

p(t, x, y) with respect to the measure m, where p(t, x, y) is positive, continuous and symmetric in (x, y). Let

{Pt : t ≥ 0} be the Markovian transition semigroup of ξ, i.e.,

Ptf(x) := Πx [f(ξt)] =

∫

E

p(t, x, y)f(y)m(dy)

for any nonnegative measurable function f . The symmetric Dirichlet form on L2(E,m) generated by ξ will

be denoted as (E ,F):

F =
{
u ∈ L2(E,m) : lim

t→0

1

t

∫

E

(u(x)− Ptu(x)) u(x)m(dx) <∞
}
,

E(u, v) = lim
t→0

1

t

∫

E

(u(x)− Ptu(x)) v(x)m(dx), u, v ∈ F .

It is known (cf. [5]) that (E ,F) is quasi-regular and hence is quasi-homeomorphic to a regular Dirichlet form

on a locally compact separable metric space. For any set B ∈ B(E), let τB := inf{t ≥ 0 : ξt 6∈ B}.

2.2 Superprocesses

Suppose MF (E) is the space of finite measures on E equipped with the topology of weak convergence. The

set of finite and compactly supported measures on E is denoted by Mc(E). The main process of interest

in this paper is an MF (E)-valued Markov process X = {Xt : t ≥ 0} with evolution depending on two

quantities Pt and ψβ . Here Pt is the semigroup of the spatial process ξ and ψβ is the so-called branching

mechanism, which takes the form

ψβ(x, λ) = −β(x)λ + α(x)λ2 +

∫

(0,∞)

(
e−λy − 1 + λy

)
π(x, dy) for x ∈ E and λ ≥ 0, (2.1)

3



with β ∈ Bb(E), α ∈ B+
b (E) and for each x ∈ E, π(x, dy) being a measure concentrated on (0,∞) such that

x 7→
∫
(0,∞)(y ∧ y

2)π(x, dy) is bounded from above. The distribution of X is denoted by Pµ if it is started in

µ ∈ MF (E). X is called a (Pt, ψβ)-superprocess (or (ξ, ψβ)-superprocess) if X is an MF (E)-valued process

such that for all µ ∈ MF (E), f ∈ B+
b (E) and t ≥ 0,

Pµ

[
e−〈f,Xt〉

]
= e−〈uf (t,·),µ〉, (2.2)

where uf (t, x) := − log Pδx
(
e−〈f,Xt〉

)
is the unique nonnegative locally bounded solution to the following

integral equation:

uf(t, x) = Ptf(x)−

∫ t

0

Ps (ψβ(·, uf (t− s, ·))) (x)ds for all x ∈ E and t ≥ 0. (2.3)

The existence of such a process X is established by [12]. Moreover, such a superprocess X has a Hunt

realization in MF (E) (see, for example, [27, Theorem 5.12]) such that t 7→ 〈f,Xt〉 is almost surely right

continuous for all bounded continuous functions f . We shall always work with this version.

We define the Feynman-Kac semigroup P βt by

P βt f(x) := Πx

[
exp

(∫ t

0

β(ξs)ds

)
f(ξt)

]
for f ∈ B+

b (E).

Then it follows by [12, Lemma A.1.5] that the equation (2.3) is equivalent to the following integral equation:

uf(t, x) = P βt f(x)−

∫ t

0

P βs (ψ0(·, uf(t− s, ·))) ds for all x ∈ E and t ≥ 0, (2.4)

where

ψ0(x, λ) := α(x)λ2 +

∫

(0,∞)

(
e−λy − 1 + λy

)
π(x, dy).

It is known (cf. [12]) that for every µ ∈ MF (E) and f ∈ B+
b (E), the first moment of 〈f,Xt〉 exists and can

be expressed as

Pµ (〈f,Xt〉) = 〈P βt f, µ〉. (2.5)

Moreover, the second moment of 〈f,Xt〉, if exists, can be expressed as

Varµ (〈f,Xt〉) =

∫ t

0

〈P βs

((
2α+

∫

(0,∞)

y2π(·, dy)

)(
P βt−sf

)2
)
, µ〉ds. (2.6)

If α(x)+π(x, (0,∞)) = 0 for m-a.e. x ∈ E, then (2.6) implies that 〈f,Xt〉 = 〈P βt f, µ〉 for all t ≥ 0 Pµ-almost

surely for all µ ∈ MF (E) and all bounded continuous functions f . This trivial case is excluded in this paper,

and we always assume that m ({x ∈ E : α(x) + π(x, (0,∞)) > 0}) > 0.

Modelling superprocess as a system of exit measures from time-space open sets has been systematically

developed in [12, 13, 15]. In particular, branching property and Markov properties of such system are

established there. We take B+
b ([0, t] × E) to be the space of nonnegative bounded measurable functions on

[0, t]×E. For every f̃ ∈ B+
b ([0, t]×E), we extend f̃ to [0, t]×{∂} by setting f̃(s, ∂) = 0. It follows from [12,

Theorem I.1.1 and Theorem I.1.2] that for any open set D ⊂ E and t ≥ 0, there exists a random measure

X̃D
t on [0,∞)× E such that for every µ ∈ MF (E) and f̃ ∈ B+

b ([0, t]× E),

Pµ

[
e−〈f̃ ,X̃Dt 〉

]
= e

−〈ũD
f̃
(t,·),µ〉

, (2.7)

where ũD
f̃
(t, x) is the unique nonnegative locally bounded solution to the following integral equation:

ũD
f̃
(t, x) = Πx

[
f̃(t ∧ τD, ξt∧τD)

]
−Πx

[∫ t∧τD

0

ψβ

(
ξs, ũ

D
f̃
(t− s, ξs)

)
ds

]
for all x ∈ E and t ≥ 0. (2.8)
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Here τD is the fist time of ξ leaving from D. For an arbitrary function f ∈ B+
b (D), let f̃(s, x) := f(x) if

x ∈ D and otherwise f̃(s, x) = 0. We can define a random measure XD
t on D by setting 〈f,XD

t 〉 = 〈f̃ , X̃D
t 〉

for all f ∈ B+
b (D). This definition implies that XD

t is the projection of X̃D
t on D. For f ∈ B+

b (D), we

write uDf (t, x) for ũ
D
f̃
(t, x). It follows that uDf (t, x) is the unique nonnegative locally bounded solution to the

equation:

uDf (t, x) = Πx [f(ξt); t < τD]−Πx

[∫ t∧τD

0

ψβ
(
ξs, u

D
f (t− s, ξs)

)
ds

]
for all x ∈ D and t ≥ 0. (2.9)

For an arbitrary f ∈ B+(D), there exists a sequence of functions fk ∈ B+
b (D) such that fk ↑ f pointwise.

By (2.7), uDfk(t, x) is increasing in k and we denote this limit by uDf (t, x) ∈ [0,∞). With this notion, the

monotone convergence theorem implies that (2.7) is valid for all f ∈ B+(D). The same argument shows that

(2.4) holds for all f ∈ B+(E). If we define the subprocess ξD of ξ by

ξDt =

{
ξt, if t < τD,

∂, if t ≥ τD,

then (2.9) is equivalent to

uDf (t, x) = Πx
[
f(ξDt )

]
−Πx

[∫ t

0

ψβ
(
ξDs , u

D
f (t− s, ξDs )

)
ds

]
for all x ∈ D and t ≥ 0.

As a process in time, XD := {XD
t : t ≥ 0} is a (ξD, ψβ)-superprocess. One may think of XD

t as describing

the mass of X at time t that historically avoids leaving D. The following proposition follows directly from

the properties of exit measures (cf. [12, Theorem 1.2 and Theorem 1.3]). We omit its proof here.

Proposition 2.1 (monotonicity in D). Suppose D1 and D2 are two open sets in E with D1 ⊂ D2. Then

for every µ ∈ MF (E) and t ≥ 0,

Pµ

(
XD1
t (B) ≤ XD2

t (B) for all B ∈ B(D1)
)
= 1.

Proposition 2.1 implies that for any f ∈ B+
b (D1), u

D1

f (t, x) ≤ uD2

f (t, x) for all x ∈ D1 and t ≥ 0. This

monotonicity is also obtained in [16, Section A.2] through arguments on the integral equations (2.3) and

(2.4). Although the underlying spatial motion is a diffusion in [16], their approach works generally.

2.3 Kuznetsov measures for superprocesses

Suppose X := ((Xt)t≥0; Pµ, µ ∈ MF (E)) is a (ξ, ψβ)-superprocess, where the spatial motion ξ is an m-

symmetric Borel right process on a Luzin topological space E with transition semigroup (Pt)t≥0 and the

branching mechanism ψβ is given in (2.1). By [27, Theorem 5.12], the (ξ, ψβ)-superprocess has a right

realization in MF (E). Let W+
0 denote the space of right continuous paths from [0,∞) to MF (E) having

null measure as a trap. Without loss of generality, we assume Xt is the coordinate process in W+
0 and that

(F , (Ft)t≥0) is the minimal augmented σ-fields on W+
0 generated by the coordinate process.

In this paper we will use two decompositions of superprocesses called spine decomposition and skeleton

decomposition. To introduce these two decompositions we need to introduce Kuznetsov measures or excursion

measures for superprocesses.

Let {Qt(µ, ·) := Pµ (Xt ∈ ·) : t ≥ 0, µ ∈ MF (E)} be the transition semigroup of Xt and Vt be an

operator on B+
b (E) such that Vtf(x) := uf(t, x) for t ≥ 0 and f ∈ B+

b (E). Here uf (t, x) is the unique

nonnegative locally bounded solution to (2.3). Then by (2.2), we have

∫

MF (E)

e−〈f,ν〉Qt(µ, dν) = exp (−〈Vtf, µ〉) for µ ∈ MF (E) and t ≥ 0.
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It implies that Qt(µ1+µ2, ·) = Qt(µ1, ·)∗Qt(µ2, ·) for any µ1, µ2 ∈ MF (E), and hence Qt(µ, ·) is an infinitely

divisible probability measure on MF (E). By the semigroup property of Qt, Vt satisfies that

VsVt = Vt+s for all s, t ≥ 0. (2.10)

Moreover, by the infinite divisibility of Qt, each operator Vt has the representation

Vtf(x) =

∫

E

f(y)Λt(x, dy) +

∫

M+
F (E)

(
1− e−〈f,ν〉

)
Lt(x, dν) (2.11)

for t > 0 and f ∈ B+
b (E) where Λt(x, dy) is a bounded kernel on E, M+

F (E) := MF (E) \ {0} and (1 ∧

〈1, ν〉)Lt(x, dν) is a bounded kernel from E to M+
F (E). The operators (Vt)t≥0 satisfying (2.10) and (2.11)

is called a cumulant semigroup.

Let Q0
t be the restriction of Qt to M+

F (E), and

E0 := {x ∈ E : Λt(x,E) = 0 for all t > 0}.

Then x ∈ E0 if and only if

Vtf(x) =

∫

M+
F (E)

(
1− e−〈f,ν〉

)
Lt(x, dν) for all t > 0 and f ∈ B+

b (E).

It follows by [27, Proposition 2.8 and Theorem A.40] that for every x ∈ E0, the family of measures {Lt(x, ·) :

t > 0} on M+
F (E) constitutes an entrance law for the semigroup {Q0

t : t ≥ 0} on M+
F (E). Hence it

corresponds a unique σ-finite measure Nx on (W+
0 ,F) such that Nx({0}) = 0, and that for any 0 < t1 <

t2 < · · · < tn <∞,

Nx (Xt1 ∈ dν1, Xt2 ∈ dν2, · · · , Xtn ∈ dνn) = Lt1(x, dν1)Q
0
t2−t1(ν1, dν2) · · ·Q

0
tn−tn−1

(νn−1, dνn).

It follows that for all t > 0 and f ∈ B+
b (E),

Nx

(
1− e−〈f,Xt〉

)
=

∫

M+
F (E)

(
1− e−〈f,ν〉

)
Lt(x, dν) = uf (t, x). (2.12)

This measure Nx is called the Kuznetsov measure or excursion measure (also known as N-measure in [15])

of the (Pt, ψβ)-superprocess corresponding to the entrance law {Lt(x, ·) : t > 0}, and E0 is the collection

of x ∈ E such that there exists the Kuznetsov measure Nx on (W+
0 ,F) corresponding to the (Pt, ψβ)-

superprocess.

For a constant λ > 0, we use Vtλ to denote Vtf when the function f(x) ≡ λ. It follows by (2.11) that for

every x ∈ E and t > 0,

Vtλ(x) = λΛt(x,E) +

∫

M+
F (E)

(
1− e−λ〈1,ν〉

)
Lt(x, dν).

The left hand side tends to − log Pδx (Xt = 0) as λ→ ∞. Therefore, if x ∈ E satisfies

Pδx (Xt = 0) > 0 for all t > 0, (2.13)

then Λt(x,E) = 0 for all t > 0 and, consequently, x ∈ E0. Thus we have

{x ∈ E : Pδx (Xt = 0) > 0 for all t > 0} ⊂ E0.

In the study of spine decomposition, a key question is whether {x ∈ E : α(x) > 0} ⊂ E0. Later in this

subsection we will give sufficient conditions for this formula to be true.

In the study of skeleton decomposition of general superprocesses, we need the following condition:

6



Condition 1. There is a bounded positive function w on E such that

Pδx

(
e−〈w,Xt〉

)
= e−w(x) for all x ∈ E and t ≥ 0. (2.14)

If the spatial motion ξ is a diffusion, then this (ξ, ψβ)-superprocess is called a superdiffusion. We refer to

Appendix A.1 for an explicit definition. When X is a superdiffusion, we only need the following condition

which is weaker than Condition 1.

Condition 1’. There is a locally bounded positive function w on E satisfying (2.14).

Suppose Condition 1 holds. Since w is bounded on E, equation (2.2) implies that uw(t, x) = w(x), which

is independent of t ≥ 0. Thus by (2.4) w is the unique nonnegative bounded solution to the following integral

equation:

w(x) +

∫ t

0

P βs (ψ0 (·, w(·))) (x)ds = P βt w(x) for all x ∈ E. (2.15)

It follows from the Markov property of X that for every µ ∈ MF (E) and s, t ≥ 0,

Pµ

(
e−〈w,Xt+s〉 | Ft

)
= PXt

(
e−〈w,Xs〉

)
= e−〈uw(s,·),Xt〉 = e−〈w,Xt〉.

Hence {e−〈w,Xt〉 : t ≥ 0} is bounded positive Pµ-martingale with respect to the filtration (Ft)t≥0. We now

study the effects of change of measures via this martingale on the superprocess X .

Proposition 2.2. Suppose Condition 1 is satisfied. For every µ ∈ MF (E), define P∗
µ by

dP∗
µ := e−〈w,Xt〉+〈w,µ〉dPµ on Ft for t ≥ 0.

Then for every µ ∈ MF (E), f ∈ B+
b (E) and t ≥ 0,

P∗
µ

(
e−〈f,Xt〉

)
= e−〈u∗

f (t,·),µ〉, (2.16)

and u∗f(t, x) = uw+f(t, x)−w(x) is the unique nonnegative locally bounded solution to the following integral

equation

u∗f (t, x) +

∫ t

0

P β
∗

s

(
ψ∗
0(·, u

∗
f (·, t− s))

)
(x)ds = P β

∗

t f(x) for x ∈ E and t ≥ 0, (2.17)

where P β
∗

t f(x) := Πx

[
exp

(∫ t
0
β∗(ξs)ds

)
f(ξt)

]
for f ∈ B+

b (E),

β∗(x) := β(x) − 2α(x)w(x) −

∫

(0,∞)

(
1− e−w(x)y

)
yπ(x, dy),

ψ∗
0(x, λ) := α(x)λ2 +

∫

(0,∞)

(
e−λy − 1 + λy

)
π∗(x, dy)

and π∗(x, dy) := e−w(x)yπ(x, dy).

Proof. By the definition of P∗, we have for every µ ∈ MF (E), f ∈ B+
b (E) and t ≥ 0,

P∗
µ

(
e−〈f,Xt〉

)
= e〈w,µ〉Pµ

(
e−〈w+f,Xt〉

)
= e−〈uw+f(t,·)−w(·),µ〉 = e−〈u∗

f (t,·),µ〉.

Recall that uw+f(t, x) satisfies the following equation

uw+f(t, x) +

∫ t

0

P βs (ψ0 (·, uw+f(·, t− s))) (x)ds = P βt (w + f)(x), (2.18)
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for x ∈ E and t ≥ 0. Using (2.15) and (2.18) it is straightforward to check that u∗f(t, x) is a nonnegative

locally bounded solution to the integral equation

u∗f (t, x) +

∫ t

0

P βs
[
ψ0(·, u

∗
f (t− s, ·) + w(·)) − ψ0(·, w(·))

]
(x)ds = P βt f(x), (2.19)

for x ∈ E and t ≥ 0. It then follows from [16, Lemma A.1(ii)] (by setting A = B = E, T = t, g1(x, s) = β∗(x),

g2(x, s) = β(x)− β∗(x), f1(x) = f(x) and f2(x, s) = ψ0(x,w(x))−ψ0(x, uw+f (s, x))) that u
∗
f (t, x) satisfying

(2.19) is also a solution to (2.17). The uniqueness of the solution to (2.17) follows from [16, Appendix A.2]

where the uniqueness of the solution for a more general class of integral equations is obtained.

Remark 2.3. If X is a superdiffusion which satisfies Condition 1’, we can also define a probability measure

P∗
µ such that the function u∗f (t, x) given by (2.16) is the unique nonnegative locally bounded solution to

(2.17). We defer its details to Appendix A.1.

Let ψ∗
β∗(x, λ) := −β∗(x)λ + ψ∗

0(x, λ) for x ∈ E and λ ≥ 0. It is easy to check that ψ∗
β∗(x, λ) =

ψβ(x, λ+w(x))−ψβ (x,w(x)). Proposition 2.2 implies that under Condition 1, ((Xt)t≥0; P
∗
µ, µ ∈ MF (E)) is

a (ξ, ψ∗
β∗)-superprocess. We use Q∗

t and V ∗
t to denote the transition semigroup and the cumulant semigroup

of this (ξ, ψ∗
β∗)-superprocess, respectively. Denote by E∗

0 the collection of x ∈ E such that there exists the

Kuznetsov measure N∗
x on (W+

0 ,F) corresponding to the (ξ, ψ∗
β∗)-superprocess. It follows that for every

x ∈ E∗
0 , every t > 0 and f ∈ B+

b (E),

N∗
x

(
1− e−〈f,Xt〉

)
= u∗f(t, x).

Applying similar argument as in the beginning of this subsection, we have

{x ∈ E : P∗
δx (Xt = 0) > 0 for all t > 0} ⊂ E∗

0 .

In the study of skeleton decomposition, a key question is whether {x ∈ E : α(x) > 0} ⊂ E∗
0 . Sufficient

conditions for this will be given at the end of this subsection.

The following assumption will be used later to establish the spine and skeleton decompositions.

Assumption 1. Suppose either one of the following conditions holds.

(i) X is a (ξ, ψβ)-superprocess satisfying Condition 1 and

E+ := {x ∈ E : α(x) > 0} ⊂ E0 ∩ E
∗
0 .

(ii) X is a (ξ, ψβ)-superdiffusion satisfying Condition 1’.

Remark 2.4. We note that E+ ⊂ E0 is a necessary condition for the spine decomposition while E+ ⊂ E∗
0

is necessary for the skeleton decomposition for the (ξ, ψβ)-superprocess X . If X is a superdiffusion that

satisfies Condition 1’, then E+ ⊂ E0 ∩ E∗
0 always holds. See Appendix A.1 for its proof.

For general superprocesses, we now give some sufficient conditions for Assumption 1(i). Consider a special

superprocess denoted by X̃, where the spatial motion is a conservative Borel right process on E and the

branching mechanism ψ is given by

ψ(λ) := −bλ+ aλ2 +

∫

(0,∞)

(
e−λy − 1 + λy

)
η(dy) for x ∈ E, λ ≥ 0, (2.20)
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where b ∈ R, a ∈ R+ and η is a measure supported in (0,∞) satisfying
∫
(0,∞)

(x ∧ x2)η(dx) <∞. The total

mass process {Yt := 〈1, X̃t〉; t ≥ 0} is a one-dimensional continuous-state branching process (CB process in

abbreviation) with branching mechanism ψ. It is well-known that for the CB process Y ,

Pµ
[
e−λYt

]
= e−vt(λ)µ(E) for all µ ∈ MF (E), λ ≥ 0 and t ≥ 0,

where vt(λ) is the unique nonegative solution of

vt(λ) = λ−

∫ t

0

ψ(vs(λ))ds for all t, λ ≥ 0.

The family of maps {λ 7→ vt(λ); t ≥ 0} is called the cumulant semigroup of the CB process. It follows by

[27, Theorem 3.7] that Pδx (Yt = 0) > 0 for every t > 0 and every x ∈ E if and only if ψ(∞) = ∞ and∫∞
N
ψ(λ)−1dλ < ∞ for some N > 0. For the (ξ, ψβ)-superprocess, the following result gives a sufficient

condition under which (2.13) holds for every x ∈ E.

Proposition 2.5. Suppose that there is a spatially independent branching mechanism ψ in the form of (2.20)

such that ψ(∞) = ∞,
∫∞

ψ(λ)−1dλ <∞, and

ψβ(x, λ) ≥ ψ(λ) for all x ∈ E and λ ≥ 0. (2.21)

Then Pδx (Xt = 0) > 0 for every x ∈ E and every t > 0, and hence E0 = E.

Proof. Let Vt and V̂t denote the cumulant semigroups of a (ξ, ψβ)- and a (ξ, ψ)-superprocesses, respectively.

Given (2.21), we have by [27, Corollary 5.18] (cf.[16, Lemma 4.5]) that for every λ ≥ 0 and t ≥ 0, Vtλ(x) ≤

V̂tλ(x) pointwise. Let vt(λ) be the cumulant semigroup of the CB-process with branching mechanism ψ.

Then for every λ ≥ 0 and t ≥ 0, we have V̂tλ(x) ≤ vt(λ) for all x ∈ E, with the equality holds if ξ is a

conservative process on E. Under the conditions on ψ, we know by [27, Theorem 3.7] that limλ→∞ vt(λ) =

− logPδx (Yt = 0) < ∞ for all t > 0. Thus − log Pδx (Xt = 0) = limλ→∞ Vtλ(x) < ∞ for every x ∈ E and

t > 0, and hence we complete the proof.

Proposition 2.6. Under Condition 1 and the condition of Proposition 2.5, we have E∗
0 = E. Consequently,

Assumption 1(i) holds.

Proof. Since the event {Xt = 0} ∈ Ft, it follows that

P∗
µ (Xt = 0) = e〈w,µ〉Pµ

(
e−〈w,Xt〉;Xt = 0

)
= e〈w,µ〉Pµ(Xt = 0)

for every µ ∈ MF (E). Thus {x ∈ E : Pδx (Xt = 0) > 0 for all t > 0} = {x ∈ E : P∗
δx

(Xt = 0) > 0 for all t >

0} ⊂ E∗
0 . Note that by Proposition 2.5, {x ∈ E : Pδx (Xt = 0) > 0 for all t > 0} = E. Hence we get

E∗
0 = E.

Remark 2.7. For the CB process Y with branching mechanism ψ, it is known that if ψ(∞) = ∞ and∫∞
ψ(λ)−1dλ < ∞, then for every x ∈ E, Pδx (Yt = 0 for some t ≥ 0) = e−zψ where zψ := sup{λ ≥ 0 :

ψ(λ) ≤ 0} ∈ [0,∞). For the (ξ, ψβ)-superprocess X , let w(x) := − logPδx (E), where the event E := {Xt =

0 for some t ≥ 0}. Then under Condition (2.21), we have

w(x) = lim
t→∞

lim
λ→∞

Vtλ ≤ lim
t→∞

lim
λ→∞

vt(λ) = zψ <∞, ∀x ∈ E.

Moreover, by the bounded convergence theorem, w satisfies (2.14). In particular, if the bounded function w

in Condition 1 is given by w(x) = − log Pδx(E), then the process ((Xt)t≥0; P
∗
µ, µ ∈ MF (E)) can be obtained

from X by conditioning on E , i.e., P∗
µ(Xt ∈ ·) = Pµ(Xt ∈ · | E), cf. [26].
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2.4 Assumptions and main results

Since ξ has a transition density function p(t, x, y) with respect to the measure m, it follows that for each

t > 0, P βt admits an integral kernel with respect to m. We denote this kernel by pβ(t, x, y). It is positive,

symmetric and continuous in (x, y) for each t > 0 and it satisfies that

e−t‖β‖∞p(t, x, y) ≤ pβ(t, x, y) ≤ et‖β‖∞p(t, x, y) for all (t, x, y) ∈ (0,∞)× E × E. (2.22)

This semigroup P βt associates with a quadratic form (E(β),F), where

E(β)(u, u) := E(u, u)−

∫

E

u(x)2β(x)m(dx), u ∈ F .

Since β is a bounded function, E(β)(u, u) ≥ −‖β‖∞
∫
E u(x)

2m(dx) for all u ∈ F . Thus by [1], {P βt : t ≥ 0}

is a strongly continuous semigroup on L2(E,m). We define

λ1 := inf

{
E(β)(u, u) : u ∈ F with

∫

E

u(x)2m(dx) = 1

}
. (2.23)

Obviously λ1 ≥ −‖β+‖∞ by definition.

Assumption 2. λ1 < 0 and there is a positive continuous function h ∈ F with
∫
E
h(x)2m(dx) = 1 so that

E(β)(h, h) = λ1.

Observe that if u is a minimizer for (2.23), then so is |u|. Hence one can always take a non-negative

minimizer. Assumption 2 requires that there is a minimizer for (2.23) that can be chosen to be positive

everywhere. Clearly the following property holds for h:

Eβ(h, v) = λ1〈h, v〉 for every v ∈ F . (2.24)

Let σ(E(β)) denote the spectrum of the self-adjoint operator associated with E(β). Then λ1 is a simple

eigenvalue in σ(E(β)) with eigenfunction h. It holds that h = eλ1tP βt h on E.

Remark 2.8. From the definition of E(β), Assumption 2 implies that m ({x ∈ E : β(x) > 0}) > 0.

Let λ2 be the second bottom of σ(E(β)), that is,

λ2 := inf
{
E(β)(u, u) : u ∈ F ,

∫

E

u(x)h(x)m(dx) = 0,

∫

E

u(x)2m(dx) = 1
}
.

Assumption 3. There is a positive spectral gap in σ(E(β)): λh := λ2 − λ1 > 0.

Define the h-transformed semigroup {P ht ; t ≥ 0} from {P βt ; t ≥ 0} by

P ht f(x) =
eλ1t

h(x)
P βt (hf)(x) for x ∈ E and f ∈ B+

b (E). (2.25)

Then it is easy to see that {P ht : t ≥ 0} is an m̃-symmetric semigroup, where m̃ := h2m, and 1 is an

eigenfunction of P ht with eigenvalue 1. Furthermore the spectrum of the infinitesimal generator of {P ht : t ≥

0} in L2(E; m̃) is the spectrum of the infinitesimal generator of {P βt : t ≥ 0} in L2(E;m) shifted by λ1.

Hence under Assumption 3, we have the following Poincaré inequality:

‖P ht ϕ‖L2(E,m̃) ≤ e−λht‖ϕ‖L2(E,m̃) (2.26)

for all ϕ ∈ L2(E, m̃) with
∫
E
ϕ(x)m̃(dx) = 0.

We use Mh
F (E) to denote the space of all finite measures µ on E with 〈h, µ〉 <∞. By (2.5) and the fact

that eλ1tP βt h = h, we can verify that under Assumption 2,

Wh
t (X) := eλ1t〈h,Xt〉 for t ≥ 0

is a nonnegative Pµ-martingale for all µ ∈ Mh
F (E). We define Wh

∞(X) := limt→∞Wh
t (X).
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Theorem 2.9. Suppose Assumptions 1-3 hold. If

〈α log+ h, h2〉+ 〈

∫

(0,∞)

r log∗(rh(·))π(·, dr), h2〉 <∞, (2.27)

then the non-negative martingale Wh
t (X) converges to Wh

∞(X) as t → ∞ Pµ-a.s. and in L1(Pµ) for every

µ ∈ Mh
F (E). In particular, Wh

∞(X) is non-degenerate in the sense that Pµ
(
Wh

∞(X) > 0
)
> 0 for any

nontrivial µ ∈ Mh
F (E).

Remark 2.10. We notice that only the spine decomposition of superprocesses is applied in the proof of

this theorem. Therefore the above result in fact holds with the same proof under a weaker condition, say,

Assumptions 2-3 and that E+ ⊂ E0.

As we mentioned earlier, Assumption 1 is a fundamental assumption for the existence of the skeleton

space. The skeleton space for supercritical superprocesses offers a pathwise description of the superprocess

in terms of an MF (E)-valued Markov process X∗ and a supercritical branching Markov process Z dressed

with an immigration process I on a rich probability space with probability measures Pµ. A more detailed de-

scription and discussion of skeleton space is deferred to Section 5. In [26], the skeleton space was constructed

for superdiffusions using the function w(x) = − log Pδx (∃t ≥ 0 : 〈1, Xt〉 = 0). The key property of w used in

the skeleton construction is that w gives rise to the multiplicative Pµ-martingale {e−〈w,Xt〉 : t ≥ 0}. Later

the skeleton space is established in [16] for superdiffusions assuming only the existence of such a martingale

function w. The main reason why skeleton space is constructed only for superdiffusions in [26] and [16] is due

to the proof of [26, Lemma 6.1], where a comparison principle for elliptic differential operators is used. This

comparison principle allows one to conclude that if B1 and B2 are domains with supp(f) ⊆ B1 ⊆ B2, then

uB1

f (t, x) ≤ uB2

f (t, x) pointwise. Proposition 2.1 implies that this monotonicity in fact holds more generally

as in the set-up of this paper, where the underlying spatial motion can be discontinuous. Therefore we can

establish the existence of skeleton space for superprocesses defined in Section 5.

In Theorem 2.11 below we show that under Assumptions 1-3,

W
h/w
t (Z) := eλ1t〈

h

w
,Zt〉 for t ≥ 0

equalsWh
t (X) and so is a nonnegative Pµ-martingale for all µ ∈ Mh

F (E). LetW
h/w
∞ (Z) := limt→∞W

h/w
t (Z).

Theorem 2.11. Suppose Assumptions 1-3 hold. For every µ ∈ Mh
F (E) and t ≥ 0, Wh

t (X) = W
h/w
t (Z)

Pµ-a.s. and in particular Wh
∞(X) =W

h/w
∞ (Z) Pµ-a.s.

The proof of Theorem 2.11 will be given in Section 5. We will establish laws of large numbers under the

following moment conditions.

Assumption 4.

(i) (L logL condition) 〈log+ h, h2〉+ 〈
∫
(0,∞)

r log∗(rh(·))π(·, dr), h2〉 <∞.

(ii) 〈(
∫
(0,∞) r

2e−w(·)rπ(·, dr))2, 1 ∧ h4〉 <∞.

Theorem 2.12 (Weak law of large numbers). Suppose Assumptions 1-3 and Assumption 4(i) hold. Then

for all µ ∈ Mh
F (E) and all f ∈ B+(E) with f/h bounded,

lim
t→∞

eλ1t〈f,Xt〉 = 〈f, h〉Wh
∞(X) in L1(Pµ).

The proof of Theorem 2.12 will be given in Section 6. The next assumption assumes that the strong

law of large numbers holds for the supercritical branching Markov process Z along an increasing sequence

of discrete times.
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Assumption 5. For all µ ∈ Mc(E), σ > 0 and φ ∈ B+
b (E),

lim
n→∞

eλ1nσ〈
h

w
φ,Znσ〉 = 〈φ, h2〉Wh/w

∞ (Z) Pµ-a.s.

We will prove at the end of Section 6 that under Assumptions 1-3 and Assumption 4(i), Assumption 5 is

equivalent to a weaker condition as follows.

Assumption 5’. For all µ ∈ Mc(E), σ > 0 and φ ∈ B+
b (E), there exists m ∈ N such that

lim
n→∞

eλ1nσ〈
h

w
P hmσφ, Znσ〉 = 〈φ, h2〉Wh/w

∞ (Z) Pµ-a.s.

Assumption 6. The semigroup {P ht : t ≥ 0} satisfies that

lim
t→0

‖P ht f − f‖∞ = 0 for all f ∈ C0(E).

Here C0(E) := {f ∈ C(E) with limx→∂ f(x) = 0}.

The following is the main result of this paper, which extends the main results of [16, 28] to superprocesses

having possibly discontinuous spatial motions. Its proof will be given in Section 7.

Theorem 2.13 (Strong law of large numbers). Suppose Assumptions 1-6 hold. Then there exists Ω0 ⊂ Ω

of Pµ-full probability for every µ ∈ Mh
F (E) such that on Ω0, for every m-almost everywhere continuous

nonnegative measurable function f with f/h bounded, we have

lim
t→∞

eλ1t〈f,Xt〉 = 〈f, h〉Wh
∞(X). (2.28)

The convergence in (2.28) also holds in L1(Pµ).

3 Change of measures

Recall that h ∈ F is the minimizer in Assumption 2. Since h ∈ F , by Fukushima’s decomposition, we have

for q.e. x ∈ E, Πx-a.s.

h(ξt)− h(ξ0) =Mh
t +Nh

t for t ≥ 0,

where Mh
t is a martingale additive functional of ξ having finite energy and Nh

t is a continuous additive

functional of ξ having zero energy. It follows from (2.24) and [22, Theorem 5.4.2] that Nh
t is of bounded

variation, and

Nh
t = −λ1

∫ t

0

h(ξs)ds−

∫ t

0

h(ξs)β(ξs)ds for t ≥ 0.

Following [4, Section 2] (see also [10, Section 2]), we define a local martingale on the random time interval

[0, ζp) by

Mt :=

∫ t

0

1

h(ξs−)
dMh

s , t ∈ [0, ζp), (3.1)

where ζp is the predictable part of the life time ζ of ξ. Then the solution Rt of the stochastic differential

equation

Rt = 1 +

∫ t

0

Rs−dMs, t ∈ [0, ζp), (3.2)

is a positive local martingale on [0, ζp) and hence a supermartingale. As a result, the formula

dΠhx = RtdΠx on Ht ∩ {t < ζ} for x ∈ E
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uniquely determines a family of subprobability measures {Πhx : x ∈ E} on (Ω,H). We denote ξ under

{Πhx : x ∈ E} by ξh, that is

Πhx
[
f(ξht )

]
= Πx [Rtf(ξt) : t < ζ] for all t ≥ 0 and f ∈ B+

b (E).

It follows from [4, Theorem 2.6] that the process ξh is an irreducible recurrent m̃-symmetric right Markov

process, where m̃(dy) = h(y)2m(dy). Note that by (3.1), (3.2) and Doléan-Dade’s formula,

Rt = exp
(
Mt −

1

2
〈M c〉t

) ∏

0<s≤t

h(ξs)

h(ξs−)
exp

(
1−

h(ξs)

h(ξs−)

)
, t ∈ [0, ζp), (3.3)

where M c is the continuous martingale part of M . Applying Ito’s formula to log h(ξt), we obtain that for

q.e. x ∈ E, Πx-a.s. on [0, ζ),

log h(ξt)− log h(ξ0) =Mt −
1

2
〈M c〉t +

∑

s≤t

(
log

h(ξs)

h(ξs−)
−
h(ξs)− h(ξs−)

h(ξs−)

)
− λ1t−

∫ t

0

β(ξs)ds. (3.4)

By (3.3) and (3.4), we get

Rt = exp

(
λ1t+

∫ t

0

β(ξs)ds

)
h(ξt)

h(ξ0)
on [0, ζ).

Therefore for any f ∈ B+
b (E),

Πhx
(
f(ξht )

)
=
eλ1t

h(x)
Πx

(
e
∫
t
0
β(ξs)dsh(ξt)f(ξt)

)
=
eλ1t

h(x)
P βt (hf)(x) = P ht f(x).

This implies that the transition semigroup of ξh is exactly the semigroup {P ht : t ≥ 0} obtained from P βt
through Doob’s h-transform. Let (Eh,Fh) be the symmetric Dirichlet form in L2(E; m̃) generated by ξh.

Then f ∈ Fh if and only if fh ∈ F , and

Eh(f, f) = E(β)(fh, fh)− λ1

∫

E

f(x)2h(x)2m(dx).

In other words, Φh : f 7→ fh is an isometry from (Eh,Fh) onto (Eβ+λ1m,F) and from L2(E, m̃) onto

L2(E,m). Let σ(Eh) denote the spectrum of −L̃, where L̃ is the self-adjoint operator associated with the

Dirichlet form (Eh,Fh) in L2(E; m̃). We know from [4, Theorem 2.6] that the constant function 1 belongs

to Fh, and Eh(1, 1) = 0. Hence 0 ∈ σ(Eh) is a simple eigenvalue and 1 is the corresponding eigenfunction.

In particular,

λh1 := inf

{
Eh(u, u) : u ∈ Fh with

∫

E

u(x)2m̃(dx) = 1

}
= 0.

Let λh2 be the second bottom of σ(Eh), i.e.

λh2 := inf

{
Eh(u, u) : u ∈ Fh with

∫

E

u(x)m̃(dx) = 0 and

∫

E

u(x)2m̃(dx) = 1

}
.

In view of the isometry Φh, we have λh2 = λ2 − λ1. So Assumption 3 is equivalent to assuming λh2 > 0. The

h-transformed process ξh has a transition density function ph(t, x, y) with respect to m̃, which is positive,

symmetric and continuous in (x, y) for each t > 0 and is related to pβ(t, x, y) by

ph(t, x, y) = eλ1t
pβ(t, x, y)

h(x)h(y)
for x, y ∈ E and t ≥ 0. (3.5)

Define

ãt(x) := ph(t, x, x) for t > 0 and x ∈ E.
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Using the Poincaré inequality (2.26), we can prove that (cf. [10]) for every g ∈ L2(E, m̃),

|P ht g(x)− 〈g, h2〉| ≤ e−λh(t−s)ã2s(x)
1/2‖g‖L2(E,m̃). (3.6)

Moreover for t > s > 0 and x, y ∈ E,

∣∣ph(t, x, y)− 1
∣∣ ≤ e−λh(t−s)ãs(x)

1/2ãs(y)
1/2. (3.7)

For µ ∈ Mh
F (E) with µ 6= 0, we use Πhhµ to denote the probability measure where ξh is the recurrent

motion with starting point randomised according to h(x)µ(dx)
〈h,µ〉 . In other words,

Πhhµ(·) =
1

〈h, µ〉

∫

E

Πhx(·)h(x)µ(dx).

Since Wh
t (X) is a nonnegative Pµ-martingale, we can define a new probability measure Qµ by

dQµ :=
Wh
t (X)

〈h, µ〉
dPµ on σ(Xs; s ∈ [0, t]).

The next result can be proved in the same way as that for [16, Lemma 2.17].

Lemma 3.1. Suppose Assumption 2 holds. For all µ ∈ Mh
F (E) with µ 6= 0, f, g ∈ B+

b (E) and t ≥ 0, we

have

Qµ

[
e−〈f,Xt〉 〈gh,Xt〉

〈h,Xt〉

]
= Pµ

[
e−〈f,Xt〉

]
Πhhµ

[
g(ξt) exp

(
−

∫ t

0

∂ψ0

∂λ
(ξs, uf(t− s, ξs))ds

)]
,

where uf (t, x) is the unique nonnegative locally bounded solution to the integral equation (2.3).

It follows from Lemma 3.1 that

Qµ

[
e−〈f,Xt〉

]

= Pµ

[
e−〈f,Xt〉

]
Πhhµ

[
exp

(
−

∫ t

0

∂ψ0

∂λ
(ξs, uf (t− s, ξs))

)]

= Pµ

[
e−〈f,Xt〉

]
Πhhµ

[
exp

(
−

∫ t

0

2α(ξs)uf(t− s, ξs)ds−

∫ t

0

∫

(0,∞)

(
1− e−uf (t−s,ξs)y

)
yπ(ξs, dy)ds

)]
.

This formula offers a probabilistic view of the superprocess Xt under the new measure Qµ that is stated in

the following proposition.

Proposition 3.2. Suppose Assumption 2 holds and that E+ ⊂ E0. For every µ ∈ Mh
F (E) with µ 6= 0, there

exists a probability space with probability measure Qhµ that carries the following processes

(i) ((ξt)t≥0;Qhµ) is equal in distribution to ((ξt)t≥0; Π
h
hµ). We call ((ξt)t≥0;Qhµ) the spine.

(ii) (n;Qhµ) is a random measure such that given (ξ,Qhµ), n is a Poisson random measure which issues

MF (E)-valued processes Xn,t := {Xn,t
s ; s ≥ 0} at space-time point (ξt, t) with rate

dNξt × 2α(ξt)dt.

Here for every x ∈ E+ = {x ∈ E : α(x) > 0}, Nx is the Kuznetsov measure on W+
0 corresponding

to the (Pt, ψβ)-superprocess, while for x 6∈ E+ Nx is the null measure on W+
0 . Note that, given ξ, the

immigration happens only at space-time point (ξt, t) with α(ξt) > 0. Let Dn denote the almost surely

countable set of immigration times, and Dn
t := Dn ∩ [0, t]. Given ξ, the processes {Xn,t : t ∈ Dn} are

mutually independent. We refer to {Xn,t : t ∈ Dn} as the continuous immigration.
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(iii) (m;Qhµ) is a random measure such that given ξ, m is a Poisson random measure which issues MF (E)-

valued processes Xm,t := (Xm,t
s )s≥0 at space-time point (ξt, t) with initial mass y at rate

yπ(ξt, dy)× dPyδξt × dt.

Here Pyδx denotes the law of the (Pt, ψβ)-superprocess starting in yδx. Let D
m denote the almost surely

countable set of immigration times, and Dm
t := Dm ∩ [0, t]. Given ξ, the processes {Xm,t : t ∈ Dm}

are mutually independent and independent of n and {Xn,t : t ∈ Dn}. We refer to {Xm,t : t ∈ Dm} as

the discontinuous immigration.

(iv) ((Xt)t≥0;Qhµ) is equal in distribution to ((Xt)t≥0; Pµ). Moreover ((Xt)t≥0;Qhµ) is independent of ξ,

n, m and all immigration processes.

Let Xn
t :=

∑
s∈Dnt X

n,s
t−s and Xm

t :=
∑

s∈Dmt X
m,s
t−s . Define

Γt := Xt +Xn
t +Xm

t for t ≥ 0.

Then (Γ := (Γt)t≥0;Qhµ) is equal in distribution to (X := (Xt)t≥0; Qµ).

The proof of Proposition 3.2 is similar to that of [25, Theorem 5.2] so it is omitted here. For s ≥ 0, define

Ims := 〈1, Xm,s
0 〉 if s ∈ Dm and Ims := 0 elsewise.

Then, given ξ, {Ims , s ≥ 0} is a Poisson point process with characteristic measure yπ(ξs, dy). Let G be the

σ-field generated by ξ, the random measures n and m, and the process {Ims , s ≥ 0}.

Lemma 3.3. For µ ∈ Mh
F (E) with µ 6= 0, f ∈ B+

b (E) and t ≥ 0,

Qhµ [〈f,Γt〉|G] = 〈P βt f, µ〉+
∑

s∈Dnt

P βt−sf(ξs) +
∑

s∈Dmt

Ims P
β
t−sf(ξs) Qhµ-a.s. (3.8)

Proof. By (2.12), we have for every x ∈ E0, f ∈ B+
b (E) and t > 0,

Nx (〈f,Xt〉) = Pδx (〈f,Xs〉) = P βt f(x).

Thus by the definition of Γt, under Qhµ,

Qhµ [〈f,Γt〉|G] = Qhµ (〈f,Xt〉) +
∑

s∈Dnt

Qhµ
[
〈f,Xn,s

t−s〉|G
]
+
∑

s∈Dmt

Qhµ
[
〈f,Xm,s

t−s 〉|G
]

= Pµ (〈f,Xt〉) +
∑

s∈Dnt

Nξs (〈f,Xt−s〉) +
∑

s∈Dmt

PIms δξs (〈f,Xt−s〉)

= 〈P βt f, µ〉+
∑

s∈Dnt

P βt−sf(ξs) +
∑

s∈Dmt

Ims P
β
t−sf(ξs).

By the monotone convergence theorem, (3.8) holds for any f ∈ B+(E). We call formula (3.8) the spine

decomposition for ((Xt)t≥0; Qµ).

4 Martingale convergence of W h
t (X)

In this section we prove Theorem 2.9 under Assumptions 1-3.

Lemma 4.1. g(x) := h(x)−1Pδx
(
Wh

∞(X)
)
is a constant function on E.
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Proof. We first claim that for any µ ∈ Mh
F (E),

Pµ
(
Wh

∞(X)
)
=

∫

E

Pδx
(
Wh

∞(X)
)
µ(dx). (4.1)

The proof of this claim is the same as that of [30, Lemma 5.4], we omit its details here. By the Markov

property of X , we have for any t ≥ 0 and x ∈ E,

g(x) =
1

h(x)
Pδx

[
lim
s→∞

eλ1(t+s)〈h,Xt+s〉
]

=
eλ1t

h(x)
Pδx

[
PXt

(
lim
s→∞

Wh
s (X)

)]

=
eλ1t

h(x)
Pδx

[
PXt

(
Wh

∞(X)
)]
.

This together with (4.1) implies that

g(x) =
eλ1t

h(x)
Pδx (〈gh,Xt〉) =

eλ1t

h(x)
P βt (gh)(x) = P ht g(x).

This means that g is an invariant function for the irreducible recurrent process (ξh; Πh). Hence g is a constant

function on E.

Proof of Theorem 2.9: Without loss of generality, we assume µ ∈ Mh
F (E) and µ 6= 0. Since Wh

t (X) is a

nonnegative martingale, to show it is a closed martingale, it suffices to prove

Pµ
(
Wh

∞(X)
)
= 〈h, µ〉. (4.2)

First we claim that (4.2) is true for µB(dy) := 1B(y)h(y)m(dy) with B ⋐ E and m(B) 6= 0. It is straightfor-

ward to see from the change of measure methodology (see, for example, [11, Theorem 5.3.3] ) that the proof

for this claim is completed as soon as we can show that

QµB

(
lim sup
t→∞

Wh
t (X) <∞

)
= 1. (4.3)

Since ((Xt)t≥0; QµB ) is equal in distribution to ((Γt)t≥0;QhµB ), (4.3) is equivalent to that

QhµB

(
lim sup
t→∞

Wh
t (Γ) <∞

)
= 1. (4.4)

Recall that G is the σ-field generated by ξ, n, m and {Ims , s ≥ 0}. By the spine decomposition formula (3.8),

for any t > 0,

QhµB
(
Wh
t (Γ)|G

)
= eλ1t〈P βt h, µB〉+ eλ1t

∑

s∈Dnt

P βt−sh(ξs) + eλ1t
∑

s∈Dmt

Ims P
β
t−sh(ξs)

= 〈h, µB〉+
∑

s∈Dnt

eλ1sh(ξs) +
∑

s∈Dmt

eλ1sIms h(ξs)

≤ 〈h, µB〉+
∑

s∈Dn
eλ1sh(ξs) +

∑

s∈Dm
eλ1sIms h(ξs). (4.5)

Applying almost the same argument as in the proof of [30, Theorem 5.1], we can show that the last two

terms in (4.5) are finite almost surely, and hence lim supt→∞ QhµB
(
Wh
t (Γ)|G

)
< ∞ QhµB -a.s. By Fatou’s

lemma, QhµB
(
lim inft→∞Wh

t (Γ) <∞
)
= 1. Note that Wh

t (Γ)
−1 is a nonnegative QhµB -supermartingale.

Hence

QhµB

(
lim sup
t→∞

Wh
t (Γ) <∞

)
= 1.
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This proves (4.4) and consequently,

PµB
(
Wh

∞(X)
)
= 〈h, µB〉. (4.6)

Note that PµB
(
Wh

∞(X)
)
= 〈Pδx

(
Wh

∞(X)
)
, µB〉 by (4.1) and then

〈Pδx
(
Wh

∞(X)
)
, µB〉 = 〈h, µB〉. (4.7)

By Fatou’s lemma, for every x ∈ E, Pδx
(
Wh

∞(X)
)
≤ h(x). We get by (4.7) that Pδx

(
Wh

∞(X)
)
= h(x)

m-a.e. on B. Since B is arbitrary, Pδx
(
Wh

∞(X)
)
= h(x) m-a.e. on E and hence everywhere on E by Lemma

4.1. Therefore by (4.1), Pµ
(
Wh

∞(X)
)
= 〈h, µ〉 holds for all µ ∈ Mh

F (E). This completes the proof.

5 Skeleton space

In this section, we work under Assumptions 1-3. We first consider general superprocess case, for which as

a part of Assumption 1, Condition 1 holds and w is the bounded positive function in (2.14). By (2.2) and

(2.3), uw(t, x) = w(x) is the unique nonnegative bounded solution to the following equation:

w(x) = Ptw(x) −

∫ t

0

Ps(ψβ(·, w(·))(x)ds for every x ∈ E and t ≥ 0. (5.1)

Note that
ψβ(x, λ)

λ
= −β(x) + a(x)λ +

1

λ

∫

(0,∞)

(
e−λy − 1 + λy

)
π(x, dy), (5.2)

which is a bounded function function on E × (0,M ] for every M > 0. Let

Mt := w(ξt)−

∫ t

0

ψβ(ξs, w(ξs))ds,

which is bounded in t ∈ [0, T ] for every T > 0. Let {Ht : t ≥ 0} be the minimal augmented σ-fields generated

by the process ξ = {ξt, t ≥ 0;Πx, x ∈ E}. By the Markov property of ξt and (5.1), we have for every t > s ≥ 0

and x ∈ E,

Πx [Mt|Hs] = Πξs [w(ξt−s]−

∫ s

0

ψβ(ξr, w(ξr))dr −Πξs

[∫ t−s

0

ψβ(ξr, w(ξr))dr

]

= Pt−sw(ξs)−Πξs

[∫ t−s

0

ψβ(·, w(·))dr

]
−

∫ s

0

ψβ(ξr, w(ξr))dr

= w(ξs)−

∫ s

0

ψβ(ξr, w(ξr))dr =Ms.

In other words, {Mt; t ≥ 0} is a martingale additive functional of ξ. Observe that it follows from (5.2) that

γ(x) :=
ψβ(x,w(x))

w(x)

is a bounded function. Since w(ξt) =Mt +
∫ t
0 ψβ(ξs, w(ξs))ds, we have by Ito’s formula

d
(
w(ξt)e

−
∫ t
0
γ(ξs)ds

)
= −w(ξt)γ(ξt)e

−
∫ t
0
γ(ξs)dsdt+ e−

∫ t
0
γ(ξs)ds(dMt + ψβ(ξt, w(ξt))dt

= e−
∫
t
0
γ(ξs)dsdMt.

Thus we have shown that t 7→ w(ξt)e
−

∫
t
0
γ(ξs)ds is a martingale.
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Next we consider the superdiffusion case, for which Assumption 1 is just Condition 1’; that is, there

is a locally bounded positive function w satisfying (2.14). By truncating w and then using the monotone

convergence theorem, one can prove that

w(x) = Πx [w(ξt∧τB )]−Πx

[∫ t∧τB

0

ψβ (ξs, w(ξs)) ds

]

for any bounded open set B ⋐ E. Since x 7→ w(x) is bounded on B, one can generalize the above argument

and show that t 7→ w(ξt∧τB ) exp
(
−
∫ t∧τB
0

γ(ξs)ds
)

is a nonnegative Πx-martingale. This implies that

{w(ξt) exp
(
−
∫ t
0 γ(ξs)ds

)
: t ≥ 0} is a nonnegative Πx-local martingale and hence a Πx-supermartingale.

Hence in both cases we can define a family of (sub)probability measures {Πwx : x ∈ E} on H by

dΠwx :=
w(ξt)

w(x)
exp

(
−

∫ t

0

ψβ(ξs, w(ξs))

w(ξs)
ds

)
dΠx on Ht for every t ≥ 0.

Clearly, the transformed process ξw := ((ξt)t≥0; Π
w
x , x ∈ E) is a Borel right process. Through the arguments

after Remark 2.10, we can also construct the skeleton space for a (Pt, ψβ)-superprocesses as follows.

Proposition 5.1. Suppose Assumptions 1-3 hold. Let Mloc
A (E) denote the set of locally finite integer-valued

measures on (E,B(E)). For every µ ∈ MF (E) and every ν ∈ Mloc
A (E), there exists a probability space with

probability measure Pµ,ν that carries the following processes:

(i) (Z := (Zt)t≥0;Pµ,ν) is a supercritical branching Markov process with spatial motion ξw, branching rate

function q(x) and offspring distribution function {pk(x) : k ≥ 2} uniquely defined by

G(x, s) := q(x)

∞∑

k=2

pk(x)(s
k − s) :=

1

w(x)
(ψ0(x, (1 − s)w(x)) − (1− s)ψ0(x,w(x))) , (5.3)

and Pµ,ν(Z0 = ν) = 1. We use the classical Ulam-Harris notations to refer to the particles in the

genealogical tree T of Z. For a particle u ∈ T , we use bu and du for its birth and death times, and

zu(t) for its spatial location at time t ∈ [bu, du].

(ii) (X∗ := (X∗
t )t≥0;Pµ,ν) is a (Pt, ψ

∗
β∗)-superprocess with Pµ,ν(X

∗
0 = µ) = 1 such that for all µ ∈ MF (E),

f ∈ B+
b (E) and t ≥ 0,

Pµ,ν

[
e−〈f,X∗

t 〉
]
= e−〈u∗

f (t,·),µ〉, (5.4)

where u∗f (t, x) is the unique nonnegative locally bounded solution to equation (2.17), and ψ∗
β∗(x, λ) :=

−β∗(x)λ + ψ∗
0(x, λ) is given in Proposition 2.2. By (2.17) and (5.4), the mean of 〈f,X∗

t 〉 can be

expressed by

Pµ,ν (〈f,X
∗
t 〉) = 〈P β

∗

t f, µ〉 for f ∈ B+
b (E).

The distribution of X∗ under Pµ,ν does not depend on ν. Moreover, under Pµ,ν , X
∗ is independent of

Z.

(iii) (I := (It)t≥0;Pµ,ν) is a MF (E)-valued process with Pµ,ν(I0 = 0) = 1, which is given by I = Ia + Ib

where Ia and Ib are described as follows:

(a) (a;Pµ,ν) is a random measure such that given Z, a is a Poisson random measure that issues

for every u ∈ T , MF (E)-valued processes Xa,u,r := (Xa,u,r
t )t≥0 along the space-time trajectory

{(zu(r), r) : r ∈ (bu, du]} with rate

(
2α(zu(r))dN

∗
zu(r)

+

∫

(0,∞)

yπ∗(zu(r), dy) × dP∗
yδzu(r)

)
× dr,
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where P∗
µ is the law of the (Pt, ψ

∗
β∗)-superprocess starting in µ, for every x ∈ E+ = {x ∈ E :

α(x) > 0}, N∗
x denotes the Kuznetsov measure on W+

0 corresponding to the (Pt, ψ
∗
β∗)-superprocess,

and for x 6∈ E+, N
∗
x is the null measure on W+

0 . The processes {Xa,u,r : u ∈ T , r ∈ (bu, du]} are

independent of X∗, and, given Z, are mutually independent.

Iat :=
∑

u∈T

∑

r∈(bu,du∧t]
Xa,u,r
t−r for t ≥ 0.

(b) (b;Pµ,ν) is a random measure such that given Z, b issues for every u ∈ T , at space-time point

(zu(du), du), an MF (E)-valued process Xb,u := (Xb,u
t )t≥0 with law P∗

Yuδzu(du)
such that given

that u gives birth to k particles at its death time, the independent R+-valued random variable Yu
is distributed according to the measure

1

q(x)w(x)pk(x)

(
α(x)w(x)2δ0(dy)1{k=2} + w(x)k

yk

k!
π∗(x, dy)

)∣∣∣∣
x=zu(du)

.

The processes {Xb,u : u ∈ T } are independent of X∗, and, given Z, are mutually independent

and independent of a.

Ibt :=
∑

u∈T
1{du≤t}X

b,u
t−du for t ≥ 0.

For every µ ∈ MF (E), let Pµ denote the measure Pµ,ν with ν replaced by a Poisson random measure with

intensity w(x)µ(dx). Then
(
X̂ := X∗ + I;Pµ

)
is Markovian and has the same distribution as (X ; Pµ).

Moreover, under Pµ, given X̂t, the measure Zt is a Poisson random measure with intensity w(x)X̂t(dx).

With the results from Subsection 2.3 and Appendix A.1 on the existence of N∗
x under Assumption 1, the

proof of Proposition 5.1 is very similar to that of [26, Corollary 2] and we omit its long computations here.

We call the probability space in Proposition 5.1 the skeleton space. The process Z is called skeleton process

and I is called immigration process. We call (X∗ + I;Pµ) the skeletion decomposition of X . Since (X̂ ;Pµ)

is equal in distribution to the (Pt, ψβ)-superprocess (X ; Pµ), we may work on this skeleton space whenever

it is convenient. For notational simplification, we will abuse the notation and denote X̂ by X . Since the

distributions of X∗ (resp. I) under Pµ,ν do not depend on ν (resp. µ), we sometimes write Pµ,· (resp. P·,ν)

for Pµ,ν .

For t ≥ 0, we write Zt =
∑Nt

i=1 δzi(t) where Nt denotes the number of skeleton particles at time t

and {zi(t) : i = 1, · · · , Nt} their spatial locations. Let m(x) :=
∑∞

k=2 kpk(x). We have by (5.3) that

q(x)(m(x)−1) = ∂G
∂s (x, s)|s=1 = ψ0(x,w(x))/w(x). Then by the many-to-one formula for branching Markov

process (cf. [31, Lemma 3.3]), for f ∈ B+
b (E), x ∈ E and t ≥ 0,

P·,δx (〈f, Zt〉) = Πwx

[
exp

(∫ t

0

q(ξs)(m(ξs)− 1)ds

)
f(ξt)

]

=
1

w(x)
Πx

[
exp

(∫ t

0

−ψβ(ξs, w(ξs)) + ψ0(ξs, w(ξs))

w(ξs)
ds

)
w(ξt)f(ξt)

]

=
1

w(x)
P βt (wf)(x). (5.5)

Note that under Pµ with µ ∈ MF (E), Z0 is a Poisson random measure with intensity w(x)µ(dx). We get

from (5.5) that

Pµ (〈f, Zt〉) = Pµ

(
N0∑

i=1

P·,δzi(0) (〈f, Zt〉)

)
= Pµ

(
〈
1

w
P βt (wf), Z0〉

)
= 〈P βt (wf), µ〉. (5.6)

For t ≥ 0, let Ft denote the σ-filed generated by Z, X∗ and I up to time t. Denote by I∗,ts the immigration

at time t + s that occurred along the skeleton before time t. For i ∈ {1, 2, · · · , Nt}, denote by Ii,ts the
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immigration at time t + s that occurred along the subtree of the skeleton rooted at the ith particle with

location zi(t). We have

Xs+t = X∗
s+t + I∗,ts +

Nt∑

i=1

Ii,ts for all s, t ≥ 0.

We know by [16] that, given Ft, (X∗
s+t+I

∗,t
s )s≥0 is equal in distribution to ((X∗

s )s≥0;PXt) and I
i,t := (Ii,ts )s≥0

is equal in distribution to (I;P·,δzi(t)). Moreover, the processes {Ii,t : i = 1, 2, · · · , Nt} are mutually

independent. Using these properties, we have for µ ∈ MF (E), f ∈ B+
b (E) and t, s ≥ 0, under Pµ

Pµ (〈f,Xt+s〉|Ft) = Pµ
(
〈f,X∗

t+s + I∗,ts 〉|Ft
)
+ Pµ

(
Nt∑

i=1

〈f, Ii,ts 〉

∣∣∣∣∣Ft
)

= PXt (〈f,X
∗
s 〉) +

Nt∑

i=1

P·,δzi(t) (〈f, Is〉) . (5.7)

Note that under Pµ, N0 is a Poisson random variable with mean 〈w, µ〉. We have for each x ∈ E,

Pδx (〈f, It〉) = Pδx

(
N0∑

i=1

P·,δzi(0) (〈f, It〉)

)

= Pδx (N0P·,δx (〈f, It〉)) = w(x)P·,δx (〈f, It〉) . (5.8)

Thus P·,δx (〈f, It〉) = w(x)−1Pδx (〈f, It〉) = w(x)−1Pδx (〈f,Xt −X∗
t 〉) = w(x)−1(P βt f(x) − P β

∗

t f(x)). Using

this and (5.7), we have for every µ ∈ MF (E), f ∈ B+
b (E) and s, t ≥ 0,

Pµ [〈f,Xt+s〉|Ft] = 〈P β
∗

s f,Xt〉+ 〈
P βs f

w
, Zt〉 − 〈

P β
∗

s f

w
, Zt〉 Pµ-a.s. (5.9)

By the monotone convergence theorem, the boundedness of f in (5.9) is unnecessary and (5.9) holds for

f ∈ B+(E) which satisfies 〈P βt f, µ〉 <∞ for any t ≥ 0,

Lemma 5.2. Suppose Assumptions 1-3 hold. For every f ∈ B+(E) so that f/h is bounded, define

θ∗f (t, x) :=
eλ1t

h(x)
P β

∗

t f(x) for x ∈ E and t ≥ 0.

Then θ∗f (t, x) is bounded on [0,∞)× E, and for every x ∈ E,

θ∗f (t, x) → 0 as t→ ∞.

Proof. Let g(x) := β(x)−β∗(x) = 2α(x)w(x)+
∫
(0,∞)

(
1− e−w(x)y

)
yπ(x, dy) ∈ B+(E) and c1 := supx∈E f(x)/h(x) ∈

[0,∞). By the definition, for every x ∈ E and t ≥ 0

θ∗f (t, x) =
eλ1t

h(x)
Πx

[
exp

(∫ t

0

β∗(ξs)ds

)
f(ξt)

]

=
eλ1t

h(x)
Πx

[
exp

(∫ t

0

β(ξs)− g(ξs)ds

)
h(ξt)

f(ξt)

h(ξt)

]

= Πhx

[
exp

(
−

∫ t

0

g(ξs)ds

)
f(ξt)

h(ξt)

]

≤ c1Π
h
x

[
exp

(
−

∫ t

0

g(ξs)ds

)]
.

Immediately θ∗f (t, x) ≤ c1 for all (t, x) ∈ [0,∞) × E. Let l(x) := Πhx
[
exp

(
−
∫∞
0 g(ξs)ds

)]
. To prove the

second claim of this lemma, it suffices to prove that l(x) ≡ 0 on E. Let A := {x ∈ E : g(x) > 0} = {x ∈ E :
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α(x) + π(x, (0,∞)) > 0}. We have m̃(A) > 0 since m(A) > 0. For an arbitraty M > 0 and x ∈ E, define

PM (x) := Πhx
(∫∞

0 g(ξs)ds > M
)
. By the Markov property of ξ, for t ≥ 0 and x ∈ E,

P ht PM (x) = Πhx

[
Πhξt

(∫ ∞

0

g(ξs)ds > M

)]

= Πhx

(∫ ∞

t

g(ξs)ds > M

)

≤ PM (x).

Moreover, limt→0 P
h
t PM (x) = PM (x) by the monotone convergence theorem. Hence PM (x) is an excessive

function for the irreducible recurrent process (ξh; Πh). It follows from [5, Lemma 3.5 and Lemma A.2.17]

that PM is a constant function on E. We claim that there exists M1 > 0 and c2 ∈ (0, 1] such that

PM1(x) ≥ c2 > 0 for all x ∈ E. (5.10)

If (5.10) is not true, that is, PM (x) ≡ 0 for all M > 0, then Πhx
(∫∞

0 g(ξs)ds = 0
)
= 1. This contradicts the

fact that Πhx
(∫∞

0
g(ξs)ds

)
=
∫∞
0

∫
A
ph(s, x, y)g(y)m̃(dy)ds > 0 since m̃(A) > 0 and ph(s, x, ·) is positive on

A. In view of (5.10), we have

l(x) = Πhx

[
exp

(
−

∫ ∞

0

g(ξs)ds

)]
≤ c2e

−M1 + (1− c2) =: c3 < 1.

Thus by the Markov property of ξ, for any t > 0,

l(x) = Πhx

[
exp

(
−

∫ t

0

g(ξs)ds

)
exp

(
−

∫ ∞

t

g(ξs)ds

)]

= Πhx

[
exp

(
−

∫ t

0

g(ξs)ds

)
l(ξt)

]

≤ c3Π
h
x

[
exp

(
−

∫ t

0

g(ξs)ds

)]
. (5.11)

Letting t → ∞ in (5.11), we get l(x) ≤ c23 for all x ∈ E. Applying the above argument recursively for n

times, we get l(x) ≤ cn3 for all x ∈ E. Hence we conclude l(x) ≡ 0 by letting n→ ∞.

Proof of Theorem 2.11: We only need to prove the first claim. For any t, s ≥ 0, by the skeleton decomposition

(5.9), we have under Pµ

Wh
t (X) = Pµ

(
Wh
t+s(X)|Ft

)

= eλ1(t+s)Pµ (〈h,Xt+s〉|Ft)

= eλ1(t+s)

(
〈P β

∗

s h,Xt〉+ 〈
P βs h

w
,Zt〉 − 〈

P β
∗

s h

w
,Zt〉

)

= eλ1t〈θ∗h(s, ·)h,Xt〉+ eλ1t〈
h

w
,Zt〉 − eλ1t〈θ∗h(s, ·)

h

w
,Zt〉

= eλ1t〈θ∗h(s, ·)h,Xt〉+W
h/w
t (Z)− eλ1t〈θ∗h(s, ·)

h

w
,Zt〉. (5.12)

Letting s → ∞, the first term and the third term in (5.12) converge to 0 Pµ-almost surely by Lemma 5.2

and the dominated convergence theorem and hence we get Wh
t (X) =W

h/w
t (Z) Pµ-a.s.

6 Weak law of large numbers

Throughout this section, we assume Assumptions 1-3 and Assumption 4(i) hold.
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Lemma 6.1. For any φ ∈ B+
b (E) and t > 0,

∫

E

Pδx
(
〈φh,Xt〉 log

+〈φh,Xt〉
)
h(x)m(dx) <∞.

Proof. Note that for φ ∈ B+
b (E) and x ∈ E,

Pδx
(
〈φh,Xt〉 log

+〈φh,Xt〉
)

≤ e−λ1t‖φ‖∞Pδx
(
eλ1t〈h,Xt〉 log

+〈φh,Xt〉
)

= e−λ1t‖φ‖∞h(x)Qδx
(
log+〈φh,Xt〉

)

= e−λ1t‖φ‖∞h(x)Qhδx
(
log+〈φh,Γt〉

)
. (6.1)

Using the fact log+(a+ b) ≤ log+ a+ log+ b + log 2 for a, b ≥ 0 and Jensen inequality, we have

Qhδx
(
log+〈φh,Γt〉

)
= Qhδx [Qhδx (log (〈φh,Γt〉 ∨ 1) |G)]

≤ Qhδx [logQhδx (〈φh,Γt〉 ∨ 1|G)]

≤ Qhδx
[
log+ (Qhδx (〈φh,Γt〉|G) + 1)

]

≤ Qhδx
[
log+ Qhδx (〈φh,Γt〉|G)

]
+ log 2. (6.2)

Thus by (6.1) and (6.2), we only need to prove that
∫

E

Qhδx
[
log+ Qhδx (〈φh,Γt〉|G)

]
h(x)2m(dx) <∞. (6.3)

By the spine decomposition formula (3.8), we have under Qhδx

Qhδx (〈φh,Γt〉|G) ≤ ‖φ‖∞Qhδx (〈h,Γt〉|G)

= ‖φ‖∞e
−λ1t


h(x) +

∑

s∈Dnt

eλ1sh(ξs) +
∑

s∈Dmt

eλ1sIms h(ξs)


 .

Using the fact that log+(ab) ≤ log+ a+ log+ b for a, b ≥ 0, we have

log+ Qhδx (〈φh,Γt〉|G) ≤ log+
(
e−λ1t‖φ‖∞

)
+ log+ h(x) +

∑

s∈Dnt

log+
(
eλ1sh(ξs)

)

+
∑

s∈Dmt

log+
(
eλ1sIms h(ξs)

)
+

∑

s∈Dnt ∪Dmt

log 2.

Assumption 4(i) implies that
∫
E log+ h(x)h(x)2m(dx) <∞. Hence to prove (6.3), it suffices to prove

∫

E

Qhδx


 ∑

s∈Dnt

(
log+(eλ1sh(ξs)) + 1

)
+
∑

s∈Dmt

(
log+(eλ1sIms h(ξs)) + 1

)

 m̃(dx) <∞. (6.4)

Since λ1 < 0, we have by Fubini’s theorem and the m̃-symmetry of (ξh; Πh) that

∫

E

Qhδx


 ∑

s∈Dnt

(
log+(eλ1sh(ξs)) + 1

)

 m̃(dx)

=

∫

E

Qhδx

[∫ t

0

2α(ξs)
(
log+(eλ1sh(ξs)) + 1

)]
m̃(dx)

= 2

∫ t

0

ds

∫

E

Πhx
[
α(ξs)

(
log+(eλ1sh(ξs)) + 1

)]
m̃(dx)

= 2

∫ t

0

ds

∫

E

α(x)
(
log+(eλ1sh(x)) + 1

)
m̃(dx)
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≤ 2

∫ t

0

ds

∫

E

α(x)
(
log+ h(x) + 1

)
m̃(dx)

≤ 2‖α‖∞t

(
1 +

∫

E

log+ h(x)h(x)2m(dx)

)
<∞.

Similarly by (2.27), we have

∫

E

Qhδx


 ∑

s∈Dmt

(
log+(eλ1sIms h(ξs)) + 1

)

 m̃(dx)

=

∫

E

Πhx

[∫ t

0

ds

(∫

(0,∞)

log+(eλ1srh(ξs))rπ(ξs, dr) + 1

)]
m̃(dx)

= t+

∫ t

0

ds

∫

E

Πhx

[∫

(0,∞)

r log+(eλ1srh(ξs))π(ξs, dr)

]
m̃(dx)

= t+

∫ t

0

ds〈

∫

(0,∞)

r log+(eλ1srh(·))π(·, dr), h2〉

≤ t+ t〈

∫

(0,∞)

r log+(rh(·))π(·, dr), h2〉

≤ t+ t〈

∫

(0,∞)

r log∗(rh(·))π(·, dr), h2〉 <∞.

This completes the proof for (6.4).

Lemma 6.2. For any µ ∈ Mc(E) and φ ∈ B+
b (E),

lim
s→∞

lim
t→∞

eλ1(s+t)〈φh,X∗
s+t + I∗,ts 〉 = 0 in L1(Pµ).

Proof. Recall that given Ft, (X∗
s+t + I∗,ts )s≥0 is equal in distribution to ((X∗

s )s≥0;PXt). Thus by Markov

property,

eλ1(s+t)Pµ
(
〈φh,X∗

s+t + I∗,ts 〉
)

= eλ1(s+t)Pµ
[
Pµ
(
〈φh,X∗

s+t + I∗,ts 〉|Ft
)]

= eλ1(s+t)Pµ [PXt (〈φh,X
∗
s 〉)]

= eλ1(s+t)Pµ

[
〈P β

∗

s (φh) , Xt〉
]

= eλ1tPµ
(
〈hθ∗φh(s, ·), Xt〉

)

= eλ1t〈P βt
(
hθ∗φh(s, ·)

)
, µ〉

= 〈hP ht
(
θ∗φh(s, ·)

)
, µ〉.

Thus we have

lim sup
t→∞

eλ1(s+t)Pµ
(
〈φh,X∗

s+t + I∗,ts 〉
)

= lim sup
t→∞

〈hP ht
(
θ∗φh(s, ·)

)
, µ〉

≤ 〈lim sup
t→∞

P ht
(
θ∗φh(s, ·)

)
, hµ〉. (6.5)

We get by (3.6) that for t > 1 and x ∈ E

P ht
(
θ∗φh(s, ·)

)
(x) ≤

∫

E

θ∗φh(s, x)m̃(dx) + e−λh(t−1)ã2(x)
1/2‖θ∗φh(s, ·)‖L2(E,m̃).

This implies that

lim sup
t→∞

P ht
(
θ∗φh(s, ·)

)
(x) ≤

∫

E

θ∗φh(s, x)m̃(dx) (6.6)
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for all x ∈ E. We know from Lemma 5.2 that θ∗φh(s, x) is bounded. and lims→∞ θ∗φh(s, x) = 0. Hence by

(6.5), (6.6) and the bounded convergence theorem,

lim sup
s→∞

lim sup
t→∞

eλ1(s+t)Pµ
(
〈φh,X∗

s+t + I∗,ts 〉
)

≤ lim sup
s→∞

∫

E

θ∗φh(s, x)m̃(dx)〈h, µ〉

≤

∫

E

lim sup
s→∞

θ∗φh(s, x)m̃(dx)〈h, µ〉 = 0.

Lemma 6.3. For any µ ∈ Mc(E), φ ∈ B+
b (E) and s > 0,

lim
t→∞

eλ1(s+t)

[
Nt∑

i=1

〈φh, Ii,ts 〉 −
Nt∑

i=1

Pµ
(
〈φh, Ii,ts 〉|Ft〉

)
]
= 0 in L1(Pµ).

Proof. Fix φ ∈ B+
b (E). For s, t > 0, define

Ss,t := eλ1(s+t)
Nt∑

i=1

〈φh, Ii,ts 〉,

Ŝs,t := eλ1(s+t)
Nt∑

i=1

〈φh, Ii,ts 〉1{〈φh,Ii,ts 〉<e−λ1t}.

Clearly by definition, Ŝs,t ≤ Ss,t. Recall that given Ft, {I
i,t : i = 1, · · · , Nt} are independent and Ii,t is

equal in distribution to (I;P·,δzi(t)). By this, we have

Pµ

[(
Ŝs,t − Pµ

(
Ŝs,t|Ft

))2]
= Pµ

[
Var

(
Ŝs,t|Ft

)]

≤ e2λ1(s+t)Pµ

[
Nt∑

i=1

Pµ

(
〈φh, Ii,ts 〉21{〈φh,Ii,ts 〉<e−λ1t}|Ft

)]

= e2λ1(s+t)Pµ

[
Nt∑

i=1

P·,δzi(t)
(
〈φh, Is〉

21{〈φh,Is〉<e−λ1t}
)
]
. (6.7)

Let gs,t(x) := w(x)P·,δx
(
〈φh, Is〉21{〈φh,Is〉<e−λ1t}

)
for x ∈ E. Then by (5.6)

RHS of (6.7) = e2λ1(s+t)Pµ

(
〈
gs,t
w
,Zt〉

)

= e2λ1(s+t)〈P βt (gs,t), µ〉

= eλ1(t+2s)〈P ht (
gs,t
h

), hµ〉. (6.8)

Clearly by (5.8),

gs,t(x) ≤ e−λ1tw(x)P·,δx (〈φh, Is〉) = e−λ1tPδx (〈φh, Is〉) ≤ e−λ1tPδx (〈φh,Xs〉) ≤ e−λ1(s+t)‖φ‖∞h(x)

for all x ∈ E. For x ∈ E and t > 1, by (3.6),

P ht

(gs,t
h

)
(x) ≤ 〈gs,t, h〉+ e−λh(t−1)ã2(x)

1/2‖gs,t‖L2(E,m)

≤ 〈gs,t, h〉+ e−λh(t−1)−λ1(s+t)‖φ‖∞ã2(x)
1/2. (6.9)

Hence by (6.7)-(6.9), we get

Pµ

[(
Ŝs,t − Pµ

(
Ŝs,t|Ft

))2]
≤ eλ1(t+2s)〈h, µ〉〈gs,t, h〉+ e−λh(t−1)+λ1s‖φ‖∞〈ã

1/2
2 h, µ〉. (6.10)
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Here 〈ã
1/2
2 h, µ〉 =

∫
E p

h(2, x, x)1/2h(x)µ(dx) < ∞ since both x 7→ ph(2, x, x) and h are bounded on the

compact support of µ due to the continuity of x 7→ ph(2, x, x) and h. Note that by Fubini’s theorem

∫ ∞

1

eλ1t〈gs,t, h〉dt

=

∫ ∞

1

eλ1tdt

∫

E

h(x)w(x)m(dx)

∫

[0,e−λ1t)

y2P·,δx (〈φh, Is〉 ∈ dy)

=

∫

E

h(x)w(x)m(dx)

∫ ∞

e−λ1

1

−λ1s2
ds

∫

[0,s)

y2P·,δx (〈φh, Is〉 ∈ dy)

=

∫

E

h(x)w(x)m(dx)

∫

[0,∞)

y2P·,δx (〈φh, Is〉 ∈ dy)

∫ ∞

e−λ1∨y

1

−λ1s2
ds

≤
1

−λ1

∫

E

h(x)w(x)m(dx)

∫

[0,∞)

yP·,δx (〈φh, Is〉 ∈ dy)

=
1

−λ1

∫

E

w(x)P·,δx (〈φh, Is〉) h(x)m(dx).

By (5.8) the integral in the right hand side equals

∫

E

Pδx (〈φh, Is〉)h(x)m(dx) ≤ ‖φ‖∞

∫

E

Pδx (〈h,Xs〉)h(x)m(dx)

= ‖φ‖∞e
−λ1s

∫

E

h(x)2m(dx) <∞. (6.11)

Hence we get lim supt→∞ eλ1t〈gs,t, h〉 = 0. This together with (6.10) yields that

lim sup
t→∞

Pµ

[(
Ŝs,t − Pµ

(
Ŝs,t|Ft

))2]
= 0,

and consequently

lim
t→∞

(
Ŝs,t − Pµ

(
Ŝs,t|Ft

))
= 0 in L1(Pµ). (6.12)

Recall that under Pδz , Z0 is a Poisson random measure with intensity w(x)δx(dy). Thus we have

Pδx
[
〈φh, Is〉1{〈φh,Is〉≥e−λ1t}

]
= Pδx

[
N0∑

i=1

〈φh, Ii,0s 〉1{∑N0
i=1〈φh,I

i,0
s 〉≥e−λ1t}

]

≥ Pδx

[
N0∑

i=1

〈φh, Ii,0s 〉1{〈φh,Ii,0s 〉≥e−λ1t}

]

= Pδx

[
N0∑

i=1

P·,δzi(0)
[
〈φh, Is〉1{〈φh,Is〉≥e−λ1t}

]
]

= w(x)P·,δx
[
〈φh, Is〉1{〈φh,Is〉≥e−λ1t}

]
.

Using this and Markov property, we have

Pµ

(
Ss,t − Ŝs,t

)
= Pµ

[
Pµ (Ss,t|Ft)− Pµ

(
Ŝs,t|Ft

)]

= eλ1(s+t)Pµ

[
Nt∑

i=1

P·,δzi(t)
(
〈φh, Is〉1{〈φh,Is〉≥e−λ1t}

)
]

≤ eλ1(s+t)Pµ

[
Nt∑

i=1

w(zi(t))
−1Pδzi(t)

(
〈φh, Is〉1{〈φh,Is〉≥e−λ1t}

)
]
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= eλ1(s+t)Pµ

(
〈
fs,t
w
,Zt〉

)

= eλ1(s+t)〈P βt fs,t, µ〉

= eλ1s〈P ht

(
fs,t
h

)
, hµ〉, (6.13)

where fs,t(x) := Pδx
(
〈φh, Is〉1{〈φh,Is〉≥e−λ1t}

)
. We observe that fs,t(x) ≤ Pδx (〈φh,Xs〉) ≤ ‖φ‖∞e−λ1sh(x)

for every x ∈ E. By (3.6) again, we get for x ∈ E and t > 1,

P ht

(
fs,t
h

)
(x) ≤ 〈fs,t, h〉+ e−λh(t−1)ã2(x)

1/2‖fs,t‖L2(E,m)

≤ 〈fs,t, h〉+ e−λh(t−1)−λ1s‖φ‖∞ã2(x)
1/2.

This together with (6.13) yields that for t > 1,

Pµ

(
Ss,t − Ŝs,t

)
= Pµ

[
Pµ (Ss,t|Ft)− Pµ

(
Ŝs,t|Ft

)]

≤ eλ1s〈h, µ〉〈fs,t, h〉+ e−λh(t−1)‖φ‖∞〈ã
1/2
2 h, µ〉. (6.14)

It follows from Fubini’s theorem and Lemma 6.1 that
∫ ∞

0

〈fs,t, h〉dt =

∫ ∞

0

dt

∫

E

h(x)m(dx)

∫

[e−λ1t,∞)

yPδx (〈φh, Is〉 ∈ dy)

=

∫

E

h(x)m(dx)

∫ ∞

1

1

−λ1s
ds

∫

[s,∞)

yPδx (〈φh, Is〉 ∈ dy)

=
1

−λ1

∫

E

h(x)m(dx)

∫

[1,∞)

yPδx (〈φh, Is〉 ∈ dy)

∫ y

1

1

s
ds

=
1

−λ1

∫

E

h(x)m(dx)

∫

[1,∞)

y log yPδx (〈φh, Is〉 ∈ dy)

=
1

−λ1

∫

E

Pδx
(
〈φh, Is〉 log

+〈φh, Is〉
)
h(x)m(dx)

≤
1

−λ1

∫

E

Pδx
(
〈φh,Xs〉 log

+〈φh,Xs〉
)
h(x)m(dx) <∞. (6.15)

Immediately, limt→∞〈fs,t, h〉 = 0. Hence by (6.14) we get

lim
t→∞

Pµ

(
Ss,t − Ŝs,t

)
= lim
t→∞

Pµ

[
Pµ (Ss,t|Ft)− Pµ

(
Ŝs,t|Ft

)]
= 0.

In other words,

lim
t→∞

(
Ss,t − Ŝs,t

)
= lim
t→∞

(
Pµ (Ss,t|Ft)− Pµ

(
Ŝs,t|Ft

))
= 0 in L1(Pµ). (6.16)

Combining (6.12) and (6.16), we get limt→∞ (Ss,t − Pµ (Ss,t|Ft)) = 0 in L1(Pµ). This completes the proof.

Lemma 6.4. For any µ ∈ Mc(E) and φ ∈ B+
b (E),

lim
s→∞

lim
t→∞

eλ1(s+t)
Nt∑

i=1

Pµ
(
〈φh, Ii,ts 〉|Ft

)
= 〈φh, h〉Wh

∞(X) in L1(Pµ). (6.17)

Proof. In view of Theorem 2.11 and Theorem 2.9, under Assumptions 1-3 and Assumption 4(i), (6.17) is

equivalent to

lim
s→∞

lim
t→∞

[
eλ1(s+t)

Nt∑

i=1

Pµ
(
〈φh, Ii,ts 〉|Ft

)
− 〈φh, h〉W

h/w
t (Z)

]
= 0 in L1(Pµ). (6.18)
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Fix µ ∈ Mc(E) and φ ∈ B+
b (E). Note that for x ∈ E and s > 0,

Pδx (〈φh, Is〉) = Pδx (〈φh,Xs〉)− Pδx (〈φh,X
∗
s 〉)

= P βs (φh)(x) − P β
∗

s (φh)(x).

By this and Markov property, we have

eλ1(s+t)
Nt∑

i=1

Pµ
(
〈φh, Ii,ts 〉|Ft

)
= eλ1(s+t)

Nt∑

i=1

P·,δzi(t) (〈φh, Is〉)

= eλ1(s+t)
Nt∑

i=1

w(zi(t))
−1Pδzi(t) (〈φh, Is〉)

= eλ1(s+t)〈
1

w

(
P βs (φh)− P β

∗

s (φh)
)
, Zt〉

= eλ1t〈
h

w

(
P hs φ− θ∗φh(s, ·)

)
, Zt〉. (6.19)

Let g(s, x) :=
∣∣∣P hs φ(x) − θ∗φh(s, x)− 〈φh, h〉

∣∣∣ for s > 0 and x ∈ E. Clearly g is bounded from above by

3‖φ‖∞. By (6.19),

I(s, t) := Pµ

[
|eλ1(s+t)

Nt∑

i=1

Pµ
(
〈φh, Ii,ts 〉|Ft

)
− 〈φh, h〉W

h/w
t (Z)|

]

= eλ1tPµ

(∣∣∣∣〈
h

w

(
P hs φ− θ∗φh(s)− 〈φh, h〉

)
, Zt〉

∣∣∣∣
)

≤ eλ1tPµ

(
〈
h

w
g(s, ·), Zt〉

)

= eλ1t〈P βt (hg(s, ·)), µ〉

= 〈P ht (g(s, ·)), hµ〉. (6.20)

Since by (3.6), for t > 1 and x ∈ E,

P ht (g(s, ·))(x) ≤ 〈g(s, ·), h2〉+ e−λh(t−1)ã2(x)
1/2‖g(s, ·)‖L2(E,m̃)

≤ 〈g(s, ·), h2〉+ 3e−λh(t−1)‖φ‖∞ã2(x)
1/2,

it follows by (6.20) that I(s, t) ≤ 〈g(s, ·), h2〉〈h, µ〉+ 3e−λh(t−1)‖φ‖∞〈ã
1/2
2 h, µ〉. Hence we get

lim sup
t→∞

I(s, t) ≤ 〈g(s, ·), h2〉〈h, µ〉. (6.21)

Furthermore, by (3.6) and Lemma 5.2, for s > 1 and x ∈ E,

g(s, x) ≤
∣∣P hs φ− 〈φh, h〉

∣∣+ θ∗φh(s, x)

≤ e−λh(t−1)ã2(x)
1/2‖φ‖L2(E,m̃) + θ∗φh(s, x) → 0 as s→ ∞.

Thus lims→∞〈g(s, ·), h2〉 = 0 by the bounded convergence theorem. This and (6.21) yields that lims→∞ limt→∞ I(s, t) =

0. Hence we prove (6.18).

Proof of Theorem 2.12: We know by [16, Lemma 3.2] that if for any µ ∈ Mc(E) and f ∈ B+(E) with f/h

bounded,

lim
t→∞

eλ1t〈f,Xt〉 = 〈f, h〉Wh
∞(X) in L1(Pµ), (6.22)

then the convergence in (6.22) holds for any µ ∈ Mh
F (E). Henceforth we assume µ ∈ Mc(E). We consider

the skeleton space for convenience. For an arbitrary f ∈ B+(E) with f/h bounded, let φ(x) := f(x)/h(x) ∈

B+
b (E). For any s, t > 0, under Pµ,

eλ1(s+t)〈f,Xs+t〉 − 〈f, h〉Wh
∞(X)
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= eλ1(s+t)〈φh,X∗
s+t + I∗,ts 〉+

[
eλ1(s+t)

Nt∑

i=1

〈φh, Ii,ts 〉 − eλ1(s+t)
Nt∑

i=1

Pµ
(
〈φh, Ii,ts 〉|Ft

)
]

+

[
eλ1(s+t)

Nt∑

i=1

Pµ
(
〈φh, Ii,ts 〉|Ft

)
− 〈φh, h〉Wh

∞(X)

]
.

Thus by letting t → ∞ and s → ∞, (6.22) follows immediately from Lemma 6.2, Lemma 6.3 and Lemma

6.4.

Proposition 6.5. Under Assumptions 1-3 and Assumption 4(i), Assumption 5’ is equivalent to Assumption

5.

Proof. Clearly by the symmetry of PBt , Assumption 5 implies Assumption 5’. So we only need to show that

Assumption 5’ is sufficient for Assumption 5. For f ∈ B+(E) with fw/h bounded, let φ := fw/h ∈ B+
b (E).

Then for any µ ∈ Mc(E), σ > 0 and m,n ∈ N,

eλ1(m+n)σ〈f, Z(m+n)σ〉 − 〈f, wh〉Wh/w
∞ (Z)

= eλ1(m+n)σ〈
h

w
φ,Z(m+n)σ〉 − 〈φ, h2〉Wh/w

∞ (Z)

=

[
eλ1(m+n)σ〈

h

w
φ,Z(m+n)σ〉 − eλ1(m+n)σPµ

(
〈
h

w
φ,Z(m+n)σ〉|Fnσ

)]

+

[
eλ1(m+n)σPµ

(
〈
h

w
φ,Z(m+n)σ〉|Fnσ

)
− 〈φ, h2〉Wh/w

∞ (Z)

]

=: I(m,n) + II(m,n).

Note that by the Markov property of Z, eλ1(m+n)σPµ
(
〈 hwφ, Z(m+n)σ〉|Fnσ

)
= eλ1(m+n)σP·,Znσ

(
〈 hwφ, Zmσ〉

)
=

eλ1(m+n)σ〈 1
wP

β
mσ(hφ), Znσ〉 = eλ1nσ〈 hwP

h
mσ(φ), Znσ〉. Thus Assumption 5’ implies that II(m,n) converges

to 0 almost surely for some m ∈ N. Hence the proof is finished if we can show that for any m ∈ N,

lim
n→∞

I(m,n) = 0 Pµ-a.s. (6.23)

It follows from Theorem 2.11, Lemma 6.1 and the fact that log+ ab ≤ log+ a + log+ b for all a, b ≥ 0 that

under Assumptions 1-3 and Assumption 4(i),
∫

E

Pδx

(
〈
h

w
φ,Zt〉 log

+〈
h

w
φ,Zt〉

)
h(x)m(dx) <∞ (6.24)

for all t > 0. Recall that under Pδx , N0 is a random variable with mean w(x). By this we have

Pδx

(
〈
h

w
φ,Zt〉 log

+〈
h

w
φ,Zt〉

)
= Pδx

(
N0∑

i=1

〈
h

w
φ,Zi,0t 〉 log+〈

h

w
φ,

N0∑

i=1

Zi,0t 〉

)

≥ Pδx

(
N0∑

i=1

〈
h

w
φ,Zi,0t 〉 log+〈

h

w
φ,Zi,0t 〉

)

= Pδx

(
N0P·,δx

(
〈
h

w
φ,Zt〉 log

+〈
h

w
φ,Zt〉

))

= w(x)P·,δx

(
〈
h

w
φ,Zt〉 log

+〈
h

w
φ,Zt〉

)
.

Thus (6.24) implies that
∫

E

P·,δx

(
〈
h

w
φ,Zt〉 log

+〈
h

w
φ,Zt〉

)
w(x)h(x)m(dx) <∞ (6.25)

Recall that the skeleton Z is a supercriticle branching Markov process with spatial motion ξw which is

symmetric with respect to the measure w2m. (6.23) follows from (6.25) (instead of [10, (5.1)]) and Borel-

Cantelli lemma in the same way as [10, Lemma 5.2]. We omit the details here.
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7 Strong law of large numbers

To prove the strong law of large numbers, we know by [8] that it suffices to consider fixed test functions.

Lemma 7.1. [Chen et al. [8]] Suppose Assumption 2 holds. If for any µ ∈ Mh
F (E) and φ ∈ C+

0 (E),

lim
t→∞

eλ1t〈φh,Xt〉 = 〈φh, h〉Wh
∞(X) Pµ-a.s. (7.1)

then there exists Ω0 ⊂ Ω of Pµ-full probability for every µ ∈ Mh
F (E) such that on Ω0, for every m-almost

everywhere continuous nonnegative measurable function f with f/h bounded,

lim
t→∞

eλ1t〈f,Xt〉 = 〈f, h〉Wh
∞(X).

Lemma 7.2. Suppose Assumption 2 holds. If (7.1) holds for any µ ∈ Mc(E) and φ ∈ C+
0 (E), it holds for

any µ ∈ Mh
F (E).

Proof. The main idea of this proof is borrowed from [16, Lemma 3.2(i)]. Fix µ ∈ Mh
F (E). Take a sequence

of sets {Bk : k ∈ N} such that B0 = ∅, Bk ⋐ E, Bk ⊂ Bk+1 and
⋃∞
k=1 Bk = E. Let B̂k := Bk \

Bk−1. On a suitable probability space with probability measure Pµ, let {XB̂k : k ∈ N} be independent

(Pt, ψβ)-superprocesses where XB̂k is started in 1B̂kµ. Then by the branching property, XBk :=
∑k
i=1X

B̂i ,

XE\Bk :=
∑∞

i=k+1X
B̂i and X := XBk +XE\Bk are (Pt, ψβ)-superprocesses started in 1Bkµ, 1E\Bkµ and

µ respectively. In particular, Wh
t (X) =Wh

t (X
Bk) +Wh

t (X
E\Bk) and the martingale limits Wh

∞(XE\Bk) =

limt→∞Wh
t (X

E\Bk) is non-increasing in k. Since µ ∈ Mh
F (E), by Fatou’s lemma

Pµ

(
Wh

∞(XE\Bk)
)
≤ lim inf

t→∞
Pµ

(
Wh
t (X

E\Bk)
)
= 〈h, 1E\Bkµ〉 → 0 as k → ∞.

Thus limk→∞Wh
∞(XE\Bk) = 0 in L1(Pµ) and hence Pµ-a.s. by the monotonicity.

For any φ ∈ C+
0 (E),

∣∣eλ1t〈φh,Xt〉 − 〈φh, h〉Wh
∞(X)

∣∣

≤
∣∣∣eλ1t〈φh,XBk

t 〉 − 〈φh, h〉Wh
∞(XBk)

∣∣∣+ eλ1t〈φh,X
E\Bk
t 〉+ 〈φh, h〉Wh

∞(XE\Bk)

≤
∣∣∣eλ1t〈φh,XBk

t 〉 − 〈φh, h〉Wh
∞(XBk)

∣∣∣+ ‖φ‖∞W
h
t (X

E\Bk) + 〈φh, h〉Wh
∞(XE\Bk).

Since 1Bkµ ∈ Mc(E), the first term converges to 0 as t → +∞ by our assumption. Therefore we get (7.1)

for µ ∈ Mh
F (E) by first letting t→ ∞ and then k → ∞.

7.1 Strong law of large numbers along lattice times

Lemma 7.3. Suppose Assumptions 1-3 and Assumption 4(i) hold. Then for any µ ∈ Mc(E), φ ∈ B+
b (E),

σ > 0 and m ∈ N,

lim
n→∞

eλ1(m+n)σ

[
Nnσ∑

i=1

〈φh, Ii,nσmσ 〉 −
Nnσ∑

i=1

Pµ
(
〈φh, Ii,nσmσ 〉|Fnσ

)
]
= 0 Pµ-a.s.

Proof. In this proof, we adopt the same notation as defined in the proof of Lemma 6.3. For m,n ∈ N, let

Smσ,nσ := eλ1(m+n)σ
Nnσ∑

i=1

〈φh, Ii,nσmσ 〉,

Ŝmσ,nσ := eλ1(m+n)σ
Nnσ∑

i=1

〈φh, Ii,nσmσ 〉1{〈φh,Ii,nσmσ 〉<e−λ1nσ}.
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We have proved in (6.10) that for nσ > 1,

Pµ

[(
Ŝmσ,nσ − Pµ

(
Ŝmσ,nσ|Fnσ

))2]
≤ eλ1(nσ+2mσ)〈gmσ,nσ, h〉〈h, µ〉

+e−λh(nσ−1)+λ1mσ‖φ‖∞〈ã
1/2
2 h, µ〉 (7.2)

where gmσ,nσ(x) := w(x)P·,δx
(
〈φh, Imσ〉21{〈φh,Imσ〉<e−λ1nσ}

)
for x ∈ E. Note that by (6.11)

∞∑

n=1

eλ1nσ〈gmσ,nσ, h〉 =

∞∑

n=1

eλ1nσ

∫

E

h(x)w(x)P·,δx
(
〈φh, Imσ〉

21{〈φh,Imσ〉<e−λ1nσ}
)
m(dx)

≤

∫ ∞

1

eλ1σ(s−1)

∫

E

h(x)w(x)P·,δx
(
〈φh, Imσ〉

21{〈φh,Imσ〉<e−λ1sσ}
)
m(dx)

= e−λ1σ

∫ ∞

1

eλ1sσ〈gmσ,sσ, h〉ds <∞.

This together with (7.2) yields that
∑∞

n=1 Pµ

[(
Ŝmσ,nσ − Pµ

(
Ŝmσ,nσ|Fnσ

))2]
<∞. Thus by Borel-Cantelli

lemma,

lim
n→∞

(
Ŝmσ,nσ − Pµ

(
Ŝmσ,nσ|Fnσ

))
= 0 Pµ-a.s. (7.3)

Similarly, we have proved in (6.14) that for nσ > 1,

Pµ

(
Smσ,nσ − Ŝmσ,nσ

)
= Pµ

[
Pµ (Smσ,nσ|Fnσ)− Pµ

(
Ŝmσ,nσ|Fnσ

)]

≤ eλ1mσ〈fmσ,nσ, h〉〈h, µ〉+ e−λh(nσ−1)‖φ‖∞〈ã
1/2
2 h, µ〉, (7.4)

where fmσ,nσ(x) := Pδx
(
〈φh, Imσ〉1{〈φh,Imσ〉≥e−λ1nσ}

)
. Note that by (6.15),

∞∑

n=1

〈fmσ,nσ, h〉 =

∞∑

n=1

∫

E

h(x)Pδx
(
〈φh, Imσ〉1{〈φh,Imσ〉≥e−λ1nσ}

)
m(dx)

≤

∫ ∞

0

ds

∫

E

h(x)Pδx
(
〈φh, Imσ〉1{〈φh,Imσ〉≥e−λ1sσ}

)
m(dx)

=

∫ ∞

0

〈fmσ,sσ, h〉ds <∞. (7.5)

Hence by (7.4) and (7.5),

∞∑

n=1

Pµ

(
Smσ,nσ − Ŝmσ,nσ

)
= Pµ

[
Pµ (Smσ,nσ|Fnσ)− Pµ

(
Ŝmσ,nσ|Fnσ

)]
<∞.

It follows by Borel-Cantelli lemma that

lim
n→∞

(
Smσ,nσ − Ŝmσ,nσ

)
= lim

n→∞

(
Pµ (Smσ,nσ|Fnσ)− Pµ

(
Ŝmσ,nσ|Fnσ

))
= 0 Pµ-a.s.

This together with (7.3) yield that limn→∞ (Smσ,nσ − Pµ (Smσ,nσ|Fnσ)) = 0 Pµ-a.s.

Lemma 7.4. Suppose Assumptions 1-3 and Assumption 5 hold. Then for any µ ∈ Mc(E), σ > 0 and

φ ∈ B+
b (E),

lim
m→∞

lim
n→∞

eλ1(m+n)σ
Nnσ∑

i=1

Pµ
(
〈φh, Ii,nσmσ 〉|Fnσ

)
= 〈φh, h〉Wh

∞(X) Pµ-a.s.

30



Proof. For m,n ∈ N and σ > 0, let I(m,n) := eλ1(m+n)σ
∑Nnσ

i=1 Pµ
(
〈φh, Ii,nσmσ 〉|Fnσ

)
. Then we have that

(see, (6.19) in the proof of Lemma 6.4)

I(m,n) = eλ1nσ〈
h

w
P hmσφ, Znσ〉 − eλ1nσ〈

h

w
θ∗φh(mσ, ·), Znσ〉.

Since P hmσφ, θ
∗
φh(mσ, ·) ∈ B+

b (E), it follows by Assumption 5 that

lim
n→∞

I(m,n) = 〈P hmσφ, h
2〉Wh/w

∞ (Z)− 〈θ∗φh(mσ, ·), h
2〉Wh/w

∞ (Z) Pµ-a.s. (7.6)

Recall that h2m is the invariant probability measure for (ξh; Πh). We have 〈P hmσφ, h
2〉 = 〈φh, h〉. Moreover

by Lemma 5.2 and the bounded convergence theorem, limm→∞〈θ∗φh(mσ, ·), h
2〉 = 0. Therefore by Theorem

2.11 and (7.6)

lim
m→∞

lim
n→∞

I(m,n) = 〈φh, h〉Wh/w
∞ (Z) = 〈φh, h〉Wh

∞(X) Pµ-a.s.

Lemma 7.5. Suppose Assumptions 1-3, 4(i) and 5 hold. Then for any µ ∈ Mc(E), σ > 0 and φ ∈ B+
b (E),

lim
n→∞

eλ1nσ〈φh,Xnσ〉 = 〈φh, h〉Wh
∞(X) Pµ-a.s.

Proof. Note that for any m,n ∈ N, σ > 0 and φ ∈ B+
b (E),

eλ1(m+n)σ〈φh,X(m+n)σ〉

≥ eλ1(m+n)σ
Nnσ∑

i=1

〈φh, Ii,nσmσ 〉

= eλ1(m+n)σ
Nnσ∑

i=1

〈φh, Ii,nσmσ 〉 − eλ1(m+n)σ
Nnσ∑

i=1

Pµ
(
〈φh, Ii,nσmσ 〉|Fnσ

)
+ eλ1(m+n)σ

Nnσ∑

i=1

Pµ
(
〈φh, Ii,nσmσ 〉|Fnσ

)
.

Then by Lemma 7.3 and Lemma 7.4, we have

lim inf
n→∞

eλ1nσ〈φh,Xnσ〉 ≥ 〈φh, h〉Wh
∞(X) Pµ-a.s.

Let c := ‖φ‖∞. Since (c − φ) ∈ B+
b (E), the same argument can be applied to c− φ, and we conclude that

under Pµ,

lim sup
n→∞

eλ1nσ〈φh,Xnσ〉 = lim sup
n→∞

eλ1nσ〈ch− (c− φ)h,Xnσ〉

= cWh
∞(X)− lim inf

n→∞
eλ1nσ〈(c− φ)h,Xnσ〉

≤ cWh
∞(X)− 〈(c− φ)h, h〉Wh

∞(X) = 〈φh, h〉Wh
∞(X).

Hence we complete the proof.

7.2 From lattice times to continuous time

In this section we extend the convergence along lattice times in Lemma 7.5 to convergence along continuous

time and then prove Theorem 2.13. Let {Uκ;κ > 0} be the resolvent of the semigroup {P ht ; t ≥ 0}, that is,

Uκf(x) :=

∫ ∞

0

e−κtP ht f(x)dt for x ∈ E and f ∈ B+
b (E).

Under Assumption 6, for every f ∈ C0(E), by the dominated convergence theorem,

‖κUκf − f‖∞ ≤

∫ ∞

0

κe−κt‖P ht f − f‖∞dt =

∫ ∞

0

e−s‖P hs/κf − f‖∞ds→ 0 as κ→ ∞. (7.7)
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Lemma 7.6. Suppose Assumptions 1-5 hold. Then for any µ ∈ Mc(E), κ > 0 and φ ∈ B+
b (E),

lim
t→∞

eλ1t〈(κUκφ)h,Xt〉 = 〈φh, h〉Wh
∞(X) Pµ-a.s.

Proof. The idea of this proof is similar to that of [16, Proposition 3.14]. The main difference is that here

we use the L1-convergence instead of the Lp-convergence used there. We consider in the skeleton space for

convenience. Since κUκ1 = 1 and κUκφ ∈ B+
b (E), the same argument that led to Lemma 7.5 can be applied

here and it suffices to prove that

lim inf
t→∞

eλ1t〈(κUκφ)h,Xt〉 ≥ 〈φh, h〉Wh
∞(X) Pµ-a.s. (7.8)

Fix µ ∈ Mc(E) and φ ∈ B+
b (E). Let g(x) := κUκφ(x) and gB(x) := g(x)1B(x) with B ⋐ E. Note that

〈(κUκφ)h, h〉 = 〈φh, h〉 since h2m is the invariant probability measure for (ξh; Πh). If we can show that

lim inf
t→∞

eλ1t〈gh,Xt〉 ≥ 〈gBh, h〉W
h
∞(X) Pµ-a.s. (7.9)

for any B ⋐ E, then choose an increasing sequence Bn ⋐ E with
⋃∞
n=1Bn = E, (7.8) follows from the

monotone convergence theorem. Suppose σ > 0. For any t ∈ [nσ, (n+ 1)σ],

eλ1t〈gh,Xt〉 − 〈gBh, h〉W
h
∞(X)

≥
[
eλ1t〈gh,Xt〉 − eλ1(n+1)σPµ

(
〈gh,X(n+1)σ〉|Ft

)]

+
[
eλ1(n+1)σPµ

(
〈gBh,X(n+1)σ〉|Ft

)
− eλ1(n+1)σPµ

(
〈gBh,X(n+1)σ〉|Fnσ

)]

+
[
eλ1(n+1)σPµ

(
〈gBh,X(n+1)σ〉|Fnσ

)
− 〈gBh, h〉W

h
∞(X)

]

=: θ1,g(n, σ, t) + θ2,gB (n, σ, t) + θ3,gB (n, σ).

To prove (7.9), it suffices to prove that under Pµ,

(1) lim supσ→0 lim supn→∞ supt∈[nσ,(n+1)σ] |θ1,g(n, σ, t)| = 0.

(2) lim supn→∞ supt∈[nσ,(n+1)σ] |θ2,gB (n, σ, t)| = 0.

(3) limn→∞ |θ3,gB (n, σ)| = 0.

We begin with the proof of (1). By the Markov property of X , we have

θ1,g(n, σ, t) = eλ1t〈gh,Xt〉 − eλ1(n+1)σPXt
(
〈gh,X(n+1)σ−t

)

= eλ1t〈gh,Xt〉 − eλ1(n+1)σ〈P β(n+1)σ−t(gh), Xt〉

= eλ1t〈gh,Xt〉 − eλ1t〈hP h(n+1)σ−t(g), Xt〉. (7.10)

Note that for any s > 0 and x ∈ E,

|g(x)− P hs g(x)| =

∣∣∣∣
∫ ∞

0

κe−κtP ht φ(x)dt −

∫ ∞

0

κe−κtP ht+sφ(x)dt

∣∣∣∣

=

∣∣∣∣
∫ ∞

0

κe−κtP ht φ(x)dt −

∫ ∞

s

κe−κtP ht φ(x)dt

∣∣∣∣
≤ 2(1− e−κs)‖φ‖∞.

It follows by this and (7.10) that

sup
t∈[nσ,(n+1)σ]

|θ1,g(n, σ, t)| ≤ 2(1− e−κσ)‖φ‖∞ sup
t∈[nσ,(n+1)σ]

Wh
t (X). (7.11)
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Since Wh
t (X) converges to a finite limit almost surely, we obtain (1) from (7.11) by letting n → ∞ and

σ → 0. For the proof of (3), note that by the Markov property of X ,

θ3,g(n, σ) = eλ1(n+1)σPXnσ (〈gBh,Xσ〉)− 〈gBh, h〉W
h
∞(X)

= eλ1(n+1)σ〈P βσ (gBh), Xnσ〉 − 〈gBh, h〉W
h
∞(X)

= eλ1nσ〈hP hσ (gB), Xnσ〉 − 〈gBh, h〉W
h
∞(X). (7.12)

Since P hσ gB ∈ B+
b (E), it follows from Lemma 7.5 that

lim
n→∞

eλ1nσ〈hP hσ (gB), Xnσ〉 = 〈hP hσ (gB), h〉W
h
∞(X) = 〈gBh, h〉W

h
∞(X) Pµ-a.s.

By this and (7.12) we obtain (3). It remains to prove (2). θ2,gB (n, σ, t) can be written as

θ2,gB (n, σ, t) = θ
(1)
2,gB

(n, σ, t) + θ
(2)
2,gB

(n, σ, t) + θ
(3)
2,gB

(n, σ, t)

where

θ
(1)
2,gB

(n, σ, t) := eλ1(n+1)σPµ

(
〈gBh,X

∗
(n+1)σ + I∗,nσσ 〉|Ft

)

−eλ1(n+1)σPµ

(
〈gBh,X

∗
(n+1)σ + I∗,nσσ 〉|Fnσ

)
,

θ
(2)
2,gB

(n, σ, t) := eλ1(n+1)σPµ

(
Nnσ∑

i=1

〈gBh, I
i,nσ
σ 〉1{〈gBh,Ii,nσσ 〉<e−λ1nσ}|Ft

)

−eλ1(n+1)σPµ

(
Nnσ∑

i=1

〈gBh, I
i,nσ
σ 〉1{〈gBh,Ii,nσσ 〉<e−λ1nσ}|Fnσ

)
,

θ
(3)
2,gB

(n, σ, t) := eλ1(n+1)σPµ

(
Nnσ∑

i=1

〈gBh, I
i,nσ
σ 〉1{〈gBh,Ii,nσσ 〉≥e−λ1nσ}|Ft

)

−eλ1(n+1)σPµ

(
Nnσ∑

i=1

〈gBh, I
i,nσ
σ 〉1{〈gBh,Ii,nσσ 〉≥e−λ1nσ}|Fnσ

)
.

Clearly for i = 1, 2, 3, {θ
(i)
2,gB

(n, σ, t) : t ∈ [nσ, (n+ 1)σ]} are Pµ-martingales. Let

SgBσ,nσ := eλ1(n+1)σ
Nnσ∑

i=1

〈gBh, I
i,nσ
σ 〉

and

ŜgBσ,nσ := eλ1(n+1)σ
Nnσ∑

i=1

〈gBh, I
i,nσ
σ 〉1{〈gBh,Ii,nσσ 〉<e−λ1nσ}.

Then θ
(2)
2,gB

(n, σ, t) = Pµ

(
ŜgBσ,nσ|Ft

)
− Pµ

(
ŜgBσ,nσ|Fnσ

)
, and

θ
(3)
2,gB

(n, σ, t) = Pµ

(
SgBσ,nσ − ŜgBσ,nσ|Ft

)
− Pµ

(
SgBσ,nσ − ŜgBσ,nσ|Fnσ

)
.

Suppose ε > 0. By Doob’s maximal inequality and Jensen’s inequality, we have

Pµ

(
sup

t∈[nσ,(n+1)σ]

|θ
(2)
2,gB

(n, σ, t)| > ε

)

≤
1

ε2
Pµ

(
|θ

(2)
2,gB

(n, σ, (n+ 1)σ)|2
)
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=
1

ε2
Pµ

[∣∣∣Pµ
(
ŜgBσ,nσ − Pµ

(
ŜgBσ,nσ|Fnσ

)
|F(n+1)σ

)∣∣∣
2
]

≤
1

ε2
Pµ

(∣∣∣ŜgBσ,nσ − Pµ

(
ŜgBσ,nσ|Fnσ

)∣∣∣
2
)
.

We have proved in the proof of Lemma 7.3 that
∑∞
n=1 Pµ

(
|ŜgBσ,nσ − Pµ

(
ŜgBσ,nσ|Fnσ

)
|2
)
<∞. Thus

∞∑

n=1

Pµ

(
sup

t∈[nσ,(n+1)σ]

|θ
(2)
2,gB

(n, σ, t)| > ε

)
<∞

and consequently by Borel-Cantelli lemma

lim
n→∞

sup
t∈[nσ,(n+1)σ]

|θ
(2)
2,gB

(n, σ, t)| = 0 Pµ-a.s. (7.13)

Similarly by Doob’s maximal inequality and Jensen’s inequality,

Pµ

(
sup

t∈[nσ,(n+1)σ]

|θ
(3)
2,gB

(n, σ, t)| > ε

)

≤
1

ε
Pµ

(
|θ

(3)
2,gB

(n, σ, (n + 1)σ)|
)

=
1

ε
Pµ

[∣∣∣Pµ
(
SgBσ,nσ − ŜgBσ,nσ − Pµ

(
SgBσ,nσ − ŜgBσ,nσ|Fnσ

)
|F(n+1)σ

)∣∣∣
]

≤
1

ε

[
Pµ

(
SgBσ,nσ − ŜgBσ,nσ

)
+ Pµ

(
Pµ

(
SgBσ,nσ − ŜgBσ,nσ|Fnσ

))]

=
2

ε
Pµ

(
SgBσ,nσ − ŜgBσ,nσ

)
.

We have showed in the proof of Lemma 7.3 that
∑∞
n=1 Pµ

(
SgBσ,nσ − ŜgBσ,nσ

)
< ∞. Thus by Borel-Cantelli

lemma

lim
n→∞

sup
t∈[nσ,(n+1)σ]

|θ
(3)
2,gB

(n, σ, t)| = 0 Pµ-a.s. (7.14)

Using Doob’s maximal inequality and Jensen’s inequality again, we get

Pµ

(
sup

t∈[nσ,(n+1)σ]

|θ
(1)
2,gB

(n, σ, t)| > ε

)
≤

1

ε2
e2λ1(n+1)σPµ

[
Var

(
〈gBh,X

∗
(n+1)σ + I∗,nσσ 〉|Fnσ

)]
. (7.15)

Recall that given Ft, (X∗
s+t + I∗,ts )s≥0 is equal in distribution to ((X∗

s )s≥0;PXt). It is known that for

ν ∈ MF (E) and f ∈ B+
b (E), the second moment of 〈f,X∗

t 〉 can be expressed as

Varν (〈f,X
∗
t 〉) =

∫ t

0

〈P β
∗

s

[
(2α+ b∗)(P β

∗

t−sf)
2
]
, ν〉ds,

where b∗(x) :=
∫
(0,∞)

r2π∗(x, dr) =
∫
(0,∞)

r2e−w(x)rπ(x, dr). Thus we can continue the calculation in (7.15)

to get

Pµ

(
sup

t∈[nσ,(n+1)σ]

|θ
(1)
2,gB

(n, σ, t)| > ε

)

≤
1

ε2
e2λ1(n+1)σPµ [VarXnσ (〈gBh,X

∗
σ〉)]

=
1

ε2
e2λ1(n+1)σPµ

[∫ σ

0

〈P β
∗

s

[
(2α+ b∗)(P β

∗

σ−s(gBh))
2
]
, Xnσ〉ds

]
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=
1

ε2
e2λ1(n+1)σ

∫ σ

0

〈P βnσP
β∗

s

[
(2α+ b∗)(P β

∗

σ−s(gBh))
2
]
, µ〉ds

≤
1

ε2
e2λ1(n+1)σ

∫ σ

0

〈P βnσ+s

[
(2α+ b∗)(P β

∗

σ−s(gBh))
2
]
, µ〉ds

=
1

ε2
eλ1nσ+2λ1σ

∫ σ

0

e−λ1s〈P hnσ+s

[
2α+ b∗

h
(P β

∗

σ−s(gBh))
2

]
, hµ〉ds. (7.16)

Since gB is compactly supported, for s ∈ [0, σ), ‖P β
∗

σ−s(gBh)‖∞ ≤ ‖P βσ−s(gBh)‖∞ ≤ e‖β‖∞σ‖gBh‖∞. In

addition, for each x ∈ E, P β
∗

σ−s(gBh)(x) = e−λ1(σ−s)h(x)θ∗gBh(σ − s, x) ≤ e−λ1σ‖θ∗gBh‖∞h(x). Thus we get

for s ∈ [0, σ), (
P β

∗

σ−s(gBh)(x)
)2

≤ c1 ∧ c2h(x) ∧ c3h(x)
2 for all x ∈ E. (7.17)

Here c1, c2, c3 are positive constants. We have by (7.17)

∫ σ

0

e−λ1s〈P hnσ+s

[
2α

h
(P β

∗

σ−s(gBh))
2

]
, hµ〉ds ≤

∫ σ

0

e−λ1s〈P hnσ+s (2c2α) , hµ〉ds

≤ 2c2‖α‖∞〈h, µ〉

∫ σ

0

e−λ1sds. (7.18)

On the other hand,

∫ σ

0

e−λ1s〈P hnσ+s

[
b∗

h
(P β

∗

σ−s(gBh))
2

]
, hµ〉ds ≤

∫ σ

0

e−λ1s〈P hnσ+s

(
c1
b∗

h
∧ c2b

∗ ∧ c3b
∗h

)
, hµ〉ds.

Let l(x) := c1
b∗

h (x) ∧ c2b
∗(x) ∧ c3b∗(x)h(x) for x ∈ E. Assumption 4(ii) implies that l(x) ∈ L2(E, m̃). Thus

by (3.6) for nσ > 1 and x ∈ E,

P hnσ+s(l)(x) ≤ 〈l, h2〉+ e−λh(nσ+s−1)ã2(x)
1/2‖l‖L2(E,m̃).

Consequently for nσ > 1,

∫ σ

0

e−λ1s〈P hnσ+s

[
b∗

h
(P β

∗

σ−s(gBh))
2

]
, hµ〉ds

≤

∫ σ

0

e−λ1s〈P hnσ+s(l), hµ〉ds

≤ 〈l, h2〉〈h, µ〉

∫ σ

0

e−λ1sds+ e−λh(nσ−1)‖l‖L2(E,m̃)〈ã
1/2
2 h, µ〉

∫ σ

0

e−(λ1+λh)sds. (7.19)

Since λ1 < 0, it follows from (7.18) and (7.19) that

∞∑

n=1

eλ1nσ

∫ σ

0

e−λ1s〈P hnσ+s

[
2α+ b∗

h
(P β

∗

σ−s(gBh))
2

]
, hµ〉ds <∞.

Thus by (7.16), we get
∑∞

n=1 Pµ

(
supt∈[nσ,(n+1)σ] |θ

(1)
2,gB

(n, σ, t)| > ε
)
<∞. By Borel-Cantelli Lemma

lim
n→∞

sup
t∈[nσ,(n+1)σ]

|θ
(1)
2,gB

(n, σ, t)| = 0 Pµ-a.s. (7.20)

We obtain (2) by (7.13), (7.14) and (7.20). This completes the proof.

Lemma 7.7. Suppose Assumptions 1-6 hold. Then for any µ ∈ Mc(E) and φ ∈ C+
0 (E),

lim
t→∞

eλ1t〈φh,Xt〉 = 〈φh, h〉Wh
∞(X) Pµ-a.s. (7.21)
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Proof. For any κ > 0, we have

∣∣eλ1t〈φh,Xt〉 − 〈φh, h〉Wh
∞(X)

∣∣ ≤ eλ1t〈|κUκφ− φ|h,Xt〉+
∣∣eλ1t〈(κUκφ)h,Xt〉 − 〈φh, h〉Wh

∞(X)
∣∣

≤ ‖κUκφ− φ‖∞W
h
t (X) +

∣∣eλ1t〈(κUκφ)h,Xt〉 − 〈φh, h〉Wh
∞(X)

∣∣ .

In view of (7.7) and Lemma 7.6, we conclude (7.21) by letting t→ ∞ and κ→ ∞.

Proof of Theorem 2.13. This theorem follows immediately from Lemma 7.1, Lemma 7.2 and Lemma 7.7.

8 Examples

In this section, we give examples of superprocesses where Assumptions 1-6 are satisfied and Theorem 2.11-

Theorem 2.13 hold. Since the paper is already long, we leave the detailed verifications of assumptions for

these examples in the Appendix of this paper. We notice that Example 8.1 and 8.2 are also studied in [16].

In Example 8.5 we consider a class of super α-stable-like processes which includes super α-stable processes

as a special case.

Example 8.1. Suppose E = Rd (d ≥ 1) and ξ = (ξt; Πx, x ∈ Rd) is an inward Ornstein-Uhlenbeck (OU)

process on Rd with infinitesimal generator

L :=
1

2
σ2∆− cx · ∇ on Rd

where σ, c > 0. Without loss of generality, we assume that σ = 1. Let dx denote the Lebesgue measure

on Rd and m(dx) :=
(
c
π

)d/2
e−c|x|

2

dx. Then ξ is symmetric with respect to the probability measure m.

Let ψ(λ) be a spatially independent branching mechanism given by (2.20) with β > 0, ψ(∞) = ∞ and∫
(1,∞) y

pπ(dy) < ∞ for some p ∈ (1, 2]. For this (ξ, ψ)-superdiffusion Assumptions 1-6 are satisfied with

λ1 = −β, h(x) ≡ 1 and w(x) ≡ zψ where zψ := sup{λ ≥ 0 : ψ(λ) ≤ 0} ∈ (0,∞).

Example 8.2. Suppose E = Rd (d ≥ 1) and ξ := (ξt; Πx, x ∈ Rd) is an outward OU process on Rd with

infinitesimal generator

L :=
1

2
σ2∆+ cx · ∇ on Rd

where σ, c > 0. Without loss of generality, we assume σ = 1. Let m(dx) :=
(
c
π

)−d/2
ec|x|

2

dx. Then ξ is

symmetric with respect to m. Let ψ(λ) be a spatially independent branching mechanism given by (2.20)

with β > cd, ψ(∞) = ∞ and
∫
(1,∞)

ypπ(dy) < ∞ for some p ∈ (1, 2]. Then Assumptions 1-6 are satisfied

with λ1 = cd− β, h(x) =
(
c
π

)d/2
e−c|x|

2

and w(x) ≡ zψ where zψ := sup{λ ≥ 0 : ψ(λ) ≤ 0} ∈ (0,∞).

Example 8.3. Let (Y = (Yt)t≥0,Πx) be a diffusion on Rd (d ≥ 3) with generator

A := ρ(x)−1
d∑

i,j=1

∂

∂xi

(
ρ(x)aij(x)

∂

∂xj

)
on Rd,

where the diffusion matrix A(x) = (aij(x))ij is uniformly elliptic and symmetric with aij ∈ C1
b (R

d) and

function ρ ∈ C1
b (R

d) is bounded between two positive constants. Here C1
b (R

d) denotes the space of bounded

continuous functions on Rd whose first order derivatives are bounded and continuous. Clearly this includes

Brownian motion as a special case. Note that we can rewrite A as

A =

d∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
+

d∑

j=1

(
d∑

i=1

aij(x)
∂ log ρ

∂xi

)
∂

∂xj
on Rd.
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Define m(dx) := ρ(x)dx. Then Y is symmetric with respect to m. Suppose E is a bounded C1,1 domain

in Rd and ξ := Y E is the subprocess of Y killing upon leaving E. Let ψβ(x, λ) := −β(x)λ + α(x)λ2 +∫
(0,∞)

(
e−λy − 1 + λy

)
π(x, dy) where β ∈ C1

b (R
d), 0 < α ∈ C1

b (R
d) ∩ B+(Rd), π(x, dy) satisfies

sup
x∈Rd

∫

(0,∞)

y log∗ yπ(x, dy) <∞, (8.1)

and all the first partial derivatives of ψβ(x, λ) are continuous. We will show in Appendix A.2 that Assump-

tions 1-6 are satisfied for such (ξ, ψβ)-superdiffusions.

Example 8.4. Suppose E is a locally compact separable metric space and m is a σ-finite nonnegative Radon

measure on E with full support. Suppose ξ is an m-symmetric Hunt process on E with transition density

function p(t, x, y) which is positive, continuous and symmetric in (x, y). Define at(x) := p(t, x, x) for x ∈ E

and t > 0. We assume that

(1) for each t > 0, at(x) ∈ L1(E,m);

(2) there exists t0 > 0 such that at0(x) ∈ L2(E,m).

Define ât(x) := pβ(t, x, x) for x ∈ E and t > 0. Under conditions (1) and (2), ât satisfies

(i) for any t > 0, ât(x) ∈ L1(E,m);

(ii) there exists t0 > 0 such that ât(x) ∈ L2(E,m) for all t ≥ t0.

Property (i) implies that for t > 0, the Feynman-Kac semigroup P βt is a Hilbert-Schmidt operator in

L2(E,m), and hence compact. Let L(β) be the infinitesimal operator of P βt , and σ(L
β) be the spectrum of

the self-adjoint operator L(β). We know by [29] that σ(L(β)) consists of at most countable eigenvalues. By

Jentzsch’s theorem, λ1 := inf{−λ : λ ∈ σ(L(β))} is an eigenvalue of multiplicity 1, and the corresponding

eigenfunction h can be chosen to be continuous and positive on E with
∫
E
h(x)2m(dx) = 1. We assume

λ1 < 0. The h-transformed semigroup P ht admits an integral kernel ph(t, x, y) with respect to the measure

m̃(dx) := h(x)2m(dx), which is related to pβ(t, x, y) by (3.5). Define ãt(x) := ph(t, x, x) = eλ1t ât(x)
h(x)2 for

x ∈ E. We assume in addition that

(3) for all f ∈ C0(E), ‖P ht f − f‖∞ → 0 as t→ 0.

Let X be a (Pt, ψβ)-superprocess with spatial motion ξ satisfying conditions (1)-(3) and the branching

mechanism ψβ(x, λ) given by (2.1) with β(x) ∈ Bb(E), α ∈ B+
b (E) and π(x, dy) satisfying

sup
x∈E

∫

(0,∞)

y2π(x, dy) <∞, (8.2)

We assume in addition that ψβ satisfies condition (2.21) in Subsection 2.3. Then our Assumptions 1-6 are sat-

isfied by this class of superprocesses with λ1, h defined as above and w(x) := − logPδx (∃t ≥ 0 : 〈1, Xt〉 = 0).

This example covers Example 4.1-4.5 in [8].

Example 8.5. Suppose E = Rd (d ≥ 1) and m(dx) = dx is the Lebesgue measure on Rd. Suppose

(ξ; Πx, x ∈ Rd) is an α-stable-like process on Rd with α ∈ (0, 2). An α-stable-like process on Rd is a

symmetric Feller process on Rd whose Dirichlet form (E ,F) on L2(Rd; dx) is given by

F =

{
u ∈ L2(Rd; dx) :

∫ ∫

Rd×Rd

(u(x) − u(y))2

|x− y|d+α
dxdy <∞

}
,

E(u, u) =

∫ ∫

Rd×Rd

(u(x)− u(y))2
c(x, y)

|x− y|d+α
dxdy,
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where c(x, y) is a symmetric function on Rd × Rd that is bounded between two positive constants. Clearly

this includes symmetric α-stable process on Rd as a special case. Let ψβ(x, λ) be a branching mechanism

given by (2.1) where β ∈ Bb(Rd) has a compact support, α ∈ B+
b (R

d) and π satisfies (8.2). Let X be a

(ξ, ψβ)-superprocess. Here we assume in addition that ψβ satisfies condition (2.21) of Section 2.3. It is proved

in [6, Theorem 4.14] that the transition density function p(t, x, y) of a α-stable-like process is bounded and

continuous in (x, y) for each t > 0 and

p(t, x, y) ≍ t−d/α ∧
t

|x− y|d+α
for all x, y ∈ Rd and t > 0. (8.3)

It follows that for each t > 0, the transition semigroup Pt of ξ maps bounded functions to continuous

functions, and Pt is bounded from Lp(Rd, dx) to Lq(Rd, dx) for 1 ≤ p ≤ q ≤ ∞. Furthermore, for each t > 0,

P βt maps bounded functions to continuous functions, and P βt is bounded from Lp(Rd, dx) to Lq(Rd, dx)

for 1 ≤ p ≤ q ≤ ∞. Define E1(u, u) := E(u, u) +
∫
Rd
u(x)2dx for u ∈ F , and λ0 := inf{E(u, u) : u ∈

F with
∫
Rd
u(x)2dx = 1} ≥ 0. The semigroup P βt associates with a quadratic form (E(β),F) where

E(β)(u, u) = E(u, u)−

∫

Rd

u(x)2β(x)dx for u ∈ F .

Define λ1 := inf{E(β)(u, u) : u ∈ F with
∫
Rd
u(x)2dx = 1} ≥ −‖β+‖∞. We use σ(E(β)) to denote the

spectrum of −L(β), where L(β) is the self-adjoint operator associated with (E(β),F). Clearly the the Dirichlet

form (E ,F) is comparable to that of the symmetric α-stable process. Thus by applying the same argument

as in [32], we can show that the embedding of (F , E1) into L2(Rd, β(x)dx) is compact. Then by Friedrichs

theorem, the spectrum of σ(E(β)) less than λ0 consists of only isolated eigenvalues with finite multiplicities.

We assume λ1 < 0, and hence λ1 < λ0 is automatically true. Let h be the normalized nonnegative L2-

eigenfunction corresponding to λ1. It holds that h = eλ1tP βt h on E. Since P βt maps L2(Rd, dx) into

L∞(Rd, dx) and maps Bb(Rd) into C(Rd), h is a bounded continuous function on Rd. Moreover h is positive

everywhere by the irreducibility of ξ and the positivity of exp
(∫ t

0
β(ξs)ds

)
. For such (ξ, ψβ)-superprocess,

Assumptions 1-6 are satisfied with λ1, h defined as above and w(x) := − logPδx (∃t ≥ 0, 〈1, Xt〉 = 0).

A Appendix

A.1 Kuznetsov measure for superdiffusions

Suppose the operator L is defined by the formula:

L :=

d∑

i,j=1

∂

∂xj
aij(x)

∂

∂xj
+

d∑

i=1

bi(x)
∂

∂xi
on Rd,

where the matrix A(x) := (aij(x))i,j is symmetric and positive definite, and all aij and bi are bounded and

(globally) Hölder continuous on Rd. It is known (cf. [14, Chapter 2]) that there exists a diffusion process

on Rd, called the L-diffusion, whose transition density function is a fundamental solution of the equation

∂u/∂t = Lu. In this subsection, we assume E ⊂ Rd is a nonempty domain and ξ is the subprocess of the

L-diffusion on E. We assume that the branching mechanism ψβ(x, λ) is given by (2.1) and all the first partial

derivatives of ψβ(x, λ) are continuous. This (ξ, ψβ)-superprocess is also called (ξ, ψβ)-superdiffusion. Let X

be a (ξ, ψβ)-superdiffusion. We are concerned with the set E0 = {x ∈ E : Kuznetsov measure Nx exists}.

By the argument in Subsection 2.3, we know that (2.13) is a sufficient condition for the existence of Nx.

We recall that for every open set D ⊂ E and t ≥ 0, there is a random measure X̃D
t concentrated on the

boundary of [0, t)×D such that (2.7) and (2.8) hold for every µ ∈ MF (E) and every f̃ ∈ B+
b ([0, t]×E). We
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also recall that Xt is the projection of X̃E
t on E. For every x ∈ E, let Ox be the set of open sets in E that

contains x. Then condition (2.13) is satisfied if

Pδx

(
X̃D
t = 0

)
> 0 for all t > 0 and D ∈ Ox. (A.1)

It follows from the Markov property of branching exit Markov systems that for any D1, D2 ∈ Ox with

D1 ⊂ D2, and any 0 < s ≤ t <∞,

{X̃D1
s = 0} ⊂ {X̃D2

t = 0} Pδx-a.s.

Thus condition (A.1) is equivalent to that: There is δ > 0 sufficiently small such that

Pδx

(
X̃Br
t = 0

)
> 0 for all t > 0 and 0 < r ≤ δ.

Here Br := B(x, r) denotes the ball centered at x with radius r.

In the remainder of this subsection, we assume ψ is a spatially independent branching mechanism given

by (2.20). Suppose ((Yt)t≥0;Py, y ∈ R+) is a one dimensional CB process with branching mechanism ψ

and Py(Y0 = y) = 1. The process Y is called subcritical, critical or supercritical according to ψ′(0+) >,

= or < 0. It is well-known that Py(limt→∞ Yt = 0) = e−yzψ , where zψ := sup{λ ≥ 0, ψ(λ) ≤ 0} ∈ [0,∞].

Moreover, by the Markov property of Y , we have

Py
(
e−zψYt

)
= e−yzψ for all y ≥ 0 and t ≥ 0.

In the subcritical and critical cases, zψ = 0, while in the supercritical case, zψ ∈ (0,∞) if ψ(∞) = ∞, and

otherwise zψ = ∞. Given zψ ∈ (0,∞), conditioned on the event {limt→∞ Yt = 0}, Y is a CB process with

branching mechanism

ψ∗(λ) = ψ(λ+ zψ) = ψ′(zψ)λ+ aλ2 +

∫

(0,∞)

(
e−λx − 1 + λx

)
e−xzψη(dx). (A.2)

Since (ψ∗)′(0+) = ψ′(zψ) > 0, the conditioned process is subcritical (cf. Lemma 2 in [2]).

Lemma A.1. Suppose ψ given by (2.20) satisfies zψ <∞ and that

∫ ∞

N

ds

[∫ s

zψ

ψ(u)du

]−1/2

<∞ for some N > zψ. (A.3)

Then for any bounded open set Q = (t1, t2)×B, where 0 ≤ t1 < t2 <∞ and B := B(x0, r) with x0 ∈ E and

r > 0, there is a function v0(s, x) ∈ C2(Q) such that





∂v0

∂s
+ Lv0 ≤ ψ(v0), (s, x) ∈ Q,

v0(s, x) ≥ zψ, (s, x) ∈ Q,

lim
Q∋(s,x)→z

v0(s, x) = ∞, z ∈ TQ,

(A.4)

where TQ := ((t1, t2)× ∂B) ∪ ({t2} ×B) is a total set of ∂Q.

Proof. The idea of this proof is similar to that of [14, Theorem 5.3.1]. We only need to prove the result for

sufficiently small t2 − t1 + r. Note that (A.3) is equivalent to

∫ ∞

N

ds

[∫ s

0

ψ∗(r)dr

]−1/2

<∞ for some N > 0,
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where ψ∗ is defined in (A.2). By [14, Lemma 5.3.1], for sufficiently small t2 − t1 there is a nonnegative

solution u∗(s) of the following problem:





∂u∗

∂s
≤ ψ∗(u∗), s ∈ (t1, t2),

lim
(t1,t2)∋s→t2

u∗(s) = ∞.

Take u(s) := zψ + u∗(s) for s ∈ (t1, t2). Using the fact that ψ∗(λ) = ψ(λ + zψ), it is easy to check that u

satisfies (A.5): 



∂u

∂s
≤ ψ(u), s ∈ (t1, t2),

u(s) ≥ zψ, s ∈ (t1, t2).

lim
(t1,t2)∋s→t2

u(s) = ∞,

(A.5)

On the other hand, by [14, Lemma 5.3.4] and the fact that ψ∗(λ) = ψ(λ+ zψ), for sufficiently small r, there

is a nonnegative solution v(x) of the following problem:
{

Lv ≤ ψ(v), x ∈ B,

lim
B∋x→z

v(x) = ∞, z ∈ ∂B.

Hence v0(s, x) := u(s) + v(x) is a solution of (A.4).

Lemma A.2. [Comparison Principle] Suppose ψ is given by (2.20) with zψ < ∞ and that Q is a bounded

regular open set in [0,∞)× Rd. Then u ≤ v in Q assuming that

(a) u, v ∈ C2(Q);

(b) ∂u
∂s + Lu− ψ(u) ≥ ∂v

∂s + Lv − ψ(v) in Q;

(c) u is bounded from above and v ≥ zψ in Q.

(d) for every z̃ ∈ TQ, lim supQ∋z→z̃ [u(z)− v(z)] ≤ 0.

Proof. The proof is similar to that of [14, Theorem 5.2.3] by using the fact that ψ(λ) is an increasing function

in λ ∈ [zψ,∞). We omit the details here.

Lemma A.3. If x ∈ E satisfies the following condition: there exist an open set D ∈ Ox and a function ψ

in the form of (2.20) with zψ <∞ such that (A.3) holds and

ψβ(x, λ) ≥ ψ(λ) for all x ∈ D and λ ≥ 0, (A.6)

then Pδx (Xt = 0) > 0 for all t > 0 and hence x ∈ E0.

Proof. By the argument in the beginning of this subsection, it suffices to prove that for δ > 0 small enough

such that Bδ := B(x, δ) ⊂ D, we have

Pδx

(
X̃Br
t = 0

)
> 0 for all t > 0 and Br := B(x, r) with r ∈ (0, δ]. (A.7)

Fix r ∈ (0, δ] and an arbitrary T > 0. For any λ > 0, let

ũBrλ (s, y) := − log Pδy

(
exp

(
−〈λ, X̃Br

s 〉
))

for y ∈ Br and s ∈ [0, T ]. (A.8)

Since all the first partials of ψβ(x, λ) are continuous, it follows by [14, Theorem 5.2.2] that vλ(s, y) :=

ũBrλ (T − s, y) for (s, y) ∈ (0, T )×Br is a solution of the following boundary problem:





∂vλ
∂s

+ Lvλ = ψβ(y, vλ(s, y)), (s, y) ∈ (0, T )×Br,

lim
(0,T )×Br∋(s,y)→z

vλ(s, y) = λ, z ∈ ∂((0, T )×Br).
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Since ψβ(y, λ) ≥ ψ(λ) for y ∈ Br and λ ≥ 0, we have





∂vλ
∂s

+ Lvλ ≥ ψ(vλ), (s, y) ∈ (0, T )×Br,

lim
(0,T )×Br∋(s,y)→z

vλ(s, y) = λ, z ∈ ∂((0, T )×Br).

By Lemma A.1, there is a solution v0(s, y) of the following problem:





∂v0

∂s
+ Lv ≤ ψ(v0), (s, y) ∈ (0, T )×Br,

v0(s, x) ≥ zψ, (s, y) ∈ (0, T )×Br,

lim
(0,T )×Br∋(s,y)→z

v0(s, y) = ∞, z ∈ T(0,T )×Br .

where T(0,T )×Br := ((0, T ) × ∂Br) ∪ ({T } × Br) is a total set of ∂((0, T ) × Br). By Lemma A.2, for any

λ > 0,

vλ(s, y) ≤ v0(s, y) for all (s, y) ∈ (0, T )×Br.

Letting λ ↑ ∞ in (A.8), we get that for any t ∈ (0, T )

− logPδx(X̃
Br
t = 0) = lim

λ→∞
vλ(T − t, x) ≤ v0(T − t, x) <∞.

Since T > 0 is arbitrary, we get (A.7) for all t > 0 and r ∈ (0, δ].

Note that condition (A.3) is stronger than
∫∞

ψ(λ)−1dλ < ∞, which is usually called Grey’s condition.

Grey’s condition is a necessary and sufficient condition for a CB process to become extinct in a finite

time with positive probability. Lemma A.3 says that for a superdiffusion with spatially dependent branching

mechanism, if the branching mechanism is locally dominated by a spatially independent branching mechanism

which satisfies a condition stronger than the Grey’s condition, then this superdiffusion become extinct in a

finite time with positive probability.

Recall that α(x) is the non-negative bounded Borel measurable function in (2.1) and E+ = {x ∈ E :

α(x) > 0}.

Proposition A.4. For a (ξ, ψβ)-superdiffusion, it holds that E+ ⊂ E0.

Proof. Since all the first partials of ψβ are continuous, α and β in ψβ are continuous functions. Thus for any

x ∈ E+, there exists a neighborhood D of x such that supy∈D β(y) ≤ β∗ < ∞ and infy∈D α(y) ≥ α∗ > 0.

We have

ψβ(y, λ) ≥ −β∗λ+ α∗λ2 =: ψ∗(λ) for y ∈ D and λ ≥ 0.

It is easy to verify that ψ∗ satisfies (A.3). Hence x ∈ E0 by Lemma A.3.

In the rest of this subsection, we assume Condition 1’ holds. We will establish the existence of N∗
x for all

x ∈ E+ under Condition 1’.

First we note that there exists a superdiffusion ((Xt)t≥0; P
∗
µ, µ ∈ MF (E)) with P∗

µ(X0 = µ) = 1 such

that for all µ ∈ MF (E), f ∈ B+
b (E) and t ≥ 0,

P∗
µ

[
e−〈f,Xt〉

]
= e−〈u∗

f (t,·),µ〉,

where u∗f (t, x) is the unique nonnegative locally bounded solution to the integral equation given by (2.17).

The branching mechanism of this superdiffusion is ψ∗
β∗(x, λ) := −β∗(x)λ+ψ∗

0(x, λ) where β
∗ and ψ∗

0 are given

in Proposition 2.2. Since w is only locally bounded on E, β∗ is bounded from above but may not be bounded

from below. Hence the branching mechanism ψ∗
β∗(x, λ) does not satisfy the usual assumptions in Section 2.1.

Nevertheless, one may consider the (ξD, ψ∗
β∗)-superdiffusion in every bounded open domain D, where the
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underlying spatial motion is killed upon hitting the boundary of D. Then by using an increasing sequence of

compactly embedded domains to approximate E, the process (X,P∗
µ) can be defined as a distributional limit

of these (ξD, ψ∗
β∗)-superdiffusions. (see, for example, the argument before Theorem 2.4 in [16].) We remark

that this method of construction may fail in general when the spatial motion has discontinuous sample paths

since the process can potentially jump everywhere when it exits from the domain D.

Let E∗
0 be the set of points in E where the Kuznetsov measure N∗

x corresponding to the (ξ, ψ∗
β∗)-

superdiffusion exists. It follows that for every x ∈ E∗
0 , every t > 0 and f ∈ B+

b (E),

N∗
x

(
1− e−〈f,Xt〉

)
= u∗f(t, x).

According to [12, Theorem I.1.1 and Theorem I.1.2], for any bounded open set D ⋐ E and t ≥ 0, there

exists a random measure X̃∗D
t concentrated on the boundary of [0, t)×D, such that for every µ ∈ MF (E)

and f̃ ∈ B+
b ([0, t]× E),

P∗
µ

[
e−〈f̃ ,X̃∗D

t 〉
]
= e

−〈ũ∗D

f̃
(t,·),µ〉

,

where ũ∗D
f̃

(t, x) is the unique nonnegative locally bounded solution to the following integral equation:

ũ∗D
f̃

(t, x) = Πx

[
f̃(t ∧ τD, ξt∧τD )

]
−Πx

[∫ t∧τD

0

ψ∗
β∗

(
ξs, ũ

∗D
f̃

(t− s, ξs)
)
ds

]
. (A.9)

Define w̃(t, x) := w(x) for (t, x) ∈ [0,∞)× E. Using the local boundedness of w on E, we can deduce that

for any bounded open set D ⋐ E,

w̃(t, x) = Πx (w̃(t ∧ τD, ξt∧τD ))−Πx

(∫ t∧τD

0

ψβ(ξs, w̃(t− s, ξs))ds

)
. (A.10)

The next proposition shows that {X̃∗D
t ; t ≥ 0} is a Doob’s h-transformed process of {X̃D

t ; t ≥ 0} via the

function w̃.

Proposition A.5. Let Mw
F (E) := {µ ∈ MF (E) : 〈w, µ〉 < ∞}. Suppose D ⋐ E is a bounded open set and

µ ∈ Mw
F (E). Then for every t ≥ 0 and f̃ ∈ B+

b ([0, t]× E),

e−〈w,µ〉Pµ
[
e−〈f̃+w̃,X̃Dt 〉

]
= P∗

µ

[
e−〈f̃ ,X̃∗D

t 〉
]
. (A.11)

Proof. Since the random measure X̃D
t is supported on the boundary of [0, t)×D and w̃ is locally bounded

on [0,∞)× E, it follows by (2.7) and (2.8) that

e−〈w,µ〉Pµ
[
exp

(
−〈f̃ + w̃, X̃D

t 〉
)]

= exp
(
−〈ũD

w̃+f̃
(t, ·)− w(·), µ〉

)
,

where ũD
w̃+f̃

(t, x) is the unique nonnegative locally bounded solution to the following integral equation

ũD
w̃+f̃

(t, x) = Πx

[
(w̃ + f̃)(t ∧ τD, ξt∧τD)

]
−Πx

(∫ t∧τD

0

ψβ(ξs, ũ
D
w̃+f̃

(t− s, ξs))ds

)
(A.12)

Using (A.12) and (A.10), it is straightforward to check that ũ∗D
f̃

(t, x) := ũD
f̃+w̃

(t, x) − w(x) is the unique

nonnegative locally bounded solution to (A.9). Thus we get (A.11).

Lemma A.6. If x ∈ E satisfies the condition of Lemma A.3, then x ∈ E∗
0 .

Proof. Based on the argument in the beginning of this subsection, it suffices to prove that there exists δ > 0

such that

P∗
δx(X̃

∗B
t = 0) > 0 for all t > 0 and B = B(x, r) with r ≤ δ.
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We choose δ sufficiently small such that B ⊂ D, and ψβ(y, λ) ≥ ψ(λ) for all y ∈ B and λ ≥ 0, where D and

ψ satisfy the conditions of Lemma A.3. It follows from Proposition A.5 that

P∗
δx(X̃

∗B
t = 0) = lim

λ→∞
Pδx(e

−〈λ,X̃∗B
t 〉)

= e−w(x) lim
λ→∞

Pδx(e
−〈w̃+λ,X̃Bt 〉)

= e−w(x) lim
λ→∞

e−ũ
B
w̃+λ(t,x),

where ũBw̃+λ(t, x) is the unique nonnegative solution of (2.8) with initial condition w̃ + λ. Then v(s, y) :=

ũBw̃+λ(t− s, y) for (s, y) ∈ [0, t]×B, is a solution to the following boundary problem:





∂v

∂s
+ Lv = ψβ(y, v(s, y)), (s, y) ∈ (0, t)×B

lim
(0,t)×B∋(s,y)→z

v(t, y) = w̃(z) + λ, z ∈ ∂((0, t)×B).

Since ψβ(y, λ) ≥ ψ(λ) for y ∈ B and λ ≥ 0, applying similar arguments as in the proof of Lemma A.3, we

get limλ→∞ ũBw̃+λ(t, x) <∞. Therefore P∗
δx
(X̃∗B

t = 0) > 0 for t > 0. Hence x ∈ E∗
0 .

Proposition A.7. For a (ξ, ψβ)-superdiffusion that satisfies Condition 1’, it holds that E+ ⊂ E∗
0 .

Proof. This proposition follows from Lemma A.6 (instead of Lemma A.3) in the same way as the proof of

Proposition A.4. We omit the details here.

A.2 Verifications of examples

Example 8.1: It is easy to check that Assumptions 1-4 are satisfied with λ1 = −β, h(x) ≡ 1 and w(x) ≡ zψ.

Then the h-transformed semigroup P ht is given by

P ht f(x) :=
e−βt

h(x)
Πx
[
eβth(ξt)f(ξt)

]
= Ptf(x) for f ∈ B+

b (R
d).

This implies that the h-transformed process ξh is still an inward OU process with generate L. It is known

that the transition density of ξh with respect to m is given by

ph(t, x, y) =
(
1− e−2ct

)−d/2
exp

(
−

c

e2ct − 1

(
|x|2 + |y|2 − 2ectx · y

))
for t > 0 and x, y ∈ Rd.

In view of this, one can easily check that ξh has the Feller property, that is, P ht maps C0(R
d) to C0(R

d) and

limt→0 ‖P ht f − f‖∞ = 0 for all f ∈ C0(R
d). It remains to show that Assumption 5 holds for this example.

Let Z be the skeleton process. We need to show that for any µ ∈ Mc(E), σ > 0 and f ∈ B+(E) with fw
h

bounded,

lim
n→∞

eλ1nσ〈f, Znσ〉 = 〈f, wh〉Wh/w
∞ (Z) Pµ-a.s. (A.13)

For t ≥ 0, Zt =
∑N0

i=1 Z
i,0
t , where N0 = 〈1, Z0〉 and Zi,0 denotes the independent subtree of the skeleton

initiated by the ith particle at time 0. Recall that under Pµ for µ ∈ Mc(E), N0 is a Poisson random variable

with mean 〈w, µ〉. Moreover, given Z0, Z
i,0 follows the same distribution as (Z;P·,δzi(0)). Thus we have

Pµ

(
lim
n→∞

eλ1nσ〈f, Znσ〉 = 〈f, wh〉Wh/w
∞ (X)

)

≥ Pµ

(
N0⋂

i=1

{ lim
n→∞

eλ1nσ〈f, Zi,0nσ〉 = 〈f, wh〉Wh/w
∞ (Zi,0)}

)

= Pµ

[
N0∏

i=1

P·,δzi(0)

(
lim
n→∞

eλ1nσ〈f, Znσ〉 = 〈f, wh〉Wh/w
∞ (Z)

)]
.
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Hence to prove (A.13), it suffices to prove that for every x ∈ E,

P·,δx

(
lim
n→∞

eλ1nσ〈f, Znσ〉 = 〈f, wh〉Wh/w
∞ (Z)

)
= 1. (A.14)

Sufficient conditions for (A.14) are given in [16] (see conditions (2.23)-(2.26), (2.34) and (2.35) there). In

this example, conditions (2.23)-(2.26) in [16] hold for σ1 = σ3 = p, σ2 = 2 and ϕ1(x) = ϕ2(x) ≡ 1, condition

(2.34) holds for a(t) =
√
(−λ1

c + σ)t and condition (2.35) in [16] holds for K = 1. Hence we prove (A.13).

Example 8.2: Assumptions 1-4 are satisfied with λ1 = cd − β, h(x) =
(
c
π

)d/2
e−c|x|

2

and w(x) ≡ zψ. The

transition density of ξ with respect to m is given by

p(t, x, y) =
(
e2ct − 1

)−d/2
exp

(
−

c

1− e−2ct

(
|x|2 + |y|2 − 2e−ctx · y

))
for t > 0 and x, y ∈ Rd.

The h-transformed process ξh is symmetric with respect to the measure m̃(dx) = h2m(dx) =
(
c
π

)d/2
e−c|x|

2

dx,

and the transition density of ξh with respect to m̃ is given by

ph(t, x, y) =
(
1− e−2ct

)−d/2
exp

(
−

c

e2ct − 1

(
|x|2 + |y|2 − 2ectx · y

))
for t > 0 and x, y ∈ Rd.

This implies that ξh is an inward OU process on Rd with infinitesimal generator Lh := 1
2∆− cx · ∇. Thus

limt→0 ‖P
h
t f − f‖∞ = 0 for any f ∈ C0(R

d). In view of Example 4.2 in [16], Assumption 5 is also satisfied.

Example 8.3: Suppose ψ̂β(x, λ) := −β(x)λ+α(x)λ2 . Let X be a (Y, ψβ)-superdiffusion and X̂ be a (Y, ψ̂β)-

superdiffusion. For x ∈ Rd, let wX(x) := − logPδx (∃t ≥ 0 : 〈1,Xt〉 = 0) and w
X̂
(x) := − log Pδx

(
∃t ≥ 0 : 〈1, X̂t〉 = 0

)
.

We know from [18] that the function w
X̂
is continuous on Rd and solves the equation Lu− ψ̂β(x, u) = 0 on

Rd. Since ψβ ≥ ψ̂β pointwise, it follows by [16, Lemma 4.5] that wX ≤ w
X̂
pointwise. Thus wX is locally

bounded on Rd and hence is continuous on Rd by [16, Lemma 2.1]. Recall that X is a (ξ, ψβ)-superdiffusion

where ξ = Y E is the subprocess of Y killing upon leaving E. We mentioned in Section 2.2 that one may

think of Xt describing the mass in Xt which historically avoids exiting E.

Since the function ρ in the generator is bounded between two positive constants, we know from [23] that

ξ has a positive continuous transition density pE(t, x, y) with respect to m, and for each T > 0, there exist

positive ci, i = 1, · · · , 4 such that for every (t, x, y) ∈ (0, T ]× E × E,

c1fE(t, x, y)t
−d/2 exp

(
−
c2|x− y|2

t

)
≤ pE(t, x, y) ≤ c3fE(t, x, y)t

−d/2 exp

(
−
c4|x− y|2

t

)
, (A.15)

where fE(t, x, y) :=
(
1 ∧ δE(x)√

t

)(
1 ∧ δE(y)√

t

)
and δE(x) denotes the Euclidean distance between x and the

boundary of E. Since β is bounded, it follows that the Feynman-Kac semigroup P βt admits an integral kernel

pβE(t, x, y) which is positive, symmetric and continuous in (x, y) for each t > 0, and

e−‖β‖∞tpE(t, x, y) ≤ pβE(t, x, y) ≤ e‖β‖∞tpE(t, x, y) for all x, y ∈ E and t > 0.

Thus pβE(t, x, y) satisfies the same two-sided estimates (A.15) with possibly different constants ci > 0,

i = 4, · · · , 8. By this estimate,
∫
E×E p

β
E(t, x, y)

2m(dx)m(dy) =
∫
E
pβE(2t, x, x)m(dx) <∞ for every t ∈ (0, T ].

Thus P βt is a Hilbert-Schimidt operator in L2(E,m) and hence is compact. The infinitesimal generator of

P βt is L(β) := (L+ β) |E with zero Dirichlet boundary condition. We use σ(Lβ) to denote the spectrum set

of Lβ . It then follows from Jentzch’s theorem that λ1 := inf{−λ : λ ∈ σ(L(β))} is a simple eigenvalue and a

corresponding eigenfunction h can be chosen to be nonnegative with
∫
E h(x)

2m(dx) = 1. We assume λ1 < 0.

Since h(x) = eλ1t
∫
E
pβE(t, x, y)h(y)m(dy), h is continuous and positive on E. Moreover, by the estimate

(A.15), we have

c9 (1 ∧ δE(x)) ≤ h(x) ≤ c10 (1 ∧ δE(x)) for all x ∈ E. (A.16)
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Here c9, c10 are positive constants independent of x. Therefore, Assumptions 2-3 hold.

Let w(x) := − logPδx (∃t ≥ 0 : 〈1, Xt〉 = 0). Since h is bounded on E, it is easy to see that condition

(2.27) (or, equivalently, Assumption 4(i)) holds. Thus by Theorem 2.9 and Remark 2.10, Pδx
(
Wh

∞(X) > 0
)
>

0 for every x ∈ E. It follows that

w(x) ≥ − log

(
1− Pδx

(
lim sup
t→∞

〈1, Xt〉 > 0

))
≥ − log

(
1− Pδx

(
Wh

∞(X) > 0
))
> 0 for x ∈ E.

On the other hand, since Xt describes only part of the mass in Xt, we have Pδx (∃t ≥ 0 : 〈1, Xt〉 = 0) ≥

Pδx (∃t ≥ 0 : 〈1,Xt〉 = 0) and hence w(x) ≤ wX(x) on E. This together with the continuity of wX on Rd

implies that w is bounded on E and hence is continuous on E by [16, Lemma 2.1]. This shows that Condition

1 holds, and, consequently, Assumption 1 is satisfied.

We now show that Assumption 4(ii) holds for this example. By condition (8.1) and the boundedness of

w, one can easily prove that
ψβ(x,w(x))

w(x) = −β(x) + α(x)w(x) +
∫
(0,∞)

e−w(x)y−1+w(x)y
w(x) π(x, dy) is a bounded

function on E. Let {Dn : n ≥ 1} be a sequence of bounded domains with smooth boundaries such that

Dn ⋐ Dn+1 ⋐ E for n ≥ 1 and
⋃∞
n=1Dn = E. We know from the argument in the beginning of Section 5

that for t > 0, x ∈ E and n sufficiently large so that x ∈ Dn,

w(x) = Πx

[
w(ξt∧τDn ) exp

(
−

∫ t∧τDn

0

ψβ(ξs, w(ξs))

w(ξs)
ds

)]
.

Consequently,

w(x) ≥ exp

(
−t sup

y∈E

ψβ(y, w(y))

w(y)

)
Πx
(
w(ξt∧τDn )

)

= e−c13t
(
Πx [w(ξt); t < τDn ] + Πx

[
w(ξτDn ); t ≥ τDn

])

≥ e−c13tΠx [w(ξt); t < τDn ] = e−c13tΠx [w(Yt); t < τDn ] .

Thus by letting n → ∞, we get w(x) ≥ e−c13tΠx [w(Yt); t < τE ] = e−c13tΠx
[
w(Y Et )

]
. Using this and the

heat kernel estimates in (A.15), we have for x ∈ E

w(x) ≥ e−c13Πx
[
w(Y E1 )

]

= e−c13
∫

E

pE(1, x, y)w(y)m(dy)

≥ c1e
−c13

∫

E

(1 ∧ δE(x))(1 ∧ δE(y))e
−c2|x−y|2w(y)m(dy)

≥ c1e
−c13−c2diam(E)2(1 ∧ δE(x))

∫

E

(1 ∧ δE(y))w(y)m(dy)

≥ c14(1 ∧ δE(x)). (A.17)

Here c14 > 0 is constant and the last inequality comes from the fact that (1∧δE(y))w(y) is positive everywhere

on E. By (A.17) and (A.16), we have for x ∈ E,

∫

(0,∞)

r2e−w(x)rπ(x, dr) ≤

∫

(0,∞)

r2e−c14(1∧δE(x))rπ(x, dr)

≤

∫

(0,∞)

r2e−c15h(x)rπ(x, dr)

=
1

h(x)

∫

(0,∞)

r log∗ r

(
rh(x)

log∗(rh(x))
e−c15h(x)r

)
log∗(rh(x))

log∗ r
π(x, dr)

≤
1

h(x)

∫

(0,∞)

r log∗ r

(
rh(x)

log∗(rh(x))
e−c15h(x)r

)
log∗(r‖h‖∞)

log∗ r
π(x, dr),
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where c15 is a positive constant. It then follows from condition (8.1), and the fact that functions y 7→
y

log∗ y e
−c15y and y 7→ log∗(y‖h‖∞)

log∗ y are bounded on (0,∞) that
∫
(0,∞) r

2e−w(x)rπ(x, dr) ≤ c16h(x)
−1 on E.

Immediately we get 〈
(∫

(0,∞) r
2e−w(·)rπ(·, dr)

)2
, 1 ∧ h4〉 ≤ c216

∫
E(h(x)

−2 ∧ h(x)2)m(dx) < ∞. Hence As-

sumption 4(ii) holds.

We next show Assumption 6 holds. Let P ht be the h-transformed semigroup from P βt given by (2.25).

P ht admits an integral kernel phE(t, x, y) with respect to the measure m̃(dx) := h(x)2m(dx), which is related

to pβE(t, x, y) by

phE(t, x, y) = eλ1t
pβE(t, x, y)

h(x)h(y)
for x, y ∈ E and t ≥ 0.

Define ãt(x) := phE(t, x, x) for x ∈ E and t > 0. Clearly by (A.15) and (A.16), we have supx∈E ãt(x) < ∞

for every t > 0. Let eβ(t) :=
∫ t
0
β(ξs)ds. Suppose f ∈ C0(E). Then for any given ε > 0, there is δ > 0 so

that |f(x) − f(y)| < ε whenever |x − y| < δ. By the two-sided estimate of pβE(t, x, y), for sufficiently small

t ∈ (0, 1],

sup
x∈E

∣∣P ht f(x)− f(x)
∣∣ = sup

x∈E

∣∣∣eλ1tP βt (hf)(x)− h(x)f(x)
∣∣∣

h(x)

= sup
x∈E

eλ1t
|Πx [eβ(t)h(ξt)(f(ξt)− f(ξ0))]|

h(x)

≤ ε+ sup
x∈E

eλ1t
|Πx [eβ(t)h(ξt)(f(ξt)− f(ξ0)); |ξt − ξ0| ≥ δ]|

h(x)

≤ ε+ e(λ1+‖β‖∞)t‖h‖∞‖f‖∞ sup
x∈E

Πx (|ξt − ξ0| ≥ δ)

h(x)

≤ ε+ c11 sup
x∈E

δE(x)

1 ∧ δE(x)

∫

y∈E: |y−x|≥δ
t−(d+1)/2 exp

(
−c4|x− y|2/t

)
dy

≤ ε+ c12(1 + diam(E))

∫

|z|≥δ
t−(d+1)/2e−c4|z|

2/tdz

= ε+ c12(1 + diam(E))t−1/2

∫ ∞

δt−1/2

rd−1e−c4r
2

dr.

It follows that limt→0 ‖P ht f − f‖∞ = 0 for all f ∈ C0(E).

It remains to prove that Assumption 5 holds. Fix φ ∈ B+
b (E), µ ∈ Mc(E) and σ > 0. For m,n ∈ N, we

have

eλ1(m+n)σ〈
h

w
φ,Z(m+n)σ〉 − 〈φ, h2〉Wh/w

∞ (Z) = I(m,n) + II(m,n) + III(n), (A.18)

where I(m,n) := eλ1(m+n)σ〈 hwφ, Z(m+n)σ〉 − Pµ
(
eλ1(m+n)σ〈 hwφ, Z(m+n)σ〉

∣∣Fnσ
)
,

II(m,n) := Pµ

(
eλ1(m+n)σ〈

h

w
φ,Z(m+n)σ〉

∣∣∣∣Fnσ
)
− 〈φ, h2〉Wh/w

nσ (Z),

and III(n) := 〈φ, h2〉
(
W

h/w
nσ (Z)−W

h/w
∞ (Z)

)
. Note that by the Markov property of Z,

Pµ

(
eλ1nσ〈

h

w
φ,Z(m+n)σ〉

∣∣∣∣Fnσ
)

= eλ1(m+n)σP·,Znσ

(
〈
h

w
φ,Zmσ〉

)

= eλ1(m+n)σ〈
1

w
P βmσ(hφ), Znσ〉 = eλ1nσ〈

h

w
P hmσφ, Znσ〉.

Thus II(m,n) = eλ1nσ〈 hwP
h
mσg, Znσ〉, where g(x) := φ(x) − 〈φ, h2〉. Since 〈g, h2〉 = 0,

∣∣P hmσg(x)
∣∣ ≤

e−λh(mσ−
1
2 )ã1(x)

1/2‖g‖L2(E,h2m) for mσ > 1/2. Here λh > 0 denotes the spectral gap in σ(L(β)). Thus
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we have for mσ > 1/2

|II(m,n)| =

∣∣∣∣e
λ1nσ〈

h

w
P hmσg, Znσ〉

∣∣∣∣ ≤ c14e
−λhmσ sup

x∈E
ã1(x)

1/2Wh/w
nσ (Z).

It is shown in the proof of the equivalence between Assumption 5 and Assumption 5’ that for every m ∈ N,

limn→∞ I(m,n) = 0 Pµ-a.s. Thus by letting n→ ∞ and then m→ ∞ in (A.18), we obtain that

lim
n→∞

eλ1nσ〈
h

w
φ,Znσ〉 − 〈φ, h2〉Wh/w(Z) = 0 Pµ-a.s.

Example 8.4: Let λh := λ2 − λ1 be the spectral gap in σ(L(β)), whereλ2 := inf
{
λ ∈ σ(−L(β)) : λ 6= λ1

}
.

Since P βt h(x) = e−λ1th(x), it follows by property (ii) and Hölder inequality that h ∈ L4(E,m). Let g0(θ) :=

log∗ θ/θ for θ ∈ (0,+∞). Then

〈

∫

(0,+∞)

r log∗(rh(·))π(·, dr), h2〉 = 〈

∫

(0,+∞)

g0(rh(·))r
2π(·, dr), h3〉

≤ ‖g0‖∞〈

∫

(0,+∞)

r2π(·, dr), h3〉

< +∞.

The last inequality comes from the fact that h ∈ L4(E,m) and condition (8.2). Thus we have by Theorem

2.9 and Remark 2.10 that Pδx
(
Wh

∞(X) > 0
)
> 0 for each x ∈ E. Hence

w(x) ≥ − log

(
1− Pδx

(
lim sup
t→+∞

〈1, Xt〉 > 0

))
≥ − log

(
1− Pδx

(
Wh

∞(X) > 0
))
> 0.

In view of Remark 2.7, w(x) is a bounded function on E under our assumptions. Using the boundedness of

w and (8.2), it is easy to verify that Assumptions 1-4 and Assumption 6 are satisfied by this example. Next

we will show that Assumption 5’ is also satisfied, that is, for all µ ∈ Mc(E), φ ∈ B+
b (E), σ > 0 and some

m ∈ N,

lim
n→+∞

eλ1nσ〈
h

w
P hmσφ, Znσ〉 = 〈φ, h2〉Wh/w

∞ (Z) Pµ-a.s. (A.19)

It is showed in the proof of Lemma 7.4 that

eλ1nσ〈
h

w
P hmσφ, Znσ〉 = eλ1(m+n)σ

Nnσ∑

i=1

Pµ
(
〈φh, Ii,nσmσ 〉 | Fnσ

)
+ eλ1nσ〈

h

w
θ∗φh(mσ, ·), Znσ〉.

Thus by Lemma 5.2, Lemma 7.3 and Theorem 2.11, under Assumptions 1-3 and Assumption 4(i), (A.19) is

equivalent to that

lim
n→+∞

eλ1(m+n)σ
Nnσ∑

i=1

〈φh, Ii,nσmσ 〉 = 〈φ, h2〉Wh
∞(X) Pµ-a.s. (A.20)

Since eλ1(m+n)σ〈φh,X(m+n)σ〉 ≥ eλ1(m+n)σ
∑Nnσ

i=1 〈φh, I
i,nσ
mσ 〉 and φ ∈ B+

b (E), (A.20) (or equivalently (A.19))

is equivalent to

lim
n→+∞

eλ1nσ〈φh,Xnσ〉 = 〈φ, h2〉Wh
∞(X) Pµ-a.s. (A.21)

Fix φ ∈ B+
b (E) and µ ∈ Mc(E). Let g(x) := φ(x) − 〈φ, h2〉 for x ∈ E. We have by (2.6) that for t > 0,

Pµ

[(
eλ1t〈gh,Xt〉

)2]
= 〈P ht g, hµ〉

2 +

∫ t

0

eλ1s〈P hs

[(
2α+

∫

(0,+∞)

y2π(·, dy)

)
h
(
P ht−sg

)2
]
, hµ〉ds

=: I(t) + II(t).
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Since g ∈ L2(E, m̃) and 〈g, h2〉 = 0, we have by (3.6) for r > t0/2 and x ∈ E,

|P hλ g(x)| ≤ e−λh(r−
t0
2 )ãt0(x)

1/2‖g‖L2(E,m̃) =: c1e
−λhrãt0(x)

1/2. (A.22)

Thus I(t) ≤ c2e
−2λht for all t > t0/2 and some c2 > 0. On the other hand, for r ∈ (0, t0/2] and x ∈ E,

|P hλ g(x)| ≤ ‖g‖∞ ≤ ‖g‖∞e
λh(

t0
2 −r) =: c3e

−λhr. (A.23)

Let ε ∈ (0,−λ1 ∧ 2λh), we have by (A.22) and (A.23) that

II(t) ≤ ‖2α+

∫

(0,+∞)

y2π(·, dy)‖∞

∫ t

0

eλ1s〈P hs

(
h
(
P ht−sg

)2)
, hµ〉ds

≤ c4

∫ t

0

eλ1s−2λh(t−s)〈P hs (h (1 ∨ ãt0)) , hµ〉ds

≤ c4e
−εt
∫ +∞

0

e(λ1+ε)s〈P hs (h (1 ∨ ãt0)) , hµ〉ds. (A.24)

Since h ∈ L4(E,m), it follows by property (ii) that h (1 ∨ ãt0) ∈ L2(E, m̃). Thus by (3.6), 〈P hs (h (1 ∨ ãt0)) , hµ〉

is bounded from above for s sufficiently large. Therefore the integral in the right hand side of (A.24) is finite.

It implies that
∑+∞
n=1 Pµ

[(
eλ1nσ〈gh,Xnσ〉

)2]
< +∞, and hence we obtain (A.21) by Borel-Cantelli Lemma.

Example 8.5: By a similar argument as that for [3, IV.5], we have

h(x) ≥ c0|x|
−d−α for |x| ≥ 1, (A.25)

for some positive constant c0. Let λ2 be the second bottom of the spectrum of σ(E(β)), that is λ2 :=

inf{E(β)(u, u) : u ∈ F with
∫
Rd
u(x)h(x)dx = 0 and

∫
Rd
u(x)2dx = 1}. Then the spectral gap λh := λ2 −

λ1 > 0. Recall that the h-transformed semigroup P ht is an m̃-symmetric semigroup with m̃(dx) = h(x)2dx.

P ht admits an integral kernel ph(t, x, y), given by (3.5), with respect to the measure m̃(dx). Let pβ(t, x, y)

be the integral kernel of P βt with respect to the Lebesgue measure, which satisfies the estimates in (2.22).

For any f ∈ Cc(R
d), t > 0 and x ∈ Rd, we have by (8.3) and (2.22) that

∣∣P ht f(x)− f(x)
∣∣ ≤

∫

Rd

ph(t, x, y) |f(y)− f(x)| m̃(dy)

=
eλ1t

h(x)

∫

Rd

pβ(t, x, y)h(y) |f(y)− f(x)| dy

≤ c1
e(λ1+‖β‖∞)t

h(x)

∫

Rd

(
t−d/α ∧

t

|x− y|d+α

)
h(y)|f(y)− f(x)|dy (A.26)

Let ft(x) :=
1

h(x)

∫
Rd

(
t−d/α ∧ t

|x−y|d+α
)
h(y)|f(y) − f(x)|dy. Suppose supp(f) ⊂ B(0, R) for some R > 1.

For x ∈ B(0, 2R) and z ∈ Rd, h(z)/h(x) ≤ ‖h‖∞/ infy∈B(0,2R) h(y) <∞, and we have

ft(x) ≤ c2

∫

Rd

(
t−d/α ∧

t

|x− y|d+α

)
|f(y)− f(x)|dy

= c2

∫

Rd

(
t−d/α ∧

t

|z|d+α

)
|f(x+ z)− f(x)|dz. (A.27)

Since f ∈ Cc(R
d) is uniformly continuous on Rd, for any ε > 0, there exists δ > 0, such that |f(z1)−f(z2)| ≤ ε

whenever |z1 − z2| < δ. Thus by (A.27),

ft(x) ≤ c2ε

∫

|z|<δ
t−d/α ∧

t

|z|d+α
dz + 2c2‖f‖∞

∫

|z|≥δ
t−d/α ∧

t

|z|d+α
dz
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= c2ε

∫

|u|<δt−1/α

1 ∧
1

|u|d+α
du+ 2c2‖f‖∞

∫

|u|≥δt−1/α

1 ∧
1

|u|d+α
du (A.28)

Since
∫
Rd

1 ∧ 1
|u|d+α du < ∞, by letting t → 0 and ε → 0 in (A.28), we get supx∈B(0,2R) ft(x) → 0. On the

other hand, for x 6∈ B(0, 2R), by the fact supp(f) ⊂ B(0, R), the boundedness of h and (A.25), we have

ft(x) =
1

h(x)

∫

|y|≤R

(
t−d/α ∧

t

|x− y|d+α

)
h(y)|f(y)|dy

≤ c3

∫

|y|≤R

(
t−d/α ∧

t

|x− y|d+α

)
|x|d+αdy

≤ c3

∫

|y|≤R

t|x|d+α

(|x| − |y|)d+α
dy

≤ c3

∫

|y|≤R

t|x|d+α

(|x| −R)d+α
dy

≤ 2d+αc3t.

Thus supx 6∈B(0,2R) ft(x) → 0 as t→ 0. Hence by (A.26) we conclude that

lim
t→0

‖P ht f − f‖∞ = 0 (A.29)

for all f ∈ Cc(R
d). Since Cc(R

d) is dense in (C0(R
d), ‖ · ‖∞), (A.29) is true for all f ∈ C0(R

d).

Recall that w(x) = − log Pδx (∃t ≥ 0, 〈1, Xt〉 = 0). The argument in Remark 2.7 shows that w(x) is

bounded on E and so Condition 1 is satisfied. Let Wh
t (X) := eλ1t〈h,Xt〉. Then Wh

t (X) is a nonnegative

Pµ-martingale with respect to Ft := σ{Xs : s ∈ [0, t]} for all µ ∈ MF (E). Let Wh
∞(X) := limt→∞Wh

t (X).

Note that by (2.6),

Pδx
(
Wh
t (X)2

)
= h(x)2 + e2λ1t

∫ t

0

P βs

[
α̂
(
P βt−sh

)2]
(x)ds

= h(x)2 +

∫ t

0

e2λ1sP βs
[
α̂h2

]
(x)ds

≤ h(x)2 + ‖α̂h‖∞

∫ t

0

e2λ1sP βs h(x)ds

= h(x)2 + ‖α̂h‖∞h(x)

∫ t

0

eλ1sds

≤ h(x)2 + c4h(x). (A.30)

Here α̂(x) := 2α(x) +
∫
(0,∞) y

2π(x, dy) for x ∈ E and c4 is a positive constant independent of t. Thus for

any µ ∈ Mh
F (E), {Wh

t (X) : t ≥ 0} is an L2-bounded nonnegative martingale and hence Wh
t (X) converges

to Wh
∞(X) Pµ-a.s. and in L2(Pµ). In particular Pµ

(
Wh

∞(X) > 0
)
> 0. Thus Pδx (∃t > 0, 〈1, Xt〉 = 0) ≤

1 − Pδx
(
Wh

∞(X) > 0
)
< 1, and so w(x) > 0 for all x ∈ Rd. Furthermore, By Cauchy-Schwartz inequality

and (A.30), we have

Pδx
(
Wh

∞(X) > 0
)
≥

(
Pδx

[
Wh

∞(X)
])2

Pδx [W
h
∞(X)2]

=
h(x)2

limt→∞ Pδx
[
Wh
t (X)2

] ≥ h(x)

h(x) + c4
.

Thus we get

w(x) ≥ − log
(
1− Pδx

(
Wh

∞(X) > 0
))

≥ log(h(x) + c4)− log c4.

Using this, (A.25) and the fact that h is bounded away from 0 and ∞ on compact sets, we conclude that

the function h(x)/w(x) is bounded from above on Rd. We see from the above arguments that Assumptions

1-4 and Assumption 6 are satisfied by this example.
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Finally we will show that Assumption 5 is also satisfied. Let Z be the skeleton process. We need to show

that for all µ ∈ Mc(E), σ > 0 and f ∈ B+(E) with fw
h bounded,

lim
n→∞

eλ1nσ〈f, Znσ〉 = 〈f, wh〉Wh/w
∞ (Z) Pµ-a.s. (A.31)

Fix f ∈ B+(E) with fw/h bounded. Let g(x) := f(x) − 〈f, wh〉 hw (x) =
(
fw
h (x)− 〈f, wh〉

)
h
w (x) for x ∈ E.

Through the same argument as in Example 8.1, to prove (A.31), it suffices to prove that for every x ∈ E,

P·,δx

(
lim
n→∞

eλ1nσ〈g, Znσ〉 = 0
)
= 1. (A.32)

We observe that g, gwh are bounded functions on Rd by the boundedness of h
w and fw

h . For every x ∈ Rd,

P·,δx

[(
eλ1t〈g, Zt〉

)2]
=
h(x)

w(x)
(I(t, x) + II(t, x)) ,

where I(t, x) := eλ1tP ht
(
w
h g

2
)
(x), II(t, x) :=

∫ t
0 e

λ1sP hs

[
(2α+ b) hwP

h
t−s
(
w
h g
)2]

(x)ds. For I, we have

I(t, x) ≤ ‖
w

h
g‖∞‖g‖∞e

λ1t. (A.33)

For II, we have

II(t, x) ≤ ‖2α+ b‖∞‖
h

w
‖∞‖

w

h
g‖∞

∫ t

0

eλ1sP hs

[∣∣∣P ht−s
(w
h
g
)∣∣∣
]
(x)ds. (A.34)

Since 〈wh g, h
2〉 = 0, by (2.26) and Hölder inequality for any t > s > 0

P hs

[∣∣∣P ht−s
(w
h
g
)∣∣∣
]
(x) =

∫

Rd

ph(s, x, y)
∣∣∣P ht−s

(w
h
g
)∣∣∣ m̃(dy)

≤

(∫

Rd

ph(s, x, y)2m̃(dy)

)1/2

‖P ht−s

(w
h
g
)
‖L2(Rd,m̃)

≤ e−λh(t−s)ph(2s, x, x)1/2‖
w

h
g‖L2(Rd,m̃) (A.35)

Let ε ∈ (0,−λ1 ∧ λh). Note that by (3.6), for each x, ph(s, x, x) is bounded from above when s is suffciently

large. This together with (A.34) and (A.35) yield that for every x ∈ Rd,

II(t, x) ≤ c5

∫ t

0

eλ1s−λh(t−s)ds ≤ c5e
−εt
∫ t

0

e(λ1+ε)sds ≤ c6e
−εt. (A.36)

Thus by (A.33) and (A.36), we get
∑∞

n=1 P·,δx

[(
eλ1nσ〈g, Znσ〉

)2]
< ∞. Consequently, (A.32) follows by

Borel-Cantelli lemma.
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