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Skeleton decomposition and law of large numbers for

supercritical superprocesses

Zhen-Qing Chen! Yan-Xia Ren’ and Ting Yang?

Abstract

The goal of this paper has two-folds. First, we establish skeleton and spine decompositions for
superprocesses whose underlying processes are general symmetric Hunt processes. Second, we use these
decompositions to obtain weak and strong law of large numbers for supercritical superprocesses where
the spatial motion is a symmetric Hunt process on a locally compact metric space F and the branching
mechanism takes the form

Ua(e.N) = B+ al@N 4+ [ (@ =14 (e dy)
(0,00)

with 8 € By(FE), a € B} (F) and 7 being a kernel from E to (0,00) satisfying SqueEf(o,oo)(y A
yH)m(z, dy) < co. The limit theorems are established under the assumption that an associated Schrédinger
operator has a spectral gap. Our results cover many interesting examples of superprocesses, including
super Ornstein-Uhlenbeck process and super stable-like process. The strong law of large numbers for
supercritical superprocesses are obtained under the assumption that the strong law of large numbers for
an associated supercritical branching Markov process holds along a discrete sequence of times, extending
an earlier result of Eckhoff, Kyprianou and Winkel [I6] for superdiffusions to a large class of superpro-
cesses. The key for such a result is due to the skeleton decomposition of superprocess, which represents
a superprocess as an immigration process along a supercritical branching Markov process.
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1 Introduction

Recently there is a lot of work (see [9, 16, 17, 19 20l 21] 24} 28] [33] and the references therein) on limit
theorems for superprocesses using the principal eigenvalue and ground state of the corresponding Schrodinger
equations. For superdiffusions, weak (convergence in law or in probability) and strong (almost sure conver-
gence) laws of large numbers have been established successively in [16] 17, 19, 20, 2T], 28, B3]. That the
underlying process is a diffusion plays an essential role in these papers. We refer to [I6] for a survey on
the recent developments of limit theorems for superdiffusions. Unlike the case for superdiffusions, there is
much less work on limit theorems for superprocesses when the spatial motion is a general Hunt process. As
far as we know, [9] is the first paper to establish strong law of large numbers (SLLN in brief) for super-
processes. The spatial motions in [9] are symmetric Hunt processes which can have discontinuous sample
paths. Amongst other assumptions, a spectral gap condition was used in [9] to obtain a Poincaré inequal-
ity, which is the main ingredient in the proof of almost sure convergence along lattice times. Later [24]
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used a Fourier analysis approach to establish a SLLN for super-stable processes with spatially independent
quadratic branching mechanisms. Very recently, SLLN is obtained in [§] for a class of superprocesses where
the spatial motion can be a non-symmetric Hunt process. In [8], the mean semigroup of the superprocess is
assumed to be compact in L? space and the branching mechanism is assumed to satisfy a second moment
condition. Under these conditions, the mean semigroup of the superprocess automatically has a spectral gap.
In the existing literature for almost sure convergence, either the spatial motion has to be a diffusion, or the
branching mechanism has to obey restrictive conditions (in [9] the coefficients of the branching mechanism
have to satisfy a Kato class condition, while in [24] B3] the branching mechanisms are spatially independent,
in [8, @] the branching mechanisms have to satisfy a second moment condition, and in [I6] it has to satisfy
a pth-moment condition for some p € (1,2]).

The present paper is devoted to establish weak and strong laws of large numbers for superprocesses where
the underlying spatial motions are symmetric Hunt processes and the branching mechanisms are general.
A key ingredient of our approach is a skeleton decomposition for superprocesses, which provides a pathwise
description of the superprocess in terms of immigration along a branching Markov process, called skeleton.
The skeleton decomposition for superdiffusions was developed in [2,[26]. Very recently this decomposition was
used in [I6] to study limit theorems for superdiffusions. In the present paper we extend this decomposition
to superprocesses whose spatial motion can be discontinuous, and use it to make a connection between the
asymptotic behavior of a branching Markov process and that of a superprocess. Our proof of SLLN follows
two main steps, first to obtain SLLN along lattice times and then extend it to all times. Our approach to
SLLN along lattice times is different from that of [I6]. Motivated by [10], where we established laws of large
numbers for branching symmetric Hunt processes under a Kesten-Stigum L log L type condition, we use only
L'-convergence technique to establish the SLLN along lattice times, whereas the approach in [I6] involves
a p-th moment calculation for some p € (1,2]. As a result, the branching mechanism in the present paper
has to obey an Llog L type condition, while the branching mechanism in [16] has to obey a p-th moment
condition with p € (1,2]. So even within the superdiffusion case, our milder moment assumptions include
superprocesses where the assumptions in [I6] may fail (see, for example, Example[R3]in SectionBlbelow). For
the transition from discrete to continuous time, [16] adapted the idea of [28], where this transition is obtained
through approximation of the indicator functions by resolvent functions. This idea works for superdiffusions
because the spatial motion has continuous sample paths. But it is not applicable for superprocesses when
the underlying motion is a general symmetric Hunt process. We overcome this difficulty by imposing a
continuity condition on the h-transformed process. Examples which satisfy these assumptions are given in
Section B In particular, the spatial motions in Example and Example have discontinuous paths.

The remainder of this paper is organized as follows. We start Section 2] with a review on definitions
and basic properties of symmetric Hunt processes and superprocesses. A key ingredient in constructing
skeleton as well as spine decomposition of superprocesses is the Kuznetsov measures or excursion measures
(also known as N-measures in literature) for the superprocesses. However, the existence of such a measure
was taken for granted in [2, [16] 26]. In Subsection and Appendix [AT] of this paper, we give sufficient
conditions for the existence of such measures for general superprocesses and superdiffusions, respectively, and
thus also filling the missing pieces in [2, [16, 26]. We then present our working hypothesis and main results
in Subsection [Z4l We give a spine decomposition for the superprocess in Section [3 and then use it to prove
the L'-convergence of an associated martingale in Section @l In Section [Bl we give a detailed description of
the skeleton space for superprocesses and show that the martingale limits for the superprocess and skeleton
coincide. The proofs of weak and strong laws of large numbers are given, respectively, in Section [6 and
Section [l We present several examples to illustrate our results in Section ]l and give a detailed verification
of those examples in Appendix of this paper.

“ 2

Throughout this paper, we use “:=” as a way of definition. For a function f, || f|/s := sup|f(z)|. For



a,b € R, a Ab:=min{a,b} and a V b := max{a,b}. log" x := log(x v 1) and

. z/e, x<e,
log™ z :=
logz, x>e.

For two positive functions f and g, we use f = g to denote that there is a positive constant ¢ such that
—1 . . oy . Cc . . .

¢ f < g <cf on their common domain of definition. We also write < for < if ¢ is unimportant. We use
B(z,7) to denote the ball in R? centered at x with radius 7.

2 Preliminary

2.1 Spatial process

Suppose F is a locally compact separable metric space. Let Ey := EU{0} be its one point compactification.
Denote by B(E) the Borel o-field on E. The notation B € E means that its closure B is compact in E.

We use By(E) (respectively, BT (E)) to denote the space of bounded (respectively, nonnegative) measur-
able functions on (E,B(E)). The space of continuous (and compactly supported) functions on E will be
denoted as C(F) (and C.(F) resp.). Any functions f on F will be automatically extended to Ey by setting
f(9) = 0. Suppose that m is a o-finite nonnegative Radon measure on F with full support. When p is a
measure on B(E) and f is a measurable function, let (f,u) := [, f(x)p(dz) whenever the right hand side
makes sense. In particular, if ; has a density p with respect to the measure m, we write (f, p) for (f, u). If
g(t,x) is a measurable function on [0,00) X E, we say g is locally bounded if SUPyeo,7] SUPge g 9(t, ) < 00
for every T' € (0, 00).

Let &€ = (Q,H, He, 04, &, 10,, ¢) be an m-symmetric Hunt process on E. Here {H; : ¢t > 0} is the minimal
admissible filtration, {6; : ¢ > 0} the time-shift operator of & satisfying & o 0, = &4 for s,t > 0, and
¢ :=inf{t > 0: & = 9} the life time of £&. Suppose for each ¢ > 0, ¢ has a transition density function
p(t, z,y) with respect to the measure m, where p(¢, z,y) is positive, continuous and symmetric in (z,y). Let
{P;: t > 0} be the Markovian transition semigroup of &, i.e.,

Pf(x) = 10, [£(&)] = /E plt, 2. 9)  (y)m(dy)

for any nonnegative measurable function f. The symmetric Dirichlet form on L2?(E,m) generated by & will
be denoted as (&, F):

F= {u € L2(E,m): %g%% | (wla) ~ Pt u(w)m(da) < oo},

E(u,v) = %gr(l)% : (u(z) — Pau(x)) v(z)m(de), wu,veF.

It is known (cf. [B]) that (£, F) is quasi-regular and hence is quasi-homeomorphic to a regular Dirichlet form
on a locally compact separable metric space. For any set B € B(E), let 7p :=inf{t > 0: & ¢ B}.

2.2 Superprocesses

Suppose M p(FE) is the space of finite measures on E equipped with the topology of weak convergence. The
set of finite and compactly supported measures on E is denoted by M (E). The main process of interest
in this paper is an Mp(FE)-valued Markov process X = {X,; : ¢ > 0} with evolution depending on two
quantities P; and 1g. Here P; is the semigroup of the spatial process £ and g is the so-called branching
mechanism, which takes the form

VYa(z,\) = —B(2)\ + a(x)\? + /(0 : (e — 14 \y) m(z,dy) forz € E and A >0, (2.1)



with 8 € By(E), a € B} (E) and for each z € E, m(z,dy) being a measure concentrated on (0, c0) such that
x = f(o)oo)(y Ay*)m(z, dy) is bounded from above. The distribution of X is denoted by P, if it is started in
we€ Mp(E). X is called a (P, g)-superprocess (or (§,13)-superprocess) if X is an M p(E)-valued process
such that for all u € Mp(E), f € B (E) and t > 0,

P, [ef<f,xt>} — e (ur(t)m) (2.2)
where uy(t,z) := —logPs, (e_<f ’X“>) is the unique nonnegative locally bounded solution to the following
integral equation:

t
up(t,x) = P f(x) — / Py (Ys(-,up(t—s,-))) (x)ds for all z € E and ¢ > 0. (2.3)
0

The existence of such a process X is established by [12]. Moreover, such a superprocess X has a Hunt
realization in Mp(FE) (see, for example, [27, Theorem 5.12]) such that ¢ — (f, X;) is almost surely right
continuous for all bounded continuous functions f. We shall always work with this version.

We define the Feynman-Kac semigroup Pt’g by

t
Ptﬁf(x) =11, {exp (/ ﬂ({s)ds> f({t)} for f € B (E).
0
Then it follows by [I2, Lemma A.1.5] that the equation ([Z3)) is equivalent to the following integral equation:
t
up(t,z) = PPf(z) — / P2 (4o (-, us(t —s,-)))ds forall z € F and t > 0, (2.4)
0

where

o(z, A) == a(z)\? —|—/ (e_’\y — 14 Xy) n(x,dy).
(0,00)

It is known (cf. [12]) that for every u € Mp(E) and f € B} (E), the first moment of (f, X;) exists and can

be expressed as

P, ({(f. X)) = (P f, p). (2.5)

Moreover, the second moment of (f, X;), if exists, can be expressed as

Var, (£, %0) = | (P <<2a+ /( . y%(-,dy)) (Pfsf)2> s, (2.6)

If oa(z) +(, (0,00)) = 0 for m-a.e. x € E, then (Z0) implies that (f, X,) = (P f, ) for all t > 0 P,-almost
surely for all p € M p(F) and all bounded continuous functions f. This trivial case is excluded in this paper,
and we always assume that m ({x € E: o(z) + 7(x, (0,00)) > 0}) > 0.

Modelling superprocess as a system of exit measures from time-space open sets has been systematically
developed in [12| 13, I5]. In particular, branching property and Markov properties of such system are
established there. We take B; ([0,t] x E) to be the space of nonnegative bounded measurable functions on
[0,¢] x E. For every f € B, ([0,t] x E), we extend f to [0,2] x {8} by setting f(s,d) = 0. It follows from [12
Theorem I.1.1 and Theorem I.1.2] that for any open set D C E and t > 0, there exists a random measure
XP on [0,00) x E such that for every y € Mp(E) and f € B ([0, x E),

P, [efu;x?q B CONY (2.7)

)

where 17? (t,z) is the unique nonnegative locally bounded solution to the following integral equation:

ﬂ?(t, x) =11, [f(t A TD,gt/\TD):| o [/Ot/\TD " (gﬁﬂ?(t - S,és)) ds} foralz € Eand t > 0. (2.8)



Here 7p is the fist time of ¢ leaving from D. For an arbitrary function f € By (D), let f(s,z) := f(x) if
2 € D and otherwise f(s,z) = 0. We can define a random measure X2 on D by setting (f, XP) = (f, XP)
for all f € B, (D). This definition implies that X/ is the projection of )N(tD on D. For f € Bf (D), we
write uf (t, z) for E? (t,x). Tt follows that u} (t, ) is the unique nonnegative locally bounded solution to the
equation:

u?(t, x) =11, [f(&);t < mp] — I, {/ " Vg (&, u?(t —5,&))ds for all x € D and ¢t > 0. (2.9)
0

For an arbitrary f € B*(D), there exists a sequence of functions f, € B;f (D) such that f; 1 f pointwise.
By 1), uﬁ (t,x) is increasing in k and we denote this limit by ufD(t,:zr) € [0,00). With this notion, the
monotone convergence theorem implies that (27 is valid for all f € BT (D). The same argument shows that
(Z4) holds for all f € BY(E). If we define the subprocess £ of ¢ by

gt, ift<7'D,
o

¢ 9, ift>1p,

then (29)) is equivalent to

t
uf (tx) =1, [f(&P)] — 1L, U Vg (P, uP(t —5,60))ds|  forallz € D and t > 0.
0

As a process in time, X := {XP : ¢ > 0} is a (P, 1bg)-superprocess. One may think of X/ as describing
the mass of X at time ¢ that historically avoids leaving D. The following proposition follows directly from
the properties of exit measures (cf. [I2, Theorem 1.2 and Theorem 1.3]). We omit its proof here.

Proposition 2.1 (monotonicity in D). Suppose Dy and Dy are two open sets in E with D1 C Dy. Then
for every p € Mp(E) and t > 0,

P, (XtDl (B) < XP2(B) for all B € B(Dl)) -1

Proposition 2] implies that for any f € B, (D), u?l (t,z) < uP?(t,x) for all z € Dy and t > 0. This
monotonicity is also obtained in [16] Section A.2] through arguments on the integral equations (23] and
24). Although the underlying spatial motion is a diffusion in [I6], their approach works generally.

2.3 Kuznetsov measures for superprocesses

Suppose X = ((Xy)t>0;Pu,pp € Mp(E)) is a (&, 1g)-superprocess, where the spatial motion § is an m-
symmetric Borel right process on a Luzin topological space E with transition semigroup (P;);>¢ and the
branching mechanism 3 is given in (2I). By [27) Theorem 5.12], the (§,g)-superprocess has a right
realization in Mp(FE). Let Wi denote the space of right continuous paths from [0, 00) to Mp(FE) having
null measure as a trap. Without loss of generality, we assume X; is the coordinate process in WS’ and that
(F, (Fi)t>0) is the minimal augmented o-fields on W, generated by the coordinate process.

In this paper we will use two decompositions of superprocesses called spine decomposition and skeleton
decomposition. To introduce these two decompositions we need to introduce Kuznetsov measures or excursion
measures for superprocesses.

Let {Q¢(p,-) == Py (Xy€-) :t >0, p € Mp(E)} be the transition semigroup of X; and V; be an
operator on B (E) such that Vif(z) := uys(t,z) for t > 0 and f € B (E). Here ug(t,x) is the unique
nonnegative locally bounded solution to (23). Then by (2Z2]), we have

/ e IMQu(u, dv) = exp (—(Vif,u))  for p € Mp(E) and t > 0.
MF(E)



It implies that Q¢ (u1 +pe, ) = Q¢(p1, ) * Q¢ (e, ) for any py, p2 € Mp(E), and hence Q¢ (1, -) is an infinitely
divisible probability measure on Mg (FE). By the semigroup property of @, V; satisfies that

ViVi = Vips forall s,t > 0. (2.10)

Moreover, by the infinite divisibility of Q;, each operator V; has the representation

Vif(a) = [E @), dy) + /M (1) Ly(a,dv) (2.11)

()
for t > 0 and f € B, (E) where A¢(z,dy) is a bounded kernel on E, MA(E) := Mp(E)\ {0} and (1 A
(1,v))L¢(z,dv) is a bounded kernel from E to ME(E). The operators (V;):>o satisfying (ZI0) and @II)
is called a cumulant semigroup.

Let QY be the restriction of Q; to M} (E), and

Ey:={zx € E:A(x,E)=0for all t > 0}.

Then z € Ey if and only if
Vif(x) = / (1 - e_<f’”>) Li(z,dv) forallt >0 and f € B} (E).
MG (B)

It follows by [27, Proposition 2.8 and Theorem A.40] that for every « € Ey, the family of measures {L;(z, -) :
t > 0} on M}(E) constitutes an entrance law for the semigroup {QY : ¢t > 0} on ME(E). Hence it
corresponds a unique o-finite measure N, on (W, F) such that N, ({0}) = 0, and that for any 0 < t; <
tg < -vv < t, <00,

Ny (Xyy, € dvi, Xy, €dva, -+, Xy, € dvp) = Ly, (z,dv1)QY,_,, (v1,dve) -+ Q) (vp—1,dwy).

It follows that for all ¢ > 0 and f € B (E),
—(f. X)) — —{f.v) —
N, (1 e ) /M;(E) (1 e ) Li(z,dv) = us(t, ). (2.12)

This measure N, is called the Kuznetsov measure or excursion measure (also known as N-measure in [15])
of the (P;,1g)-superprocess corresponding to the entrance law {L(z,-) : t > 0}, and Ey is the collection
of z € E such that there exists the Kuznetsov measure N, on (W7, F) corresponding to the (P,g)-
SUperprocess.

For a constant A > 0, we use V;\ to denote Vi f when the function f(z) = A. It follows by (ZI1)) that for
every x € F and t > 0,

ViA(z) = My (z, E) +/

(1 - e_’\<1”’>) Li(x,dv).
MG (B)

The left hand side tends to —logPs, (X¢ = 0) as A — oco. Therefore, if € E satisfies

Ps, (X, =0)>0 forallt>0, (2.13)

x

then Ay(z, E) = 0 for all ¢t > 0 and, consequently, z € Fy. Thus we have
{zr € E:Ps, (X, =0)>0forallt >0} C Ej.

In the study of spine decomposition, a key question is whether {x € E : a(z) > 0} C Ep. Later in this
subsection we will give sufficient conditions for this formula to be true.
In the study of skeleton decomposition of general superprocesses, we need the following condition:



Condition 1. There is a bounded positive function w on E such that
Ps, (e_<w’Xf>) =e @ forallz e Eandt>0. (2.14)

If the spatial motion £ is a diffusion, then this (&, 1g)-superprocess is called a superdiffusion. We refer to
Appendix [AT] for an explicit definition. When X is a superdiffusion, we only need the following condition
which is weaker than Condition 1.

Condition 1°. There is a locally bounded positive function w on E satisfying (2.14]).

Suppose Condition 1 holds. Since w is bounded on E, equation ([22]) implies that w,, (¢, ) = w(x), which
is independent of ¢ > 0. Thus by (Z4) w is the unique nonnegative bounded solution to the following integral
equation:

t
w(x) +/ PP (4o (-,w(-))) (x)ds = PPw(z) for all x € E. (2.15)
0
It follows from the Markov property of X that for every u € Mp(F) and s,t > 0,

P# (ef(w,Xt+s> |‘Ft) _ PXt (ef(w,XJ) _ ef(uw(s,-)ﬁXQ _ ef(w,XQ'

Hence {e~ (X} . ¢ >0} is bounded positive P,-martingale with respect to the filtration (F;);>0. We now
study the effects of change of measures via this martingale on the superprocess X.

Proposition 2.2. Suppose Condition 1 is satisfied. For every p € Mp(E), define P, by
dPZ = e_<w’Xt>+<w’“>dP# on Fy  fort>0.
Then for every p € Mp(E), f € B (E) and t >0,
P (ef<fyxt>) GO (2.16)

and u}(t,z) = w4 (t, x) —w(z) is the unique nonnegative locally bounded solution to the following integral
equation

u}(t, ) —|—/0 P5 (5 uf (-t —s))) (x)ds = Pf*f(x) forx € E andt >0, (2.17)

where P f(z) =11, [exp ( fy 5" (6.)ds) £(8)] for f € B (E),

B*(2) = lz) — 2a(z)u(z) — /

o) (1 - e_w(w)y) ym(xz, dy),

Ui ) = ale) o+ [ (e = 1) 7o)
(0,00)

and 7 (x, dy) = e~ @Y (z, dy).

Proof. By the definition of P*, we have for every € Mp(E), f € B} (E) and t > 0,

P (ef<f7Xt>) = e(wnp, (67<w+f,xt>) — e~ (st —w()n) — o—(uft)m)

Recall that w4 s(t, ) satisfies the following equation

o £ (1,2) + / BB (4o (1t 1 (-t — ))) (@)ds = PP(w + £)(x), (2.18)



forz € E and t > 0. Using ([ZI5) and [2I8) it is straightforward to check that u}(t, ) is a nonnegative
locally bounded solution to the integral equation

Wit z) + / PP [t — 5,) +w()) — ol w(-)] (@)ds = Pf f(z), (2.19)

for x € Eand ¢t > 0. It then follows from [I6, Lemma A.1(ii)] (by setting A = B = E, T =t, ¢1(x, s) = 5*(x),
92(17, S) = ﬂ(fb) - B* (.I), fl (I) = f(I) and fQ(Ia S) = 1/}0(175 w(x)) - 1/’0(337 ’U,erf(S, .I))) that u}(ta I) SatiSfying
[2I9) is also a solution to ([ZI7). The uniqueness of the solution to (ZI7) follows from [I6l Appendix A.2]
where the uniqueness of the solution for a more general class of integral equations is obtained. O

Remark 2.3. If X is a superdiffusion which satisfies Condition 1’, we can also define a probability measure
P}, such that the function u} (¢, x) given by (ZI0) is the unique nonnegative locally bounded solution to
(ZI7). We defer its details to Appendix [A]]

Let ¢5.(2,A) == =B*(@)A + ¢g(x,A) for € E and A > 0. It is easy to check that . (z,A) =
Yp(w, \+w(z)) — s (z, w(z)). Proposition 2.2 implies that under Condition 1, ((X;)i>o0; Py, p € Mp(E)) is
a (&, wg*)—superprocess. We use @7 and V,* to denote the transition semigroup and the cumulant semigroup
of this (¢ ,wg*)—superprocess, respectively. Denote by Ej the collection of € E such that there exists the
Kuznetsov measure N} on (VVSr , F) corresponding to the (f,@[};*)—superprocess. It follows that for every
x € Ej, every t > 0 and f € B/ (E),

N; (1 — e_<f7Xt>) = u’;(uq;)
Applying similar argument as in the beginning of this subsection, we have
{reB:P; (X;=0)>0foralt>0}C Ej.

In the study of skeleton decomposition, a key question is whether {z € E : a(z) > 0} C E§. Sufficient
conditions for this will be given at the end of this subsection.
The following assumption will be used later to establish the spine and skeleton decompositions.

Assumption 1. Suppose either one of the following conditions holds.

(1) X is a (§,1p)-superprocess satistfying Condition 1 and

Ei:={z€FE: alz) >0} C EyNE].

(ii) X is a (&, ¥p)-superdiffusion satisfying Condition 1’.

Remark 2.4. We note that ', C Ej is a necessary condition for the spine decomposition while £, C Ej
is necessary for the skeleton decomposition for the (§,1s)-superprocess X. If X is a superdiffusion that
satisfies Condition 1°, then Fy C Ey N Eg always holds. See Appendix [AJ] for its proof.

For general superprocesses, we now give some sufficient conditions for Assumption 1(i). Consider a special
superprocess denoted by X, where the spatial motion is a conservative Borel right process on E and the
branching mechanism 1) is given by

P(N) := —b\ + a)? —I—/ (e™ -1+ Ny) n(dy)  forx € E, X >0, (2.20)
(0,00)



where b € R, a € R and 7 is a measure supported in (0, 00) satisfying f(o sy (@A 2?)n(dz) < co. The total

mass process {Y; := (1, X;): t > 0} is a one-dimensional continuous-state branching process (CB process in
abbreviation) with branching mechanism 1. It is well-known that for the CB process Y,

P, [e_)‘yf] = e B for all weE Mp(E), A\>0and t >0,

where v4()) is the unique nonegative solution of
t
ve(A) = A — / P(vs(N))ds  for all £, A > 0.
0

The family of maps {\ — v(\);t > 0} is called the cumulant semigroup of the CB process. It follows by
[27, Theorem 3.7] that P, (Y; =0) > 0 for every t > 0 and every x € E if and only if ¢(c0) = oo and
f;o P(A) 71X\ < oo for some N > 0. For the (&, 1g)-superprocess, the following result gives a sufficient
condition under which (213) holds for every z € E.

Proposition 2.5. Suppose that there is a spatially independent branching mechanism ¥ in the form of ([220)
such that 1(c0) = oo, [ (A\)"1dA < oo, and

Ya(x, A) > p(N)  forallxz € E and A > 0. (2.21)

Then Ps, (X, = 0) > 0 for every x € E and every t > 0, and hence Ey = E.

Proof. Let V; and V; denote the cumulant semigroups of a (&,1g)- and a (&, 1)-superprocesses, respectively.
Given ([221), we have by [27, Corollary 5.18] (cf.[I6] Lemma 4.5]) that for every A > 0 and ¢ > 0, ViA(z) <
ViA(x) pointwise. Let v;(\) be the cumulant semigroup of the CB-process with branching mechanism .
Then for every A > 0 and ¢t > 0, we have Vt)\(x) < v (A) for all x € E, with the equality holds if £ is a
conservative process on E. Under the conditions on ¢, we know by [27, Theorem 3.7] that limy_,oc v+(A) =
—logPs, (Y, =0) < oo for all t > 0. Thus —logP;s, (X; =0) = limy_oo ViA(z) < o0 for every z € E and
t > 0, and hence we complete the proof. |

Proposition 2.6. Under Condition 1 and the condition of Proposition[28, we have Ef = E. Consequently,
Assumption 1(i) holds.

Proof. Since the event {X, = 0} € Fy, it follows that
P* (X; = 0) = P, (e‘<w’X‘>;Xt - o) = MP (X, = 0)

for every p € Mp(E). Thus {z € E: Ps, (X; =0) >0 forallt >0} ={z € F:P; (X, =0)>0forallt>
0} C Ej. Note that by Proposition 23 {x € F : Ps, (X; =0) > 0forallt > 0} = E. Hence we get
Es = E. O

Remark 2.7. For the CB process Y with branching mechanism v, it is known that if 1)(c0) = oo and
(N THdA < oo, then for every x € E, Ps, (V; = 0 for some ¢t > 0) = e~** where z, := sup{\ > 0 :
P(A) < 0} € [0,00). For the (&, 13)-superprocess X, let w(z) := —logPs, (£), where the event € := {X; =
0 for some t > 0}. Then under Condition (2.2I]), we have

w(z) = lim lim VA< lim lim v(\) =2y <00, VrekFE.
t—00 A— o0 t—00 A—o0
Moreover, by the bounded convergence theorem, w satisfies (2.I4). In particular, if the bounded function w
in Condition 1 is given by w(x) = —log Ps, (), then the process ((X¢)i>0; P}, # € Mp(E)) can be obtained
from X by conditioning on &, i.e., P;(X; € -) = P, (X; € - |£), cf. [26].



2.4 Assumptions and main results

Since ¢ has a transition density function p(¢,x,y) with respect to the measure m, it follows that for each
t >0, PtB admits an integral kernel with respect to m. We denote this kernel by p?(t,x,y). It is positive,
symmetric and continuous in (z,y) for each ¢t > 0 and it satisfies that

e tBlep(t, z,y) < pP(t,z,y) < etlPllep(t,z,y)  for all (t,,y) € (0,00) x E x E. (2.22)

This semigroup Pt’g associates with a quadratic form (£(%), F), where

EP (u,u) == E(u,u) — /Eu(x)zﬁ(:zr)m(dx), ue F.

Since f is a bounded function, £ (u,u) > —||8||« [ u(z)*m(dz) for all u € F. Thus by [, (P :t>0}
is a strongly continuous semigroup on L?(E,m). We define

A1 = inf {5<ﬁ>(u,u) cu € F with /Eu(a:)Qm(dx) = 1} : (2.23)

Obviously A1 > —||37|ec by definition.
Assumption 2. \; < 0 and there is a positive continuous function h € F with [ h(z)*m(dx) =1 so that
EB(h,h) =\

Observe that if u is a minimizer for (Z23)), then so is |u|. Hence one can always take a non-negative
minimizer. Assumption 2 requires that there is a minimizer for ([2.23) that can be chosen to be positive
everywhere. Clearly the following property holds for h:

EP(h,v) = A\ (h,v) for every v € F. (2.24)

Let 0(8(5)) denote the spectrum of the self-adjoint operator associated with £). Then \; is a simple
cigenvalue in o(£(%)) with eigenfunction k. It holds that h = e**P’h on E.

Remark 2.8. From the definition of £(%) Assumption 2 implies that m ({z € E: B(z) > 0}) > 0.
Let A2 be the second bottom of ¢(£(7), that is,

Ao = inf {8(ﬂ)(u,u) cueF, /Eu(x)h(:v)m(dx) =0, /Eu(:C)Qm(d:v) = 1}.

Assumption 3. There is a positive spectral gap in o(E)): X, := Ay — A\; > 0.
Define the h-transformed semigroup {P}*;¢ > 0} from {P’;t > 0} by

At

Pl f(x) = %Ptﬂ(hf)(x) for z € E and f € B/ (E). (2.25)
x
Then it is easy to see that {P/ : t > 0} is an m-symmetric semigroup, where m := h?m, and 1 is an

eigenfunction of P/ with eigenvalue 1. Furthermore the spectrum of the infinitesimal generator of { P} : ¢ >
0} in L2(E;m) is the spectrum of the infinitesimal generator of {P : ¢ > 0} in L2(E;m) shifted by A;.
Hence under Assumption 3, we have the following Poincaré inequality:

1P ol 2 e,my < e ol r2e,m) (2.26)

for all ¢ € L*(E,m) with [ o(z)m(dx) = 0.
We use M (E) to denote the space of all finite measures y on E with (h, ) < co. By (ZH) and the fact
that e’\ltPtB h = h, we can verify that under Assumption 2,

WhHX):=eMh, X,) fort>0

is a nonnegative P,-martingale for all u € M™% (E). We define W (X) := lim;_,oc W/ (X).
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Theorem 2.9. Suppose Assumptions 1-3 hold. If

(alog™ h, h?) + </(0 )rlog*(rh(-))w(-,dr), h?) < oo, (2.27)

then the non-negative martingale W (X) converges to W2 (X) as t — oo P-a.s. and in L'(P,) for every
p € ME(E). In particular, W (X) is non-degenerate in the sense that P, (WL(X)>0) > 0 for any
nontrivial p € ML(E).

Remark 2.10. We notice that only the spine decomposition of superprocesses is applied in the proof of
this theorem. Therefore the above result in fact holds with the same proof under a weaker condition, say,
Assumptions 2-3 and that F, C Ej.

As we mentioned earlier, Assumption 1 is a fundamental assumption for the existence of the skeleton
space. The skeleton space for supercritical superprocesses offers a pathwise description of the superprocess
in terms of an M p(F)-valued Markov process X* and a supercritical branching Markov process Z dressed
with an immigration process I on a rich probability space with probability measures IP,. A more detailed de-
scription and discussion of skeleton space is deferred to Section[Bl In [26], the skeleton space was constructed
for superdiffusions using the function w(z) = —log Ps, (It > 0: (1, X;) = 0). The key property of w used in
the skeleton construction is that w gives rise to the multiplicative P ,-martingale {e_<w’X‘> :t > 0}. Later
the skeleton space is established in [16] for superdiffusions assuming only the existence of such a martingale
function w. The main reason why skeleton space is constructed only for superdiffusions in [26] and [16] is due
to the proof of [26, Lemma 6.1], where a comparison principle for elliptic differential operators is used. This
comparison principle allows one to conclude that if By and By are domains with supp(f) C By C Bs, then
u? Ht,x) < u? 2(t, z) pointwise. Proposition 2.1l implies that this monotonicity in fact holds more generally
as in the set-up of this paper, where the underlying spatial motion can be discontinuous. Therefore we can
establish the existence of skeleton space for superprocesses defined in Section

In Theorem [Z11] below we show that under Assumptions 1-3,

w h
Wth/ (Z) = eMY{ . ,Zyy  fort>0

equals W/*(X) and so is a nonnegative P,-martingale for all x € M (E). Let W2/ (Z) = limy_, 00 W}/ (2).

Theorem 2.11. Suppose Assumptions 1-3 hold. For every u € M®%(E) and t > 0, WH(X) = Wth/w(Z)
P,-a.s. and in particular W (X) = O}Z/w(Z) P-a.s.

The proof of Theorem 2. TT] will be given in Section Bl We will establish laws of large numbers under the
following moment conditions.
Assumption 4.

(i) (Llog L condition) (log™ h, h?) + <f(0,oo)

(i) <(f(0)oo) r2evOra(.,dr))?, 1 A hY) < co.

rlog*(rh(:))m(-,dr), h?) < oco.

Theorem 2.12 (Weak law of large numbers). Suppose Assumptions 1-3 and Assumption 4 (i) hold. Then
for all p € M%(E) and all f € BT(E) with f/h bounded,

Jim NFX) = (FRWA(X)  in L' (P).

The proof of Theorem 2.12] will be given in Section The next assumption assumes that the strong
law of large numbers holds for the supercritical branching Markov process Z along an increasing sequence
of discrete times.
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Assumption 5. For all 4 € M (E), 0 >0 and ¢ € B, (E),

n—oo

h
lim eAI"C’<E¢>, Zno) = (¢, R2YWH/(Z) P,-as.

We will prove at the end of Section [6] that under Assumptions 1-3 and Assumption 4(i), Assumption 5 is
equivalent to a weaker condition as follows.
Assumption 5°. For all 4 € M.(E), 0 >0 and ¢ € B} (E), there exists m € N such that

h
lim M (=Ph & Z.,) = (¢, YW (Z) P,-as.
w

n—r00

Assumption 6. The semigroup {P} : t > 0} satisfies that
lim |Plf — flloo =0 forall f € Co(E).
t—0

Here Cy(E) := {f € C(E) with lim,_,9 f(z) = 0}.
The following is the main result of this paper, which extends the main results of [I6l 28] to superprocesses

having possibly discontinuous spatial motions. Its proof will be given in Section [7}

Theorem 2.13 (Strong law of large numbers). Suppose Assumptions 1-6 hold. Then there exists Qg C €
of P,-full probability for every p € ME(E) such that on Qq, for every m-almost everywhere continuous
nonnegative measurable function f with f/h bounded, we have

Jim N(F X)) = (WA (X), (2.28)

The convergence in [228) also holds in L*(P,,).

3 Change of measures

Recall that h € F is the minimizer in Assumption 2. Since h € F, by Fukushima’s decomposition, we have
for q.e. z € E, Il,-a.s.
h(&) — h(&) = M + NI fort >0,

where M]' is a martingale additive functional of ¢ having finite energy and N}* is a continuous additive
functional of ¢ having zero energy. It follows from (Z24) and [22, Theorem 5.4.2] that N/ is of bounded
variation, and

Nth = -\ /t h(&s)ds — /t h(&s)B(Es)ds  for t > 0.
0 0

Following [, Section 2] (see also [10, Section 2]), we define a local martingale on the random time interval
[0, Gp) by

b
M, ::/0 h(gs_)dMsh, t€10,¢p), (3.1)

where (, is the predictable part of the life time ¢ of £. Then the solution R; of the stochastic differential
equation

t
Ri—1 +/ Re_dM,, t€[0,6), (3.2)
0
is a positive local martingale on [0, (,) and hence a supermartingale. As a result, the formula

dll" = Rydll, on H,N{t<(¢} forze€FE

12



uniquely determines a family of subprobability measures {II" : x € E} on (Q,H). We denote ¢ under
{IT" : z € E} by ", that is

I [f(E)] =T, [Ref(&) 1t < (] forallt>0and f € By (E).

It follows from [4] Theorem 2.6] that the process &" is an irreducible recurrent m-symmetric right Markov
process, where m(dy) = h(y)?m(dy). Note that by (B1)), (8:2) and Doléan-Dade’s formula,

Ry = exp (M; - S (0),) 1 sl e (1- 7 EL) tepo) (33)

where M€ is the continuous martingale part of M. Applying Ito’s formula to logh(&:), we obtain that for
q.e. ¢ € E, I -a.s. on [0,(),

log h(&:) — log h(&o) = M — %<MC )e + Z <1og h(fs)) - h(gsf)b(;:(f”) -\t _/O B(E)ds.  (3.4)

By B3) and B4), we get

R; = exp (Alt + /Otﬁ(fs)ds) M) on [0, ).

Therefore for any f € B, (E),
)\1t

h(z)"!

This implies that the transition semigroup of &" is exactly the semigroup {P/ : ¢t > 0} obtained from PtB
through Doob’s h-transform. Let (£, F") be the symmetric Dirichlet form in L?(E;m) generated by &".
Then f € F" if and only if fh € F, and

e)qt

I (F(60) = gy e (0 7€ h(e) (60 ) =

Pl (hf)(z) = P f().

EN(f, 1) = EP)(fh, fh) — A / F (@) h(x)?m(dz).

In other words, ®" : f + fh is an isometry from (&", .7-"‘) onto (EAFTM™ F) and from L2(E,m) onto
L2(E,m). Let o(&M) denote the spectrum of —£, where £ is the self-adjoint operator associated with the
Dirichlet form (", F*) in L*(E;m). We know from [4, Theorem 2.6] that the constant function 1 belongs
to F, and £"(1,1) = 0. Hence 0 € o(£") is a simple eigenvalue and 1 is the corresponding eigenfunction.
In particular,

PUBS inf{é‘h(u,u) :u € F" with / u(z)?m(dx) = 1} = 0.
E

Let A} be the second bottom of o(£"), i.e

b= inf {Eh(u,u) : u € F" with / u(x)m(dz) = 0 and /
E

E

u(z)?m(dz) = 1} .

In view of the isometry ®", we have A\ = Ay — \;. So Assumptlon 3 is equivalent to assuming A} > 0. The
h-transformed process ¢ has a transition density function p”(t,x,%) with respect to m, which is positive,
symmetric and continuous in (x,%) for each ¢ > 0 and is related to p®(t,x, %) by

)\ltpﬁ (tv Z, y)

h
pt(t,z,y) =e for z,y € E and t > 0. 3.5

Define
ay(x) :=p"(t,x,x) fort>0andzc E.
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Using the Poincaré inequality ([220)), we can prove that (cf. [I0]) for every g € L?(E,m),
|Pg(x) = (g, h?)] < e Dagy ()|l g| 12,0 (3.6)
Moreover for t > s > 0 and z,y € F,
P" (8, y) — 1| < e )G ()2, (y) /2. (3.7)

For p € M’};(E) with p # 0, we use H’ﬁ# to denote the probability measure where £" is the recurrent

motion with starting point randomised according to w. In other words,

1
0=

Since W/ (X) is a nonnegative P,-martingale, we can define a new probability measure Q,, by

/E I () ) de)

~ WMX)
()

The next result can be proved in the same way as that for [16] Lemma 2.17].

dQ, :

dP, ono(Xg;se[0,t]).

Lemma 3.1. Suppose Assumption 2 holds. For all p € M%(E) with u # 0, f,g € B;F(E) and t > 0, we
have ( > .
—(5,x0) Sgh, Xy —(f X o
QH |:6 (f)f)m] — PH [e (f,X,q HZ# [g(gt) exp (— ; W(&’uf(t - 5,55))d8 s

where us(t,x) is the unique nonnegative locally bounded solution to the integral equation (23)).

It follows from Lemma [3.1] that
Qu et
t 6’(/1
—(f, X+ h 0
= P, [e (f >} Iy, [exp <—/O H(gs;uf(t_ S,fs))):|

exp (- /O 2a(Eus(t — 5,6.)ds /0 t /(0700) (1-emmrtemsem) yw(é“&dy)ds)] :

This formula offers a probabilistic view of the superprocess X; under the new measure Q,, that is stated in
the following proposition.

= Py {G_U’XO] HZ#

Proposition 3.2. Suppose Assumption 2 holds and that E C Ey. For every u € ML(E) with u # 0, there
exists a probability space with probability measure Qp,, that carries the following processes

(1) ((&¢)t>0; Qnu) is equal in distribution to ((&)tzo;ﬂﬁu)- We call ((&)t>0; Qnu) the spine.

(ii) (n;Qpnp) is a random measure such that giwven (&, Qpp), n is a Poisson random measure which issues
Mp(E)-valued processes X™' := {X™ s > 0} at space-time point (&,t) with rate

dNg, % 20(&;)dt.

Here for every v € Ey = {x € E: «a(x) > 0}, N, is the Kuznetsov measure on Wy corresponding
to the (Py,g)-superprocess, while for x ¢ E4 N, is the null measure on Wg‘. Note that, given &, the
immigration happens only at space-time point (&;,t) with «(&;) > 0. Let D™ denote the almost surely
countable set of immigration times, and D} := D™ N [0,t]. Given &, the processes {X™"' :t € D"} are
mutually independent. We refer to {X™! : ¢t € D™} as the continuous immigration.
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(iil) (m; Qpny) is a random measure such that given &, m is a Poisson random measure which issues Mp(E)-
valued processes X™' := (X™") >0 at space-time point (&;,t) with initial mass y at rate

ym (&, dy) X dPys,, x dt.

Here P s, denotes the law of the (Py,1g)-superprocess starting in yo,. Let D™ denote the almost surely
countable set of immigration times, and D* := D™ N [0,t]. Given &, the processes {X™"' :t € D™}
are mutually independent and independent of n and {X™"' :t € D"}. We refer to {X™":t € D™} as
the discontinuous immigration.

(iv) ((Xt)e>0: Qnp) is equal in distribution to ((X¢)e>0;Pp). Moreover ((Xi)¢>0; Qny) is independent of €,
n, m and all immigration processes.

Let X' := ZseD? X% and X" = EseDm X,"?. Define
Iy =X+ X[+ X" fort > 0.
Then (T := (T't)t>0; Qnu) is equal in distribution to (X := (X¢)¢>0; Qu)-
The proof of PropositionB.2lis similar to that of [25, Theorem 5.2] so it is omitted here. For s > 0, define
I :=(1,X"") ifseD™ and I":=0 elsewise.

Then, given &, {I™,s > 0} is a Poisson point process with characteristic measure y7 (&, dy). Let G be the
o-field generated by &, the random measures n and m, and the process {I",s > 0}.

Lemma 3.3. For € M%(E) with p#0, f € Bf (E) and t > 0,

Qu (£ TG = (PP fomy + > PLF(&) + D IMPL (&) Quu-as. (3.8)

seDy seDy"
Proof. By ([Z13), we have for every = € Ey, f € B} (E) and t > 0,
N, (£, X0)) = Ps, ((f, X)) = P f ().

Thus by the definition of I';, under Qp,,

Quy [(£TIG) = Qu ((Fi X)) + D Qu [(F XDIG] + D Qo [, X20)1G]

seDy seD
= Pu((£L X))+ D Ne, (L Xema)) + Y Prpse, (£, X1-4))
seDp se D"
= Pﬁfv Z Ptﬁs 55 Z ImPtﬁs (55)
seD} seD

O

By the monotone convergence theorem, (3.8)) holds for any f € BT (F). We call formula ([B.8) the spine
decomposition for ((X¢)e>0; Qu)-

4 Martingale convergence of W/ (X)

In this section we prove Theorem under Assumptions 1-3.

Lemma 4.1. g(z) := h(z)"'Ps, (W2 (X)) is a constant function on E.
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Proof. We first claim that for any u € ML(E),
P (WE(X) = [ Py, (WA (X)) (o) (4.1)

The proof of this claim is the same as that of [30] Lemma 5.4], we omit its details here. By the Markov
property of X, we have for any t > 0 and =z € F,

1 , .
o) = Gt [Jim 4, x, )]
e)\lt A
= @ [P, (Jim W ()]

e)\lt "

This together with ([@1]) implies that
e)\lt e}qt ﬂ A
g(x) = mpém ((gh, X)) = mpt (gh)(z) = Pi'g().

This means that g is an invariant function for the irreducible recurrent process (¢;11"). Hence g is a constant
function on E. O

Proof of Theorem [ZZ3: Without loss of generality, we assume p € M%(E) and p # 0. Since W/'(X) is a
nonnegative martingale, to show it is a closed martingale, it suffices to prove

Py (WA (X)) = (b ). (42)

First we claim that (£2)) is true for up(dy) := 1p(y)h(y)m(dy) with B € E and m(B) # 0. It is straightfor-
ward to see from the change of measure methodology (see, for example, [I1) Theorem 5.3.3] ) that the proof
for this claim is completed as soon as we can show that

Qus (lim sup W/(X) < oo> =1. (4.3)

t—o0

Since ((X¢)t>0; Qup) is equal in distribution to ((I't)e>0; Qnpy ), @3) is equivalent to that

Qhps <limsup W) < oo) =1 (4.4)
t—o0

Recall that G is the o-field generated by &, n, m and {I", s > 0}. By the spine decomposition formula (B.8]),
for any t > 0,

Qs (WHIDNG) = P hypp) + M0 Y 0 P AE) + M Y 1P h(E)
seDp seDy

(hopp)+ Y oh(E) + Y MU IIR(E)

seDp seDy

(o) + Y M h(E) + Y eMUITh(E). (4.5)

seDn seDm

IN

Applying almost the same argument as in the proof of [30, Theorem 5.1], we can show that the last two
terms in (B are finite almost surely, and hence limsup,_, o, Qn.p (W (I)|G) < 00 Qpuy-a.s. By Fatou’s
lemma, Q. (liminf,_,. W/(T) < 00) = 1. Note that W/ (I')~! is a nonnegative Qy,,-supermartingale.
Hence

Qhpp <lim sup W/ (T) < oo) =1.
t—o00
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This proves ([@4]) and consequently,
P, (WL(X)) = (h, ). (4.6)
Note that P, (W (X)) = (P, (W2 (X)), up) by @I) and then

(Ps, (WL(X)),up) = (h, up). (4.7)

By Fatou’s lemma, for every z € E, Ps, (WL (X)) < h(z). We get by @) that Ps, (WL(X)) = h(x)
m-a.e. on B. Since B is arbitrary, Ps, (W (X)) = h(x) m-a.c. on E and hence everywhere on E by Lemma
1 Therefore by @), P, (W2 (X)) = (h, p) holds for all u € M%(E). This completes the proof. O

5 Skeleton space

In this section, we work under Assumptions 1-3. We first consider general superprocess case, for which as
a part of Assumption 1, Condition 1 holds and w is the bounded positive function in ([ZI4). By 22]) and
R3), ww(t,x) = w(x) is the unique nonnegative bounded solution to the following equation:

w(x) = Paw(x) — /0 Ps(p(-,w(-))(x)ds for every x € E and t > 0. (5.1)
Note that B \) )
BT, _ -y
o = —B(z) 4+ alz)\ + 1 /(o,oo) (e A1 /\y) 7(z, dy), (5.2)

which is a bounded function function on E x (0, M] for every M > 0. Let

M, = w(&) - / B (Ear w(EL))ds,

which is bounded in ¢ € [0, T] for every T' > 0. Let {H; : t > 0} be the minimal augmented o-fields generated
by the process £ = {&,t > 0;11,,2 € E}. By the Markov property of & and (&), we have for every t > s > 0
and r € F,

0, (MH) = e fuwE] - /Oswﬂ@r,w(sr»dr—nfs [/ s w(6)dr

t—s

Prevule) e, | [ wstuar] = [“vterwiar

w(&s) — /05 Vg (&, w(&r))dr = M.

In other words, {M;;t > 0} is a martingale additive functional of £&. Observe that it follows from (52) that

_ Yp(z,w(x))
is a bounded function. Since w(&) = M; + fot Y3(&s, w(&s))ds, we have by Ito’s formula

@ (w()e™ B = _un(E)(Ee TNt e K (M, 4 (61,060l
= e JovGEldsgpy,

Thus we have shown that  — w(&)e™ Jo 7€)% is a martingale.
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Next we consider the superdiffusion case, for which Assumption 1 is just Condition 1’; that is, there
is a locally bounded positive function w satisfying (2.I4). By truncating w and then using the monotone
convergence theorem, one can prove that

w(z) = 1L, [w(Enny)] — 1T, [ / " s (6 w(€n)) ds

for any bounded open set B € E. Since x — w(x) is bounded on B, one can generalize the above argument

and show that ¢t — w(&ary)exp (— OMTB *y({s)ds) is a nonnegative II,-martingale. This implies that

{w(&;) exp (— fot ”y({s)ds) :t > 0} is a nonnegative II,-local martingale and hence a II,-supermartingale.
Hence in both cases we can define a family of (sub)probability measures {II¥ : x € E} on H by

dily .= % exp (— /Ot % ds) dll, on H; forevery ¢t > 0.

Clearly, the transformed process £“ := ((§)i>0; 1%,z € E) is a Borel right process. Through the arguments
after Remark 2.T0, we can also construct the skeleton space for a (P, 1)3)-superprocesses as follows.

Proposition 5.1. Suppose Assumptions 1-3 hold. Let M%(E) denote the set of locally finite integer-valued
measures on (E,B(E)). For every u € Mp(E) and every v € M$°(E), there exists a probability space with
probability measure P, ,, that carries the following processes:

(i) (Z := (Zt)t>0;Pu,v) is a supercritical branching Markov process with spatial motion £, branching rate
function q(x) and offspring distribution function {pi(z) : k > 2} uniquely defined by

Gla.s) 1= ala) Y- pel@) " = ) = s (ol (1= Ju(a)) = (1= P w(@)). (53)
k=2

and P, (Zy = v) = 1. We use the classical Ulam-Harris notations to refer to the particles in the
genealogical tree T of Z. For a particle uw € T, we use b, and d,, for its birth and death times, and
zu(t) for its spatial location at time t € [by, d,].

(ii) (X* = (X{)tz0;Pu) s a (P, ¥ )-superprocess with Py, ., (Xg = p) = 1 such that for all p € Mp(E),
feBS(E) andt >0,
P, {e—<f,X:>} — o (it (5.4)

where u}(t,x) is the unique nonnegative locally bounded solution to equation RIT), and 1}.(x, ) :=
—B*(x)\ + ¢¥§(x, N) is given in Proposition [22 By @2I7) and BA), the mean of {f, X]) can be
expressed by

P, ((f, X)) = (P fu)  for f € B (EB).

The distribution of X* under P, , does not depend on v. Moreover, under P, ,,, X* is independent of

Z.

(iil) (1 := (It)i>0;Pu) is @ Mp(E)-valued process with P, ,(Iy = 0) = 1, which is given by I = I® + I®
where 12 and IP are described as follows:

(a) (a;Py,) is a random measure such that given Z, a is a Poisson random measure that issues
for every u € T, Mp(E)-valued processes X>%" := (X" )i>0 along the space-time trajectory
{(zu(r),r) : r € (by,dy]} with rate

<20&(2’u(7"))szu(T) +/ yTr* (ZU(T)7 d’y) X dP,:l;z (T)> X dT,
(0700) u
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where P}, is the law of the (Pt,wg*)—superpmcess starting in w, for every x € Ey = {x € E :
a(z) > 0}, N* denotes the Kuznetsov measure on WSL corresponding to the (P, wg*)—superprocess,
and for x & E., NZ is the null measure on W;. The processes { X" :u € T, r € (by,d,]} are
independent of X*, and, given Z, are mutually independent.

I = Z Z Xt fort > 0.

UET re(by,duAt]

(b) (b;P,.) is a random measure such that given Z, b issues for every uw € T, at space-time point
(zu(dy),dy), an Mp(E)-valued process XP* := (XP")y0 with law Py 5. ., such that given
that u gives birth to k particles at its death time, the independent RY -valued random variable Y,
is distributed according to the measure

1

k
@ w@)pe@) (a(w)w(w)25o(dy)1{k_2} + w(w)k%w* (z, dy)>

=2y (dy)

The processes {XP : u € T} are independent of X*, and, given Z, are mutually independent
and independent of a.

IP = la,<n X, fort>0.
u€T

For every p € Mp(E), let P, denote the measure P, , with v replaced by a Poisson random measure with
intensity w(x)p(dz). Then ()? =X —|—I;]P’#) is Markovian and has the same distribution as (X;P,).

Moreover, under P, given Xy, the measure Z; is a Poisson random measure with intensity w(z)X(dz).

With the results from Subsection and Appendix [A]on the existence of N under Assumption 1, the
proof of Proposition 5.1l is very similar to that of [26, Corollary 2] and we omit its long computations here.
We call the probability space in Proposition 5.1l the skeleton space. The process Z is called skeleton process
and I is called immigration process. We call (X* + I;P,) the skeletion decomposition of X. Since ()/f i PL)
is equal in distribution to the (P, g)-superprocess (X;P,), we may work on this skeleton space whenever
it is convenient. For notational simplification, we will abuse the notation and denote X by X. Since the
distributions of X* (resp. I) under P, , do not depend on v (resp. i), we sometimes write P, . (resp. P. )
for P, .

For t > 0, we write Z; = Zivz'l 0.,y where N; denotes the number of skeleton particles at time ¢
and {z(t) : i = 1,---, Ny} their spatial locations. Let m(z) := Y -, kpi(z). We have by (53) that
q(z)(m(z)—1) = %—f (x,8)]s=1 = Yo(x,w(x))/w(z). Then by the many-to-one formula for branching Markov
process (cf. [31, Lemma 3.3]), for f € B, (E), # € E and t > 0,

P (t1.20) = 1 oo ([ e mi) ds) 16|
it oo / —balen ) 66D 1) e

= e

Note that under P, with p € Mp(E), Zy is a Poisson random measure with intensity w(z)u(dz). We get

from (&0 that

No
B, (U1, 2) = B, <_Z P (5 Zt>>> — b, (1P i) 20)) = Plwhd. 69

For t > 0, let F; denote the o-filed generated by Z, X* and I up to time ¢. Denote by I! the immigration
at time t + s that occurred along the skeleton before time t. For i € {1,2,---,N;}, denote by I the
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immigration at time ¢ 4+ s that occurred along the subtree of the skeleton rooted at the ith particle with
location z;(t). We have

Ny
Xope = X0, 10"+ ZIﬁ’t for all s,t > 0.
i=1
We know by [16] that, given Fy, (X2, ,+1"),>0 is equal in distribution to ((X )s>0; Px, ) and I%t := (I4) 5
is equal in distribution to (I/; ]P’.,(;zl_(t)). Moreover, the processes {I%! : = 1,2,---,N;} are mutually

independent. Using these properties, we have for p € Mp(FE), f € B;’ (E) and t,s >0, under P,

N
Py (£, Xesa) | Fe) = Bu (£, Xy + II0IF) + Py <Z<f711t> >
=1
= PXt X +ZP 202, (t) fa >) (57)

Note that under P,,, Ny is a Poisson random variable with mean (w, 1). We have for each = € E,

No
B ((f,1) = P <_Z P (S It>>>
= Ps, (NoP. 5, ((f,11))) = w(@)P.s, ((f,1¢)) - (5.8)

Thus P.s, ((f, 1)) = w(@) " Ps, ((f, 1)) = w(@) " Ps, ((f, X — X7)) = (@)~ (P f(x) = P{" f(x)). Using
this and (5.7), we have for every u € Mp(E), f € B} (E) and s,t > 0,

) 8 5"

B [ Xewall ) = (P 1,50 + (L 7y - (B ]

Z) Pu-as. (5.9)
By the monotone convergence theorem, the boundedness of f in (59]) is unnecessary and (5.9) holds for
f € BY(E) which satisfies (P} f, ;1) < oo for any ¢ > 0,
Lemma 5.2. Suppose Assumptions 1-3 hold. For every f € BY(E) so that f/h is bounded, define
eMt g
07t z) == WPE f(z) forxzeE andt>0.
Then 0%(t, x) is bounded on [0,00) X E, and for every x € E,

0%(t,z) = 0 as t — oo.

Proof. Let g(z) := B(x)—*(x) = 2a(x —i—f (1 — e v@Y) yr(z,dy) € BT (E) and ¢1 1= sup,¢p f(z)/h(z) €
[0,00). By the definition, for every x 6 E and t > O
e)\lt t
03 (t,x) = mnm [exp( ) 5*(§s)ds> f(ft)}
Mt o ! B . f(&)
= oot e ([ a0~ ateas ) e 262

- (o) 8
< ot o (- [ tg(@)ds)} .

Immediately 07(¢,z) < ¢; for all (t,z) € [0,00) x E. Let I(z) := 1% Jexp (— f,~ 9(&)ds)]. To prove the
second claim of this lemma, it suffices to prove that [(x) =0on E. Let A:={z € E:g(z) >0} ={z € E:
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( ) + 7(x, (0, )) > 0}. We have m(A) > 0 since m(A) > 0. For an arbitraty M > 0 and = € F, define
(z) =112 (. ( g(&s)ds > M) By the Markov property of £, for t > 0 and = € E,

PPy (z) = TI" {Hg </OOO g(&s)ds > M)]

= 10 </toog(§s)ds > M)

P]w(x).

IN

Moreover, lim;_,o P/* Pps(z) = Pps(z) by the monotone convergence theorem. Hence Pys(7) is an excessive
function for the irreducible recurrent process (£7;11"). It follows from [5, Lemma 3.5 and Lemma A.2.17]
that Py is a constant function on E. We claim that there exists M7 > 0 and c¢2 € (0, 1] such that

Py () > c2 >0 forallx € E. (5.10)

If (5I0) is not true, that is, Pa(z) = 0 for all M > 0, then I ([~ g(&)ds = 0) = 1. This contradicts the
fact that II% ([° g(&)ds) = [° [ p" (s, 2, 9)g(y)m(dy)ds > 0 since m(A) > 0 and p"(s,z,-) is positive on
A. In view of (m) we have

I(x) =T1" [exp (— /OOO 9(55)d3>] <ece ™ (1—cy)=tc3< 1.

Thus by the Markov property of &, for any ¢ > 0,

i fexo (- | tg(@)ds) e (= [ atcas)|
= 1t e (- [ gteras) o)
csIT" {exp <— /Otg(gs)dsﬂ . (5.11)

Letting t — oo in (BI0)), we get I(z) < c3 for all z € E. Applying the above argument recursively for n
times, we get [(x) < ¢§ for all z € E. Hence we conclude [(x) = 0 by letting n — oc. O

I(x)

IN

Proof of Theorem[211l: We only need to prove the first claim. For any ¢, s > 0, by the skeleton decomposition
(E3), we have under P,

WHX) = P, (W) (X)|F)
= MR, ((h, Xops)|F)

. pﬁh pﬁ*
= e (B x4 (P2 2 - (0 2))
w

h h
= e)\lt<9;;(8,-)h,Xt> —i—e)‘lt(E,ZQ )\lt<9*(3, )Eu t
h
= O (s )h, Xo) + W(Z) = MG (s, ) Z2). (5.12)
w

Letting s — oo, the first term and the third term in (5I2) converge to 0 P,-almost surely by Lemma
and the dominated convergence theorem and hence we get W/ (X) = Wth/ “(2) P-as. O

6 Weak law of large numbers

Throughout this section, we assume Assumptions 1-3 and Assumption 4(i) hold.
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Lemma 6.1. For any ¢ € B, (E) and t > 0,

(

/ Ps, ({(¢h, X;)log™ (ph, X)) h(z)m(dz) < oo
E

Proof. Note that for ¢ € B (E)

Ps, ((¢h, X¢) log™ (ph, Xy))

and z € E,

IN

e M ¢l Ps, (e (h, X;)logT (oh, Xy))
= e M|]loh(2)Qs, (log™ (dh, X1))
e[| oo (2) Qs (log™ (¢, Ty)) . (6.1)

Using the fact log™ (a 4 b) < log™ a +log™ b + log2 for a,b > 0 and Jensen inequality, we have

Qns, (log™ (h,Ty)) Qhét [Qns, (log ((¢h,T) vV 1)[G)]
[

< Qus. log(@ha ((oh,T4) v 11G)]
< Qus, [log" (Qns, ((#h,T4)[G) + 1)]
< 5, log" Qus, ((¢h,T1)|G)] +log2. (6.2)
Thus by (G1]) and ([6.2)), we only need to prove that
/ Qns, [1og+ Qns, (<¢h,Ft>|Q)} h(z)?*m(dr) < oo. (6.3)
E

By the spine decomposition formula ([B.8), we have under Qps,

Qns, (01, T)1G) < [19llecQns, ((h,T1)[G)

]| cce 1" (h<x>+ STotenE)+ Y e“f?h(@)) .

seD} seDp

Using the fact that log™ (ab) < logt a + log™ b for a,b > 0, we have

log"™ Qus, (90, T0)|G) < log" (e™™![|¢llc) +log¥ h(x) + Y log" (M*h(&,))
seDp
+ 3 log" (MUIRE)) + Y. log2
seD seDpUD

Assumption 4(i) implies that [, log™ h(z)h(z)*m(dz) < co. Hence to prove (63), it suffices to prove

/Qhé [ > (log® (€M h(&) +1) + Y (long(eAlSISmh(fs))—i—l)] m(dr) < oo. (6.4)

seDy seD

Since A\; < 0, we have by Fubini’s theorem and the m-symmetry of (¢"; 1I*) that

> (log™ (e h(&s)) + 1)] m(dzx)

I
&)
g

[l

[\
S~

&
m\aﬁ

20(&,) (log* (M°h(E) + 1)} fi(da)
2 [0(c.) (log* (M*h(&.)) + 1)) i(da)
a(z) (log™ (e**h(x)) + 1) m(dz)

I

[N}
S~

&
tq\
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() +1) M(dz)

A
IS
)
2

IA
\

QL

~ Vo)
/‘\\
&

N~—

)—A

o

oq

:

1+ [ logt h(z (d;v)) 0.

Similarly by (2.21), we have

Qus, | Y (log™ (M I"h(&)) +1) | (da)

/Ot ds </(O,oo) logt (eMrh(&s))rm(&s, dr) + 1)
= t+ t s [ mh
oo fe

o [Cast [ et )

0 (0,00)

m(dx)

/ rlog (eMorh(&s))m(&s, dr)‘| m(dx)
(0,00)

< t—l—t(/ rlog™ (rh(:))m (-, dr), h?)
(0,00)
< t+ t</ rlog*(rh(-))w(-, dr), h?) < cc.
(0,00)
This completes the proof for (64). O

Lemma 6.2. For any u € M.(E) and ¢ € B/ (E),

lim lim eMCt(oh, X2, + 170 =0 in L'(P,).

s—00 t—00
roof. Recall that given Fy, + 17%)s>0 1S equal 1n distribution to >0;Px, ). us by Markov
Plelh']—'X;rtIs*t_' 1 in distributi X7)s>0:Px,). Thus by Mark
property,
e)\l(s+t)Pu (<¢haX;+t+I:’t>) = e)\l(s+t)Pu [Pu (<¢haX:+t+I:’t>|ft)}

= METIP, [Py, ((¢h, X))

_ 6)\1(S+t)P# [<p55* (¢h) ,Xt>}

= e)\ltP# (<h’9:;h(57 ')7 Xt>)

= e)\lt<Pt5 (hezbh(sv )) 7/1'>

= (hP] (051,(s,7)) s 1)-

Thus we have

limsup e TP, ((ph, X2, + 1Y) = limsup(hP} (05,(s,-)) » 1)
t—o0 t—o0
< (limsup P (65,(s,)) , h). (6.5)
t—o0

We get by (B:0) that for ¢t >1and z € E

P/ (54(s,)) (x) < /E%h(w)ﬁl(dx) + e MmOy () 207, (s, )| 2, ) -
This implies that

limsup P/ (055(s, / 0% (s, x)m(dz) (6.6)

t—o0
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for all z € E. We know from Lemma that H;h(s,x) is bounded. and limg_,~ 9;‘5,1(5, x) = 0. Hence by
©3), ([©6) and the bounded convergence theorem,

lim sup lim sup eM -+ P w ((oh, X2 +10Y) < limsup/ 05 (s, x)m(dz)(h, 1)
5§—00 t—o00 5§—00 E
< / lim sup 07, (s, z)m(dx)(h, 1) = 0.
E s—oo
O
Lemma 6.3. For any p € M.(E), ¢ € B} (E) and s > 0,
Ny
: A1 (s+t) 7, t _ : 1
Jim e Z} h, I% ZIE” |}'t>)1 in LY(P,,).

Proof. Fix ¢ € B, (E). For s,t > 0, define

Ny
Sep 1= e M(stt) Z<¢h,fsi’t>,

=1

A A (s+t zt
- )Z Ohs L0 (g, 11ty <emraey

Clearly by definition, §S7t < S5+ Recall that given Fi, {I*t : i =1,---, Ny} are independent and I*! is

equal in distribution to (I;PP. 5, , ). By this, we have

P, {(?t ~P, (§s,t|ft))1 = P, [Var (5,07

< PhEHp, [Z]P’ ((@h.121) 1{<¢h,fé’f><eklt}|ft)]
= MlHp, lz Pos.. o (<¢hafs>21{<¢h,ls><e*lf})] : (6.7)
=1

Let gs,.(2) := w(z)P. 5, (<¢h,IS>21{<¢h)IS><e—>\1t}) for © € E. Then by (&.0)
S gs
RHS of @1) = ¢M0H0P, (( = 2

= P (g00), 1)
= MNP, hy). (6.8)

Clearly by (&3,
gar(x) < e Mw(@)P. s, ((0h, L)) = e MBs, ((9h, L)) < e ' Ps, ((9h, X)) < e ]| oh(x)
forall z € E. For v € E and ¢t > 1, by (3.0,

Js, _ 1)~
PE(5L) @) < (ganh) + e 5(@) 2 gl 2 m)
< (gor h) + e METDTNEE ) Gy (2) /2, (6.9)
Hence by (6.7)-([©.9), we get
~ —~ 2
P, [(Ssﬁt B (Sl 7)) ] < MR i) (g, h) + e DN g @y 2, ). (6.10)
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Here (ay/?h, p) = [ p"(2,2,2)2h(z)p(dx) < oo since both z +— p"(2,x,2) and h are bounded on the
compact support of x4 due to the continuity of =+ p"(2,x,z) and h. Note that by Fubini’s theorem

/ ek1t<gs,tu h>dt

1

= Ooe’\lt z)w(x)m(dz 2

= [ et [ ) [ e (ohit) € dy
o0 1 9

= [ reuem) [ s [ (o 1) € )

e

= z)w(x)m(dx 2 - # S
= [ e [ s entyed [
1
< = [ ra@utamid) /[O)Oo) yP.s, ((6h, 1) € dy)
= = [ W@, (68 1) hx)m(d).
1JE

By (B.8)) the integral in the right hand side equals

IN

/ Ps, ((6h, 1)) h(z)m(dz) < [l / Ps. ((h, X.)) h(z)m(dz)
E E

= |\¢||0067A15/Eh(3:)2m(d:1:) < 0. (6.11)

Hence we get limsup,_, ., e**(gs+, h) = 0. This together with (G.I0) yields that

HE)S:OIP P, |:(§s,t -P, (§s,t|]:t>)2:| =0,

and consequently
lim (§S7t —P, (§S¢|ft)) =0 inL'(P,). (6.12)

t—o00

Recall that under Ps_, Z is a Poisson random measure with intensity w(x)d, (dy). Thus we have

- No
Ps, [<¢h, IS>1{<¢h,IS)Ze**1f}} = Ps, Z<(J§h7 1;70>1{Z£V(’1(¢h,1§’0)>0*lt}]
Li=1
- N |
> Ps, Z<¢h71§’0>1{<¢h,1;*°>2ew}]
Li=1
- N
= ]P)(;z Z]P)"ézi(o) |:<¢h’515>1{<¢h,ls>zeAlt}]‘|
Li=1
= U}(ZZ?)]P).’(;Z |:<¢h”IS>1{<¢h,IS>Ze*>‘1t}} .
Using this and Markov property, we have
Pu(Sor = 5et) = Pu[Pu(SualF) =Py (S0ul7) |

Ny
= e>\1(s+t)]P’# |‘ZP,75%(” (<¢h,[s>1{<¢h)ls>zeAlt})]

i=1

Ny
< eMlHp, [Z w(zi(t) " Ps. (<¢ha15>1{<¢h,ls>26*lt})l

i=1
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€>\1(S+t)]P)# (<f;;t 7 Zt>>

= Mt <Ptﬁfs,t,ﬂ>
_ e>\1S<Pth (f;>t> 7hM>7 (613)

where f +(x) := Ps, ((¢0h, )1 {(sh.1.)5e-r11}). We observe that f(x) < Ps, ((¢h, Xs)) < [|¢]lece™ M h(x)
for every x € E. By (B0) again, we get for x € E and t > 1,

P(5) @ < () 0@ Pl ol
< (fopnh) 4 e MDA G| an () 2.
This together with (GI3) yields that for ¢ > 1,
P, (ss,t - ssyt) = P, [IE”M (SsulFo) =P, (Ss7t|}‘t)}
(1) (fo B) + €D ] (@B ). (6.14)

It follows from Fubini’s theorem and Lemma [6.1] that

/Ooo<fs,t,h>dt = /OOO dt/E h(x)m(dz) /[em)oo) yPs. ((ph, I,) € dy)

/E h(x)m(dz) /1 h — ils ds /[S)oo) yPs, ((¢h, I;) € dy)

IN

1 v
— _—)\1 Eh(ﬂ:)m(d:z:) /[1700) yPs. ((oh, L) edy)/l Eds
= [rem) [ sy, (6.1 € )
- % Ps, ((¢h, Is) log " (ph, L)) h(z)m(dz)
1JE
= —Lxl Bs, ((¢h, X.)log* (¢h, X.)) h(z)m(dz) < co. (6.15)

Immediately, lim;_,o0 (fs.¢, h) = 0. Hence by (6I4) we get

lim P, (Sﬁ,t _ 3, ) = lim P, [ (St Fo) — (§s,t|ft)} —0.

t—o0

In other words,

Jim (Se=8ui) = Jim (Pu(SoalF) =Py (Sual i) ) =0 in L'(P,). (6.16)
Combining ([612) and (G.I6), we get limy—,oo (55,6 — Py (Ss,¢|F:)) = 0 in L'(P,). This completes the proof.
|

Lemma 6.4. For any u € M.(E) and ¢ € B/ (E),
Jim lim et (s+t) ZIE” MF) = (oh, WWLE(X) in LY(P,). (6.17)

Proof. In view of Theorem [2.11] and Theorem 2.9] under Assumptions 1-3 and Assumption 4(i), (617 is
equivalent to

. . s i, h/w .
lim lim e +t>ZP hy IO Fy) = (oh, YW, (Z)| =0 in L'(P,). (6.18)
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Fix u € M.(E) and ¢ € B, (E). Note that for z € E and s > 0,

Ps, ((9h.1.)) = Ps, ((¢h, X)) = Ps, ((6h, X7))
= Pl(eh)(z) = P (o) (@).

By this and Markov property, we have

oM (s+t) ZP h, I0t |-7:t) —  eMst) :jztlpﬁzm) ({ph, Is))
= Mt iw(zi(t))_lpazm ((¢h, L))
i=1
_ emsm% (P2(oh) - P2 (9h)) . 20)
_ e)\1t<g (P — 65,,(5,7)) , Z4). (6.19)

Let g(s,z) = ‘Psh¢(x) — 0%, (s,7) — (oh, h>‘ for s > 0 and x € E. Clearly g is bounded from above by
3/¢lls- By @19,

I(s,t) = [wl S+t>Z1P> oh, I Fy) — (oh, )W, (2)]

)

= NP, <’<% (Plo —05,(s) — (dh, hY) , Zi)

< eklt]P)H (<gg(37')7zt>)

= MUP (hg(s, ) )

= (P(g(s.")), hp). (6.20)
Since by B.6), for ¢t > 1 and = € E,

P} (g(s,))(x) (g(s,),1%) + e Vay 2) 2 g (s, ) 2,

(g(s,),1%) +3e D] sotiz(x) /2,
it follows by @.20) that I(s,t) < (g(s, ), h?){h, u) + 3€_>‘h(t_1)||¢||oo<~l/2h ). Hence we get

t—o0

IN A

Furthermore, by (3:6) and Lemma 52 for s > 1 and « € E,
g(S,I) < ‘P£¢—<¢h,h]>’+9;h(8,$)
< e_)‘h(t_l)&'z(:b)l/2||¢||L2(E7,71) + th(s,x) — 0 as s — 00.

Thus lim, o (g(s, -), h?) = 0 by the bounded convergence theorem. This and @.21)) yields that lim oo limy o0 I(s,1) =
0. Hence we prove (G.I8)). O

Proof of Theorem [212: We know by [16, Lemma 3.2] that if for any p € M (FE) and f € BT (E) with f/h
bounded,
Jim eMUE X)) = (f, )W (X)  in LY(P,), (6.22)
—00

then the convergence in ([G.22) holds for any u € M’(E). Henceforth we assume p € M.(E). We consider
the skeleton space for convenience. For an arbitrary f € B (E) with f/h bounded, let ¢(z) := f(z)/h(z) €
B, (E). For any s,t > 0, under P,

MO (F X o) = (f )W (X)
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Ny
— s+t)<¢h Xs+t+1*’t>+ e)\l(ert th Izt s+t)Z]P> Izt |]_-t)

=1
>\1(5+t ZP Iz t |]:t) <(J§h, h>W:O(X)

Thus by letting ¢ — oo and s — oo, ([6.22) follows immediately from Lemma [62] Lemma and Lemma
0. 4] |

Proposition 6.5. Under Assumptions 1-8 and Assumption 4(i), Assumption 5’ is equivalent to Assumption
.

Proof. Clearly by the symmetry of PP, Assumption 5 implies Assumption 5’. So we only need to show that
Assumption 5’ is sufficient for Assumption 5. For f € BT(E) with fw/h bounded, let ¢ := fw/h € B} (E).
Then for any p € M (E), 0 >0 and m,n € N,

e)\l(m+n)a<fv Z(m+n)d> - <f= wh>W£o/w(Z)

h
= e)\l(m+n)o<5¢, Z(m+n)a> - <¢a h2>Wo}2/w (Z)
h h
= |:e)\1(m+n)o<a¢7 Z(m+n)a> - eAl(ern)UP,u (<E¢a Z(m+n)a>|]:na'>:|

+ [e)\l(ern)UPN (<g¢, Z(m+n)d>|fn0> - <¢7 h2>W£°/w(Z):|

Note that by the Markov property of 7, e)‘l(er" Pu (L9, Zimsn)o) | Fno) = erilmtn)op (L, Zmo)) =
A1(’”*")"<w P2 _(h¢), Zno) = e (L PR (4), Zm> Thus Assumption 5 implies that I1(m,n) converges

to 0 almost surely for some m € N. Hence the proof is finished if we can show that for any m € N,
lim I(m,n) =0 P,-a.s. (6.23)
n—oo

It follows from Theorem 2TT] Lemma and the fact that log™ ab < log® a + log™ b for all a,b > 0 that
under Assumptions 1-3 and Assumption 4(i),

/E]P(;z <<g¢, Zt>10g+<g¢, Zt>) h(z)m(dz) < oo (6.24)

for all t > 0. Recall that under Ps,, Ny is a random variable with mean w(z). By this we have

No
s (o2 og™(16.2)) = P, <Z< 6.2 lo ¢,Zzw>

i=1

> By (SO0 2 05" (L 200)
= Oz 2t » L g w4t
- ]P)(;z <N0P~,51 <<g¢a Zt> 10g+<g¢7 Zt>>)
= w(@)P. s, (<g¢7 Zt>10g+<g¢7 Zt>) .
Thus ([G.24) implies that
/ P.s, (<ﬁ¢, Z) 10g+<ﬁ¢, Zt>> w(x)h(x)m(dz) < oo (6.25)
E w w

Recall that the skeleton Z is a supercriticle branching Markov process with spatial motion & which is
symmetric with respect to the measure w?m. ([6.23) follows from (6.25) (instead of [I0, (5.1)]) and Borel-
Cantelli lemma in the same way as [I0, Lemma 5.2]. We omit the details here. O

28



7 Strong law of large numbers

To prove the strong law of large numbers, we know by [§] that it suffices to consider fixed test functions.

Lemma 7.1. [Chen et al. [8]] Suppose Assumption 2 holds. If for any p € M%(E) and ¢ € Cy (E),
Jim MU ph, Xy) = (ph, WL (X)) P-a.s. (7.1)
—00

then there exists dg C Q of P-full probability for every p € MU(E) such that on Qq, for every m-almost
everywhere continuous nonnegative measurable function f with f/h bounded,

tliglo ek1t<f7 Xt> = <f7 h>W£o(X)

Lemma 7.2. Suppose Assumption 2 holds. If (TI)) holds for any u € M.(E) and ¢ € Cy (E), it holds for
any pp € ML(E).

Proof. The main idea of this proof is borrowed from [16, Lemma 3.2(i)]. Fix 4 € M%(E). Take a sequence
of sets {Bk k€ N} such that By = (Z) By € FE, By, C By4+1 and U;o 1! By = E. Let By := By \
Bi_1. On a suitable probablhty space with probability measure P, let {X Br . ke N} be independent
(P;,vp)-superprocesses where X Br is started in 15, pt. Then by the branching property, XBr = Zl L XBi,

XE\Br .— > ki XBi and X := XB + XE\Br are (Pr,1p)-superprocesses started in 1p, 1, 1g\ p, 1 and
p respectively. In particular, W/ (X) = W/ (X Br) + WP (XP\Br) and the martingale limits W/ (X P\Br) =
limy 0o WX P\Br) is non-increasing in k. Since u € M%(E), by Fatou’s lemma

P, (W;(XE\Bk )) <liminf P, (Wth(XE\Bk)) = (b g pp) =0 ask — oc.

Thus limg e W2 (XF\Br) = 0 in L'(P,,) and hence P,-a.s. by the monotonicity.
For any ¢ € Cif (E),

M (ph, X¢) — (ph, )WL (X)]

[N (8h, XP*) = (oh, YW (XP0)| + e oh, X[VP) 4 (oh, YW (XF\B)

IN

A

MU Sh, XPF) — (oh, YW (XB%)| + || @)l W (X FVBE) + (oh, RYW (X B\,

Since 1p, u € M (E), the first term converges to 0 as ¢ — 400 by our assumption. Therefore we get (7.I))
for p € M(E) by first letting ¢ — oo and then k — oo. O

7.1 Strong law of large numbers along lattice times

Lemma 7.3. Suppose Assumptions 1-3 and Assumption 4(i) hold. Then for any u € M.(E), ¢ € B (E),
o >0 and m e N,

Nypo Npo
. A1 (m+n)o 1ncr i,no - _
nlgrxgoe 1 El h, I277) g Py ((ph, 152 Fro) | =0 Py-a.s.

Proof. In this proof, we adopt the same notation as defined in the proof of Lemma [6.3l For m,n € N, let

Nno

Smame 1= eMTTN " (gh [En7),
=1

Nno
q A + E )
Sma’,na’ =€ m+nje <¢h7 IZ@T> {{ph,I,;57)<e= 1o }"

1=1
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We have proved in (6I0) that for no > 1,

N . 2
PN [(S"W,na - PN (Smo,no|]:n0)) :| < e)\l(ng+2mg) <gm0>7w’ h><h’ M>
e nmo—D+Hhime |4 <~1/2h 1) (7.2)

where gmg no () := w(x)P. 5, ((0h, Imo)*1{(oh.1,.,y<e-r1ney) for z € E. Note that by (G.II)

Z )\lng (mono, h) = Ze)‘m”/Eh(x)w(x)P.ﬁ(;z (<¢hvIma>21{<¢h,lma><e**1"5}) m(dx)
n=1 n=1

IN

/1 eMa(s—1) /E h@)w(@)P. 5, ((hy Imo ) Liigh 1, y<e-r120y) m(dz)

o0
= e’hg/ 6A15‘7<gmg,sg,h>ds<oo.
1

~ R 2
This together with (7.2) yields that Y>> | P, {(Smg,m -P, (Smg,m|}'m)> ] < 00. Thus by Borel-Cantelli
lemma,

lim (§mg,m ~P, (§mg,m|fm)) =0 P,as. (7.3)

n—roo

Similarly, we have proved in (614) that for no > 1,

P, (Smg,m, _ §mg,m) = P, [P# (Smono|Fro) — P, (§mg,m|fm)}
A Frginas W) (B, 1) + €7D 6] @y 2 h, ), (7.4)

IN

where frono(2) :=Ps, (((bh,Img>1{<¢h)lma>2841m}). Note that by (GI5),

Z fma nau = Z/ (bh Im0'>1{(¢h Img>>e*>‘1”"}) (d.’IJ)
n=1

< / dS/ (bh Imo’>1{(¢h Imo)>e~A1s cr}) (d.’IJ)
_ /0 o hds < 0. (7.5)

Hence by (Z4) and (T3],

i Pu (Smomo = Smoino) = P [P (Smono| Far) = P (SmomolFas )| < o0.

It follows by Borel-Cantelli lemma that

lim (Sm,m, _ §m,m) — lim (]P’H (Smono|Fo) = Py (§m,m|fm)) =0 P,as.

n—oo n—oo
This together with (73]) yield that lim, o0 (Smo,ne — Pu (Smo,ne|Fne)) = 0 Py-as. O
Lemma 7.4. Suppose Assumptions 1-8 and Assumption 5 hold. Then for any p € M.(E), o > 0 and
¢ € B (E),
Nnd
lim lim MNP ((Gh, I500) | Frg) = (¢h, YWE(X)  Pp-a.s.

m—00 N—00
i=1
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Proof. For m,n € N and o > 0, let I(m,n) := ¢M(mtmo s™Nnop, ((¢h, 15%7)| Fro). Then we have that
(see, ([EI9) in the proof of Lemma [6.4])

h h
I _ Aino _Ph o) — Aino —9* - 7Zna .
(m,m) = AL Pl 6, Zng) — " (63 (m0 ), Zio)
Since P" ¢, 0%, (mao, ) € B (E), it follows by Assumption 5 that

lim I(m,n) = (P ¢, W YW (Z) — (0}, (mo, ), K )WL/"(Z) P,-as. (7.6)

n—r00

Recall that h?m is the invariant probability measure for (¢";11"). We have (P! &, h?) = (¢h, h). Moreover
by Lemma 5.2 and the bounded convergence theorem, lim,, o (0, (mo, -), h?) = 0. Therefore by Theorem

211 and (Z0)
lim lim I(m,n) = (ph, W (Z) = (ph, W (X) P,-as.

m—00 N—00

O

Lemma 7.5. Suppose Assumptions 1-3, /(i) and 5 hold. Then for any p € M (E), o >0 and ¢ € B (E),

lim e (¢ph, X,10) = (ph, YW (X) P,-a.s.

n—oo

Proof. Note that for any m,n € N, ¢ >0 and ¢ € B, (E),

e)\l(m+n)a<¢h, X(m+n)a>

N7L(T
> MO o, 107
i=1
Nyo Nno Nyo
= NI (Gh, Ine) — TN TR (0 1) | Fag) + 1T B ((0hy 1 ) Fuo) -
i=1 =1 =1

Then by Lemma [[.3] and Lemma [.4] we have

lim inf "7 (¢h, X o) > (ph, YW (X) P ,-as.

n—oo

Let ¢ == [|¢||oo. Since (¢ — ¢) € B, (E), the same argument can be applied to ¢ — ¢, and we conclude that
under P,

limsup e*" (ph, X,1p) = limsupe™™(ch — (¢ — ¢)h, Xpo)

n—oo n—oo

W (X) — lim inf M (¢ — @)h, Xno)
WE(X) = ((c = ¢)h, WL (X) = (h, )WL (X).

IN

Hence we complete the proof. |

7.2 From lattice times to continuous time

In this section we extend the convergence along lattice times in Lemma [T.5] to convergence along continuous
time and then prove Theorem EI3l Let {U";k > 0} be the resolvent of the semigroup {P/*;t > 0}, that is,

U™ f(x) ::/ e "P]f(x)dt forz € E and f € B/ (E).
0
Under Assumption 6, for every f € Cy(FE), by the dominated convergence theorem,

KU f = flloo < / ke Y PMf — flloodt :/ e_SHPf/Kf — flleods = 0 as k — oo. (7.7)
0 0
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Lemma 7.6. Suppose Assumptions 1-5 hold. Then for any i € M.(E), k >0 and ¢ € B (E),
Jim eMU(KUR )R, Xy) = (oh, YWD (X) P ,-a.s.
— 00

Proof. The idea of this proof is similar to that of [16, Proposition 3.14]. The main difference is that here
we use the L'-convergence instead of the LP-convergence used there. We consider in the skeleton space for
convenience. Since kKU*1 =1 and kU"¢ € B, (E), the same argument that led to Lemma [.F] can be applied
here and it suffices to prove that

lim inf eMU(KURP)h, Xi) > (dh, W (X) Py-as. (7.8)

Fix € M.(E) and ¢ € B, (E). Let g(z) := kU"¢(x) and gp(x) := g(z)lp(z) with B € E. Note that
((KU"@)h, h) = (¢h, h) since h*m is the invariant probability measure for (¢;11"). If we can show that

lim inf eMgh, X3) > (gph, YWD (X) P,-as. (7.9)
—00

for any B € E, then choose an increasing sequence B, € E with |J,-, B, = E, (Z8) follows from the
monotone convergence theorem. Suppose o > 0. For any ¢ € [no, (n + 1)o],

M (gh, Xo) — (g5h, )W (X)
> [N gh, X0) = M OHVR (ghy Xsayo) 1)
+ {eh("ﬂ)apu ((g8h, X (ns1)0) | Fi) — e DR, (<gBh7X(n+l)U>|‘FnU)}
+ [6A1("+1)0Pu ((98hs X(n1)0) | Fno) — (gBh, YWL, (X)}
=i b1g(n,0,t) +02,5(n,0,) + 05 4, (n,0).
To prove ([79), it suffices to prove that under P,

(1) limsup,_,, limsup,,_, . SUPy¢no,(nt1)0] |61,4(n,0,t)| = 0.

(2) limsup,,_, SUPycno,(nt1)0] 102,95 (n,0,t)] = 0.

(3) lit o 103,05 (,0)] = 0.

We begin with the proof of (1). By the Markov property of X, we have

91,9(”707 t) = e)\lt<gh7Xt> - ekl(n-i_l)U]P)Xp (<gh7X(n+1)a'7t)
= Migh, X;) — eAl(n+1)U<P@+1)07t(gh),Xt>
= Mgh, Xe) — eMUP), )4 (9), Xo)- (7.10)

Note that for any s > 0 and = € E,

o)~ ool = | [ wephoa [ e el oo
0 0

/OO ke "tPho(x)dt — /OO me_“tPtth(:E)dt‘

0 s
< 21 —-e")[|9lloo-

It follows by this and (ZI0) that

sup [01,4(n,0,t)] <2(1 —e )]0l sup WhHX). (7.11)
te€[no,(n+1)0] te[no,(n+1)0]
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Since W/ (X) converges to a finite limit almost surely, we obtain (1) from (ZII) by letting n — oo and

o — 0. For the proof of (3), note that by the Markov property of X,

Os9(n,0) = eMTVTRY ((gph, Xo)) — (gah, YWL(X)
— e>\1("+1)a<Pf(gBh),Xno—> - <gBh7h>W:O(X)
_ e>‘1"a<hP£(gB)7Xno> — <gBh,h>W£o(X).

Since Plgp € B (E), it follows from Lemma [T5 that

lim M7 (WP (g8), Xuo) = (hP(g), WL (X) = (gsh, YW (X) B,-as.

n—roo

By this and (TI2)) we obtain (3). It remains to prove (2). 82 4, (n,0,t) can be written as

O3, (n,0,1) = 65) (n,0,t) +65) (n,0,) +65) (n,o,1)

2,98 9B
where
O (moot) i= MR ((gph Xy + 137 F)
_€>\1(7l+1)0']P)# (<gBh X(n+1)0 [;,no>|]_—ng) 7
Nnd
2 n o ZTLO’
9%7;3 (n,U, t) = 6)\1( +1) P# <Z<gBh I > {<th)I;',n(r><e,\an}|.7:t>
i=1
Nnd
_€>\1(n+1)a]p# <Z<93h It ncr> {<th7]gv""><e>‘1""}|f"U> )
i=1
Npo
3 n o zna’
65) (n,0,t) = eM@Fhop, (Z(ggh Iy {<q3h)12,m>26k1m}|ft>
i=1

Nno
—€Al(n+1)gPu <Z<93h, I;’m>1{<93h,1§’"">>e*1""}|f""> ’

i=1

Clearly for i =1,2,3, {6‘2 s (M,0,1) it € [no, (n +1)o]} are P -martingales. Let

N’VL(T
Sg}iza = 6)\1(n+1)0’ Z<gBh7 Ig,na’>
i=1
and
S50 = e Z<93h’ I;m>1{<93h,1§’""><e*hn°}'
i=1
Then 952273 (n,0,t) =P, ( an<7|]:t) P, (SU 7w|‘7'—no) and
6‘523 (n’ 9, t) (Sg}iw - S’\gﬁza']_—t) - (SgE;w - S’\gﬁza']_—nU) :

Suppose € > 0. By Doob’s maximal inequality and Jensen’s inequality, we have

P, ( sup |6‘2 s (0, t)| > 5)

te€[no,(n+1)o]

1
< P (108, (n.0. (0 + 1))
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]

1 ~
= E_Q]P):U' UP# (Sana - Py (Sgﬁwu:m) |‘7:(n+1)0)

1 2
< <SUELG_P#( o’na|]:n0’) >
We have proved in the proof of Lemma [T.3] that Y~ | P (| 95 (§g§w|fm) |2) < 0o. Thus

Z]P’# < sup |t92 gB(n,a,t)| > a) < o0

— teno,(n+1)o]

and consequently by Borel-Cantelli lemma

lim sup |9
N0 te[no,(n+1)o]

(n,o,t)) =0 Pg-as. (7.13)

2,98

Similarly by Doob’s maximal inequality and Jensen’s inequality,

te[no,(n+1)o

P, ( sup |9$3B (n,o,t)] > 5)
e

< 2B, (105, (0.0, (0 + 1)0)])

= 2P [P (585, - 8250 — P (5250 — S22V Fue) o)
< L (585 - 588 5 (5 (585 - 250)]

_ 2 (S‘]B _ G9m )

o,no o,no
9

}

We have showed in the proof of Lemma that > 02 | P (S’gffw - SgBm) < 00. Thus by Borel-Cantelli
lemma
lim sup |92 (Mo ) =0 Pas. (7.14)

n=0 te[no,(n+1)o)

Using Doob’s maximal inequality and Jensen’s inequality again, we get

1
P, ( sup  [68) (n,o,0)] > a) < SR, [Var ((gBh,X(*nH)U +I§’"">|]—"m>} . (7.15)
t€[no,(n+1)o]

Recall that given Fy, (X2, 4+ I7")s>0 is equal in distribution to ((X7})s>0;Px,). It is known that for
v € Mp(E) and f € B (E), the second moment of (f, X;) can be expressed as

Var, ((£.X7)) = / (P [0+ 0P )i,

where b*(z) := |,

(0,00) r2n*(z,dr) f(o ~w(@)rr(x, dr). Thus we can continue the calculation in (ZI5)
to get

P, sup |9§1;B (n,o,t)] > ¢
t€[no,(n+1)o] ’

IN

1
ge”l("“)"ﬁ”# [Varx,, ({(95h, X;))]

1 7 “ «
= ?e2>\1(n+1)0]pu |:/ <PSB {(2a+b*)(Pf,s(gBh))2} 7Xng'>d8]
0
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no- s

1 *
2)\1(n+1 / Pﬁ Pﬁ 2a+b*)(P£_5(gBh))2} ,/J,>d8

(=)

1 .
< e [Upn (a0 ot ] ds
1 2 b* *
= —26“"“*“’ T PJ;U+5[ a,f (Pf_s(gsh»“‘],hmcls. (7.16)
0

Since gp is compactly supported for s € [0,0), || p S(gBh)HOO < ||Pf_s(g]3h)||oO < elBll= ) gph]|o
addition, for each z € E, P?" (gph)(z) = e (=) h(x z)0; (0 —s,x) < €_>\IU||9;Bh||ooh(x). Thus we get
for s € [0,0),

. 2
(Pf_s(ggh)(x)) <1 Acah(z) Acgh(x)?  forall z € E. (7.17)

Here ¢, co, c3 are positive constants. We have by (Z.I7)

IN

7 —A1s 2 7 —A1s
[l | am?| s < [Tl 2ea) s
0 0

IN

202||oz||oo<h,u>/ e M3ds. (7.18)
0

On the other hand,
Tenspn Y gum2] has < [ e et O eab® A csbh ) hus)d
0 < no+s E( O'—S(gB )) ) M> s = 0 < no+s Cl%/\c2 Ncs3 ) M> S.

Let I(z) := 1 & - ~(2) A eob* () A esb*(x)h(z) for x € E. Assumption 4(ii) implies that () € L2(E,m). Thus
by B4 for no > 1 and x € E,

Pl (@) < (102 + e Mo 0Gs () V21| L2 )
Consequently for no > 1,
e*)\ls Ph

b* *
no+s [%(Pf—s(gBh))2:| , huyds

eiAls Pvlea-i-s(l)v h',UJ>dS

IA
o\éc\

IN

(1,12 (h, ) /0 e M5ds + e MDY 2 gy (@R, i) /O o (itAs g (7.19)

Since A1 < 0, it follows from (ZI8)) and (Z.I9) that

00 2 b* *
Zeklna/ —>\15<P7}ZU+S |: 042- (Pfs(gBh))2:| 7hu>d$ < Q.

Thus by (ZI0), we get Y.~ | Py (Supte[na,(n-i-l)o'] |9523 (n,o,t)] > 5) < 00. By Borel-Cantelli Lemma

lim sup |92 (Mo ) =0 Pas. (7.20)
N0 tc[no,(n+1)o]
We obtain (2) by (ZI3), (CI4) and (C20). This completes the proof. O

Lemma 7.7. Suppose Assumptions 1-6 hold. Then for any p € M.(E) and ¢ € Cy (E),

Jim M ph, Xy) = (ph, WL (X) P,-a.s. (7.21)
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Proof. For any k > 0, we have

[N (oh, Xi) — (oh, WL (X)| < eMU(|kU" — ¢lh, Xy) + [eM (kUG h, Xi) — (ph, LYWL (X)|
< KUS¢ = ¢l W/H(X) + [eMH(5U )R, Xi) — (ph, YW (X)] .
In view of (7)) and Lemma [7.6] we conclude (Z21) by letting ¢ — oo and k — oo. O

Proof of Theorem[Z13 This theorem follows immediately from Lemma [T, Lemma [7.2] and Lemmall71 O

8 Examples

In this section, we give examples of superprocesses where Assumptions 1-6 are satisfied and Theorem 21T}
Theorem hold. Since the paper is already long, we leave the detailed verifications of assumptions for
these examples in the Appendix of this paper. We notice that Example B and are also studied in [16].
In Example we consider a class of super a-stable-like processes which includes super a-stable processes
as a special case.

Example 8.1. Suppose E = R? (d > 1) and & = (&;11,,2 € R?) is an inward Ornstein-Uhlenbeck (OU)
process on R? with infinitesimal generator

1
L= §U2A—c:17-v on R4

where o,c¢ > 0. Without loss of generality, we assume that ¢ = 1. Let dr denote the Lebesgue measure
on R? and m(dx) := (%)d/2 e~clel®dz. Then & is symmetric with respect to the probability measure m.
Let ¢ (A\) be a spatially independent branching mechanism given by [220) with 8 > 0, 1(c0) = oo and

f(l 00) yPr(dy) < oo for some p € (1,2]. For this (£,)-superdiffusion Assumptions 1-6 are satisfied with
M = =0, h(z) =1 and w(z) = 2y where zy :=sup{A > 0: ¥(A) <0} € (0, 0).

Example 8.2. Suppose E = R? (d > 1) and ¢ := (&;1,,z € R?) is an outward OU process on R? with
infinitesimal generator

1
L= §U2A+C$-V on R?

where o,¢ > 0. Without loss of generality, we assume o = 1. Let m(dx) := (%)7(1/2 el dz. Then ¢ is
symmetric with respect to m. Let 1¥(\) be a spatially independent branching mechanism given by (2.20)
with 8 > cd, (0c0) = oo and f(l 00) yP7(dy) < oo for some p € (1,2]. Then Assumptions 1-6 are satisfied

with Ay = ed — 3, h(x) = (%)d/2 e=clel® and w(z) = 2z where zy 1= sup{A > 0: ¥(\) <0} € (0, 0).
Example 8.3. Let (Y = (Y;)¢>0,11:) be a diffusion on R? (d > 3) with generator
L9 9
- -1 . _— d
A= p(z) Z oz, (p(x)au (x) arj) on RY

i,7=1

where the diffusion matrix A(z) = (a;j(x));; is uniformly elliptic and symmetric with a;; € C}(R?) and
function p € C}(R?) is bounded between two positive constants. Here C} (R?) denotes the space of bounded
continuous functions on R? whose first order derivatives are bounded and continuous. Clearly this includes
Brownian motion as a special case. Note that we can rewrite A as

A—zd:i 0L~(:c)i +i iau(x)ﬁlogp 0 on R?
_ijzl 83:1 I 8xj = P * 8351 a:Ej '
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Define m(dz) := p(x)dz. Then Y is symmetric with respect to m. Suppose E is a bounded C!! domain
in R? and ¢ := Y is the subprocess of Y killing upon leaving E. Let 1s(x,\) := —B(x)\ + a(x)\? +
f(O,oo) (e7 — 1+ \y) m(z,dy) where 8 € C}(R?), 0 < a € CHRY) N BT(RY), 7(x, dy) satisfies

sup / ylog™ ym(z,dy) < oo, (8.1)
zeR J(0,00)

and all the first partial derivatives of ¢g(x, \) are continuous. We will show in Appendix [A.2] that Assump-
tions 1-6 are satisfied for such (&, 1g)-superdiffusions.

Example 8.4. Suppose FE is a locally compact separable metric space and m is a o-finite nonnegative Radon
measure on F with full support. Suppose £ is an m-symmetric Hunt process on E with transition density
function p(t, x,y) which is positive, continuous and symmetric in (x,y). Define a;(z) := p(t,z,z) for z € E
and ¢ > 0. We assume that

(1) for each t > 0, a;(z) € L*(E, m);
(2) there exists o > 0 such that as,(z) € L?(E, m).
Define a;(z) := p?(t,x,x) for € E and ¢t > 0. Under conditions (1) and (2), G, satisfies
(i) for any t > 0, a;(z) € L*(E, m);
(ii) there exists o > 0 such that a,(z) € L*(E,m) for all ¢ > t.

Property (i) implies that for ¢ > 0, the Feynman-Kac semigroup Pt’g is a Hilbert-Schmidt operator in
L2(E,m), and hence compact. Let £ be the infinitesimal operator of P, and (£#) be the spectrum of
the self-adjoint operator £(?). We know by [29] that o(£%)) consists of at most countable eigenvalues. By
Jentzsch’s theorem, \; := inf{—\ : A\ € o(L")} is an eigenvalue of multiplicity 1, and the corresponding
eigenfunction h can be chosen to be continuous and positive on E with | B h(z)*>m(dr) = 1. We assume
A1 < 0. The h-transformed semigroup P/ admits an integral kernel p (¢, z,y) with respect to the measure
m(dz) := h(z)?>m(dz), which is related to p(t,z,y) by @3). Define a;(x) := p"(t,z,x) = e)‘ltzz@;z for
x € E. We assume in addition that

(3) for all f € Co(E), |Plf - fllo = 0ast— 0.
Let X be a (P, 1s)-superprocess with spatial motion £ satisfying conditions (1)-(3) and the branching
mechanism 9g(z, \) given by @) with B(z) € By(E), a € B} (F) and 7(z, dy) satisfying

sup/ y*m(x, dy) < oo, (8.2)
(0,00)

z€E

We assume in addition that 15 satisfies condition (2.21]) in Subsection23l Then our Assumptions 1-6 are sat-
isfied by this class of superprocesses with A1, h defined as above and w(z) := —logPs, (3t > 0: (1, X;) =0).
This example covers Example 4.1-4.5 in [8].

Example 8.5. Suppose £ = R? (d > 1) and m(dz) = dz is the Lebesgue measure on R?. Suppose
(&1, € R?) is an a-stable-like process on R? with a € (0,2). An a-stable-like process on R? is a
symmetric Feller process on R? whose Dirichlet form (£, F) on L?(R% dx) is given by

F= {ueL2 RY; da) // d(fi) dxdy<oo}
R x R4 |517— |

= u(z) —u 2_c@y) x
ey = [ [ () = )L oy,

37



where c(x,%) is a symmetric function on R? x R? that is bounded between two positive constants. Clearly
this includes symmetric a-stable process on R? as a special case. Let Yg(x, ) be a branching mechanism
given by (1) where 8 € By(R?) has a compact support, a € B, (R?) and 7 satisfies (82). Let X be a
(&, 1p)-superprocess. Here we assume in addition that ¢g satisfies condition (Z21]) of Section 23 It is proved
in [6, Theorem 4.14] that the transition density function p(¢,z,y) of a a-stable-like process is bounded and
continuous in (z,y) for each ¢ > 0 and

t

7 = yire for all 2,y € R? and ¢ > 0. (8.3)
r—y

p(t,z,y) <t~ YA
It follows that for each ¢ > 0, the transition semigroup P; of £ maps bounded functions to continuous
functions, and P; is bounded from LP(R?, dx) to L9(R?, dz) for 1 < p < q < co. Furthermore, for each ¢ > 0,
P/ maps bounded functions to continuous functions, and P’ is bounded from LP(R?, dz) to L(R?, dz)
for 1 < p < ¢ < oo. Define &i(u,u) := E(u,u) + [ u(x)?de for u € F, and Ao := inf{E(u,u) : u €
F with [, u(x)?dz =1} > 0. The semigroup P! associates with a quadratic form (£(), F) where

EP) (u,u) = E(u,u) — / u(z)?B(x)dr  for u € F.
Rd

Define A\, := inf{€®) (u,u) : u € F with Jpauw(@)?de = 1} > —[|]s. We use o(£@)) to denote the
spectrum of —£#) where £(#) is the self-adjoint operator associated with (£(%), F). Clearly the the Dirichlet
form (€, F) is comparable to that of the symmetric a-stable process. Thus by applying the same argument
as in [32], we can show that the embedding of (F, &) into L?(R%, 3(z)dx) is compact. Then by Friedrichs
theorem, the spectrum of o(€ (5)) less than Ay consists of only isolated eigenvalues with finite multiplicities.
We assume A; < 0, and hence A\; < )g is automatically true. Let h be the normalized nonnegative L2-
eigenfunction corresponding to A;. It holds that h = e’\ltPtB h on E. Since PtB maps L%(R%, dz) into
L>(R?, dz) and maps B,(R?) into C(R?), h is a bounded continuous function on R?. Moreover h is positive
everywhere by the irreducibility of £ and the positivity of exp ( fot I} (§S)ds). For such (£, ¢g)-superprocess,
Assumptions 1-6 are satisfied with A1, h defined as above and w(x) := —logP;s, (3t > 0, (1, X;) = 0).

A Appendix

A.1 Kuznetsov measure for superdiffusions

Suppose the operator £ is defined by the formula:

d
L= Z 9 aij(a:)i + sz(x) 0 on R?,
al'j 6,Tj . 8:51

i,j=1

where the matrix A(x) := (ai;(x));,; is symmetric and positive definite, and all a;; and b; are bounded and
(globally) Hélder continuous on RY. Tt is known (cf. [I4, Chapter 2]) that there exists a diffusion process
on R?, called the £-diffusion, whose transition density function is a fundamental solution of the equation
Ou/Ot = Lu. In this subsection, we assume E C R? is a nonempty domain and ¢ is the subprocess of the
L-diffusion on E. We assume that the branching mechanism g (z, A) is given by ([2.1) and all the first partial
derivatives of ¥g(x, A) are continuous. This (£, ¢g)-superprocess is also called (&, 13)-superdiffusion. Let X
be a (&, 1¥3)-superdiffusion. We are concerned with the set Ey = {z € E : Kuznetsov measure N, exists}.
By the argument in Subsection [Z3] we know that (ZI3) is a sufficient condition for the existence of N,.
We recall that for every open set D C E and ¢t > 0, there is a random measure )?tD concentrated on the
boundary of [0, %) x D such that (Z7) and (Z38) hold for every y € Mp(E) and every f € By ([0,t] x E). We
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also recall that X, is the projection of )N(f on E. For every x € E, let O, be the set of open sets in E that
contains z. Then condition ([2I3)) is satisfied if

Ps, ()thD=O) >0 forallt>0and D e Q,. (A1)

It follows from the Markov property of branching exit Markov systems that for any D, Ds € O, with
Dy C Dy, and any 0 < s <t < o0,

{XPr =0} c {XP> =0} Pj,-as.
Thus condition (AJ) is equivalent to that: There is § > 0 sufficiently small such that
Ps, ()?153720) >0 forallt>0and0<r <.

Here B, := B(z,r) denotes the ball centered at x with radius 7.

In the remainder of this subsection, we assume v is a spatially independent branching mechanism given
by (220). Suppose ((Y)i>0;Py,y € RT) is a one dimensional CB process with branching mechanism
and P,(Yp = y) = 1. The process Y is called subcritical, critical or supercritical according to ¢'(04) >,
= or < 0. It is well-known that P, (lim;,o ¥; = 0) = e"¥*¥, where zy := sup{A > 0,9(\) < 0} € [0, 00].
Moreover, by the Markov property of Y, we have

P, (efzwyt) =e Y forally>0andt>0.

In the subcritical and critical cases, z, = 0, while in the supercritical case, zy € (0,00) if 1(00) = o0, and
otherwise z, = co. Given zy € (0,00), conditioned on the event {lim;_,» Y; = 0}, Y is a CB process with
branching mechanism

P*N) = (A + 2y) = P (25)N + aX? + /(0 ) (e — 1+ Az) e " n(da). (A.2)

Since (1*)'(04) = ¢’ (zy) > 0, the conditioned process is subcritical (cf. Lemma 2 in [2]).
Lemma A.1. Suppose ¢ given by (Z20) satisfies zy < 0o and that

/ds
N

Then for any bounded open set Q = (t1,t2) X B, where 0 < t1 < ta < 0o and B := B(xg,r) with 29 € E and
r >0, there is a function v°(s,z) € C*(Q) such that

. ~1/2
/ w(u)du] < oo for some N > zy. (A.3)
2

WL <), (7)€@
V(s ) > 2y, (s,2) €Q, (A4)

lim %s,2) =00, z€To,
QR3(s,x)—z ( ) Q

where To := ((t1,t2) x OB) U ({ta} x B) is a total set of IQ.

Proof. The idea of this proof is similar to that of [T4] Theorem 5.3.1]. We only need to prove the result for
sufficiently small t5 — t; + r. Note that (A3]) is equivalent to

0 s —1/2
/ ds {/ z/;*(r)dr} < oo for some N > 0,
N 0
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where 9* is defined in (A2). By [14] Lemma 5.3.1], for sufficiently small t5 — ¢; there is a nonnegative
solution u*(s) of the following problem:
ou*
ds

< 1/)*(U*)7 RS (t17t2)7

lim  w*(s) = 0.
(tl ,t2)95—>t2

Take u(s) := zy + u*(s) for s € (t1,t2). Using the fact that ¢*(\) = (X + zy), it is easy to check that u

satisfies (A5):

% S w(u)7 s € (tlatQ)a
u(s) > zp, s € (t1,t2). (A.5)

lim  wu(s) = oo,
(tl ,t2)95—>t2

On the other hand, by [14, Lemma 5.3.4] and the fact that ¢*(\) = (A + zy), for sufficiently small r, there
is a nonnegative solution v(z) of the following problem:

{ Lv <4(v), =€ B,

lim wv(z) =00, z€09B.

B3>r—=z
Hence v%(s, x) := u(s) + v(z) is a solution of (AA). O

Lemma A.2. [Comparison Principle] Suppose ¢ is given by Z20) with zy < 0o and that Q is a bounded
reqular open set in [0,00) x RY. Then u < v in Q assuming that

(a) u,v € C*(Q);

(b) 34+ Lu—1p(u) > & + Lo —¢(v)  in Q;

(¢) w is bounded from above and v > zy in Q.

(d) for every z € Tq, limsupgs, ,z[u(z) —v(2)] <0.

Proof. The proof is similar to that of [I4, Theorem 5.2.3] by using the fact that () is an increasing function
in A\ € [zy,00). We omit the details here. O

Lemma A.3. If x € E satisfies the following condition: there exist an open set D € Q4 and a function ¢
in the form of 220) with zy < oo such that (A3) holds and

Ya(x,\) > YA\ for all z € D and A > 0, (A.6)
then Ps, (X =0) > 0 for allt > 0 and hence x € Ey.

Proof. By the argument in the beginning of this subsection, it suffices to prove that for § > 0 small enough
such that Bs := B(x,0) C D, we have

Ps. ()?f’f - 0) >0 forallt>0and B, := B(z,r) with r € (0,d]. (A7)
Fix r € (0,6] and an arbitrary T > 0. For any A > 0, let
uyr(s,y) = —logPs, (exp (—(A,)?SIBT))) for y € B, and s € [0, 7. (A.8)

Since all the first partials of 1g(z, \) are continuous, it follows by [I4] Theorem 5.2.2] that vx(s,y) :=
Uy (T — s,y) for (s,y) € (0,T) x B, is a solution of the following boundary problem:

8@,\

E + LU)\ = w,@(yu U)x(su y))7 (87 y) € (OaT) X B’I‘7

i =\ 8((0,T) x B,).
0 s, Ay = A 2€0((0,T) x By)
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Since ¥3(y, A) > ¥(A) for y € B, and A > 0, we have

E + LU)\ > w(’U)\% (Suy) € (OaT) X BT7

li = 8((0,T) x By).
0 s, W) = A 2€9((0.T) x By)

By Lemma [A] there is a solution v°(s,y) of the following problem:

o 0
E+LU§¢(U )7 (S,y)E(O,T)XBT,

W(s,2) > 2p,  (5,9) € (0,T) x By,

li Os,y) =00, zE€ .
(O,T)xBngl(s,y)—)zv (s,y) =00, 2 WO’T)XBT
where To x5, = ((0,T) x dB,) U ({T} x B,) is a total set of 9((0,T) x B,). By Lemma [A2] for any
A >0,
va(s,y) <v¥(s,y)  for all (s,y) € (0,T) x B,.

Letting A 1 oo in (A8)), we get that for any ¢ € (0,7)
—logPs, (XPr =0) = )\lim oA(T —t,z) <v™(T —t,) < co.
— 00

Since T > 0 is arbitrary, we get (A7) for all ¢ > 0 and r € (0, J]. O

Note that condition (A3) is stronger than [~ 1)(A\)"1d\ < oo, which is usually called Grey’s condition.
Grey’s condition is a necessary and sufficient condition for a CB process to become extinct in a finite
time with positive probability. Lemma [A 3] says that for a superdiffusion with spatially dependent branching
mechanism, if the branching mechanism is locally dominated by a spatially independent branching mechanism
which satisfies a condition stronger than the Grey’s condition, then this superdiffusion become extinct in a
finite time with positive probability.

Recall that a(x) is the non-negative bounded Borel measurable function in 1) and E; = {z € E :
a(z) > 0}.

Proposition A.4. For a (&, vg)-superdiffusion, it holds that E, C Ey.

Proof. Since all the first partials of 13 are continuous, o and 3 in 13 are continuous functions. Thus for any
r € Ey, there exists a neighborhood D of x such that sup,cp B(y) < 8* < oo and infyep a(y) > a* > 0.
We have

Yy, \) > —B*A+a* A =1 ¢*(\)  fory € D and A > 0.

It is easy to verify that ¢* satisfies (A3). Hence x € Ey by Lemma [A3] O
In the rest of this subsection, we assume Condition 1’ holds. We will establish the existence of N for all
x € E4 under Condition 1°.
First we note that there exists a superdiffusion ((Xt)i>0; P}, u € Mp(E)) with P} (Xo = p) = 1 such
that for all y € Mp(E), f € B} (E) and t > 0,

3

P [e—<f,xt>} — o))

where u}(t, ) is the unique nonnegative locally bounded solution to the integral equation given by (2.IT).
The branching mechanism of this superdiffusion is ¢5. (x, A) := —8*(2) A+ (z, A) where 8* and 15 are given
in Proposition[2.2] Since w is only locally bounded on E, $* is bounded from above but may not be bounded
from below. Hence the branching mechanism 5. (z, A) does not satisfy the usual assumptions in Section 2.1l
Nevertheless, one may consider the (£ ,wg*)—superdiﬁ"usion in every bounded open domain D, where the
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underlying spatial motion is killed upon hitting the boundary of D. Then by using an increasing sequence of
compactly embedded domains to approximate E, the process (X, PZ) can be defined as a distributional limit
of these (£7,45. )-superdiffusions. (see, for example, the argument before Theorem 2.4 in [16].) We remark
that this method of construction may fail in general when the spatial motion has discontinuous sample paths
since the process can potentially jump everywhere when it exits from the domain D.

Let Ej be the set of points in E' where the Kuznetsov measure N} corresponding to the (5,1/);;*)—
superdiffusion exists. It follows that for every z € Ejj, every t > 0 and f € B, (E),

NZ (1 - e_<f’Xf>) = u}(t, x).

According to [I2, Theorem I.1.1 and Theorem 1.1.2], for any bounded open set D € E and t > 0, there
exists a random measure )N(f D concentrated on the boundary of [0,#) x D, such that for every u € Mp(E)
and f € B ([0,t] x E),

P [e—(f,)?;f’)} _ e—(ﬁ}D(t,-),m,

where E}D (t,z) is the unique nonnegative locally bounded solution to the following integral equation:

WPt 2) = 10, [f(t ATp, ng)} ~I0L [/pr v (gs, TP (t s, 55)) ds} . (A.9)

Define w(t, z) := w(x) for (¢t,2) € [0,00) x E. Using the local boundedness of w on E, we can deduce that
for any bounded open set D € F,

w(t,z) =z (WA TD,&nrp)) — i </0 " g€, w(t — s,{s))ds) . (A.10)

The next proposition shows that {X;2;¢ > 0} is a Doob’s h-transformed process of {XP;t > 0} via the
function w.

Proposition A.5. Let ME(E) :={p € Mp(E) : (w, ) < co}. Suppose D € E is a bounded open set and
p € MY(E). Then for every t > 0 and f € B ([0,t] x E),
e (wmp, {e—<.f+@,>~<?>} — P [e—<.f>)?2‘D>} ' (A.11)

Proof. Since the random measure )N(tD is supported on the boundary of [0,¢) x D and w is locally bounded
on [0,00) x E, it follows by [2.7)) and (2.8]) that

w

e (wwp, {exp (—<JT+ w, XtD>)} = exXp (_<ﬂg+f(t’ )= w(),u>) ’

where ﬂDJr f~(t, x) is the unique nonnegative locally bounded solution to the following integral equation

w

ﬂ§+f(t, z) =TI, [(a + f)(t ATp, ng)} —1I, (/OWD P3(Es, ﬁ%;@ =S, 65))d8> (A.12)

Using (AI2) and (AI0Q), it is straightforward to check that E}D (t,x) := T‘%a“’ x) — w(x) is the unique

nonnegative locally bounded solution to (AX9). Thus we get (AII). O
Lemma A.6. If v € E satisfies the condition of LemmalA.3, then x € Ef.

Proof. Based on the argument in the beginning of this subsection, it suffices to prove that there exists 6 > 0
such that
P; (X;P=0)>0 forallt>0andB=DB(z,r) with r <.
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We choose § sufficiently small such that B C D, and ¥3(y, A) > ¢(\) for all y € B and A > 0, where D and
1) satisfy the conditions of Lemma [A3 It follows from Proposition [A5] that

PEI ()Z:B = O) - hm P(;z (efo‘vngh

A—00

= e @ lim Py, (e~ (T X)
A—00

— efw(z) lim efﬂgﬁ,\(tvz)

3
A—00

where @2, | (t,x) is the unique nonnegative solution of ([Z8) with initial condition @ + . Then v(s,y) :=
uB .\ (t—s,y) for (s,y) € [0,t] x B, is a solution to the following boundary problem:

W L Lo=ys(y.0(s,y)), (s,9) € (0,8) x B

Js
! ty) =w N, 2€0((0,t) x B).
(Ovt)XBgI(ls,y)—mv( y) =w(z) + < ((0,t) x B)

Since ¥3(y, A) > () for y € B and XA > 0, applying similar arguments as in the proof of Lemma [A3] we
get limy 00 U5, (t,2) < 00. Therefore Py (X;P =0) > 0 for £ > 0. Hence z € Ej. O

Proposition A.7. For a (§,g)-superdiffusion that satisfies Condition 1°, it holds that EL C Eg.

Proof. This proposition follows from Lemma (instead of Lemma [A3)) in the same way as the proof of
Proposition [A-4l We omit the details here. O

A.2 Verifications of examples

Example Bk It is easy to check that Assumptions 1-4 are satisfied with A\; = —f, h(z) = 1 and w(z) = zy.
Then the h-transformed semigroup P} is given by
h e Pt Bt d
Pl f(e) = Gy e [ h(EF ()] = Pif()  for f € BY(RY)
This implies that the h-transformed process &" is still an inward OU process with generate £. It is known
that the transition density of £* with respect to m is given by

C
e2ct _ 1

Pt y) = (1 - 6_2Ct)7d/2 exp (— (|z* + |y|* — 2¢“x - y)) for t > 0 and z,y € R%
In view of this, one can easily check that ¢" has the Feller property, that is, P/ maps Co(R?) to Co(R?) and
limy_o | P/ f — flloo = 0 for all f € Co(R?). It remains to show that Assumption 5 holds for this example.
Let Z be the skeleton process. We need to show that for any p € M.(E), o > 0 and f € BY(E) with ij
bounded,

lim e (f, Zno) = (f, wh)WH"(Z) P,-as. (A.13)

n—oo

Fort >0, Z; = 25\21 Zz’o, where Ng = (1, Zp) and Z*° denotes the independent subtree of the skeleton
initiated by the ith particle at time 0. Recall that under P, for 1 € M (E), Ny is a Poisson random variable
with mean (w, u). Moreover, given Zy, Z"" follows the same distribution as (Z;P.5_ , ). Thus we have

P, ( lim €M (f, Zno) = (f, wh>W§O/W(X))

n—oo

Y

! n— o0
1=1

No
P# (ﬂ{ lim e)xlm‘r<f7 Z711’2> _ <f7 wh>W;zo/w(Zz,0)}>

No
= P lH Py (i €M7 (f, Zuo) = (f,wh)WE/* (Z))

=1
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Hence to prove (AT3), it suffices to prove that for every x € E,

P, ((lim €M7 (f, Zuo) = (fuh) W (Z)) = 1. (A.14)

—00
Sufficient conditions for (A4]) are given in [16] (see conditions (2.23)-(2.26), (2.34) and (2.35) there). In
this example, conditions (2.23)-(2.26) in [16] hold for o1 = 03 = p, 02 = 2 and ¢;(x) = p2(x) = 1, condition
(2.34) holds for a(t) = y/(=2* + o)t and condition (2.35) in [I6] holds for K = 1. Hence we prove (AI3).

Example Assumptions 1-4 are satisfied with \y = ed — 3, h(z) = (ﬁ)d/Q e~l2® and w(z) = zy. The
transition density of & with respect to m is given by

p(t,z,y) = (*' — 1)_d/2 exp <—ﬁ (|z* + |y|* — 2= - y)) for t >0 and z,y € R%
—e C

The h-transformed process £” is symmetric with respect to the measure m(dx) = h?m(dz) = (%)d/2 el dy,
and the transition density of £&" with respect to m is given by

ph(t, x,y) = (1- 6_2Ct)7d/2 exp (— 2th . (|z* + |y|* — 2¢“x - y)) for t > 0 and z,y € R%.
o2t _

This implies that &" is an inward OU process on R? with infinitesimal generator £ := %A —cx - V. Thus

limyg o [|[Pf — flloo = 0 for any f € Co(R?). In view of Example 4.2 in [16], Assumption 5 is also satisfied.
Example Suppose 155(12, A) i= —B(x)A+a(x)\2. Let X be a (Y, 1g)-superdiffusion and X be a (Y, {/J\ﬁ)—
superdiffusion. For 2 € R?, let wx(x) := —logPs, (3t > 0: (1,X;) = 0) and wg(z) := —log Ps, (Elt >0: (1,§§t> = O).
We know from [18] that the function wg is continuous on R and solves the equation Lu — 155(:1:, u) =0 on
R<. Since v > {/Jﬁ pointwise, it follows by [16, Lemma 4.5] that wx < wg pointwise. Thus wx is locally
bounded on R? and hence is continuous on R? by [16, Lemma 2.1]. Recall that X is a (&, ¢3)-superdiffusion
where € = Y'F is the subprocess of Y killing upon leaving E. We mentioned in Section that one may
think of X; describing the mass in X; which historically avoids exiting F.

Since the function p in the generator is bounded between two positive constants, we know from [23] that
¢ has a positive continuous transition density pg(t,x,y) with respect to m, and for each T' > 0, there exist
positive ¢;, i = 1,--- ,4 such that for every (¢,z,y) € (0,T] x E x E,

— |2 12
220 < ot < cafeltn e e (ALY (as)

leE (ta xz, y)tid/2 exp (_ ¢

where fg(t,z,y) = (1 A 5’”:/(5)) (1 A 5’*:/(%)) and dg(z) denotes the Euclidean distance between x and the

boundary of E. Since f is bounded, it follows that the Feynman-Kac semigroup Pt’g admits an integral kernel

p% (t,z,y) which is positive, symmetric and continuous in (x,y) for each ¢ > 0, and

e IBllsstpp(t, 2, y) < p%(t,:v,y) < elBletyp(t,z,y) forall z,y € E and t > 0.

Thus p%(t,:v,y) satisfies the same two-sided estimates (A.I5) with possibly different constants ¢; > 0,
i =4,---,8. By this estimate, fEpr%(t, x,y)*m(dz)ym(dy) = [, P2, , 2)m(dx) < oo for every t € (0,T).
Thus Pt’g is a Hilbert-Schimidt operator in L?(FE,m) and hence is compact. The infinitesimal generator of
PP is £ := (£ + B) | with zero Dirichlet boundary condition. We use o(£?) to denote the spectrum set
of £P. Tt then follows from Jentzch’s theorem that A\; := inf{—X: X\ € (L)} is a simple eigenvalue and a
corresponding eigenfunction k can be chosen to be nonnegative with [, h(x)?m(dz) = 1. We assume A; < 0.
Since h(z) = eM* [, p%(t,x,y)h(y)m(dy), h is continuous and positive on E. Moreover, by the estimate

(A15), we have
co(LNp(x)) <h(z) <cip(LAdg(z)) forallzeE. (A.16)
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Here ¢y, c19 are positive constants independent of . Therefore, Assumptions 2-3 hold.

Let w(z) := —logPs, (3t >0: (1,X;) =0). Since h is bounded on E, it is easy to see that condition
(ZZ7) (or, equivalently, Assumption 4(i)) holds. Thus by TheoremZJand Remark 210, Ps, (W2 (X) > 0) >
0 for every x € E. It follows that

w(x) > —log (1 —Ps, (liinsup<1,Xt> > O)) > —log (1 —Ps, (WE(X)>0))>0 forzek.
— 00
On the other hand, since X; describes only part of the mass in X;, we have Ps, (3t >0: (1,X;) =0) >
Ps, (3t >0: (1,X;) = 0) and hence w(z) < wx(z) on E. This together with the continuity of wx on R?
implies that w is bounded on E and hence is continuous on F by [16, Lemma 2.1]. This shows that Condition
1 holds, and, consequently, Assumption 1 is satisfied.
We now show that Assumption 4(ii) holds for this example. By condition ([81]) and the boundedness of

w, one can easily prove that WT = —f(z) + a(z)w(z) + f(o 00) W 7(z,dy) is a bounded
function on E. Let {D,, : n > 1} be a sequence of bounded domains with smooth boundaries such that
D, €@ Dpy1 € E forn > 1 and |J,~; D,, = E. We know from the argument in the beginning of Section

that for t > 0, x € FE and n sufficiently large so that x € D,

wiz) = T, {w(fmmn)exp <— /0 o Wi(igwgwdsﬂ '

Consequently,

Y%

w(x) exp (‘t sup Yy, wy))

sup P ) e (o)

= e ot (Hz (w(&);t <7p,] +11, [w({TDn);t > 7'Dn])
> e L [w(&);t < Tp,] = e L, [w(Y;);t < Tp, ] -

Thus by letting n — oo, we get w(z) > e 1L, [w(Y;);t < 75] = e~ “3IL, [w(Y;”)]. Using this and the
heat kernel estimates in (AIH), we have for z € F

w(z) > e 931, [w(YlE)]
= e / pr(1, 2, y)w(y)m(dy)
E
= e /E<1 A3 (@) (1 A S (y))e7= w(y)m(dy)

Y%

Cle—clgfc2diam(E)2(1 A 6E(;I;))/ (1 A\ 6E(y))w(y)m(dy)

> (1A d5(2)). : (A.17)

Here c¢14 > 0 is constant and the last inequality comes from the fact that (1Adg(y))w(y) is positive everywhere
on E. By (ATT) and ([(AT6), we have for = € E,

/ rle~@rr(z dr) < / r2ecr(NE @) (g )
(0,00) (0,00)

< / T2e—015h(1)r7-‘—(x,dr)
(0,00)
_1 / Tlog*r( rh(@) e-clshu)r) log” (rhl®)) . ar)
7@ o log™ (rh(x)) logr
1 / . rh(z) —eish log™(r[lAllss)
< = rlog r( e ershlo)r) —= 2 U200 7r(, dr),
7(@) J0.00) log”(rh(z)) gy ")
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where ¢35 is a positive constant. It then follows from condition (&I]), and the fact that functions y —

oaye Y and y — % are bounded on (0,00) that f(o r? ’w(z)rﬂ'(a:,dr) < ci6h(z)"! on E.
Immediately we get <(f(0 o0) TQe*w(?mr(.’dr)) LARY < g [(h(z)"% A h(z)*)m(dz) < oco. Hence As-

sumption 4(ii) holds.
We next show Assumption 6 holds. Let P/ be the h-transformed semigroup from Pt’g given by (Z20)).

PP admits an integral kernel p (¢, z,y) with respect to the measure m(dx) := h(x)?*m(dz), which is related

to p%(t,x,y) by

kltp% (t7 €T, y)

h
pe(t,z,y) =e for x,y € E and t > 0.
B9 = ()
Define a;(z) := pi(t, z, :1:) for € E and t > 0. Clearly by (AI0) and (AI0), we have sup,pai(z) < oo
for every t > 0. Let eg(t fo (&s)ds. Suppose f € Cy(E). Then for any given € > 0, there is 6 > 0 so

that |f(z) — f(y)] < e Whenever |z — y| < §. By the two-sided estimate of p%(t, x,y), for sufficiently small
€ (0,1],

[N PP (hf) (@) = hla)f (@)

h _
S IFI@ - I@] = )
_ sup et Tz [ep(t)A(&e) (S (&) — f (%))l
zeFE ( )
< c+tswp it M [es(DR(E) (F(&) = f(£0))s & — &ol = 9]
zeFE h(.I)
Ca+1Bl100) I (& — €| > 9)
< etent tllhlloonHooilelr]; )
g () —(d+1)/2 _ 2
< € +ensup oS /yEE ) m\>5t U2 exp (—ealw —y[?/t) dy
< a+c12(1+diam(E))/ (D2 —eal=l/t g,

|z]=6

= eten(l+ diaun(E))fl/2 / pd—1g—car® g
5t—1/2

It follows that lim; o [|[P/*f — f|lec = 0 for all f € Cy(E).
It remains to prove that Assumption 5 holds. Fix ¢ € B/ (E), u € M (E) and ¢ > 0. For m,n € N, we
have

eA1<m+">“<g¢, Zimamyo) — (6, W)W/ (Z) = I(m,n) + II(m,n) + I11(n), (A.18)

where I(ma n) = e)\l(m+n)o<%¢, Z(m+n)a> - P,u ( A m+n)cr< ¢7 m+n)a>‘ ]:na')a

II(m,n) =P, ( A m+">”< b, Z(m+n)o)

fno’) - <¢7 h2>W1}zLa'/w(Z)7

and I11(n) := (¢, h?) (W,%w(Z) - Wfo/w(Z)) Note that by the Markov property of Z,

no h
]P)u <e>\l <E¢7 Z(m+n)cr>

h
]__7w> _ eAl(ern)g]P)-,Zm <<—(;57 ng>)
w
= eA1<m+">d<iPﬁ (ho) Zm>:eA1”"<ﬁPh ¢, Zno).
wo me ) w Mo ’

Thus II(m,n) = eM"(LPL g 7Z,.,), where g(z) = ¢(z) — (¢,h%). Since (g,h?) = 0, |PL,g(x)| <
e~ Mn(mo—3)g, ()29l L2(,h2my for mo > 1/2. Here A, > 0 denotes the spectral gap in U(E('@ ) Thus
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we have for mo > 1/2
h
[11(m,n)| = M7 (= P09, Zno)| < crae™ ™ sup iy ()2 W11 (2).
w z€E

It is shown in the proof of the equivalence between Assumption 5 and Assumption 5’ that for every m € N,
limy, 00 I(m,n) = 0 Py-a.s. Thus by letting n — oo and then m — oo in (AI])), we obtain that

n—roo

h
lim ehm<a¢>, Zno) — (¢, YW (Z) =0 P,-as.

Example B2 Let Ay := Ay — \; be the spectral gap in o(£?), where)y := inf {xe o(=LP)) X £ A}
Since P h(x) = e~ th(z), it follows by property (ii) and Holder inequality that h € L*(E,m). Let go(6) :=
log™ 0/6 for 6 € (0,+0c0). Then

“(rh(Nw(-, dr), h?) = rh( )2 (-, dr), h®
</(07+Oo)7”10g (rh(:))w(-,dr), h7) </(O)+Oo)go( h(-))rm (- dr), h”)

IN

||90||oo</ P2 dr), h°)
(0,400)

< —Hoo.

The last inequality comes from the fact that h € L*(E,m) and condition (82). Thus we have by Theorem
and Remark ZI0 that Ps, (W2 (X) > 0) > 0 for each z € E. Hence

w(z) > —log (1 —Ps, <limsup<1,Xt> > O)) > —log (1 —Ps, (WL(X)>0)) > 0.
t—+oo

In view of Remark 277 w(z) is a bounded function on E under our assumptions. Using the boundedness of

w and ([B2), it is easy to verify that Assumptions 1-4 and Assumption 6 are satisfied by this example. Next

we will show that Assumption 5’ is also satisfied, that is, for all 4 € M (E), ¢ € B, (E), o > 0 and some

m e N,

lim eAI""(ﬁPffw¢, Zno) = (¢, YW/ (Z) P,-as. (A.19)
w

n—-+o0o

It is showed in the proof of Lemma [4] that

N,
h no i h
Aino Ph an _ A1 (m+n)o E P h. [b7o an Aino gt 0* . an )
€ <’LU mcr¢a > € ,u(<¢ »tmo >| )+€ <w d)h(maa )a >

i=1

Thus by Lemma [E.2] Lemma [7.3] and Theorem 211l under Assumptions 1-3 and Assumption 4(i), (AT9) is
equivalent to that

lim e

A1 (m+n)o
n—-+o0o ‘

(ph, IE"7) = (b, YW (X) P,-as. (A.20)

?Tmo

MZ

o
1=1

Since e (MFT(Sh, X (1 40)0) > MMM Ei]i"f (¢ph, I»n7) and ¢ € B, (E), (A20) (or equivalently (AI9))
is equivalent to

lim e (ph, X,p) = (¢, )W (X) P,-as. (A.21)

n—-+oo
Fix ¢ € B} (E) and p € M.(E). Let g(z) := ¢(z) — (¢, h?) for z € E. We have by (2.0) that for ¢ > 0,

P, {(6“<gh,Xt>)2} = <Pth97hu>2+/t eMe(pl <2a+/ y27r(~,dy)> h(Pt"sg)ﬂ , hys)ds
(0,+00)

0

= I(t)+II(t).
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Since g € L?(E,m) and (g, h?) = 0, we have by [3.6) for r > ty/2 and z € E,
|PLg(@)] < e =B, (2)12 gl e my = cre ™ g, ()2 (A.22)
Thus 1(t) < cae™2 ! for all t > ty/2 and some ¢y > 0. On the other hand, for r € (0,#9/2] and = € E,
to _

[PYg(@)] < llglloc < llglloce™ (=77 = cze™ 7 (A.23)

Let € € (0,—A1 A 2)p,), we have by (A22) and (A23)) that

11(t)

IN

t
2a+ [ gPrCadnle [ N (h(P )" s
(0,40) 0

t
= / NP (PR ((1V Gy,))  hp)ds
0

—+o0
< ey / et (PI (R (1V ay,)) , hy)ds. (A.24)
0

Since h € L*(E,m), it follows by property (ii) that h (1 V a;,) € L%(E,m). Thus by @8), (P* (b (1V a,)) , hu)
is bounded from above for s sufficiently large. Therefore the integral in the right hand side of (A-24)) is finite.
It implies that 37> P, [(e)‘lm (gh, Xm>)2} < +00, and hence we obtain (A2]]) by Borel-Cantelli Lemma.

Example By a similar argument as that for [3, TV.5], we have
h(z) > colz| =42 for |z| > 1, (A.25)

for some positive constant c¢y. Let A2 be the second bottom of the spectrum of U(E(ﬁ)), that is Ay =
inf{€P (u,u) : u € F with [p, u(z)h(z)dz = 0 and [p, u(z)?dz = 1}. Then the spectral gap A, 1= Ay —
A1 > 0. Recall that the h-transformed semigroup P} is an m-symmetric semigroup with m(dz) = h(x)%dz.
Pl admits an integral kernel p" (¢, z,y), given by (B3], with respect to the measure m(dx). Let p(t,z,y)
be the integral kernel of Pf with respect to the Lebesgue measure, which satisfies the estimates in ([222)).
For any f € C.(R%), t > 0 and x € R%, we have by (B3] and ([222) that

P (@) f(@)| < / Pt y) |f () — J()| Fildy)
]Rd
e}\lt
= i L) ) - sl dy
eQa+1Blloo)t e ¢ o
< o [ (re o ) - @y (420

Let fi(z) := ﬁ Jga (t_d/o‘ A W) h(y)|f(y) — f(z)|dy. Suppose supp(f) C B(0,R) for some R > 1.
For x € B(0,2R) and z € R?, h(z)/h(z) < ||h]|os/ inf e p(o,2r) h(y) < 00, and we have

C2 /Rd (f_d/a A W) |f(y) = f(z)|dy
= e /Rd (t‘d/o‘ A |z|§+°‘) |f(z 4 2) — f(x)|d=. (A.27)

fi(x)

IN

Since f € C,(R?) is uniformly continuous on R%, for any £ > 0, there exists § > 0, such that |f(z1)—f(22)| < €
whenever |21 — 23] < §. Thus by (A21),

t t
@) < e [ CUTA el [0V A s
|2|<s 2]t 26 2[F+a
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1 1
= g€ 1/\—du—|—202||f||00/ 1IN ——du (A.28)
/|u<5t1/°‘ Juf ¢+ Juf e

lu|>6t—1/

Since [pa 1A Iu‘ﬁ du < oo, by letting ¢ — 0 and & — 0 in (A28), we get sup,c (9 2r) fi(z) — 0. On the
other hand, for « € B(0,2R), by the fact supp(f) C B(0, R), the boundedness of h and (A.25]), we have

5 = b —dfa Nt
ft( ) h(.I) ~/|y|§R (t A |$_y|d+a> h(y)|f(y)|dy

t
< CS/ (td/a A 7) |.’L'|d+ady
lyl<R |z —yl|ite
t|$|d+o¢
< e oy
wi<r (2] = [yhate
t|x|d+a
< e
yi<r (Jz| = R)d+e
< 2d+aC3t.

Thus sup,¢p(o,2r) ft(r) — 0 as t — 0. Hence by (A.26) we conclude that
lim || P} f = flloc = 0 (A.29)
t—0

for all f € C.(R?). Since C.(R?) is dense in (Co(RY), || - [|oo), (A29) is true for all f € Co(RY).

Recall that w(z) = —logPs, (3t >0, (1, X;) =0). The argument in Remark 27 shows that w(x) is
bounded on E and so Condition 1 is satisfied. Let W/ (X) := eM?(h, X;). Then W/ (X) is a nonnegative
P,-martingale with respect to 7} := o{Xs : s € [0,¢]} for all u € Mp(E). Let WA (X) = limy_,oc WP (X).
Note that by (26,

t
PJI (Wth(X)2) _ h(il?)2 +62)\1t/0 Psﬁ

2
[a (Pf_ Sh) } (x)ds
t
= h(z)? —|—/ e [@h?] (z)ds
0
t
< h(a:)2—|—|\62h||00/ e?Ms PAh(z)ds
0

t
= h(:v)z—i—HahHOOh(:v)/ eMeds
0

h(z)? + cah(x). (A.30)

IN

Here a(z) := 2a(z) + f(O,oo) y?*m(z,dy) for € E and ¢4 is a positive constant independent of t. Thus for
any p € ML(E), {WMX) : t >0} is an L%-bounded nonnegative martingale and hence W/*(X) converges
to W2 (X) Py-as. and in L?(P,). In particular P, (W2 (X) > 0) > 0. Thus Ps, (3t > 0, (1,X;) =0) <
1—Ps, (WL(X)>0) <1, and so w(z) > 0 for all z € R?. Furthermore, By Cauchy-Schwartz inequality

and ([(A30), we have

Ps, [WL(X)])* h(z)? o @)
2

(
Pa (W lX) > 0) 2 5 08 Coe] = Tomy oo o, (WP O] ~ B0) + 1

Thus we get
w(z) > —log (1 —Ps, (W:O(X) > O)) > log(h(x) 4 c4) — log ca.

Using this, (A28) and the fact that h is bounded away from 0 and co on compact sets, we conclude that
the function h(z)/w(x) is bounded from above on RY. We see from the above arguments that Assumptions
1-4 and Assumption 6 are satisfied by this example.
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Finally we will show that Assumption 5 is also satisfied. Let Z be the skeleton process. We need to show
that for all y € M.(E), o > 0 and f € B¥(E) with £ bounded,

lim e (f, Zno) = (f, wh)WH"(Z) P,-as. (A.31)

n—r00

Fix f € B*(E) with fw/h bounded. Let g(z) := f(z) — (f, wh)L(z) = (fTw(:zr) —(f. wh>) b (z) for z € E.
Through the same argument as in Example 8] to prove (A31]), it suffices to prove that for every x € E,

]P)-,éz (nll{%o eklna <97 Zna> - O) =1. (A32)

We observe that g, 4% are bounded functions on R? by the boundedness of % and ij For every = € R?,

Poo (€449, 20)°] = % (I(t,z) + II(t,2)),

where I(t,z) := eM' P! (%¢?) (2), [1(t,x) == fg etsph [(204 +b)Lpp | (%9)2] (z)ds. For I, we have
w At
I(t ) <l 5-9lloollglloce™". (A.33)

For I1, we have

h w i
1(t,9) < |2+ bl ol ol | P2 |
w 0

P, (%g)H (z)ds. (A.34)

Since (%g,h?) = 0, by [2.26) and Hélder inequality for any ¢ > s > 0

Pl (%Q)H (r) = /deh(s’w’y)

1/2
h 2~ ho (W
< ([ preaaran) i, (Fo) e

o (i—s w
< el )ph(287fCafC)I/QHEQHL%Rd,m) (A.35)

Psh[

Pl (%9) ’ m(dy)

Let £ € (0, —A1 A \p,). Note that by ([B.0), for each , p"(s,z,z) is bounded from above when s is suffciently
large. This together with (A34) and (A33) yield that for every z € R9,

t t
II(t,x) < 05/ M=) g < C5676t/ eMite)sds < cgeet, (A.36)
0 0

Thus by (A33) and (A30), we get > 7 P.s, {(6)‘1”"<g,Zm>)2} < oo. Consequently, (A32) follows by
Borel-Cantelli lemma.
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