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Abstract In this paper, we establish some functional central limit theorems for a large class
of general supercritical superprocesses with spatially dependent branching mechanisms sat-
isfying a second moment condition. In the particular case when the state E is a finite set
and the underlying motion is an irreducible Markov chain on E, our results are superprocess
analogs of the functional central limit theorems of Janson (Stoch. Process. Appl. 110:177–
245, 2004) for supercritical multitype branching processes. The results of this paper are
refinements of the central limit theorems in Ren et al. (Stoch. Process. Appl. 125:428–457,
2015).

Keywords Functional central limit theorem · Supercritical superprocess · Excursion
measures of superprocesses
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1 Introduction
Kesten and Stigum [22, 23] initiated the study of central limit theorems for supercritical
branching processes. In these two papers, they established central limit theorems for su-
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percritical multitype Galton-Watson processes by using the Jordan canonical form of the
mean matrix. Then in [5–7], Athreya proved central limit theorems for supercritical multi-
type continuous time branching processes, also using the Jordan canonical form of the mean
matrix. Asmussen and Keiding [4] used martingale central limit theorems to prove central
limit theorems for supercritical multitype branching processes. In [3], Asmussen and Her-
ing established spatial central limit theorems for general supercritical branching Markov
processes under a certain condition. In [21], Janson extended the results of [5–7, 22, 23]
and established functional central limit theorems for multitype branching processes. In [21,
Remark 4.1], Janson mentioned the possibility of extending his functional central limit the-
orems to the case of infinitely many types (with suitable assumptions). However, he ended
this remark with the following sentence: “It is far from clear how such an extension should
be formulated, and we have not pursued this”.

The recent study of spatial central limit theorems for branching Markov processes started
with [1]. In this paper, Adamczak and Miłoś proved some central limit theorems for su-
percritical branching Ornstein-Uhlenbeck processes with binary branching mechanism. In
[2], Adamczak and Miłoś obtained a strong law of large numbers and central limit theo-
rems of U -statistics of the OU branching system. In [31], Miłoś proved some central limit
theorems for some supercritical super diffusions with branching mechanisms satisfying a
fourth moment condition. In [32], we established central limit theorems for supercritical
super Ornstein-Uhlenbeck processes with branching mechanisms satisfying only a second
moment condition. More importantly, compared with the results of [1, 31], the central limit
theorems in [32] are more satisfactory since our limit normal random variables are non-
degenerate. In [33], we sharpened and generalized the spatial central limit theorems men-
tioned above, and obtained central limit theorems for a large class of general supercritical
branching symmetric Markov processes with spatially dependent branching mechanisms
satisfying only a second moment condition. In [34], we obtained central limit theorems for a
large class of general supercritical superprocesses with symmetric spatial motions and with
spatially dependent branching mechanisms satisfying only a second moment condition. Fur-
thermore, we also obtained the covariance structure of the limit Gaussian field in [34]. In
[35], we extended the results of [33] to supercritical branching nonsymmetric Markov pro-
cesses with spatially dependent branching mechanisms satisfying only a second moment
condition.

The main purpose of this paper is to establish functional central limit theorems, for su-
percritical superprocesses with spatially dependent branching mechanisms satisfying only
a second moment condition, similar to those of [21], for supercritical multitype branching
processes. For critical branching Markov processes starting from a Poisson random field or
an equilibrium distribution, and subcritical branching Markov processes with immigration,
some functional central limit theorems for the occupation times were established in a se-
ries of papers, see, for instance, [8–10, 27–30] and reference therein. The first functional
central limit theorem for the occupation times of critical superprocesses was given in Iscoe
[19], and then generalized in [11]. The functional central limit theorem for the occupation
time process of critical super α-stable processes, and the functional central limit theorem
for the occupation time process of critical super-Brownian motion with immigration, where
the immigration was governed by the Lebesgue measure or a super-Brownian motion, were
established in [18, 26, 36]. However, up to now, no spatial functional central limit theorems
have been established for general supercritical superprocesses. For simplicity, we will as-
sume the spatial process is symmetric. One could combine the techniques of this paper with
that of [35] to extend the results of this paper to the case when the spatial motion is not
symmetric. We leave this to the interested reader.
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The organization of this paper is as follows. In the remainder of this section, we spell out
our assumptions and present our main result. Section 2 contains some preliminary results,
while the proof of the main result is given in Sect. 3.

1.1 Spatial Process

Our assumptions on the underlying spatial process are the same as in [33]. In this subsection,
we recall the assumptions on the spatial process.

E is a locally compact separable metric space and m is a σ -finite Borel measure on
E with full support. ∂ is a point not contained in E and will be interpreted as the ceme-
tery point. Every function f on E is automatically extended to E∂ := E ∪ {∂} by setting
f (∂) = 0. We will assume that ξ = {ξt ,Πx} is an m-symmetric Hunt process on E. The
semigroup of ξ will be denoted by {Pt : t ≥ 0}. We will always assume that there exists a
family of continuous strictly positive symmetric functions {pt(x, y) : t > 0} on E × E such
that

Ptf (x) =
∫

E

pt (x, y)f (y)m(dy).

It is well-known that for p ≥ 1, {Pt : t ≥ 0} is a strongly continuous contraction semigroup
on Lp(E,m).

Define ãt (x) := pt(x, x). We will always assume that ãt (x) satisfies the following two
conditions:

(a) For any t > 0, we have
∫

E

ãt (x)m(dx) < ∞.

(b) There exists t0 > 0 such that ãt0(x) ∈ L2(E,m).

It is easy to check (see [33]) that condition (b) above is equivalent to

(b′) There exists t0 > 0 such that for all t ≥ t0, ãt (x) ∈ L2(E,m).

These two conditions are satisfied by a lot of Markov processes. In [33], we gave several
classes of examples of Markov processes satisfying these two conditions.

1.2 Superprocesses

Our basic assumptions on the superprocess are the same as in [34]. In this subsection, we
recall these assumptions. Let Bb(E) (B+

b (E)) be the set of (nonnegative) bounded Borel
functions on E.

The superprocess X = {Xt : t ≥ 0} is determined by three parameters: a spatial motion
ξ = {ξt ,Πx} on E satisfying the assumptions of the previous subsection, a branching rate
function β(x) on E which is a nonnegative bounded Borel function and a branching mech-
anism ψ of the form

ψ(x,λ) = −a(x)λ + b(x)λ2 +
∫

(0,+∞)

(
e−λy − 1 + λy

)
n(x, dy), x ∈ E, λ > 0, (1.1)

where a ∈ Bb(E), b ∈ B+
b (E) and n is a kernel from E to (0,∞) satisfying

sup
x∈E

∫ ∞

0
y2n(x, dy) < ∞. (1.2)
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Let MF (E) be the space of finite measures on E, equipped with topology of weak
convergence. The superprocess X is a Markov process taking values in MF (E). The ex-
istence of such superprocesses is well-known, see, for instance, [15] or [25]. As usual,
〈f,μ〉 := ∫

f (x)μ(dx) and ‖μ‖ := 〈1,μ〉. According to [25, Theorem 5.12], there is a
Borel right process X = {Ω,G,Gt ,Xt ,Pμ} taking values in MF (E) such that for every
f ∈ B+

b (E) and μ ∈ MF (E),

− logPμ

(
e−〈f,Xt 〉)= 〈

uf (·, t),μ〉, (1.3)

where uf (x, t) is the unique positive solution to the equation

uf (x, t) + Πx

∫ t

0
ψ
(
ξs, uf (ξs, t − s)

)
β(ξs)ds = Πxf (ξt ), (1.4)

where ψ(∂,λ) = 0, λ > 0. By the definition of Borel right processes (see [25, Definition
A.18]), (G,Gt )t≥0 are augmented, (Gt : t ≥ 0) is right continuous and X satisfies the Markov
property with respect to (Gt : t ≥ 0). Moreover, such a superprocess X has a Hunt realization
in MF (E), see [25, Theorem 5.12]. In this paper, the superprocess we deal with is always
this Hunt realization.

Define

α(x) := β(x)a(x) and A(x) := β(x)

(
2b(x) +

∫ ∞

0
y2n(x, dy)

)
. (1.5)

Then, by our assumptions, α(x) ∈ Bb(E) and A(x) ∈ Bb(E). Thus there exists K > 0 such
that

sup
x∈E

(∣∣α(x)
∣∣+ A(x)

)≤ K. (1.6)

For any f ∈ Bb(E) and (t, x) ∈ (0,∞) × E, define

Ttf (x) := Πx

[
e
∫ t

0 α(ξs )dsf (ξt )
]
. (1.7)

It is well-known that Ttf (x) = Pδx 〈f,Xt 〉 for every x ∈ E.
It is shown in [33] that there exists a family of continuous strictly positive symmetric

functions {qt (x, y), t > 0} on E×E such that qt (x, y) ≤ eKtpt (x, y) and for any f ∈ Bb(E),

Ttf (x) =
∫

E

qt (x, y)f (y)m(dy).

It follows immediately that, for any p ≥ 1, {Tt : t ≥ 0} is a strongly continuous semigroup
on Lp(E,m) and

‖Ttf ‖p ≤ eKt‖f ‖p. (1.8)

Define at (x) := qt (x, x). It follows from the assumptions (a) and (b) in the previous
subsection that at enjoys the following properties:

(i) For any t > 0, we have
∫

E

at (x)m(dx) < ∞.

(ii) There exists t0 > 0 such that for all t ≥ t0, at (x) ∈ L2(E,m).
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By Hölder’s inequality, we get

qt (x, y) =
∫

E

qt/2(x, z)qt/2(z, y)m(dz) ≤ at (x)1/2at (y)1/2.

Since qt (x, y) and at (x) are continuous in x ∈ E, by the dominated convergence theorem,
we get that, if f ∈ L2(E,m), Ttf (·) is continuous for any t > 0.

It follows from (i) above that, for any t > 0, Tt is a compact operator. The infinitesi-
mal generator L of {Tt : t ≥ 0} in L2(E,m) has purely discrete spectrum with eigenvalues
−λ1 > −λ2 > −λ3 > · · · . It is known that either the number of these eigenvalues is finite,
or limk→∞ λk = ∞. The first eigenvalue −λ1 is simple and the eigenfunction φ1 associated
with −λ1 can be chosen to be strictly positive everywhere and continuous. We will as-
sume that ‖φ1‖2 = 1. φ1 is sometimes denoted as φ

(1)

1 . For k > 1, let {φ(k)
j , j = 1,2, . . . nk}

be an orthonormal basis of the eigenspace associated with −λk . It is well-known that
{φ(k)

j , j = 1,2, . . . nk; k = 1,2, . . . } forms a complete orthonormal basis of L2(E,m) and
all the eigenfunctions are continuous. For any k ≥ 1, j = 1, . . . , nk and t > 0, we have
Ttφ

(k)
j (x) = e−λktφ

(k)
j (x) and

e−λkt/2
∣∣φ(k)

j

∣∣(x) ≤ at (x)1/2, x ∈ E. (1.9)

It follows from the relation above that all the eigenfunctions φ
(k)
j belong to L4(E,m). The

basic facts recalled in this paragraph are well-known, for instance, one can refer to [13,
Sect. 2].

In this paper, we always assume that the superprocess X is supercritical, that is, λ1 < 0.
In this paper, we also assume that, for any t > 0 and x ∈ E,

Pδx

{‖Xt‖ = 0
} ∈ (0,1). (1.10)

Here is a sufficient condition for (1.10). Suppose that Φ(z) = infx∈E(ψ(x, z)β(x)) can be
written in the form:

Φ(z) = ãz + b̃z2 +
∫ ∞

0

(
e−zy − 1 + zy

)̃
n(dy)

with ã ∈ R, b̃ ≥ 0 and ñ being a measure on (0,∞) satisfying
∫∞

0 (y ∧ y2)̃n(dy) < ∞. If
b̃ + ñ(0,∞) > 0 and Φ(z) satisfies

∫ ∞ 1

Φ(z)
dz < ∞, (1.11)

then (1.10) holds. For the last claim, see, for instance, [14, Lemma 11.5.1].

1.3 Main Result

Let MC(E) be the space of finite measure on E with compact support. We will use (·, ·)m

to denote inner product in L2(E,m). Any f ∈ L2(E,m) admits the following expansion:

f (x) =
∞∑

k=1

nk∑
j=1

ak
j φ

(k)
j (x),
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where ak
j = (f,φ

(k)
j )m and the series converges in L2(E,m). a1

1 will sometimes be written
as a1. For f ∈ L2(E,m), define

γ (f ) := inf
{
k ≥ 1 : there exists j with 1 ≤ j ≤ nk such that ak

j = 0
}
,

where we use the usual convention inf∅= ∞. We note that if f ∈ L2(E,m) is nonnegative
and m(x : f (x) > 0) > 0, then (f,φ1)m > 0, which implies γ (f ) = 1.

Define

H
k,j
t := eλkt

〈
φ

(k)
j ,Xt

〉
, t ≥ 0.

In [34, Lemma 1.1], it has been proved that, for any nonzero μ ∈ MC(E), H
k,j
t is a martin-

gale under Pμ. Moreover, if λ1 > 2λk , then supt>3t0
Pμ(H

k,j
t )2 < ∞. Thus the limit

Hk,j
∞ := lim

t→∞H
k.j
t

exists Pμ-a.s. and in L2(Pμ).
In particular, we write Wt := H

1,1
t = eλ1t 〈φ1,Xt 〉 and W∞ := H 1,1∞ . {Wt : t ≥ 0} is a

nonnegative martingale and

Wt → W∞, Pμ-a.s. and in L2(Pμ).

Thus W∞ is non-degenerate. Moreover, we have Pμ(W∞) = 〈φ1,μ〉. Put E = {W∞ = 0},
then Pμ(E) < 1. It is clear that Ec ⊂ {Xt(E) > 0,∀t ≥ 0}.

When one considers limiting behaviors of X, the first question to ask is the behavior of
〈f,Xt 〉 with f being some nonnegative bounded Borel function, especially the case f =
IK with K being a compact subset of E. It follows from [34, Remark 1.3] that for f ∈
L2(E,m) ∩ L4(E,m),

lim
t→∞ eλ1t 〈f,Xt 〉 = (f,φ1)mW∞ in L2(Pμ).

In particular, the convergence also holds in Pμ-probability. In [34, Theorem 1.4], we also
discussed the central limit theorems of 〈f,Xt 〉, see Lemma 1.1 below. Similar types of re-
sults were established for branching Markov processes in [33, 35]. For a branching Markov
process Zt , considering the proper scaling limit of 〈f,Zt 〉 as t → ∞ is equivalent to consid-
ering the scaling limit of 〈f,Zt+s〉 as s → ∞ for any t > 0. Note that Zt+s =∑

u∈Lt
Zu,t

s ,
where Lt is the set of particles alive at time t and Zu,t

s is the branching Markov process start-
ing from the particle u ∈ Lt . Thus, conditioned on Zt , Zt+s is the sum of a finite number
of independent terms and so we are basically considering central limit theorems for sums
of independent random variables. This is one of the reasons that the results of [33, 35] can
be considered central limit theorems. In the case of superprocesses, even though the particle
picture is less clear, the main results of [32, 34] can also be considered central limit theorems
by analogy with those of [33, 35]. The purpose of this paper is to establish the functional
version of the central limit theorems of [34], that is, functional central limit theorems.

The following three subspaces of L2(E,m) will be needed in the statement of the main
result:

Cl :=
{

g(x) =
∑

k:λ1>2λk

nk∑
j=1

bk
jφ

(k)
j (x) : bk

j ∈R

}
,
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Cc :=
{

g(x) =
nk∑

j=1

bk
jφ

(k)
j (x) : 2λk = λ1, b

k
j ∈ R

}

and

Cs := {
g(x) ∈ L2(E,m) ∩ L4(E,m) : λ1 < 2λγ (g)

}
.

The space Cl consists of the functions in L2(E,m) that only have nontrivial projections
onto the eigen-spaces corresponding to those “large” eigenvalues −λk satisfying λ1 > 2λk .
The space Cl is of finite dimension. The space Cc is the (finite dimensional) eigen-space
corresponding to the “critical” eigenvalue −λk with λ1 = 2λk . Note that there may not be
a critical eigenvalue and Cc is empty in this case. The space Cs consists of the functions
in L2(E,m) ∩ L4(E,m) that only have nontrivial projections onto the eigen-spaces corre-
sponding to those “small” eigenvalues −λk satisfying λ1 < 2λk . The space Cs is of infinite
dimension in general.

Fix a q > max{K,−2λ1}. For any p ≥ 1 and f ∈ Lp(E,m), define

Uq |f |(x) :=
∫ ∞

0
e−qsTs

(|f |)(x)ds, x ∈ E.

Then,

(∫
E

(
Uq |f |(x)

)p
m(dx)

)1/p

≤
∫ ∞

0
e−qs

∥∥Ts

(|f |)∥∥
p
ds ≤

∫ ∞

0
e−qseKsds‖f ‖p < ∞,

(1.12)
which implies that Uq |f | ∈ Lp(E,m). Let f + and f − be the positive part and negative part
of f respectively. For any x ∈ E with Uq |f |(x) < ∞, we define

Uqf (x) :=
∫ ∞

0
e−qsTsf (x)ds = Uq

(
f +)(x) − Uq

(
f −)(x),

otherwise we define Uqf (x) be an arbitrary real number. It follows from (1.12) that Uq is a
bounded linear operator on Lp(E,m). Notice that

Uq

(
φ

(k)
j

)
(x) = (q + λk)

−1φ
(k)
j (x).

One can easily check that, for f ∈ L2(E,m), γ (Uqf ) = γ (f ). In fact, by Fubini’s theorem,
we have

(
Uqf,φ

(k)
j

)
m

=
∫ ∞

0
e−qu

(
Tuf,φ

(k)
j

)
m
du = (q + λk)

−1
(
f,φ

(k)
j

)
m
. (1.13)

For any f ∈ L2(E,m), the random variable 〈Uq |f |,Xt 〉 ∈ [0,∞] is well defined. Since μ

has compact support and Tt (Uq |f |) is continuous, Pμ(〈Uq |f |,Xt 〉) = 〈Tt (Uq |f |),μ〉 < ∞,
and thus Pμ(〈Uq |f |,Xt 〉 < ∞) = 1. Therefore, for t ≥ 0, Pμ(〈Uqf,Xt 〉 is finite) = 1. In
Sect. 2.3, we will give a stronger result: for any μ ∈ MC(E), and f ∈ L2(E,m), it holds
that

Pμ

(〈Uq |f |,Xt 〉 < ∞,∀t ≥ 0
)= Pμ

(〈Uqf,Xt 〉 is finite,∀t ≥ 0
)= 1.

We denote by D(Rd) the space of all càdlàg functions from [0,∞) into R
d , equipped

with the Skorokhod topology. There is a metric δ on D(Rd) which is compatible with the
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Skorokhod topology. See, for instance, [20, Chapter VI, 1.26], for the definition of δ. In
the present paper, we will consider weak convergence of processes in the Skorokhod space
D(Rd), which is stronger than convergence in finite dimensional distributions.

For τ ≥ 0 and f ∈ Cs , we define

σf,τ := eλ1τ/2
∫ ∞

0
eλ1s

(
A(Tsf )(Ts+τ f ),φ1

)
m
ds. (1.14)

We write σf,0 as σ 2
f . In this paper, τ will be used to denote a nonnegative number which

is also served as a time parameter for various processes. τ will never be used to denote
stopping times. For h ∈ Cc , define

ρ2
h := (

Ah2, φ1

)
m
. (1.15)

For g(x) =∑
k:2λk<λ1

∑nk

j=1 bk
jφ

(k)
j (x) ∈ Cl , we put

Iug(x) :=
∑

k:2λk<λ1

nk∑
j=1

eλkubk
jφ

(k)
j (x), x ∈ E, u ≥ 0,

and

Ft(g) :=
∑

k:2λk<λ1

nk∑
j=1

e−λkt bk
jH

k,j
∞ , t ≥ 0.

Define

βg,τ := e−λ1τ/2
∫ ∞

0
e−λ1s

(
A(Isg)(Is+τ g),φ1

)
m
ds. (1.16)

We write β2
g := βg,0. For f ∈ Cs and g ∈ Cl , we define

ητ1,τ2(f, g) := −eλ1(τ1+τ2)/2
∫ τ2

τ1

e−λ1u
(
A(Tτ2−uf )(Iu−τ1g),φ1

)
m
du, 0 ≤ τ1 ≤ τ2. (1.17)

The following lemma is the spatial central limit theorem in [34].

Lemma 1.1 Assume that f ∈ Cs , h ∈ Cc , g ∈ Cl and μ ∈ MC(E). Then, under Pμ,

(
eλ1t 〈φ1,Xt 〉, eλ1t/2

(〈g,Xt 〉 − Ft(g)
)
, t−1/2eλ1t/2〈h,Xt 〉, eλ1t/2〈f,Xt 〉

)
d→ (

W∞,
√

W∞G3(g),
√

W∞G2(h),
√

W∞G1(f )
)
, (1.18)

where G3(g) ∼ N (0, β2
g ), G2(h) ∼ N (0, ρ2

h) and G1(f ) ∼ N (0, σ 2
f ). Moreover, W∞,

G3(g), G2(h) and G1(f ) are independent.

Recall that q is a fixed number larger than max{K,−2λ1}. Now we state our main result
of the functional central limit theorem.

Theorem 1.2 Assume that f ∈ Cs , h ∈ Cc , g ∈ Cl and μ ∈ MC(E). For any t > 0, define

Y
1,f
t (τ ) := eλ1(t+τ)/2〈f,Xt+τ 〉, τ ≥ 0,
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Y 2,h
t (τ ) := t−1/2eλ1(t+τ)/2〈h,Xt+τ 〉, τ ≥ 0,

and

Y
3,g
t (τ ) := eλ1(t+τ)/2

(〈g,Xt+τ 〉 − Ft+τ (g)
)
, τ ≥ 0.

Then, for each fixed t ∈ [0,∞), (Wt , Y
1,Uqf

t (·), Y 2,h
t (·), Y 3,g

t (·)) is a D(R4)-valued random
variable under Pμ, where Wt is regarded as a constant process. Furthermore, under Pμ,

(
Wt,Y

1,Uqf

t (·), Y 2,h
t (·), Y 3,g

t (·)) d→ (
W∞,

√
W∞G1,Uqf (·),√W∞G2,h,

√
W∞G3,g(·)),

as t → ∞, (1.19)

in D(R4). Here G2,h ∼ N (0, ρ2
h) is a constant process, and {(G1,Uqf (τ ),G3,g(τ )) : τ ≥ 0} is

a continuous R2-valued Gaussian process, on some probability space (Ω̂,F,P ), with mean
0 and covariance functions given by

P
(
G1,Uqf (τ1)G

1,Uqf (τ2)
) = σUqf,τ2−τ1 , for 0 ≤ τ1 ≤ τ2, (1.20)

P
(
G3,g(τ1)G

3,g(τ2)
) = βg,τ2−τ1 , for 0 ≤ τ1 ≤ τ2, (1.21)

and

P
(
G3,g(τ1)G

1,Uqf (τ2)
)=

{
ητ1,τ2(Uqf,g), if 0 ≤ τ1 < τ2,

0, if τ1 ≥ τ2 ≥ 0.
(1.22)

Moreover, W∞, G2,h and (G1,Uqf ,G3,g) are independent.

For f ∈ L2(E,m), we define

f(s)(x) :=
∑

k:λ1>2λk

nk∑
j=1

ak
j φ

(k)
j (x),

f(l)(x) :=
∑

k:λ1<2λk

nk∑
j=1

ak
j φ

(k)
j (x),

f(c)(x) := f (x) − f(s)(x) − f(l)(x).

Then f(l) ∈ Cs , f(c) ∈ Cc and f(s) ∈ Cl .

Remark 1.3 Assume that g = Uqf for some f ∈ L2(E,m) ∩ L4(E,m) satisfying λ1 ≥
2λγ (f ). Then g(l) = Uqf(l), g(c) = Uqf(c) and g(s) = Uqf(s). In particular, if λ1 = 2λγ (f ) then
g(s) = 0.

If f(c) = 0, then g = g(l) + g(s), thus we have

eλ1(t+τ)/2
(〈g,Xt+τ 〉 − Ft+τ (g(s))

)= Y
1,g(l)

t (τ ) + Y
3,g(s)

t (τ ).

Using the convergence of the first, second and fourth components in Theorem 1.2, we get
for any nonzero μ ∈ MC(E), it holds under Pμ that, as t → ∞,

(
Wt, e

λ1(t+·)/2
(〈g,Xt+·〉 − Ft+·(g(s))

)) d→ (
W∞,

√
W∞

(
G1,g(l) + G3,g(s)

))
, (1.23)
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where G1,g(l) + G3,g(s) is a continuous Gaussian process, on some probability space
(Ω̂,F,P ), with mean 0 and covariance function

P
[(

G1,g(l) (τ1) + G3,g(s) (τ1)
)(

G1,g(l) (τ2) + G3,g(s) (τ2)
)]

= σg(l),τ2−τ1 + ητ1,τ2(g(l), g(s)) + βg(s),τ2−τ1 , 0 ≤ τ1 ≤ τ2.

If f(c) = 0, then

t−1/2eλ1(t+τ)/2
(〈g,Xt+τ 〉 − Ft+τ (g(s))

)= t−1/2
(
Y

1,g(l)

t (τ ) + Y
3,g(s)

t (τ )
)+ Y

2,g(c)

t (τ ).

By (1.23), we get

t−1/2
(
Y

1,g(l)

t (·) + Y
3,g(s)

t (·)) d→ 0.

Thus using the convergence of the first and third components in Theorem 1.2, we get

(
Wt, t

−1/2eλ1(t+·)/2
(〈g,Xt+·〉 − Ft+·(g(s))

)) d→ (
W∞,

√
W∞G2,g(c)

)
,

where G2,g(c) ∼ N (0, ρ2
g(c)

) is a constant process. Moreover, W∞ and G2,g(c) are indepen-

dent. Note that, if λ1 = 2λγ (f ), then Ft+·(g(s)) = 0, and thus we have (Wt , t
−1/2eλ1(t+·)/2〈g,

Xt+·〉) d→ (W∞,
√

W∞G2,g(c) ).

2 Preliminaries

In this section, we give some useful results and facts. In the remainder of this paper we will
use the following notation: for two positive functions f and g on E, f (x) � g(x) means
that there exists a constant c > 0 such that f (x) ≤ cg(x) for all x ∈ E.

In [33, (2.25)], we have proved that

∫ t0

0
Ts(a2t0)(x)ds � at0(x)1/2. (2.1)

2.1 Estimates on the Moments of X

In this subsection, we will recall some results about the moments of 〈f,Xt 〉. The first result
is [33, Lemma 2.1].

Lemma 2.1 For any f ∈ L2(E,m), x ∈ E and t > 0, we have

Ttf (x) =
∞∑

k=γ (f )

e−λkt

nk∑
j=1

ak
j φ

(k)
j (x) (2.2)

and

lim
t→∞ eλγ (f )tTtf (x) =

nγ (f )∑
j=1

a
γ (f )

j φ
(γ (f ))

j (x), (2.3)
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where the series in (2.2) converges absolutely and uniformly in any compact subset of E.
Moreover, for any t1 > 0,

sup
t>t1

eλγ (f )t
∣∣Ttf (x)

∣∣≤ eλγ (f )t1‖f ‖2

(∫
E

at1/2(x)m(dx)

)
at1(x)1/2, (2.4)

sup
t>t1

e(λγ (f )+1−λγ (f ))t
∣∣eλγ (f )tTtf (x) − f ∗(x)

∣∣

≤ eλγ (f )+1t1‖f ‖2

(∫
E

at1/2(x)m(dx)

)(
at1(x)

)1/2
, (2.5)

where f ∗ =∑nγ (f )

j=1 a
γ (f )

j φ
(γ (f ))

j .

We now recall the second moments of the superprocess {Xt : t ≥ 0} (see, for example,
[34]): for f ∈ L2(E,m) ∩ L4(E,m) and μ ∈ MC(E), we have for any t > 0,

Pμ〈f,Xt 〉2 = (
Pμ〈f,Xt 〉

)2 +
∫

E

∫ t

0
Ts

[
A(Tt−sf )2

]
(x)dsμ(dx). (2.6)

Thus,

Varμ〈f,Xt 〉 = 〈
Varδ· 〈f,Xt 〉,μ

〉=
∫

E

∫ t

0
Ts

[
A(Tt−sf )2

]
(x)dsμ(dx), (2.7)

where Varμ stands for the variance under Pμ. Moreover, for f ∈ L2(E,m) ∩ L4(E,m),

Varδx 〈f,Xt 〉 ≤ eKtTt

(
f 2
)
(x) ∈ L2(E,m). (2.8)

The next result is [34, Lemma 2.6].
Recall that t0 is the constant in condition (b) in Sect. 1.1.

Lemma 2.2 Assume that f ∈ L2(E,m) ∩ L4(E,m).

(1) If λ1 < 2λγ (f ), then for any x ∈ E,

lim
t→∞ eλ1t

Varδx 〈f,Xt 〉 = σ 2
f φ1(x). (2.9)

Moreover, for (t, x) ∈ (3t0,∞) × E, we have

eλ1t
Varδx 〈f,Xt 〉 � at0(x)1/2. (2.10)

(2) If λ1 = 2λγ (f ), then for any (t, x) ∈ (3t0,∞) × E,
∣∣t−1eλ1t

Varδx 〈f,Xt 〉 − ρ2
f ∗φ1(x)

∣∣� t−1at0(x)1/2, (2.11)

where f ∗ =∑nγ (f )

j=1 a
γ (f )

j φ
(γ (f ))

j .
(3) If λ1 > 2λγ (f ), then for any x ∈ E,

lim
t→∞ e2λγ (f )tVarδx 〈f,Xt 〉 =

∫ ∞

0
e2λγ (f )sTs

(
A
(
f ∗)2)

(x)ds. (2.12)

Moreover, for any (t, x) ∈ (3t0,∞) × E,

e2λγ (f )tPδx 〈f,Xt 〉2 � at0(x)1/2. (2.13)
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2.2 Excursion Measures of X

We use D to denote the space of MF (E)-valued right continuous functions t �→ ωt on
(0,∞) having zero as a trap. We use (A,At ) to denote the natural σ -algebras on D generated
by the coordinate process.

It is known (see [25, Sect. 8.4]) that one can associate with {Pδx : x ∈ E} a family of
σ -finite measures {Nx : x ∈ E} defined on (D,A) such that Nx({0}) = 0,

∫
D

(
1 − e−〈f,ωt 〉)Nx(dω) = − logPδx

(
e−〈f,Xt 〉), f ∈ B+

b (E), t > 0, (2.14)

and, for every 0 < t1 < · · · < tn < ∞, and nonzero μ1, . . . ,μn ∈ MF (E),

Nx(ωt1 ∈ dμ1, . . . ,ωtn ∈ dμn)

= Nx(ωt1 ∈ dμ1)Pμ1(Xt2−t1 ∈ dμ2) · · ·Pμn−1(Xtn−tn−1 ∈ dμn). (2.15)

For earlier work on excursion measures of superprocesses, see [16, 17, 24].
For any μ ∈ MC(E), let N(dω) be a Poisson random measure on the space D with

intensity
∫

E
Nx(dω)μ(dx), in a probability space (Ω̃, F̃,Pμ). We define another process

{Λt : t ≥ 0} by Λ0 = μ and

Λt :=
∫
D

ωtN(dω), t > 0.

Let F̃t be the σ -algebra generated by {N(A) : A ∈ At }. Then, {Λ,(F̃t )t≥0,Pμ} has the same
law as {X, (Gt )t≥0,Pμ}, see [25, Theorem 8.24]. Thus,

Pμ

[
exp

{
iθ〈f,Xt+s〉

}|Xt

] = PXt

[
exp

(
iθ
〈
f,Λs

〉)]

= exp

{∫
E

∫
D

(
eiθ〈f,ωs 〉 − 1

)
Nx(dω)Xt(dx)

}
. (2.16)

The proposition below contains some useful properties of Nx . The proofs are similar to those
in [16, Corollary 1.2, Proposition 1.1].

Proposition 2.3 If Pδx |〈f,Xt 〉| < ∞, then

∫
D

〈f,ωt 〉Nx(dω) = Pδx 〈f,Xt 〉. (2.17)

If Pδx 〈f,Xt 〉2 < ∞, then

∫
D

〈f,ωt 〉2
Nx(dω) = Varδx 〈f,Xt 〉. (2.18)

2.3 Potential Functions

Recall that q > max{K,−2λ1}. For any x ∈ E such that Uq |f |(x) < ∞, we have

Uqf (x) =
∫ ∞

0
e−qsTsf (x)ds. (2.19)
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Lemma 2.4 If f ∈ L2(E,m), then for any μ ∈ MC(E),

Pμ

{〈Uq |f |,Xt 〉 < ∞, ∀t ≥ 0
}= 1. (2.20)

Moreover, 〈Uqf,Xt 〉 is finite and right continuous, Pμ-a.s.

Proof First, we claim that, if f is nonnegative and bounded, e−qt 〈Uqf,Xt 〉 is a nonnega-
tive right continuous supermartingale with respect to {Gt : t ≥ 0}. In fact, since Ttf (x) ≤
‖f ‖∞eKt , we have

Uqf (x) ≤ ‖f ‖∞
∫ ∞

0
e−qt eKtdt = (q − K)−1‖f ‖∞ < ∞.

Since Ttf (x) is continuous, by the dominated convergence theorem, we get that Uqf is
continuous. Thus, Uqf is a bounded and continuous function on E. Since X is a right
continuous process in MF (E), we get that t �→ 〈Uqf,Xt 〉 is right continuous. By Fubini’s
theorem, we have, for any x ∈ E and t ≥ 0,

Tt [Uqf ](x) =
∫ ∞

0
e−qsTt+sf (x)ds = eqt

∫ ∞

t

e−qsTsf (x)ds ≤ eqtUqf (x).

By the Markov property of X, we have, for t > s,

Pμ

(
e−qt 〈Uqf,Xt 〉|Gs

)= e−qt
〈
Tt−s(Uqf ),Xs

〉≤ e−qs〈Uqf,Xs〉.
Thus, e−qt 〈Uqf,Xt 〉 is a supermartingale.

Now, if f ∈ L2(E,m) is nonnegative, then fM(x) := f (x)1f (x)≤M is bounded. Therefore
e−qt 〈Uq(fM),Xt 〉 is a nonnegative right continuous supermartingale with respect to {Gt : t ≥
0}, and, as M → ∞,

∀t ≥ 0 : e−qt
〈
Uq(fM),Xt

〉 ↑ e−qt 〈Uqf,Xt 〉.
Since Uqf ∈ L2(E,m), Pμ〈Uqf,Xt 〉 = 〈Tt (Uqf ),μ〉 < ∞. Thus, by [12, Sect. 1.4, Theo-
rem 5], e−qt 〈Uqf,Xt 〉 is a right continuous supermartingale. By [12, Sect. 1.4, Corollary 1],
e−qt 〈Uqf,Xt 〉 is bounded on each finite interval, Pμ-a.s., which implies that for any N > 0,

Pμ

(
e−qt 〈Uqf,Xt 〉 < ∞, t ∈ [0,N ])= 1.

Thus, we have

Pμ

(〈Uqf,Xt 〉 < ∞, t ∈ [0,∞)
)= 1.

Finally, we consider general f ∈ L2(E,m). Let

Ω0 := {〈Uq |f |,Xt 〉 < ∞,∀t ≥ 0
}

∩ {ω : 〈Uq

(
f +),Xt (ω)

〉
and

〈
Uq

(
f −),Xt (ω)

〉
are right continuous

}
.

We have proved that, for any μ ∈ MF (E), Pμ(Ω0) = 1. It follows that, for ω ∈ Ω0,

〈
Uqf,Xt(ω)

〉= 〈
Uq

(
f +),Xt (ω)

〉− 〈
Uq

(
f −),Xt (ω)

〉

is well defined and right continuous. The proof is now complete. �
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2.4 Martingale Problem of X

In this subsection, we recall the martingale problem of superprocesses. For our superpro-
cess X, there exists a worthy (Gt )-martingale measure {Mt(B) : t ≥ 0;B ∈ B(E)} with
dominating measure

ν(ds, dx, dy) := ds

∫
E

A(z)δz(dx)δz(dy)Xs(dz) (2.21)

such that for t ≥ 0, f ∈ Bb(E) and μ ∈ MC(E), we have, Pμ-a.s.,

〈f,Xt 〉 = 〈Ttf,μ〉 +
∫ t

0

∫
E

Tt−sf (z)M(ds, dz). (2.22)

For the validity of (2.22), see [25, Theorem 7.26]. Recall that, roughly speaking, a martin-
gale measure is called worthy if it admits a dominating measure. The second term on the
right-hand side of (2.22) stands for the stochastic integral of Tt−sf (z) with respect to the
worthy martingale measure M . For the precise definition of worthy martingale measures
and stochastic integrals with respect to worthy martingale measures, we refer our readers to
[25, Sect. 7.3].

Let L2
ν(E) be the space of two-parameter predictable processes hs(x) such that for all

T > 0 and μ ∈ MC(E),

Pμ

[∫ T

0

∫
E2

hs(x)hs(y)ν(ds, dx, dy)

]
= Pμ

[∫ T

0

∫
E

A(z)hs(z)
2Xs(dz)ds

]

=
∫

E

∫ T

0
Ts

[
Ah2

s

]
(z)dsμ(dz) < ∞.

Then, for h ∈ L2
ν(E),

Mt(h) :=
∫ t

0

∫
E

hs(z)M(ds, dz)

is well defined and it is a square-integrable càdlàg Gt -martingale under Pμ, for each μ ∈
MC(E), with

〈
M(h)

〉
t
=
∫ t

0

〈
Ah2

s ,Xs

〉
ds. (2.23)

For f ∈ L2(E,m) ∩ L4(E,m) and μ ∈ MC(E), we have

∫
E

∫ t

0
Ts

[
A(Tt−sf )2

]
(z)dsμ(dz) = Varμ〈f,Xt 〉 < ∞,

which implies that

∫ t

0

∫
E

Tt−sf (z)M(ds, dz)

is well defined. Now, using a routine limit argument, we can show that (2.22) holds for all
f ∈ L2(E,m) ∩ L4(E,m) and μ ∈ MC(E).
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For f ∈ L2(E,m) ∩ L4(E,m), Uqf ∈ L2(E,m) ∩ L4(E,m). By (2.22), for t > 0 and
μ ∈ MC(E), we have, Pμ-a.s.,

〈Uqf,Xt 〉 = 〈
Tt (Uqf ),μ

〉+
∫ t

0

∫
E

Tt−s(Uqf )(z)M(ds, dz)

= 〈
Tt (Uqf ),μ

〉+
∫ t

0

∫
E

∫ ∞

0
e−quTu+t−sf (z)duM(ds, dz)

= 〈
Tt (Uqf ),μ

〉+ eqt

∫ t

0

∫
E

∫ ∞

t

e−quTu−sf (z)duM(ds, dz)

= 〈
Tt (Uqf ),μ

〉+ eqt

∫ ∞

t

e−qudu

∫ t

0

∫
E

Tu−sf (z)M(ds, dz)

=: J
f

1 (t) + eqtJ
f

2 (t), (2.24)

where the fourth equality follows from the stochastic Fubini’s theorem for martingale mea-
sures (see, for instance, [25, Theorem 7.24]). Thus, for t > 0 and μ ∈ MC(E),

Pμ

(〈Uqf,Xt 〉 = J
f

1 (t) + eqtJ
f

2 (t)
)= 1. (2.25)

For any u > 0 and 0 ≤ T ≤ u, we define

M
(u)
T :=

∫ T

0

∫
E

Tu−sf (x)M(ds, dx).

Then, for any μ ∈ MC(E), {M(u)
T ,0 ≤ T ≤ u} is a càdlàg square-integrable martingale un-

der Pμ with

〈
Mu

〉
T

=
∫ T

0

〈
A(Tu−sf )2,Xs

〉
ds. (2.26)

Note that

Pμ

(
M(u)

u

)2 = Pμ

〈
Mu

〉
u
= Varμ〈f,Xu〉. (2.27)

Lemma 2.5 If f ∈ L2(E,m) ∩ L4(E,m) and μ ∈ MC(E), then t �→ 〈Uqf,Xt 〉 is a càdlàg
process on [0,∞), Pμ-a.s. Moreover,

Pμ

(〈Uqf,Xt 〉 = J
f

1 (t) + eqtJ
f

2 (t),∀t > 0
)= 1. (2.28)

Proof Since 〈Uqf,Xt 〉 is right continuous, Pμ-a.s., in light of (2.25), to prove (2.28), it
suffices to prove that J

f

1 (t) and J
f

2 (t) are all càdlàg in (0,∞), Pμ-a.s.
For J

f

1 (t), by Fubini’s theorem, for t > 0,

J
f

1 (t) = eqt

∫ ∞

t

e−qs〈Tsf,μ〉ds.

Thus, it is easy to see that J
f

1 (t) is continuous in t ∈ (0,∞).
Now, we consider J

f

2 (t). We claim that, for any t1 > 0,

Pμ

(
J

f

2 (t) is càdlàg in [t1,∞)
)= 1. (2.29)
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By the definition of J
f

2 , for t ≥ t1,

J
f

2 (t) =
∫ ∞

t1

e−quM
(u)
t 1t<udu. (2.30)

Since t �→ M
(u)
t 1t<u is right continuous, by the dominated convergence theorem, to prove

(2.29), it suffices to show that

Pμ

(∫ ∞

t1

e−qu sup
t≥t1

(∣∣M(u)
t

∣∣1t<u

)
du < ∞

)
= 1. (2.31)

By the L2-maximum inequality and (2.27), we have

Pμ

(∫ ∞

t1

e−qu sup
t≥t1

(∣∣M(u)
t

∣∣1t<u

)
du

)

≤ 2
∫ ∞

t1

e−qu

√
Pμ

∣∣M(u)
u

∣∣2du

= 2
∫ ∞

t1

e−qu

√∫
E

Varδx 〈f,Xu〉μ(dx)du. (2.32)

By (2.8) and (2.4), we have, for u > t1,
∫

E

Varδx 〈f,Xu〉μ(dx) ≤ eKu

∫
E

Tu

(
f 2
)
(x)μ(dx)� eKue−λ1u

∫
E

at1(x)1/2μ(dx).

Since at1(x) is continuous in E and μ has compact support, it follows that
∫

E
at1(z)

1/2 ×
μ(dz) < ∞. Thus, by (2.32), we have

Pμ

(∫ ∞

t1

e−qu sup
t≥t1

(∣∣M(u)
t

∣∣1t<u

)
du

)
�
∫ ∞

t1

e−que(K−λ1)u/2du

√∫
E

at1(x)1/2μ(dx) < ∞.

Now (2.31) follows immediately. Since t1 > 0 are arbitrary, we have

Pμ

(
J

f

2 (t) is càdlàg in (0,∞)
)= 1. (2.33)

�

3 Proof of the Main Result

Suppose that (Xn)n≥0 and X are all D(Rd)-valued random variables. If for any k ≥ 1 and
any t1, . . . tk ∈R+,

(
Xn

t1
,Xn

t2
, . . . ,Xn

tk

) d→ (Xt1 , . . . ,Xtk ), as n → ∞,

then we write

Xn L(R+)−→ X, as n → ∞.
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3.1 Finite Dimensional Convergence

The following lemma is a generalization of [34, Remark 1.3]. Recall that W∞ is the limit of
the nonnegative martingale Wt = H

1,1
t = eλ1t 〈φ1,Xt 〉 as t → ∞.

Lemma 3.1 If f ∈ L2(E,m) is nonnegative and μ ∈ MC(E), then

eλ1t 〈f,Xt 〉 → (f,φ1)mW∞, in L1(Pμ). (3.1)

Proof If f is bounded, then the conclusion follows from [34, Remark 1.3]. So we will
assume that f is unbounded. For any M > 0, let fM(x) := f (x)1f (x)≤M and f̂M := f −fM .
Then fM ≥ 0, fM ∈ L2(E,m)∩L4(E,m) and f̂M ≥ 0 is nontrivial. In [34, Remark 1.3], we
have proved that

lim
t→∞Pμ

∣∣eλ1t 〈fM,Xt 〉 − (fM,φ1)mW∞
∣∣= 0. (3.2)

Since f̂M ≥ 0 is nontrivial, we have γ (f̂M) = 1. For t > t0, by (2.4), we have eλ1t Tt f̂M(x) ≤
eλ1t0(

∫
E

at0/2(x)m(dx))at0(x)1/2‖f̂M‖2. Thus, we get

Pμ

∣∣eλ1t 〈f̂M,Xt 〉 − (f̂M,φ1)mW∞
∣∣

≤ eλ1t
Pμ〈f̂M,Xt 〉 + (f̂M,φ1)mPμ(W∞)

= eλ1t 〈Tt f̂M,μ〉 + (f̂M,φ1)mPμ(W∞)

≤ eλ1t0

(∫
E

at0/2(x)m(dx)

)〈
a

1/2
t0

,μ
〉‖f̂M‖2 + Pμ(W∞)‖f̂M‖2. (3.3)

By (3.2) and (3.3), we have

lim sup
t→∞

Pμ

∣∣eλ1t 〈f,Xt 〉 − (f,φ1)mW∞
∣∣� ‖f̂M‖2. (3.4)

Letting M → ∞, we arrive at (3.1). �

Recall that

H
k,j
t := eλkt

〈
φ

(k)
j ,Xt

〉
, t ≥ 0,

and for g(x) =∑
k:2λk<λ1

∑nk

j=1 bk
jφ

(k)
j (x), x ∈ E,

Ft(g) :=
∑

k:2λk<λ1

nk∑
j=1

e−λkt bk
jH

k,j
∞ ,

where H
k,j
∞ is the martingale limit of H

k,j
t . And recall that

Iug(x) :=
∑

k:2λk<λ1

nk∑
j=1

eλkubk
jφ

(k)
j (x), x ∈ E.

It is easy to see that Is+t g = Is(Itg) and Tu(Iug) = Iu(Tug) = g. Thus, we have, as u → ∞,

〈Iug,Xt+u〉 → Ft(g), Pμ-a.s. (3.5)
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Define

H̃
k,j
t (ω) := eλkt

〈
φ

(k)
j ,ωt

〉
, t ≥ 0,ω ∈D,

and

H∞(g)(ω) :=
∑

k:2λk<λ1

nk∑
j=1

bk
j H̃

k,j
∞ (ω).

It follows from [34, Lemma 3.1] that the limit H̃
k,j
∞ := limt→∞ H̃

k.j
t exists Nx-a.e., in L1(Nx)

and in L2(Nx). Then, as u → ∞,

〈Iug,ωu〉 → H∞(g)(ω), Nx-a.e., in L1(Nx) and in L2(Nx). (3.6)

Since Nx〈Iug,ωu〉 = Pδx 〈Iug,Xu〉 = g(x), we get that

Nx

(
H∞(g)

)= g(x). (3.7)

By (2.18) and (2.7), we have

Nx〈Iug,ωu〉2 = Varδx 〈Iug,Xu〉 =
∫ u

0
Ts

[
A(Isg)2

]
(x)ds, (3.8)

which implies that

Nx

(
H∞(g)

)2 =
∫ ∞

0
Ts

[
A(Isg)2

]
(x)ds. (3.9)

The following simple fact will be used later:
∣∣∣∣∣eix −

n∑
m=0

(ix)m

m!

∣∣∣∣∣≤ min

( |x|n+1

(n + 1)! ,
2|x|n
n!

)
. (3.10)

Note that, in contrast with (1.19), the following Lemma 3.2 says that (3.11), which is
about the convergence of finite dimensional distributions, is valid for any f ∈ Cs , not just
for Uqf with f ∈ Cs .

Lemma 3.2 Assume that f ∈ Cs , h ∈ Cc , g ∈ Cl and μ ∈ MC(E). Suppose that Y
1,f
t , Y

2,h
t ,

and Y
3,g
t are defined as in Theorem 1.2. Then, for any 0 ≤ τ1 ≤ τ2 · · · ≤ τk , under Pμ, as

t → ∞,

(
Wt,Y

1,f
t (τ1), . . . , Y

1,f
t (τk), Y

2,h
t (τ1), . . . , Y

2,h
t (τk), Y

3,g
t (τ1), . . . , Y

3,g
t (τk)

)
d→ (

W∞,
√

W∞G1,f (τ1), . . . ,
√

W∞G1,f (τk),
√

W∞G2,h, . . . ,
√

W∞G2,h,

√
W∞G3,g(τ1), . . . ,

√
W∞G3,g(τk)

)
. (3.11)

Here G2,h ∼ N (0, ρ2
h) is a constant process and (G1,f (τ1), . . . ,G

1,f (τk),G
3,g(τ1), . . . ,

G3,g(τk)) is an R
2k-valued Gaussian random variable, on some probability space (Ω,F,P ),

with mean 0 and covariance

P
(
G1,f (τj )G

1,f (τl)
)= σf,τl−τj , for 1 ≤ j ≤ l ≤ k, (3.12)
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P
(
G3,g(τj )G

3,g(τl)
)= βg,τl−τj , for 1 ≤ j ≤ l ≤ k, (3.13)

and

P
(
G3,g(τj )G

1,f (τl)
)=

{
ητj ,τl (f, g), if 1 ≤ j < l ≤ k,

0, if 1 ≤ l ≤ j ≤ k.
(3.14)

Moreover, W∞, G2,h and (G1,f (τ1), . . . ,G
1,f (τk),G

3,g(τ1), . . . ,G
3,g(τk)) are independent.

Proof To prove this theorem, we need to find the limit of the following quantity

φ(t) =: Pμ exp

{
iθWt +

k∑
j=1

iθ1,j Y
1,f
t (τj )+

k∑
j=1

iθ2,j Y
2,h
t (τj )+

k∑
j=1

iθ3,j Y
3,g
t (τj )

}
, (3.15)

where θ, θl,j ∈ R, l = 1,2,3, j = 1, . . . , k. This proof is pretty long, so we divide it into
several steps.

Step 1. In this step, we reduce the problem of finding the limit above to the limit of
φ1(t) defined in (3.21) below. We put θ1,0 = θ2,0 = θ3,0 = 0, τ0 = 0 and sj := τj − τj−1,
j = 1, . . . , k. Define, for l = 0, . . . , k,

f̃l(x) :=
k∑

j=l

θ1,le
λ1(τj −τl )/2Tτj −τl f (x), ĝl(x) :=

l∑
j=0

θ3,j e
λ1(τj −τl )/2Iτl−τj g(x)

and

Bl(x) := f̃l(x) + θ3,lg(x) − ĝl(x). (3.16)

For j = 1, . . . , k, by (3.5),

Ft+τj (g) = lim
u→∞〈Iu+τk−τj g,Xu+t+τk 〉. (3.17)

Using this, we get that

φ(t) = Pμ exp

{
iθWt +

k∑
j=1

iθ1,j Y
1,f
t (τj ) +

k∑
j=1

iθ2,j Y
2,h
t (τj ) +

k∑
j=1

iθ3,j Y
3,g
t (τj )

}

= Pμ exp

{
iθWt +

k∑
j=1

[
iθ1,j Y

1,f
t (τj ) + iθ2,j Y

2,h
t (τj )

+ iθ3,j e
λ1(t+τj )/2

(〈g,Xt+τj 〉 − Ft+τj (g)
)]}

= lim
u→∞Pμ exp

{
iθWt +

k∑
j=1

[
iθ1,j Y

1,f
t (τj ) + iθ2,j Y

2,h
t (τj ) + iθ3,j e

λ1(t+τj )/2〈g,Xt+τj 〉
]

− i

〈
k∑

j=1

θ3,j e
λ1(t+τj )/2Iu+τk−τj g,Xu+t+τk

〉}
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= lim
u→∞Pμ exp

{
iθWt +

k∑
j=1

ieλ1(t+τj )/2
〈
θ1,j f + t−1/2θ2,j h + θ3,j g,Xt+τj

〉

− ieλ1(t+τk)/2〈Iuĝk,Xu+t+τk 〉
}

= lim
u→∞Pμ exp

{
iθWt +

k∑
j=1

ieλ1(t+τj )/2
〈
θ1,j f + t−1/2θ2,j h + θ3,j g,Xt+τj

〉

− ieλ1(t+τk)/2〈ĝk,Xt+τk 〉 + i
〈
J (k)

u (t, ·),Xt+τk

〉}
, (3.18)

where

J (k)
u (t, x) :=

∫
D

(
exp

{−ieλ1(t+τk)/2
〈
Iu(ĝk),ωu

〉}− 1 + ieλ1(t+τk)/2
〈
Iu(ĝk),ωu

〉)
Nx(dω).

The last equality in (3.18) follows from the Markov property of X, (2.16) and the fact that
∫
D

〈Iuĝk,ωu〉Nx(dω) = Pδx 〈Iuĝk,Xu〉 = ĝk(x).

By (3.6), we have that as u → ∞,
〈
Iu(ĝk),ωu

〉→ H∞(ĝk)(ω), Nx-a.e., in L1(Nx) and in L2(Nx).

Then one can prove that

lim
u→∞

〈
J (k)

u (t, ·),Xt+τk

〉= 〈
J (k)(t, ·),Xt+τk

〉
, Pμ-a.s. (3.19)

where

J (k)(t, x) :=
∫
D

(
exp

{−ieλ1(t+τk)/2H∞(ĝk)
}− 1 + ieλ1(t+τk)/2H∞(ĝk)

)
Nx(dω).

For the detailed proof of (3.19), we refer readers to the proof of [34, Theorem 1.4]. Thus, by
(3.18) and the dominated convergence theorem, we get that

φ(t) = Pμ exp

{
iθWt +

k∑
j=1

ieλ1(t+τj )/2
〈
θ1,j f + t−1/2θ2,j h + θ3,j g,Xt+τj

〉

− ieλ1(t+τk)/2〈ĝk,Xt+τk 〉 + i
〈
J (k)(t, ·),Xt+τk

〉}
.

It is known (see [34, (3.46)]) that

lim
t→∞

〈
J (k)(t, ·),Xt+τk

〉= exp

{
−1

2

(
N·
(
H∞(ĝk)

)2
, φ1

)
m
W∞

}
in Pμ-probability.

By the definition in (3.16), Bk(x) = θ1,kf (x) + θ3,kg(x) − ĝk(x). Thus, as t → ∞,

lim
t→∞

∣∣φ(t) − φ1(t)
∣∣= 0, (3.20)
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where

φ1(t) := Pμ exp

{(
iθ − 1

2

(
N·
(
H∞(ĝk)

)2
, φ1

)
m

)
Wt

+
k−1∑
j=1

ieλ1(t+τj )/2
〈
θ1,j fj + t−1/2θ2,j h + θ3,j g,Xt+τj

〉

+ ieλ1(t+τk)/2
〈
Bk + t−1/2θ2,kh,Xt+τk

〉}
. (3.21)

Therefore, to find the limit in (3.15), we only need to find the limit of φ1(t).
Step 2. In this step, we reduce the problem of finding the above limit to the problem of

finding the limit of φ2(t):

φ2(t) := Pμ exp

{(
iθ − 1

2

(
N·
(
H∞(ĝk)

)2
, φ1

)
m

− 1

2

k∑
j=1

Cj

)
Wt

+ ieλ1t/2〈f̃0,Xt 〉 + it−1/2eλ1t/2

〈
k∑

j=1

θ2,j h,Xt

〉}
, (3.22)

where Cj , j = 1, . . . , k, are the constants defined in (3.25) below. In the following we ex-
plain the details of this reduction.

By the Markov property of X, we have

Pμ

[
exp

{
ieλ1(t+τk)/2

〈
Bk + t−1/2θ2,kh,Xt+τk

〉}∣∣Ft+τk−1

]

= exp

{〈∫
D

(
exp

{
ieλ1(t+τk)/2

〈
Bk + t−1/2θ2,kh,ωsk

〉}− 1
)
N·(dω),Xt+τk−1

〉}

= exp
{
ieλ1(t+τk)/2

〈
N·
〈
Bk + t−1/2θ2,kh,ωsk

〉
,Xt+τk−1

〉}

× exp

{
−1

2
eλ1(t+τk)

〈
N·〈Bk,ωsk 〉2,Xt+τk−1

〉}× exp
{〈

R(t, ·),Xt+τk−1

〉}

=: (I ) × (II) × (III),

where

R(t, x) :=
∫
D

(
exp

{
ieλ1(t+τk)/2

〈
t−1/2θ2,kh + Bk,ωsk

〉}− 1

− ieλ1(t+τk)/2
〈
t−1/2θ2,kh + Bk,ωsk

〉+ 1

2
eλ1(t+τk)〈Bk,ωsk 〉2

)
Nx(dω), x ∈ E.

For part (I ), by the definition of ĝk , we get that

θ3,kg(x) − ĝk(x) = −
k−1∑
j=0

θ3,j e
λ1(τj −τk)/2Iτk−τj g(x)

= −e−λ1(τk−τk−1)/2Iτk−τk−1 ĝk−1(x), x ∈ E. (3.23)
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Since h ∈ Cc , we have Tsh(x) = e−λ1s/2h(x). Thus, for x ∈ E,

Nx

(〈
Bk + t−1/2θ2,kh,ωsk

〉) = Tsk

(
Bk + t−1/2θ2,kh

)
(x)

= θ1,kTsk f (x) + t−1/2θ2,ke
−λ1sk/2h(x) − e−λ1sk/2ĝk−1(x).

Hence, we have

(I ) = exp
{
ieλ1(t+τk−1)/2

〈
θ1,ke

λ1sk/2Tskf + t−1/2θ2,kh − ĝk−1,Xt+τk−1

〉}
. (3.24)

For part (II), we define for j = 1, . . . , k,

Cj := eλ1sj
(
N·〈Bj ,ωsj 〉2, φ1

)
m

= eλ1sj
(
Varδ· 〈Bj ,ωsj 〉, φ1

)
m
. (3.25)

By Lemma 3.1, we get that, as t → ∞,

eλ1(t+τk)
〈
N·〈Bk,ωsk 〉2,Xt+τk−1

〉→ CkW∞

in Pμ-probability. Thus, we get that, as t → ∞,

(II) → exp

{
−1

2
CkW∞

}
, in Pμ-probability. (3.26)

Now, we deal with part (III). For x1, x2 ∈R, by (3.10), we have
∣∣∣∣ei(x1+x2) − 1 − i(x1 + x2) + 1

2
(x1)

2

∣∣∣∣
≤
∣∣∣∣eix1 − 1 − ix1 + 1

2
(x1)

2

∣∣∣∣+
∣∣eix2 − 1 − ix2

∣∣+ ∣∣eix1 − 1
∣∣∣∣eix2 − 1

∣∣

≤ |x1|2
(

1 ∧ |x1|
6

)
+ 1

2
|x2|2 + |x1x2|. (3.27)

Using (3.27) with x1 = eλ1(t+τk)/2〈Bk,ωsk 〉 and x2 = θ2,kt
−1/2eλ1(t+τk)/2〈h,ωsk 〉, we get

∣∣R(t, x)
∣∣ ≤ eλ1(t+τk)

Nx

[
〈Bk,ωsk 〉2

(
1
∧ eλ1(t+τk)/2|〈Bk,ωsk 〉|

6

)]

+ (θ2,k)
2

2
t−1eλ1(t+τk)

Nx〈h,ωsk 〉2 + |θ2,k|t−1/2eλ1(t+τk)
Nx

∣∣〈h,ωsk 〉〈Bk,ωsk 〉
∣∣

= eλ1(t+τk)

(
Nx

[
〈Bk,ωsk 〉2

(
1
∧ eλ1(t+τk)/2|〈Bk,ωsk 〉|

6

)]

+ (θ2,k)
2

2
t−1

Nx〈h,ωsk 〉2 + |θ2,k|t−1/2
Nx

∣∣〈h,ωsk 〉〈Bk,ωsk 〉
∣∣
)

=: eλ1(t+τk)U(t, x).

Notice that U(·, x) ↓ 0, as t → ∞. Thus, for t > u,

lim sup
t→∞

eλ1(t+τk)
Pμ

〈
U(t, ·),Xt+τk−1

〉 ≤ lim sup
t→∞

eλ1(t+τk)
〈
Tt+τk−1U(u, ·),μ〉

= eλ1sk
(
U(u, ·),φ1

)
m
〈φ1,μ〉,
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where the last equality follows from (2.3) since γ (U(u, ·)) = 1 for any u > 0. Letting
u → ∞, we get that

lim
t→∞ eλ1(t+τk)

Pμ

〈
U(t, ·),Xt+τk−1

〉= 0,

which implies that

lim
t→∞Pμ

∣∣〈R(t, ·),Xt+τk−1

〉∣∣= 0. (3.28)

Thus, by (3.24), (3.26) and (3.28), we have that, as t → ∞,
∣∣∣∣Pμ

[
exp

{
ieλ1(t+τk)/2

〈
Bk + t−1/2θ2,kh,Xt+τk

〉}∣∣Ft+τk−1

]

− exp

{
−1

2
CkWt + ieλ1(t+τk−1)/2

〈
θ1,ke

λ1(sk)/2Tskf + t−1/2θ2,kh − ĝk−1,Xt+τk−1

〉}∣∣∣∣
→ 0 in Pμ-probability.

Hence, using the Markov property and the dominated convergence theorem, we get that, as
t → ∞,

∣∣∣∣∣φ1(t) − Pμ exp

{(
iθ − 1

2

(
N·
(
H∞(ĝk)

)2
, φ1

)
m

− 1

2
Ck

)
Wt

+
k−2∑
j=1

ieλ1(t+τj )/2
〈
θ1,j f + t−1/2θ2,j h + θ3,j g,Xt+τj

〉

+ ieλ1(t+τk−1)/2
〈
Bk−1 + t−1/2(θ2,k−1 + θ2,k)h,Xt+τk−1

〉}∣∣∣∣∣
→ 0.

Repeating the above procedure k times, we obtain that, as t → ∞,

∣∣∣∣∣φ1(t) − Pμ exp

{(
iθ − 1

2

(
N·
(
H∞(ĝk)

)2
, φ1

)
m

− 1

2

k∑
j=1

Cj

)
Wt

+ ieλ1t/2〈f̃0,Xt 〉 + it−1/2eλ1t/2

〈
k∑

j=1

θ2,j h,Xt

〉}∣∣∣∣∣→ 0. (3.29)

Therefore to find the limit in (3.21), we only need to find the limit of φ2(t) defined in (3.22).
Step 3. In this step, we try to find the limit in (3.22). By Lemma 1.1 with h replaced by∑k

j=1 θ2,j h and f replaced by f̃0, we have

(
Wt, t

−1/2eλ1t/2

〈
k∑

j=1

θ2,j h,Xt

〉
, eλ1t/2〈f̃0,Xt 〉

)

d→
(

W∞,
√

W∞G2

(
k∑

j=1

θ2,j h

)
,
√

W∞G1(f̃0)

)
,
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where G2(
∑k

j=1 θ2,j h) ∼ N (0, (
∑k

j=1 θ2,j )
2ρ2

h), G1(f̃0) ∼ N (0, σ 2
f̃0

). Moreover, W∞,

G2(
∑k

j=1 θ2,j h) and G1(f̃0) are independent. Thus, using equivalent definitions of con-

vergence in distribution and noticing that N·(H∞(ĝk))
2 ≥ 0 and

∑k

j=1 Cj ≥ 0, we get that

lim
t→∞φ2(t) = Pμ exp

{(
iθ − 1

2

(
N·
(
H∞(ĝk)

)2
, φ1

)
m

− 1

2

k∑
j=1

Cj − 1

2
σ 2

f̃0

− 1

2

(
k∑

j=1

θ2,j

)2

ρ2
h

)
W∞

}
. (3.30)

Now we calculate the quantity (N·(H∞(ĝk))
2, φ1)m +∑k

j=1 Cj + σ 2
f̃0

. By the definition
of Cj in (3.25), we have,

(
N·
(
H∞(ĝk)

)2
, φ1

)
m

+
k∑

j=1

Cj + σ 2
f̃0

=
[(

N·
(
H∞(ĝk)

)2
, φ1

)
m

+
k∑

j=1

eλ1sj
(
Varδ· 〈θ3,j g − ĝj ,ωsj 〉, φ1

)
m

]

+
[

k∑
j=1

eλ1sj
(
Varδ· 〈f̃j ,ωsj 〉, φ1

)
m

+ σ 2
f̃0

]

+ 2
k∑

j=1

eλ1sj
(
Covδ·

(〈f̃j ,ωsj 〉, 〈θ3,j g − ĝj ,ωsj 〉
)
, φ1

)
m
.

In the following, we calculate the three parts separately.

1. By (3.9) and (3.23), we have that, for j = 1, . . . , k,

(
N·
(
H∞(ĝj )

)2
, φ1

)
m

=
∫ ∞

0
e−λ1s

(
A(Isĝj )

2, φ1

)
m
ds

=
∫ ∞

0
e−λ1s

(
A
(
Is

(
θ3,j g + e−λ1(τj −τj−1)/2Iτj −τj−1 ĝj−1

))2
, φ1

)
m
ds

= θ2
3,j β

2
g + 2θ3,j

j−1∑
l=0

θ3,lβg,τj −τl

+
∫ ∞

τj −τj−1

e−λ1s
(
A(Is ĝj−1)

2, φ1

)
m
ds.

By (3.8) and (3.23), we get that

(
Varδ· 〈θ3,j g − ĝj ,ωsj 〉, φ1

)
m

= (
Varδ· 〈Iτj −τj−1 ĝj−1,ωτj −τj−1〉, φ1

)
m

=
∫ τj −τj−1

0
e−λ1s

(
A
[
Is(ĝj−1)

]2
, φ1

)
m
ds.
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Thus, we have, for j = 1, . . . , k,

(
N·
(
H∞(ĝj )

)2
, φ1

)
m

+ (
Varδ· 〈θ3,j g − ĝj ,ωsj 〉, φ1

)
m

= θ2
3,j β

2
g + 2θ3,j

j−1∑
l=0

θ3,lβg,τj −τl + (
N·
(
H∞(ĝj−1)

)2
, φ1

)
m
.

Summing over j and using the fact that ĝ0 = 0, we get

(
N·
(
H∞(ĝk)

)2
, φ1

)
m

+
k∑

j=1

(
Varδ· 〈θ3,j g − ĝj ,ωsj 〉, φ1

)
m

=
k∑

j=1

θ2
3,j β

2
g + 2

k∑
j=1

j−1∑
l=0

θ3,j θ3,lβg,τj −τl . (3.31)

2. Since f̃j = θ1,j f + eλ1(τj+1−τj )/2Tτj+1−τj f̃j+1 = θ1,j f + ∑k

l=j+1 θ1,le
λ1(τl−τj )/2Tτl−τj f ,

we have

σ 2
f̃j

=
∫ ∞

0
eλ1u

(
A[Tuf̃j ]2, φ1

)
m
du

=
∫ ∞

0
eλ1u

(
A
[
Tu

(
θ1,j f + eλ1(τj+1−τj )/2Tτj+1−τj f̃j+1

)]2
, φ1

)
m
du

= θ2
1,j σ

2
f + 2

k∑
l=j+1

θ1,j θ1,lσf,τl−τj

+ eλ1(τj+1−τj )

∫ ∞

0
eλ1u

(
A[Tu+τj+1−τj f̃j+1]2, φ1

)
m
du

= θ2
1,j σ

2
f + 2

k∑
l=j+1

θ1,j θ1,lσf,τl−τj +
∫ ∞

τj+1−τj

eλ1u
(
A[Tuf̃j+1]2, φ1

)
m
du.

By (2.7), we have

eλ1sj+1
(
Varδ· 〈f̃j+1,ωsj+1〉, φ1

)
m

=
∫ τj+1−τj

0
eλ1u

(
A[Tuf̃j+1]2, φ1

)
m
du.

Thus, we get, for j = 0, . . . , k − 1,

σ 2
f̃j

+ eλ1sj+1
(
Varδ· 〈f̃j+1,ωsj+1〉, φ1

)
m

= θ2
1,j σ

2
f + 2

k∑
l=j+1

θ1,j θ1,lσf,τl−τj + σ 2
f̃j+1

.

Therefore, summing over j on both sides of the above equality, we get

k∑
j=1

eλ1sj
(
Varδ· 〈f̃j ,ωsj 〉, φ1

)
m

+ σ 2
f̃0

=
k−1∑
j=0

θ2
1,j σ

2
f + 2

k−1∑
j=0

k∑
l=j+1

θ1,j θ1,lσf,τl−τj + σ 2
f̃k

=
k∑

j=1

θ2
1,j σ

2
f + 2

k−1∑
j=1

k∑
l=j+1

θ1,j θ1,lσf,τl−τj , (3.32)

where the last equality follows from the fact that θ1,0 = 0 and f̃k = θ1,kf .
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3. Since f̃j =∑k

l=j θ1,le
λ1(τl−τj )/2Tτl−τj f and θ3,j g − ĝj = −∑j−1

r=0 θ3,r e
−λ1(τj −τr )/2Iτj −τr g,

we have

eλ1sj
(
Covδ·

(〈f̃j ,ωsj 〉, 〈θ3,j g − ĝj ,ωsj 〉
)
, φ1

)
m

=
∫ τj −τj−1

0
eλ1u

(
ATu(f̃j )Tu(θ3,j g − ĝj ), φ1

)
m
du

= −
k∑

l=j

j−1∑
r=0

θ1,lθ3,r e
λ1(τl+τr−2τj )/2

∫ τj −τj−1

0
eλ1u(ATu+τl−τj f Iτj −τr−ug,φ1)mdu

= −
k∑

l=j

j−1∑
r=0

θ1,lθ3,r e
λ1(τl+τr )/2

∫ τj

τj−1

e−λ1u(ATτl−uf Iu−τr g,φ1)mdu.

Thus, we get that

2
k∑

j=1

eλ1sj
(
Covδ·

(〈f̃j ,ωsj 〉, 〈θ3,j g − ĝj ,ωsj 〉
)
, φ1

)
m

= −2
k∑

l=1

l−1∑
r=0

l∑
j=r+1

θ1,lθ3,r e
λ1(τl+τr )/2

∫ τj

τj−1

e−λ1u(ATτl−uf Iu−τr g,φ1)mdu

= −2
k∑

l=1

l−1∑
r=0

θ1,lθ3,r e
λ1(τl+τr )/2

∫ τl

τr

e−λ1u(ATτl−uf Iu−τr g,φ1)mdu. (3.33)

Now combining (3.31)–(3.33), we obtain that

(
N·
(
H∞(ĝk)

)2
, φ1

)
m

+
k∑

j=1

Cj + σ 2
f̃0

=
k∑

j=1

θ2
3,j β

2
g + 2

k∑
j=1

j−1∑
l=0

θ3,j θ3,lβg,τj −τl +
k∑

j=1

θ2
1,j σ

2
f + 2

k−1∑
j=1

k∑
l=j+1

θ1,j θ1,lσf,τl−τj

− 2
k∑

l=1

l−1∑
r=0

θ1,lθ3,r e
λ1(τl+τr )/2

∫ τl

τr

e−λ1u(ATτl−uf Iu−τr g,φ1)mdu. (3.34)

Step 4. Combining Steps 1 and 2 with (3.30) and (3.34), we get (3.11) immediately.
The proof is now complete. �

Remark 3.3 By Lemma 3.2, we know that, for any f ∈ Cs and g ∈ Cl , there exists a Gaussian
process (G1,Uqf ,G3,g) with mean 0 and covariance function defined as in Theorem 1.2.
Furthermore, the next lemma shows that, this Gaussian process has a continuous version.
Thus, the Gaussian process (G1,Uqf ,G3,g) defined in Theorem 1.2 exists.

Lemma 3.4 Assume that f ∈ Cs and g ∈ Cl . If (G1,Uqf (τ ),G3,g(τ ))τ≥0 is a Gaussian pro-
cess, on some probability space (Ω,F,P ), with mean 0 and covariance function defined as
in Theorem 1.2, then, (G1,Uqf ,G3,g) has a continuous version.
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Proof By Kolmogorov’s continuity criterion, it suffices to show that, for any τ2 > τ1 ≥ 0,

P
∣∣G1,Uqf (τ2) − G1,Uqf (τ1)

∣∣4 + P
∣∣G3,g(τ2) − G3,g(τ1)

∣∣4 ≤ C|τ2 − τ1|2, (3.35)

where C is a constant.
(1) Since G1,Uqf (τ2) − G1,Uqf (τ1) ∼ N (0,Σ(τ1, τ2)) with Σ(τ1, τ2) = P |G1,Uqf (τ2) −

G1,Uqf (τ1)|2, we have

P
∣∣G1,Uqf (τ2) − G1,Uqf (τ1)

∣∣4 = 3Σ(τ1, τ2)
2. (3.36)

In the following, we write Uqf as f (q). By (3.12), we have

Σ(τ1, τ2) = P
∣∣G1,Uqf (τ2) − G1,Uqf (τ1)

∣∣2

= 2
∫ ∞

0
eλ1s

(
A
(
Tsf

(q)
)2

, φ1
)
m
ds

− 2eλ1(τ2−τ1)/2
∫ ∞

0
eλ1s

(
A
(
Tsf

(q)
)(

Ts+τ2−τ1f
(q)
)
, φ1

)
m
ds

= 2
∫ ∞

0
eλ1s

(
A
(
Tsf

(q)
)(

Ts

(
f (q) − eλ1(τ2−τ1)/2Tτ2−τ1f

(q)
))

, φ1

)
m
ds

≤ 2K

∫ ∞

0
eλ1s

∥∥(Tsf
(q)
)(

Ts

(
f (q) − eλ1(τ2−τ1)/2Tτ2−τ1f

(q)
))∥∥

2
ds.

We rewrite the last integral above as the sum of integrals over (0, t0) and (t0,∞). For s > t0,

∥∥(Tsf
(q)
)(

Ts

(
f (q) − eλ1(τ2−τ1)/2Tτ2−τ1f

(q)
))∥∥

2

� e−2λγ (f )s‖at0‖2

∥∥f (q)
∥∥

2

∥∥f (q) − eλ1(τ2−τ1)/2Tτ2−τ1f
(q)
∥∥

2
. (3.37)

Thus,

∫ ∞

t0

eλ1s
∥∥(Tsf

(q)
)(

Ts

(
f (q) −eλ1(τ2−τ1)/2Tτ2−τ1f

(q)
))∥∥

2
ds �

∥∥f (q) −eλ1(τ2−τ1)/2Tτ2−τ1f
(q)
∥∥

2
.

(3.38)
For s ≤ t0, since ‖Ts‖4 ≤ eKs , we have

∥∥(Tsf
(q)
)(

Ts

(
f (q) − eλ1(τ2−τ1)/2Tτ2−τ1f

(q)
))∥∥

2

≤ ∥∥Tsf
(q)
∥∥

4

∥∥Ts

(
f (q) − eλ1(τ2−τ1)/2Tτ2−τ1f

(q)
)∥∥

4

≤ e2Ks
∥∥f (q)

∥∥
4

∥∥f (q) − eλ1(τ2−τ1)/2Tτ2−τ1f
(q)
∥∥

4
.

Thus,

∫ t0

0
eλ1s

∥∥(Tsf
(q)
)(

Ts

(
f (q) − eλ1(τ2−τ1)/2Tτ2−τ1f

(q)
))∥∥

2
ds �

∥∥f (q) − eλ1(τ2−τ1)/2Tτ2−τ1f
(q)
∥∥

4
.

(3.39)
Combining (3.38) and (3.39) we get that

Σ(τ1, τ2) �
∥∥f (q) − eλ1(τ2−τ1)/2Tτ2−τ1f

(q)
∥∥

2
+ ∥∥f (q) − eλ1(τ2−τ1)/2Tτ2−τ1f

(q)
∥∥

4
. (3.40)
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It follows from Fubini’s theorem that, for p = 2,4,
∥∥Uqf − eλ1(τ2−τ1)/2Tτ2−τ1Uqf

∥∥
p

=
∥∥∥∥
∫ ∞

0
e−quTuf du − e(λ1/2+q)(τ2−τ1)

∫ ∞

τ2−τ1

e−quTuf du

∥∥∥∥
p

≤
∥∥∥∥
∫ τ2−τ1

0
e−quTuf du

∥∥∥∥
p

+ (
e(λ1/2+q)(τ2−τ1) − 1

)∥∥∥∥
∫ ∞

τ2−τ1

e−quTuf du

∥∥∥∥
p

≤
∫ τ2−τ1

0
e−qu‖Tuf ‖pdu + (

e(λ1/2+q)(τ2−τ1) − 1
)∫ ∞

τ2−τ1

e−qu‖Tuf ‖pdu.

Since ‖Tuf ‖p ≤ eKu‖f ‖p and q > K , we have

∫ τ2−τ1

0
e−qu‖Tuf ‖pdu ≤

∫ τ2−τ1

0
e−queKudu‖f ‖p ≤ (τ2 − τ1)‖f ‖p. (3.41)

If τ2 − τ1 > t0, by (2.4), for u > τ2 − τ1, we have ‖Tuf ‖p � e−λγ (f )u‖f ‖2‖a1/2
t0

‖p . Thus,

(
e(λ1/2+q)(τ2−τ1) − 1

)∫ ∞

τ2−τ1

e−qu‖Tuf ‖pdu

� e(λ1/2+q)(τ2−τ1)

∫ ∞

τ2−τ1

e−que−λγ (f )udu‖f ‖2

� e(λ1/2−λγ (f ))(τ2−τ1) � τ2 − τ1. (3.42)

If τ2 − τ1 ≤ t0, then e(λ1/2+q)(τ2−τ1) − 1 � τ2 − τ1. Thus,

(
e(λ1/2+q)(τ2−τ1) − 1

)∫ ∞

τ2−τ1

e−qu‖Tuf ‖pdu ≤ (
e(λ1/2+q)(τ2−τ1) − 1

)‖f ‖p

∫ ∞

0
e−queKudu

� τ2 − τ1. (3.43)

Now, combining (3.41)–(3.43), we obtain that, for p = 2,4,
∥∥Uqf − eλ1(τ2−τ1)/2Tτ2−τ1Uqf

∥∥
p
� τ2 − τ1.

Now, by (3.40), we have

Σ(τ1, τ2) ≤ C(τ2 − τ1). (3.44)

Thus, by (3.36) and (3.44), we get

P
∣∣G1,Uqf (τ2) − G1,Uqf (τ1)

∣∣4 ≤ C(τ2 − τ1)
2. (3.45)

(2) We claim that

P
∣∣G3,g(τ2) − G3,g(τ1)

∣∣4 ≤ C(τ2 − τ1)
2, (3.46)

where C is a constant. To prove (3.46), using the same argument as that of leading to (3.36),
it suffices to show that, for 0 ≤ τ1 ≤ τ2,

P
(
G3,g(τ2) − G3,g(τ1)

)2 ≤ C(τ2 − τ1). (3.47)
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Note that

P
(
G3,g(τ2) − G3,g(τ1)

)2 = 2βg,0 − 2βg,τ2−τ1

= 2
∫ ∞

0
e−λ1s

(
A(Isg)2, φ1

)
m
ds

− 2e−λ1(τ2−τ1)/2
∫ ∞

0
e−λ1s

(
A(Isg)(Is+τ2−τ1g),φ1

)
m
ds

= 2
∫ ∞

0
e−λ1s

(
A(Isg)

(
Isg − e−λ1(τ2−τ1)/2Is+τ2−τ1g

)
, φ1

)
m
ds.

Since g ∈ Cl , g(x) =∑
k:2λk<λ1

∑nk

j=1 bk
jφ

(k)
j (x), where bk

j = (g,φ
(k)
j )m. By (1.9), we have

that for any x ∈ E,

|Isg(x)| ≤
∑

k:2λk<λ1

nk∑
j=1

eλks |bk
j ||φk

j (x)|� eλk0 sa2t0(x)1/2,

where k0 = sup{k : 2λk < λ1}. By the definition of Iug,
∣∣Isg − e−λ1(τ2−τ1)/2Is+τ2−τ1g

∣∣

=
∣∣∣∣∣
∑

k:2λk<λ1

nk∑
j=1

eλks
(
1 − e(λk−λ1/2)(τ2−τ1)

)
bk

jφ
(k)
j (x)

∣∣∣∣∣

≤ (−λ1/2)(τ2 − τ1)
∑

k:2λk<λ1

nk∑
j=1

eλks |bk
j ||φ(k)

j (x)| � (−λ1/2)(τ2 − τ1)e
λk0 sa2t0(x)1/2.

It follows that

P
(
G3,g(τ2) − G3,g(τ1)

)2 � (−λ1)K(τ2 − τ1)

∫ ∞

0
e−λ1se2λk0 s(a2t0 , φ1)mds

= (−λ1)K(λ1 − 2λk0)
−1(a2t0 , φ1)m(τ2 − τ1).

Now the proof is complete. �

By Lemma 3.2, we get the following Corollary immediately.

Corollary 3.5 Let f ∈ Cs , h ∈ Cc , g ∈ Cl and μ ∈ MC(E). Suppose that Y
1,Uqf

t , Y
2,h
t , Y

3,g
t ,

G1,Uqf , G2,h and G3,g are defined as in Theorem 1.2. Then, under Pμ, as t → ∞,

(
Wt,Y

1,Uqf

t , Y 2,h
t , Y

3,g
t

) L(R+)−→ (
W∞,

√
W∞G1,Uqf ,

√
W∞G2,h

√
W∞G3,g

)
. (3.48)

3.2 The Tightness of (Wt,Y
1,Uqf
t ,Y

2,h
t ,Y

3,g
t )t>0 in D(R4)

Recall that a sequence (Xn) of càdlàg processes is called C-tight if it is tight, and if all its
weakly convergent limit points are continuous processes. In this subsection, we will show
that (Wt , Y

1,Uqf

t , Y
2,h
t , Y

3,g
t )t>0 is C-tight in D(R4) (with Wt , for each t > 0, being consid-

ered as a constant process). By [20, Chapter VI, Corollary 3.33], it suffices to show that
(Y

1,Uqf

t )t>0, (Y
2,h
t )t>0 and (Y

3,g
t )t>0 are C-tight in D(R).
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3.2.1 The Tightness of (Y
1,Uqf
t )t>0 in D(R)

The main purpose of this subsection is to prove that (Y
1,Uqf

t (·))t>0 is C-tight in D(R). The
next lemma gives a sufficient condition for the tightness of a sequence (Xn)n≥1 in D(Rd).

Lemma 3.6 Assume (Xn)n≥1 is a sequence of D(Rd)-valued random variables, each Xn

being defined on the space (Ωn,Fn, {Fn
t }t≥0,P

n). If (Xn) satisfies the following two condi-
tions:

(1) For all N > 0,

lim sup
n→∞

P n
(

sup
t≤N

∣∣Xn
t

∣∣)< ∞. (3.49)

(2) For all N > 0,

lim
θ→0

lim sup
n

sup
S,T ∈T n

N
:S≤T ≤S+θ

P n
(∣∣Xn

T − Xn
S

∣∣)= 0, (3.50)

where T n
N denotes the set of all {Fn

t }-stopping times that are bounded by N .

Then, the sequence (Xn) is tight in D(Rd).

Proof This follows immediately from Theorem 4.5 in [20, Chapter VI]. �

To prove the tightness of (Y
1,Uqf

t (·))t>0 in D(R), we will check that Y
1,Uqf

t satisfies the
two conditions above. Recall that t0 is the constant in the condition (b) in Sect. 1.1.

Lemma 3.7 If f ∈ Cs and μ ∈ MC(E), then for any N > 0,

sup
t>3t0

Pμ

(
sup
τ≤N

∣∣Y 1,Uqf

t (τ )
∣∣)< ∞. (3.51)

Proof In this proof, we always assume that t > 3t0. By (2.28), for any t > 0,

Pμ

(
Y

1,Uqf

t (τ ) = eλ1(t+τ)/2J
f

1 (t + τ) + e(q+λ1/2)(t+τ)J
f

2 (t + τ),∀τ ≥ 0
)= 1.

First, we consider J
f

1 (t + τ). Recall that J
f

1 (t) = 〈Tt (Uqf ),μ〉, t ≥ 0. By (2.4), we have

sup
τ≤N

eλ1(t+τ)/2
∣∣J f

1 (t + τ)
∣∣ ≤ sup

τ≤N

eλ1(t+τ)/2
〈∣∣Tt+τ (Uqf )

∣∣,μ〉

� sup
τ≤N

eλ1(t+τ)/2e−λγ (f )(t+τ)‖Uqf ‖2
〈
a

1/2
t0

,μ
〉

� e(λ1/2−λγ (f ))t‖f ‖2. (3.52)

Next, we deal with J
f

2 (t + τ). Recall that

J
f

2 (t + τ) =
∫ ∞

t+τ

e−quM
(u)
t+τ du.
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Using (2.32) with t1 = t , we have, for t > 3t0,

Pμ

(
sup
τ≤N

∣∣J f

2 (t + τ)
∣∣) ≤ Pμ

∫ ∞

t

e−qu sup
τ≤N

(∣∣M(u)
t+τ

∣∣1t+τ<u

)
du

≤ 2
∫ ∞

t

e−qu

√∫
E

Varδx 〈f,Xu〉μ(dx)du

�
∫ ∞

t

e−que−λ1u/2du

√∫
E

at0(x)1/2μ(dx)

= (q + λ1/2)−1e−(q+λ1/2)t

√∫
E

at0(x)1/2μ(dx), (3.53)

where in the third inequality we use (2.10). It follows that,

sup
t>3t0

Pμ

(
sup
τ≤N

e(q+λ1/2)(t+τ)
∣∣J f

2 (t + τ)
∣∣)≤ sup

t>3t0

e(q+λ1/2)(t+N)
Pμ

(
sup
τ≤N

∣∣J f

2 (t + τ)
∣∣)< ∞.

The proof is now complete. �

Next, we prove that

Lemma 3.8 If f ∈ Cs and μ ∈ MC(E), then

lim
θ→0

lim sup
t→∞

sup
S,T ∈T t

N
:S<T <S+θ

Pμ

(∣∣Y 1,Uqf

t (T ) − Y
1,Uqf

t (S)
∣∣)= 0, (3.54)

where T t
N is the set of all {Gt+τ : τ ≥ 0}-stopping times that are bounded by N .

Proof In this proof, we always assume that t > 3t0. By (2.28), we have, Pμ-a.s.,

∣∣Y 1,Uqf

t (T ) − Y
1,Uqf

t (S)
∣∣ ≤ ∣∣eλ1(t+T )/2J

f

1 (t + T ) − eλ1(t+S)/2J
f

1 (t + S)
∣∣

+ ∣∣e(q+λ1/2)(t+T )J
f

2 (t + T ) − e(q+λ1/2)(t+S)J
f

2 (t + S)
∣∣

=: J3,1(t, T , S) + J3,2(t, T , S).

For J3,1(t, T , S), by (3.52), we have that, as t → ∞,

PμJ3,1(t, T , S) ≤ 2Pμ

(
sup
τ≤N

eλ1(t+τ)/2
∣∣J f

1 (t + τ)
∣∣)� e(λ1/2−λγ (f ))t‖f ‖2 → 0. (3.55)

Note that

J3,2(t, T , S)

≤ e(q+λ1/2)(t+S)
∣∣J f

2 (t + T ) − J
f

2 (t + S)
∣∣+ ∣∣e(q+λ1/2)(t+T ) − e(q+λ1/2)(t+S)

∣∣∣∣J f

2 (t + T )
∣∣

≤ e(q+λ1/2)(t+N)
∣∣J f

2 (t + T ) − J
f

2 (t + S)
∣∣+ e(q+λ1/2)(t+N)

∣∣e(q+λ1/2)θ − 1
∣∣∣∣J f

2 (t + T )
∣∣.
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By (3.53), we get that, for t > 3t0,

sup
S,T ∈T t

N
:S<T <S+θ

e(q+λ1/2)(t+N)
∣∣e(q+λ1/2)θ − 1

∣∣Pμ

∣∣J f

2 (t + T )
∣∣

� e(q+λ1/2)(t+N)
∣∣e(q+λ1/2)θ − 1

∣∣Pμ

(
sup
τ≤N

∣∣J f

2 (t + τ)
∣∣)

�
∣∣e(q+λ1/2)θ − 1

∣∣→ 0, as θ → 0. (3.56)

By (3.55) and (3.56), to prove (3.54), it suffices to show that

lim
θ→0

lim sup
t→∞

sup
S,T ∈T t

N
:S<T <S+θ

e(q+λ1/2)t
Pμ

∣∣J f

2 (t + T ) − J
f

2 (t + S)
∣∣= 0. (3.57)

By the definition of J
f

2 , we have

∣∣J f

2 (t + T ) − J
f

2 (t + S)
∣∣ =

∣∣∣∣
∫ ∞

t+T

e−quM
(u)
t+T du −

∫ ∞

t+S

e−quM
(u)
t+Sdu

∣∣∣∣
≤
∫ ∞

t+T

e−qu
∣∣M(u)

t+T − M
(u)
t+S

∣∣du +
∫ t+T

t+S

e−qu
∣∣M(u)

t+S

∣∣du

≤
∫ ∞

t

e−qu
∣∣M(u)

(t+T )∧u − M
(u)

(t+S)∧u

∣∣du +
∫ t+T

t+S

e−qu
∣∣M(u)

t+S

∣∣du

=: J4(t, T , S) + J5(t, T , S).

First, we deal with J4. Since T ,S ∈ T t
N , (t + T ) ∧ u and (t + S) ∧ u are both {Gτ : τ ≥ 0}-

stopping times. Thus, by (2.26), we have

PμJ4(t, T , S)

≤
∫ ∞

t

e−qu

√
Pμ

∣∣M(u)

(t+T )∧u − M
(u)

(t+S)∧u

∣∣2du

=
∫ ∞

t

e−qu
√
Pμ

(〈
M(u)

〉
(t+T )∧u

− 〈
M(u)

〉
(t+S)∧u

)
du

=
∫ ∞

t

e−qu

√
Pμ

∫ (t+T )∧u

(t+S)∧u

〈
A(Tu−sf )2,Xs

〉
dsdu

=
∫ ∞

0
e−q(u+t)

√
Pμ

∫ T ∧u

S∧u

〈
A(Tu−sf )2,Xs+t

〉
dsdu

≤
∫ ∞

0
e−q(u+t)

×
√∫ N∧u

0
e−λ1(t+s)Pμ

∣∣eλ1(t+s)
〈
A(Tu−sf )2,Xs+t

〉− (
A(Tu−sf )2, φ1

)
m
W∞

∣∣dsdu

+
∫ ∞

0
e−q(u+t)

√
Pμ

∫ T ∧u

S∧u

e−λ1(t+s)
(
A(Tu−sf )2, φ1

)
m
W∞dsdu

=: J4,1(t) + J4,2(t, T , S).
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Now we consider J4,1. Let V (u − s, t + s) := Pμ|eλ1(t+s)〈A(Tu−sf )2,Xs+t 〉 − (A(Tu−sf )2,

φ1)mW∞|. Then,

J4,1(t) ≤ e−(q+λ1/2)t e−λ1N/2
∫ ∞

0
e−qu

√∫ N∧u

0
V (u − s, t + s)dsdu. (3.58)

Since (Tu−sf )2(x) ≤ eK(u−s)Tu−s(f
2)(x), we get that, for t > 3t0 and s ∈ (0,N ∧ u),

V (u − s, t + s) ≤ eλ1(t+s)

∫
E

Tt+s

[
A(Tu−sf )2

]
(x)μ(dx) + K

∥∥(Tu−sf )2
∥∥

2
Pμ(W∞)

≤ eλ1(t+s)eK(u−s)K

∫
E

Tt+u

(
f 2
)
(x)μ(dx) + K‖Tu−sf ‖2

4Pμ(W∞)

� eλ1(t+s)eK(u−s)e−λ1(t+u)K

∫
E

at0(x)1/2μ(dx) + Ke2K(u−s)‖f ‖2
4Pμ(W∞)

� e(K−λ1)(u−s) + e2K(u−s) ≤ e(K−λ1)u + e2Ku,

where in the third inequality we used (2.4) and the fact that ‖Tu−s‖4 ≤ eK(u−s). Note that

∫ ∞

0
e−qu

√∫ N

0
e(K−λ1)u + e2Kudsdu ≤ N1/2

∫ ∞

0
e−(q−K/2+λ1/2)u + e−(q−K)udu < ∞.

By Lemma 3.1, we get that V (u − s, t + s) → 0 as t → ∞. By the dominated convergence
theorem, we get that

lim
t→∞

∫ ∞

0
e−qu

√∫ N

0
V (u − s, t + s)dsdu = 0.

It follows from (3.58) that

lim
t→∞ e(q+λ1/2)t J4,1(t) = 0. (3.59)

For J4,2(t, T , S), since (A(Tu−sf )2, φ1)m ≤ ‖A(Tu−sf )2‖2 ≤ Ke2K(u−s)‖f ‖2
4 ≤

Ke2Ku‖f ‖2
4, we have

J4,2(t, T , S) ≤ ‖f ‖4e
−(q+λ1/2)t e−λ1N/2

∫ ∞

0
e−(q−K)u

√
Pμ

(
K(T ∧ u − S ∧ u)W∞

)
du

� θ1/2e−(q+λ1/2)t

∫ ∞

0
e−(q−K)udu = (q − K)−1θ1/2e−(q+λ1/2)t ,

where in the second inequality we used the fact that T ∧ u − S ∧ u < θ . Thus, we get

lim
θ→0

lim sup
t→∞

sup
S,T ∈T t

N
:S<T <S+θ

e(q+λ1/2)t J4,2(t, T , S) = 0. (3.60)

Combining (3.59) and (3.60), we get

lim
θ→0

lim sup
t→∞

sup
S,T ∈T t

N
:S<T <S+θ

e(q+λ1/2)t
PμJ4(t, T , S) = 0. (3.61)
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Finally, we consider J5(t, T , S). By Hölder’s inequality, we get

PμJ5(t, T , S) = Pμ

∫ t+T

t+S

e−qu
∣∣M(u)

t+S

∣∣du ≤
√
Pμ

∫ t+T

t+S

e−2qu
∣∣M(u)

t+S

∣∣2du
√
Pμ(T − S)

≤ θ1/2

√∫ t+N

t

e−2quPμ

∣∣M(u)

(t+S)∧u

∣∣2du

= θ1/2

√∫ t+N

t

e−2quPμ

〈
M(u)

〉
(t+S)∧u

du

≤ θ1/2

√∫ t+N

t

e−2quPμ

〈
M(u)

〉
u
du

= θ1/2

√∫ t+N

t

e−2qu

∫
E

Varδx 〈f,Xu〉μ(dx)du

� θ1/2

√∫ t+N

t

e−2que−λ1udu

∫
E

at0(x)1/2μ(dx)� θ1/2e−(q+λ1/2)t ,

where in the second to the last inequality we used (2.10). Thus, we get that

lim
θ→0

lim sup
t→∞

sup
S,T ∈T t

N
:S<T <S+θ

e(q+λ1/2)t
PμJ5(t, T , S) = 0. (3.62)

Combining (3.61) and (3.62), we get (3.57) immediately. The proof is now complete. �

Lemma 3.9 If f ∈ Cs and μ ∈ MC(E), then, under Pμ, the family of processes

(Y
1,Uqf

t (·))t>0 is C-tight in D(R).

Proof It follows from Lemmas 3.7 and 3.8 that (Y
1,Uqf

t (·))t>0 is tight in D(R) under Pμ.
By Corollary 3.5 and the fact that

√
W∞G1,Uqf is a continuous process, we obtain that

(Y
1,Uqf

t (·))t>0 is C-tight in D(R) under Pμ. �

3.2.2 The Tightness of (Y
2,h
t )t>0 in D(R)

The next lemma will be used to prove the tightness of (Y
2,h
t (·))t>0.

Lemma 3.10 Suppose that {C(τ), τ ≥ 0} and, for each t > 0, {Ct(τ ), τ ≥ 0} are non-
decreasing càdlàg processes defined on the space (Ω,F,P ) such that Ct(0) = C(0) = 0
and for all τ ≥ 0,

lim
t→∞Ct(τ ) = C(τ) in probability. (3.63)

If C is a continuous process, then

lim
t→∞ δ(Ct ,C) = 0 in probability, (3.64)
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where δ is the Skorohod metric defined in [20, Chapter VI, 1.26]. Moreover, as t → ∞,

Ct − C
d−→ 0,

which implies that (Ct )t≥0 is C-tight in D(R).

Proof Let D be the subset of all the positive rational numbers. For any subsequence (nk),
by a diagonal argument, we can find a further subsequence (n′

k) and a set Ω0 ⊂ Ω with
P (Ω0) = 1 such that for all τ ∈ D and ω ∈ Ω0,

lim
k→∞

Cn′
k
(τ )(ω) = C(τ)(ω). (3.65)

Thus, by [20, Chapter VI, Theorem 2.15(c)], we have, for ω ∈ Ω0,

lim
k→∞

δ
(
Cn′

k
(ω),C(ω)

)= 0,

which implies (3.64). The remaining assertion follows immediately from (3.64). �

Lemma 3.11 If h ∈ Cc and μ ∈ MC(E), then the family of processes (Y
2,h
t (·))t>0 is C-tight

in D(R) under Pμ.

Proof For h ∈ Cc , we have Tth = e−λ1t/2h. Thus, by (2.22), we get that, for t ≥ 0, Pμ-a.s.

〈h,Xt 〉 = e−λ1t/2〈h,X0〉 + e−λ1t/2
∫ t

0

∫
E

eλ1s/2h(x)M(ds, dx).

Since both sides of the above equation are càdlàg, we have

Pμ

(
〈h,Xt 〉 = e−λ1t/2〈h,X0〉 + e−λ1t/2

∫ t

0

∫
E

eλ1s/2h(x)M(ds, dx),∀t > 0

)
= 1.

Thus, we have

Y 2,h
t (τ ) = t−1/2〈h,X0〉 + t−1/2

∫ t+τ

0

∫
E

eλ1s/2h(x)M(ds, dx)

= Y 2,h
t (0) + t−1/2

∫ t+τ

t

∫
E

eλ1s/2h(x)M(ds, dx).

Therefore, {Y 2,h
t (τ ), τ ≥ 0} is a square-integrable martingale with

〈
Y 2,h

t

〉
(τ ) = t−1

∫ t+τ

t

eλ1s
〈
Ah2,Xs

〉
ds. (3.66)

By (2.4), we have for t > t0,

t−1
Pμ

(∫ t+τ

t

eλ1s
〈
Ah2,Xs

〉
ds

)
= t−1

∫
E

∫ t+τ

t

eλ1sTs

(
Ah2

)
(x)dsμ(dx)� t−1τ.

Thus, for any τ ≥ 0, as t → ∞,

〈
Y 2,h

t

〉
(τ ) → 0 in Pμ-probability. (3.67)
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Hence by Lemma 3.10 we have that (〈Y 2,h
t 〉)t>0 is C-tight in D(R) under Pμ. Since

Y
2,g
t (0) = t−1/2e−λ1t/2〈g,Xt 〉 → N (0, ρ2

g) in distribution as t → ∞, we know that {Y 2,h
t (0),

t ≥ 0} is tight in R under Pμ. Therefore, by [20, Chapter VI, Theorem 4.13], we get that
(Y

2,h
t (·))t>0 is tight in D(R) under Pμ. By Corollary 3.5 and the fact that

√
W∞G2,h is a

continuous process, we obtain that (Y
2,h
t (·))t>0 is C-tight in D(R) under Pμ. The proof is

now complete. �

3.2.3 The Tightness of (Y
3,g
t )t>0 in D(R)

Lemma 3.12 If g =∑
k:λ1>2λk

∑nk

j=1 bk
jφ

(k)
j ∈ Cl and μ ∈ MC(E), then the family of pro-

cesses (Y
3,g
t (·))t>0 is C-tight in D(R) under Pμ.

Proof Note that

Y
3,g
t (τ ) =

∑
k:λ1>2λk

nk∑
j=1

e(λ1/2−λk)(t+τ)bk
j

(
H

k,j
t+τ − H

k,j
t

)

+
∑

k:λ1>2λk

nk∑
j=1

e(λ1/2−λk)(t+τ)bk
j

(
H

k,j
t − Hk,j

∞
)

=: Z1
t (τ ) + Z2

t (τ ).

For Z2
t (τ ), it is known (see [34, Remark 1.8]) that under Pμ

e(λ1/2−λk)t
(
H

k,j
t − Hk,j

∞
) d−→ G

√
W∞,

where G is a normal random variable. It follows that under Pμ, as t → ∞,

e(λ1/2−λk)(t+·)bk
j

(
H

k,j
t − Hk,j

∞
) d−→ bk

jG
√

W∞e(λ1/2−λk)·.

Thus, e(λ1/2−λk)(t+·)bk
j (H

k,j
t − H

k,j
∞ ) is C-tight in D(R) under Pμ. By [20, Corollary 3.33],

(Z2
t )t>0 is C-tight in D(R) under Pμ. Thus, to prove (Y

3,g
t )t>0 is tight in D(R) under Pμ, it

suffices to show that (Z1
t )t>0 is tight in D(R) under Pμ.

Since {Hk,j
t+τ −H

k,j
t : τ ≥ 0} is a martingale under Pμ, using Lp maximum inequality, we

get for λ1 > 2λk ,

Pμ

(
sup
τ≤N

e(λ1/2−λk)(t+τ)
∣∣Hk,j

t+τ − H
k,j
t

∣∣) ≤ 2e(λ1/2−λk)(t+N)

√
Pμ

(
H

k,j

t+N − H
k,j
t

)2
.

By (2.22), we have

H
k,j
t = 〈

φ
(k)
j ,μ

〉+
∫ t

0

∫
E

eλksφ
(k)
j (x)M(ds, dx). (3.68)

Thus,

〈
Hk,j

〉
t
=
∫ t

0
e2λks

〈
A
(
φ

(k)
j

)2
,Xs

〉
ds. (3.69)
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Therefore, by (2.4), we get that, for t > t0,

Pμ

(
H

k,j

t+N − H
k,j
t

)2 =
∫

E

∫ t+N

t

e2λksTs

(
A
(
φ

(k)
j

)2)
(x)dsμ(dx)

�
∫ t+N

t

e2λkse−λ1sds � e(2λk−λ1)t .

Hence,

sup
t>t0

Pμ

(
sup
τ≤N

e(λ1/2−λk)(t+τ)
∣∣Hk,j

t+τ − H
k,j
t

∣∣)< ∞. (3.70)

It follows that

sup
t>t0

Pμ

(
sup
τ≤N

∣∣Z1
t (τ )

∣∣)≤
∑

k:λ1>2λk

nk∑
j=1

∣∣bk
j

∣∣ sup
t>t0

Pμ

(
sup
τ<N

e(λ1/2−λk)(t+τ)
∣∣Hk,j

t+τ − H
k,j
t

∣∣)< ∞.

(3.71)
Next we prove that

lim
θ→0

lim sup
t→∞

sup
T ,S∈T t

N
:0≤T −S≤θ

Pμ

(∣∣Z1
t (T ) − Z1

t (S)
∣∣)= 0, (3.72)

where T t
N is the set of all {Gt+τ : τ ≥ 0}-stopping times that are bounded by N . It suffices to

show that, for λ1 > 2λk ,

lim
θ→0

lim sup
t→∞

sup
T ,S∈T t

N
:0≤T −S≤θ

Pμ

(∣∣e(λ1/2−λk)(t+T )
(
H

k,j

t+T − H
k,j
t

)

− e(λ1/2−λk)(t+S)
(
H

k,j

t+S − H
k,j
t

)∣∣)= 0. (3.73)

We note that
∣∣e(λ1/2−λk)(t+T )

(
H

k,j

t+T − H
k,j
t

)− e(λ1/2−λk)(t+S)
(
H

k,j

t+S − H
k,j
t

)∣∣
≤ e(λ1/2−λk)(t+S)

∣∣Hk,j

t+T − H
k,j

t+S

∣∣+ e(λ1/2−λk)(t+S)
(
e(λ1/2−λk)θ − 1

)∣∣Hk,j

t+T − H
k,j
t

∣∣
≤ e(λ1/2−λk)(t+N)

∣∣Hk,j

t+T − H
k,j

t+S

∣∣+ e(λ1/2−λk)(t+N)
(
e(λ1/2−λk)θ − 1

)
sup
τ<N

∣∣Hk,j
t+τ − H

k,j
t

∣∣.
By (3.70), we get that, for t > t0,

e(λ1/2−λk)(t+N)
(
e(λ1/2−λk)θ − 1

)
Pμ

(
sup
τ<N

∣∣Hk,j
t+τ − H

k,j
t

∣∣)� e(λ1/2−λk)θ − 1 → 0, (3.74)

as θ → 0. By (3.69), we have

e(λ1/2−λk)(t+N)
Pμ

∣∣Hk,j

t+T − H
k,j

t+S

∣∣
≤ e(λ1/2−λk)(t+N)

√
Pμ

∣∣Hk,j

t+T − H
k,j

t+S

∣∣2

= e(λ1/2−λk)(t+N)
√
Pμ

(〈
Hk,j

〉
t+T

− 〈
Hk,j

〉
t+S

)

= e(λ1/2−λk)(t+N)

√
Pμ

∫ t+T

t+S

e2λks
〈
A
(
φ

(k)
j

)2
,Xs

〉
ds
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�

√
Pμ

∫ t+T

t+S

eλ1s
〈
A
(
φ

(k)
j

)2
,Xs

〉
ds

≤
√∫ t+N

t

Pμ

∣∣eλ1s
〈
A
(
φ

(k)
j

)2
,Xs

〉− (
A
(
φ

(k)
j

)2
, φ1

)
m
W∞

∣∣ds + θ
(
A
(
φ

(k)
j

)2
, φ1

)
m
Pμ(W∞).

By Lemma 3.1,

lim
t→∞

∫ t+N

t

Pμ

∣∣eλ1s
〈
A
(
φ

(k)
j

)2
,Xs

〉− (
A
(
φ

(k)
j

)2
, φ1

)
m
W∞

∣∣ds = 0.

Thus,

lim
θ→0

lim sup
t→∞

sup
T ,S∈T t

N
:0≤T −S≤θ

e(λ1/2−λk)(t+N)
Pμ

∣∣Hk,j

t+T − H
k,j

t+S

∣∣

� lim
θ→0

√
θ
(
A
(
φ

(k)
j

)2
, φ1

)
m
Pμ(W∞) = 0. (3.75)

Combining (3.74) and (3.75), we get (3.73).
By Corollary 3.5 and the fact that

√
W∞G3,g is a continuous process, we obtain that

(Y
3,g
t (·))t>0 is C-tight in D(R) under Pμ. The proof is now complete. �
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