ALEA, Lat. Am. J. Probab. Math. Stat. 15, 409-428 (2018) #,y’[ltggg
DOI: 10.30757/ALEA.v15-17 )

Almost sure growth of supercritical multi-type
continuous-state branching process

Andreas E. Kyprianou, Sandra Palau and Yan-Xia Ren

Department of Mathematical Sciences, University of Bath,
Claverton Down, Bath, BA2 7TAY, UK.

E-mail address: a.kyprianou@bath.ac.uk

Department of Mathematical Sciences, University of Bath,
Claverton Down, Bath, BA2 7TAY, UK.
E-mail address: sp2236@bath.ac.uk@bath.ac.uk

LMAM School of Mathematical Sciences & Center for Statistical Science,
Peking University, Beijing, 100871, P.R. China

E-mail address: yxren@math.pku.edu.cn

Abstract. In Li (2011, Example 2.2), the notion of a multi-type continuous-state
branching process (MCSBP) was introduced with a finite number of types, with
the countably infinite case being proposed in Kyprianou and Palau (2018+). One
may consider such processes as a super-Markov chain on a countable state-space
of types, which undertakes both local and non-local branching. In Kyprianou and
Palau (2018+) it was shown that, for MCSBPs, under mild conditions, there exists
a lead eigenvalue which characterises the spectral radius of the linear semigroup
associated to the process. Moreover, in a qualitative sense, the sign of this eigen-
value distinguishes between the cases where there is local extinction and exponential
growth. In this paper, we continue in this vein and show that, when the number
of types is finite, the lead eigenvalue gives the precise almost sure rate of growth of
each type. This result matches perfectly classical analogues for multi-type Galton—
Watson processes.

1. Introduction

Let d € N be a natural number and put £ = {1,--- ,d}. Forx = (z1,--- ,24)T €
R? we use the notation z(i) := x; for i € E and denote by ||z|| the Euclidean norm.
We consider a multi-type continuous state branching process with d types with
branching mechanism v, henceforth referred to as a 1»-MCSBP. This is to say, we
are interested in a [0, 0o)%-valued strong Markov process X := (X;,t > 0), with
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probabilZcies {Pg,x € R‘i} such that the following branching property hold: for all
T,y c RJH

Eaiy [e—<f’Xt>} ~E, [e—<vat>} E, [e—<vat>} . t>0, feR%

Its branching mechanism is a vectorial function ¢ : E x Ri — R< such that
Vi(u) == —(u,§6i>—|—ciuf—|—/ (e=®) _14ui(ziA1)(dz), weRlicE,
R

where ¢; € Ry, B is a d x d matrix such that Eiﬁjl{i#} € Ry, e, - ,eq is the
natural basis in R?, and p; is a measure concentrated on R?% \ {0} such that

IR A =1 4 2| () < o

¥ jEE
The process X is characterized by its Laplace transform:
E, {e%fwxﬂ —e~@vth) g feRY teR,, (1.1)
where, for any f € Ri, the continuous differentiable function

ts ot f) = (ot £), - valt, )T,

is the unique locally bounded non-negative solution to the system of integral equa-
tions

U4 / Yi(v(s, f))d ie k. (1.2)

According to Barczy et al. (2015), this process can be seen as a strong solution of
a stochastic differential equation (SDE). More precisely, let W, be a d-dimensional
standard Brownian motion, and for each ¢ € E, let IN; be a Poisson random measure
on Ry x Ri x R4 with intensity measure dspu;(dz)dr, and denote by ]Vi its compen-
sated measure. Suppose that W and (N;);cg are independent of each other. Then,
a MCSBP with branching mechanism v is characterized as the unique Rff_—valued
strong solution to the SDE

X, X0+/ BX ds—i—Zel/ V26X, dW,

i€EE

+ // / z1yg, sﬂ.]\ths,dz,dr,
ieZEO e s r<x._ Nl )

where the matrix B is given by
Bi,j = Biyj + /Rd (Zl - (Si’j)Jr,uj(dZ).

Moreover, they proved in Barczy et al. (2015, Formula (2.15) and the later compu-
tations) that ¢ can be written as
Vi(u) = —(u, Be;) + cju? —|—/ (e= (=) — 14 (u, 2))ui(dz), ueRl, icE.

Rd
(1.4)
We additionally assume that Pe, ((1, X;) =0) >0 forallt >0,i=1,---,d.
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Remark 1.1. Thanks to the relation between B and E, when we write the branching
mechanism as in (1.4), the matrix B satisfies

/Rd z(z)uj(dz) S Bij for all 4 }é j (15)

Remark 1.2. If we regard E as the space where particles located, the model we de-
scribed above can be seen as a special case of a superprocess in which the associated
Markov movement is that of a Markov chain on E. Indeed, for such a process, from
e.g. Dynkin (1991), the log-Laplace semigroup, V : R‘i — R‘i, which similarly
to (1.1), satisfies (x, Vi f) = —logE, [e’<f*Xf>}, for f,x € Ri, and is the unique
solution to

Vi£(i) = [ f]() - / =R, (V. f)ds

where f = (f(1),---,f(d))” € R and Q is the infinitesimal generator of the
associated Markov chain. Note that a straightforward manipulation in the spirit of
Theorem 3.1.2 of Dynkin (2002) implies that

Vi) = £0) + / QV.£)(i /wZVf
= i)+ /0 (Vif.Q"es) - /O 4i(Vaf)ds

where Q7 is the transpose matrix of Q. In turn, we note that this is equiva-
lent to the unique semigroup evolution that solves (1.2), albeit that the branching
mechanism

bi(u) = —(u,Q"e;) +1i(u) ueRl, i€k

We therefore suppose in the remaining part of this paper that {X;,¢ > 0} is a
1)-MCSBP. Denote by M (t) := (M (t);,j)axa the matrix with elements

M(t)ij = Ee, [(ej, X1)], 4,7 € E, t>0.
By Barczy et al. (2015, Lemma 3.4) we have

M(t) = e'B" t>0, (1.6)

3

where BT is the transpose of B. Observe that for any initial vector ¢ and any
T e R‘i,

Ex, [(x, X})] = ccOTM(t)w, t>0.
Moreover, by (1.3) and the It6 calculus, for all @ € R? and s < r < t, we obtain

(M(t—r)x, X,)=(M({t—-s)z, X;)+ Z/ (t —w)x]i\/2¢; Xy i AW, ;

i€l

/ / / M(t —u)x, 2)1y<x, I}N (du,dz,dl).
Rd

(1.7)
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In particular, if we take r = ¢, we get the following equation

(@, X1) =(M(t — 5)z, X))+ ) / [M(t — u)a)i\/2¢: Xy AW, ;

ieEv”s

t o]
- Z/ / / (M(t —w)e, 2)1g<x, 3 Ni(du,dz,dl).
iep”’s JRLJO S
(1.8)
A vector u € R? is called a A\-right (resp. left) eigenvector if for all ¢t > 0,
M (t)u = eMu, (resp. uT M(t) = eMuT).
If w is a A-right eigenvector, define
Wi (u) := e (u, X;), t > 0.
Then it was shown in Proposition 3 of Kyprianou and Palau (2018+) that if
is a A-right eigenvector with A € R, then for any € R%, {W}(u),t > 0} is a
martingale under Py.

Suppose that M (t) is irreducible (exists to > 0 such that M (¢p);; > 0 for all
i,j € E). The Perron-Frobenius theory implies that there exist \y € R and right

and left associated eigenvectors ¢, qAS € Ri with all coordinates strictly positive

such that M (t)¢ = e*!¢ and q?)TM(t) = e)‘lta)T, for all ¢ > 0. We note from (1.6)
that this is equivalent to the statement that ¢ and a& are right and left eigenvectors
for BT with common eigenvalue \;. For convenience we shall normalise ¢ and &\5
such that (¢, 1) =1 = (¢, qAS> Moreover, any other eigenvalue \ satisfies \; > R())
and R
tl_i)rgoM(t)e_’\lt =P :=(¢;0,)ijeexE-

In addition, Barczy and Pap (2016, Lemma A.3) proved that there exist c1, ¢z, c3 >
0 such that

[ M(t)e ™t — P|| < cre™ 2! and | M ()| < cze? for all t € Ry.
(1.9)
In order to simplify notation, we will denote by

Wy = W(g) =e Mg, Xy),  t>0. (1.10)

Observe that W; is a non-negative martingale and has a limit a.s. that we will
denote by Wx.

We say that the ¥-MCSBP is subcritical, critical, or supercritical according as
A1 <0, A1 =0, or \; > 0. This classification is consistent with the corresponding
classification for single-type continuous state branching processes, see, e.g., Li (2011,
Page 58). With the use of (1.10), it was proved in Kyprianou and Palau (2018+),
that in the subcritical and critical cases the process has extinction a.s. In this
paper, we want to find the asymptotic behaviour in the supercritical case.

The following Theorem 1.3 gives a relationship between the L!-convergence of
the martingale {W;,t > 0} and the following condition:

> / (1,2) In((1, 2))pi(dz) < co. (zlog z condition)
icp J1<(1,2) <00
If p;(dz) = w1I;(dr), where z = rm with II; being a measure on (0,00) and 7 a
fixed probability mass function on the type space F in vector form, the following
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theorem comes from Theorem 5.1 and Theorem 6.2 in Ren et al. (2016). See also
Kyprianou and Palau (20184, Theorem 6).

Theorem 1.3. Suppose that Ay > 0. The following assertions hold:
(1) If (xlogx condition) holds, then for any Py, W is the LY (Pg) limit of Wy
as t — oo.
(2) If (vlogx condition) doesn’t hold, then for any & € RY, Wi = 0, Py a.s.

We will prove this theorem in Section 2. By using this theorem we obtain a
strong law of large numbers for MCSBPs. This result matches perfectly classical
analogues for multi-type Galton—Watson processes; see for example Theorem V.6.1
of Athreya and Ney (2004).

Theorem 1.4. Suppose that X is a MCSBP with principal eigenvalue A\ > 0 and
right and left associated eigenvectors ¢, ¢ € Ri. Then for any x € Rf,l_,

lim ef)‘ltXt = Wooqg, P. a.s.

t—o0

As a corollary we obtain the following convergence on rates of types.

Theorem 1.5. For any = € R% \ {0} we have, conditional on non-extinction,

X, ¢

= -, z Q.S.

S XD T e

The remainder of this paper is structured as follows. In Section 2 we prove
Theorem 1. The proof of Theorem 2 is given in Section 3.

2. Spine decomposition

A now classical way to prove Theorem 2 is to find a spine decomposition for
{X,t > 0} under the Doob h-transform associated with W. More precisely, for
any ¢ € R‘i, using the martingale (W;,t > 0) we define a new probability measure
via _

(ﬁ& = ! th
dP, (¢, x)
Fi
Where {F;,t > 0} is the natural filtration generated by X.

Let (n:,t > 0) be a Markov chain on E with infinitesimal generator L, a d x d

matrix defined by

t > 0.

1
(i)
Denote by (P?,i € FE) the probabilities of i such that P?(no =i4)=1foralli € E.
Theorem 2.1. If X is a MCSBP, then for any x € Ri and f € Rff_,

E, [ef<f,Xt>] —F, [ef<f7Xt>] «

Eim [exp {—/0 (20(175)1}775 (t—s,f)+ /]Rd 2(ns) (1 — e~ =820y, (dz)) ds} X

+
t—s
HAns,m] ,

s<t

Lij = (B — Limjy M) 6(4), i,j € E.
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where the matrices {A® : s > 0} are given by

1 et .
Al = <1{i¢j}—BT /d () (e I — 1)pi(dz) + 1) , LjEE,
ij JRYL
and

Pl.()=>
i€E ’

with associated expectation operator Eim()

Proof: We start by noting that

E, |:e_<-f7Xt>:| = <e¢ :13>Em {<¢,Xt>e_<f’xf>} )

Replacing f by f + A¢ in (1.1) and (1.2) and differentiating with respect to A and
then setting A = 0, we obtain

o R S X

= E, [e~tX0)] <9<¢¢j °>w>,

where o denotes element wise multiplication of vectors and, for ¢t > 0, #! is the
vector with entries

0' (i) :==

—A1t

(2.1)

0
ﬁ.)e-“ —ui(t, £ +\9)

A=0

By an integration by parts, using (1.2) and (1.4) and that (Be;); = Bz;, we get
that 6%(i) is also the unique vector solution to
t
=1t [ lBT - an@e ) 0ds— [0 @i nas

/ a ¢’ ° 2 ) (D2 _ 1)(dz)ds.
Rd
Recall the definition of L and note that it conforms to the definition of an intensity

matrix of a Markov chain, thanks to the fact that ¢ is an eigenvector of BT. A
(vectorial) integration by parts in the spirit of Theorem 3.1.2 of Dynkin (2002),

[0](0) =[e"*1] (i) — / I () 0 (2¢(-). (s, £))] (i)ds

0
+ /Ote(”)L [ 7. g0 e - 1)—“'(‘12)] (1)ds,
e

()
where 1 = (1, € R%. Then appealing to the fact that {e'Z : ¢ > 0} is the
semigroup of (77, ), 1€F,

#6)= B0~ [ B 3 Jelns o 5. 7)) s

@ s oz ef(v(s,f).,z> . Moy (dz) s
+/0 Po% [/Riw bz N Ta ]d. (2.2)
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Next, we make a change of variable u = t — s and separate the last inner product
into two parts. For all s <t and z € R‘i

(0 b0 z) = 0" (n)o(ns)=(ns) + S0 (7)b(7)=()).

J#Ns

Therefore, (2.2) is transformed into
¢
6') =Elg(n)) ~ | BY 20" (n)c(n. v (¢ — 5. )] ds
0

t
v ) Bt let_s(”s)/ () (e P2 1), (d2)] ds
0 R4

+

t oo t=s(y QU) [ e wolt=s.p)2) z)| ds
v [ T A 1), (d2) | ds.

Recall that (1.5) holds and hence, by applying Chen et al. (2018+, Lemma 6.1)
to the Lévy system associated to L, using, in their notation, the functions

a(s,1) = 2c(i)ui(s, ) + / 2(i)(1— e @ED)) 4 (d)

d
R+

and
- 1 N o (v(s,f) 2
F(s,i,j) =In (1{1-#}?/ 2(j) (e P2 1) (dz) + 1) 7
Ji JRE

we obtain

(i) = E? |exp{ — t c(ns)vp, (t — s 2(ns)(1 — e~ (@(t=s.0).2) 2) | ds
(i) E[ p{ /(2 (o (¢ = .5+ 1 Jin >>d}

:
HA%f,ns] :

s<t

O

Theorem 2.1 suggests that the process (X, Pg) is equal in law to a process
{T'; : t > 0}, whose law is henceforth denoted by P, € Ri, where

Lo=X,+ > X%+ > X+ > XP, >0,
s<t:c s<t:d s<t:j
such that X’ is an independent copy of (X, P,) and the processes X%, X%* and

X% are defined through a process of immigration as follows: Given the path of the
Markov chain (1, Pim),

[continuous immigration] in a Poissonian way a ¢»-MCSBP X ©® immigrates at
(s,ms) with rate ds x 2¢(ns)dN,,,

[discontinuous immigration] in a Poissonian way a 1»-MCSBP X%* immigrates
at (s,7ms) with rate ds X [ 2(ns) ., (d2)Ps
+
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[jump immigration] at each jump time s of 1, a »-MCSBP X* immigrates at
(s,ms) with law fRi Vo n.(d2)P;, where for each ¢,j € F,

1 ) 1 .
vij(dz) = l{i;éj}ﬁz(]),“i(dz) + <1 - 1{#]‘}?/ U(J)Mz'(d’v)> do(dz).
ij ij

d
R+

Given 7, the above three immigration processes are independent.

In the above description, the quantity IN; is the excursion measure of the -
MCSBP corresponding to Pe,. To be more precise, Dynkin and Kuznetsov (2004)
showed that associated to the laws {Pe, : i € E} are the measures {N; : i € E},
defined on the same measurable space, which satisfy

Nz(l _ e‘(f;Xt>) = —logE,, (e_<'f’Xt>),
for all ¢ > 0. A particular feature of N; that we shall use later is that

Nz(<f7Xt>) :Eel(<f7Xt>) (23)
Note, in order for the measures N;, i = 1,--- ,d, to be well defined, we need
the assumption made in the introduction that Pe, ({1, X:) = 0) > 0 for all ¢ > 0,
i=1,---,d.

Observe that the processes X ¢, X 4 and X7 are initially zero valued, therefore,
if Ty = & then X = x. The following result corresponds to a classical spine
decomposition, albeit now for the setting of an MCSBP. Note, we henceforth refer to
the process 1 as the spine. By following the same proof as Theorem 5 in Kyprianou
and Palau (2018+) we can easily establish the next result.

Theorem 2.2 (Spine decomposition). For any x € RY, (T'y,t > 0;Py) is equal in
law to (X¢,t > 0;Py).

For the sake of brevity, we leave the proof to the reader.

2.1. Proof of Theorem 1.5. We follow a well established line of reasoning. We know
that 1/W; is a positive ]INDm—supermartingale and hence lim;_,, W; exists }INDm—almost
surely. Therefore W; converges in L!(P3) to a non-degenerated limit as soon as we
prove that ]INDm(lim infi 00 Wi < 00) = 1.

We consider the spine decomposition in Theorem 2.2. Given the spine 7, let us
write (s, IS, Ijs)szo for the process of immigrated vector along the spine (i.e. I‘Si =
X5 and I = X3*). Then (s, I?) is Poissonian with intensity ds x z(ns)pn. (d2)
and, if s is such that n,_ # 7, then I’ is distributed according to v,, .. Let
S =0o(ns, (s, I¢, ), s > 0) be the sigma algebra which informs the location of the
spine and the vector issued at each immigration time and write

Zy = e Mg, Ty).

Since (T'.,P,) is equal in law to (X.,]INDZ), to prove ]INDm(lim inf; oo Wy < 00) =1,
we only need to prove that

Pm(llgg}f Zy < 0) = 1. (2.4)

By Fatou’s Lemma
Eg[liminf Z;|S] < liminf E,[Z;|S].
t—o0 t—o0

It therefore remains to show that liminf;, . Ez[Z;|S] < oo, ]I~Dac a.s.
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By using that the processes X ©°, X%* conditioned on S are Poissonian, the
description of X%, I' and I¢, formula (2.3) and that W is a martingale, we have
that for ¢ > 0 and « € RY,

lim inf Ez[Z;|S]
t—o0

= (¢ )+ /0 2c(ns)e M p(na)ds + Y e M, I9) + Y e Mg, IL).

0<s 0<s

Since A; > 0, the first integral is finite. We need to prove that the other sums are
finite a.s. In order to do it, we will decompose the sum in small jumps: {(s, IS) :
(1,1%) < eM*} and big jumps: {(s,I9) : (1,I¢) > M}, and we handle I, in
similar way. Denote Mg := max{¢(i) : ¢ € E}. For the small jumps, by the
definition of v,

o | DTS TN ry<oney + D€ S Ty piyconisy

0<s 0<s

/ / e M2 (0) (D, 2)jan, (d2)ds
0 J(1,z)<e*r1®
—|—// e_Als<¢az>Vns,ns(dz)d31
1,z)<e*r1®

<CM¢Z/ /u s e M(1, 2) % (dz)ds,

i€ER

:Em

where C' is a positive constant. For each i € F,

/ /1z <ene e M(1, z)? i (dz)ds
< /<1 z>_1<1 ,2)pi(dz) + /<1 z>>1<1 ,2)pi(dz) < oo.

Therefore,

D e MG TN oy + D UG T) L gy oy <000 Pras

0<s 0<s

For the big jumps, using Fubini’s Theorem, we get

Zl{<171‘3>>c*15} + Zl{u,p’s»chs}

0<s 0<s

_E, [ / / (1) 1, (A2)ds + / / Vo (d2)ds
1,z)>ers (1,z)>er1®
/ / (1, z)p;(dz)ds
icE 1,z)>er1s

Alz/lz (1,2)In((1, 2)) s (d2) < 0.

i€ER
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This implies that P, a.s. we have finitely many big jumps and therefore
D e MG TN ey + D UG T)T G gy <000 Paas
0<s 0<s

So, liminf; o0 Ex[Z:|S] < 00, Py a.s.
Now, we will prove the second part of the Theorem. Since
Pg(limsup W; = 00) = Py (limsup Z; = o),
t—o0

t—o0

if we prove that
limsup Z; = o0 Py a.s. (2.5)

t—o0

then }INDm and P, are singular and hence

P, (limsup W = 0) = 1.

t—o00

It remains to show (2.5). Suppose that for a fixed i € F,
[ aam s - .
(1,z)>1
We will divide the proof in two parts.

(i) First assume that
/ z(i) In((1, 2))p;(dz) = oo.
(1,z)>1

Denote by T the set of times at which we immigrate (s, X%*) along the spine,
then for s € T,

Zy> e Mg, X,

To prove (2.5), we only need to prove that

lim sup e_’\15<¢),Xg’S> = oo0.
T2s—o00

Since e M5 (¢h, X ) > mge 15(1, X ), where mg := min{¢(i) : i € E}, we only
need to prove that
limsup e (1, X$*) = oo. (2.6)
T3s—00
For T, K > 1, define the subsets
Ar g =t{s € TN (T,00) : (1, X°) > KeM*}.

Then, given the Markov chain (7, Pgm), Ar i is a Poisson random variable with
parameter [ f<1 2> i 2(Ms) iy, (dz)ds. To prove (2.6), we only need to prove

that
/ ds/ z2(ns) i, (dz) = o0, Pim a.s.
T (1,z)>Ke*1s

for all T, K > 1. Observe that 7 is ergodic. Then there exists C; > 0 and random
S such that

t
/ 1y—pds>Cit  forallt>S  Ph, as.
0
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Let us denote by R = max{Ke™7” Ke*}. Then, by Fubini’s Theorem and the
previous inequality,

/ / 20, (d2)ds > / / 2(02)L i, (d2)dl3
1 z >Kc>‘1 1 z >Kc>‘1

_)\1 z(i) In((1, 2))p;(dz) — D = oo,
(1,z)>R

where D = (A\{ ' In(K) +T) f<1 >R z(#)p;(dz) < co. Therefore we have (2.5).
(ii) Next suppose that, for j # i,
[ sms)ds -
(1,z)>1

By inequality (1.5) and the ergodicity of 7, the set 7:= {s > 0:n,_ =i,ns = j} is
not bounded. For all s € T

Zs > e M5 (g, X))

Let us denote by 71,72,--- a enumeration of this times in increasing order. By
applying the distribution of X7 in the jump times 7,, we have that for all K > 0,
D Pale ™ML, X)) > K) =Y EalPale ™™ (1, X5™) > K | )]
n>1 n>1
= TZE [/ 1ie—nimqa, z>>K}Z( )pi(dz)
1] n>1

= Z/ Lierimn (1,2)> Ky 2(J)pi(d2)

n>1

By renewal theory, there exist A € (O, o0) and a subset €1 with P,(Q1) = 1 such
that for all w € O there exists N = N(w) > 0 such that

™ < An, for all n > N.
Then,
Z/ Lierimn(1,2)> K} 2 (7)) pi(dz) Z/ Tie-rian(y 2> k32 (J)pi(dz).
n>1 n>N

By the integral test criterion for series, the previous series is divergent since

/ / e zip i) m(dz)ds

In({1, 2))u;(dz) — D = oo,

- /K ) (L, 2)s(d2) ~

where D = ((\MA)~'In(K) + N) f(l,z>>K z(1)pi(dz) < oo. This implies
S Pt M 1,4 2 K)

n>1

=Eq Z/Rd Lie-ximm 1,2y >k} 2(7)pi(dz) | = oo

n>1



420 A. E. Kyprianou, S. Palau and Y.-X. Ren

Therefore, by the Borel Cantelli Lemma,

limsup e ™™ (1, X3™) > K, P as.
n—oo
for any K > 0, and then
limsup e ™7™ (1, X3™) = oc.
n—oo
Hence we have

limsup Z; > lim sup ef)‘“'"<¢, X%’T"> = 00,
5—00 n— o0

which says that (2.5) holds. O

3. Proof of Theorem 1.4

Suppose that (2 1log 2 condition) doesn’t hold, then
1
limsup e Mt X, (i) < lim —e M, X,) =0 P, a.s.
t_)oop t( ) — oo ¢(Z> <d) t> x

We therefore focus on the case when (zlogx condition) holds. In order to do
this, we will separate small jumps from big jumps in the Poisson measures. More
precisely, for each i € E, let us define the Poisson random measures

N (ds,dz, dr) = Lz conney Nilds, dz, dr)
and

Nl.(z)(ds7 dz,dr) :=1g4 2ysensy Nilds, dz, dr)

and denote by ]\Nfi(l) and ]\Nfi@) their compensated versions, respectively.

We are going to compute the proof of Theorem 1.4 in three steps. First, in lattice
times, we will approximate the value of the limit by the value of the limit of a
conditional expectation. With this relation, we are going to find our limit in lattice
times. And finally in the third step, we will extend the result to continuous times.

3.1. Proof for lattice times. First, we will prove Theorem 1.4 in lattice times. For
each 0 > 0, consider the lattice times nd, n € N. We will approximate the value of
the limit by the value of the limit of a conditional expectation.

oo+ conditic d
Lemma 3.1. If (xlogx condition) holds, then for any m € N, 0 > 0 and © € RY,

lim eiAl(n‘Fm)UX(n_i_m)o. — Em |:ei>\l(n+m)gX(n+m)U“Fncr:| = Oa

n—oo
in LY (Pg) and Py a.s.
Proof: The result is true if we prove that for all k € E,
. —A1(n+m)o _ —A1(n+m)o =
nh~>ngo € <eka X(n+m)a’> Eqg |:e <ek7 X(n+m)a> }‘Fncr:| 0,
in L'(P,) and P, a.s. Let s, > 0. By the Markov property we have
e M) (e Xy y,) — Eq {e_“(”s) (er, Xt4s) \ft]

= e Mi(t+s) (er, Xits) — e (t+e) (M(s)ex, Xy).
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Now, applying equation (1.8) to the times ¢ and ¢ + s, we obtain

e N (g, X)) — e M) (M (s)er, X )

+s

_Ze_)\l t+s) / [M(t + s — u)ek]“/ 2CiXu,iqu,i

ieE
+ 3 e t+8)/ / / Mt + 5 — u)ex, 2)1gex, 3 Ni(du, dz,dl)
icE Rd - ’
=Cliys(exr) + Stirs(er) + Biigs(er), (3.1)
where
Cri+s(er) Ze_’\l(t“) / [M(t+ s —u)eglin/2¢: X, dW, i,
icE
t+s
St,i+s(ex) Zefh(t“/ / / (t+s—u)er, 2)1i<x, I}N( )(du dz,dr),
icE Rd
By 11s(ex) Zefh(t“/ / / (t+s—u)ex, 2)1ir<x,_ N, i(2)(du,dz,dr).
icE Rd

To complete the proof, we need to control the convergence of the above three terms.

(i) Lattice convergence of Ct 11s(ex): We will show that for any k € E, m € N,
oc>0and x € R‘i

lim Chp (ntm)o(€x) =0, in L?(P,) and P, a.s.

n—oo

First note that for ¢ € [no, (n 4+ m)o], the process

n mo) Zef)‘l("er v / [M((n+m)o — u)eg]in/2¢; Xy iAW, ; (3.2)

i€EE no

is a continuous local martingale with quadratic variation given by

Zeszl(ner 7 / ([M((n +m)o — u)ex];)*2¢; X, idu.
i€k no

Then, by taking t = (n 4+ m)o, we have
2
Ex |:(Cna,(n+m)0(ek)) :|

(n+m)o
= ¢ 2lntm)og lz / (IM((n+m)o —u)ep);)?2¢; Xy idu
i€l

Denote by C' = max{c; : i € E}. Observe that (M (t)e;); = M(t);r and by
equation (1.9) exists C; > 0 such that |[M(t)|| < CieM?. Recall that mg =
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min{¢(i) : i € E}. Then
Eq |:(Cno,(n+m)o(ek>)2:|

9 (n+m)o
< %6—2)\1 (n-‘rm)‘TEm |:/ 62)\1 [(ntm)o—u] <d)7 Xu>dU‘|

me o

Bl ——
A1m¢

- W[l — e~ MimalgmAine
/\1m¢ ’

where in the first equality we used the fact that W,, = e"*%(¢, X ) is a martingale.

Therefore
ZIE [( o n+m)g(ek))2] < . (3.3)

Then we have the }LQ(Pm)—convergence. The P, a.s. convergence follows from
Chebyshev’s inequality, Borel-Cantelli Lemma and the previous inequality.

(#) Lattice convergence of Sy +s(ex): We will show that, if (zloga condition)
holds, then for any k€ E, m € N, 0 >0 and « € R‘i,

im S, (ntm)o(€r) =0, in L?(P) and P, a.s.

n—oo
Similar to the proof in (i) above, for ¢ € [no, (n + m)o], the process,

Sgn,m.,a')
e~ M ”*m)g / / / ((n+m)o —u)eg, z)1i<x, i}Ni(l)(du7 dz,dr)
no ]Rd - ’

icE
(3.4)

is a martingale with quadratic variation given by

672>\1(n+m o / / / TL + m g — ’Lb)ek, >2
no

IS
1{r§Xw-}1{(1,z)§e*1“}d7",“i(dz)du-
Then, by taking t = (n 4+ m)o, we have

E, {(sm(nm)a(ek)ﬂ

(n+m)o
— o2l n+m)oZE / / (M((n+m)o —u)ey, z)*
no R%

i€E
Xu7i1{<17z>§exlu},ui(dz)du

By equation (1.9), there exists C' > 0 such that for all ¢ > 0,
(M (t)ey, z) < Ce'(1, ). (3.5)
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Therefore, by using the definition of mg

E, [(Sm,(wm)d(e’“))z]

(n+m)o
ZE [/ /Rd e 2M1u (1 z> (p, X >1{ 1z><e*1u},uz(d2)d

ZEE

(n+m)o
/ / e_>\1’u<1,Z>21{<17z>§6>\1u}ﬂ7j(dz)du,
i€eEY "o RY

where in the first equality we used the fact that W, = e *1%(¢, X ) is a martingale.
Taking sum over n, we get

= 2
ZIEQ: [(sm,<n+m)g(ek)) ]
d)’ Z ‘/na ‘/Rd —A1u ]_ Z 1{(1 z><c>‘1“}lllz(dZ)d

n=1lieF

By Fubini’s Theorem applied to the Lebesgue measure in R and the countable
measure in N, we get

i@m [(sm(nm)a(ek))z]

d) S \_'U«/UJ
5 Z/ /Rd >\1u<1 Z> 1{(1 z><c*1u},u1(dz)d

i€EE

02 ¢’ AU 2)%1 dz)du.
Z - ue z) {(1, z)<e>‘1“}lul( z)

i€l

By Fubini’s Theorem, for each i € F,

/ /Rd uef)‘1"<1,z>21{<1)z>gex1u}ui(dz)du

/1 / ue (1, 2)? i (dz)du
“Mu(q 2V dup, (dz
/1z)>1/)\11n(1z <17 >d‘u1(d>
= )\—% /(17z>§1<1 2)?pi(dz) + /<1)z> 1(1,z>(1n(<1,z>)—I—l)ui(dz)) < 00.

Since (xlogz condition) holds,

ng [(Sna«mm)a(%)f] <0 (3.6)

and we have the convergence in L?(P;). By Chebyshev’s inequality and Borel-
Cantelli Lemma we have the P, a.s. convergence.
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(1) Lattice convergence of By t+s(er): We show that if (2logz condition) holds,
thenforanykEE,mEN,U>Oand:c€]Ri,

lim Big, (n+m)o(€r) =0, in L'(P) and P, a.s.

n—

Note that for any random measure N, we have N(A) < N(A) + N(A), where
N is the compensated measure and N the intensity measure. Then, by inequality

(3.5)

|Bna, (n+m)o (ek ) |

(n+m 0o
< CZ /Rd / e_)‘“<17 Z>1{T§Xu,i}1{(1,z>>chu}(dNi + drp;(dz)du)
i€E

< C / / / ]_ z 1{T<Xu1}1{<1 z>>cxlu}(dN —I—druz(dz)du)
iegp’no ]Rd

(3.7)
Using the fact that W is a martingale we have

[|Bna (n+m)o ek

ZE / /]Rd “(1,z){¢p, X >1{<1 Z>>e’\lu}uz(dz)d

ZEE

20¢ ¢>7
= / /]Rd (1,2)141 2y 501wy i (dz)du.

i€EE

I /\

By Fubini’s Theorem,
2C(¢, x)

17Z ln 17z Lbi dZ,
meA icE <1vz>>c)‘15n< ) In((1, z))pi(dz)

T [ana,(ner)a'(ek)H S

Recall that f1< 1.2)<00(1:2) In((1, 2))p1i(dz) < co. Therefore
nh—>H;oEm [ana,(ner)a'(ek)'] = 07

which says lim,, 0o Byo,(ntm)o(€x) = 0in L!(P;). The Py a.s. convergence follows
from the fact that

n'—>/ / / “(1,z 1{r<X A,z C,\lu}(dN + drp;(dz)du)
Rd

is decreasing and inequality (3.7).

Now applying (i)-(iii) to (3.1), the proof is complete. O

Proposition 3.2. If (xlogx condition) holds, then for any o > 0,
lim e M" X, = Ooqb?, in L (Py) and Py a.s.

n—00

Proof: Let k € E and n,m > 0. By the Markov property, we have
E, |:e—)\1 (n+m)a<ek, X(n+m)a'> |]-'ng} — e M (n+m)a<M(mU)ek, X o). (3.8)
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Let

S (1 3 Cl/e\_CZWU )
" max{p(i)p(k) : i,k € E}

and

Clefcgma
R,=[1+ — .
( min{¢(i)p(k) : i,k € E})

Observe that 7, — 1 and R,,, — 1 as m — oo. Moreover, by limit (1.9), for all
1el

rm(i)p(k) < €™M (M (mo)er); = e M(mo)i, < Rmd(i)o(k).
Hence,

P d(k)e 7 (p, X 1) < e MMM (ma ey, X o)
< Rund(k)e " (¢, X o).

Now, applying Lemma 3.1, the previous equation and equation (3.8), we get

limsup e "7 X,,, (k) =lim sup limsup e~ ("+m)7

n—00 m— 00 n—oo

€L, X(n+m)a’>

=lim sup limsup e ("™ (M (mo e, X o)
m— 00 n—r oo

< lim lim Rmd(k)Wo

m—00 N—00
=0(k)Weo, Pg as.
In a similar way,

liminf e M X, (k) = ¢(k)Woo, Py as.

n—o0
Therefore, the a.s. assertion is true. Recall that mg = min{¢(k),k € E} > 0.
Observe that 0 < e" ™" X, (k) < Wmm;l and by Theorem 1.3 the martingale W;

converges in L'(P). Then by the Generalized Dominated Convergence Theorem,
the L (P, ) assertion holds. (see for instance Dudley, 2002, Problem 12, p. 133), O

3.2. From lattice times to continuous times. In this section, we extend the conver-
gence along lattice times in Theorem 1.4 to convergence along continuous times
and conclude our main results.

Proof of Theorem 1./: Since ¢ is a positive vector, then for any a € R? we have
[{a, X )| < %(q&,XQ, where mg := min{¢(i) : i € E}. Therefore Py- a.s.

lim lim sup  |e"MYUM((n+1)o — t)er, Xi) — e Mep, X4

oc—0 n—oo te[no,(n+1)o]

[M((n+ D)o — t)ex — ex|

<lim lim sup e Mip, X,)
00 n—o0 teno,(n+1)o] me
M _
<[ lim lim sup W lim sup M =0.
770 N0 4eng, (n+1)0] 720 uef0,0] me

So, in order to have our result, it is enough to prove that

lim lim sup e MHUM((n+1)o — t)er, X)) = (k) Woo P, a.s.

o—0 n—oo te[no,(n+1)o]
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By applying equation (1.7) to ey and no <t < (n+ 1)o, we obtain
e MY M((n+1)o —t)er, X;)
= MY M(o)er, Xno)

t
+ e—AltZ/ [M((n —+ 1)0’ — u)ek]“/ 2CiXu,iqu,i

icE
—/\1’5 / / / ((n+1)o —u)ey, >1{1§Xu,,i}1\7i(1)(duadza di)
lGE no
/ / / ((n+1)o —u)e, >1{l<Xu7i}]\Nfi(Q)(du,dz,dl)
no ]Rd B '
::e*ht(M(a)ek, Xno) +Cp i (ex) + S5 (ex) + By ,(ex). (3.9)
By the result for lattice times (Proposition 3.2), Py a.s.
lim lim sup e MY{M(o)er, X o) = lim lim e M (M (0)er, X o)
oc—0 n—oo te[no,(n+1)0] c—0 n—oo

= (k)W
Hence, to complete the proof, we only need to prove that the last three terms on

the right-hand side of (3.9) converge uniformly for ¢ € [no, (n+1)o] first as n — oo
and then o — 0.

(i) Convergence of Cy] ,(ex): We show that for any k € E and x € R4,

lim lim sup  Cy 4(ex) =0 Py a.s.

020 =0 telng,(nt+1)o]
Recall the definition of the martingale C glven by (3.2). And note that
|mmmz@ﬂqmﬂ

Then, by the maximal inequality for martingales, for all € > 0 we have that for

m( sup K%@M>Qsm( sup @ﬂdmﬂ>%
)ol

te€[no,(n+1)o teno,(n+1)o]
Note that C 1) — Gy (ni1)o(€r), therefore by (3.3),

(n+1)o —
Z]P’ac < sup  |Cy ,(ex)| > e> < 0.
n=1

t€[no,(n+1)0]

62>\10’ (n,1,0)
= €2 UC("‘H

By Borel-Cantelli we have the result.

(i) Convergence of Sy, ;(ex): We show that, if (xlogx condition) holds, then for
anykEEandwERff_,

lim lim sup Sy ,(ex) =0 P, a.s.

oc—0 n—oo te[no,(n+1)o]

The proof is analogous to the previous one. But this time we use the martingale
519) given by (3.1) and equation (3.6).
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(iii) Convergence of By ,(ex): We show that, if (xlogx condition) holds, then for
anykEEandwERff_,

lim lim sup  B?,(ex)=0 P, a.s.
oc—0 n—oo te[no,(n+1)o] ’

By inequality (3.5),

| By, i (ex)] < Ce~ME=(nt1)o)

t 00
Z/ / / ef)‘u<17z>1{r§Xu,¢}1{(1,z)>e’\1“}(dNi —|—d7“,ul(dz)du)
icg’/no JRL JO

< Ce—)\l(t—(n—i-l)a) %

Z/ /Rd /0 67)\“<1,Z>1{T§Xuyi}1{<17z>>e/\1u}(dNi+dT’Ui(dZ)d’LL).
no g

icE
Then,

sup By (ex)]
t€[no,(n+1)0]

S Ce)\IUZ/ / / efA“<1, z>1{r<Xu 1}1{<1 z>>c>\1u}(dNi + drul(dz)du)
icg /no JREJO C 7

The claim is true by following the same steps after equation (3.7). We omit the

details here.

Putting the above three conclusions together, we now conclude
lim e M (eg, X)) = d(k) W, P, a.s.
t—o0

as required. (Il
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