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Abstract In this paper, we establish some functional central limit theorems for a large class
of general supercritical superprocesses with spatially dependent branching mechanisms sat-
isfying a second moment condition. In the particular case when the state E is a finite set
and the underlying motion is an irreducible Markov chain on E, our results are superprocess
analogs of the functional central limit theorems of Janson (Stoch. Process. Appl. 110:177—
245, 2004) for supercritical multitype branching processes. The results of this paper are
refinements of the central limit theorems in Ren et al. (Stoch. Process. Appl. 125:428-457,
2015).
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1 Introduction

Kesten and Stigum [22, 23] initiated the study of central limit theorems for supercritical
branching processes. In these two papers, they established central limit theorems for su-
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percritical multitype Galton-Watson processes by using the Jordan canonical form of the
mean matrix. Then in [5-7], Athreya proved central limit theorems for supercritical multi-
type continuous time branching processes, also using the Jordan canonical form of the mean
matrix. Asmussen and Keiding [4] used martingale central limit theorems to prove central
limit theorems for supercritical multitype branching processes. In [3], Asmussen and Her-
ing established spatial central limit theorems for general supercritical branching Markov
processes under a certain condition. In [21], Janson extended the results of [5-7, 22, 23]
and established functional central limit theorems for multitype branching processes. In [21,
Remark 4.1], Janson mentioned the possibility of extending his functional central limit the-
orems to the case of infinitely many types (with suitable assumptions). However, he ended
this remark with the following sentence: “It is far from clear how such an extension should
be formulated, and we have not pursued this”.

The recent study of spatial central limit theorems for branching Markov processes started
with [1]. In this paper, Adamczak and Mito§ proved some central limit theorems for su-
percritical branching Ornstein-Uhlenbeck processes with binary branching mechanism. In
[2], Adamczak and Mito$ obtained a strong law of large numbers and central limit theo-
rems of U -statistics of the OU branching system. In [31], Mito§ proved some central limit
theorems for some supercritical super diffusions with branching mechanisms satisfying a
fourth moment condition. In [32], we established central limit theorems for supercritical
super Ornstein-Uhlenbeck processes with branching mechanisms satisfying only a second
moment condition. More importantly, compared with the results of [1, 31], the central limit
theorems in [32] are more satisfactory since our limit normal random variables are non-
degenerate. In [33], we sharpened and generalized the spatial central limit theorems men-
tioned above, and obtained central limit theorems for a large class of general supercritical
branching symmetric Markov processes with spatially dependent branching mechanisms
satisfying only a second moment condition. In [34], we obtained central limit theorems for a
large class of general supercritical superprocesses with symmetric spatial motions and with
spatially dependent branching mechanisms satisfying only a second moment condition. Fur-
thermore, we also obtained the covariance structure of the limit Gaussian field in [34]. In
[35], we extended the results of [33] to supercritical branching nonsymmetric Markov pro-
cesses with spatially dependent branching mechanisms satisfying only a second moment
condition.

The main purpose of this paper is to establish functional central limit theorems, for su-
percritical superprocesses with spatially dependent branching mechanisms satisfying only
a second moment condition, similar to those of [21], for supercritical multitype branching
processes. For critical branching Markov processes starting from a Poisson random field or
an equilibrium distribution, and subcritical branching Markov processes with immigration,
some functional central limit theorems for the occupation times were established in a se-
ries of papers, see, for instance, [8—10, 27-30] and reference therein. The first functional
central limit theorem for the occupation times of critical superprocesses was given in Iscoe
[19], and then generalized in [11]. The functional central limit theorem for the occupation
time process of critical super «-stable processes, and the functional central limit theorem
for the occupation time process of critical super-Brownian motion with immigration, where
the immigration was governed by the Lebesgue measure or a super-Brownian motion, were
established in [18, 26, 36]. However, up to now, no spatial functional central limit theorems
have been established for general supercritical superprocesses. For simplicity, we will as-
sume the spatial process is symmetric. One could combine the techniques of this paper with
that of [35] to extend the results of this paper to the case when the spatial motion is not
symmetric. We leave this to the interested reader.
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Functional Central Limit Theorems for Supercritical Superprocesses 139

The organization of this paper is as follows. In the remainder of this section, we spell out
our assumptions and present our main result. Section 2 contains some preliminary results,
while the proof of the main result is given in Sect. 3.

1.1 Spatial Process

Our assumptions on the underlying spatial process are the same as in [33]. In this subsection,
we recall the assumptions on the spatial process.

E is a locally compact separable metric space and m is a o-finite Borel measure on
E with full support. 9 is a point not contained in E and will be interpreted as the ceme-
tery point. Every function f on E is automatically extended to Ey := E U {9} by setting
f(0)=0. We will assume that £ = {§,, I1,} is an m-symmetric Hunt process on E. The
semigroup of & will be denoted by {P, : r > 0}. We will always assume that there exists a
family of continuous strictly positive symmetric functions {p,(x, y) : # > 0} on E x E such
that

P f(x) = / PGy f(Im(dy).
E

It is well-known that for p > 1, {P, : t > 0} is a strongly continuous contraction semigroup
on L?(E, m).

Define @, (x) := p;(x, x). We will always assume that @, (x) satisfies the following two
conditions:

(a) Forany t > 0, we have
/ a; (x)m(dx) < oo.
E

(b) There exists #) > 0 such that @, (x) € L*(E,m).
It is easy to check (see [33]) that condition (b) above is equivalent to
(b') There exists 7, > 0 such that for all 7 > #y, a@,(x) € L>(E, m).
These two conditions are satisfied by a lot of Markov processes. In [33], we gave several
classes of examples of Markov processes satisfying these two conditions.

1.2 Superprocesses

Our basic assumptions on the superprocess are the same as in [34]. In this subsection, we
recall these assumptions. Let 5,(E) (B;r(E )) be the set of (nonnegative) bounded Borel
functions on E.

The superprocess X = {X, : t > 0} is determined by three parameters: a spatial motion
& ={&, I1,} on E satisfying the assumptions of the previous subsection, a branching rate
function B(x) on E which is a nonnegative bounded Borel function and a branching mech-
anism i of the form

Y (x, ) = —a(x)A+b(x)A? +/ (e —1+xy)n(x,dy), x€E, x>0, (1.1)
(0,4-00)

where a € B,(E), b € B;(E) and n is a kernel from E to (0, 0o) satisfying

[e ]
sup/ yin(x,dy) < co. (1.2)
x€E JO
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140 Y.-X. Ren et al.

Let Mp(E) be the space of finite measures on E, equipped with topology of weak
convergence. The superprocess X is a Markov process taking values in Mg (E). The ex-
istence of such superprocesses is well-known, see, for instance, [15] or [25]. As usual,
(fim) = ff(x)u(dx) and |[p| := (1, u). According to [25, Theorem 5.12], there is a
Borel right process X = {£2,G,G,, X,,P,} taking values in M (E) such that for every
f€BS(E) and n € Mp(E),

_logpu(e*(f.xt)) =<uf(.7l)’l’L)’ (1.3)

where u ¢ (x, t) is the unique positive solution to the equation

wy(x, 1)+ m/o V(Eup (€t —9)BE)ds =TT, f (&), (1.4)

where ¥ (9,1) = 0, A > 0. By the definition of Borel right processes (see [25, Definition
A.18)]), (G, G,):>0 are augmented, (G, : t > 0) is right continuous and X satisfies the Markov
property with respect to (G; : t > 0). Moreover, such a superprocess X has a Hunt realization
in Mp(E), see [25, Theorem 5.12]. In this paper, the superprocess we deal with is always
this Hunt realization.

Define

a(x):=pBx)a(x) and A(x) := ﬂ(x)(Zb(x) +/ yn(x, dy)). (1.5)
0

Then, by our assumptions, «(x) € B,(E) and A(x) € B,(E). Thus there exists K > 0 such
that

sup(|ar(x)| + A(x)) < K. (1.6)

xeE

For any f € B,(E) and (¢, x) € (0, 00) x E, define

T, f(x) = I [elo*®% f(g))]. (1.7)

It is well-known that 7; f (x) =Ps_(f, X,) for every x € E.
It is shown in [33] that there exists a family of continuous strictly positive symmetric
functions {g, (x, ¥),t > 0} on E x E such that ¢, (x, y) < eX'p,(x, y) and for any f € B, (E),

Tff(X)=/q[(x,y)f(y)m(dy)-
E

It follows immediately that, for any p > 1, {7, : t > 0} is a strongly continuous semigroup
on L?(E,m) and

IT: £l < e 0 £, (1.8)

Define a,(x) := ¢q;(x, x). It follows from the assumptions (a) and (b) in the previous
subsection that a, enjoys the following properties:

(i) For any ¢t > 0, we have
/ a,(x)m(dx) < o0.
E
(ii) There exists 7 > 0 such that for all 7 > o, a,(x) € L*(E, m).
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Functional Central Limit Theorems for Supercritical Superprocesses 141

By Holder’s inequality, we get

g (x,y) = / 4i2(X, 2)qu 2 (2, Y)m(dz) < a,(x)Pa, (y)'2.
E

Since ¢,(x, y) and a,(x) are continuous in x € E, by the dominated convergence theorem,
we get that, if f € L2(E,m), T, f(-) is continuous for any ¢ > 0.

It follows from (i) above that, for any ¢ > 0, 7; is a compact operator. The infinitesi-
mal generator £ of {T, : ¢ > 0} in L?>(E, m) has purely discrete spectrum with eigenvalues
—A1 > —Ay > —A3 > ---. It is known that either the number of these eigenvalues is finite,
or limy_, o, Ay = 0o. The first eigenvalue —A; is simple and the eigenfunction ¢; associated
with —A; can be chosen to be strictly positive everywhere and continuous. We will as-
sume that ||¢;], = 1. ¢; is sometimes denoted as qb%”. For k > 1, let {¢>;k),j =1,2,...n}
be an orthonormal basis of the eigenspace associated with —X;. It is well-known that
{¢;k),j =1,2,...n;k=1,2,...} forms a complete orthonormal basis of L*(E,m) and
all the eigenfunctions are continuous. For any £k > 1, j =1,...,n; and ¢ > 0, we have
T (x) = e ¢ (x) and

e PpP|(x) =40, xeE. (1.9)

It follows from the relation above that all the eigenfunctions ¢;-k) belong to L*(E,m). The
basic facts recalled in this paragraph are well-known, for instance, one can refer to [13,
Sect. 2].
In this paper, we always assume that the superprocess X is supercritical, that is, A; < 0.
In this paper, we also assume that, for any t > O and x € E,

Ps, 11X, =0} € (0, 1). (1.10)

Here is a sufficient condition for (1.10). Suppose that @ (z) = inf,cg (¥ (x, 7) B(x)) can be
written in the form:

D (z)=dz+ b+ / (e‘z-v -1+ zy)ﬁ(dy)
0

with @ € R, b > 0 and 7 being a measure on (0, o) satisfying I v AyHdy) < oo If
b +7(0,00) > 0 and D (7) satisfies

S|
/ —dz <00, (I.11)
then (1.10) holds. For the last claim, see, for instance, [14, Lemma 11.5.1].
1.3 Main Result

Let M (E) be the space of finite measure on E with compact support. We will use (-, ),
to denote inner product in L2(E, m). Any f € L?>(E, m) admits the following expansion:

oo ng

f =% atoP ),

k=1 j=1
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where aj‘. = (f, ¢§k)),,, and the series converges in L2(E, m). a} will sometimes be written
as a,. For f € L>(E,m), define

y(f) :=inf{k > 1: there exists j with 1 < j < ny such that a§ 3 0},

where we use the usual convention inf @ = co. We note that if f € L2(E, m) is nonnegative
and m(x : f(x) > 0) > 0, then (f, ¢),, > 0, which implies y (f) = 1.
Define

HI =g, X), 1> 0.

In [34, Lemma 1.1], it has been proved that, for any nonzero u € Mc(E), H,k‘j is a martin-
gale under P,,. Moreover, if A; > 24y, then sup,_3, P, (H}*/)* < 0. Thus the limit

kj . 1; k.j
H/ = lim H,
—00

exists P,-a.s. and in L2(P,).
In particular, we write W, := H"' = ¢*'(¢), X,) and Wy, := HL'. (W, :1 >0} is a
nonnegative martingale and

W, — Wa, P,-as.andin L*(P,).

Thus W, is non-degenerate. Moreover, we have P, (Wuo) = (¢, ). Put £ = (W, =0},
then P, (€) < 1.1t is clear that £ C {X,(E) > 0,Vt > 0}.

When one considers limiting behaviors of X, the first question to ask is the behavior of
(f, X;) with f being some nonnegative bounded Borel function, especially the case f =
Ix with K being a compact subset of E. It follows from [34, Remark 1.3] that for f €
L*(E,m)NL*(E,m),

t]irgloeh[(fv Xt) = (f? ¢l)m Weo in LZ(P/L)~

In particular, the convergence also holds in P, -probability. In [34, Theorem 1.4], we also
discussed the central limit theorems of (f, X;), see Lemma 1.1 below. Similar types of re-
sults were established for branching Markov processes in [33, 35]. For a branching Markov
process Z;, considering the proper scaling limit of ( f, Z;) as t — oo is equivalent to consid-
ering the scaling limit of (f, Z,,;) as s — oo for any ¢ > 0. Note that Z,,; = Zueﬁ, z,
where L, is the set of particles alive at time ¢ and Z!" is the branching Markov process start-
ing from the particle u € £,. Thus, conditioned on Z;, Z,,, is the sum of a finite number
of independent terms and so we are basically considering central limit theorems for sums
of independent random variables. This is one of the reasons that the results of [33, 35] can
be considered central limit theorems. In the case of superprocesses, even though the particle
picture is less clear, the main results of [32, 34] can also be considered central limit theorems
by analogy with those of [33, 35]. The purpose of this paper is to establish the functional
version of the central limit theorems of [34], that is, functional central limit theorems.

The following three subspaces of L2(E, m) will be needed in the statement of the main
result:

ng
C = {g(x): > Zb’;¢>j">(x):b_’;eR},

kihy 20 j=I
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ng
Ce = {g(x) =) ()20 =n. bk eR

j=1
and
Cyi={g(x) e L*(E,m)NL*(E,m): h <2hy ()}

The space C; consists of the functions in L2(E,m) that only have nontrivial projections
onto the eigen-spaces corresponding to those “large” eigenvalues —A; satisfying Ay > 2.
The space C; is of finite dimension. The space C,. is the (finite dimensional) eigen-space
corresponding to the “critical” eigenvalue —X; with A; = 2);. Note that there may not be
a critical eigenvalue and C, is empty in this case. The space C; consists of the functions
in L2(E,m) N L*(E, m) that only have nontrivial projections onto the eigen-spaces corre-
sponding to those “small” eigenvalues —A; satisfying A; < 2A;. The space C; is of infinite
dimension in general.
Fix a ¢ > max{K, —2A,}. Forany p > 1 and f € L?(E, m), define

UlfIe = [T mds xeE.
0

Then,

1/p 00 00
( / (UqIfI(X))pm(dX)> < / | T(1f1)] ds < / e ek ds| fl, < oo,
E 0 0

(1.12)
which implies that U, | f| € L?(E, m). Let f* and f~ be the positive part and negative part
of f respectively. For any x € E with U, | f|(x) < oo, we define

U, f(x) :=/ e T, f(x)ds = U, (f7)(x) = Uy (f7)(x)s
0

otherwise we define U, f (x) be an arbitrary real number. It follows from (1.12) that U, is a
bounded linear operator on L?(E, m). Notice that

Uy (6) () = (g + 10 "9 (x).

One can easily check that, for f € L>(E, m), y(U, f) =y (f).Infact, by Fubini’s theorem,
we have

(U 0), = /0 e (T f. 07, du= (g + 1) (f.0),- (1.13)

For any f € L?>(E, m), the random variable (Ul f1, X;) €0, oo] is well defined. Since
has compact support and 7, (U, | f1) is continuous, P, (U, | f1, X;)) = (T; (U, | f1), ) < 00,
and thus P, ((U,| f|, X;) < oo) = 1. Therefore, for t > 0, P,,((U, f, X;) is finite) = 1. In
Sect. 2.3, we will give a stronger result: for any u € Mc(E), and f € L2(E, m), it holds
that

P.((Uglf1, X;) < 00,V = 0) =P, ((U, ., X,) is finite, V¢ > 0) = 1.

We denote by D(R?) the space of all cadlag functions from [0, co) into R¢, equipped
with the Skorokhod topology. There is a metric § on ID(R?) which is compatible with the
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144 Y.-X. Ren et al.

Skorokhod topology. See, for instance, [20, Chapter VI, 1.26], for the definition of §. In
the present paper, we will consider weak convergence of processes in the Skorokhod space
D(R?), which is stronger than convergence in finite dimensional distributions.

For 7 > 0 and f €C;, we define

Oy =M / " (AT T f). 1), d. (1.14)
0

We write oy, as o}. In this paper, t will be used to denote a nonnegative number which
is also served as a time parameter for various processes. T will never be used to denote
stopping times. For /4 € C., define

o = (AR*, ¢1), . (1.15)

For (x) = 400, <1, Z;‘kzl b’;qb;k)(x) € C;, we put

nk
Lgx):= Y Y ¢ P(x), xeE, u=0,

k2hp<ip j=1
and
03 )
F(g)= Y Y e™pHS, >0
k2 i <ip j=1

Define

o0

ﬂg,r = e_)\lt/z‘/ e_AlS(A(Isg)(I.H—rg)v ¢1)mds~ (1.16)
0

We write 7 := f,.0. For f € C, and g € C;, we define

Mooy (. g) 1= —eM 1 1H2/2 f ; e MY (ATy-u N Uu—v8)s $1),,du, 0<7 <. (1.17)
7
The following lemma is the spatial central limit theorem in [34].
Lemma 1.1 Assume that f € C;, h € C., g € C; and p € M¢(E). Then, under P,
(1 (1, X}, 12 (g, Xo) = Fo(9), 17212, X,), 12 f, X,))

L (Waor VWaoG3(8), v Wao Ga (), V Weo G (), (1.18)

where G3(g) ~ N(O, ;8;), G,(h) ~ N(0, ,ohz) and G{(f) ~ N(O, a_)%). Moreover, Wy,
G3(g), Go(h) and G (f) are independent.

Recall that ¢ is a fixed number larger than max{K, —2A;}. Now we state our main result
of the functional central limit theorem.

Theorem 1.2 Assume that f € C;, h €C., g €C; and u € Mc(E). For any t > 0, define

Y () = MR (f X ), 10,
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Functional Central Limit Theorems for Supercritical Superprocesses 145

YA (r) =17 2O XL, 1> 0,
and

Y8 (1) i= MO (g, Xo4r) — Frie(g)),  T20.

Then, for each fixed t € [0, 00), (W;, Y,I’U"f(-), Ytz’h(-), Y,3’g(-)) is a D(R*)-valued random

variable under P,,, where W, is regarded as a constant process. Furthermore, under P,,,
1L,Ug 3, d h
(W, Y770, Y220, Y 20) 5 (Waou v/ WoaG U7 (), Wao G/ Wee G4 (),
ast— oo, (1.19)
in D(R*). Here G>" ~ N (0, pf) is a constant process, and {(G"V4/ (), G>¢(1)) : T > 0} is

a continuous R*-valued Gaussian process, on some probability space (§2, F, P), with mean
0 and covariance functions given by

P(Gl’Uqf(‘El)Gl’Uqf(‘Cz)) =0U, frr—11» for0 <t <1y, (1.20)
P(G*(1)G*¥ () = Byiy—r» for0<m <1, (1.21)
and
3,g 1,U, f _ n‘rl,rz(Uqfa g)s if‘oitl < f2,
P(G*#(t)G Y (1)) = {0’ if7 > 1> 0. (1.22)

Moreover, Wy, G>" and (G"Y4f, G*2) are independent.

For f € L*>(E, m), we define

3
fom = Y Y de¢P ),

ki =20 j=1

ng
fo@ = Y > el x),

kidg <2x j=1
fo&) = f(x) = fiox) = fx).

Then f(]) € CS, f(,;) € CC and f(s) € Cl.

Remark 1.3 Assume that g = U, f for some f € L*(E,m) N L*(E, m) satisfying A; >
Z}LV(f). Then g = Uq f(l), &) = Uqf(,;) and &) = Uq f(s). In particular, if Ay = Zky(f) then

8s) = 0.
If fic) =0, then g = g¢) + g(s), thus we have

1, 3.8(s
e)\l(t+r)/2(<g’ Xiie) — Fiie (86)) = Y, O+ 750 ().

Using the convergence of the first, second and fourth components in Theorem 1.2, we get
for any nonzero i € M¢(E), it holds under P, that, as t — oo,

(Weo 12 (g, Xy = Fra(86))) > (Woou v/ Woa (G140 + G400)), (1.23)
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146 Y.-X. Ren et al.

where G180 4+ G3# is a continuous Gaussian process, on some probability space
(82, F, P), with mean 0 and covariance function

P[(G"40 (1)) + G*49(1)) (G40 (1) + G40 ()]

= O'g(l),rz—rl + Nty (g(l)a g(s)) + ﬁgm,zz—tl 5 0 <71 =<1

If fi;) #0, then
t—l/zexl(rﬂ)/z((g’ X)) — Frae (g(s))) — fl/z(Y,l’g(” (t) + Yt3.g(s>(1,)) + YtZ,g(c)(T).
By (1.23), we get
I ) 4 Y0 () S o,
Thus using the convergence of the first and third components in Theorem 1.2, we get

(Wi, 17 2H12 (g, X, ) = Fiy (86)))) > (Woor v/ W G250)),

where G228 ~ N (0, pgm) is a constant process. Moreover, Wy, and G>£© are indepen-
dent. Note that, if A; = 2X,(y), then F,;.(g()) = 0, and thus we have (W,, t~1/2e*10)/2(g,

Xi1)) > (Wao, /Wao G250),

2 Preliminaries
In this section, we give some useful results and facts. In the remainder of this paper we will
use the following notation: for two positive functions f and g on E, f(x) < g(x) means

that there exists a constant ¢ > 0 such that f(x) <cg(x) forall x € E.
In [33, (2.25)], we have proved that

/ Ty () (0)ds < g ()72, @1
0

2.1 Estimates on the Moments of X

In this subsection, we will recall some results about the moments of ( f, X;). The first result
is [33, Lemma 2.1].

Lemma 2.1 Forany f € L*(E,m),x € E and t > 0, we have

o0 ny
Tfx) =Y e > aoPx) (2.2)
k=y(f) j=1
and
y(f)
tlilgexy(f);nf(x) — Za;(f)d);)/(f))(x), (2.3)
j=1
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Functional Central Limit Theorems for Supercritical Superprocesses 147

where the series in (2.2) converges absolutely and uniformly in any compact subset of E.
Moreover, for any t; > 0,

supetr O |T, f (x)| < e*r ||f||2< / a,1/2<x)m(dx)>a,1 )2, 2.4)
E

1>t

sup ePr N+ Ay () |e)‘y(f)’th(x) — f*(x)|
t1>1]

172

< i ||f||2< / an/z(x)m(dx)> (an ()7, 2:5)
E

My v () v (f)
wheref*:ZjV:]f a}’fqﬁjyf .

We now recall the second moments of the superprocess {X, : t > 0} (see, for example,
[34]): for f € L2(E,m) N L*(E, m) and 1 € M¢(E), we have for any ¢ > 0,

P/, X, = (Pulf, X)) + fE /0 LA ] dsitd). 2.6)
Thus,
Var, (. X,) = (Var, (£, X}, 1) = fE /0 L[AT D) dsud, @)
where Var, stands for the variance under P,,. Moreover, for f € L2(E, m) N L*(E, m),
Vars (f, X;) <eX'T,(f?)(x) € L*(E, m). (2.8)

The next result is [34, Lemma 2.6].
Recall that 7, is the constant in condition () in Sect. 1.1.

Lemma 2.2 Assume that f € L>(E,m) N L*(E, m).
(1) If Ay <2Ay(y), then forany x € E,

lim "' Vars, (f, X;) = 07¢1 (x). (2.9)

—00

Moreover, for (t, x) € (3ty, 00) X E, we have
M Vars, (f, X)) S agy (x)'2 (2.10)
(2) If A\t =2A,(y), then for any (t, x) € (3ty, 00) X E,
|t M Vars (f, X,) — prer (0| S 171 a (1), (2.11)

ty(fy v (f) (v ()
where f*:ZjV:{ a}/f(t)j”f .

(3) If Ay > 2Ay(y), then for any x € E,

o0
lim e*»'Vars, (f, X,) = / e DT (A( f*)z)(x)ds. (2.12)
0

—00
Moreover, for any (t, x) € (3ty, 00) x E,

DBy (f, X1V S agy (). (2.13)

@ Springer



148 Y.-X. Ren et al.

2.2 Excursion Measures of X

We use D to denote the space of Mg (E)-valued right continuous functions ¢ — @, on
(0, 00) having zero as a trap. We use (A, A,) to denote the natural o -algebras on D generated
by the coordinate process.

It is known (see [25, Sect. 8.4]) that one can associate with {Ps. : x € E} a family of
o -finite measures {N, : x € E'} defined on (DD, .A) such that N, ({0}) =0,

/(1 —e YNy (dw) = —logPs, (e7 /X)), feBf(E), t >0, (2.14)
D

and, forevery 0 <t <--- <t, < 00, and nonzero i, ..., b, € Mg(E),

Nx(wr] €duy,..., wy, € duy)
=Ny (0, €dpu)Py (Xyy—y €dpa) -+ Py, (Xyy—,_; €dpin). (2.15)

For earlier work on excursion measures of superprocesses, see [16, 17, 24].

For any u € M¢(E), let N(dw) be a Poisson random measure on the space D with
intensity f £ Nx(dw)u(dx), in a probability space (5, F ,P,). We define another process
{A;:t>0} by Ag=p and

Ay ::/w,N(dw), t>0.
D

Let ]-N', be the o -algebra generated by {N(A) : A € A,}. Then, {A, (]?,)[20, P, } has the same
law as {X, (G,):>0, P,.}, see [25, Theorem 8.24]. Thus,

]P’M[eXp{i@(fv Xt+s)}|Xt] = Py, [exp(i@(f, AS>)]

:exp{//(em(f"””—I)Nx(dw)X,(dx)}. (2.16)
EJD

The proposition below contains some useful properties of N,. The proofs are similar to those
in [16, Corollary 1.2, Proposition 1.1].

Proposition 2.3 If Ps_|(f, X,)| < 0o, then
[ om0 0. @.17)
IfPs ( f, X;)? < 0o, then
[ (0N =Vars (£, %, 2.18)

2.3 Potential Functions

Recall that ¢ > max{K, —2X,}. For any x € E such that U,| f|(x) < 00, we have

Uy f(x) = / e f(0ds. 2.19)
0
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Lemma 2.4 If f € L>(E, m), then for any i € Mc(E),
P.{(U,|fl. X;) <00, Vt =0} = 1. (2.20)
Moreover, (U, f, X,) is finite and right continuous, IP,-a.s.

Proof First, we claim that, if f is nonnegative and bounded, ¢~ (Ug f, X;) is a nonnega-
tive right continuous supermartingale with respect to {G; : t > 0}. In fact, since 7; f(x) <
I flloce®", we have

U, f(x) < ||f||oo/0 KL = (g — K) 7V f 1o < 0.

Since T, f(x) is continuous, by the dominated convergence theorem, we get that U, f is
continuous. Thus, U, f is a bounded and continuous function on E. Since X is a right
continuous process in Mg (E), we get that ¢ — (U, f, X;) is right continuous. By Fubini’s
theorem, we have, for any x € E and ¢ > 0,

(o)

LU, F10r) = f T, f()ds = ¢ / T, F(x)ds < U, £ ().
0

t

By the Markov property of X, we have, for ¢t > s,
Pu(e (U, f, X)IG,) = e (T (U, f), X,) < e (U, . X,).

Thus, e~ (U, f, X,) is a supermartingale.

Now, if f € L2(E, m) is nonnegative, then f(x) := f(x)1 fx)<m is bounded. Therefore
e~ (U, (fm), X,) is a nonnegative right continuous supermartingale with respect to {G, : t >
0}, and, as M — oo,

V> 01 e Uy (fur). Xi) 1 e (U, f. X,
Since U, f € L*(E,m), P.(U, f, X;) =(T: (U, f), ) < oo. Thus, by [12, Sect. 1.4, Theo-
rem 5], e~7' (U, f, X,) is a right continuous supermartingale. By [12, Sect. 1.4, Corollary 1],
e~ (U, f, X,) is bounded on each finite interval, ,-a.s., which implies that for any N > 0,
P.(e™"(U, f. X;) <00, t€[0,N]) =1.
Thus, we have
P.((Uy f. X;) <00, 1 €]0,00)) = 1.
Finally, we consider general f € L2(E, m). Let

20 == {(U,1 f1, X;) <00,V >0}
N{w: (U, (fF), Xi(®)) and (U, (f ™). X, (w)) are right continuous}.

We have proved that, for any u € Mg(E), P,(§2) = 1. It follows that, for @ € £2o,

(Us f. Xi(@)) = Uy (7). Xi (@) = (U (£7), X (@)

is well defined and right continuous. The proof is now complete. a
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2.4 Martingale Problem of X

In this subsection, we recall the martingale problem of superprocesses. For our superpro-
cess X, there exists a worthy (G;)-martingale measure {M;(B) : t > 0; B € B(E)} with
dominating measure

v(ds,dx,dy) ::ds/ A(2)8,(dx)8,(dy)X,(dz) (2.21)
E

such that for t > 0, f € B,(E) and u € M¢(E), we have, P,-a.s.,

t

= mfm+ [ 1er@umss. 22)
For the validity of (2.22), see [25, Theorem 7.26]. Recall that, roughly speaking, a martin-
gale measure is called worthy if it admits a dominating measure. The second term on the
right-hand side of (2.22) stands for the stochastic integral of T,_; f(z) with respect to the
worthy martingale measure M. For the precise definition of worthy martingale measures
and stochastic integrals with respect to worthy martingale measures, we refer our readers to
[25, Sect. 7.3].

Let £2(E) be the space of two-parameter predictable processes h;(x) such that for all
T >0and u € Mc(E),

T T
]P)M |:/(; \/;;2 hs(X)hs(y)v(dS,dx,dy)] = ]P)# |:/0 [EA(Z)hS(Z)ZXs(dZ)dS]

T
= / / T,[AR](2)dsu(dz) < cc.
EJo
Then, for h € ﬁ% (E),

M, (h) = / / hy ()M (ds, d2)
0 E

is well defined and it is a square-integrable cadlag G,-martingale under IP,, for each u €
M (E), with

(Mn)), = / (ARZ, X,)ds. (2.23)
0
For f € L>(E,m) N\ L*(E, m) and 1 € M (E), we have
/ / AT 1] @dspu(dz) = Var,{ £, X,) < oo,
EJO

which implies that

/ / T, f()M(ds. d2)
0 E

is well defined. Now, using a routine limit argument, we can show that (2.22) holds for all
feL*E,m)NL*E,m)and € M¢(E).
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For f € L*(E,m) N L*(E,m), U, f € L*(E,m) N L*(E, m). By (2.22), for t > 0 and
n € Mc(E), we have, P-ass.,

(Ug f, Xi) = (Tt(Uqf),M>+/o /ETr—s(Uqf)(Z)M(dS’dZ)
=(T,(Uqf),,u>+/// e " Tuyi—s f(2)duM(ds, dz)
o JEJo
=(T,(Uqf),,u>—|—e"’/// e "T, s f(x)duM(ds, dz)
0 JEJt

= (LW, ), 1)+ / e 9"du f / To—o f ()M (ds. d2)
t 0 JE
= J](0) + e 3] (o), (2.24)

where the fourth equality follows from the stochastic Fubini’s theorem for martingale mea-
sures (see, for instance, [25, Theorem 7.24]). Thus, for t > 0 and u© € M (E),

P, (U, f, X:) = J] (1) + e 3 () = 1. (2.25)

Forany u > 0 and 0 < T < u, we define
T
My = / / Ty f (X)M(ds, dx).
o JE

Then, for any u € Mc(E), {M}”), 0 < T <u} is a cadlag square-integrable martingale un-
der P, with

T
(M), = / (A(Tu=s )7, X, )ds. (2.26)
0
Note that
P, (M{)* =P,(M"), =Var,(f, X,). 2.27)

Lemma 2.5 If f € L*(E,m) N L*(E, m) and p € Mc(E), then t — (U, f, X,) is a cadlag
process on [0, 00), P,,-a.s. Moreover,

P, (U, f, X:) = J] (1) + €9 3] (1), V1 > 0) = 1. (2.28)

Proof Since (U, f, X;) is right continuous, P,-a.s., in light of (2.25), to prove (2.28), it
suffices to prove that Jlf (t) and sz (¢) are all cadlag in (0, 00), P,-a.s.
For Jlf(t), by Fubini’s theorem, for ¢ > 0,

sl =et [ e s s
t

Thus, it is easy to see that Jlf (¢) is continuous in ¢ € (0, 00).
Now, we consider sz (t). We claim that, for any #; > 0,

P, (5 (1) is cadlag in [11, 00)) = 1. (2.29)
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By the definition of J fort >,

3= / e " M™1,_,du. (2.30)

I

Since t M,(”)l,<” is right continuous, by the dominated convergence theorem, to prove
(2.29), it suffices to show that

1>t

o]
P, (/ e~ sup(| M |1, 2 )du < oo) =1. 2.31)
n

By the L,-maximum inequality and (2.27), we have

oo
P, </ e sup(| M |1,<,,)du>
n

t>1

h 2
52/ e 1P| M| du
I

=2/(><> e—qlt\/f Vars (f, Xu)u(dx)du. (2.32)
1 E

By (2.8) and (2.4), we have, for u > 1,
/ Vars, (f, X () < 5 f T,(f?) () (dx) < eKte / ()P ().
E E E

Since a,, (x) is continuous in E and p has compact support, it follows that f £ Oy (@)% x
u(dz) < oo. Thus, by (2.32), we have

o0 o
P, </ e " sup(|M,(”)}1,<u)du> 5/ e eK—20u/2 gy // a ()2 pu(dx) < oo.
1 =1 1 E

Now (2.31) follows immediately. Since #; > 0 are arbitrary, we have

P, (J] (1) is cadlag in (0, 00)) = 1. (2.33)

3 Proof of the Main Result

Suppose that (X"),>0 and X are all D(R?)-valued random variables. If for any k > 1 and
any ty, ...ty € Ry,

d
(X9, XL, X)) = (X0 X)), asn— oo,
then we write

—> X, asn— o0.
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3.1 Finite Dimensional Convergence

The following lemma is a generalization of [34, Remark 1.3]. Recall that W, is the limit of
the nonnegative martingale W, = H,l’l =M (P, X,) as t — 0.

Lemma 3.1 If f € L>(E, m) is nonnegative and y. € Mc¢(E), then
ML X)) = (fs o) Wes, in L'(P). 3.1

Proof If f is bounded, then the conclusion follows from [34, Remark 1.3]. So we will
assume that f is unbounded. For any M > 0, let fy(x) := f(x)17)<n and fM =f—fu.
Then fy >0, fi € L*(E,m)N L*(E, m) and fy; > 0 is nontrivial. In [34, Remark 1.3], we
have proved that

Jim Py [ (far. Xi) = (fir, 1) Woo| =0. (3.2)

Since fM > ( is nontrivial, we haveA: y(fM) =1.Fort > 1y, by (2.4), we have ell’T,fAM(x) <
MO ([ agyp(x)m(dx))ag, (x)'?|| fur 2. Thus, we get

]P)pt|e)hl’<va X)) — (fM,¢1)thw|

<P (furs X0 + Futs dD)mPr(Wao)
= MU, fur, 1) + (Futs @D P (Weo)

<o ( /E a,o/z(x)mwx))(a,‘O”, 1l Farllz + B (Weo) | fa 2 (3.3)

By (3.2) and (3.3), we have
limsup P, [ (£, X,) = (f, ¢0)n Woo| S Il e - (3.4)
Letting M — oo, we arrive at (3.1). U

Recall that

Hrk'j = E)th<¢;k)y X1>, t>0,

and for g(x) = Yy, 1, 21 bho (), x € E,
nk .
Fgy= Y, D e Wb,

k2ap <A j=1

where HY/ is the martingale limit of H,k’j . And recall that

i
(U k
Legy= Y Y Mbio(x), xeE.
k2 <Ay j=1

It is easy to see that I, g = I,(I;g) and T,,(1,8) = 1,(T,g) = g. Thus, we have, as u — oo,

(l.g, Xivu) = Fi(g), Py-as. (3.5)
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Define
HY (@) =" (¢" o), 120,0eD,

and

ng

Hy(@) (@)=Y > biHY (o).

k2 <Ay j=1

It follows from [34, Lemma 3.1] that the limit ﬁfoj = lim,_, o ﬁ,k'j exists N,-a.e., in L'(N,)
and in L?(N,). Then, as u — oo,

(I,g, w,) = Hyo(g)(w), Ni-ae., inL'(N,)andin L*(N,). (3.6)

Since N, (1,8, @) = Py, (1,8, X,) = g(x), we get that

Ny (Hao(8)) = g(x). 3.7)
By (2.18) and (2.7), we have
Ny (L8, 0,)* = Vary, (1,8, X,) = /0 "T[Ag|@ds, (3.8)
which implies that
N, (Hx(g))* = /O " L[Ade ) wds. (3.9)

The following simple fact will be used later:

) |x|n+1 2|X|"
< min , . (3.10)
(n+ 1) n!

n

gy

m=0

Note that, in contrast with (1.19), the following Lemma 3.2 says that (3.11), which is
about the convergence of finite dimensional distributions, is valid for any f € C,, not just
for U, f with f €C;.

Lemma 3.2 Assume that f € Cg, h €C., g € C; and pu € Mc(E). Suppose that Y,l'f, Y,z’h,
and Y,3’g are defined as in Theorem 1.2. Then, for any 0 < 7y < 175+ < 1, under P, as
t — 00,

(W, Y (@), Y @), Y2 ), Y (), Y () Y ()
L Woor VWao G (1), oo,V Wao G (1), W G2 Wao G,
VWeG*8 (1), ...,V W G3 (1), (3.11)
Here G*" ~ N(0, ,0,3) is a constant process and (G“/ (1)), ...,G" (1), G>4(1)),. ..,

G>#(1y.)) is an R**-valued Gaussian random variable, on some probability space (2, F, P),
with mean 0 and covariance

P(GY ()G (1)) =0pqr; for1<j<I<k (.12)
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P(G#(1))G** (1)) = Bgy—r;» for1 <j<I<k, (3.13)

and

nrj,tl(f7g), lflf‘]<l§k7

(3.14)
0, ifl<i<j<k

P(G*(t))G" (1)) = {
Moreover, Wy, G>" and (G (1)), ..., G/ (1), G>2(1)), ..., G>2(1})) are independent.

Proof To prove this theorem, we need to find the limit of the following quantity

k k k
b)) =P, exp{i@W, LN ORI U (HES i93,jY,3*8(r,-)}, (3.15)

j=1 j=1 j=1

where 0,0, ; e R, 1 =1,2,3, j =1,..., k. This proof is pretty long, so we divide it into
several steps.

Step 1. In this step, we reduce the problem of finding the limit above to the limit of
¢1(t) defined in (3.21) below. We put 6,0 =6,0=0630=0, o =0 and 5; :=7; — 7,1,
j=1,...,k. Define, for =0, ..., k,

k 1
f,(x) = Zel,lex](Tj_rl)/zTrj—rlf(x)» @(X) = Z93,1{)»1(Zj—I/)/ZIT[_T/g(x)
Jj=l Jj=0

and

Bi(x) == fi(x) +65,8(x) — G (x). (3.16)
For j=1,...,k, by (3.5),

Ft+rj(g) = lim (Iu+rk—rjgaXu+t+rk>- (317)
Uu— 00
Using this, we get that

k k k
b(t) =P, exp:iQW, + ) iV () + Y 6 Y ) + Y i Y ()
j=1

j=1 j=1

k
=P, exp:iOW, + ) [i60,Y (1)) +i62 ;72" (x))
j=1

+i03,;€" (g, X)) = Fipe (g))]}

k
= lim ]P)H exp{t@ Wt + Z[leletl’f(f]) —+ l.ezythz’h (.L.J) + i93,je)hl(1+7:j>/2<g, Xt+'[j>]
j=1

k
: 2 : A(t+7j)/2
_l< 93,]'3 1T/ 1M+‘[k*fjg7 Xu+t+fk>}

j=1
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u—00

k
= lim P, exp{ie W+ Y i1 TR0, 5 f + 1720, 1h 463 8, Xir))
j=1

— jeMtT)/2 (Iugk» XIH—H—rk) }

k
= lim P, exp{ie W+ it DRG) i f 17120, jh 403 18, Xy,

u—00
Jj=1

— MW X ) +i(IP ), x,ﬂk)}, (3.18)

where
IO, x) = / (exp{—ie" T, (@), wa)} — 1+ i TRRL (G, )Ny (dw).
D

The last equality in (3.18) follows from the Markov property of X, (2.16) and the fact that

/D(h?k, wu)Nx(dw) =Ps, (L,gk, X)) = 8 (x).
By (3.6), we have that as u — oo,
(1.0, wu) > Hx@)(®), Ny-ae., inL'(N;)andin L*(N,).
Then one can prove that

lim (J (1, ), Xigr,) = (TP, ), Xige ), Pu-as. (3.19)
Uu—>00
where

J® (¢, x) = / (exp{—ieM TPH (g} — 1+ i TV H (8))N, (dw).
D

For the detailed proof of (3.19), we refer readers to the proof of [34, Theorem 1.4]. Thus, by
(3.18) and the dominated convergence theorem, we get that

k

o) =P, exp{iQW, + Zie*'““ﬂﬂ(el,,f +17120, jh + 658, Xi41;)

j=1
_ iell(t+fk)/2(§k’ Xiiq) + i(J(k)(t, ), Xt+rk>}-
It is known (see [34, (3.46)]) that
1 2

. (k _ o~ . oqe
,ILTO(J (1, ), Xiie )= exp{—E(N.(Hoo(gk)) ,¢1)mWoo} in P, -probability.

By the definition in (3.16), By (x) = 01 f (x) + 03, 8(x) — gk (x). Thus, as t — oo,

Tim |6 (1) = 1) =0, (3.20)
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where

1 —~
¢l(t) = Plt exp: (le - E(N(Hm(gk))z’ ¢l)m) Wt

k-1
+ Zieh(H—U)/z(QlJ‘f/‘ + f_l/zgz,jh + 93,jg, X,+,j>

j=1
+ieM T (By 417120, 4, X,Hk)}. (3.21)

Therefore, to find the limit in (3.15), we only need to find the limit of ¢, (¢).
Step 2. In this step, we reduce the problem of finding the above limit to the problem of
finding the limit of ¢, (¢):

1 N 1<
H () =P, exp{ <i9 - E(N'(Hoo(gk))z, b1) — 3 ZQ) W,

j=1

k
+id"" 2 fo, X,) + it‘/zeM'/2<Z 6>, jh, X,>}, (3.22)

j=1
where C;, j =1,...,k, are the constants defined in (3.25) below. In the following we ex-

plain the details of this reduction.
By the Markov property of X, we have

Puexplie OB 41702, Xiso )| Frv ]

= exp{</ (exp{ie)“(’”")/z(Bk + t_l/292,kh, wsk>} — 1)N(da)), X1+TH>}
D

= exp{ie)‘l(l+rk)/2(N.<Bk + l‘il/zezykh, wsk), Xt+rk,1>}

X expy —=e "'V TN By, w5, ) Xigr )t X eXpYUR(E, ), Xigr,
P{ ; Ml )< k ? +1 1)} p{< +1% 1>}
=: (1) x (IT) x (III),

where
R(t,x) = / (exp{ie)‘l(H>Tk)/2<lil/292,kh + By, a)sk)} -1
D
1
— iM TR0, b+ By, oy ) + Eekl“ﬂk)wk, ka)2>Nx(dw), x€E.

For part (1), by the definition of g;, we get that

k—1
O3.8(x) — Bux) = — Y 05; 1L g (x)
j=0
=—e MV e (x), x€eE. (3.23)
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Since h € C., we have T;h(x) = e *1%/2h(x). Thus, for x € E,

N ((Be + 17202 4h, wy,)) = Ty (Bi + 17205 1h) (x)
=014 Ty f (x) + 1720, 2R (x) — e PG (x).

Hence, we have
(I) = exp{ie" TH=V2(g,  MHTy f 17120, kb — G, Xeie )} (3.24)

For part (II), we define for j =1, ..., k,

Cj:=¢""(N(Bj, )", ¢1), =" (Vars (B, w;,). $1), - (3.25)
By Lemma 3.1, we get that, as t — oo,
MTON By, 04,)% Xigr ) = CiWeo
in [P, -probability. Thus, we get that, as t — oo,
1 . -
(II) — exp —EC;( Wo, inIP,-probability. (3.26)
Now, we deal with part (/II). For x;, x, € R, by (3.10), we have
i(x1+x2) . 1 2
e —1—l(xl+x2)+§(xl)
. , 1, : , , .
<l|e"t —1—ix1+ E(XI) + |eUC2 —1— le{ + }e’/"l — 1||g’xz — 1|
X 1
< le|2<1 A %) + 5|X2|2 + [x1x2]- (3.27)

Using (3.27) with x; = e F/2(By w,, ) and xy = 05 1712 T2 (R, w,, ), we get

R (B )| >]
6

IA

|R(t,x)| e)“(’ﬂ")NX[(Bk’wsk)Z(l/\

9 2
4 O o g, W5 )2+ 1024|172 TN (h, g, ) (Br, wy)|

2
r MFW2|(B o )|
— MUt k)(Nx[<Bk,wSk>2<l /\ 6 Sk )i|
620)* _, 2 -1z
T N (04 021N (0, (B0,

= MFWY (¢, x).
Notice that U (-, x) | 0, as t — oo. Thus, for t > u,

limsup ™ VP, (U1, ), X;4q,_,) < limsupe T®(T,, . Uu, ), 1)

—>00 —00

= ekl'gk (U(M, ')7 ¢1)m<¢1! M)!
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where the last equality follows from (2.3) since y(U(u,-)) =1 for any u > 0. Letting
u — 0o, we get that

lim MR (U, ), X4y, ) =0,

1—00
which implies that
lim Pu|(R(1,), X134z, )| =0. (3.28)

Thus, by (3.24), (3.26) and (3.28), we have that, as t — oo,
‘IP’M [exp{ie™ T%2(By + 172605 kb, Xy )} Fisn ]
1
_ exp[ _EC" W, + l'e)nl(I+fk—])/2<91’ke)»1(5k)/2T5k f+ [_1/292,kh —2i_1, Xito_, >} '

— 0 in P, -probability.

Hence, using the Markov property and the dominated convergence theorem, we get that, as
t — 00,

1 1
n(@)—P, exp[ <i9 - E(N-(Hoo(gk))z» o), — _Ck> w;

2
k=2
+ Ziekl(tﬂj)ﬂ(@uf + z*‘/zez,jh +0s 8, Xz+r.,-)
j=1

+ ll@M(tJer_l)ﬂ(kal + 172 Or4-1 +020)h, Xy )} ‘

— 0.

Repeating the above procedure k times, we obtain that, as t — oo,
1 1
|¢1(t)—]P)ueXP{<i9—§( (Hs (gk) EX_: )

k
+ie"(fo, X)) + itl/zeM'/2<Z 6>, jh, x,>” —0. (3.29)

j=1

Therefore to find the limit in (3.21), we only need to find the limit of ¢, (¢) defined in (3.22).
Step 3. In this step, we try to find the limit in (3.22). By Lemma 1.1 with & replaced by
le‘.:l 6, ;h and f replaced by fy, we have

k
(Wt, tl/zeklt/2<292'jh, Xt>: e}n][/Z(fB7 Xt))

j=1

k
= (Ww,\/WmGz(Zez,jh)\/WOOGIQ%)),
j=1
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where GQ(ZI;:] 65, ;h) ~ N(O, (Z';:I 6:.)%pD), Gi(fo) ~ N, ajf_o). Moreover, W,
GZ(ZI;ZI 6, ;h) and G( fo) are independent. Thus, using equivalent definitions of con-
vergence in distribution and noticing that N.(Ho,(g))?> > 0 and le‘.zl C; >0, we get that

. 1 _ 1< 1
[]lglo(f’z(f) =P, exp{ (19 - E(N(Hoo(gk))z, ¢l)m 5 ch - 5(7;0

1< ’
j=1

Now we calculate the quantity (N.(Hoo(81))%, ¢1)m + le‘.:l C;+ 0;-0. By the definition
of C; in (3.25), we have,

k
(N.(Ha@))", 1), + D C+02

j=1

k
= {(N(Hoo(gk))27 ¢1)m + Ze)LISj (Varﬁ. (93jg - §]a (1)51.>, ¢1)m:|

=1

k
+ |:Z erMsi (Vm’a. (f~jv w5j>’ d’l)m + U}'oi|

j=1
k ~
+ ZZEAlSj ((COVB. ((f/a w5/>s (93,jg _§j7 Cl)sj)), ¢1)m-
j=1

In the following, we calculate the three parts separately.

1. By (3.9) and (3.23), we have that, for j =1,...,k,
(L(H @) 1), = [ e (4020 01) s
0

o0
- /0 e_AIX(A(I.r (‘93,jg + e_h(Tj_ijl)/zlrj*rj—ll/g\jfl))z’ (pl)mds

j—1
= 932,]IB§ + 293,_j 203,lﬁg,tj—r]
=0

o0
+ / e (AULE )% 1), ds.

Ti—Tj-1
By (3.8) and (3.23), we get that
(Vars (038 — 8, ws,), ¢1),, = (Vars (I, 8j—1, w1, ), d1),

=/I - e (A[L @] 1), ds.
0
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Thus, we have, for j =1,...,k,
(N.(He (@), 1), + (Vars (0: ;8 — 8  0s,). 1)

Jj—1
= 932,]-,35 + 265 ; 203,1,3g,rj—r1 + (N»(Hoo(gj—l))z’ ¢1)m-

1=0

Summing over j and using the fact that g, = 0, we get

k
(N.(Ho@0)* 1) + D (Vars 018 =8, 0,).41),

\\

=1

k ko j—1

= 65,8 + 22 05.103.1Be.c;—n- (3.31)
j=1

1=0

. ~ ) k L
2. Since fj — 91,jf + eMTir— zj)/ZTr S fj+1 = Gl.jf + Zl:j+l 91,19)»1(!] r/)/ZTr,_,jf,
we have

0-]%__/ = /0\ e)\lu(A[Tufh‘j]z"pl)mdu

]
2/(; eklu(A[Tu(el,jf"’ek](fﬂrl T’)/ZTT/H r/fi+l)]2’¢l)mdu
k

=00,05+2 ) 01010,
I=j+1

oo
=T 3 2
+ M@t rj)/ eMu(A[Tzwr,-HfrjfjH] ,¢])mdu
0

k 00

=0124’j0’?+2 Z 01,0110 15—, +/ (AT, fin .¢1), du

I=j+1 Tj+17T)

By (2.7), we have

B Tj+177T)
M (Vara.<fj+l,a)sj+1>’¢1)m =/ AIM(A[T f/+1] ¢1)
0

Thus, we get, for j =0,...,k—1,

k

o} + 1 (Vars (fi.o,,). 1), =01,07 +2 Y 010110 1qc, + 07
I=j+1

f/+l

Therefore, summing over j on both sides of the above equality, we get

Ze)‘l‘/ Var(; <fjvwfj> ¢1 Zgljaf-i_zz Z 01.10110 5 +U

j=1 1011+|

_29110f+22 Z 01,0110 5,5, (3.32)

j=11=j+1

where the last equality follows from the fact that 6, o = 0 and fk =01rf.
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. ~ k . o~ i—1 _ -
3. Since f;=Y",_; 0, €M1 I/)/ZTT,,ij and 6 ;g — g, =—> ! 05 ,e M m/zlfjfr,g,
we have

"1 (Covs ((f, ws,). (63,58 — & @5))). 1),

Ti—Tj ~
:/ e‘)hlu(ATu(fj)Tu(eljg_gj)’¢l)rndu
0

k j—1 -1

-1
=YD Ol IR / M (AT s [ ey d1)mdu

I=j r=0

k

—2291193 hitate)/2 [ e M (AT [ Lir 8 $1)mdu.

I=j r=0

Thus, we get that

k
2> &M (Covs ((fj @5)). (65,8 — By y))) . 1),

j=1

_ZZZ Z 01,65, eM(tﬁn)/Z/ 711”(ATr,—uf1u_r,g,¢1)mdu

=1 r=0 j=r+1 -

Y Y ern f ATy f L g $Ondu. (3.33)

=1 r=0

Now combining (3.31)—(3.33), we obtain that

(N.(Ho(30)’ +Zc +ot
k k j—1 k-1 k
=Y 03B H2Y > 05,058, ,,7,,+20 02D Y 010110,
j=1 j=11=0 j=11=j+1
—22291,93 ehte/2 / M (ATy o flue, 8, $1)mdu. (3.34)
=1 r=0

Step 4. Combining Steps 1 and 2 with (3.30) and (3.34), we get (3.11) immediately.
The proof is now complete. ]

Remark 3.3 By Lemma 3.2, we know that, for any f € C, and g € C;, there exists a Gaussian
process (G'Ya/ G3*#) with mean 0 and covariance function defined as in Theorem 1.2.
Furthermore, the next lemma shows that, this Gaussian process has a continuous version.
Thus, the Gaussian process (G'Us/ | G>¢) defined in Theorem 1.2 exists.

Lemma 3.4 Assume that f € Cs and g € C;. If (GVY47 (1), G>8(1)) =0 is a Gaussian pro-

cess, on some probability space ($2, F, P), with mean 0 and covariance function defined as
in Theorem 1.2, then, (G'"Y4/ G>3) has a continuous version.
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Proof By Kolmogorov’s continuity criterion, it suffices to show that, for any 7, > 7; > 0,
PG Vi (1)) — GVl (o) [ + PG () - G (o) < Cla — i, (3.35)
where C is a constant.
(1) Since G'Y4/ (13) — GYa/ (7)) ~ N(0, X (11, 12)) with X (71, 12) = P|G e/ (1) —
Gt (1)), we have
P|G V4! (1)) — GMUal ()| =32 (11, w)%. (3.36)
In the following, we write U, f as 9. By (3.12), we have
B(n, ) = P|GM (1) = 6V ()]

=2 ["eram o)
0

mds

o0

_ zekl(fz—rl)ﬂ/ eMS(A(TSf(q))(TS“rnf(q))’ ¢1)mdS
0

oo
— 2/0 ek,s(A(Tsf(q))(TS(f(q) _ eM(zz—n)/ZTzz_I] f(q)))7 ¢1)mds

o0
<2k [T | ) (70— T, )
0
We rewrite the last integral above as the sum of integrals over (0, #y) and (¢y, 00). For s > 1,
(T fONT(f@ = e @m0RT, o f D)),
S Nag | 9L, £9 = e TRT, o £ 33D
Thus,

/OO eMs ” (Tsf(q)) (Ts (f(q) _ekl(127rl)/2Tt27T1 f(q))) ||2ds S ” f(q) _e>~|(12*T1)/2TT271l f(q) ”2

0]
(3.38)
For s < ty, since || T |4 < eX*, we have

H (Tsf(q))(Tx(f(q) _ e)»l(fz—fl)/ZTr27rlf(4))) ”2
< ” Tsf(ti) ”4” Ts(f(q) _ 611(Z2—T1)/2TT27T1 f(ti)) H4

< eZKs ”f(q) ”4||f(q) _ e)»l(fz—fl)/2Tr27rl f(q) ”4
Thus,

/to eMs ” (Tsf(q))(TS(f(q) _e)vl(frTl)/ZTrrTl f(q))) ||2ds < ”f(q) _e)hl(TZ*Tl)/ZTT2711 f(q) ”4'
0

(3.39)
Combining (3.38) and (3.39) we get that

(11, T) S “f(q) _ e)Ll(TZ*Tl)/ZTTZ_TI f(q) ”2 + “f(q) _ ell(fszl)/ZTQ_Tlf(q) ”4 (3.40)
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It follows from Fubini’s theorem that, for p =2, 4,

“ Uqf—ekl(T27Tl)/2sz—Tl Uflf”p

o0 o0
/ e T, fdu — e(ll/2+q)(fz—f1>/ e 9T, fdu
0 =T
—T]
/ e T, fdu
0
o0

-1
5/ e qu ||T,,f||pdu + (e(k1/2+q)(rszl) _ 1)/ efq“||Tuf||pdu.
0 T

27T

p

o0
/ e T, fdu

2—T

<

+ (e()hl/2+‘1)(72*fl) _ 1)

P p

Since | T, fll, < eK“||f||1, and ¢ > K, we have
T—T] n—n
/ e T fllpdu < / e~ K dul fll, < (@ =) f,. (3.41)
0 0

If 7, — 71 > fo, by (2.4), for u > 7> — 7y, we have || T, f1l, < e " fl2llay/ |l . Thus,

oo

(e(kl/2+q)(f2*‘fl) _ 1)/ e v ||Tuf||pdu

-1

[o¢]
ge(kl/ﬂq)(rz*rl)/ efq“ef'\”f)”dquHz

77

< eP1/2= 2y () (2 =T1) <n-1. (3.42)

If 7, — 7 <ty, then e*/2+0@=™) _ | <, — 7, Thus,

(et1/2t0@=) _ 1) /

7-T

oo

o0
T, flpdu < (¢PH0E 1) £ / e Ky
0

<1n-—r1. (3.43)
Now, combining (3.41)—(3.43), we obtain that, for p =2, 4,
H U, f —eemir, Uqup S -1
Now, by (3.40), we have
2(11, 1) <C(np — ). (3.44)
Thus, by (3.36) and (3.44), we get
P|G" (1) — GV (o[ < C (12 — 7). (3.45)
(2) We claim that
P|G*¥(ry) — GS’g(T1)|4 <C(n—1u)’ (3.46)

where C is a constant. To prove (3.46), using the same argument as that of leading to (3.36),
it suffices to show that, for 0 < t; < 15,

P(G*(ry) — G*(11))" < C(r — 10). (347)
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Note that

P(G¥*(r) = G(1)" = 2840~ 2B

o0
=2/ e (A(L8)%, ¢1), ds
0
o0
_28—)»1(12—T1)/2/ e_)hls(A(ng)(Iﬁerf‘r]g)s¢l)mds
0
o0
= 2[ efm(A(Isg)(Isg - e%‘(frr’)/zlsﬂz_z] g), ¢1)mds.
0

Since g € C1. 8(x) = Yo, i, o DoY) (x), where bk = (g.¢"),. By (1.9), we have
that for any x € E,

nj
g < Y D B IgE (0] S e ag, (1),

k2 <Ay j=1

where ko = sup{k : 2A; < A;}. By the definition of I, g,

|1.sg - eikl(nirl)/z[sﬂzfrl g|
nj
— Z Zekks(l _ e(kkfkl/Z)(Tzfrl))b./;(b;k)(x)
k20 <ip j=1
ng
; k s
<Ea/D@m=1) Y Y B ()] S (—hi/2)(12 — )Mo ay, (1),
k2x <Ay j=1

It follows that
(o]
P(G**(r)) — G¥*(1))’ S (=K (12 — TI)/ e M0 (@, p1)mds
0
= (=ADK A1 = 2240) " (@21 91 (12 — T1).
Now the proof is complete. |

By Lemma 3.2, we get the following Corollary immediately.

Corollary 3.5 Let f €Cy, h€C,, g € C and p € Mc(E). Suppose that ¥,"U", y2", y>¢,
GVl G2 and G*¢ are defined as in Theorem 1.2. Then, under P, as t — oo,

(We, Y000 w20 72 8) S8 (W, Waa GV WG Wi G). (3.48)

3.2 The Tightness of (W;, ¥"U/ y?" y>£),_,in D(R?)

Recall that a sequence (X") of cadlag processes is called C-tight if it is tight, and if all its
weakly convergent limit points are continuous processes. In this subsection, we will show
that (W,, ¥,"Y", " v>%),_, is C-tight in D(R*) (with W,, for each ¢ > 0, being consid-
ered as a constant process). By [20, Chapter VI, Corollary 3.33], it suffices to show that
¥, Y17y o, (Y22 and (Y,*%),- are C-tight in D(R).
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3.2.1 The Tightmess of (Y,"""),— in D(R)

The main purpose of this subsection is to prove that (Y,I'U‘ff ‘(.))[>0 is C-tight in D(R). The
next lemma gives a sufficient condition for the tightness of a sequence (X"),>; in D(RY).

Lemma 3.6 Assume (X"),=, is a sequence of D(R?)-valued random variables, each X"
being defined on the space (2", F",{F]'};=0, P"). If (X") satisfies the following two condi-
tions:

(1) Forall N >0,

limsup P”" (sup |X:’}> < 00. (3.49)

n—o00 t<N

(2) Forall N >0,

lim lim sup sup P"(|X} — X)) =0, (3.50)
0=0  n S TeTp:S<T<S+6

where Ty, denotes the set of all {F]'}-stopping times that are bounded by N .
Then, the sequence (X") is tight in D(R?).

Proof This follows immediately from Theorem 4.5 in [20, Chapter VI]. O

To prove the tightness of (Y,]’U"f(-)),>0 in D(R), we will check that Y,]’U"f satisfies the
two conditions above. Recall that 7, is the constant in the condition (b) in Sect. 1.1.

Lemma 3.7 If f € C; and u € Mc(E), then for any N > 0,

sup P, (sup |Y,1'U"f(1')|) < 00. (3.51)

t>3tg T<N
Proof In this proof, we always assume that r > 3¢y. By (2.28), for any # > 0,
]P’H(Ytl’uqf(f) _ e“('“)/zllf(t +0)+ e(q+kl/2)(t+r)J2f(t +1),Vr > 0) -1.

First, we consider Jlf(t + 7). Recall that Jlf(t) =(T;(Uy f), u), t = 0. By (2.4), we have

sup M2 1 (1 4 1)| < sup M O\ TL (U, )], 1)
T<N

<N

< sup M T2 Flfay . )
T<N

< eMER N £, (3.52)

Next, we deal with sz (t + 7). Recall that

. o0
sz (t+7) =/ e_"”M,(i),a'u.
1+t
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Using (2.32) with t; = t, we have, for ¢ > 31,

o0
Pﬂ(sup |« + r)|) < ]P’H/ e sup (| M\ 140 2i)du
TN t T<N

< 2/‘°°€_qu\// Vars (f, X,)u(dx)du
t E

o0
5/ e-’iue—)»lu/Zdu /alo(x)‘/z,u(dx)
t E

= (g + M /D) e 2 | / 4y ()1Pu(dx), (353
E

where in the third inequality we use (2.10). It follows that,

sup P, (Sup 0D T (g r)‘) < sup @ HH/A0+NP (Sup 1 e+ T)D < o00.
>3t <N >31 <N

The proof is now complete. O
Next, we prove that
Lemma 3.8 If f € C; and u € Mc(E), then

limlimsup ~ sup P, (v, (1) - v,"" ($)]) =0, (3.54)
020 100 5 TeT:S<T<S+6

where Ty, is the set of all {G, . : T > O}-stopping times that are bounded by N .

Proof In this proof, we always assume that ¢ > 3#. By (2.28), we have, P,-a.s.,

1,Ug 1,Uy

|Yt f(T) —y, f(S)} < |exl<r+T>/2jlf(t +7T)— exl(t+s>/2jlf(t + S)|

+ |e(f1+11/2)(t+7'>‘]2f(t +7T)— e(q+kl/2)(t+S)J2f(t + S)|

= 5,@T,8)+ 1, T,5).
For J5,(t, T, S), by (3.52), we have that, as t — oo,

Pt T, ) = 2P, (sup 102 1 (1 4 1)) S M2 0| £l - 0. (3.55)
<N

Note that

S0, T,S)
< QDD | 1 (1 1Ty — I (1 4 S)| 4 [T latm2049)|| 1S (¢ 4 )|

< e(q+k1/2)(f+N)}J2f(t +T)— sz(t + S)| + @TM/DOFN | p(a+21/2)0 _ 1||J2f(t + T)|
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By (3.53), we get that, for ¢ > 31,
sup UMD lath /28 _ 1|]P’H}J2f(t +7)|
S,TETIQ,:S<T<S+9
< e @HH/DEEN | ot /20 _ 1|]P’,L(sup 17+ r)|)
T<N
S ett/P? — 1| >0, as®— 0. (3.56)
By (3.55) and (3.56), to prove (3.54), it suffices to show that
limlimsup — sup IR, 14+ T) — I (1 + )] =0, (3.57)
020 1—o0 g TeT:S<T<S+0

By the definition of sz , we have

oo

o0
— (u) — (u)
e "M, rdu —/ e "M, sdu
t+T +S

= (u) (u) e (u)
—qu u u —qu u
< / e | M — M,+S\du+/ e~ | M, s|du
t+T t+S

| e+ —Jt+9)| =

t+S

- @ ) ad )
u u — u
< [ e M Mgk [ e
t 4+

t+S
= (0, T,S) + J5(1, T, S).

First, we deal with J4. Since T, S € T, (t + T) Au and (¢t + S) A u are both {G, : T > 0}-
stopping times. Thus, by (2.26), we have

P, Ja(t, T, S)
o0
—qu (u) (u) 2
5/ e \/PM|M(1+T)Au M(t+sm| du
t
/ *‘I”\/pﬂ (H—T) <M(H)>(!+S)/\u)

t+T)Au
= [Cemlr [ A X asa
(t

+S)Au
o] T Au
= / e 4t P, / (A(Tu—s )2, Xyss)dsdu
0 SAu
< /Ooefq(qut)
“Jo

NAu
x \/ / e MUIP [ M AT, _s )2, Xopa) — (A(Tuss )2, $1), Woo|dsdu

T Au
q(u+r)\/ / —M(f+v) A(Tu sh)2, ¢1) Woodsdu
s

AU

=:J41 (t) + Ju2(t, T, S).

du
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Now we consider Jy 1. Let V(u — 5,1 4 5) := P, | (A(T,— )%, Xop1) — (A(Tus ),
®1)m Weo|. Then,

Jo1(t) < e~ @R/ g mN 2 /O ¥ g / /0 " Vu—s,t+s)dsdu.  (3.58)
Since (T,_, f)*(x) < eX@=9T,_ (f?)(x), we get that, for t > 3ty and s € (0, N A u),
V(u—s,t4s) <M /E Tias[ATus £)*] O p(dx) + K| (Tues )2 ,Pu (W)
< Mk g /E T (£2) O (dx) + K| Ty f13P L (W)

5 e}u](I+S)6K(u—s)e—}»](l+u)K/ ato(x)l/zu(dx) + KeZK(u—S) ”f”i]P/_L(Woo)
E

Se(Kf)\l)(ufx) +62K(u7s) Se(](f)\l)u +62Ku’

where in the third inequality we used (2.4) and the fact that || T,,_||4 < eX“~%). Note that

00 N o)
/ e—qu\// eK—ADu 4 o2Kudedy SNI/Z/ e~ @—K/2+x1/2u +e_("_K)”du < 00.
0 0 0

By Lemma 3.1, we get that V(u — s,¢ +5) — 0 as t — oco. By the dominated convergence
theorem, we get that

00 N
lim e_q"\// V(u—s,t+s)dsdu=0.
0 0

—>00

It follows from (3.58) that
lim ML (1) =0. (3.59)

For Ju (1, T,S), since (A(Tu—s /) ¢)m < IA(T—sf)*l < KK 73 <
Ke* 4| £112, we have

[e°]
Jin(t, T, S) < ||f||4e_("“'/2)’e_MN/2/ e_("‘K)"\/]PM(K(T Au—S Au)Weo)du
0

oo
S 91/Zef(q+)nl/2)t/ e—(qu)udu — (q _ K)flgl/Zef(q+A1/2)t,
0

where in the second inequality we used the fact that 7 Au — S A u < 6. Thus, we get

lim lim sup sup 4D, T, S) =0. (3.60)
00 1—00 5 TeTl:S<T<S+6

Combining (3.59) and (3.60), we get

lim lim sup sup e TP Iyt T, S) = 0. (3.61)

020 1—oo g 7eTl:S<T<S+0
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Finally, we consider Js5(¢, T, S). By Holder’s inequality, we get

t+T
P, Js(t,T, S) :IP’M/ e | MY |du <\/ / =204 | MY P du/P,(T — )
t+S
t+N 2
<6'? f e, M du
t
t+N
_ 91/2 / e—2qu]];DlL<M(u)>(t+S)/\udu
t
t+N
< 9172 / e—2qu]}DM(M(u)>udu
t

t+N
29”2\// 6*2‘1“/ Vars, (f, X.,)pu(dx)du
t E

t+N
591/2\// 672que—)»1udu/. 1y () 2u(dx) < 012/
t E

where in the second to the last inequality we used (2.10). Thus, we get that

lim lim sup sup e TP Js(t, T, S) = 0. (3.62)
020 1mo0 5 TeTl:S<T<S+0

Combining (3.61) and (3.62), we get (3.57) immediately. The proof is now complete. U

Lemma 39 If f € C; and pn € Mc(E), then, under P,, the family of processes
(¥, ()),~0 is C-tight in D(R).

Proof 1t follows from Lemmas 3.7 and 3.8 that (Y,I'Uqf(~)),>0 is tight in D(R) under P,.
By Corollary 3.5 and the fact that /WoG"Y/ is a continuous process, we obtain that

(¥,"Y7 ()20 is C-tight in D(R) under P,. O
3.2.2 The Tightness of(Y,z’h),>0 in D(R)

The next lemma will be used to prove the tightness of (Y,z’h (1))i=0-

Lemma 3.10 Suppose that {C(t),t > 0} and, for each t > 0, {C,(t), T > 0} are non-

decreasing cadlag processes defined on the space (82, F, P) such that C,(0) = C(0) =0
and for all T > 0,

Tlirn C,(t) =C(z) in probability. (3.63)
—00
If C is a continuous process, then

lim §(C;, C) =0 in probability, (3.64)
—>00
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where § is the Skorohod metric defined in [20, Chapter VI, 1.26]. Moreover, as t — oo,
c,—c-Lo,
which implies that (C;),> is C-tight in D(R).

Proof Let D be the subset of all the positive rational numbers. For any subsequence (1),
by a diagonal argument, we can find a further subsequence (n;) and a set £2p C 2 with
P(£2¢) =1 such that for all T € D and w € £2y,

lim C,; (7)(w) = C(7)(w). (3.65)
k—o0 k

Thus, by [20, Chapter VI, Theorem 2.15(c)], we have, for w € £2,
klir{gcﬁ(cn; (@), C(w)) =0,

which implies (3.64). The remaining assertion follows immediately from (3.64). O

Lemma 3.11 Ifh € C. and n € Mc(E), then the family of processes (Y,z’h(-)),>0 is C-tight
in D(R) under P,,.

Proof For h € C,, we have T;h = e*1"/2h. Thus, by (2.22), we get that, for t > 0, P, -a.s.
t
(h, X)) = e M2 (h, Xo) + e—*"ﬂ/ / M2 p(x)M (ds, dx).
0o JE
Since both sides of the above equation are cadlag, we have
t
P, ((h, X,)=e M2 (h, Xo) + e—M’/Z/ / 1 2h(x)M (ds, dx), Vi > o) =1.

0 JE

Thus, we have
+t
Y2 () =72 (h, Xo) + 1—1/2/ / 2 h(x)M (ds, dx)
0 E
t+t
=Y*"0) + f‘ﬂf / M (x)M (ds, dx).
t E

Therefore, {Y,z’h (1), T = 0} is a square-integrable martingale with

t+t

(")) =1"" / (AR, X,)ds. (3.66)

t

By (2.4), we have for 1 > 1,

1+t t+1
t’IIPM(/ eM-Y(AhZ,Xst) :rlf/ VT (AR ()dsp(dx) St'r
t EJt

Thus, for any 7 > 0, as t — oo,

(Y?")r) >0  inP,-probability. (3.67)
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Hence by Lemma 3.10 we have that ((Y,Z’h)),>0 is C-tight in D(R) under P,. Since
Y24(0) =171 2e M1 (g, X,) — N'(0, p2) in distribution as r — 00, we know that {¥"(0),
t > 0} is tight in R under IP,,. Therefore, by [20, Chapter VI, Theorem 4.13], we get that
(Y2"(-)),=0 is tight in D(R) under P,. By Corollary 3.5 and the fact that v/Wo,G>" is a
continuous process, we obtain that (Y,Z’h(-)),>0 is C-tight in D(R) under IP,,. The proof is
now complete. ]

3.2.3 The Tightness of (Y;"®);~0 in D(R)

Lemma 3.12 If g =3, .5, Z:”‘ 1b1;¢(k) € C and i € Mc(E), then the family of pro-

cesses (Y,3'g(-)),>0 is C-tight in D(R) under P,,.

Proof Note that

ng
3, A /2—2g k(pgk.J k.j
Yt 8(f) — Z Ze( 1/ ]‘)(H—T)bj(HtJr{r —H, /)

ki >2Ap j=1

+ Z nZke(“/z”\"x’”)b’;(Htk’j _ Hcl)cc,)j)

ki >22 j=1

= ZN 1)+ ZX (7).
For Zf(r), it is known (see [34, Remark 1.8]) that under P,
e(h/z—xk)r(HTk,j — HYY) 4, Gy W,
where G is a normal random variable. It follows that under P,,, as t — oo,
e(k1/2fkk)(r+~)b1;_(Htk,j _ H;(OJ) _d> b’;_G Wooe(kl/z”\k)‘.

Thus, e1/2-00pk(F — HE) is C-tight in D(R) under P,.. By [20, Corollary 3.33],
(Z2),-9 is C-tight in D(R) under P,,. Thus, to prove (Y%= is tight in D(R) under P,, it
suffices to show that (Z )i=0 is tight in D(R) under P,,.

Since {H/. — H}/ : © > 0} is a martingale under PP, using L, maximum inequality, we
get for &) > 2,

- j i\2
P#<Su1[\)/e()“/2 Ak)(t+z)|l_ltk+,/r _ ij‘) < 26(11/2 Ak)(H—N)\/P H—N H[k,,) .
<

By (2.22), we have

HY = (0, 1)+ f/ oM (x)M (ds, dx). (3.68)
Thus,

<Hk'j)f=for 5 (A(0P), X, )ds. (3.69)

@ Springer



Functional Central Limit Theorems for Supercritical Superprocesses 173

Therefore, by (2.4), we get that, for ¢ > 1,
P Hk,j Hk,j 2 N ks (k)\2
W(Hy —H') = T (A(9P)) ()dsu(dx)
EJt

~

t+N
< / eZ)Lksef)Llst 5 6(2)%7)\1)['
t

Hence,

supP, (sup e(kl/zfm(’”WH,ﬁ’; — HM ’) < 0. (3.70)

t>1 T<N

It follows that

supl?, (sup|Z/(0]) = - S|y [sup Py (sup e 220 — ) < o

=1 kihg>2h j=1
(3.71)
Next we prove that

l1m lim sup sup M(|Z,1(T) - ZZI(S)|) =0, (3.72)
00 1500 7T, SeTH0<T—-S<6

where Ty, is the set of all {G,, : T > 0}-stopping times that are bounded by N. It suffices to
show that, for A1 > 2X,,

lim lim sup sup [pu(|e()»1/2—)»k)(t+T)(H::_JT _Htk,./)
0=0 1—oo 7,5e7},:0=T—5<6

2— k.j k,j
e/ )‘k)(f+s)(Ht+1S — H, f)|) =0. (3.73)
‘We note that
(A1 2= ) (4T k.j k. j M /2=2)(t+S k. j k. j
eM1/2=1 )(Ht+T_Ht )_e( 1/2=M)(t )(Ht+S_Ht )|
*1/2—=hp)(t+S k. j k,j (A1 /2=2)(A+S) [, (A1/2—2p)0 k,j k.j
Ee(l/ K )|Ht+T_Hf s|+e 1/2=2p)(t )(e(l/ k _1)|Ht+T_H |

Ee(xl/zka)(HN)‘HﬁJ _ z+S| + etm/2- Ak)(r+N)( (A1/2-200 _ 1)sup|H,k+’r _ ij|

By (3.70), we get that, for ¢ > 1,

eMAmREN) (o01/27400 )P, (sup|H,’i;f; - Htk‘j|> SeMPW0 150, (3.74)
T<N

as 8 — 0. By (3.69), we have

(A1/2=2)(t+N) k. j k. j
et P |Ht+T H, s

(A /2=2p) (t+N) k.j k,j |2
<M/ \/IP)/4|Hz+T Hr+s|

:e(xl/z—xk><r+N)\/pu((Hk,j>

- <Hk$j>t+s)

t+T
— 2
=e/? *““N)\/Pu / (A ()", X )ds
t+S

t+T
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t+T
5\/P“/ A s
1+

t+N
- \/ [ Bl (atel x) - (AP 1), Wclds +0(4(6°) . 01), Pu o).

By Lemma 3.1,
im [ P |15 (A(6%9)7, X,) — (A(@P), ¢1) Was|ds =0
i—os ], i gi s Ay Jj s P1),, Woo .
Thus,
lim lim sup sup et gl gl
020 1500 7.5e77:0<T-5<0
S limy/0(A(¢)")" 61),,Bu(Wee) = 0. (3.75)

Combining (3.74) and (3.75), we get (3.73).
By Corollary 3.5 and the fact that «/W.,G>¢ is a continuous process, we obtain that
(Y,3’g(-)),>0 is C-tight in D(R) under P,,. The proof is now complete. O
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