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Abstract

Suppose d > 2 and 0 < B < a < 2. We consider the non-local operator £° = A®/2 4 S,
where
S'f(@) = lm A, ~8) [ (et ) - f@) 2o a

|z|>€

Here b(z, z) is a bounded measurable function on R? x R? that is symmetric in z, and A(d, —3)
is a normalizing constant so that when b(z, z) = 1, S® becomes the fractional Laplacian A%/2 :=
—(=A)#/2. In other words,

£4(e) = iy Ald~6) [ (Fla+2)— @) 'w,2) d

|z|>e

where j%(x,2) = A(d, —a)|z|~ 4T + A(d, —B)b(z, 2)|z|~(*P). Tt is recently established in
Chen and Wang [10] that, when j%(x,z) > 0 on R% x R?, there is a conservative Feller process
X? having £’ as its infinitesimal generator. In this paper we establish, under certain conditions
on b, a uniform boundary Harnack principle for harmonic functions of X (or equivalently, of
£b) in any s-fat open set. We further establish uniform gradient estimates for non-negative

harmonic functions of X° in open sets.
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1 Introduction

Let d > 2,0 < 8 < a < 2, and b(z,2) be a bounded measurable function on R? x R? with
b(x,z) = b(x, —z) for z,z € R%. Consider the non-local operator £* = A®/2 4 S where

S (@) = iy A =5) [ (et 2) = 1) T d (1)

|z|>e
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Here A(d, —B) is a normalizing constant so that when b(z,2z) = 1, S” becomes the fractional
Laplacian A%/2 := —(—A)#/2; in other words, A(d, —f3) = B2°~1x=%2T((d + B)/2)/T(1 — B/2).

Thus £° can be expressed as

£0f(z) = lim @) - ()" (x, ) dz (1.2)
e Ald,~) | Ald,~B)b(z.2)
, , — ,—B)b(x, z
]b(gj, z) = P Er: . (1.3)
Note that since b(z,z) is symmetric in z, for f € CZ(R9),
@) = [ (fo+2) = f@) = V1) e o 2) d (1.4

Recently, £°, the fractional Laplacian perturbed by a lower order non-local operator S?, and its
fundamental solution have been studied in Chen and Wang [10]. It is established there that if for
every x € R, jb(z,2) > 0 (that is, b(z, 2) > —jgg::gg |2|~%) for a.e. z € R? then £ has a unique
jointly continuous fundamental solution pP(t, x, %), which uniquely determines a conservative Feller

process X? on the canonical Skorokhod space D([0, +00), R?) such that

B (100 = [ fnttandy. aere

for every bounded measurable function f on R%. The Feller process X? is typically non-symmetric
and it has a Lévy system (J®(x,y)dy,t) (see [I0, Proposition 5.4]), where

T (w,y) = j(2,y — ). (1.5)

When b takes constant value € > 0, X© has the same distribution as the Lévy process Y + el/Bz,
where Y and Z are rotationally symmetric a- and B-stable processes on R? that are independent
of each other. Moreover, two-sided heat kernel estimates have been obtained in [I0] for £°, while
two-sided Dirichlet kernel estimates in C'! open sets have recently been obtained in Chen and
Yang [II]. In this paper, we investigate boundary Harnack principle and gradient estimates for
non-negative harmonic functions of £° in open sets.

Boundary Harnack principle (BHP) asserts that non-negative harmonic functions that vanish
in an exterior part of a neighborhood at the boundary decay at the same rate. It is an important
property in analysis and in probability theory on harmonic functions. We refer the reader to the
introduction of [3| [13] for a brief account on the history of BHP that started with Brownian motion
and then extended to subordinate Brownian motions and to certain pure jump strong Markov
processes. Since £ is typically state-dependent and its dual operator may not be Markovian, the
BHP results in [3] 13] are not applicable to harmonic functions of £b. In this paper, we establish
uniform boundary Harnack principle on k-fat open sets for non-negative harmonic functions of £°
by estimating Poisson kernels of £° in small balls.

Gradient estimates for harmonic functions of elliptic operators and on manifolds have been

studied extensively in literature, including the celebrated Li-Yau inequality. See [12] and the



references therein and for a coupling argument. Gradient estimates for harmonic functions for non-
local operators are quite recently. In [4], a gradient estimate for harmonic functions of symmetric
stable processes is obtained. Gradient estimates for harmonic functions of mixed stable processes
were derived in [I6]. It has recently been extended to a class of isotropic unimodal Lévy process
in [I5]. For gradient estimate for harmonic functions of the Schréodinger operator A2 4 q, see M)
for a € (1,2) and [14] for o € (0,1]. The second main result of this paper is to establish gradient
estimates for positive harmonic functions of £°. As far as we know, this is the first gradient estimate
result for non-Lévy non-local operators.

We now describe our main results in details. In this paper, we use “:=” as a way of definition.
For a,b € R, a A b := min{a,b} and a V b := max{a,b}. Let |z — y| denote the Euclidean distance
between x and y, and B(z,r) the open ball centered at x with radius » > 0. For any two positive
functions f and g, f % g means that there is a positive constant ¢ such that f < cg on their
common domain of definition, and f = g means that ¢~ lg < f < cg. We also write “<” and “<”

if ¢ is unimportant or understood. If D C R is an open set, for every z,y € D, define
Op(z) :=dist(z,0D) and rp(x,y):=dp(x)+ip(y)+ |z — vyl (1.6)

It is easy to see that
rp(x,y) < 0p(x) + |z —y[ < dp(y) + |z —yl. (L.7)

Denote by TE’) = inf{t > 0: X? ¢ D}, the exit time from D by X°. When there is no danger of

confusion, we will drop the superscript b and simply write 7p for Tg.

Definition 1.1. A function f defined on R? is said to be harmonic in an open set D with respect

to X? if it has the mean-value property: for every bounded open set U ¢ D with U C D,
f(z) =E, [f(XﬁU)} for € U. (1.8)
It is said to be regular harmonic in D if ([L.8]) holds for U = D.

Denote by 0 a cemetery point that is added to D as an isolated point. We use the convention
that X2 := 0 and any function f is extended to the cemetery point d by setting f(9) = 0. So
E, [f(XﬁD)] should be understood as E, [f(XﬁD) : 7p < 400|. In Definition [T}, we always assume
implicitly that the expectation in (L8]) is absolutely convergent.

Assumption 1 Suppose My, My > 1. b(z,2) is a bounded function on R? x R? satisfying
bl < My and  b(z,z) = b(z, —2) for z,z € RY, (1.9)
and there exists a positive constant ¢ € [0, 1] such that for every z,y € R?,
My T (z,y) < JM(a,y) < MaJ(z,y). (1.10)

Here J%(z,9) = A(d, —a)|z — y|~9* + 0 A(d, — )|z — y| =978, Since J°(x,y) depends only on
|z — y|, we also write J*(|x — y|) for J(z,y).



Definition 1.2. Let x € (0,1). An open set D C R? is said to be x-fat if for every z € D and
r € (0, 1], there is some point € D so that B(z,kr) C DN B(z,7).

The following is the first main result of this paper.

Theorem 1.3 (Uniform boundary Harnack inequality). Suppose Assumption 1 holds and D is
a k-fat open set in R? with k € (0,1). There exist constants vy = ri(d,o, 3, M;) € (0,1] and
Cy = Cy(d,a, By k, My, M3) > 1 such that for every zy € 0D and r € (0,71/2], and all non-
negative functions u,v that are regular harmonic in D N B(zy,2r) with respect to X® and vanish in
D¢ N B(zy,2r), we have

~—

@) < C’lﬁ for x,y € DN B(zp,7).

v(z) v(y

~—

We call the above property uniform boundary Harnack principle because the constants 1 and
(4 in the above theorem are independent of &y € [0, 1] appeared in condition (LI0). We next study
the gradient estimates for non-negative harmonic functions in open sets. We write 9,, or 0; for 8%2_
and V for (0g,,- -+ ,0z,).

Theorem 1.4. Let D be an arbitrary open set in R%. Under Assumption 1, there is a constant
Coy = Co(d, v, B, My, My) > 0 such that for any non-negative function f in R% which is harmonic
in D with respect to X°, V f(x) exists for every x € D, and we have

f()
Vv < Cop——~=— eD. 1.11
V@) < G fora (111)
For x = (z1,--- ,x4) € R and 1 < i < d, we write #* for (xq, - ,Ti_1,Tiy1, - ,2q) € RL
Assumption 2. Suppose there is i € {1,--- ,d} so that for every = € R,
b(z,z) = o(@)(|z]) ae. zeRY, (1.12)

where ¢ : R — R is a non-negative measurable function, and ¢ : Ry — R is a measurable

P(r)

rd+8

function such that

is non-increasing in r > 0. (1.13)

Theorem 1.5. Suppose Assumption 1 and Assumption 2 hold. Let D = {x eRY: z; > F(:ﬁ’)} be
a special Lipschitz domain, where T : R%=1 — R is a Lipschitz function with Lipschitz constant Ao
(that is, |T'(#) — T(§)| < Xo|Z — §°| for every 7, 5° € R4=1). Then there are positive constants
Ry = Ri(d, o, B, Mg, M1, M3) and C3 = Cs(d, o, 8, No, My, M) > 1 such that for every r € (0, Ry],
there is a constant my = m1(d, o, B, Ao, My, Mo, r) € (0,7/2) so that for every zg € 0D and every non-
negative function f that is harmonic in DN\ B(zy,r) with respect to X® and vanishes in D°NB(zg, 1),

f(z) f(z)

1
03 W < | Vf(z)| < 035D(33)

for z € DN B(zg,m)- (1.14)



Obviously Assumption 2 is implied by
Assumption 3. There exists a measurable function ¢ : Ry — R satisfying (LI3]) such that for
every z € RY,
b(z,z) =¢(|z]) ae zeR (1.15)

Definition 1.6. An open set D C R%is said to be Lipschitz if for every zo € 0D, there is a Lipschitz
function T, : R¥™? — R, an orthonormal coordinate system CS,, and a constant R,, > 0 such

that if y = (y1,- -+ ,Y4-1,yq) in CS;, coordinates, then

DN B(ZO7RZ()) - {y “Yd > on(yla o 7yd—1)} N B(ZO7RZ())-

If there exist positive constants Ry and Ao so that R, can be taken to be Ry for all zgp € D
and the Lipschitz constants of I',, are not greater than \o, we call D a Lipschitz open set with

characteristics (Ao, Rp)-

Clearly, if D is a Lipschitz open set with characteristics (Ao, Rp), then it is x-fat for some
k= k(Xo, Ro) € (0,1). The following theorem follows directly from Theorem

Theorem 1.7. Let D be a Lipschitz open set in R with characteristics (Ao, Ro). Under Assump-
tions 1 and 3, there are positive constants Ry = Ra(d, o, 5, No, Ro, M1, M) and
Cy = Cy(d,, B, Ao, Ro, M1, My) > 1 such that for every r € (0, Rg], there is a constant ny =
n2(d, o, B, Ao, Ro, M1, Ma,7) € (0,7/2) so that for every zg € dD and every non-negative function
f that is harmonic in D N B(z,) with respect to X° and vanishes in D¢ N B(zy,7),
f(z) f(z)
Cy 15 @ < IVf(@)| < 045D(x)
Results in Theorem [[L4] Theorem and Theorem [[7] can be called uniform gradient estimates
because the constants Cj, 2 < k < 4, and n;, 1 < i < 2, are independent of gy of (LI0]).

The rest of the paper is organized as follows. Preliminary results on Green functions and Poisson

for x € DN B(zy,m2). (1.16)

kernels are presented in Section 2l The proof of the uniform boundary Harnack principle is given
in Section Bl Section M is devoted to the proof of Theorem [[L4] while the proof of Theorem
is given in Section Bl In this paper, we use capital letters Ci,C5, -+ to denote constants in the
statements of results. The lower case constants cq,cs, -+, will denote the generic constants used
in proofs, whose exact values are not important, and can change from one appearance to another.

We use e, to denote the unit vector along the positive direct of xj-axis.

2 Preliminaries

Recall the Lévy system (J°(x,y)dy,t) from (L3]), which describes the jumps of X: for any non-
negative measurable function f on Ry x R? x R? with f(s,y,y) = 0 for all y € R%, z € R? and
stopping time T' (with respect to the filtration of X?),

T
S fe Xt x| =R, [ / Fls, X2, 9) (X0, y)dy ds| - (2.1)
0 R4

s<T



Suppose D is a Greenian open set of X°. Let Gl}:) (z,y) denote the Green function of D, that is,

| 160Gty = E. [ " f(Xf)ds}

for every bounded measurable function f on D and x € D. It follows from (2.I) that for every
bounded open set D in R%, every f > 0, and = € D,

B, [£(xt,): X8, £ x8,] = |

D

16 ([ @bt 21 d 22)

Define
K% (z,2) ::/ GY(x,y)J(y, 2)dy for (z,z) € D x D" (2.3)
D

We call K% (x,z2) the Poisson kernel of X” on D. Then (Z2]) can be written as

B (1000, %0, # X0, ] = [ K@) (2.4)
For any A > 0, define
ba(x,2) == NP7\ "Lz, \7L2)  for z, 2 € RY (2.5)

It is not hard to show that
JO(z,y) = A7) Pz ATy)  for z,y € RY (2.6)

and
{AX?_.,;t > 0} has the same distribution as {Xf*;t > 0}. (2.7)

So for any A > 0, we have the following scaling properties:
G (z,y) = /\d_aGI;\*D()\:E, Ay) for z,y € D, (2.8)

K% (z,z) = )\dKf\})()\a:,)\z) forx € D, z € D°. (2.9)

If u is harmonic in D with respect to X?, then for any A\ > 0, v(x) := u(x/\) is harmonic in AD
with respect to X,

When b(z,2) = 0, X° is simply an isotropic symmetric a-stable process on R?, which we will
denote as X. We will also write J for JY. It is known that if d > o, the process X is transient and

its Green function is given by

I'(d/2)

S S ¥ S PO [l d
2070/ 2T (0 2)2 |z —y| for z,y € R% (2.10)

G(z,y) =
It is shown in Blumenthal et al. [I] that the Green function of X in a ball B(0,r) is given by

I'(d/2 z
G o (@) (4/2) / (w4 1) 2 e — " for 2y € BO,r),  (2.11)

~ 20720 (a/2)2 J,



where z = (r2 —|z|?)(r? —|y|?)|x —y|=? and r > 0. The above formula yields the following two-sided
estimates (see, for example, [5]): Suppose B is an arbitrary ball in R? with radius 7 > 0. Then

there is a universal constant ¢; = ¢;(d, @) > 1 so that for every z,y € B,

. /2 a/2
Gp(z,y) 2 |z —y[* <1A537($)> (1/\537(1/)> . (2.12)
|z =yl |z =yl
Since for a,b >0, a A b = “bb and 1A § < 2%, in view of (LZ) we can rewrite (Z12]) as

gl 105 (2)*?0p(y)*/?

GB(‘Tay) = "r TB(!E y)

(2.13)

It follows immediately from (2.12]) that there is a positive constant co = co(d, ) > 1 so that for
B = B(xg,r),
02_17“3‘ < E,mB < cor® for x € B(xo,7/2).

Riesz (see [I]) derived the following explicit formula for the Poisson kernel Kp(q,)(z,2) of X on
B(0,r).

T(d/2)sin(ra/2) (12— |a[2)*/2
Kpo(@,2) = vy (2 = r2)al2 |z — 2]

for |z| <r and |z| > r, (2.14)

We point out that P,(X;, # X;,_) =1 for every z € D if D is a domain that satisfies uniform

exterior cone condition.

3 Boundary Harnack principle

Recall that we write X and J for X° and J°. First we record the following gradient estimate on

the Green function Gp of symmetric a-stable process X from [4].

Lemma 3.1. ([, Corollary 3.3]) Let D be a Greenian domain in R? of X. Then

GD(-Z',y)
VGp(z,y)| <d———————— forxz,y e D, x . 3.1
IVGp(z,y)| T =y A on () for z,y #y (3.1)
For = # y in D, define
a/2
|z — y|* B d(l/\ \w(zz}/)\) if > 27,
hp(z,y) =< |z — y|f~d (1 A <y>|) (1 v log j;;—(gg) if a =28, (3.2)
/2 oyl \B—Q/2
|z — y|* B d(l/\ E (y)‘) (1\/(‘5[)(3)‘) if o < 28,

The following two results are established in [I1].

Lemma 3.2. ([II, Theorems 4.11 and 4.13]) Suppose b is a bounded function satisfying (L3)), and
that for every x € R, J%(x,y) > 0 a.e. y € RL. There exist positive constants r1 = r1(d, o, 3, M) €



(0,1] and Cs = Cs(d,, 3, M) such that for any xo € R and any ball B = B(xo,r) with radius
r € (0,7r1], we have for z,y € B,

1 3

Moreover, P, (XTI’B € OB) = 0 for every x € B. In this case, for every non-negative measurable

function f,
Exf(XlT’B) = /_ f(2)KY%(z,2)dz  for x € B.
BC

Lemma 3.3. ([IT, Lemma 3.1]) Let D be a bounded open set in R:. There erists a constant
Cs = Cs(d, a, B,diam(D), My) > 0 such that for any bounded function b satisfying (L9)), and that
for every x € R, Jb(x,y) > 0 for a.e. y € R?, we have

G%(.’L’,y) < CG"T - y’a_d fOT’ T,y € D.
Note that the constant C7 below is independent of ¢ € [0, 1] appeared in (LI0).

Theorem 3.4 (Uniform Harnack inequality). Let ry € (0,1] be the constant in Lemmal32 Under
Assumption 1, there exists a constant C7; = C7(d, v, 8, My, My) > 1 such that for every xy € R,

r € (0,7], and every non-negative function u which is reqular harmonic in B(xg,r), we have

sup  u(y) <C inf u(y).
yEB(z0,7/2) ( ) 7y€B(xo,r/2) ( )

Proof. Let u*(x) := E, [u(Xﬁg(xw))}. Then u* is regular harmonic in B(zg,r) with respect to
the mixed stable processes X¢0. In view of Lemma and Assumption 1, for every zo € R? and
r € (0,7r1], the Poisson kernel K%(mo’r)(x, z) on B(xg,r) of X’ is comparable to that of X°0. Thus
for every x € B(xg,7/2), u(x) is comparable to u*(z). Theorem [B4] then follows from the uniform

Harnack inequality for mixed stable processes; see [6l (3.40)]. O

Lemma 3.5 (Harnack inequality). Under Assumption 1, there exists a constant Cs = Cs(d, «, 3,
My, My) > 0 such that the following statement is true: If 1,25 € R, € (0,71] and k € N are
such that |x1 — xo| < 2Fr, then for every non-negative function u which is harmonic with respect to
XY in B(x1,7) U B(x2,7), we have

C§12_k(d+°‘)u(a¢2) < u(zy) < Ce2MaH) g (z,). (3.4)

Proof. Without loss of generality, we may assume |x; — x9| > r/4. Note that for every z €
B(zy,7/8) C B(x1,7/8)¢, we have |z — 21| < 2¥+1r. Thus by Lemma B2 and Assumption 1, we

have

1
_— e e (x1,9) T (y, 2)d
ST . G @) )

1
= MKB(xl,r/s)(ml,x)

v

K%(:cl,r/S) (‘Tlv ‘T)



C1 - —k—1 N—d—a _ . . —do—k(d+a)
> ——27%(2 = 2 . .
= r( T) car (3.5)

Recall that by Theorem B4l we have u(x) > csu(z2) for every x € B(xa,7/8). Thus by B.1),

we) = [ u@ K, o)
B(z2,r/8)

> cycqu(mg)r—d2 kAt / dx
B(z2,r/8)

> 27y (1),

and ([B4) follows by symmetry. O

Proof of Theorem Note that there are constants Ry = Ry(d,«, 5, M) € (0,r1) and ¢ =
c(d, o, B, My) > 1 so that

-1

‘ < JP(z,y) <

|z — yldte = for all |z — y| < Ro (3.6)

C
‘LZ' _ y‘d-i-a

for all b(x, z) satistying (T3]). Thus using ([B3)), we can get uniform estimates on the Poisson kernel

Kbtaor@2) = [ Gl ()70, 2)dy
B(zo,r)

of any ball B(zg,r) with respect to X° with » € (0, Ry/3), * € B(zo,7) and r < |z — zo| < 2r.

Specifically, for r < |z — zo| < 27, K%(mw) (z,2) is uniformly comparable to Kp(s, ) (7, 2). Using

the explicit formula ([2.I4]) for the Poisson kernel Kp(y, ,y, B.3), Theorem B.4 and (L.I0), we can

adapt the arguments in [7, Theorem 2.6] to get our uniform boundary Harnack principle [3] (cf.

the proof of [6] Theorem 3.9]). Since the proof is almost identical to those in [7, Section 3|, we omit

the details here. O

Lemma 3.6. Suppose Assumption 1 holds and D is a Lipschitz open set with characteristics
(Mo, Ro). Let 1y € (0,1] be the constant in Lemma [32. There is a positive constant Co =
Cy(d, o, B, No, R, M1, Ms) > 1 such that for every zg € dD, r € (0,71/2), and every non-negative
harmonic function u that is reqular harmonic in D N B(zy, 2r) with respect to X® and vanishes in
D¢ N Bz, 2r),
b b —k

Eq [u(XY, , ): X0, e Bg] < Cy27*ey(z), z € DN By, (3.7)

for By := B(29,27%r) and k > 1.

Proof. Without loss of generality, we may assume zyp = 0. By the uniform inner cone property of
a Lipschitz open set, one can find a point 2y € D N B(0,r) and k = k(\g, Rp) € (0,1) such that
By, = B(%,k27%r) € B, N D for every %, := 27%%y and k > 0. Define

u(z) = E, [u(Xb )i XD, , € Bg].

TDNBy, T™DNB



Since ug = u, B1) is clearly true for k& = 0. Henceforth we suppose k& > 1. Note that uy > 0 is

regular harmonic with respect to X® in D N By, and uy(x) < up_1(z) for all z € R Define

Iy(z) = E, [u(XIT’Bk) Xt e B

Clearly by definition uy(Zx) < Ix(Z;). For any k > 1, by Lemma and (28], we have

IN

Gka (le Z)Jb(z7 y)dZ
By,

3 -
5 GBk (Zk7Z)Jb(Z,y)dZ
By

Go-t-1 , 27Dz ) Iz, y)dz
27(1‘771)31

2D [ Gy oy (270D 2y, 27Dy o2 B y)du

N
T
=
Q

G, (21,w) (2~ Dw, y)dw.
By

NIW NWw N w

Note that for any y € B and w € By,

Thus by (I0) we have

ly — w ly| + |wl
< < 3.
ly —2=(=Dy| = |y| —27F+1w|

Jo 27D, y) < Mo (Jy — 27 D)) < 35N J%0(|ly — wl) < 3T MF T (w, y).

It follows from (B.8)), (3.9) and Lemma B.2] that for any y € B,

Now we have for £ > 1

3d+a+1

M2~ (k=Dea : Gp, (31, w)J° (w, y)dw
1

sttt agza- e |Gl (5 ) S,y
By

IN

= 012_kaK%1 (51, y)

I(Z) = /Bcu(y)K%k(ik,y)dy
0
< c12"“’/ u(y)Kp, (21, y)dy
B
- (:12_ka[1(51)-

Next we compare I1(Z1) with u(21). Using Lemma B.2] (II0) and (2.3]), we have

K5 Gy = G (21,2) "z, 9)dz

|z—Z1|<Kr/2

10

(3.8)

(3.9)

(3.10)

(3.11)



1 / -
> — G5 (21,2)J%(ly — z|)dz
2M2 |z—Z1|<Kr/2 Bl( ) (‘ ’)
1 / .
= — G, (0,2 — 20)J(|ly — 2|)d=
o G0 = )y 5]
1 / -
= — G, (0,w)J(ly — 21 — w|)dw
o [, G0 )
1 d/ N
= —k G, (0,52)J°(ly — 21 — kz|)dz
i G 0570 )
1 - N
= —k" —Z1 — dz. 12
2M2H . Gp, (0,2)J°(ly — 21 — kz|)dz (3.12)
Again using Lemma 3.2l and (L.I0), we have
KLy = | Gl 2) ()
1
3
< 2wy [ G (e oy~ 2N
By
3
= §M2 (/ +/ GB1(217z)J60(|y - Z|)d2>
|2|<|Z1]/2 1Z1]/2<|2]<r/2
3

= S ( [ G- s
|2|<[Z11/2

+2d/ G (1,20 + 20y — 51 — 2wl)dw | . (3.13)
|Z1]/4<|w+Z1/2|<r/4

Note that for any y € B§ and |z| < [21|/2, |z — Z1| > |Z1| — |2| > |2] and |y — 21 — K2|/|]y — 2] <
(Iyl + |Z21] + &lz]) / (ly] = |2]) < 4. Thus

7, )e/2 /2
GBl(El,Z) = ’Z_glla_d (1 A 531(21) 531(2) )

‘2—51’0‘

A
8
u
VR
—
>
<
&
=
<
Do
>,
&
O
Q
<
Do
~__
)
(@)
e
=
X

and )
Ty —2l) = I ly — 21— kz]) < a4regoo(ly — 7 — kzl).
It follows then that for any y € B,
/ G, (31, 2) T (|y — 2|)d= < o5 / G (0,2)T(ly — 51 — r2)d=. (3.14)
l<Iz11/2 1< 51172

Note that for y € B§ and |Z1|/4 < [w+Z1/2| <r/4, 0B, Qw+Z1) =71/2— 2w+ 2| < 2(r/2—|w|) =
20, (w), and [y — 21 — kwl /|y — 21 —2w| < (Jy| + Klw + 21/2| + (1 = £/2)[21]) / (Jy] = [21 + 2w]) < 2.
Thus

= 05/2 ~ Oc/2
Gp,(21,2w+ %) =< |[2w|*7? (1/\531(2:1) 6B, (2w + 1) >

|2w|

11



a/2 /2
S et (M‘SBl(O) e )xcmo,w),

and
Ty — 21— 2w]) < J(jy — 1 — kwl/2) < 297T0(|ly — 21 — k).

Thus for any y € B,

/ G, (31,20 + 51) % (ly — 51 — 2w|)dw
|Z1]/4<|w+Z1/2|<r/4

03/ Gp,(0,w)J*(ly — Z21 — Kwl|)dw
|Z1]/4<|w+Z1/2|<r/4

< 03/ G, (0,w)T% (ly — 21 — k| )dw. (3.15)
By
Using ([3.14]) and ([BI5), we can continue the estimates in ([B.I3]) to get that for any y € B§
KY (21,9) < 04/ G, (0, 2) T (ly — 51 — ra|)d= (3.16)
B

Combining (B12) and (3I6]), we get

K, (21,y) < csi K% (21,y), for y € By

By
Li(z) = /
Bg

< c5r @ /~
B

Consequently by (BI1]) and (BI7) we have for all k > 1,

It follows that

) K, o)y < o [ ()R ()

c
0

u(y) Ky (21,y)dy = sk "u(Z). (3.17)
1
uk(Ek) < Ik(fk) < clc5ﬁ_a2_kau(§1). (318)

By the monotonicity of ug in k, Theorem [[3] (BI8) and Lemma B3 we conclude that for any
re€DNBgand k>1

ug(x) _ up—1(z) wp-1(Z-1) _ cscrcsr—o2— (k=1 u(z) P
u(z) = w(z) — w(Zp—1) ~ w(Zp—1) ~
The proof is now complete. O

The following lemma follows from Theorem and Lemma (instead of [2, Lemma 13 and
Lemma 14]) in the same way as for the case of symmetric a-stable process in [2] Lemma 16]. We
omit the details here.

For a Lipschitz open set D with characteristics (Ao, Ro), let k = k(\g, Ro) € (0,1) so that D is
k-fat. For zg € 9D and r € (0, 1], we use A,(zp) to denote a point in D such that B(A,(zg),kr) C
D N B(zo,1).
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Lemma 3.7. Suppose Assumption 1 holds and D is a Lipschitz open set with characteristics
(Mo, Ro). Let mp € (0,1] be the constant in Lemma [324.  There exist positive constants v3 =
m(d, o, B, Ao, Ry, My, Ms) and Ci9 = Cio(d, , B, Ao, Ro, My, Mz) such that for every zyg € 9D,
r € (0,71/2) and all non-negative functions u, v that are reqular harmonic in D N B(zg,2r) and
vanish in DN B(zg, 2r) with u(A,(z0)) = v(Ar(20)) > 0, we have

(1) h(zo) := limpsg—z, u(x)/v(x) exists;

(ii) ’u( z) _ h(z0)| < Cho (M) for z € DN B(zp,7).

4 Gradient upper bound estimates

We now study gradient estimates for non-negative harmonic functions of X in open sets.

Lemma 4.1. Suppose b is a bounded function satisfying (L9), and that for every x € R?, J(z,y) >
0 ae. y € R Letry € (0,1] be the constant in Lemma [33, and B = B(xg,r) with r € (0,71].
Then for every x € B, z € B¢ and 1 <1i < d,

o, /B G, )7y, 2)dy = /B 00, Gp(,y) I (y, 2)dy, (4.1)

o [ < / GB@,y)SZGbB(y,w)dy) w2y = | ( / axiGBu,y)SszB(y,w)dy) T(w, 2)dw,
(4.2)

and
O, Ky (1, 2) = / 00, G (2, 9) T (. 2)dy + / ( / axiGBm,y)SngB(y,w)dy) J(w, z)dw.  (4.3)
B B B

Proof. Without loss of generality we assume i = d. Fix € B and z € B°. We have

L Ald.~0) | [l A(d: ~)

sup |J? , < < 400
e A S e T S

Thus (1) follows directly from [4, Lemma 5.2].
Let g:(y) == [ Sbi w)Jb(w, z)dw for y € B. We have

9-(y)dy. (4.4)

A

A—0

: Gp(r +Aeq,y) — Gp(z,
axd/BGB(x,y)gz(y)dy:hm B[ B(7 + Aeq,y) — Gp(z,9)

To prove (L2), we only need to show that the integrand in the right hand side of ([@4]) is uniformly
integrable on B in A € (0,5 (z)/2). Note that we have
GB(:Ev y) = G(ﬂj‘, y) - Ey [G(ﬂf, XTB)] = G(ﬂj, y) - H(:Ev y)

Thus

|GB($+)\€d,y)—GB(33,y)| < |G(m—|—)\ed,y)—G($,y)| + |H(m—|—)\ed,y)—H(x,y)|
A - A A

13



= [+1I.
Obviously by ([ZI0) we have
I<¢ <|x +Xeg —y|* 4 |z — y|0‘_d_1) for y € B, (4.5)

for some positive constant ¢; = ¢1(d, ). Since H(z,y) = Ey[G(x, X;)], by the mean-value theorem,

there is a point x) in the line segment connecting x with x + ey so that
II = 0y, H(xy,y) = Ey[0,,G(z), Xrp)] < codp(x)2 174,

Thus for some positive constant c¢s = c3(d, o, z), we have

|GB(x + Xeq,y) — Gp(x,y)|
A

Let h(y) := [ghp(y,w)dw for y € B. Note that by Lemma and the boundedness of w
J(w, z) on B,

< (Jx+ Aeg —y| A \x—y\)a_d_l + c3. (4.6)

9:()] < s /B hip (9, ) (w, 2)dw < esh(y). (4.7)

Thus by ([@6]) and ([@T) the integrand in the right hand side of (£4]) is uniformly integrable on B
in h € (0,0p(z)/2) if the following three conditions are true:

(i) J5h(y)dy < +o0;
(ii) SUPye B(a,55(2)/2) J5 W)y — w1~ dy < +o0;

(111) hmEiO SUDPweB(x,65(x)/2) f{yéB:'y—w‘<5} h(y)|y - w|a—1—d = 0.

If a > 20, then for any y € B,
h(y) < / ly — w|* P~ dw < / lu|* P~ du < 4o0;
weB |u|<2r
that is, h(y) is bounded from above on B. Obviously (i)-(iii) hold for h. If a = 23, then

0 = ot o0 ) (o

‘6/2—[1 5B(w)5 5B(Z/)6/2 log lw —yl dw
5p(y)P2 \ Jw—yl?2 " dB(y)

/ lw —y
wEB,|lw—y|>edp(y)

—I-/ lw — y|P~4dw
weB,|lw—y|<edp(y)

5p(y) ™% +1. (4.8)

N

Using this upper bound, it is easy to check h satisfies (i) and (ii). As for (iii), note that dp(w) >
dp(x)/2 for every w € B(x,0p(x)/2). Consider an arbitrary ¢ € (0,dp(x)/4). Then B(w,e) C B
and 0p(y) > dp(x)/4 for every y € B(w,e). We have by (4.8]),

/ | h(y)ly = w|*™ My S / @5(y) ™72 + Dw —y|* "y
y—w|<e

ly—w|<e
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S / (05 (2) ™2 + 1w — y|*~'~"dy.
ly—w|<e
Thus condition (iii) is implied by the fact that

lim sup / (65(z) P2 + 1) |jw — y|* " dy = 0.
el0 weB(z,6p(z)/2) J|y—w|<e

When a < 23, similar to (L8] we have

_ Sp(w)? |y — w|B—a/? —a/2
h x/ w — Bd<l/\ 1IviE—— ) dw < op(y)P % +1.
(y) en lw —y| = wl? 55— B(Y)

By a similar calculations as in the case o = 23, we can show that (i)-(iii) hold for h. This completes
U

the proof.

Lemma 4.2. Under Assumption 1, there exists a constant C11 = Cy1(d, «, 5, My, Ms) > 0 such
that for every B = B(xo,1) and 1 <1i <d,

/ \3xiGB(x7y)\Jb(y,Z)dy < Cll/ GB(xo,y)Jb(y,z)dy for x € B(zo,1/4) and z € B¢. (4.9)
B B

Proof. Without loss of generality, we assume 29 = 0 and ¢ = d. For every |z| < 1/4 and |y| < 1,
we have |z —y| A dp(z) < |z — y|. Thus by B,

GB(‘Tay) b
0y, Gz, y)| I (y,2)dy < / ————J(y,2)dy
/B| Gy, 2) T e

- / GB(xay) Jb(y7z)dy
Yy

|<1 |z -y

/ +/ GB($,:U) Jb(y,z)dy
1/2<]y|<1 ly|<1/2 |z —y

= I(z,2) 4+ [I(z,2). (4.10)

For 1/2 < |y| <1 and |z| < 1/4, we have |z —y| < |y| < 1 and ép(z) < 1. Thus
o 5B y a/2
Gilay) = Jyl"™ (1 N ) = Ga(0.0),
and consequently
Iw2)= [ Gal0.) I ) (4.11)
1/2<]y|<1

For every |y| < 1/2, |z| < 1/4 and |z| > 1, we have |z —y| > 1/2, |z —y| < |z — y + x| and
op(y) =1— |y <1 —|y — x| =< 1. Thus by (LI0)

. a/2 /2
I (m‘sB(x) 95(y) )Jfouz—yody
ly|<1/2

|z — y|*
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al2(1 _ |, _ a/2
= |x—y|-d+a—1<m53<x> A=y — 2] )J€°(|Z—y+x|)dy
ly|<1/2

|z —y|*

_ /2
= / ||~ 4+t 1/\% J(|z — w|)dw
lw+z|<1/2 lw|

For every z > 1, let

Y S T A W
@@y_ﬁwwﬁ| GA )J(,m.

|w]*

Obviously
g2(2) x/ GB(O,w)Jb(w,z)dwg/ Gp(0,w)J*(w, z)dw.
lw|<3/4 B

Note that J(]z — y|) is non-increasing in |x — y|. Thus by (LI0)

e —lw a/2
(Z) M2J€O(|Z| _3/4) f|w‘<3/4|w|a -1 <1/\ . |‘w\|‘2 >dw
su 9 < < M
P < sup —— (L Jw)o/? =M< oo,
121 922) T o1 My T2 3/4) e ol (10 S ) d

where M = M(d, «, 3, Ma) > 0. Thus by (£13]) and [@I4)) we prove that
c3(Ma)
Il(z,z) < /GB(O,w)Jb(z,w)dw for |z| < 1/4, |z|] > 1.
B

Therefore (9] follows from (4I1]) and (EI3).
Recall the definition of rp(x,y) and hp(z,y) from (L6) and ([B2), respectively.

(4.12)

(4.13)

(4.14)

(4.15)

Lemma 4.3. For B = B(0,1), there exists a constant C1o = C1a2(d, e, B) > 0 such that for every

1<i<d, |z] <1/4 and |w| < 1,

/B 100G (a0, 9) | his (1, w)dy < Cralx — w] =4+ DAN=B) 5 (a2,

(4.16)

Proof. Without loss of generality, we assume i = d. For any |z| < 1/4 and |y| < 1, we have

dp(x) <1 and |z —y| Adp(x) < |z —y|. Thus by BI)),

GB(‘Tay)
02, Gp(x,y)|hp(y,w)dy < / — BT by, w)d
/BI Gz, y)|hp(y, w)dy e [T 9l A 65 (@) B(y, w)dy

GB(z,
= / 73@ v) hp(y,w)dy.
<1 [T =yl
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We note that for |z| < 1/4 and |y| < 1,

- 5B($)a/2 5B(y)a/2 — 5B(y)a/2
- o |a—d Yb\r) YH\J) ) O o a—dYDb\J)
Gp(z,y) < |z —y| (1 A ‘ ME 1A | y[o72 = |z — vy @) (4.18)

and rp(z,y) > 0p(x) > 3/4. Now we calculate the integral in (£I7]) using (AI8]) and the explicit
formula of hp(y,w). If @ > 2/, we have

S (w /2 oy a/2
&1 = / _ d—a—i-(l ) . ld—aip a( ) a2 WY
ly|<1 |$ y| |’lU y| T’B(ﬂf,y) T’B(y,U))
S ba()? [ oy ey -] ey
lyl<1
5 ’x N w‘—d-i-(a—l)/\(oe—ﬁ)éB (w)a/2
< o — w| DA 5 ()P, (4.19)
If a = 2, we have by (ZI3]) and (B2
E17)
~1-q_98(y)” - 5(’w)5< \—’w!>
- 28-1—-d_9B\Y B—d 9B )
= T — — |y —w ————1(1Vlo d
[ et s (1 es )
- 5(w)” W)’
ly|<1,|ly—w|<edp(y) ‘.’L’ - y’d+1_25’y - w’d_ﬁ TB('Z'7 y)2BTB(y7 w)B

+/ Sp(w)” ly — w|?265(y)"? [ op(y)°> og =) 4,
ly|<1,|ly—w|>edp(y) ‘.’L’ - y‘d+1_2ﬁ’w - y’d_ﬁ TB(‘Ta y)2BTB(y7 w)ﬁ |y - w|ﬁ/2 5B(y)

< opw)’ / & — 251y — w]P—ddy
ly|<1,|ly—w|<edp(y)
+85(w)’ / o — Py Py
ly|<L,|ly—w|>edp(y)
< Sp(w)Ple — w| T2 = | — w| AT DAO=B) s ()P, (4.20)

If o < 23, we have

/2 /2 _ f—a/2
(m) - / |l‘ o y|—d+a—1 6B(y) |y o w|—d+o¢—ﬁ 53(’(0) <1 V; ‘y w’ ) dy
lyl<1

rp(z,y)® rB(y, w)e/? p(y)P—o/?

_ / Op(w)*/? [w =y~ 2op(y)* "
T i<t ly-wlzep) 1T =yl w — yldmeth rp(y, w)e/2

k) a/2 5 /2

+/ d—aB-l-(;w) d—a+p Ba(y) o2 dy
lyl<1,ly—w|<s5() 1T — Yl lw —y r(z,y)rp(y, w)
< 5B(w)°‘/2 / |z — y|—d+a—1|y _ w|—d+a—5dy
ly|<1,|ly—w|>d5(y)

+5B(w)a/2 / |$ _ y|—d+a—1|y o w|—d+a—ﬁdy
lyl<l,ly—w|<dp(y)

_ 5B(w)a/2 /| |l‘ o y|—d+a—1|y o w|—d+a—ﬁdy
y|<1
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5 53(10)&/2‘% _ w‘—d-i-(oe—l)/\(oc—ﬁ) / (’x _ y’a—l—(a—l)/\(a—ﬁ) + ‘y _ w’a—ﬁ—(a—l)/\(a—ﬁ))dy
ly[<1
< o — w|T DA 55 (1) /2 (4.21)
Lemma [L3] follows from (£20), (£2I)) and @I9). O

Lemma 4.4. Under Assumption 1, there exists a constant C13 = Ci3(d, «, 5, My, Ms) > 0 such
that for B = B(xg,1), 1 <i<d, v € B(zg,1/4) and z € B,

/ [/ ]E?xiGB(a:,y)SgG%(y,w)]dy Jb(w,z)dwgClg/GB(xo,w)Jb(w,z)dw. (4.22)
B L/B B

Proof. Without loss of generality, we assume that zo = 0 and ¢ = d. Let r; € (0, 1] be the constant
in Lemma By Lemma and the scaling property, we have for y,w € B,

by br a—
1S0G % (y, w)| = 1419y G, (ry, rw)| < evrfhy, p(riy, mw)| = errf hp(y,w) < crhp(y, w).
Here ¢; = ¢1(d, v, B, M) > 0. Hence to prove ([@22]), it suffices to prove that for x € B(0,1/4) and
z € BC,
/ [/ lﬁxdGB(a:,y)]hB(y,w)dy] JP(w, 2)dw < 02/ Gp(zo, w)J’(w, z)dw (4.23)
B L/B B
for some ¢y = co(d, v, 8, M1, Ms) > 0. By Lemma 3], we have
L[ osiGate ity 2w, )00
B /B

/ 5B(w)a/2|w o $|—d+(o¢—l)/\(o¢—ﬁ) Jb(w, z)dw
|w|<1

A

= / +/ Sp(w)*?|w — 2|~ E=DAC=E) Jb 1y, 2)dw
|lw|<1/2 1/2<]w|<1
= I(z,2)+11(x,z2).

Fix |z| < 1/4 and |z| > 1. For 1/2 < |w| < 1, we have |w — x| < |w| < 1, and consequently
Gp(0,w) =< dp(w)*/?. Thus
II(z,2) x/ Sp(w)*? Jb (w, 2)dw x/ Gp(0,w)Jb (w, 2)dw. (4.24)
1/2<]w|<1 1/2<]w|<1
For any |w| < 1/2, we have 1/2 < dp(w) <1, |z —w| > 1/2 and |z — w + x| < |z — w|. Hence by
(10

I(z,2) i / jw — z| "= DAC=E) J20 (|2 — ))dw
|w|<1/2

= / . jw — z|4HEmIN@=E) J20 (15 4 z])dw
_ /+ " |4+ @=DNO=B) Je0 |, — p[)du

< / |~ HHE=DAO=) J20 | — pl)dy = g1 (2). (4.25)
/<34
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We first consider the case |z| > 2. Let ga2(z) := f|v|<3/4 |v|*=4J% (|2 — v|)dv. Note that for any
lv| < 3/4, we have Gp(0,v) =< |v|*~¢. Thus

g2(z) < / Gp(0,v)J%(]z —v|)dv < Mg/ Gp(0,v)J° (v, 2)dv. (4.26)
o] <3/4 [v]<3/4

In addition since J%°(|y|) is non-increasing in |y|, we have

<

w9 T 3 < o] ~d+a=DA@=5) gy
p < sup

<M < 400, (4.27)
|z]>2 92(2) |2]>2 Jeo(|z] +3/4) f|v|§3/4 vfe=ddy

where M = M(d, «, ) > 0. Therefore by ([@25]), (£26]) and [{.27)) we have
c3(Mz) b
I(z,z) < / Gp(0,w)J’(w,z)dw for |x| < 1/4 and |z| > 2. (4.28)
B
On the other hand if 1 < |z| < 2, we have 0 < dp(z) < 1, and by (2Z.14)

/ Gy (0,w) (w, 2)dw > M;l/ (0, 1)J (w, 2)dw = My 'K (0, 2) = My '65()~"2 > M.
B B

(4.29)

Note that |z — w| > 1/4 for any |w| < 3/4. Thus
0i(2) < JO(1/4) / @A) gy < 1. (4.30)

|w|<3/4

Thus by [@25), (£29) and (£30) we have
ca(Ma)
I(z,z) < / Gp(0,w)J’(w,z)dw for |z| <1/4 and 1 < |z| < 2. (4.31)
B

Now ([{23)) follows from (L31]) and (Z24). O

Theorem 4.5. Let 1 € (0,1] be the constant in Lemma [Z2. Under Assumption 1, there exists
a constant C14 = Cia(d, o, 8, My, M) > 0 such that for every ball B, = B(xg,r) with radius
r e (0,r1] and 1 <i <d,

C _
|6miK%r (z,2)] < -4 K%r (wg,2), forx € B(xg,r/4) and z € B,". (4.32)
r

Proof. Let A := 1/r > 1/r; > 1 and define by(x, z) = M3=*b(A~tx, A712). Observe that ||by|/ec =
2 Bb]| o < T?_BMl < M. By the scaling properties (2.6]) and ([29]), by (z, z) satisfies Assumption
1 and it suffices to show that for the ball B = B(zg,1),

\(%Cin’BA (x,2)] < CMK%A (20, 2) for x € B(wo,1/4) and z € BC. (4.33)

We know from [II, Lemma 4.9] that

Gy (a) = Gola) + [ Gl 2)SD Gy )z for vy < B
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Thus by 23), fori =1,--- ,d, every x € B, and z € B¢,

O, K2 (2, 2) = s, / Gp(z,y) ™ (y, 2)dy + 0y, / < / Gﬂx,y)S?G%?(y,w)dy) JO (w, 2)dw.
B B B

(4.34)
Thus by Lemma F.1]
. K @A) < [ 10nGale )l (v, 2)dy
B
w [ ([ o Gatenst @) 1w e, w35)
B \JB
On the other hand, by [B.3]) and (2.8]), we have
1 , 3
§GB($7y) éGé\(x7y) < §GB($7y) for x,y € B.
Thus
1 _
K. = [ eI 0y > 5 [ Golw Py Torze B (436)
B B

Now (A33)) is implied by ([B.3]) and Lemmas [Z2HL.4l This completes the proof of the theorem. [

Lemma 4.6. Suppose Assumption 1 holds and f is reqular harmonic with respect to X° in B(x,r)
for some x € R? and r € (0,71]. Then Oy, f(z) exists for every 1 <i < d and

Os. f(z) = /B e (4.37)

Proof. Recall that e; is the unit vector along the positive x;-axis. Choose € > 0 sufficiently small

so that © + ce; € B(xz,r/4). By the regular harmonicity of f, we have

AR Kb o (x+ee,z)— Kby (z,2)
flz+ee) — fx) :/ () | 2B B(x.r) .
€ B(ac,r’)C €
Therefore ([A37) follows from (£32]) and the dominated convergence theorem. O

Proof of Theorem [I.4k Let x € D and 0 < r < (0p(x) Ar1)/2. Note that under our assumption,
f is regular harmonic in B(z,r) with respect to X°. By [@37) and [@32), we have

O, < O, K ,2)|d
0, f(2)] < /B K @2l
< Cu Cf(z)K%(w,)(:E,z)dz
T JB(x,r)
= %f(m)%ﬁ%?(@f(x) as 1 (ry Aop(x))/2.
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5 Gradient lower bound estimate

For = (z1,--- ,14) € RY, we write 2 = (&,2,4), where Z = (x1,--- ,24_1). In this section, we fix
a Lipschitz function T': R9~! — R with Lipschitz constant A so that |T'(Z) — T'(§)| < Ao|Z — §| for
all #,7 € R™L Put p(z) := x4 — ['(¥). Unless stated otherwise, D denotes the special Lipschitz
open set defined by D = {x € R? : p(x) > 0}. When x € D, p(x) serves as the vertical distance
from z € D to 0D, and it satisfies

p(x)/y/14+ A3 <ép(z) < p(x) forz e D. (5.1)
We define the “box” D¥(x,h,r):= {y € RY: 0 < p(y) < h, |# — | < r}, and the “inverted box”
D= (z,h,r):={y € R: —h < p(y) <0, |& —g| <r}, where 2 € R? and h, r > 0.

Lemma 5.1. Let r1 € (0,1] be the constant in Lemmal3 2. Suppose Assumption 1 holds, zg € 0D
and r € (0,71/2]. Let A, € D be such that p(A.,) = |Az, — 20| = /2. Then there exist positive
constants C15 = Ci5(d, o, B, Ao, My, M) and o = v2(d, o, 8, No, M1, M2) such that for every non-

negative function u which is harmonic in D N B(zp,2r) and vanishes in D N B(zy, 2r), we have

u(z) p(r) \*7"
WA > Cq5 <p(Azo)> for x € DN B(zp,7).

Proof. Note that by Lemma [3.2] and Assumption 1, we have for every z € R? and y € B(z, 7‘)0,

b M,
KB(x,T’) (;U? y) -

| oo 2)I s = K, (o0) (5.2

B(z,r)

Lemma [B.1] follows from (5.2]), the uniform Harnack inequality (Theorem B.4]) and a standard

argument of induction in the same way as for the case of symmetric a-stable process in [2l Lemma

5] (see also [4, Lemma 4.2]). We omit the details here. O
Hereafter we assume Assumption 1 and Assumption 2 with ¢ = d hold. In this case, the jumping

kernel J%(x,%) of the process X? satisfies that for every z € R?,

o(@)Y(ly — x)

ly — x|d+P

A(d, —a)

b —
J(@,y) = Ty — a|ire

+ A(d,—p) = (&, |y — z|) ae yeR (5.3)

We note that by condition (LI3) of Assumption 2, j%(%,|z|) is non-increasing in |z| for every
& € R¥L Fix 29 € 9D, r € (0,71]. We define D* := D¥(z9,4r\/1 + A2,2r) D DN B(z,2r), and

gpr(x) =Py (XSZD+ & D™ (29, 00, 2T)> for x € RY. (5.4)

Clearly, gy, is regular harmonic in DT with respect to Xt gpr(xz) = 0 in D™ (2, 00,2r), and
Gor(xz) =11in (DT U D™ (2, 00,2r))".

Lemma 5.2. The function g ,(x) is non-decreasing in 4.
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Proof. Note that gy ,(z) =1—1P, <XTI’D+ € D™ (29, 00, 27“)) for every x € R?%. Take z,y € D such
that # = § and ygq < 4. Consider the process (X?,P,) starting from z (i.e. P,(X} =z) =1). For
every t > 0, define
VP = X7 — (2a — ya)ea-
Then (Ytb,]P’x) is a Markov process starting from 7. Let S(R?) denote the totality of tempered
functions on R, For every f € S(RY), if we define fy(2) := f(z — (zq — ya)eq) for z € R?, then
L0f(x = (24— ya)ea) = L' fa(x) = lim (fa(y) = fa())5° (&, |y — x|)dy for © € R™.
e—0 ly—z|>e
Thus
b b Yo b b b L b
FO7) = 10 = [ 225 (Vs = D) = 1) = [ £hpu(xtyas

is a P,-martingale. We know from [10, Theorem 5.6] that the solution of the martingale problem
(L%, S(R?)) with initial value y is unique. Hence (Y%, P,) has the same distribution as (X?,P,).
Consider the trajectory w of X! starting from . If w exits DT by going into D~ (0, +00, 2r), then
so does w — (x4 — yq)eq which is the trajectory of Y;? starting from y. Hence

P, <XIT’D+ € D_(zo,oo,2r)) <P, <Y¥’D+ € D_(zo,oo,2r)) =P, <XIT’D+ € D_(zo,oo,2r)) .
This completes the proof. O

Lemma 5.3. Let ry € (0,1] be the constant in Lemma[32. There are constants
Ci6 = Cis(d, 0, B, Mo, M1, M3) > 0 and ro = ro(d, o, 8, Ng, M1, Ms) € (0,71] such that for every
29 € 0D and r € (0,7r3],

9u,r (x)

>
8wd.gb,7“(x) - 016 (5[)({1}')

for x € DN B(zp,7/2). (5.5)

Proof. Without loss of generality we assume zp = 0. Let ro € (0,71] to be specified later. For
r € (0,73, fix x € DN B(0,7/2). By B, ro := p(x)/24/1+ A3 < dp(x)/2 < r/4 <r9/4. Set

T=x+2p(x)eq and T =1z — 2p(x)ey

Observe that B(x,ry), B(Z,r0) C Dt and B(i#,r9) C D™ (0,400,2r). By [@37) and [&3]), we have

Ontsr(z) = / o ()00 Ky (@, 2)d2
B(z,ro)

> / . gb,r(z) [/ 8xdGB(x,ro)(x7 y)Jb(y7 Z)dy] dz
B(z,ro0) B(z,ro)

(5.6)

- /_ gb.r(2) ( / Oy G B(a.r0) (@ Y)Sy Gz ) (4, 0) | I (w0, 2)dy dw) dz.
B(z,ro) B(z,ro)xB(z,r0)

Let A :=1/rg and By := AB(x, ). By scaling property, Lemma [£.4] and Lemma [3:2] we have

/B(x ro) / B(z,ro)

a:EdCJB(m ro)($ y)SbGB(x T’O)( w) Jb(w7z)dydw
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02,GB, (A, y)SZA G?BAl (y, w)| J (w, \z)dy dw

— )\d-i-l / /
B1 J By

< g NitlTats G, (\z, w)J (w, A\z)dw
By

= cl)\l_o”rﬁ/ GB(I,TO)(x,v)Jb(U,z)dv
B(z,r0)

< 201)\1_‘”6/ G%(x TO)(ZE,’L))JI)(’U, z)dv
B(z,r0) '
= 2emy TUORY L (@,2). (5.7)
Here ¢; = ¢1(d, «, 8, M7, Ms) > 0. Thus we can continue the estimate in (B.0]) to get

a:cd gb,r (x)

/ L 9b,r(2) < / 8xdGB(x,ro)(x7y)Jb(yaZ)dy> dz
B(z,ro0) B(z,r0)

2 _
_ﬂT(ON ’ /—C gb,r(Z)K%(x’ro)(x,Z)dZ
B(z,ro)

v

2¢1 0
= cgb,r z 4T B(x,ro) T,y Yy, z)ay Z = _1T0 ﬁgbﬂ‘(w)‘ (58)
(2) e (2,9)°(y, 2)dy | d
B(xz,r0) B(z,r0) To

Note that by (ZII),

8xd GB(m,ro) (LZ', y)

e d A\ "2 Yqg— Tq 4 o —d/2
2enier () (5) 1803 — 1y — o (1303 — Iy — o) + Iy — ) ™

2 2/ |y —af?
Yd — Xq
+(d - a) |y — $|2GB(m,ro)(x7 y) (59)

Obviously 0:,G p(y,ry) (7, y) is anti-symmetric in y with respect to the hyperplane H := {y € R? :
Yq = xq}. For every z € B(x,ro)c, define h(z) := fB(w,ro) 8xdGB(x,TO)(x,y)Jb(y, z)dy. By (B3] we

have for a.e. z € B(az,ro)c,

ho(z) = 0rsG ) (@,9) (I(9,2) = (5. 2) ) dy

/{yEB(I,T’o),yd>xd}

/ 0ri Gy (.9) (30,12~ ul) = @2~ 3) ) dy,  (5.10)
{y€B(z,70),ya>za}

where § = (7,224 — yq). We observe that the right hand side of (510 is antisymmetric in z with
respect to the hyperplane H. Recall that j°(,r) is non-increasing in r. Following from this, the

monotonicity of g ,(x) in x4 and the Harnack inequality, we have

gb,r(z)hx(z)dz = / gb,r(z)hm(z)dz
B(Z,ro)

/ gb,r(z)hm(z)dz > /
B(z,r0) B(&,r0)UB(&,r0)

> @gbm(x)/ hy(z)dz (5.11)
B(Z,ro)
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for some ¢y = co(d, , B, Ao, M1, M3) > 0. Note that by (.9) and (B1I0), for a.e. z € B(Z, o),

— X by~ by~ ~
h(s) = (d-a) [ U o) (370512 — o) — 3702 — i) d
{yeB(z,ro0)

vasea) 1Y — 2l

Yd — T
= o) [ Gy @i~ )iy > 0.
(z,r0)

Therefore by the scaling property of the Green function G

/B(x . hy(2)dz

,r0)>

Yd — 4 b
2 d @ / / ——5G B (@, y) S (Y, 2)dy dz
SCT’() B(:L‘ TO ‘y_x‘2 B( 70)( ) ( )
1 wq —x4/m0 o
2 ——————Gpor(0,r0(w —x/10))J (ro|v — w)|)rg®dw dv
- o2 <1 Jjw—2 <1 70 \w—x/roP B(0,r0) (0, 70( /70))J (o] )T
wq — x4q/70
- ——— —0s 0,w—x/ry)J(|lv —w|)dw dv
T0M2 /|v <1/ ‘<1 ‘w—x/fr ’2 ( 1)( / ) (‘ ‘)

~

T—x
= 0,w)J(jv —w+ dw dv
TOMQ /|v|<1 |, FarCron @ w0 =5
3
= —G 0,w)J(Jv —w + 4y/1 4+ Neq|)dw dv =: =, 5.12
it L peGeon 0w V1 Xed) = (512)
with ¢3 = e3(d, o, Ma) > 0. It follows from (E.8)), (59), (I1) and (5I12) that

1 o— a—
O, Gbr(x) > - (0263 — 217, B) gpr(x) > (6203 —2¢1 (r9/4) B) (). (5.13)

2
6p(x)

The lemma now follows from (5.13) by setting 75 so small that 2¢; (r2/4)* " < cgcs/2. O

Lemma 5.4. Suppose Assumption 1 holds and let ro € (0,71] C (0,1] be the constant in Lemma
5.3 There is a positive constant C17 = Ci7(d, o, 8, No, M1, Ma) such that for every r € (0,rs],
there is a constant rs3 = r3(d, o, 5, Ao, M1, Ma,r) € (0,7/2) so that for every zg € D and every
non-negative function f that is reqular harmonic in D N B(zy,2r) with respect to X° and vanishes
in D¢N B(zp, 2r),

01t (2) 2 Cursh T for o € D1 B

Proof. Without loss of generality we assume zy = 0. For r € (0,72], fix an arbitrary =z € D N
B(0,7/(24/1+ X3)). Let z, € 0D be such that |z — z;| = p(z). Define ¢ := limpsy—., [(y)/9.,(y)
and u(y) := cgpr(y). Obviously B(zg,3r/2) C B(0,2r), and thus f, w are harmonic in D N
B(zg,3r/2) and vanish in D°NB(zy,3r/2). Since impsy—., u(y)/f(y) = limpsy—., f(y)/u(y) =1
by Lemma B.7, for any y € D N B(z,, 3r/4),

VIEACNS ‘ <e <M>71 < (5.14)

u(y) r

u(y)

f(y)
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for some positive constants ¢; = ¢;(d, a, 8, Ao, M1, Ms), i = 1,2. Consequently,
(1+c2) ' fly) <uly) < (1 +e2)f(y) fory € DN Bz, 3r/4). (5.15)

Note that x € D N B(zy, 3r/4) since p(z) < dp(z)\/1+ A2 < r/2. By Lemma 5.3 and (5.15), we

have

0l () 2 Brgu(o) = 00, — 0] 2 g~ 00,(f 0o
f(x)
> el o, - ). (5.16)

We assume p(x) < 3r/128. Set v(y) := f(y) —u(y) and § := 2p(z). Let n € (16p(x),3r/8) to be
specified later. In the rest of this proof, we set Dy := DT (z,,&,€) and Do := DV (2;,1,7n). Then
B(x,6p(x)) C Dy C Dy C DN Blz,3r/4) and dp(x) = dp, (x). Define V(y) = E, [|v|(XIT’D1)].
Clearly V is regular harmonic in D; with respect to X® and |v(y)| < V(y) for all y € R%. By
Theorem [I.4] we have

et (@] < 0a, V(@ + 05V = 0] < = s (5.17)

We aim to estimate V' (x). Note that

V(z)

IN

E, [Jo|(X%, ): X!, € Dg] +E, [f(XﬁDl) 1XP € Dg] +E, [u(XﬁDl) X! € Dj
= I(x)+II(x)+ III(z).

By (G14]), for any y € Dy C D N B(z,,2n) C D N B(zy,3r/4), we have

uly) 1‘ <cf(y) <M>% = (2)71 ).

lv(y)| = f(y) ) .

Thus
I@) < e (1) B [£(x2,)] = (2) " F@). (5.18)

Let A, € D be such that p(A4;) = |A; — z;| = n/16. Define D3 := B(A;,n/164/1+ \3). We
observe that D3 C D N B(zy,7n/2) C Dy and Dy C DN B(zg,n/4). For any y € DS Nsuppf and
z € Dy, we have |y — A,| > /16, |A, — z| < 5n/16, and

2
ly — 2| Zly—Azl—le—ZIZ;ly—Axl- (5.19)

If we let A := 1/diam(D1), then ||by|lec = diam(D1)* ?||b||se < (8p(z))* PM; < M;. Thus by
[23) and Lemma [3.3, we have

Gll’)l (r,2) = )\d_aGI;\*D()\x, A\z2) < erle— 2|7 ze Dy (5.20)
for some constant c7 = c7(d, v, B, M1) > 0. So by (5.19) and (B.20), for any y € DS N suppf,

Kb(ew) = [ Gh(eas s < ety [ o= alr 15y - =)
1 1
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< My (|y — Ay) / @ — 20z < e Mo Ty — Au)). (5.21)
B(Zac72f)

On the other hand for any y € D§Nsuppf and z € D3, we have |y — z| < |y — Az| + |4z — 2] <
12|y — A;|/7. Thus by Lemma [3.:2 and (LI0)

Kpy(Aey) = | Gby(Ae 2)(2,9)d2
2 0t ([ Goy(as,2pds) oy - A,
= M;lnafzdy — Aq)). (5.22)
Combining (.21 and (5.22]), we have
KbD1 (z,y) < U—ZK%S (Ag,y) for y € DSNsuppf. (5.23)

Consequently, by (5.23]), Lemma (1] and (5.1]), we have

nw = [ Kb el s [ fw)Kb (A
Dgnsuppf ™ JDsnsuppf
ga b (0%
> Ky (A, y)dy = =—f(A,
< na/Dgf(y) ooy = 227 (4

£ p(Ay)* 2 p(z)"?

< =L = . :
S @ = B ) (5.24)
Similarly we can prove that
p(x)” p(x)”
ITI(z) < pes u(z) < pes f(x). (5.25)

Combining (5.18]), (5.24) and (5.23]), we have
Vi(z) < <cﬁ (2)7 +oeg (@)» f(x). (5.26)
Thus by (G16), (5.I7) and (5.26) we have

o p@)? Y f(x)
N > (e — n- . 2
0raf(0)2 (1= cs (@ + 202 )) SO (5:27)
Let n = 16p(x)??/(1+72) The lemma now follows from (5.27)) and (1)) provided we choose 73 small
enough such that ¢ (cg167 77 + cg16772) (13(1 4 X)) 172/ (n+712) < ¢y /2. O

Proof of Theorem The upper bound in ([I4]) was established more generally in Theorem
L4l The lower bound follows from Lemma [5.4] and the inequality |V f| > [0y, . O

Remark 5.5. Taking b(z, z) = ¢ € (0, M| in Assumption 1, we get from Theorem [[4and Theorem

[L7 the uniform gradient estimate for mixed stable processes, which in particular recovers a main

result of [16] on gradient estimates.

26



6 Examples

In this section, we give some concrete examples where Assumptions 1 and 3 hold.

Example 6.1. If b(z, 2) = 1y|,|<,,} for some ¢; > 0, the jumping kernel of the corresponding Feller

process X" is
Ald,—o) | A(d, —p)
b o ) )
Tay) = o e ¥ o= gpe Heviser)-

In this case X? is the independent sum of a symmetric a-stable process and a truncated symmetric
B-stable process, and Assumptions 1 and 3 hold with g = 0 and ¥ (r) = Lr<c,), respectively.
More generally, suppose b(z,z) = bl(x72)1{|z|§c1} for some ¢; > 0 and a bounded function
bi(z,z) on R? x R? that is symmetric in z and is bounded between two positive constants. Then
Assumption 1 holds with g9 = 0. O

Example 6.2. If b(z,z) =1+ jgg:g; ’Z‘ﬁ_'yl{|z|§02} for some ¢y > 0 and 0 < v < (3, the jumping
kernel of the corresponding Feller process X is

Ald,—a) | A(d,—B) | Ald,—)
b _ ) ) )
(@, y) = |z — gyl |z — y| B + z — y| Ljz—y|<eo}-

In this case X? is the independent sum of a mixed-stable process and a truncated symmetric -

stable process, and Assumptions 1 and 3 hold with g9 = 1 and ¥(r) = 1 + jg’:gg rB_Vl{,,SCQ},

respectively.
More generally, suppose b(z, z) is a bounded function on R? x R? that is symmetric in z and is

bounded between two positive constants. Then Assumption 1 holds with g9 = 1. O

Example 6.3. We consider the following stochastic differential equation on R%:
dX; = dY; + C(Xy-)dZy, (6.1)

where Y is a symmetric a-stable process, Z is an independent -stable process with 0 < 5 < «, and
C is a bounded Lipschitz function on R%. Using Picard’s iteration method, one can show that for
every z € R?, SDE (6.1) has a unique strong solution with Xy = z. The collection of the solutions
(X, Py € ]Rd) forms a strong Markov process X on R%. Using Ito’s formula, one concludes that
the infinitesimal generator of X is £? with b(z,z) = |C(z)|?. If there exists c3 > 0 such that
|C(z)| > ¢3 for z € R?, then our Assumption 1 holds with go = 1. O
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