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CENTRAL LIMIT THEOREMS FOR SUPERCRITICAL
BRANCHING NONSYMMETRIC MARKOV PROCESSES
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and Peking University

In this paper, we establish a spatial central limit theorem for a large class
of supercritical branching, not necessarily symmetric, Markov processes with
spatially dependent branching mechanisms satisfying a second moment con-
dition. This central limit theorem generalizes and unifies all the central limit
theorems obtained recently in Ren, Song and Zhang [J. Funct. Anal. 266
(2014) 1716–1756] for supercritical branching symmetric Markov processes.
To prove our central limit theorem, we have to carefully develop the spectral
theory of nonsymmetric strongly continuous semigroups, which should be of
independent interest.

1. Introduction. Central limit theorems for supercritical branching processes
were initiated by Kesten and Stigum in [13, 14]. In these two papers, they estab-
lished central limit theorems for supercritical multi-type Galton–Watson processes
by using the Jordan canonical form of the expectation matrix M . Then in [4–6],
Athreya proved central limit theorems for supercritical multi-type continuous time
branching processes, using the Jordan canonical form and the eigenvectors of the
matrix Mt , the mean matrix at time t . Asmussen and Keiding [3] used martingale
central limit theorems to prove central limit theorems for supercritical multi-type
branching processes. In [2], Asmussen and Hering established spatial central limit
theorems for general supercritical branching Markov processes under a certain
condition. However, the condition in [2] is not easy to check and essentially the
only examples given in [2] of branching Markov processes satisfying this condi-
tion are branching diffusions in bounded smooth domains. We note that the limit
normal random variables in [2] may be degenerate.

The recent study of spatial central limit theorems for branching Markov pro-
cesses started with a paper by Adamczak and Miłoś [1] where they proved some
central limit theorems for supercritical branching Ornstein–Uhlenbeck processes
with binary branching mechanism. We note that branching Ornstein–Uhlenbeck
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processes do not satisfy the condition in [2]. In [23], Miłoś proved some central
limit theorems for supercritical super Ornstein–Uhlenbeck processes with branch-
ing mechanisms satisfying a fourth moment condition. Similar to the case of [2],
the limit normal random variables in [1, 23] may be degenerate. In [25], we estab-
lished central limit theorems for supercritical super Ornstein–Uhlenbeck processes
with branching mechanisms satisfying only a second moment condition. More im-
portantly, the central limit theorems in [25] are more satisfactory since our limit
normal random variables are nondegenerate. In [26], we obtained central limit the-
orems for a large class of general supercritical branching symmetric Markov pro-
cesses with spatially dependent branching mechanisms satisfying only a second
moment condition. In [28], we obtained central limit theorems for a large class of
general supercritical superprocesses with symmetric spatial motions and with spa-
tially dependent branching mechanisms satisfying only a second moment condi-
tion. Furthermore, we also obtained the covariance structure of the limit Gaussian
field in [28].

Compared with [4–6, 13, 14], the spatial processes in [1, 23, 25, 26, 28] are
assumed to be symmetric. The reason for this assumption is that one of the main
tools in [1, 23, 25, 26, 28] is the well-developed spectral theory of self-adjoint
operators.

The main purpose of this paper is to establish central limit theorems for general
supercritical branching, not necessarily symmetric, Markov processes with spa-
tially dependent branching mechanisms satisfying only a second moment condi-
tion. See our main result, Theorem 1.16, for the statement of our central limit the-
orems. To prove our main result, we need to carefully develop the spectral theory
of not necessarily symmetric, strongly continuous semigroups. We believe these
spectral results are of independent interest and should be very useful in studying
nonsymmetric Markov processes.

In this paper, R and C stand for the sets of real and complex numbers, respec-
tively, and all vectors in Rn or Cn will be understood as column vectors. For any
z ∈ C, we use �(z) and �(z) to denote real and imaginary parts of z, respectively.
For a matrix A, we use A and AT to denote the conjugate and transpose of A,
respectively.

1.1. Spatial process. In this subsection, we spell out our assumptions on the
spatial Markov process. Throughout this paper, E stands for a locally compact
separable metric space, m is a σ -finite Borel measure on E with full support and ∂

is a separate point not contained in E. ∂ will be interpreted as the cemetery point.
We will use E∂ to denote E∪{∂}. Every function f on E is automatically extended
to E∂ by setting f (∂) = 0. We will assume that ξ = {ξt ,�x} is a Hunt process
on E, and ζ := inf{t > 0 : ξt = ∂} is the lifetime of ξ . We will use {Pt : t ≥ 0} to
denote the semigroup of ξ . Our standing assumption on ξ is that there exists a
family of continuous, strictly positive functions {p(t, x, y) : t > 0} on E × E such
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that, for any t > 0 and nonnegative function f on E,

Ptf (x) =
∫
E

p(t, x, y)f (y)m(dy).

We will use {P̂t : t ≥ 0} to denote the dual semigroup of {Pt : t ≥ 0} defined by

P̂tf (x) =
∫
E

p(t, y, x)f (y)m(dy).

For p ≥ 1, we define Lp(E,m;C) := {f :E → C :
∫
E |f (x)|pm(dx) < ∞} and

Lp(E,m) := {f ∈ Lp(E,m;C) :f is real}. We also define

at (x) :=
∫
E

p(t, x, y)2m(dy), ât (x) :=
∫
E

p(t, y, x)2m(dy).(1.1)

In this paper, we assume the following:

ASSUMPTION 1. (a) For all t > 0 and x ∈ E,
∫
E p(t, y, x)m(dy) ≤ 1.

(b) For any t > 0, at and ât are continuous functions in E, and they belong to
L1(E,m).

(c) There exists t0 > 0 such that at0, ât0 ∈ L2(E,m).

By the Chapman–Kolmogorov equation, the Cauchy–Schwarz inequality
and (1.1), we have

p(t + s, x, y) =
∫
E

p(t, x, z)p(s, z, y)m(dz) ≤ (
at (x)

)1/2(
âs(y)

)1/2
,(1.2)

which implies

at+s(x) ≤
∫
E

âs(y)m(dy)at (x) and ât+s(x) ≤
∫
E

as(y)m(dy)ât (x).

So Assumption 1(c) above is equivalent to the following:
(c′) There exists t0 > 0 such that for all t ≥ t0, at , ât ∈ L2(E,m).
Using Assumption 1(a), we have that, for p ∈ [1,∞), {Pt : t ≥ 0} and {P̂t : t ≥ 0}

are contraction semigroups on Lp(E,m;C). In fact, for any f ∈ Lp(E,m;C),
using Hölder’s inequality, Fubini’s theorem and Assumption 1(a), we have

‖Ptf ‖p
p =

∫
E

∣∣∣∣∫
E

p(t, x, y)f (y)m(dy)

∣∣∣∣pm(dx)

≤
∫
E

∫
E

p(t, x, y)
∣∣f (y)

∣∣pm(dy)m(dx)

=
∫
E

(∫
E

p(t, x, y)m(dx)

)∣∣f (y)
∣∣pm(dy)

≤
∫
E

∣∣f (y)
∣∣pm(dy).
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P̂t can be dealt with similarly.
One can check that the semigroups {Pt : t ≥ 0} and {P̂t : t ≥ 0} are strongly con-

tinuous on Lp(E,m;C) for any p ∈ [1,∞), even though only the strong conti-
nuity on L2(E,m;C) is needed later. Here we give a sketch of the proof of this
fact. Since X is a Hunt process, for any continuous function f on E with compact
support, we have by the dominated convergence theorem,

lim
t↓0

Ptf (x) = f (x), x ∈ E.

Since the collection of continuous functions of compact support is dense in
L2(E,m;C), it follows from [21], Proposition II.4.3, that {Pt : t ≥ 0} is strongly
continuous on L2(E,m;C). Now the strong continuity of {P̂t : t ≥ 0} on L2(E,m;
C) follows from general theory; see, for instance, [24], Corollary 1.10.6. If f ≥ 0 is
a bounded function on E which vanishes outside a set B ⊂ E of finite m-measure,
then

lim
t→0

∫
B

Ptf (x)m(dx) = lim
t→0

∫
E

1B(x)Ptf (x)m(dx)

=
∫
E

1B(x)f (x)m(dx) = ‖f ‖1

by the strong continuity of {Pt : t ≥ 0} on L2(E,m;C). Using ‖Ptf ‖1 ≤ ‖f ‖1, we
have

lim
t→0

∫
E

1E\B(x)Ptf (x)m(dx) = 0.

This implies that

lim
t→0

‖Ptf − f ‖1 ≤ lim
t→0

∫
B

∣∣Ptf (x) − f (x)
∣∣m(dx)

= lim
t→0

∫
E

∣∣1B(x)Ptf (x) − f (x)
∣∣m(dx)

≤ lim
t→0

‖Ptf − f ‖2m(B)1/2 = 0.

Combining the conclusion above with the fact that the collection {f :E �→
[0,∞) :f is bounded on E and vanishes outside a set of finite m-measure} is
dense in L1+(E,m), we immediately get the strong continuity of {Pt : t ≥ 0} on
L1(E,m;C). The strong continuity of {P̂t : t ≥ 0} on L1(E,m;C) can be proved
similarly. The strong continuity of {Pt : t ≥ 0} and {P̂t : t ≥ 0} on L1(E,m;C) and
L2(E,m;C) implies the same on Lp(E,m;C) for p ∈ (1,2) by interpolation.
The same follows for p ∈ (2,∞) by using the fact that Lp(E,m;C) is reflexive
for p ∈ (1,∞).
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We claim that the function t → ∫
E at (x)m(dx) is decreasing. In fact, by Fubini’s

theorem and Hölder’s inequality, we get

at+s(x) =
∫
E

p(t + s, x, y)

∫
E

p(t, x, z)p(s, z, y)m(dz)m(dy)

=
∫
E

p(t, x, z)

∫
E

p(t + s, x, y)p(s, z, y)m(dy)m(dz)

≤ at+s(x)1/2
∫
E

p(t, x, z)as(z)
1/2m(dz),

which implies

at+s(x) ≤
(∫

E
p(t, x, z)as(z)

1/2m(dz)

)2

≤
∫
E

p(t, x, z)as(z)m(dz).(1.3)

Thus, by Fubini’s theorem and Assumption 1(a), we get∫
E

at+s(x)m(dx) ≤
∫
E

as(z)

∫
E

p(t, x, z)m(dx)m(dz)

≤
∫
E

as(z)m(dz).

Therefore, the function t → ∫
E at (x)m(dx) is decreasing.

Now we give some examples of nonsymmetric Markov processes satisfying
the above assumptions. The purpose of these examples is to show that the above
assumptions are satisfied by many Markov processes. We will not try to give the
most general examples possible. For examples of symmetric Markov processes
satisfying the above assumptions, see [26].

EXAMPLE 1.1. Suppose that E consists of finitely many points. If ξ =
{ξt : t ≥ 0} is an irreducible conservative Markov process in E, then ξ satisfies
Assumption 1 for some finite measure m on E with full support.

EXAMPLE 1.2. Suppose that α ∈ (0,2) and that ξ (1) = {ξ (1)
t : t ≥ 0} is a

strictly α-stable process in Rd . Suppose that, in the case d ≥ 2, the spherical part
η of the Lévy measure μ of ξ (1) satisfies the following assumption: there exist a
positive function 	 on the unit sphere S in Rd and κ > 1 such that

	 = dη

dσ
and κ−1 ≤ 	(z) ≤ κ on S,

where σ is the surface measure on S. In the case d = 1, we assume that the Lévy
measure of ξ (1) is given by

μ(dx) = c1x
−1−α1{x>0} + c2|x|−1−α1{x<0}

with c1, c2 > 0. Suppose that D is an open set in Rd of finite Lebesgue measure.
Let ξ be the process in D obtained by killing ξ (1) upon exiting D. Then ξ satis-
fies Assumption 1 with E = D and m being the Lebesgue measure. For details,
see [18], Example 4.1.
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EXAMPLE 1.3. Suppose that α ∈ (0,2) and that ξ (2) = {ξ (2)
t : t ≥ 0} is a trun-

cated strictly α-stable process in Rd : that is, ξ (2) is a Lévy process with Lévy
measure given by

μ̃(dx) = μ(dx)1{|x|<1},

where μ is the Lévy measure of the process ξ (1) in the previous example. Suppose
that D is a connected open set in Rd of finite Lebesgue measure. Let ξ be the pro-
cess in D obtained by killing ξ (2) upon exiting D. Then ξ satisfies Assumption 1
with E = D and m being the Lebesgue measure. For details, see [18], Example 4.2
and Proposition 4.4.

EXAMPLE 1.4. Suppose α ∈ (0,2), ξ (1) = {ξ (1)
t : t ≥ 0} is a strictly α-stable

process in Rd satisfying the assumptions in Example 1.2 and that ξ (3) = {ξ (3)
t : t ≥

0} is an independent Brownian motion in Rd . Let ξ (4) be the process defined by
ξ

(4)
t = ξ

(1)
t + ξ

(3)
t . Suppose that D is an open set in Rd of finite Lebesgue measure.

Let ξ be the process in D obtained by killing ξ (4) upon exiting D. Then ξ satis-
fies Assumption 1 with E = D and m being the Lebesgue measure. For details,
see [18], Example 4.5 and Lemma 4.6.

EXAMPLE 1.5. Suppose α ∈ (0,2), ξ (2) = {ξ (2)
t : t ≥ 0} is a truncated strictly

α-stable process in Rd satisfying the assumptions in Example 1.3 and that ξ (3) =
{ξ (3)

t : t ≥ 0} is an independent Brownian motion in Rd . Let ξ (5) be the process
defined by ξ

(5)
t = ξ

(2)
t + ξ

(3)
t . Suppose that D is a connected open set in Rd of

finite Lebesgue measure. Let ξ be the process in D obtained by killing ξ (5) upon
exiting D. Then ξ satisfies Assumption 1 with E = D and m being the Lebesgue
measure. For details, see [18], Example 4.7 and Lemma 4.8.

EXAMPLE 1.6. Suppose d ≥ 3 and that μ = (μ1, . . . ,μd), where each μj is
a signed measure on Rd such that

lim
r→0

sup
x∈Rd

∫
B(x,r)

|μj |(dy)

|x − y|d−1 = 0.

Let ξ (6) = {ξ (6)
t : t ≥ 0} be a Brownian motion with drift μ in Rd ; see [15]. Suppose

that D is a bounded, connected open set in Rd , and suppose K > 0 is a constant
such that D ⊂ B(0,K/2). Put B = B(0,K). Let GB be the Green function of ξ (6)

in B , and define H(x) := ∫
B GB(x, y) dy. Then H is a strictly positive continuous

function on B . Let ξ be the process obtained by killing ξ (6) upon exiting D. Then ξ

satisfies Assumption 1 with E = D and m being the measure defined by m(dx) =
H(x)dx. For details, see [31], Example 4.6 or [16, 17].
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EXAMPLE 1.7. Suppose d ≥ 2, α ∈ (1,2) and that μ = (μ1, . . . ,μd), where
each μj is a signed measure on Rd such that

lim
r→0

sup
x∈Rd

∫
B(x,r)

|μj |(dy)

|x − y|d−α+1 = 0.

Let ξ (7) = {ξ (7)
t : t ≥ 0} be an α-stable process with drift μ in Rd ; see [19]. Suppose

that D is a bounded open set in Rd and suppose K > 0 is such that D ⊂ B(0,K/2).
Put B = B(0,K). Let GB be the Green function of ξ (7) in B , and define H(x) :=∫
B GB(x, y) dy. Then H is a strictly positive continuous function on B . Let ξ be

the process obtained by killing ξ (7) upon exiting D. Then ξ satisfies Assumption 1
with E = D and m being the measure defined by m(dx) = H(x)dx. For details,
see [31], Example 4.7 or [9].

1.2. Branching Markov processes. The branching Markov process {Xt : t ≥ 0}
on E we are going to work with is determined by three parameters: a spatial mo-
tion ξ = {ξt ,�x} on E satisfying the assumptions at the beginning of the previous
subsection, a branching rate function β(x) on E which is a nonnegative bounded
measurable function and an offspring distribution {pn(x) :n = 0,1,2, . . .} satisfy-
ing:

ASSUMPTION 2.

sup
x∈E

∞∑
n=0

n2pn(x) < ∞.(1.4)

We denote the generating function of the offspring distribution by

ϕ(x, z) =
∞∑

n=0

pn(x)zn, x ∈ E, |z| ≤ 1.

Consider a branching system on E characterized by the following properties:
(i) each individual has a random birth and death time; (ii) given that an individual
is born at x ∈ E, the conditional distribution of its path is determined by �x ;
(iii) given the path ξ of an individual up to time t and given that the particle is
alive at time t , its probability of dying in the interval [t, t +dt) is β(ξt ) dt +o(dt);
(iv) when an individual dies at x ∈ E, it splits into n individuals all positioned at x,
with probability pn(x); (v) when an individual reaches ∂ , it disappears from the
system; (vi) all the individuals, once born, evolve independently.

Let Ma(E) be the space of finite integer-valued atomic measures on E, and
let Bb(E) be the set of bounded real-valued Borel measurable functions on E. Let
Xt(B) be the number of particles alive at time t located in B ∈ B(E). Then X =
{Xt, t ≥ 0} is an Ma(E)-valued Markov process. For any ν ∈ Ma(E), we denote
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the law of X with initial configuration ν by Pν . As usual, 〈f, ν〉 := ∫
E f (x)ν(dx).

For 0 ≤ f ∈ Bb(E), let

ω(t, x) := Pδx e
−〈f,Xt 〉.(1.5)

Then ω(t, x) is the unique positive solution to the equation

ω(t, x) = �x

∫ t

0
ψ
(
ξs,ω(t − s, ξs)

)
ds + �x

(
e−f (ξt )

)
,(1.6)

where ψ(x, z) = β(x)(ϕ(x, z)−z), x ∈ E,z ∈ [0,1], while ψ(∂, z) = 0, z ∈ [0,1].
By the branching property, we have

Pνe
−〈f,Xt 〉 = e〈logω(t,·),ν〉.

For recent developments on measure-valued branching Markov processes, see, for
instance, [7, 20]. Define

α(x) := ∂ψ

∂z
(x,1) = β(x)

( ∞∑
n=1

npn(x) − 1

)
(1.7)

and

A(x) := ∂2ψ

∂z2 (x,1) = β(x)

∞∑
n=2

(n − 1)npn(x).(1.8)

By (1.4), there exists K > 0, such that

sup
x∈E

(∣∣α(x)
∣∣+ A(x)

)≤ K.(1.9)

For any f ∈ Bb(E) and (t, x) ∈ (0,∞) × E, define

Ttf (x) := �x

[
e
∫ t

0 α(ξs) dsf (ξt )
]
.

By applying (1.5) and (1.6) to θf and differentiating with respect to θ at θ = 0, we
get that Ttf (x) = Pδx 〈f,Xt 〉 for every x ∈ E.

It is elementary to show that (see [27], Lemma 2.1) there exists a function
q(t, x, y) on (0,∞) × E × E which is continuous in (x, y) for each t > 0 such
that

e−Ktp(t, x, y) ≤ q(t, x, y) ≤ eKtp(t, x, y),
(1.10)

(t, x, y) ∈ (0,∞) × E × E

and that for any bounded Borel function f on E and (t, x) ∈ (0,∞) × E,

Ttf (x) =
∫
E

q(t, x, y)f (y)m(dy).

Define

bt (x) :=
∫
E

q(t, x, y)2m(dy), b̂t (x) :=
∫
E

q(t, y, x)2m(dy).(1.11)
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The functions x → bt (x) and x → b̂t (x) are continuous. In fact, by (1.2),

q(t, x, y) ≤ eKtp(t, x, y) ≤ eKtat/2(x)1/2ât/2(y)1/2.(1.12)

Since q(t, ·, y) and at/2 are continuous, by the dominated convergence theo-
rem, we get bt is continuous. Similarly, b̂t is also continuous. Thus, it follows
from (1.12) and Assumption 1(b) and (c′) that bt and b̂t enjoy the following prop-
erties:

(i) For any t > 0, we have bt ∈ L1(E,m). Moreover, bt (x) and b̂t (x) are con-
tinuous in x ∈ E.

(ii) There exists t0 > 0 such that for all t ≥ t0, bt , b̂t ∈ L2(E,m).

1.3. Preliminaries. Note that, by (1.10), we have |Ttf (x)| ≤ eKtPt |f |(x).
Thus, for any p ≥ 1,

‖Ttf ‖p ≤ eKt
∥∥Pt |f |∥∥p ≤ eKt‖f ‖p.(1.13)

Recall that α is defined in (1.7). By the boundedness of α and Khas’minskii’s
lemma ([10], Lemma 3.7), one can follow the elementary arguments in the proofs
of [10], Propositions 3.8 and 3.9, to show that

lim
t→0

sup
x∈E

�x

∣∣e∫ t
0 α(ξs) ds − 1

∣∣2 = 0.(1.14)

Thus for any f ∈ L2(E,m;C),∣∣Ttf (x) − Ptf (x)
∣∣2 = ∣∣�x

(
e
∫ t

0 α(ξs) ds − 1
)
f (ξt )

∣∣2
≤ �x

∣∣e∫ t
0 α(ξs) ds − 1

∣∣2 · �x

∣∣f (ξt )
∣∣2

by the Cauchy–Schwarz inequality. Hence by Assumption 1(a), we have∫
E

∣∣Ttf (x) − Ptf (x)
∣∣2m(dx)

≤ sup
x∈E

�x

∣∣e∫ t
0 α(ξs) ds − 1

∣∣2 ∫
E

p(t, x, y)
∣∣f (y)

∣∣2m(dy)m(dx)

≤
∫
E

∣∣f (y)
∣∣2m(dy) · sup

x∈E

�x

∣∣e∫ t
0 α(ξs) ds − 1

∣∣2,
which goes to zero as t ↓ 0 by (1.14). Thus {Tt : t ≥ 0} is strongly continuous on
L2(E,m;C).

For f,g ∈ L2(E,m;C), define

〈f,g〉m :=
∫
E

f (x)g(x)m(dx).

Let {T̂t , t > 0} be the adjoint semigroup of {Tt : t ≥ 0} on L2(E,m;C), that is, for
f,g ∈ L2(E,m;C),

〈Ttf, g〉m = 〈f, T̂tg〉m.
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Thus,

T̂tg(x) =
∫
E

q(t, y, x)g(y)m(dy).

It is well known (see, e.g., [24], Corollary 1.10.6, Lemma 1.10.1), that {T̂t : t ≥ 0}
is a strongly continuous semigroup on L2(E,m;C) and that

‖T̂t‖2 = ‖Tt‖2 ≤ eKt .(1.15)

For all t > 0 and f ∈ L2(E,m;C), Ttf and T̂tf are continuous. In fact, since
q(t, x, y) is continuous, by (1.12) and Assumption 1(b), using the dominated con-
vergence theorem, we get Ttf and T̂tf are continuous. It follows from property (i)
at the end of Section 1.2 that, for any t > 0, Tt and T̂t are compact operators
on L2(E,m;C). Let A and Â be the infinitesimal generators of {Tt : t ≥ 0} and
{T̂t : t ≥ 0} in L2(E,m;C), respectively. Let σ(A) and σ(Â) be the spectra of
A and Â, respectively. It follows from [24], Theorem 2.2.4 and Corollary 2.3.7,
that both σ(A) and σ(Â) consist of eigenvalues only, and that A and Â have
the same number, say N , of eigenvalues. Of course N might be finite or infinite.
Let I = {1,2, . . . ,N}, when N < ∞; otherwise I = {1,2, . . .}. Under the assump-
tions of Section 1.1, using (1.10) and Jentzsch’s theorem [29], Theorem V.6.6 on
page 337, we know that the common value −λ1 = sup�(σ (A)) = sup�(σ (Â)) is
an eigenvalue of multiplicity one for both A and Â, and that an eigenfunction φ1
of A associated with −λ1 can be chosen to be strictly positive almost everywhere
with ‖φ1‖2 = 1, and an eigenfunction ψ1 of Â associated with −λ1 can be chosen
to be strictly positive almost everywhere with 〈φ1,ψ1〉m = 1. We list the eigenval-
ues {−λk, k ∈ I} of A in an order so λ1 < �(λ2) ≤ �(λ3) ≤ · · · . Then {−λk, k ∈ I}
are the eigenvalues of Â. For convenience, we define, for any positive integer k not
in I, λk = λk = ∞. For k ∈ I, we write �k := �(λk) and �k := �(λk). We use the
convention �∞ = ∞.

Let σ(Tt ) be the spectrum of Tt in L2(E,m;C). It follows from [24], Theo-
rem 2.2.4, that σ(Tt ) \ {0} := {e−λkt :k ∈ I}. We claim that there exists t∗ > 0 such
that, for any k �= j , e−λkt

∗ �= e−λj t∗ . In fact, if �k �= �j , then for all t > 0, e−λkt �=
e−λj t . If, for k �= j , �k = �j , then the set {t > 0 : e−λkt = e−λj t } = {2nπ/�(λk −
λj ) :n ∈ Z} is countable. Thus the set

⋃
k �=j and �k=�j

{t > 0 : e−λkt = e−λj t } is
countable. Hence the claim is valid. We will fix this t∗ throughout this paper.

Now we recall some basic facts about spectral theory; for more details, see [8],
Chapter 6. For any k ∈ I, we define Nk,0 := {0}, and for n ≥ 1,

Nk,n := N
((

e−λkt
∗
I − Tt∗

)n)= {
f ∈ L2(E,m;C) :

(
e−λkt

∗
I − Tt∗

)n
f = 0

}
and

Rk,n := R
((

e−λkt
∗
I − Tt∗

)n)= (
e−λkt

∗
I − Tt∗

)n(
L2(E,m;C)

)
.(1.16)

For each k ∈ I, there exists an integer νk ≥ 1 such that

Nk,n �Nk,n+1, n = 0,1, . . . , νk − 1; Nk,n =Nk,n+1, n ≥ νk
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and

Rk,n �Rk,n+1, n = 0,1, . . . , νk − 1; Rk,n = Rk,n+1, n ≥ νk.

For all k ∈ I and n ≥ 0, Nk,n is a finite dimensional linear subspace of
L2(E,m;C). Nk,n and Rk,n are invariant subspaces of Tt . In fact, for any f ∈
Nk,n, (

e−λkt
∗
I − Tt∗

)n
(Ttf ) = Tt

(
e−λkt

∗
I − Tt∗

)n
f = 0,

which implies that Ttf ∈ Nk,n. If f = (e−λkt
∗
I −Tt∗)ng, then Ttf = Tt (e

−λkt
∗
I −

Tt∗)ng = (e−λkt
∗
I − Tt∗)nTtg ∈ Rk,n. Thus {Tt |Nk,νk

, t > 0} is a semigroup on
Nk,νk

. We denote the corresponding infinitesimal generator as Ak . By [8], The-
orem 6.7.4, σ(Tt∗ |Nk,νk

) = {e−λkt
∗}. Since σ(Ak) ⊂ σ(A), we have σ(Ak) =

{−λk}. Define nk := dim(Nk,νk
) and rk := dim(Nk,1). Then from linear algebra

we know that there exists a basis {φ(k)
j , j = 1,2, . . . , nk} of Nk,νk

such that

Ak

(
φ

(k)
1 , φ

(k)
2 , . . . , φ(k)

nk

)

= (
φ

(k)
1 , φ

(k)
2 , . . . , φ(k)

nk

)
⎛⎜⎜⎜⎝

Jk,1 0
Jk,2

. . .

0 Jk,rk

⎞⎟⎟⎟⎠
=: (φ(k)

1 , φ
(k)
2 , . . . , φ(k)

nk

)
Dk,

where

Jk,j =

⎛⎜⎜⎜⎜⎜⎝
−λk 1 0

−λk 1
. . .

. . .

−λk 1
0 −λk

⎞⎟⎟⎟⎟⎟⎠ , a dk,j × dk,j matrix

with
∑rk

j=1 dk,j = nk . Dk is uniquely determined by the dimensions of Nk,n, n =
1,2, . . . , νk ; see [22], Section 7.8, for more details. Here and in the remainder of
this paper we use the convention that when an operator, like A or Ak or Tt , acts on
a vector-valued function, it acts componentwise. For convenience, we define the
following Cnk -valued functions:

	k(x) := (
φ

(k)
1 (x),φ

(k)
2 (x), . . . , φ(k)

nk
(x)

)T
.(1.17)

Put

Dk(t) :=

⎛⎜⎜⎜⎝
Jk,1(t) 0

Jk,2(t)
. . .

0 Jk,rk (t)

⎞⎟⎟⎟⎠ ,(1.18)
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where Jk,j (t) is a dk,j × dk,j matrix given by

Jk,j (t) =

⎛⎜⎜⎜⎜⎜⎝
1 t t2/2! · · · tdk,j−1/(dk,j − 1)!
0 1 t t2/2! · · ·

. . .
. . .

1 t

0 1

⎞⎟⎟⎟⎟⎟⎠ .

Then we have for a.e. x ∈ E,

Tt (	k)
T (x) = e−λkt

(
	k(x)

)T
Dk(t).(1.19)

More details can be found in [22], page 609. Under our assumptions, Tt(	k)
T (x)

is continuous. Thus, by (1.19), we can choose 	k to be continuous, which im-
plies (1.19) holds for all x ∈ E. We note that here the matrix Dk(t) satisfies the
semigroup property, that is, for t, s > 0, Dk(t + s) = Dk(t)Dk(s) and Dk(t) is
invertible with Dk(t)

−1 = Dk(−t).
For any vector a = (a1, . . . , an)

T ∈ Cn, we define the Lp norm of a by |a|p :=
(
∑n

j=1 |aj |p)1/p when 1 ≤ p < ∞ and |a|∞ := maxi (|ai |) when p = ∞.

By Hölder’s inequality, |Tt (φ
(k)
j )(x)| ≤ bt (x)1/2. By (1.19), we get (	k)

T =
eλktTt (	k)

T (Dk(t))
−1. Thus∣∣	k(x)

∣∣∞ ≤ c(t, k)bt (x)1/2,(1.20)

where c(t, k) does not depend on x. When we choose t = t0, by Assumption 1(b)
and (c), we get that φ

(k)
j ∈ L2(E,m;C) ∩ L4(E,m;C).

Now we consider the corresponding objects for T̂t . We know that σ(T̂t∗)\ {0} =
{e−λkt

∗
, k ∈ I}. Define

N̂k,n := N
((

e−λkt
∗
I − T̂t∗

)n)= {
f ∈ L2(E,m;C) :

(
e−λkt

∗
I − T̂t∗

)n
f = 0

}
.

Note that(
e−λkt

∗
I − Tt∗

)n = e−nλkt
∗
I −

n∑
j=1

(−1)j−1
(

n

j

)
e−(n−j)λkt

∗
T

j
t∗ .(1.21)

Since
∑n

j=1(−1)j−1(n
j

)
e−(n−j)λkt

∗
T

j
t∗ is a compact operator, by [8], Theo-

rem 6.6.13, N̂k,n is of the same dimension as Nk,n. In particular, dim(N̂k,νk
) =

dim(Nk,νk
) = nk . Thus we have

N̂k,n � N̂k,n+1, n = 0,1, . . . , νk − 1; N̂k,n = N̂k,n+1, n ≥ νk.

Similarly, we can get, for all k ∈ I and n ≥ 0, N̂k,n is an invariant subspace of T̂t .
Hence, {T̂t |N̂k,νk

, t > 0} is a semigroup on N̂k,νk
with infinitesimal generator Âk .

Let {ψ̂(k)
1 , ψ̂

(k)
2 , . . . , ψ̂

(k)
nk } be a basis of N̂k,νk

such that

T̂t

(
ψ̂

(k)
1 , ψ̂

(k)
2 , . . . , ψ̂(k)

nk

)= (
ψ̂

(k)
1 , ψ̂

(k)
2 , . . . , ψ̂(k)

nk

)
D̂k(t),(1.22)



576 Y.-X. REN, R. SONG AND R. ZHANG

where D̂k(t) is an nk × nk invertible matrix. Since T̂t (ψ̂
(k)
1 , ψ̂

(k)
2 , . . . , ψ̂

(k)
nk )(x) is

continuous, we can choose (ψ̂
(k)
1 , ψ̂

(k)
2 , . . . , ψ̂

(k)
nk ) to be continuous. We define an

nk × nk matrix Ãk by

(Ãk)j,l := 〈
φ

(k)
j , ψ̂

(k)
l

〉
m.(1.23)

LEMMA 1.8. For each k ∈ I,

L2(E,m;C) = Nk,νk
⊕ (N̂k,νk

)⊥ = N̂k,νk
⊕ (Nk,νk

)⊥.(1.24)

Morover, the matrix Ãk defined in (1.23) is invertible.

PROOF. By [8], Theorem 6.6.7, we have L2(E,m;C) = Nk,νk
⊕ Rk,νk

.
It follows from (1.21) and [8], Theorem 6.6.14, that Rk,νk

= (N̂k,νk
)⊥. Thus

L2(E,m;C) = Nk,νk
⊕ (N̂k,νk

)⊥. Similarly, we have L2(E,m;C) = N̂k,νk
⊕

(Nk,νk
)⊥.

For any vector a = (a1, . . . , ank
)T ∈ Cnk , we have by the definition of Ãk

in (1.23),

Ãka = (〈
φ

(k)
1 , h

〉
m,
〈
φ

(k)
2 , h

〉
m, . . . ,

〈
φ(k)

nk
, h
〉
m

)T
,

where h = (ψ̂
(k)
1 , ψ̂

(k)
2 , . . . , ψ̂

(k)
nk )ā ∈ N̂k,νk

.
If Ãka = 0, then h ∈ (Nk,νk

)⊥. Since N̂k,νk
∩ (Nk,νk

)⊥ = {0}, we have h = 0,
which implies a = 0. Therefore, Ãk is invertible. �

LEMMA 1.9. For any k ∈ I, define(
�k(x)

)T := (
ψ

(k)
1 (x),ψ

(k)
2 (x), . . . ,ψ(k)

nk
(x)

)
(1.25)

:= (
ψ̂

(k)
1 (x), ψ̂

(k)
2 (x), . . . , ψ̂(k)

nk
(x)

)
Ã−1

k .

Then {ψ(k)
1 ,ψ

(k)
2 , . . . ,ψ

(k)
nk } is a basis of N̂k,νk

such that the nk × nk matrix Ak :=
(〈φ(k)

j ,ψ
(k)
l 〉m) satisfies

Ak = I(1.26)

and for any x ∈ E,

T̂t (�k)(x) = e−λktDk(t)�k(x).(1.27)

Moreover, the basis of N̂k,νk
satisfying (1.26) is unique.

PROOF. Since Ã−1
k is invertible, {ψ(k)

1 ,ψ
(k)
2 , . . . ,ψ

(k)
nk } is a basis of N̂k,νk

. Ac-
cording to the definition of Ãk given by (1.23), we have

Ãk =
∫
E

	k(x)�̂k(x)T m(dx),
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where �̂k := (ψ̂
(k)
1 , ψ̂

(k)
2 , . . . , ψ̂

(k)
nk )T , and the integration of a matrix is understood

element-wise.
By (1.19) and (1.22), we get

e−λkt
(
Dk(t)

)T
Ãk =

∫
E

e−λkt
(
Dk(t)

)T
	k(x)�̂k(x)T m(dx)

=
∫
E

Tt	k(x)�̂k(x)T m(dx) =
∫
E

	k(x)
(
T̂t �̂

T
k

)
(x)m(dx)

=
∫
E

	k(x)�̂T
k (x)D̂k(t)m(dx) = ÃkD̂k(t).

Since Dk(t) is a real matrix, we have

e−λkt Ã−1
k

(
Dk(t)

)T = D̂k(t)Ã
−1
k .(1.28)

By (1.22) and (1.28), we have

T̂t

(
ψ

(k)
1 ,ψ

(k)
2 , . . . ,ψ(k)

nk

)= (
ψ̂

(k)
1 , ψ̂

(k)
2 , . . . , ψ̂(k)

nk

)
D̂k(t)Ã

−1
k

= e−λkt
(
ψ̂

(k)
1 , ψ̂

(k)
2 , . . . , ψ̂(k)

nk

)
Ã−1

k

(
Dk(t)

)T
= e−λkt

(
ψ

(k)
1 ,ψ

(k)
2 , . . . ,ψ(k)

nk

)(
Dk(t)

)T
.

Assume that there exists another basis �̃k(x) of N̂k,νk
satisfying (1.26). Then there

exists a matrix B such that (�̃k(x))T = (�k(x))T B . Thus

I =
∫
E

	k(x)
(
�̃k(x)

)T
m(dx) =

∫
E

	k(x)
(
�k(x)

)T
m(dx)B = B,

which implies B = I . Hence, we get �̃k(x) = �k(x). The proof is now complete.
�

REMARK 1.10. Recall that 	k(x), Dk(t) and �k(x) are defined in (1.17),
(1.18) and (1.25), respectively. We know that Tt (	

T
k )(x) = e−λkt	T

j (x)Dk(t).

Thus e−λkt is also an eigenvalue of Tt . Hence there exists a unique k′ such that
λk′ = λk . It is obvious that Dk(t) = Dk′(t), and we can choose 	k′(x) = 	k(x).
By Lemma 1.9, we have �k′(x) = �k(x). In particular, if λk is real, then k′ = k.

LEMMA 1.11. For j, k ∈ I and j �= k, we have

Nj,νj
⊂ Rk,νk

= (N̂k,νk
)⊥.(1.29)

In particular, Nj,νj
∩Nk,νk

= {0}.

PROOF. Assume f ∈ Nj,νj
, then (e−λj t∗I − Tt∗)νj f = 0. Since νj ≥ 1, we

can define g = (e−λj t∗I − Tt∗)νj−1f . Thus e−λj t∗g = Tt∗g. Hence, (e−λkt
∗
I −

Tt∗)g = (e−λkt
∗ − e−λj t∗)g, which implies(

e−λkt
∗
I − Tt∗

)νkg = (
e−λkt

∗ − e−λj t∗)νkg.
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Therefore g = (e−λkt
∗ − e−λj t∗)−νk (e−λkt

∗
I − Tt∗)νkg ∈ Rk,νk

.
Assume f = f1 + f2 with f1 ∈ Nk,νk

and f2 ∈ Rk,νk
. Then (e−λj t∗I −

Tt∗)νj−1f1 ∈ Nk,νk
. On the other hand, (e−λj t∗I − Tt∗)νj−1f1 = g − (e−λj t∗I −

Tt∗)νj−1f2 ∈ Rk,νk
. Thus (e−λj t∗I − Tt∗)νj−1f1 = 0.

If νj = 1, then f = g ∈ Rk,νk
. If νj > 1 and f1 �= 0, then e−λj t∗ ∈ σ(Tt∗ |Nk,νk

).

By [8], Theorem 6.7.4, σ(Tt∗ |Nk,νk
) = {e−λkt

∗}. This is a contradiction. Thus, f1 =
0, which implies f = f2 ∈Rk,νk

. Therefore Nj,νj
⊂Rk,νk

. �

By Lemma 1.11, for k ∈ I, we can define

Mk := N1,ν1 ⊕N2,ν2 ⊕ · · · ⊕Nk,νk
and

(1.30)
M̂k := N̂1,ν1 ⊕ N̂2,ν2 ⊕ · · · ⊕ N̂k,νk

.

COROLLARY 1.12. For any k ∈ I,

L2(E,m;C) =Mk ⊕ (M̂k)
⊥ = M̂k ⊕ (Mk)

⊥.(1.31)

PROOF. By (1.24), (1.31) holds for k = 1. Assume that (1.31) holds for k − 1.
Then

L2(E,m;C) =Mk−1 ⊕ (M̂k−1)
⊥.

For any f ∈ (M̂k−1)
⊥, by (1.24), we have f = f3 + f4, where f3 ∈ Nk,νk

and
f4 ∈ (N̂k,νk

)⊥. By (1.29), f3 ∈ ⋂k−1
j=1(N̂j,νj

)⊥ = (M̂k−1)
⊥, which implies f4 =

f − f3 ∈ (M̂k−1)
⊥. Thus we obtain

f4 ∈ (N̂k,νk
)⊥ ∩ (M̂k−1)

⊥ = (M̂k)
⊥.

Hence

(M̂k−1)
⊥ =Nk,νk

⊕ (M̂k)
⊥.

Therefore, by induction, the first part of (1.31) holds for all k ∈ I.
The proof of L2(E,m;C) = M̂k ⊕ (Mk)

⊥ is similar. �

REMARK 1.13. Recall that 	k(x) and �k(x) are defined in (1.17) and (1.25),
respectively. Since −λ1 is simple, which means n1 = r1 = ν1 = 1, we know that
	1(x) = φ1(x) and �1(x) = ψ1(x). Moreover, since Ttφ1(x) = e−λ1tφ1(x) and
T̂tψ1(x) = e−λ1tψ1(x) for every x, φ1 and ψ1 are continuous and strictly positive.
By the definition of Dk(t) in (1.18), we see that D1(t) ≡ 1.

By Lemma 1.11, {φ(j)
l , j = 1, . . . , k, l = 1, . . . , nj } is a basis of Mk and

{ψ(j)
l , j = 1, . . . , k, l = 1, . . . , nj } is a basis of M̂k . By (1.29) and (1.26), we get

〈φ(j)
l ,ψ

(k)
n 〉m = 1, when j = k and l = n; otherwise 〈φ(j)

l ,ψ
(k)
n 〉m = 0.
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In this paper, we always assume that the branching Markov process X is super-
critical, that is:

ASSUMPTION 3. λ1 < 0.

We will use {Ft : t ≥ 0} to denote the filtration of X, that is, Ft = σ(Xs : s ∈
[0, t]). Using the expectation formula of 〈φ1,Xt 〉 and the Markov property of X,
one can show that (see Lemma 3.1) for any nonzero ν ∈ Ma(E), under Pν , the
process Wt := eλ1t 〈φ1,Xt 〉 is a positive martingale. Therefore it converges in the
following way:

Wt → W∞, Pν-a.s. as t → ∞.

Using Assumption 2, we can show (see Lemma 3.1 below) that as t → ∞, Wt also
converges in L2(Pν), so W∞ is nondegenerate, and the second moment is finite.
Moreover, we have Pν(W∞) = 〈φ1, ν〉. Put E = {W∞ = 0}, then Pν(E) < 1. It is
clear that Ec ⊂ {Xt(E) > 0,∀t ≥ 0}.

1.4. Main results. Recall that 	k(x), Dk(t), �k(x), Mk and M̂k are defined
in (1.17), (1.18), (1.25) and (1.30), respectively. For any k ∈ I, every function
f ∈ L2(E,m;C) can be written uniquely as the sum of a function fk ∈ Mk and
a function in (M̂k)

⊥. Similarly, every function f ∈ L2(E,m;C) can be written
uniquely as the sum of a function f̂k ∈ M̂k and a function in (Mk)

⊥. Using
Lemma 1.9, we get that

fk(x) =
k∑

j=1

(
	j(x)

)T 〈f,�j 〉m ∈ Mk

and

f̂k(x) =
k∑

j=1

(
�j(x)

)T 〈f,	j 〉m ∈ M̂k,(1.32)

where

〈f,�j 〉m := (〈
f,ψ

(j)
1

〉
m,
〈
f,ψ

(j)
2

〉
m, . . . ,

〈
f,ψ(j)

nj

〉
m

)T
and

〈f,	j 〉m := (〈
f,φ

(j)
1

〉
m,
〈
f,φ

(j)
2

〉
m, . . . ,

〈
f,φ(j)

nj

〉
m

)T
.

For any f ∈ L2(E,m;C), we define

γ (f ) := inf
{
j ∈ I : 〈f,�j 〉m �= 0

}
,(1.33)

where we use the usual convention that inf∅ = ∞. If γ (f ) < ∞, define

ζ(f ) := sup{j ∈ I :�j = �γ (f )}.(1.34)
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For each j ∈ I, every component of the function t :→ Dj(t)〈f,�j 〉m is a polyno-
mial of t . Denote the degree of the lth component of Dj(t)〈f,�j 〉m by τj,l(f ).
We define

τ(f ) := sup
{
τj,l(f ) :γ (f ) ≤ j ≤ ζ(f ),1 ≤ l ≤ nj

}
.(1.35)

Then for any j with �j = �γ (f ),

Ff,j := lim
t→∞ t−τ(f )Dj (t)〈f,�j 〉m(1.36)

exists and there exists a j such that Ff,j �= 0.
Note that if g ∈ L2(E,m), then for any j ∈ I,

〈g,�j 〉m = 〈g,�j 〉m = 〈g,�j ′ 〉m,

where j ′ is defined in Remark 1.10. For g(x) = ∑
k:λ1≥2�k

(	k(x))T vk , we have
vk = 〈g,�j 〉m. Thus g(x) is real if and only if vk = vk′ . The following three sub-
sets of L2(E,m) will be needed in the statement of our main result:

Cl :=
{
g(x) = ∑

k∈I:λ1>2�k

(
	k(x)

)T
vk :vk ∈Cnk with vk = vk′

}
,(1.37)

Cc :=
{
g(x) = ∑

k∈I:λ1=2�k

(
	k(x)

)T
vk :vk ∈Cnk with vk = vk′

}
(1.38)

and

Cs := {
g ∈ L2(E,m) ∩ L4(E,m) :λ1 < 2�γ (g)

}
.(1.39)

1.4.1. Some basic laws of large numbers. Recall that 	k(x) and Dk(t) are de-
fined in (1.17) and (1.18), respectively. Recall also that I is defined in the paragraph
below (1.15). For any k ∈ I, we define an nk-dimensional random vector H

(k)
t as

follows:

H
(k)
t := eλkt

(〈
φ

(k)
1 ,Xt

〉
, . . . ,

〈
φ(k)

nk
,Xt

〉)(
Dk(t)

)−1
.(1.40)

One can show (see Lemma 3.1 below) that if λ1 > 2�k , then, for any ν ∈ Ma(E)

and v ∈ Cnk , H
(k)
t v is a martingale under Pν and bounded in L2(Pν). Thus the

limit H
(k)∞ := limt→∞ H

(k)
t exists Pν -a.s. and in L2(Pν).

THEOREM 1.14. If f ∈ L2(E,m;C) ∩ L4(E,m;C) with λ1 > 2�γ (f ), then
for any nonzero ν ∈ Ma(E), as t → ∞,

t−τ(f )e�γ (f )t 〈f,Xt 〉 −
ζ(f )∑

j=γ (f )

e−i�j tH (j)∞ Ff,j → 0 in L2(Pν),

where Ff,j is defined in (1.36).
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REMARK 1.15. Recall that γ (f ), ζ(f ) and τ(f ) are defined in (1.33), (1.34)
and (1.35), respectively. Suppose f ∈ L2(E,m;C) ∩ L4(E,m;C) with γ (f ) = 1.
Then ζ(f ) = 1. Since D1(t) ≡ 1, τ(f ) = 0. Thus H

(1)
t reduces to Wt and H

(1)∞ =
W∞. Therefore by Theorem 1.14 and the fact that Ff,1 = 〈f,ψ1〉m, we get that for
any nonzero ν ∈ Ma(E),

eλ1t 〈f,Xt 〉 → 〈f,ψ1〉mW∞ in L2(Pν),

as t → ∞. It is obvious that the convergence also holds in Pν-probability.
In particular, if f is nonzero and nonnegative, then 〈f,ψ1〉m �= 0 which implies

γ (f ) = 1.

1.4.2. Central limit theorem. Our aim is to describe the limit behavior of
〈f,Xt 〉 for f belonging to the subsets Cs , Cc and Cl of L2(E,m). Recall that
Cl , Cc and Cs are defined in (1.37), (1.38) and (1.39), respectively. For f ∈ Cs ,
define

σ 2
f :=

∫ ∞
0

eλ1s
〈
A|Tsf |2,ψ1

〉
m ds + 〈|f |2,ψ1

〉
m.(1.41)

For h =∑
k:λ1=2�k

(	k(x))T vk ∈ Cc, define

ρ2
h := (

1 + 2τ(h)
)−1〈AFh,ψ1〉m,(1.42)

where Fh(x) :=∑
k:λ1=2�k

|(	k(x))T Fh,k|2. For

g(x) = ∑
k:λ1>2�k

(
	k(x)

)T
vk ∈ Cl ,

define

Isg(x) := ∑
k:λ1>2�k

eλks	k(x)T Dk(s)
−1vk,

β2
g :=

∫ ∞
0

e−λ1u
〈
A|Iug|2,ψ1

〉
m du − 〈

g2,ψ1
〉
m(1.43)

and

Et(g) := ∑
k:λ1>2�k

(
e−λktH (k)∞ Dk(t)vk

)
.

THEOREM 1.16. If f ∈ Cs , h ∈ Cc and g ∈ Cl , then σ 2
f , ρ2

h and β2
g all belong

to (0,∞). Furthermore, it holds that, under Pν(·|Ec), as t → ∞,(
eλ1t 〈φ1,Xt 〉, 〈g,Xt 〉 − Et(g)√〈φ1,Xt 〉 ,

〈h,Xt 〉√
t1+2τ(h)〈φ1,Xt 〉

,
〈f,Xt 〉√〈φ1,Xt 〉

)
d→ (

W ∗,G3(g),G2(h),G1(f )
)
,
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where W ∗ has the same distribution as W∞ conditioned on Ec, G3(g) ∼ N (0, β2
g),

G2(h) ∼ N (0, ρ2
h) and G1(f ) ∼ N (0, σ 2

f ). Moreover, W ∗, G3(g), G2(h) and
G1(f ) are independent.

The main difference between the setup in the theorem above and the setup
in [26] is that now the spatial motion is not assumed to be symmetric. Even in
the symmetric case, the theorem above is a unification of all the central limit the-
orems contained in [26], Theorems 1.8–1.10 and 1.12. As we will explain at the
end of this subsection (see Corollaries 1.20–1.21 and the sentence before Corol-
lary 1.20), all the central limit theorems in [26], Theorems 1.8–1.10 and 1.12, are
consequences of the theorem above. Furthermore, as we will explain in the three
corollaries below, we can also get the covariance structure of the limiting Gaussian
field.

Whenever f ∈ Cs , we will use G1(f ) to denote a normal random variable
N (0, σ 2

f ). For f1, f2 ∈ Cs , define

σ(f1, f2) :=
∫ ∞

0
eλ1s

〈
A(Tsf1)(Tsf2),ψ1

〉
m ds + 〈f1f2,ψ1〉m.

COROLLARY 1.17. If f1, f2 ∈ Cs , then, under Pν(·|Ec),( 〈f1,Xt 〉√〈φ1,Xt 〉 ,
〈f2,Xt 〉√〈φ1,Xt 〉

)
d→ (

G1(f1),G1(f2)
)
, t → ∞,

and (G1(f1),G1(f2)) is a bivariate normal random variable with covariance

Cov
(
G1(f1),G1(f2)

)= σ(f1, f2).(1.44)

PROOF. Using the convergence of the fourth component in Theorem 1.16, we
get

Pν

(
exp

{
iθ1

〈f1,Xt 〉√〈φ1,Xt 〉 + iθ2
〈f2,Xt 〉√〈φ1,Xt 〉

}∣∣∣Ec

)

= Pν

(
exp

{
i
〈θ1f1 + θ2f2,Xt 〉√〈φ1,Xt 〉

}∣∣∣Ec

)

→ exp
{
−1

2
σ 2

(θ1f1+θ2f2)

}
as t → ∞,

where

σ 2
(θ1f1+θ2f2)

=
∫ ∞

0
eλ1s

〈
A
(
Ts(θ1f1 + θ2f2)

)2
,ψ1

〉
m ds

+ 〈
(θ1f1 + θ2f2)

2,ψ1
〉
m

= θ2
1 σ 2

f1
+ 2θ1θ2σ(f1, f2) + θ2

2 σ 2
f2

.

Now (1.44) follows immediately. �
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Whenever h ∈ Cc, we will use G2(h) to denote a normal random variable
N (0, ρ2

h), where ρ2
h is defined in (1.42). For h1, h2 ∈ Cc, define

ρ(h1, h2) := (
1 + τ(h1) + τ(h2)

)−1〈AFh1,h2,ψ1〉m,(1.45)

where

Fh1,h2(x) := ∑
j :λ1=2�j

	j (x)T Fh1,j	j ′(x)T Fh2,j
′

(1.46)
= ∑

j :λ1=2�j

	j (x)T Fh1,j	j (x)T Fh2,j .

COROLLARY 1.18. If h1, h2 ∈ Cc, then we have, under Pν(·|Ec),( 〈h1,Xt 〉√
t1+2τ(h1)〈φ1,Xt 〉

,
〈h2,Xt 〉√

t1+2τ(h2)〈φ1,Xt 〉

)
d→ (

G2(h1),G2(h2)
)
, t → ∞,

and (G2(h1),G2(h2)) is a bivariate normal random variable with covariance

Cov
(
G2(h1),G2(h2)

)= ρ(h1, h2).

Whenever g ∈ Cl , we will use G3(g) to denote a normal random variable
N (0, β2

g), where β2
g is defined in (1.43). For g1(x), g2(x) ∈ Cl , define

β(g1, g2) :=
∫ ∞

0
e−λ1s

〈
A(Isg1)(Isg2),ψ1

〉
m ds − 〈g1g2,ψ1〉m.

Using the convergence of the second component in Theorem 1.16 and an argument
similar to that in the proof of Corollary 1.17, we get the following:

COROLLARY 1.19. If g1(x), g2(x) ∈ Cl , then we have, under Pν(·|Ec),(〈g1,Xt 〉 − Et(g1)√〈φ1,Xt 〉 ,
〈g2,Xt 〉 − Et(g2)√〈φ1,Xt 〉

)
d→ (

G3(g1),G3(g2)
)
, t → ∞,

and (G3(g1),G3(g2)) is a bivariate normal random variable with covariance

Cov
(
G3(g1),G3(g2)

)= β(g1, g2).

For any f ∈ L2(E,m) ∩ L4(E,m), define

f(s)(x) := ∑
j :2�j<λ1

(
	j(x)

)T 〈f,�j 〉m,

f(c)(x) := ∑
j :2�j=λ1

(
	j(x)

)T 〈f,�j 〉m,

f(l)(x) := f (x) − f(s)(x) − f(l)(x).

Then f(s) ∈ Cl , f(c) ∈ Cc and f(l) ∈ Cs . Obviously, [26], Theorem 1.8, is an im-
mediate consequence of the convergence of the first and fourth components in
Theorem 1.16.
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REMARK 1.20. If f ∈ L2(E,m) ∩ L4(E,m) with λ1 = 2�γ (f ), then f =
f(c) + f(l). Using the convergence of the fourth component in Theorem 1.16 for
f(l), it holds under Pν(·|Ec) that

〈f(l),Xt 〉√
t1+2τ(f )〈φ1,Xt 〉

d→ 0, t → ∞.

Thus using the convergence of the first and third components in Theorem 1.16, we
get, under Pν(·|Ec),(

eλ1t 〈φ1,Xt 〉, 〈f,Xt 〉√
t1+2τ(f )〈φ1,Xt 〉

)
d→ (

W ∗,G2(f(c))
)
, t → ∞,

where W ∗ has the same distribution as W∞ conditioned on Ec and G2(f(c)) ∼
N (0, ρ2

f(c)
). Moreover, W ∗ and G2(f(c)) are independent. Thus [26], Theorem 1.9,

is a consequence of Theorem 1.16.

REMARK 1.21. Assume f ∈ L2(E,m) ∩ L4(E,m) satisfies λ1 > 2�γ (f ).
If f(c) = 0, then f = f(l) + f(s). Using the convergence of the first, second and

fourth components in Theorem 1.16, we get for any nonzero ν ∈ Ma(E), it holds
under Pν(·|Ec) that, as t → ∞,(

eλ1t 〈φ1,Xt 〉, (〈f,Xt 〉 −∑
k:2�k<λ1

e−λktH
(k)∞ Dk(t)〈f,�k〉m)

〈φ1,Xt 〉1/2

)
d→ (

W ∗,G1(f(l)) + G3(f(s))
)
,

where W ∗, G3(f(s)) and G1(f(l)) are the same as those in Theorem 1.16. Since
G3(f(s)) and G1(f(l)) are independent,

G1(f(l)) + G3(f(s)) ∼N
(
0, σ 2

f(l)
+ β2

f(s)

)
.

Thus [26], Theorem 1.10, is a consequence of Theorem 1.16.
If f(c) �= 0, then as t → ∞,

(〈f(l) + f(s),Xt 〉 −∑
k:2�k<λ1

e−λktH
(k)∞ Dk(t)〈f,�k〉m)√

t1+2τ(f )〈φ1,Xt 〉
d→ 0.

Then using the convergence of the first and third components in Theorem 1.16, we
get (

eλ1t 〈φ1,Xt 〉, (〈f,Xt 〉 −∑
k:2�k<λ1

e−λktH
(k)∞ Dk(t)〈f,�k〉m)√

t1+2τ(f )〈φ1,Xt 〉

)
d→ (

W ∗,G2(f(c))
)
,

where W ∗ and G2(f(c)) are the same as those in Remark 1.20. Thus [26], Theo-
rem 1.12, is a consequence of Theorem 1.16.
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2. Estimates on the moments of X. In the remainder of this paper we will
use the following notation: for two positive functions f (t, x) and g(t, x), f (t, x)�
g(t, x) means that there exists a constant c > 0 such that f (t, x) ≤ cg(t, x) for all
t, x.

2.1. Estimates on the first moment of X. Recall that Mk and M̂k are defined
in (1.30), and I is defined in the paragraph below (1.15).

LEMMA 2.1. For each k ∈ I, if a < �k+1, there exists a constant c(k, a) > 0
such that for all t > 0,

‖Tt |(M̂k)
⊥‖2 ≤ c(k, a)e−at and ‖T̂t |(Mk)

⊥‖2 ≤ c(k, a)e−at .

PROOF. Since (Mk)
⊥ is invariant for T̂t , {T̂t |(Mk)

⊥ : t > 0} is a semigroup on
(Mk)

⊥. By [8], Theorem 6.7.5, we have

σ(T̂t∗ |(Mk)
⊥) \ {0} = {

e−λj t∗, k + 1 ≤ j ∈ I
}
.

Thus if k + 1 ∈ I, the spectral radius of T̂t∗|(Mk)
⊥ is

r(T̂t∗|(Mk)
⊥) = e−�k+1t

∗
< e−at∗ .

If k + 1 does not belong to I, then r(T̂t∗|(Mk)
⊥) = 0 < e−at∗ .

By [8], Theorem 6.3.10, r(T̂t∗|(Mk)
⊥) = limn→∞(‖T̂nt∗ |(Mk)

⊥‖2)
1/n; thus there

exists a constant n1, such that

‖T̂n1t
∗ |(Mk)

⊥‖2 ≤ e−an1t
∗
.(2.1)

By (1.15), we have

sup
0≤t≤n1t

∗
‖T̂t |(Mk)

⊥‖2 ≤ sup
0≤t≤n1t

∗
‖T̂t‖2 ≤ eKn1t

∗
.(2.2)

For any t > 0, there exist l ∈ N and r ∈ [0, n1), such that t = n1lt
∗ + rt∗. By (2.1)

and (2.2), we have

‖T̂t |(Mk)
⊥‖2 ≤ ‖T̂n1t

∗ |(Mk)
⊥‖l

2‖T̂rt∗ |(Mk)
⊥‖2 ≤ e−an1lt

∗
eKn1t

∗

≤ eKn1t
∗(

sup
0≤r≤n1

eart∗
)
e−at .

Thus we can find c(k, a) > 1 such that ‖T̂t |(Mk)
⊥‖2 ≤ c(k, a)e−at . Similarly, we

can show that ‖Tt |(M̂k)
⊥‖2 ≤ c(k, a)e−at . �

Recall that 	k(x), Dk(t), �k(x), bt (x) and b̂t (x) are defined in (1.17), (1.18)
(1.25) and (1.11), respectively.
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LEMMA 2.2. For each k ∈ I and t1 > 0, if a < �k+1, there exists a constant
c(k, a, t1) > 0 such that for all (t, x, y) ∈ (2t1,∞) × E × E,∣∣∣∣∣q(t, x, y) −

k∑
j=1

e−λj t (	j(x)
)T

Dj (t)�j (y)

∣∣∣∣∣≤ ce−atbt1(x)1/2b̂t1(y)1/2.(2.3)

PROOF. Recall that for any f ∈ L2(E,m;C) and k ∈ I, f̂k is defined in (1.32).
Since |〈f,φ

(j)
l 〉m| ≤ ‖f ‖2, we have

∣∣f̂k(x)
∣∣≤ ‖f ‖2

k∑
j=1

nj∑
l=1

∣∣ψ(j)
l (x)

∣∣.
Thus, we get ‖f̂k‖2 ≤ c1(k)‖f ‖2. By Lemma 2.1, for any a < �k+1, there exists a
constant c2 = c2(k, a) > 0 such that for all t > 0,∥∥T̂t (f − f̂k)

∥∥
2 ≤ c2e

−at‖f − f̂k‖2 ≤ c3e
−at‖f ‖2,(2.4)

where c3 = c2(1 + c1(k)). For t > t1, we have

q(t, x, y) =
∫
E

q(t1, x, z)q(t − t1, z, y)m(dz) = T̂t−t1(hx)(y),

where hx(z) = q(t1, x, z) ∈ L2(E,m). Note that〈
hx,φ

(j)
l

〉
m =

∫
E

q(t1, x, z)φ
(j)
l (z)m(dz) = Tt1

(
φ

(j)
l

)
(x).

Let

hx,k(z) :=
k∑

j=1

nj∑
l=1

〈
hx,φ

(j)
l

〉
mψ

(j)
l (z) =

k∑
j=1

Tt1

(
(	j )T

)
(x)�j (z).

By (1.19) and (1.27), we have

T̂t−t1(hx,k)(y) =
k∑

j=1

Tt1(	j )T (x)T̂t−t1(�j )(y)

=
k∑

j=1

e−λj t (	j(x)
)T

Dj (t1)Dj (t − t1)�j (y)

=
k∑

j=1

e−λj t (	j(x)
)T

Dj (t)�j (y).

Thus, by (2.4), we have∫
E

∣∣∣∣∣q(t, x, y) −
k∑

j=1

e−λj t (	j(x)
)T

Dj (t)�j (y)

∣∣∣∣∣
2

m(dy)

≤ (c3)
2e−2a(t−t1)‖hx‖2

2 = c4e
−2atbt1(x),



CLTS FOR BRANCHING NONSYMMETRIC MARKOV PROCESSES 587

where c4 = c4(k, a, t1) = c2
3e

−2at1 . Since q(t, x, y) is a real-valued function, we
have, for t > t1,∫

E

∣∣∣∣∣q(t, x, y) −
k∑

j=1

e−λj t (	j(x)
)T

Dj (t)�j (y)

∣∣∣∣∣
2

m(dy) ≤ c4e
−2atbt1(x).(2.5)

Repeating the above argument with Tt , we get that there exists c5 = c5(k, a,

t1) > 0 such that for t > t1,∫
E

∣∣∣∣∣q(t, z, y) −
k∑

j=1

e−λj t (	j(z)
)T

Dj (t)�j (y)

∣∣∣∣∣
2

m(dz) ≤ c5e
−2at b̂t1(y).(2.6)

Since Dj(t) = Dj(t/2)Dj (t/2), we get

e−λj t (	j(x)
)T

Dj (t)�j (y)
(2.7)

= e−λj t/2
∫
E

q(t/2, x, z)
(
	j(z)

)T
Dj (t/2)�j (y)m(dz)

and

e−λj t (	j(x)
)T

Dj (t)�j (y)
(2.8)

= e−λj t/2
∫
E

q(t/2, z, y)
(
	j(x)

)T
Dj (t/2)�j (z)m(dz).

Thus by (1.26), we have∫
E

(
k∑

j=1

e−λj t/2(	j(x)
)T

Dj (t/2)�j (z)

)

×
(

k∑
j=1

e−λj t/2(	j(z)
)T

Dj (t/2)�j (y)

)
m(dz)

(2.9)

=
k∑

j=1

e−λj t (	j(x)
)T

Dj (t/2)Dj (t/2)�j (y)

=
k∑

j=1

e−λj t (	j(x)
)T

Dj (t)�j (y).

Thus, by the semigroup property of Tt and (2.7)–(2.9), we obtain

q(t, x, y) −
k∑

j=1

e−λj t (	j(x)
)T

Dj (t)�j (y)

=
∫
E

q(t/2, x, z)q(t/2, z, y)m(dz)
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−
k∑

j=1

e−λj t/2
∫
E

q(t/2, x, z)
(
	j(z)

)T
Dj (t/2)�j (y)m(dz)

−
k∑

j=1

e−λj t/2
∫
E

q(t/2, z, y)
(
	j(x)

)T
Dj (t/2)�j (z)m(dz)

+
∫
E

(
k∑

j=1

e−λj t/2(	j(x)
)T

Dj (t/2)�j (z)

)

×
(

k∑
j=1

e−λj t/2(	j(z)
)T

Dj (t/2)�j (y)

)
m(dz)

=
∫
E

(
q(t/2, x, z) −

(
k∑

j=1

e−λj t/2(	j(x)
)T

Dj (t/2)�j (z)

))

×
(
q(t/2, z, y) −

(
k∑

j=1

e−λj t/2(	j(z)
)T

Dj (t/2)�j (y)

))
m(dz).

Therefore, by Hölder’s inequality, (2.5) and (2.6), we get, for t > 2t1,∣∣∣∣∣q(t, x, y) −
k∑

j=1

e−λj t (	j(x)
)T

Dj (t)�j (y)

∣∣∣∣∣
≤ √

c4c5e
−atbt1(x)1/2b̂t1(y)1/2. �

Recall that γ (f ), ζ(f ), τ(f ), Ff,j and bt (x) are defined in (1.33), (1.34),
(1.35), (1.36) and (1.11), respectively.

COROLLARY 2.3. Assume f ∈ L2(E,m;C). If γ (f ) < ∞, then, for any
t1 > 0, there exists a constant c(f, t1) > 0 such that for all (t, x) ∈ (2t1,∞) × E,∣∣∣∣∣t−τ(f )e�γ (f )tTtf (x) −

ζ(f )∑
j=γ (f )

e−i�j t (	j(x)
)T

Ff,j

∣∣∣∣∣
(2.10)

≤ c(f, t1)t
−1bt1(x)1/2.

Moreover, we have, for (t, x) ∈ (2t1,∞) × E,∣∣Ttf (x)
∣∣� tτ (f )e−�γ (f )t bt1(x)1/2.(2.11)

If γ (f ) = ∞, for any t1 > 0, we have, for (t, x) ∈ (2t1,∞) × E,∣∣Ttf (x)
∣∣� bt1(x)1/2.(2.12)



CLTS FOR BRANCHING NONSYMMETRIC MARKOV PROCESSES 589

PROOF. First, we consider the case γ (f ) < ∞, which implies γ (f ) ∈ I.
By the definition of ζ(f ), we have �γ (f ) < �ζ(f )+1. Since 〈f, (b̂t1)

1/2〉m ≤
‖b̂1/2

t1
‖2‖f ‖2, applying Lemma 2.2 with k = ζ(f ) and a fixed a with �γ (f ) <

a < �ζ(f )+1, we get that there exists c1 = c1(f, t1) > 0 such that for (t, x) ∈
(2t1,∞) × E,∣∣∣∣∣Ttf (x) − e−�γ (f )t

ζ(f )∑
j=γ (f )

e−i�j t (	j(x)
)T

Dj (t)〈f,�j 〉m
∣∣∣∣∣

(2.13)
≤ c1e

−atbt1(x)1/2.

Recall that 	k(x), Dk(t) and �k(x) are defined in (1.17), (1.18) and (1.25), respec-
tively. If τ(f ) ≥ 1, the degree of each component of Dj(t)〈f,�j 〉m − tτ (f )Ff,j is
no larger than τ(f ) − 1. Thus, for t > 2t1,∣∣Dj(t)〈f,�j 〉m − tτ (f )Ff,j

∣∣∞ � tτ (f )−1,

which implies that ∣∣t−τ(f )Dj (t)〈f,�j 〉m − Ff,j

∣∣∞ � t−1.(2.14)

If τ(f ) = 0, Dj(t)〈f,�j 〉m − tτ (f )Ff,j = 0. By (1.20), we get, for (t, x) ∈
(2t1,∞) × E, ∣∣∣∣∣

ζ(f )∑
j=γ (f )

e−i�j t (	j(x)
)T

Dj (t)
〈
f,�j (y)

〉
m

− tτ (f )
ζ(f )∑

j=γ (f )

e−i�j t (	j(x)
)T

Ff,j

∣∣∣∣∣(2.15)

� tτ (f )−1∣∣	j(x)
∣∣∞ � tτ (f )−1bt1(x)1/2.

Now (2.10) follows from (2.13) and (2.15). By (2.10) and (1.20), we get (2.11)
immediately.

Now we deal with the case γ (f ) = ∞. Let k0 := sup{j :�j ≤ 0}. Thus we have
k0 ∈ I and �k0+1 > 0. Since γ (f ) = ∞, we have 〈f,�k〉m = 0 for any k ∈ I. Now,
applying Lemma 2.2 with k = k0 and a = 0, we get (2.12) immediately. �

REMARK 2.4. Since D1(t) ≡ 1, using (2.3) with k = 1 and λ1 < a < �2, we
get that, for any t1 > 0, there exists c1(t1, a) > 0 such that for any f ∈ L2(E,m)

and (t, x) ∈ (2t1,∞) × E,∣∣eλ1t Ttf (x) − 〈f,ψ1〉mφ1(x)
∣∣≤ c1(t1, a)e−(a−λ1)t‖f ‖2bt1(x)1/2,(2.16)

and hence there exists c2(t1, a) > 0 such that

eλ1t
∣∣Ttf (x)

∣∣≤ c2‖f ‖2bt1(x)1/2.(2.17)
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2.2. Estimates on the second moment of X. We first recall the formula for the
second moment of the branching Markov process {Xt : t ≥ 0} for f ∈ Bb(E), we
have for any (t, x) ∈ (0,∞) × E,

Pδx 〈f,Xt 〉2 =
∫ t

0
Ts

[
A|Tt−sf |2](x) ds + Tt

(
f 2)(x),(2.18)

where the function A(·) is defined in (1.8). The second moment formula above was
proved in [30], Lemma 3.3, for branching symmetric stable processes, but the argu-
ment there works for general branching nonsymmetric Markov processes. For any
f ∈ L2(E,m) ∩ L4(E,m) and x ∈ E, since (Tt−sf )2(x) ≤ eK(t−s)Tt−s(f

2)(x),
we have by (1.9),∫ t

0
Ts

[
A(Tt−sf )2](x) ds ≤ eKtTt

(
f 2)(x) < ∞,

which implies∫ t

0
Ts

[
A(Tt−sf )2](x) ds + Tt

(
f 2)(x) ≤ (

1 + eKt )Tt

(
f 2)(x) < ∞.(2.19)

Thus, using a routine limit argument, one can check that (2.18) also holds for
f ∈ L2(E,m) ∩ L4(E,m). Thus, for f ∈ L2(E,m;C) ∩ L4(E,m;C), we have

Pδx

∣∣〈f,Xt 〉
∣∣2 = Pδx

〈�(f ),Xt

〉2 + Pδx

〈�(f ),Xt

〉2
(2.20)

=
∫ t

0
Ts

[
A|Tt−sf |2](x) ds + Tt

(|f |2)(x).

Let Varν be the variance under Pν . Then by the branching property, we have
Varν〈f,Xt 〉 = 〈Varδ· 〈f,Xt 〉, ν〉. By (2.19), (2.17) and properties (i) and (ii) at the
end of Section 1.2, we get that there exists a constant c = c(t0) such that for t > 2t0,

Varδx 〈f,Xt 〉 ≤ Pδx

∣∣〈f,Xt 〉
∣∣2 ≤ (

1 + eKt )Tt

(|f |2)(x)

≤ c
(
1 + eKt )e−λ1t bt (x)1/2∥∥|f |2∥∥2 ∈ L2(E,m) ∩ L4(E,m).

Recall that t0 is the constant in Assumption 1(c), and that bt and γ (f ) are
defined in (1.11) and (1.33), respectively.

LEMMA 2.5. Assume that f ∈ L2(E,m;C) ∩ L4(E,m;C). If λ1 > 2�γ (f ),
then for any (t, x) ∈ (10t0,∞) × E, we have

sup
t>10t0

t−2τ(f )e2�γ (f )tPδx

∣∣〈f,Xt 〉
∣∣2 � bt0(x)1/2.(2.21)

PROOF. In this proof, we always assume t > 10t0. For s ≤ 2t0, we have
Tt−s[A|Tsf |2](x) ≤ KeKsTt (|f |2)(x) � Tt (|f |2)(x). Thus, by (2.11), we have for
t > 10t0, ∫ 2t0

0
Tt−s

[
A|Tsf |2](x) ds � Tt

(|f |2)(x) � e−λ1t bt0(x)1/2,(2.22)



CLTS FOR BRANCHING NONSYMMETRIC MARKOV PROCESSES 591

where the function A(·) is defined in (1.8). It follows from (2.11) again that
for (s, x) ∈ (8t0,∞) × E, |Tsf (x)| � sτ(f )e−�γ (f )sb4t0(x)1/2. Thus, for (t, x) ∈
(10t0,∞) × E,∫ t

t−2t0

Tt−s

[
A|Tsf |2](x) ds � t2τ(f )

∫ t

t−2t0

e−2�γ (f )sTt−s(b4t0)(x) ds

= t2τ(f )e−2�γ (f )t
∫ 2t0

0
e2�γ (f )sTs(b4t0)(x) ds(2.23)

� t2τ(f )e−2�γ (f )t
∫ 2t0

0
Ts(b4t0)(x) ds.

We now show that for any x ∈ E,
∫ 2t0

0 Ts(b4t0)(x) ds < ∞. By (1.3), we get

b4t0(x) ≤ e8Kt0a4t0(x) ≤ e10Kt0T2t0(a2t0)(x).

Thus, by (2.17), we have∫ 2t0

0
Ts(b4t0)(x) ds ≤ e10Kt0

∫ 2t0

0
Ts+2t0(a2t0)(x) ds

(2.24)

�
∫ 2t0

0
e−λ1(s+2t0) ds bt0(x)1/2 � bt0(x)1/2.

By (2.23)–(2.24), we get∫ t

t−2t0

Tt−s

[
A|Tsf |2](x) ds � t2τ(f )e−2�γ (f )t bt0(x)1/2.(2.25)

For s ∈ [2t0, t − 2t0], by (2.11), we have |Tsf (x)|2 � s2τ(f )e−2�γ (f )sbt0(x).
By (2.17), we get Tt−s[A(Tsf )2](x) � s2τ(f )e−2�γ (f )se−λ1(t−s)bt0(x)1/2. So, for
(t, x) ∈ (10t0,∞) × E,∫ t−2t0

2t0

Tt−s

[
A|Tsf |2](x) ds

� t2τ(f )e−λ1t
∫ t

0
e(λ1−2�γ (f ))s ds bt0(x)1/2(2.26)

� t2τ(f )e−2�γ (f )t bt0(x)1/2.

Combining (2.22), (2.25) and (2.26), when λ1 > 2�γ (f ), we get∫ t

0
Tt−s

[
A|Tsf |2](x) ds � t2τ(f )e−2�γ (f )t bt0(x)1/2.

Since λ1 > 2�γ (f ), by (2.17), we have, for (t, x) ∈ (10t0,∞) × E,

Tt

(|f |2)(x) � e−λ1t bt0(x)1/2 � t2τ(f )e−2�γ (f )t bt0(x)1/2.

Now combining the two displays above with (2.18), we arrive at (2.21). �
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Recall that t0 is the constant in Assumption 1(c), that φ1 and ψ1 are the eigen-
functions associated with −λ1 of A and Â, respectively, and that bt and σ 2

f are
defined in (1.11) and (1.41), respectively.

LEMMA 2.6. Assume that f ∈ L2(E,m)∩L4(E,m). If λ1 < 2�γ (f ), then for
(t, x) ∈ (10t0,∞) × E,∣∣eλ1tVarδx 〈f,Xt 〉 − σ 2

f φ1(x)
∣∣� ct

(
bt0(x)1/2 + bt0(x)

)
,(2.27)

where ct is independent of x with limt→∞ ct = 0 and σ 2
f is defined in (1.41).

PROOF. First, we consider the case γ (f ) < ∞. In this proof, we always as-
sume t > 10t0 and f ∈ L2(E,m) ∩ L4(E,m). By (2.11), we have

eλ1t/2∣∣Pδx 〈f,Xt 〉
∣∣� tτ (f )e−(2�γ (f )−λ1)t/2bt0(x)1/2.(2.28)

We first show that σ 2
f < ∞. For s ≤ 2t0, by (1.13), we have∥∥A|Tsf |2∥∥2 ≤ K‖Tsf ‖2

4 ≤ Ke2Ks‖f ‖2
4,(2.29)

where the function A(·) is defined in (1.8). For s > 2t0, by (2.11), |Tsf (x)| �
e−�γ (f )ssτ(f )bt0(x)1/2. Thus, we have∫ ∞

0
eλ1s

〈
A|Tsf |2,ψ1

〉
m ds ≤ K‖ψ1‖2

∫ ∞
0

eλ1s
∥∥|Tsf |2∥∥2 ds

�
∫ 2t0

0
eλ1s ds +

∫ ∞
2t0

e(λ1−2�γ (f ))ss2τ(f ) ds(2.30)

< ∞.

Combining this with (1.41) we get that σ 2
f < ∞. By (2.20), we have∣∣eλ1tPδx 〈f,Xt 〉2 − σ 2

f φ1(x)
∣∣

≤ eλ1t
∫ t−2t0

0

∣∣Tt−s

[
A|Tsf |2](x) − e−λ1(t−s)〈A|Tsf |2,ψ1

〉
mφ1(x)

∣∣ds

+ eλ1t
∫ t

t−2t0

Tt−s

[
A|Tsf |2](x) ds +

∫ ∞
t−2t0

eλ1s
〈
A|Tsf |2,ψ1

〉
m ds φ1(x)

+ ∣∣eλ1t Tt

(|f |2)(x) − 〈|f |2,ψ1
〉
mφ1(x)

∣∣
=: V1(t, x) + V2(t, x) + V3(t, x) + V4(t, x).

First, we consider V1(t, x). By (2.16), for t − s > 2t0, there exists a ∈ (λ1,�2)

such that ∣∣Tt−s

[
A|Tsf |2](x) − e−λ1(t−s)〈A|Tsf |2,ψ1

〉
mφ1(x)

∣∣
� e−a(t−s)

∥∥A(Tsf )2∥∥
2bt0(x)1/2.
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Therefore, by (2.11) and (2.29), we have

V1(t, x) � eλ1t t2τ(f )
∫ t−2t0

2t0

e−a(t−s)e−2�γ (f )s ds bt0(x)1/2

+ eλ1t
∫ 2t0

0
e−a(t−s) ds bt0(x)1/2

(2.31)

� e−(a−λ1)t t2τ(f )
∫ t

0
e(a−2�γ (f ))s ds bt0(x)1/2 + e−(a−λ1)t bt0(x)1/2

� t2τ(f )(e(λ1−2�γ (f ))t + e−(a−λ1)t
)
bt0(x)1/2.

Now we deal with V2(t, x). By (2.25), we have

V2(t, x)� t2τ(f )e(λ1−2�γ (f ))t bt0(x)1/2.(2.32)

For V3(t, x), by (2.30), we get
∫∞
t−2t0

eλ1s〈A|Tsf |2,ψ1〉m ds → 0, as t → ∞.
By (1.20), we have φ1(x) � bt0(x)1/2.

Finally, we consider V4(t, x). By (2.16), we have

V4(t, x)� e−(a−λ1)t bt0(x)1/2.(2.33)

Thus, by (2.31)–(2.33), we have, for (t, x) ∈ (10t0,∞) × E,∣∣eλ1tPδx 〈f,Xt 〉2 − σ 2
f φ1(x)

∣∣� ctbt0(x)1/2,(2.34)

with limt→∞ ct = 0. Now (2.27) follows immediately from (2.28) and (2.34).
Now we consider the case γ (f ) = ∞. The proof is similar to that of the case

γ (f ) < ∞, the only difference being that we now use (2.12) instead of (2.11). �

Recall that t0 is the constant in Assumption 1(c), that φ1 and ψ1 are the eigen-
functions associated with −λ1 of A and Â, respectively, and that bt , γ (f ) and
τ(f ) are defined in (1.11), (1.33) and (1.35), respectively.

LEMMA 2.7. Assume that f,h ∈ L2(E,m) ∩ L4(E,m). If λ1 = 2�γ (f ) =
2�γ (h), then for (t, x) ∈ (10t0,∞) × E,∣∣t−(1+τ(f )+τ(h))eλ1tCovδx

(〈f,Xt 〉, 〈h,Xt 〉)− ρ(f,h)φ1(x)
∣∣

(2.35)
� t−1(bt0(x)1/2 + bt0(x)

)
,

where Covδx is the covariance under Pδx , and ρ(f,h) is defined by (1.45) with
f and h in place of h1 and h2, respectively. In particular, we have, for (t, x) ∈
(10t0,∞) × E,∣∣t−(1+2τ(f ))eλ1tVarδx 〈f,Xt 〉 − ρ2

f φ1(x)
∣∣� t−1(bt0(x)1/2 + bt0(x)

)
,(2.36)

where ρ2
f is defined by (1.42). Moreover, we have, for (t, x) ∈ (10t0,∞) × E,

t−(1+2τ(f ))eλ1tVarδx 〈f,Xt 〉� (
bt0(x)1/2 + bt0(x)

)
.(2.37)
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PROOF. In this proof we always assume t > 10t0 and f,h ∈ L2(E,m) ∩
L4(E,m). By (2.20), we have

Covδx

(〈f,Xt 〉, 〈h,Xt 〉)
= 1

4

(
Varδx

〈
(f + h),Xt

〉−Varδx

〈
(f − h),Xt

〉)
(2.38)

=
∫ t

0
Tt−s

[
A(Tsf )(Tsh)

]
(x) ds + Tt(f h)(x) − Tt (f )(x)Tt (h)(x).

Let

Cf (s, x) := ∑
j :λ1=2�j

(
e−i�j s(	j(x)

)T
Ff,j

)
and

Ch(s, x) := ∑
j :λ1=2�j

(
e−i�j s(	j(x)

)T
Fh,j

)
,

where 	j(x) and Ff,j are defined in (1.17) and (1.36), respectively. Define

V5(t, x) := eλ1t
∫ t−2t0

2t0

Tt−s

[
A(Tsf )(Tsh)

]
(x) ds,

V6(t, x) := eλ1t
∫ t−2t0

2t0

sτ(f )+τ(h)e−λ1sTt−s

[
ACf (s, ·)Ch(s, ·)](x) ds,

V7(t, x) :=
∫ t−2t0

2t0

sτ(f )+τ(h)〈ACf (s, ·)Ch(s, ·),ψ1
〉
m ds φ1(x)

and

V8(t, x) :=
∫ t−2t0

2t0

sτ(f )+τ(h)〈AFf,h,ψ1〉m ds φ1(x),

where A is defined in (1.8), and Ff,h is defined in (1.46) with f and h in place of
h1 and h2, respectively. By the definition of ρ(f,h) we have that

ρ(f,h) = t−(1+τ(f )+τ(h))
∫ t

0
sτ(f )+τ(h)〈AFf,h,ψ1〉m ds.

Thus we have∣∣∣∣eλ1t
∫ t

0
Tt−s

[
A(Tsf )(Tsh)

]
(x) ds − t1+τ(f )+τ(h)ρ(f,h)φ1(x)

∣∣∣∣
≤ eλ1t

(∫ 2t0

0
+
∫ t

t−2t0

)
Tt−s

[
A|Tsf ||Tsh|](x) ds

+ ∣∣V5(t, x) − V6(t, x)
∣∣+ ∣∣V6(t, x) − V7(t, x)

∣∣+ ∣∣V7(t, x) − V8(t, x)
∣∣

+
(∫ 2t0

0
+
∫ t

t−2t0

)
sτ(f )+τ(h) ds〈AFf,h,ψ1〉mφ1(x).
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By (2.17), for s ≤ t − 2t0, we have

Tt−s

[
A|Tsf ||Tsh|](x) � e−λ1(t−s)

∥∥A|Tsf ||Tsh|∥∥2

(
bt0(x)

)1/2
.

It follows from (1.13) and the Cauchy–Schwarz inequality that∥∥A|Tsf ||Tsh|∥∥2 ≤ K‖Tsf ‖4‖Tsh‖4 ≤ Ke2Ks‖f ‖4‖h‖4.

Thus

eλ1t
∫ 2t0

0
Tt−s

[
A|Tsf ||Tsh|](x) ds �

∫ 2t0

0
eλ1s ds

(
bt0(x)

)1/2

(2.39)
�
(
bt0(x)

)1/2
.

For s > t − 2t0, using arguments similar to those leading to (2.25), we get

eλ1t
∫ t

t−2t0

Tt−s

[
A|Tsf ||Tsh|](x) ds(2.40)

� t τ (f )+τ(h)eλ1t e−(�γ (h)+�γ (f ))t
(
bt0(x)

)1/2(2.41)

= tτ (f )+τ(h)(bt0(x)
)1/2

.

It follows from (1.20) that(∫ 2t0

0
+
∫ t

t−2t0

)
sτ(f )+τ(h) ds〈AFf,h,ψ1〉mφ1(x)

(2.42)
� tτ (f )+τ(h)bt0(x)1/2.

Next we consider |V5(t, x) − V6(t, x)|. By (2.10), we have, for (s, x) ∈
(2t0,∞) × E, ∣∣Tsf (x) − sτ(f )e−λ1s/2Cf (s, x)

∣∣
� sτ(f )−1e−λ1s/2bt0(x)1/2.

The same is also true for h. Thus by (2.11) and (1.20), we get that, for (s, x) ∈
(2t0,∞) × E,∣∣∣∣Tsf (x)Tsh(x)

∣∣− sτ(f )+τ(h)e−λ1sCf (s, x)Ch(s, x)
∣∣

�
∣∣Tsf (x) − sτ(f )e−λ1s/2Cf (s, x)

∣∣∣∣Tsh(x) − sτ(h)e−λ1s/2Ch(s, x)
∣∣

+ sτ(h)e−λ1s/2∣∣Tsf (x) − sτ(f )e−λ1s/2Cf (s, x)
∣∣∣∣Ch(s, x)

∣∣
+ sτ(f )e−λ1s/2∣∣Tsh(x) − sτ(h)e−λ1s/2Ch(s, x)

∣∣∣∣Cf (s, x)
∣∣

� sτ(f )+τ(h)−1e−λ1sbt0(x).
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Therefore, by (2.17), we have, for (t, x) ∈ (10t0,∞) × E,∣∣V5(t, x) − V6(t, x)
∣∣

�
∫ t−2t0

2t0

sτ(f )+τ(h)−1eλ1(t−s)Tt−s(bt0)(x) ds(2.43)

�
∫ t−2t0

2t0

sτ(f )+τ(h)−1 ds bt0(x)1/2 � tτ (f )+τ(h)bt0(x)1/2.

For |V6(t, x) − V7(t, x)|, by (2.16), there exists λ1 < a < �2, such that, for
t − s > 2t0,∣∣eλ1(t−s)Tt−s

[
ACf (s, ·)Ch(s, ·)](x) − 〈

ACf (s, ·)Ch(s, ·),ψ1
〉
mφ1(x)

∣∣
� e−(a−λ1)(t−s)

∥∥Cf (s, ·)Ch(s, ·)
∥∥

2bt0(x)1/2.

By (1.20), we get, for s > 2t0, |Cf (s, x)Ch(s, x)|� bt0(x). Thus, we get

∣∣V6(t, x) − V7(t, x)
∣∣� ∫ t−2t0

2t0

sτ(f )+τ(h)e−(a−λ1)(t−s) ds bt0(x)1/2

� tτ (f )+τ(h)
∫ t−2t0

2t0

e−(a−λ1)(t−s) ds bt0(x)1/2(2.44)

� tτ (f )+τ(h)bt0(x)1/2.

Now we deal with |V7(t, x) − V8(t, x)|. We can check that Ch(s, x) is real. In
fact, for each j with λ1 = 2�j , we also have λ1 = 2�j ′ and

e
−i�j ′ s(	j ′(x)

)T
Fh,j ′ = e−i�j s

(
	j(x)

)T
Fh,j .

Thus we have

Ch(s, x) = Ch(s, x) = ∑
j :λ1=2�j

(
ei�j s(	j(x)

)T
Fh,j

)
.

Therefore,

Cf (s, x)Ch(s, x) = ∑
j :λ1=2�j

(
	j(x)

)T
Ff,j

(
	j(x)

)T
Fh,j

+ ∑
γ (f )≤j �=l≤ζ(f )

(
e−i(�j−�l )s

(
	j(x)

)T
Ff,j

(
	l(x)

)T
Fh,l

)
.

When j �= l, since λj �= λl and �j = �l , we have �j �= �l .
We claim that for any nonzero θ ∈R and n ≥ 0, we have for t > 2t0,∣∣∣∣∫ t−2t0

2t0

sneiθs ds

∣∣∣∣� tn.(2.45)



CLTS FOR BRANCHING NONSYMMETRIC MARKOV PROCESSES 597

Then, using (1.46), we get∣∣V7(t, x) − V8(t, x)
∣∣

�
∑

γ (f )≤j �=l≤ζ(f )

∣∣∣∣∫ t−2t0

2t0

sτ(f )+τ(h)e−i(�j−�l )s ds

∣∣∣∣
× ∣∣〈(	j(x)

)T
Ff,j

(
	l(x)

)T
Fh,l,ψ1

〉
m

∣∣φ1(x)

� tτ (f )+τ(h)bt0(x)1/2.

Now we prove (2.45). Using integration by parts, for n ≥ 1, we get∣∣∣∣∫ t−2t0

2t0

sneiθs ds

∣∣∣∣= ∣∣∣∣sneiθs |t−2t0
2t0

− ∫ t−2t0
2t0

nsn−1eiθs ds

iθ

∣∣∣∣
� tn +

∫ t−2t0

2t0

sn−1 ds � tn.

For n = 0, we have∣∣∣∣∫ t−2t0

2t0

eiθs ds

∣∣∣∣= ∣∣∣∣eiθ(t−2t0) − ei2θt0

iθ

∣∣∣∣≤ 2/|θ |.
Therefore, (2.45) follows immediately.

Combining (2.39), (2.40), (2.42), (2.43), (2.44) and (2.46), we get (t, x) ∈
(10t0,∞) × E,∣∣∣∣eλ1t

∫ t

0
Tt−s

[
A(Tsf )(Tsh)

]
(x) ds − t1+τ(f )+τ(h)ρ(f,h)φ1(x)

∣∣∣∣
� tτ (f )+τ(h)bt0(x)1/2.

By (2.17), we have, for (t, x) ∈ (10t0,∞) × E,

eλ1t Tt

(|f h|)(x) � bt0(x)1/2.

And by (2.16) and λ1 = 2�γ (f ),

eλ1t
∣∣Ttf (x)

∣∣∣∣Tth(x)
∣∣� tτ (f )+τ(h)bt0(x).

Now (2.35) follows immediately. �

Recall that t0 is the constant in Assumption 1(c), and that bt and γ (f ) are
defined in (1.11) and (1.33), respectively.

LEMMA 2.8. Assume that f ∈ L2(E,m) ∩ L4(E,m) with λ1 < 2�γ (f ) and
h ∈ L2(E,m)∩L4(E,m) with λ1 = 2�γ (h). Then, for any (t, x) ∈ (10t0,∞)×E,

eλ1tCovδx

(〈f,Xt 〉, 〈h,Xt 〉)� ((
bt0(x)

)1/2 + bt0(x)
)
.(2.46)
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PROOF. In this proof, we always assume that t > 10t0, f ∈ L2(E,m) ∩
L4(E,m) with λ1 < 2�γ (f ) and h ∈ L2(E,m) ∩ L4(E,m) with λ1 = 2�γ (h).
First, we assume γ (f ) < ∞. By (2.38), we have

Covδx

(〈f,Xt 〉, 〈h,Xt 〉)
=
∫ t

0
Tt−s

[
A(Tsf )(Tsh)

]
(x) ds + Tt(f h)(x) − Tt (f )(x)Tt (h)(x),

where the function A(·) is defined in (1.8). By (2.39) and (2.41), we have, for
(t, x) ∈ (10t0,∞) × E,

eλ1t

(∫ 2t0

0
+
∫ t

t−2t0

)
Tt−s

[
A|Tsf ||Tsh|](x) ds

� bt0(x)1/2 + tτ (f )+τ(h)e(λ1/2−�γ (f ))t
(
bt0(x)

)1/2 �
(
bt0(x)

)1/2
.

By (2.11), we have

eλ1t
∫ t−2t0

2t0

Tt−s

[
A|Tsf ||Tsh|](x) ds

� eλ1t
∫ t−2t0

2t0

sτ(f )+τ(h)e−(λ1/2+�γ (f ))sTt−s(bt0)(x) ds

�
(∫ t−2t0

2t0

sτ(f )+τ(h)e(λ1/2−�γ (f ))s ds

)
bt0(x)1/2 � bt0(x)1/2.

Thus we have

eλ1t

∣∣∣∣∫ t

0
Tt−s

[
A(Tsf )(Tsh)

]
(x) ds

∣∣∣∣� (
bt0(x)

)1/2
.

By (2.17), we get

eλ1t
∣∣Tt (f h)(x)

∣∣≤ eλ1tTt

(|f h|)(x) � bt0(x)1/2.

By (2.11), for (t, x) ∈ (10t0,∞) × E, we have

eλ1t
∣∣Ttf (x)Tth(x)

∣∣� tτ (f )+τ(h)e(λ1/2−�γ (f ))t bt0(x) � bt0(x).

Now (2.46) follows immediately.
Repeating the proof above by using (2.12) instead of (2.11), we get that (2.46)

also holds when γ (f ) = ∞. �

3. Proof of the main result. In this section, we will prove the main result of
this paper. When referring to individuals in X, we will use the classical Ulam–
Harris notation so that every individual in X has a unique label; see [12]. For each
individual u ∈ T we shall write bu and du for its birth and death times, respectively,
and {zu(r) : r ∈ [bu, du]} for its spatial trajectory. Define

Lt = {u ∈ T , bu ≤ t < du}, t ≥ 0.
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Thus Xs+t has the following decomposition:

Xs+t = ∑
u∈Lt

Xu,t
s ,(3.1)

where given Ft , Xu,t
s , u ∈ Lt , are independent, and Xu,t

s has the same law as Xs

under Pδzu(t)
.

3.1. A basic law of large numbers. Recall that H
(k)
t is defined in (1.40).

LEMMA 3.1. Assume that v is an nk-dimensional vector. If λ1 > 2�k , then,
for any ν ∈ Ma(E), H

(k)
t v is a martingale under Pν . Moreover, the limit

H(k)∞ := lim
t→∞H

(k)
t(3.2)

exists Pν -a.s. and in L2(Pν).

PROOF. By the branching property, it suffices to prove the lemma for ν = δx

with x ∈ E. By (1.19), we have

PδxH
(k)
t v = eλktTt

(
(	k)

T )(x)
(
Dk(t)

)−1
v = (

	k(x)
)T

v.

Recall that 	k(x) and Dk(t) are defined in (1.17) and (1.18), respectively, and that
|v|∞ is defined in the paragraph above (1.20). Thus, by the Markov property, we
get that H

(k)
t v is a martingale under Pδx . Recall that t0 is the constant in Assump-

tion 1(c) and that bt is defined in (1.11). We claim that, for (t, x) ∈ (2t0,∞) × E,

Pδx

∣∣H(k)
t v

∣∣2 � |v|2∞bt0(x)1/2,(3.3)

from which (3.2) follows immediately.
Now we prove the claim. Let ft (x) = eλktvT (Dk(t)

−1)T 	k(x). Then we have
H

(k)
t v = 〈ft ,Xt 〉, and by (1.19), for s < t , we have

Ts(ft )(x) = eλk(t−s)vT (Dk(t − s)−1)T 	k(x) = ft−s(x).

By (2.20), we have

Pδx

∣∣H(k)
t v

∣∣2 = Pδx

∣∣〈ft ,Xt 〉
∣∣2 =

∫ t

0
Ts

[
A|fs |2](x) ds + Tt

(|ft |2)(x),

where A(·) is defined in (1.8). Since each component of Dk(s)
−1 = Dk(−s) is a

polynomial of s with degree no larger than νk , we get |Dk(s)
−1|∞ � (1 + sνk ).

Thus, for all s > 0, we have∣∣fs(x)
∣∣� e�ks |v|∞

∣∣Dk(s)
∣∣∞∣∣	k(x)

∣∣∞ � |v|∞(
1 + sνk

)
e�ksb4t0(x)1/2.(3.4)
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By (2.17), we have, for (s, x) ∈ (2t0,∞) × E,

Ts

(|fs |2)(x) � e−λ1s
∥∥|fs |2

∥∥
2bt0(x)1/2

(3.5)
� |v|2∞

(
1 + s2νk

)
e−(λ1−2�k)sbt0(x)1/2.

Thus we have ∫ t

2t0

Ts

[
A|fs |2](x) ds � |v|2∞bt0(x)1/2.(3.6)

By (3.4) and (2.24), we get∫ 2t0

0
Ts

[
A|fs |2](x) ds � |v|2∞

∫ 2t0

0
Tsb4t0(x) ds � |v|2∞bt0(x)1/2.(3.7)

Thus, by (3.6)–(3.7), we have∫ t

0
Ts

[
A|fs |2](x) ds � |v|2∞bt0(x)1/2.(3.8)

Since λ1 > 2�k , we have sups>2t0
(1 + s2νk )e−(λ1−2�k)s < ∞. Thus, by (3.5), we

get

Tt

(|ft |2)(x) � |v|2∞bt0(x)1/2,

from which (3.3) follows immediately. �

Now, we present the proof of Theorem 1.14. Recall that 	k(x), Dk(t) and �k(x)

are defined in (1.17), (1.18), (1.25), γ (f ), ζ(f ), τ(f ), Ff,j and bt (x) are defined
in (1.33), (1.34), (1.35), (1.36) and (1.11), respectively.

PROOF OF THEOREM 1.14. By the branching property, it suffices to prove the
theorem for ν = δx with x ∈ E. Put

f ∗(x) :=
ζ(f )∑

j=γ (f )

	j (x)T 〈f,�j 〉, f̃ (x) := f (x) − f ∗(x)

and ft (x) :=∑ζ(f )
j=γ (f ) 	j (x)T Dj (t)

−1Ff,j . Then

t−τ(f )f ∗(x) − ft (x) =
ζ(f )∑

j=γ (f )

	j (x)T Dj (t)
−1(t−τ(f )Dj (t)〈f,�j 〉 − Ff,j

)
.

By the definition of γ (f ) and ζ(f ) in (1.33) and (1.34), we have for any j =
γ (f ), . . . , ζ(f ),∣∣e�γ (f )t

〈
	T

j ,Xt

〉
Dj(t)

−1(t−τ(f )Dj (t)〈f,�j 〉 − Ff,j

)∣∣
= ∣∣eλj t 〈	T

j ,Xt

〉
Dj(t)

−1(t−τ(f )Dj (t)〈f,�j 〉 − Ff,j

)∣∣.
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Thus by (3.3) with v = t−τ(f )Dj (t)〈f,�j 〉 − Ff,j , we get that, for (t, x) ∈
(2t0,∞) × E,

Pδx

∣∣e�γ (f )t
〈
	T

j ,Xt

〉
Dj(t)

−1(t−τ(f )Dj (t)〈f,�j 〉 − Ff,j

)∣∣2
�
∣∣t−τ(f )Dj (t)〈f,�j 〉 − Ff,j

∣∣2∞bt0(x)1/2.

Combining this with (2.14), we get that, for (t, x) ∈ (2t0,∞) × E,

Pδx

∣∣t−τ(f )e�γ (f )t
〈
f ∗,Xt

〉− e�γ (f )t 〈ft ,Xt 〉
∣∣2

(3.9)

�
ζ(f )∑

j=γ (f )

∣∣t−τ(f )Dj (t)〈f,�j 〉 − Ff,j

∣∣2∞bt0(x)1/2 � t−2bt0(x)1/2.

By the definition of H
(j)
t and (3.2), we have, as t → ∞,

e�γ (f )t 〈ft ,Xt 〉 −
ζ(f )∑

j=γ (f )

(
e−i�j tH (j)∞ Ff,j

)
(3.10)

=
ζ(f )∑

j=γ (f )

(
e−i�j t (H(j)

t − H(j)∞
)
Ff,j

)→ 0,

in L2(Pδx ). Thus, by (3.9)–(3.10), we obtain that, as t → ∞,

t−τ(f )e�γ (f )t
〈
f ∗,Xt

〉− ζ(f )∑
j=γ (f )

(
e−i�j tH (j)∞ Ff,j

)→ 0 in L2(Pδx ).

Now, to complete the proof, we only need to show that, as t → ∞,

t−2τ(f )e2�γ (f )tPδx

∣∣〈f̃ ,Xt 〉
∣∣2 → 0.(3.11)

(1) If λ1 > 2�γ (f̃ ), then by (2.21), we get, for (t, x) ∈ (2t0,∞)×E, as t → ∞,

t−2τ(f )e2�γ (f )tPδx

∣∣〈f̃ ,Xt 〉
∣∣2 � t−2τ(f )t2τ(f̃ )e

2(�γ (f )−�γ (f̃ ))t bt0(x)1/2 → 0.

(2) If λ1 = 2�γ (f̃ ), then by (2.36), we get, as t → ∞,

t−2τ(f )e2�γ (f )tPδx

∣∣〈f̃ ,Xt 〉
∣∣2

= t−2τ(f )t (1+2τ(f̃ ))t e(2�γ (f )−λ1)t t−(1+2τ(f̃ ))t eλ1tPδx

∣∣〈f̃ ,Xt 〉
∣∣2 → 0.

(3) If λ1 < 2�γ (f̃ ), then by (2.27), we get, as t → ∞,

t−2τ(f )e2�γ (f )tPδx

∣∣〈f̃ ,Xt 〉
∣∣2 = t−2τ(f )e(2�γ (f )−λ1)t eλ1tPδx

∣∣〈f̃ ,Xt 〉
∣∣2 → 0.

Combining the three cases above, we get (3.11). The proof is now complete. �
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3.2. Proof of the main theorem. First, we recall a metric on the space of dis-
tributions on Rn. For f :Rn →R, define

‖f ‖BL := ‖f ‖∞ + sup
x �=y

|f (x) − f (y)|
|x − y| .

For any distributions ν1 and ν2 on Rn, define

d(ν1, ν2) := sup
{∣∣∣∣∫ f dν1 −

∫
f dν2

∣∣∣∣ :‖f ‖BL ≤ 1
}
.

Then d is a metric. It follows from [11], Theorem 11.3.3, that the topology gen-
erated by this metric is equivalent to the weak convergence topology. From the
definition, we can see that if ν1 and ν2 are the distributions of two Rn-valued ran-
dom variables X and Y , respectively, then

d(ν1, ν2) ≤ E‖X − Y‖ ≤
√
E‖X − Y‖2.(3.12)

Recall that Cs and σ 2
f are defined in (1.39) and (1.41), respectively.

LEMMA 3.2. If f ∈ Cs , then σ 2
f ∈ (0,∞), and for any nonzero ν ∈Ma(E), it

holds under Pν that(
eλ1t 〈φ1,Xt 〉, eλ1t/2〈f,Xt 〉) d→ (

W∞,G1(f )
√

W∞
)
, t → ∞,

where G1(f ) ∼N (0, σ 2
f ). Moreover, W∞ and G1(f ) are independent.

PROOF. The proof is similar that of [26], Theorem 1.8. We define an R2-
valued random variable U1(t) by

U1(t) := (
eλ1t 〈φ1,Xt 〉, eλ1t/2〈f,Xt 〉).

By the branching property (see the argument of the beginning of the proof of [26],
Theorem 1.8), to prove this lemma, it suffices to show that for any x ∈ E, un-
der Pδx ,

U1(t)
d→ (

W∞,
√

W∞G1(f )
)
,(3.13)

where G1(f ) ∼ N (0, σ 2
f ) is independent of W∞.

Now we show that (3.13) is valid. In the remainder of this proof, we assume
s, t > 10t0 and write

U1(s + t) = (
eλ1(s+t)〈φ1,Xt+s〉, e(λ1/2)(s+t)〈f,Xs+t 〉).

Recall the decomposition of Xs+t in (3.1). Define

Y
u,t
1 (s) := eλ1s/2〈f,Xu,t

s

〉
and y

u,t
1 (s) := Pδx

(
Y

u,t
1 (s)|Ft

)
.
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Given Ft , Y
u,t
1 (s) has the same law as Y1(s) := eλ1s/2〈f,Xs〉 under Pδzu(t)

. Then
we have

e(λ1/2)(s+t)〈f,Xs+t 〉
= e(λ1/2)t

∑
u∈Lt

Y
u,t
1 (s)

= e(λ1/2)t
∑
u∈Lt

(
Y

u,t
1 (s) − yu,t

s

)+ e(λ1/2)(t+s)Pδx

(〈f,Xs+t 〉|Ft

)
=: J1(s, t) + J2(s, t).

We first consider J2(s, t). By the Markov property, we have

J2(s, t) = e(λ1/2)(s+t)〈Tsf,Xt 〉.
We claim that

lim sup
s→∞

lim sup
t→∞

Pδx J2(s, t)
2 = 0.(3.14)

By (2.20), we get

Pδx 〈Tsf,Xt 〉2 =
∫ t

0
Tt−u

[
A
(
Tu+s(f )

)2]
(x) du + Tt (Tsf )2(x),

where the function A(·) is defined in (1.8). For the case γ (f ) < ∞, using the
arguments leading to [26], (3.10), in the proof of [26], Theorem 1.8, we can show
that

lim sup
t→∞

Pδx J2(s, t)
2 = lim sup

t→∞
eλ1(t+s)Pδx 〈Tsf,Xt 〉2

(3.15)
� s2τ(f )e(λ1−2�γ (f ))sbt0(x)1/2.

Here we only give a sketch of proving (3.15). Since u + s ≥ s > 10t0, by (2.11),
we get ∣∣Tu+sf (x)

∣∣2 � (u + s)2τ(f )e−2�γ (f )(u+s)b4t0(x).(3.16)

Thus, for t > 10t0, using (2.17), we have∫ t−2t0

0
Tt−u

[
A(Ts+uf )2](x) du

� e−2s�γ (f )

∫ t−2t0

0
(u + s)2τ(f )e−2�γ (f )ue−λ1(t−u) dubt0(x)1/2

� e−λ1t e−2�γ (f )sbt0(x)1/2

×
(∫ t−2t0

0
u2τ(f )e(λ1−2�γ (f ))u du + s2τ(f )

∫ t−2t0

0
e(λ1−2�γ (f ))u du

)
� s2τ(f )e−λ1t e−2�γ (f )sbt0(x)1/2.
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And by (3.16) and (2.24), we have∫ t

t−2t0

Tt−u

[
A(Ts+uf )2](x) du

(3.17)
� (t + s)2τ(f )e−2�γ (f )(t+s)bt0(x)1/2.

By (2.11), we get that |Tsf (x)|2 � s2τ(f )e−2�γ (f )sbt0(x). Thus we have

Tt (Tsf )2(x) � s2τ(f )e−λ1t e−2�γ (f )sbt0(x)1/2.(3.18)

Consequently, we have

Pδx 〈Tsf,Xt 〉2 � (t + s)2τ(f )e−2�γ (f )(t+s)bt0(x)1/2

(3.19)
+ s2τ(f )e−λ1t e−2�γ (f )sbt0(x)1/2,

which implies (3.15). Similarly, for the case γ (f ) = ∞, we have

Pδx 〈Tsf,Xt 〉2 � bt0(x)1/2 + e−λ1t bt0(x)1/2.(3.20)

Thus

lim sup
t→∞

Pδx J2(s, t)
2 = lim sup

t→∞
eλ1(t+s)Pδx 〈Tsf,Xt 〉2 � eλ1sbt0(x)1/2.(3.21)

Combining (3.15) and (3.21), we get (3.14).
Next we consider J1(s, t). We define an R2-valued random variable U2(s, t) by

U2(s, t) := (
eλ1t 〈φ1,Xt 〉, J1(s, t)

)
.

Let Vs(x) := VarδxY1(s). We claim that, for any x ∈ E, under Pδx ,

U2(s, t)
d→ (

W∞,
√

W∞G1(s)
)

as t → ∞,(3.22)

where G1(s) ∼ N (0, σ 2
f (s)) is independent of W∞ and σ 2

f (s) = 〈Vs,φ1〉. The
proof of (3.22) is similar to that of [26], (3.11). We omit the details here. Thus
we get that, for any x ∈ E, under Pδx , as t → ∞,

U3(s, t) := (
eλ1(t+s)〈φ1,Xt+s〉, J1(s, t)

) d→ (
W∞,

√
W∞G1(s)

)
.

By (2.27), we have lims→∞〈Vs,ψ1〉m = σ 2
f . Let G1(f ) be a N (0, σ 2

f ) random
variable independent of W∞. Then

lim
s→∞ d

(
G1(s),G1(f )

)= 0.

Let D(s + t) and D̃(s, t) be the distributions of U1(s + t) and U3(s, t), re-
spectively, and let D(s) and D be the distributions of (W∞,

√
W∞G1(s)) and

(W∞,
√

W∞G1(f )), respectively. Then, using (3.12), we have

lim sup
t→∞

d
(
D(s + t),D

)
≤ lim sup

t→∞
[
d
(
D(s + t), D̃(s, t)

)+ d
(
D̃(s, t),D(s)

)+ d
(
D(s),D

)]
≤ lim sup

t→∞
(
Pδx J2(s, t)

2)1/2 + 0 + d
(
D(s),D

)
.
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Using this and the definition of lim supt→∞, we get that

lim sup
t→∞

d
(
D(t),D

)= lim sup
t→∞

d
(
D(s + t),D

)
≤ lim sup

t→∞
(
Pδx J2(s, t)

2)1/2 + d
(
D(s),D

)
.

Letting s → ∞, we get lim supt→∞ d(D(t),D) = 0. The proof is now complete.
�

Recall that 	k(x), Dk(t) and τ(f ) are defined in (1.17), (1.18) and (1.35), re-
spectively.

LEMMA 3.3. Assume f (x) = ∑
j :λ1=2�j

(	j (x))T vj ∈ Cc, where vj ∈ Cnj .
Define

Stf (x) := t−(1+2τ(f ))/2e(λ1/2)t (〈f,Xt 〉 − Ttf (x)
)
, (t, x) ∈ (0,∞) × E.

Then for any c > 0, δ > 0 and x ∈ E, we have

lim
t→∞Pδx

(∣∣Stf (x)
∣∣2; ∣∣Stf (x)

∣∣> ceδt )= 0.(3.23)

PROOF. In this proof, we always assume t > 10t0. For each j , define

Sj,t (x) := t−(1+2τ(f ))/2eλ1t/2(〈	T
j ,Xt

〉− e−λj t (	j(x)
)T

Dj (t)
)
.

Thus Stf (x) =∑
j :λ1=2�j

Sj,t (x)vj . Using the fact that for every n ≥ 1,∣∣∣∣∣
n∑

l=1

xl

∣∣∣∣∣
2

1|∑n
l=1 xl |2>M ≤ n

n∑
l=1

|xl|21|xl |2>M/n,(3.24)

we see that, to prove (3.23), it suffices to show that, as t → ∞,

F(t, x, vj ) := Pδx

(∣∣Sj,t (x)vj

∣∣2; ∣∣Sj,t (x)vj

∣∣> ceδt )→ 0.

Choose an integer n0 > 2t0. We write t = ltn0 + εt , where lt ∈ N and 0 ≤ εt < n0.
By (1.19), we get that Tu(	

T
j )(x) = e−λju	j (x)T Dj (t). Since λ1 = 2�j , for any

(t, x) ∈ (0,∞) × E, we have

Sj,t+n0(x)

=
(

1

t + n0

)1/2+τ(f )

eλ1(t+n0)/2

× (〈
	T

j ,Xt+n0

〉− 〈
e−λj n0	T

j ,Xt

〉
Dj(n0)

)
+
(

1

t + n0

)1/2+τ(f )

e−i�j n0eλ1t/2(3.25)
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× (〈
	T

j ,Xt

〉− e−λj t (	j(x)
)T

Dj (t)
)
Dj(n0)

=
(

1

t + n0

)1/2+τ(f )

Rj (t)

+ e−i�j n0

(
t

t + n0

)1/2+τ(f )

Sj,t (x)Dj (n0),

where

Rj(t) := e(λ1/2)(t+n0)
(〈
	T

j ,Xt+n0

〉− 〈
e−λj 	T

j ,Xt

〉
Dj(n0)

)
.

Put

A1(t, x, vj ) := {∣∣Sj,t (x)Dj (n0)vj

∣∣> ceδt},
A2(t, x, vj ) := {∣∣Sj,t (x)Dj (n0)vj

∣∣≤ ceδt ,
∣∣Sj,t+n0(x)vj

∣∣> ceδ(t+n0)
}

and

A(t, x, vj ) := A1(t, x, vj ) ∪ A2(t, x, vj ).

Then, for any (t, x) ∈ (0,∞) × E, we have

F(t + n0, x, vj )

≤ Pδx

(∣∣Sj,t+n0(x)vj

∣∣2;A1(t, x, vj )
)+ Pδx

(∣∣Sj,t+n0(x)vj

∣∣2;A2(t, x, vj )
)

=: M1(t, x) + M2(t, x).

Since A1(t, x, vj ) ∈ Ft and Pδx (Rj (t)|Ft ) = 0 for any (t, x) ∈ (0,∞) × E, we
have by (3.25) that

M1(t, x) =
(

1

t + n0

)1+2τ(f )

Pδx

(∣∣Rj(t)vj

∣∣2;A1(t, x, vj )
)

+
(

t

t + n0

)1+2τ(f )

F
(
t, x,Dj (n0)vj

)
and

M2(t, x) ≤ 2
(

1

t + n0

)1+2τ(f )

Pδx

(∣∣Rj(t)vj

∣∣2;A2(t, x, vj )
)

+ 2
(

t

t + n0

)1+2τ(f )

Pδx

(∣∣Sj,t (x)Dj (n0)vj

∣∣2;A2(t, x, vj )
)
.

Thus, for any (t, x) ∈ (0,∞) × E, we have

F(t + n0, x, vj ) ≤
(

t

t + n0

)1+2τ(f )

F
(
t, x,Dj (n0)vj

)
(3.26)

+
(

1

t + n0

)1+2τ(f )(
F1(t, x, vj ) + F2(t, x, vj )

)
,
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where

F1(t, x, vj ) := 2Pδx

(∣∣Rj(t)vj

∣∣2;A1(t, x, vj ) ∪ A2(t, x, vj )
)
,

F2(t, x, vj ) := 2t1+2τ(f )Pδx

(∣∣Sj,t (x)Dj (n0)vj

∣∣2;A2(t, x, vj )
)
.

Iterating (3.26), we get for t large enough,

F(t + n0, x, vj )

≤
(

1

t + n0

)1+2τ(f ) lt∑
m=5

(
F1
(
mn0 + εt , x,Dj

(
(lt − m)n0

)
vj

))

+
(

1

t + n0

)1+2τ(f ) lt∑
m=5

(
F2
(
mn0 + εt , x,Dj

(
(lt − m)n0

)
vj

))

+
(

5n0 + εt

t + n0

)1+2τ(f )

F
(
5n0 + εt , x,Dj

(
(lt − 4)n0

)
vj

)
=: L1(t, x) + L2(t, x)

+
(

5n0 + εt

t + 1

)1+2τ(f )

F
(
5n0 + εt , x,Dj

(
(lt − 4)n0

)
vj

)
.

First, we consider L1(t, x). By the definition of τ(f ) in (1.35), we have for
s > 0, ∣∣Dj(s)vj

∣∣
2 �

∣∣Dj(s)vj

∣∣∞ � 1 + sτ(f ).(3.27)

Thus, we have for 0 ≤ s ≤ t and t ≥ 2t0,∣∣Rj(s)Dj (t − s)vj

∣∣2 ≤ ∣∣Rj(s)
∣∣2
2

∣∣Dj(t − s)vj

∣∣2
2 � t2τ(f )

∣∣Rj(s)
∣∣2
2.(3.28)

It follows that for any ε ∈ (0,1),

L1(t, x) ≤ 2

t + n0

∑
5≤m≤εlt

Pδx

(∣∣Rj(mn0 + εt )
∣∣2
2

)
+ 2

t + n0

∑
lt ε≤m≤lt

Pδx

(∣∣Rj(mn0 + εt )
∣∣2
21A(mn0+εt ,x,Dj ((lt−m)n0)vj )

)
=: L1,1(t, x) + L1,2(t, x).

By the definition of Rj(s), we have

∣∣Rj(s)
∣∣2
2 = eλ1(s+n0)

nj∑
l=1

∣∣〈φ(j)
l ,Xs+n0

〉− 〈
Tn0

(
φ

(j)
l

)
,Xs

〉∣∣2.(3.29)
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Note that ∣∣〈φ(j)
l ,Xs+n0

〉− 〈
Tn0

(
φ

(j)
l

)
,Xs

〉∣∣2
= ∣∣〈�(φ(j)

l

)
,Xs+n0

〉− 〈
Tn0

(�(φ(j)
l

))
,Xs

〉∣∣2
+ ∣∣〈�(φ(j)

l

)
,Xs+n0

〉− 〈
Tn0

(�(φ(j)
l

))
,Xs

〉∣∣2.
Thus we have

Pδx

∣∣〈φ(j)
l ,Xs+n0

〉− 〈
Tn0

(
φ

(j)
l

)
,Xs

〉∣∣2
= Ts

(
Varδ·

〈�(φ(j)
l

)
,Xn0

〉)
(x) + Ts

(
Varδ·

〈�(φ(j)
l

)
,Xn0

〉)
(x).

Hence, by (2.17), we get, for s ≥ 5n0 > 2t0,

Pδx

∣∣Rj(s)
∣∣2
2

= eλ1(s+n0)

nj∑
l=1

Pδx

∣∣〈φ(j)
l ,Xt+n0

〉− 〈
Tn0

(
φ

(j)
l

)
,Xt

〉∣∣2(3.30)

� bt0(x)1/2.

Therefore, we have, for (t, x) ∈ (5n0,∞) × E,

L1,1(t, x)� εbt0(x)1/2.(3.31)

We claim that, for any x ∈ E:

(i)

lim
M→∞ lim sup

s→∞
Pδx

(∣∣Rj(s)
∣∣2
2;
∣∣Rj(s)

∣∣2
2 > M

)= 0,(3.32)

(ii) and, as t → ∞,

sup
tε≤s≤t

Pδx

(
A1

(
s, x,Dj (t − s)vj

)∪ A2
(
s, x,Dj (t − s)vj

))→ 0.

Using these two claims we get that, as t → ∞,

L1,2(t, x)

≤ 2

t + n0

∑
εlt≤m≤lt

(
Pδx

(∣∣Rj(mn0 + εt )
∣∣2
2;
∣∣Rj(mn0 + εt )

∣∣2
2 > M

)
+ MPδx

(
A
(
mn0 + εt , x,Dj

(
(lt − m)n0

)
vj

)))
� sup

s≥tε
Pδx

(∣∣Rj(s)
∣∣2
2;
∣∣Rj(s)

∣∣2
2 > M

)
+ M sup

tε≤s≤t
Pδx

(
A
(
s, x,Dj (t − s)vj

))
→ lim sup

s→∞
Pδx

(∣∣Rj(s)
∣∣2
2;
∣∣Rj(s)

∣∣2
2 > M

)
.
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Letting M → ∞, we get

lim
t→∞L1,2(t, x) = 0.(3.33)

Now we prove the two claims.
(i) For l = 1,2, . . . , nj , define

Rj,l,1(s) := eλ1(s+n0)/2〈�(φj
l

)
,Xs+n0

〉− 〈
Tn0

(�(φj
l

))
,Xs

〉
and

Rj,l,2(s) := eλ1(s+n0)/2〈�(φj
l

)
,Xs+n0

〉− 〈
Tn0

(�(φj
l

))
,Xs

〉
.

Using (3.24) and (3.29), we see that, to prove (3.32), we only need to show that,
for k = 1,2,

lim
M→∞ lim sup

s→∞
Pδx

(∣∣Rj,l,k(s)
∣∣2, ∣∣Rj,l,k(s)

∣∣2 > M
)= 0.(3.34)

Repeating the proof of (3.22) with s = n0, we see that (3.22) is valid for f ∈
L2(E,m) ∩ L4(E,m). Thus, for l = 1,2, . . . , nj , as s → ∞,

Rj,l,1(s)
d→√

W∞G,

where G ∼ N (0, eλ1n0〈Varδ· 〈�(φ
j
l ),Xn0〉,ψ1〉m. And by (2.16), we get, as s →

∞,

Pδx

(∣∣Rj,l,1(s)
∣∣2) = eλ1(s+n0)Ts

(
Varδ·

〈�(φj
l

)
,Xn0

〉)
(x)

(3.35)
→ eλ1n0

〈
Varδ·

〈�(φj
l

)
,Xn0

〉
,ψ1

〉
mφ1(x).

Let hM(r) = r on [0,M − 1], hM(r) = 0 on [M,∞], and let hM be linear on
[M − 1,M]. By (3.35), we have that for any x ∈ E,

lim sup
s→∞

Pδx

(∣∣Rj,l,1(s)
∣∣2, ∣∣Rj,l,1(s)

∣∣2 > M
)

≤ lim sup
t→∞

Pδx

(∣∣Rj,l,1(s)
∣∣2)− Pδx

(
hM

(∣∣Rj,l,1(s)
∣∣2))

= eλ1n0
〈
Varδ·

〈�(φj
l

)
,Xn0

〉
,ψ1

〉
mφ1(x) − Pδx

(
hM

(
W∞G2)).

By the monotone convergence theorem, we have that for any x ∈ E,

lim
M→∞Pδx

(
hM

(
W∞G2))= Pδx

(
W∞G2)

= Pδx (W∞)Pδx

(
G2)= eλ1n0

〈
Varδ·

〈�(φj
l

)
,Xn0

〉
,ψ1

〉
mφ1(x),

which implies

lim
M→∞ lim sup

s→∞
Pδx

(∣∣Rj,l,1(s)
∣∣2, ∣∣Rj,l,1(s)

∣∣2 > M
)= 0,
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which says (3.34) holds for k = 1. Using similar arguments, we get (3.34) holds
for k = 2.

(ii) Recall that νj is defined below (1.16). Since τ(φ
j
l ) ≤ νj , by (2.37), we get

for 10t0 ≤ s,

Pδx

∣∣Sj,s(x)
∣∣2
2 � s1+2νj s−(1+2τ(f )) ≤ s2νj .(3.36)

By (3.27), we get, for 10t0 ≤ s ≤ t ,

Pδx

∣∣Sj,s(x)Dj (t + 1 − s)vj

∣∣2 � s2νj
(
1 + t2τ(f )).(3.37)

By Chebyshev’s inequality and (3.37), we have that, for any x ∈ E, as t → ∞
sup

tε≤s≤t
Pδx

(
A1

(
s, x,Dj (t − s)

))
≤ sup

tε≤s≤t
c−2e−2δsPδx

∣∣Sj,s(x)Dj (t + 1 − s)vj

∣∣2
� e−2δεt t2νj

(
1 + t2τ(f ))→ 0.

Note that, under Pδx , for any t > 0,

A2
(
s, x,Dj (t − s)vj

)
(3.38)

⊂ {∣∣Rj(s)Dj (t − s)vj

∣∣> ceδs(eδn0 − 1
)
s(2τ(f )+1)/2}.

By (3.28) and (3.30), we get

Pδx

∣∣Rj(s)Dj (t − s)vj

∣∣2 � t2τ(f )bt0(x)1/2.

Similarly, by Chebyshev’s inequality, we have that, for any x ∈ E, as t → ∞,

sup
tε≤s≤t

PδxA2
(
s, x,Dj (t − s)vj

)
≤ sup

tε≤s≤t
c−2(eδn0 − 1

)−2
e−2δss−(1+2τ(f ))Pδx

∣∣Rj(s)Dj (t − s)vj

∣∣2
� e−2δεt (tε)−(1+2τ(f ))t2τ(f ) → 0.

Thus we have finished proving the two claims. Therefore, by (3.31) and (3.33), we
get

lim sup
t→∞

L1(t, x)� εbt0(x)1/2.

Letting ε → 0, we get

lim
t→∞L1(t, x) = 0.
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Now we consider L2(t, x). By (3.38), we have that for any x ∈ E,

F2
(
s, x,Dj (t − s)vj

)
= 2s(1+2τ(f ))Pδx

(∣∣Sj,s(x)Dj (t + n0 − s)vj

∣∣2;A2
(
s, x,Dj (t − s)vj

))
≤ 2s(1+2τ(f ))ceδsPδx

(∣∣Sj,s(x)Dj (t + n0 − s)vj

∣∣
× 1{|Rj (s)Dj (t−s)vj |>ceδs(eδn0−1)s(2τ(f )+1)/2}

)
≤ 2c−1(eδn0 − 1

)
e−δsPδx

(∣∣Sj,s(x)Dj (t + n0 − s)vj

∣∣∣∣Rj(s)Dj (t − s)vj

∣∣2)
� e−δseλ1(s+n0)tτ (f )

× Pδx

(∣∣Sj,s(x)
∣∣
2

〈
Varδ·

(〈
	T

j Dj (t − s)vj ,Xn0

〉)
,Xs

〉)
� e−δs tτ (f )

√
Pδx

∣∣Sj,s(x)
∣∣2
2

×
√

e2λ1sPδx

(〈
Varδ·

(〈
	T

j Dj (t − s)vj ,Xn0

〉)
,Xs

〉2)
.

By (2.37) and (1.20), we get for s ≤ t ,

Varδx

(〈
	T

j Dj (t − s)vj ,Xn0

〉) ≤ Pδx

∣∣〈	T
j Dj (t − s)vj ,Xn0

〉∣∣2
� t2τ(f )Pδx

〈
b

1/2
t0

,Xn0

〉2
.

Thus by (3.36) and (2.21), we have for 5n0 ≤ s ≤ t ,

F2
(
s, x,Dj (t − s)vj

)
� e−δs t2τ(f )sνj

√
e2λ1sPδx

(〈
b

1/2
t0

,Xs

〉2)
� e−δs t2τ(f )sνj .

Thus we get, as t → ∞,

L2(t, x) � 1

t + n0

lt∑
m=5

e−δ(mn0+εt )(mn0 + εt )
(1+2νj )/2

≤ 1

t + n0

lt∑
m=5

e−δmn0
(
(m + 1)n0

)(1+2νj )/2 → 0.

To complete the proof, we only need to show that for any x ∈ E,

lim
t→∞

(
5n0 + εt

t + n0

)1+2τ(f )

F
(
5n0 + εt , x,Dj

(
(lt − 4)n0

)
vj

)= 0.(3.39)

By (3.27) and (3.36), we get that for any x ∈ E,

(5n0 + εt )
1+2τ(f )F

(
5n0 + εt , x,Dj

(
(lt − 4)n0

)
vj

)
≤ (6n0)

1+2τ(f ) sup
5n0≤s≤6n0

Pδx

∣∣Sj,s(x)Dj

(
(lt − 4)n0

)
vj

∣∣2 � t2τ(f )(6n0)
2νj ,
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which implies (3.39).
The proof is now complete. �

Recall that Cs , Cc and τ(f ) are defined in (1.39), (1.38) and (1.35), respectively.

LEMMA 3.4. Assume that f ∈ Cs and h ∈ Cc. Define for any t > 0,

Y1(t) := eλ1t/2(〈f,Xt 〉 − Ttf (x)
)
,

Y2(t) := t−(1+τ(h)/2)eλ1t/2(〈h,Xt 〉 − Tth(x)
)

and Yt := Y1(t) + Y2(t). Then for any c > 0, δ > 0 and x ∈ E, we have

lim
t→∞Pδx

(|Yt |2; |Yt | > ceδt )= 0.

PROOF. By (3.24) and Lemma 3.3, it suffices to show that

lim
t→∞Pδx

(∣∣Y1(t)
∣∣2; ∣∣Y1(t)

∣∣> ceδt )= 0.(3.40)

If γ (f ) < ∞, by (2.11), we get, as t → ∞,

eλ1t/2∣∣Ttf (x)
∣∣� tτ (f )e(λ1/2−�γ (f ))t bt0(x)1/2 → 0.

If γ (f ) = ∞, by (2.12), we get, as t → ∞,

eλ1t/2∣∣Ttf (x)
∣∣� eλ1t/2bt0(x)1/2 → 0.

Thus by Lemma 3.2, Y1(t)
d→ √

W∞G1(f ). By Lemma 2.6, we have

lim
t→∞Pδx

(∣∣Y1(t)
∣∣2)= σ 2

f φ1(x).

Thus for any M > 0, we have

Pδx

(∣∣Y1(t)
∣∣2; ∣∣Y1(t)

∣∣> ceδt )
≤ Pδx

(∣∣Y1(t)
∣∣2; ∣∣Y1(t)

∣∣> M
)+ M2Pδx

(∣∣Y1(t)
∣∣> ceδt )

=: I1(t, x,M) + I2(t, x,M).

Let hM(r) = r on [0,M − 1], hM(r) = 0 on [M,∞], and let hM be linear on
[M − 1,M]. Then

lim sup
t→∞

I1(t, x,M) ≤ lim sup
t→∞

Pδx

(∣∣Y1(t)
∣∣2)− Pδx

(
hM

(∣∣Y1(t)
∣∣)2)

= σ 2
f φ1(x) − Pδx

(
hM

(∣∣G1(f )
√

W∞
∣∣)2).

By Chebyshev’s inequality, we have, as t → ∞,

I2(t, x,M) ≤ M2c−2e−2δtPδx

(∣∣Y1(t)
∣∣2)→ 0.
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Thus we have

lim sup
t→∞

Pδx

(∣∣Y1(t)
∣∣2; ∣∣Y1(t)

∣∣> ceδt )≤ σ 2
f φ1(x) − Pδx

(
hM

(∣∣G1(f )
√

W∞
∣∣)2).

Letting M → ∞, by the monotone convergence theorem, we have that for any
x ∈ E,

lim
M→∞Pδx

(
hM

(∣∣G1(f )
√

W∞
∣∣)2)= Pδx

(
G1(f )2W∞

)= σ 2
f φ1(x),

which implies (3.40). The proof is now complete. �

Recall that Cs , Cc, τ(f ), ρ2
h and σ 2

f are defined in (1.39), (1.38), (1.35), (1.42)
and (1.41), respectively.

LEMMA 3.5. Assume that f ∈ Cs and h ∈ Cc. Then(
eλ1t 〈φ1,Xt 〉, t−(1+2τ(h))/2eλ1t/2〈h,Xt 〉, eλ1t/2〈f,Xt 〉)

d→ (
W∞,

√
W∞G2(h),

√
W∞G1(f )

)
,

where G2(h) ∼ N (0, ρ2
h) and G1(f ) ∼ N (0, σ 2

f ). Moreover, W∞, G2(h) and
G1(f ) are independent.

PROOF. In this proof, we always assume t > 10t0, f ∈ Cs and h ∈ Cc. We
define an R3-valued random variable by

U1(t) := (
eλ1t 〈φ1,Xt 〉, t−(1+2τ(h))/2eλ1t/2〈h,Xt 〉, eλ1t/2〈f,Xt 〉).

For n > 2, we define

U1(nt) = (
eλ1nt 〈φ1,Xnt 〉, (nt)−(1+2τ(h))/2eλ1nt/2〈h,Xnt 〉, eλ1nt/2〈f,Xnt 〉).

Now we define another R3-valued random variable U2(n, t) by

U2(n, t) :=
(
eλ1t 〈φ1,Xt 〉, eλ1nt/2(〈h,Xnt 〉 − 〈T(n−1)th,Xt 〉)

((n − 1)t)(1+2τ(h))/2 ,

eλ1nt/2(〈f,Xnt 〉 − 〈T(n−1)tf,Xt 〉)).

We claim that

U2(n, t)
d→ (

W∞,
√

W∞G2(h),
√

W∞G1(f )
)

as t → ∞.(3.41)

Denote the characteristic function of U2(n, t) under Pμ by κ2(θ1, θ2, θ3, n, t). De-
fine, for s, t > 0,

Y
u,t
1 (s) := eλ1s/2〈f,Xu,t

s

〉
, Y

u,t
2 (s) := s−(1+2τ(h))/2eλ1s/2〈h,Xu,t

s

〉
.

We also define

Y1(s) := eλ1s/2〈f,Xs〉, Y2(s) := s−(1+2τ(h))/2eλ1s/2〈h,Xs〉
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and

Ys(θ2, θ3) := θ2Y2(s) + θ3Y1(s).

Given Ft , for k = 1,2, Y
u,t
k (s) has the same distribution as Yk(s) under Pδzu(t)

.
Thus, for k = 1,2,

y
u,t
k (s) := Pδx

(
Y

u,t
k (s)|Ft

)= Pδzu(t)
Yk(s).

Thus, by (3.1), we have

U2(n, t) =
(
eλ1t 〈φ1,Xt 〉, eλ1t/2

∑
u∈Lt

(
Y

u,t
2

(
(n − 1)t

)− y
u,t
2

(
(n − 1)t

))
,

eλ1t/2
∑
u∈Lt

(
Y

u,t
1

(
(n − 1)t

)− y
u,t
1

(
(n − 1)t

)))
.

Let h(s, x, θ, θ2, θ3) = Pδx (exp{iθ(Ys(θ2, θ3) − PδxYs(θ2, θ3))}). Thus we get

κ2(θ1, θ2, θ3, n, t)

= Pδx

(
exp

{
iθ1e

λ1t 〈φ1,Xt 〉} ∏
u∈Lt

h
(
(n − 1)t, zu(t), e

λ1t/2, θ2, θ3
))

.

Let tk,mk → ∞, as k → ∞. Now we consider

Sk := eλ1tk/2
mk∑
j=1

(Yk,j − yk,j ),

where Yk,j has the same law as Y(n−1)tk (θ2, θ3) under Pδak,j
and yk,j =

Pδak,j
Y(n−1)tk (θ2, θ3) with ak,j ∈ E. Further, for each positive integer k, Yk,j , j =

1,2, . . . are independent. Denote V n
t (x) := Varδx Y(n−1)t (θ2, θ3). Suppose the fol-

lowing Lindeberg conditions hold:

(i) as k → ∞,

eλ1tk

mk∑
j=1

E(Yk,j − yk,j )
2 = eλ1tk

mk∑
j=1

V n
tk
(ak,j ) → σ 2;

(ii) for every c > 0,

eλ1tk

mk∑
j=1

E
(|Yk,j − yk,j |2, |Yk,j − yk,j | > ce−λ1tk/2)

= eλ1tk

mk∑
j=1

g(n−1)tk (ak,j , θ2, θ3) → 0, k → ∞,



CLTS FOR BRANCHING NONSYMMETRIC MARKOV PROCESSES 615

where

gs(x, θ2, θ3) = Pδx

(∣∣Ys(θ2, θ3) − PδxYs(θ2, θ3)
∣∣2

× 1{|Ys(θ2,θ3)−Pδx Ys(θ2,θ3)|>ce−λ1s/(2(n−1))}
)
.

Then Sk
d→ N (0, σ 2), which implies

mk∏
j=1

h
(
(n − 1)tk, ak,j , e

λ1tk/2, θ2, θ3
)→ e−(1/2)σ 2θ2

as k → ∞.(3.42)

By the definition of Ys , we get

V n
t (x) := Varδx Y(n−1)t (θ2, θ3)

= θ2
2 Varδx Y2

(
(n − 1)t

)+ θ2
3 Varδx Y1

(
(n − 1)t

)
+ 2θ2θ3

(
(n − 1)t

)−(1+2τ(h))/2
eλ1(n−1)t

×Covδx

(〈f,X(n−1)t 〉, 〈h,X(n−1)t〉).
Thus, by (2.27), (2.36) and (2.46), we get that∣∣V n

t (x) − (
θ2

2 ρ2
h + θ2

3 σ 2
f

)
φ1(x)

∣∣
�
(
c(n−1)t + t−1 + t−(1+2τ(h))/2)(bt0(x)1/2 + bt0(x)

)
,

where ct → 0 as t → ∞. By (2.17), we get, as t → ∞,

eλ1t Tt

∣∣V n
t (x) − (

θ2
2 ρ2

h + θ2
3 σ 2

f

)
φ1(x)

∣∣(x)

�
(
c(n−1)t + t−1 + t−(1+2τ(h))/2)eλ1t Tt (

√
bt0 + bt0)(x) → 0,

which implies

lim
t→∞ eλ1t

∑
u∈Lt

V n
t

(
zu(t)

)= lim
t→∞ eλ1t

(
θ2

2 ρ2
h + θ2

3 σ 2
f

)〈φ1,Xt 〉

= (
θ2

2 ρ2
h + θ2

3 σ 2
f

)
W∞,

in probability.
By Lemma 3.4, we get, as s → ∞, gs(x, θ2, θ3) → 0. Since

g(n−1)t (x, θ2, θ3) ≤ V n
t (x) � bt0(x)1/2 + bt0(x) ∈ L2(E,m),

by the dominated convergence theorem, we have that for any x ∈ E,

lim
t→∞

∥∥g(n−1)t (x, θ2, θ3)
∥∥

2 = 0.

By Lemma 2.17, we have that, for any x ∈ E, as t → ∞,

eλ1tPδx

〈
g(n−1)t (·, θ2, θ3),Xt

〉
�
∥∥g(n−1)t (·, θ2, θ3)

∥∥
2bt0(x)1/2 → 0,
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which implies

eλ1t
∑
u∈Lt

g(n−1)t

(
zu(t), θ2, θ3

)= eλ1t
〈
g(n−1)t (x, θ2, θ3),Xt

〉→ 0,

in probability. Thus, for any sequence sk → ∞, there exists a subsequence s′
k such

that, if we let tk = s′
k , mk = |Xtk | and {ak,j , j = 1, . . . ,mk} = {zu(tk), u ∈ Ltk },

then the Lindeberg conditions hold Pδx -a.s. Therefore, by (3.42), we have

lim
t→∞

∏
u∈Lt

h
(
(n − 1)t, zu(t), e

λ1t/2, θ2, θ3
)= exp

{
−1

2

(
θ2

2 ρ2
h + θ2

3 σ 2
f

)
W∞

}

in probability. Hence by the dominated convergence theorem, we get

lim
t→∞κ2(θ1, θ2, θ3, n, t)

= Pδx

(
exp{iθ1W∞} exp

{
−1

2

(
θ2

2 ρ2
h + θ2

3 σ 2
f

)
W∞

})
,

which implies our claim (3.41).
By (3.41) and the fact that eλ1nt 〈φ1,Xnt 〉 − eλ1t 〈φ1,Xt 〉 → 0, in probability, as

t → ∞, we get that

U3(n, t)

:=
(
eλ1nt 〈φ1,Xnt 〉, eλ1nt/2(〈h,Xnt 〉 − 〈T(n−1)th,Xt 〉)

(nt)(1+2τ(h))/2 ,

eλ1nt/2(〈f,Xnt 〉 − 〈T(n−1)tf,Xt 〉))
d→
(
W∞,

(
n − 1

n

)(1+2τ(h))/2√
W∞G2(h),

√
W∞G1(f )

)
.

Using (3.19) with s = (n − 1)t , we get that, if γ (f ) < ∞,

Pδx 〈T(n−1)tf,Xt 〉2 � (nt)2τ(f )e−2nt�γ (f )bt0(x)1/2

+ (
(n − 1)t

)2τ(f )
e−λ1t e−2�γ (f )(n−1)t bt0(x)1/2.

If γ (f ) = ∞, using (3.20) with s = (n − 1)t , we get

Pδx 〈T(n−1)tf,Xt 〉2 � bt0(x)1/2 + e−λ1t bt0(x)1/2.

Therefore, we have

lim
t→∞ eλ1ntPδx 〈T(n−1)tf,Xt 〉2 = 0.(3.43)
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By (3.17), when λ1 = 2�γ (h), we get∫ t−2t0

0
Tt−u

[
A(Tu+(n−1)th)2](x) du

� e−λ1nt
∫ t−2t0

0

(
u + (n − 1)t

)2τ(h)
dubt0(x)1/2

� n2τ(h)t1+2τ(h)e−λ1ntbt0(x)1/2.

By (3.44), (3.17) and (3.18), when λ1 = 2�γ (h), we have

Pδx 〈T(n−1)th,Xt 〉2 � n2τ(h)t1+2τ(f )e−λ1ntbt0(x)1/2 + (nt)2τ(h)e−λ1ntbt0(x)1/2.

Therefore, we have

lim
n→∞ lim sup

t→∞
(nt)−(1+2τ(h))eλ1ntPδx 〈T(n−1)th,Xt 〉2 = 0.(3.44)

Let D(nt) and D̃n(t) be the distributions of U1(nt) and U3(n, t), respectively, and
let Dn and D be those of(

W∞,

(
n − 1

n

)(1+2τ(h))/2√
W∞G2(h),

√
W∞G1(f )

)
and (W∞,

√
W∞G2(h),

√
W∞G1(f )), respectively. Then, using (3.12), we have

lim sup
t→∞

d
(
D(nt),D

)
≤ lim sup

t→∞
[
d
(
D(nt), D̃n(t)

)+ d
(
D̃n(t),Dn)+ d

(
Dn,D

)]
≤ lim sup

t→∞
(
(nt)−(1+2τ(h))eλ1ntPμ〈T(n−1)th,Xt 〉2 + eλ1ntPμ〈T(n−1)tf,Xt 〉2)1/2

+ 0 + d
(
Dn,D

)
.

Using the definition of lim supt→∞, (3.43) and (3.44), we get that

lim sup
t→∞

d
(
D(t),D

)= lim sup
t→∞

d
(
D(nt),D

)
≤ lim sup

t→∞
(nt)−(1+2τ(h))entλ1tPδx 〈T(n−1)th,Xt 〉2 + d

(
Dn,D

)
.

Letting n → ∞, we get lim supt→∞ d(D(t),D) = 0. The proof is now complete.
�

PROOF OF COROLLARY 1.18. Define

Y1(s) := s−(1+2τ(h1))/2eλ1s/2〈h1,Xs〉, Y2(s) := s−(1+2τ(h2))/2eλ1s/2〈h2,Xs〉
and

Ys(θ2, θ3) := θ2Y1(s) + θ3Y2(s).
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Thus we have

VarδxY(n−1)t (θ2, θ3) = θ2
2VarδxY1

(
(n − 1)t

)+ θ2
3VarδxY2

(
(n − 1)t

)
+ 2θ2θ3Covδx

(
Y1
(
(n − 1)t

)
, Y2

(
(n − 1)t

))
.

By (2.35) and (2.36), we get∣∣VarδxY(n−1)t (θ2, θ3) − (
θ2

2 ρ2
h1

+ θ2
3 ρ2

h2
+ 2θ2θ3ρ(h1, h2)

)
φ1(x)

∣∣
� t−1(bt0(x)1/2 + bt0(x)

)
.

Using arguments similar to those leading to Lemma 3.5, we get

lim
t→∞Pδx exp

{
iθ1e

λ1t 〈φ1,Xt 〉 + iθ2Y1(t) + iθ3Y2(t)
}

= Pδx exp
{
iθ1W∞ − 1

2

(
θ2

2 ρ2
h1

+ θ2
3 ρ2

h2
+ 2θ2θ3ρ(h1, h2)

)
W∞

}
.

The proof of Corollary 1.18 is now complete. �

Recall that

g(x) = ∑
k:λ1>2�k

	k(x)T vk ∈ Cc

and

Isg(x) = ∑
k:λ1>2�k

eλks	k(x)T Dk(s)
−1vk.

We can show that Isg is real. In fact, for k with λ1 > 2�k , we have λ1 > 2�k′ and

eλk′ s	k′(x)T Dk′(s)−1vk′ = eλks	k(x)T Dk(s)
−1vk = eλks	k(x)T Dk(s)−1vk,

which implies that Isg(x) is real. Define

H∞ := ∑
k:λ1>2�k

H (k)∞ vk.

By Lemma 3.1, we have, as s → ∞,

〈Isg,Xs〉 → H∞, Pδx -a.s. and in L2(Pδx ).

Since Pδx 〈Isg,Xs〉 = g(x), we get

Pδx (H∞) = g(x).

By (2.20), we have

Pδx 〈Isg,Xs〉2 =
∫ s

0
Tu

[
A|Iug|2](x) du + Ts

[
(Isg)2](x).(3.45)
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By (1.20) and the fact that |Dk(s)
−1|∞ = |Dk(−s)|∞ � (1 + sνk ), we get that∣∣Isg(x)

∣∣2 � ∑
k:λ1>2�k

e2�ks
(
1 + s2νk

)
b4t0(x).

Thus by (2.17), we have, for s > 2t0,

Ts |Isg|2(x) �
∑

k:λ1>2�k

e2�ks
(
1 + s2νk

)
Ts(b4t0)(x)

(3.46)
�

∑
k:2�k<λ1

(
1 + s2νk

)
e(2�k−λ1)sbt0(x)1/2.

By (2.24), we get∫ ∞
0

Tu

[
A|Iug|2](x) du

�
∑

k:λ1>2�k

(∫ 2t0

0
e2�ku

(
1 + u2νk

)
Tu(b4t0)(x) du

+
∫ ∞

2t0

(
1 + u2νk

)
e(2�k−λ1)u dubt0(x)1/2

)
� bt0(x)1/2 ∈ L2(E,m) ∩ L4(E,m).

Therefore, by (3.45) and (3.46), we get

Pδx (H∞)2 = lim
s→∞Pδx

∣∣〈Isg,Xs〉
∣∣2

(3.47)
=
∫ ∞

0
Tu

[
A|Iug|2](x) du ∈ L2(E,m) ∩ L4(E,m).

Hence we have

VarδxH∞ = Pδx (H∞)2 − (PδxH∞)2

(3.48)
=
∫ ∞

0
Tu

(
A|Iug|2)(x) du − g(x)2.

PROOF OF THEOREM 1.16. Recall that

Et(g) =
( ∑

k:2λk<λ1

e−λktH (k)∞ Dk(t)vk

)
and

Y1(t) := eλ1t/2〈f,Xt 〉, Y2(t) := t−(1+2τ(h))/2eλ1t/2〈h,Xt 〉.
Consider an R4-valued random variable U4(t) defined by

U4(t) := (
eλ1t 〈φ1,Xt 〉, eλ1t/2(〈g,Xt 〉 − Et(g)

)
, Y2(t), Y1(t)

)
.
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To get the conclusion of Theorem 1.16, it suffices to show that, under Pδx ,

U4(t)
d→ (

W∞,
√

W∞G3(g),
√

W∞G2(h),
√

W∞G1(f )
)
,

where W∞, G3(g), G2(h) and G1(f ) are independent. Denote the characteristic
function of U4(t) under Pδx by κ3(θ1, θ2, θ3, θ4, t). Then, we only need to prove

lim
t→∞κ3(θ1, θ2, θ3, θ4, t)

= Pμ

(
exp{iθ1W∞} exp

{
−1

2

(
θ2

2 β2
g + θ2

3 ρ2
h + θ2

4 σ 2
f

)
W∞

})
.

Note that, by Lemma 3.1, we get

Et(g) = lim
s→∞〈Isg,Xt+s〉 = ∑

u∈Lt

lim
s→∞

〈
Isg,Xu,t

s

〉
.

Since Xu,t
s has the same law as Xs under Pδzu(t)

, Hu,t∞ := lims→∞〈Isg,Xu,t
s 〉 exists

and has the same law as H∞ under Pδzu(t)
. Thus we get Et(g) = ∑

u∈Lt
Hu,t∞ . Let

h(x, θ) = Pδx exp{iθ(H∞ − g(x))}. Therefore, we obtain that

κ3(θ1, θ2, θ3, θ4, t)

= Pδx

(
exp

{
iθ1e

λ1t 〈φ1,Xt 〉 + iθ3Y2(t) + iθ4Y1(t)
} ∏

u∈Lt

h
(
zu(t),−θ2e

λ1t/2)).

Let V (x) =VarδxH∞. We claim that:

(i) as t → ∞,

eλ1t
∑
u∈Lt

Pδx

∣∣Hu,t∞ − g
(
zu(t)

)∣∣2 = eλ1t 〈V,Xt 〉
(3.49)

→ 〈V,ψ1〉mW∞ in probability;
(ii) for any ε > 0, as t → ∞,

eλ1t
∑
u∈Lt

Pδx

(∣∣Hu,t∞ − g
(
zu(t)

)∣∣2, ∣∣Hu,t∞ − g
(
zu(t)

)∣∣> εe−λ1t/2)
(3.50)

= eλ1t
〈
k(·, t),Xt

〉→ 0 in probability,

where k(x, t) := Pδx (|H∞ − g(x)|2, |H∞ − g(x)| > εe−λ1t/2).

Then using arguments similar to those in the proof Lemma 3.5, we have∏
u∈Lt

h
(
zu(t),−θ2e

(λ1/2)t )→ exp
{
−1

2
θ2

2 〈V,ψ1〉mW∞
}
,(3.51)

in probability.
Now we prove the claims:
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(i) By (3.47), we have V (x) ∈ L2(E,m) ∩ L4(E,m). By Remark 1.15, (3.49)
follows immediately.

(ii) Note that k(x, t) ↓ 0 as t ↑ ∞ and k(x, t) ≤ V (x) ∈ L2(E,m) for any x ∈
E. Thus limt→∞ ‖k(·, t)‖2 = 0. So by (2.17), we have that for any x ∈ E,

eλ1tPδx

〈
k(·, t),Xt

〉
�
∥∥k(·, t)∥∥2bt0(x)1/2 → 0 as t → ∞,

which implies (3.50).

By (3.49), (3.51) and the dominated convergence theorem, we get that as t →
∞, ∣∣∣∣κ3(θ1, θ2, θ3, θ4, t)

− Pδx

(
exp

{(
iθ1 − 1

2
θ2

2 〈V,ψ1〉m
)
eλ1t 〈φ1,Xt 〉 + iθ3Y2(t) + iθ4Y1(t)

})∣∣∣∣
≤ Pδx

∣∣∣∣ ∏
u∈Lt

h
(
zu(t),−θ2e

(λ1/2)t )− exp
{
−1

2
θ2

2 〈V,ψ1〉meλ1t 〈φ1,Xt 〉
}∣∣∣∣

→ 0.

By Lemma 3.5, we get

lim
t→∞κ3(θ1, θ2, θ3, θ4, t)

= lim
t→∞Pδx

(
exp

{(
iθ1 − 1

2
θ2

2 〈V,ψ1〉m
)
eλ1t 〈φ1,Xt 〉

+ iθ3Y1(t) + iθ4Y2(t)

})
= Pδx

(
exp{iθ1W∞} exp

{
−1

2

(
θ2

2 〈V,ψ1〉m + θ2
3 ρ2

h + θ2
4 σ 2

f

)
W∞

})
.

By (3.48), we get

〈V,ψ1〉m =
∫ ∞

0
e−λ1u

〈
A|Iug|2,ψ1

〉
m du − 〈

g2,ψ1
〉
m.

The proof is now complete. �
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[1] ADAMCZAK, R. and MIŁOŚ, P. (2011). CLT for Ornstein–Uhlenbeck branching particle sys-
tem. Preprint. Available at arXiv:1111.4559.

[2] ASMUSSEN, S. and HERING, H. (1983). Branching Processes. Progress in Probability and
Statistics 3. Birkhäuser, Boston, MA. MR0701538

http://arxiv.org/abs/arXiv:1111.4559
http://www.ams.org/mathscinet-getitem?mr=0701538


622 Y.-X. REN, R. SONG AND R. ZHANG

[3] ASMUSSEN, S. and KEIDING, N. (1978). Martingale central limit theorems and asymptotic
estimation theory for multitype branching processes. Adv. in Appl. Probab. 10 109–129.
MR0471027

[4] ATHREYA, K. B. (1969). Limit theorems for multitype continuous time Markov branching
processes. I. The case of an eigenvector linear functional. Z. Wahrsch. Verw. Gebiete 12
320–332. MR0254927

[5] ATHREYA, K. B. (1969). Limit theorems for multitype continuous time Markov branching
processes. II. The case of an arbitrary linear functional. Z. Wahrsch. Verw. Gebiete 13
204–214. MR0254928

[6] ATHREYA, K. B. (1971). Some refinements in the theory of supercritical multitype Markov
branching processes. Z. Wahrsch. Verw. Gebiete 20 47–57. MR0307367

[7] BEZNEA, L. (2011). Potential-theoretical methods in the construction of measure-valued
Markov branching processes. J. Eur. Math. Soc. (JEMS) 13 685–707. MR2781929

[8] BROWN, A. L. and PAGE, A. (1970). Elements of Functional Analysis. Van Nostrand Reinhold,
London. MR0358266

[9] CHEN, Z.-Q., KIM, P. and SONG, R. (2012). Dirichlet heat kernel estimates for fractional
Laplacian with gradient perturbation. Ann. Probab. 40 2483–2538. MR3050510

[10] CHUNG, K. L. and ZHAO, Z. X. (1995). From Brownian Motion to Schrödinger’s Equation.
Grundlehren der Mathematischen Wissenschaften 312. Springer, Berlin. MR1329992

[11] DUDLEY, R. M. (2002). Real Analysis and Probability. Cambridge Studies in Advanced Math-
ematics 74. Cambridge Univ. Press, Cambridge. MR1932358

[12] HARDY, R. and HARRIS, S. C. (2009). A spine approach to branching diffusions with appli-
cations to L p-convergence of martingales. In Séminaire de Probabilités XLII. Lecture
Notes in Math. 1979 281–330. Springer, Berlin. MR2599214

[13] KESTEN, H. and STIGUM, B. P. (1966). A limit theorem for multidimensional Galton–Watson
processes. Ann. Math. Statist. 37 1211–1223. MR0198552

[14] KESTEN, H. and STIGUM, B. P. (1966). Additional limit theorems for indecomposable multi-
dimensional Galton–Watson processes. Ann. Math. Statist. 37 1463–1481. MR0200979

[15] KIM, P. and SONG, R. (2006). Two-sided estimates on the density of Brownian motion with
singular drift. Illinois J. Math. 50 635–688. MR2247841

[16] KIM, P. and SONG, R. (2008). On dual processes of non-symmetric diffusions with measure-
valued drifts. Stochastic Process. Appl. 118 790–817. MR2411521

[17] KIM, P. and SONG, R. (2008). Intrinsic ultracontractivity of nonsymmetric diffusions with
measure-valued drifts and potentials. Ann. Probab. 36 1904–1945. MR2440927

[18] KIM, P. and SONG, R. (2009). Intrinsic ultracontractivity for non-symmetric Lévy processes.
Forum Math. 21 43–66. MR2494884

[19] KIM, P. and SONG, R. (2014). Stable process with singular drift. Stochastic Process. Appl. 124
2479–2516. MR3192504

[20] LI, Z. (2011). Measure-Valued Branching Markov Processes. Springer, Berlin Heidelberg.
MR2760602

[21] MA, Z. M. and RÖCKNER, M. (1992). Introduction to the Theory of (Nonsymmetric) Dirichlet
Forms. Springer, Berlin. MR1214375

[22] MEYER, C. (2000). Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia, PA.
MR1777382
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