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In this paper, we establish a spatial central limit theorem for a large class
of supercritical branching, not necessarily symmetric, Markov processes with
spatially dependent branching mechanisms satisfying a second moment con-
dition. This central limit theorem generalizes and unifies all the central limit
theorems obtained recently in Ren, Song and Zhang [J. Funct. Anal. 266
(2014) 1716-1756] for supercritical branching symmetric Markov processes.
To prove our central limit theorem, we have to carefully develop the spectral
theory of nonsymmetric strongly continuous semigroups, which should be of
independent interest.

1. Introduction. Central limit theorems for supercritical branching processes
were initiated by Kesten and Stigum in [13, 14]. In these two papers, they estab-
lished central limit theorems for supercritical multi-type Galton—Watson processes
by using the Jordan canonical form of the expectation matrix M. Then in [4-6],
Athreya proved central limit theorems for supercritical multi-type continuous time
branching processes, using the Jordan canonical form and the eigenvectors of the
matrix M;, the mean matrix at time 7. Asmussen and Keiding [3] used martingale
central limit theorems to prove central limit theorems for supercritical multi-type
branching processes. In [2], Asmussen and Hering established spatial central limit
theorems for general supercritical branching Markov processes under a certain
condition. However, the condition in [2] is not easy to check and essentially the
only examples given in [2] of branching Markov processes satisfying this condi-
tion are branching diffusions in bounded smooth domains. We note that the limit
normal random variables in [2] may be degenerate.

The recent study of spatial central limit theorems for branching Markov pro-
cesses started with a paper by Adamczak and Mito$ [1] where they proved some
central limit theorems for supercritical branching Ornstein—Uhlenbeck processes
with binary branching mechanism. We note that branching Ornstein—Uhlenbeck
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processes do not satisfy the condition in [2]. In [23], Milo§ proved some central
limit theorems for supercritical super Ornstein—Uhlenbeck processes with branch-
ing mechanisms satisfying a fourth moment condition. Similar to the case of [2],
the limit normal random variables in [1, 23] may be degenerate. In [25], we estab-
lished central limit theorems for supercritical super Ornstein—Uhlenbeck processes
with branching mechanisms satisfying only a second moment condition. More im-
portantly, the central limit theorems in [25] are more satisfactory since our limit
normal random variables are nondegenerate. In [26], we obtained central limit the-
orems for a large class of general supercritical branching symmetric Markov pro-
cesses with spatially dependent branching mechanisms satisfying only a second
moment condition. In [28], we obtained central limit theorems for a large class of
general supercritical superprocesses with symmetric spatial motions and with spa-
tially dependent branching mechanisms satisfying only a second moment condi-
tion. Furthermore, we also obtained the covariance structure of the limit Gaussian
field in [28].

Compared with [4-6, 13, 14], the spatial processes in [1, 23, 25, 26, 28] are
assumed to be symmetric. The reason for this assumption is that one of the main
tools in [1, 23, 25, 26, 28] is the well-developed spectral theory of self-adjoint
operators.

The main purpose of this paper is to establish central limit theorems for general
supercritical branching, not necessarily symmetric, Markov processes with spa-
tially dependent branching mechanisms satisfying only a second moment condi-
tion. See our main result, Theorem 1.16, for the statement of our central limit the-
orems. To prove our main result, we need to carefully develop the spectral theory
of not necessarily symmetric, strongly continuous semigroups. We believe these
spectral results are of independent interest and should be very useful in studying
nonsymmetric Markov processes.

In this paper, R and C stand for the sets of real and complex numbers, respec-
tively, and all vectors in R” or C" will be understood as column vectors. For any
z € C, we use N(z) and J(z) to denote real and imaginary parts of z, respectively.
For a matrix A, we use A and AT to denote the conjugate and transpose of A,
respectively.

1.1. Spatial process. In this subsection, we spell out our assumptions on the
spatial Markov process. Throughout this paper, E stands for a locally compact
separable metric space, m is a o -finite Borel measure on E with full support and 9
is a separate point not contained in E. d will be interpreted as the cemetery point.
We will use Ej to denote E U {d}. Every function f on E is automatically extended
to Ey by setting f(d) = 0. We will assume that £ = {&;, [1,} is a Hunt process
on E, and ¢ :=inf{t > 0:&, = 0} is the lifetime of £&. We will use {P;:¢t > 0} to
denote the semigroup of &£. Our standing assumption on £ is that there exists a
family of continuous, strictly positive functions {p(¢, x, y):¢t > 0} on E x E such
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that, for any ¢ > 0 and nonnegative function f on E,
Pt @ = [ p.xnsmay.

We will use {P; :t > 0} to denote the dual semigroup of { P; : ¢t > 0} defined by
Pt = [ p.y.nsmmay.

For p > 1, we define LP(E,m;C) :={f:E — C: [ | f(x)|’m(dx) < oo} and
LP(E,m):={f e LP(E,m;C): f is real}. We also define

(L.1) af<x>:=/Ep<t,x,y>2m<dy), at(x):szp(t,y,x)zmwy).

In this paper, we assume the following:

ASSUMPTION 1. (a)Forallt >0and x € E, [ p(t,y, x)m(dy) < 1.

(b) For any ¢ > 0, a; and @, are continuous functions in E, and they belong to
LY(E, m).

(c) There exists o > 0 such that ay,, ay, € L2(E,m).

By the Chapman-Kolmogorov equation, the Cauchy—Schwarz inequality
and (1.1), we have

(12) p(t+s.x.y)= /E Pt x, 2)p(s, 2. Y)m(dz) < (a,(x)) @ ()",

which implies
r4s(x) < / a,)mdy)ar(x) and Gpes(x) < f as(Nm(dy)a; (x).
E E

So Assumption 1(c) above is equivalent to the following:

(c¢’) There exists 7y > 0 such that for all ¢ > 19, a;, a; € LZ(E, m).

Using Assumption 1(a), we have that, for p € [1, 00), { P; :t > 0} and {13, it >0}
are contraction semigroups on L?(E,m;C). In fact, for any f € L?(E,m;C),
using Holder’s inequality, Fubini’s theorem and Assumption 1(a), we have

P
1= | ‘ [ Pty fGImdy)| midx)

< fE fE p(t, x, )| F )P m(dy)m(dx)
= [([ pt.x.ym@n) ol may

< [ Il mdy).
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P; can be dealt with similarly.

One can check that the semigroups {P; : ¢ > 0} and {13, :t > 0} are strongly con-
tinuous on L”(E,m; C) for any p € [1, 00), even though only the strong conti-
nuity on L2(E, m; C) is needed later. Here we give a sketch of the proof of this
fact. Since X is a Hunt process, for any continuous function f on E with compact
support, we have by the dominated convergence theorem,

ltif&P,f(x)zf(x), xeE.

Since the collection of continuous functions of compact support is dense in
L%*(E,m; C), it follows from [21], Proposition 11.4.3, that { P; : ¢t > 0} is strongly
continuous on LZ(E, m; C). Now the strong continuity of {13, :t>0}on LZ(E, m;
C) follows from general theory; see, for instance, [24], Corollary 1.10.6.If f > Ois
a bounded function on E which vanishes outside a set B C E of finite m-measure,
then

lim /B Pof (ym(dx) = lim fE 1500) P, f (x)m(dx)
_ /E 1500 f0)m(dx) = | £

by the strong continuity of { P; :# > 0} on L*(E,m; C). Using || P fll1 < I fll1, we
have

lim [ 168G P f COmidn) = 0.

This implies that
lim | P f — fll) < nm/ P f(x) = £(x)|m(dx)
t—0 t—0JB

=}213)/]5|13(x)sz(x)—f(x)|m(dx)
< lim |P f — Fllam(B)Y? =o.
r—

Combining the conclusion above with the fact that the collection {f:E —
[0,00): f is bounded on E and vanishes outside a set of finite m-measure} is
dense in LL(E ,m), we immediately get the strong continuity of {P;:¢ > 0} on
LY(E,m;C). The strong continuity of {f’, >0} on LY(E, m; C) can be proved
similarly. The strong continuity of {P; : ¢t > 0} and {f’t :t>0}on LY(E,m;C) and
L%*(E,m;C) implies the same on L”(E,m;C) for p € (1,2) by interpolation.
The same follows for p € (2, o) by using the fact that L?(E, m; C) is reflexive
for p € (1, 00).
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We claim that the function t — [ a,(x)m(dx) is decreasing. In fact, by Fubini’s
theorem and Holder’s inequality, we get

s (x) = /E plt+5.x.y) fE p(t.x. 2 p(s. 2, yym(dDm(dy)
- / Pt x.2) f Pt + 5%, Y)p(s. 2, yym(dy)m(dz)
E E

satﬂ(x)‘/szp(r,x,z)as<z)‘/2m<dz),

which implies

2
(13) az+s(x)§< /E p<z,x,z>as(z)”2m<dz>) < /E p(t, x. 2)as(m(dz).

Thus, by Fubini’s theorem and Assumption 1(a), we get

/ s (OOm(dx) < f as(2) / pt.x, Hm(dx)m(dz)
E E E

< /Eas(z)m(dz).

Therefore, the function t — [ a;(x)m(dx) is decreasing.

Now we give some examples of nonsymmetric Markov processes satisfying
the above assumptions. The purpose of these examples is to show that the above
assumptions are satisfied by many Markov processes. We will not try to give the
most general examples possible. For examples of symmetric Markov processes
satisfying the above assumptions, see [26].

EXAMPLE 1.1. Suppose that E consists of finitely many points. If & =
{& :t > 0} is an irreducible conservative Markov process in E, then £ satisfies
Assumption 1 for some finite measure m on E with full support.

EXAMPLE 1.2. Suppose that o € (0,2) and that £ = {é,(l) >0} is a
strictly o-stable process in RY. Suppose that, in the case d > 2, the spherical part
n of the Lévy measure u of £(1) satisfies the following assumption: there exist a
positive function ® on the unit sphere S in R? and « > 1 such that

o= ad k<@ <k ons,
do
where o is the surface measure on S. In the case d = 1, we assume that the Lévy
measure of £(1) is given by

p(dx) = c1x T ooy + ealx| T g

with c1, ¢ > 0. Suppose that D is an open set in R? of finite Lebesgue measure.
Let & be the process in D obtained by killing £ upon exiting D. Then & satis-
fies Assumption 1 with £ = D and m being the Lebesgue measure. For details,
see [18], Example 4.1.
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EXAMPLE 1.3. Suppose that o € (0, 2) and that £@ = {ét(z) :t > 0} is a trun-
cated strictly a-stable process in R?: that is, £€® is a Lévy process with Lévy
measure given by

(dx) = pu(dx) 1y <1y,

where 11 is the Lévy measure of the process &1 in the previous example. Suppose
that D is a connected open set in R of finite Lebesgue measure. Let £ be the pro-
cess in D obtained by killing £® upon exiting D. Then £ satisfies Assumption 1
with £ = D and m being the Lebesgue measure. For details, see [18], Example 4.2
and Proposition 4.4.

EXAMPLE 1.4. Suppose a € (0,2), €D = {7 : > 0} is a strictly a-stable
process in R satisfying the assumptions in Example 1.2 and that £¢® = {%‘,(3) >
0} is an independent Brownian motion in R¥. Let £ be the process defined by

,(4) = ,(1) + SIG). Suppose that D is an open set in R? of finite Lebesgue measure.
Let & be the process in D obtained by killing & upon exiting D. Then £ satis-
fies Assumption 1 with £ = D and m being the Lebesgue measure. For details,

see [18], Example 4.5 and Lemma 4.6.

EXAMPLE 1.5. Suppose « € (0,2), £@ = {ét(z) :t > 0} is a truncated strictly
a-stable process in RY satisfying the assumptions in Example 1.3 and that £® =
{Et(3) :t > 0} is an independent Brownian motion in R?. Let £ be the process
defined by S,(S) = t(z) + 5,(3). Suppose that D is a connected open set in R? of
finite Lebesgue measure. Let £ be the process in D obtained by killing £ upon
exiting D. Then & satisfies Assumption 1 with E = D and m being the Lebesgue
measure. For details, see [18], Example 4.7 and Lemma 4.8.

EXAMPLE 1.6. Suppose d > 3 and that u = (u', ..., u?), where each pu/ is
a signed measure on RY such that

I/ [(dy) _o

lim sup =0.
y|d—1

r—0, cra JBx,r) |X —

Let£© = {S,(6) :t > 0} be a Brownian motion with drift 1« in R?; see [15]. Suppose
that D is a bounded, connected open set in R, and suppose K > 0 is a constant
such that D C B(0, K/2). Put B = B(0, K). Let G p be the Green function of 5(6)
in B, and define H (x) := [3 Gp(x, y)dy. Then H is a strictly positive continuous
function on B. Let £ be the process obtained by killing & © upon exiting D. Then &
satisfies Assumption 1 with £ = D and m being the measure defined by m(dx) =
H (x)dx. For details, see [31], Example 4.6 or [16, 17].
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EXAMPLE 1.7.  Suppose d > 2, o € (1,2) and that = (u, ..., u?), where
each u/ is a signed measure on R? such that

lim suP/ 7|,uj|(dy) =
r—0 . cpa JBGx.r) |x — y|d—oat]

Let&( = {ét(7) :t > 0} be an a-stable process with drift  in R?; see [19]. Suppose
that D is a bounded open set in R¢ and suppose K > 0is such that D C B(0, K /2).
Put B = B(0, K). Let G g be the Green function of £ in B, and define H (x) :=
J5 Gp(x,y)dy. Then H is a strictly positive continuous function on B. Let £ be
the process obtained by killing &7 upon exiting D. Then & satisfies Assumption 1
with £ = D and m being the measure defined by m(dx) = H (x) dx. For details,
see [31], Example 4.7 or [9].

1.2. Branching Markov processes. The branching Markov process {X; : ¢ > 0}
on E we are going to work with is determined by three parameters: a spatial mo-
tion & = {&, [1,} on E satisfying the assumptions at the beginning of the previous
subsection, a branching rate function §(x) on E which is a nonnegative bounded
measurable function and an offspring distribution {p,(x):n =0, 1,2, ...} satisfy-
ing:

ASSUMPTION 2.

(1.4) supanpn(x) < 00.

xeE n=0

We denote the generating function of the offspring distribution by
o0
p(x,2) =) pax)Z",  x€E z] <L
n=0

Consider a branching system on E characterized by the following properties:
(i) each individual has a random birth and death time; (ii) given that an individual
is born at x € E, the conditional distribution of its path is determined by I1,;
(iii) given the path £ of an individual up to time ¢ and given that the particle is
alive at time ¢, its probability of dying in the interval [¢, t 4+ dt) is (&) dt + o(dt);
(iv) when an individual dies at x € E, it splits into n individuals all positioned at x,
with probability p, (x); (v) when an individual reaches 0, it disappears from the
system; (vi) all the individuals, once born, evolve independently.

Let M,(FE) be the space of finite integer-valued atomic measures on E, and
let By, (E) be the set of bounded real-valued Borel measurable functions on E. Let
X, (B) be the number of particles alive at time ¢ located in B € B(E). Then X =
{X;,t =0} is an M, (E)-valued Markov process. For any v € M, (E), we denote
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the law of X with initial configuration v by P,,. As usual, (f, v) := [ f(x)v(dx).
For 0 < f € By(E), let

(1.5) w(t, x) :=Ps e~ X0,

Then w(t, x) is the unique positive solution to the equation

(1.6) 02 =Ty [ Y60 —5.E0)ds + TL(e ™),

where ¥ (x,z) = B(x)(p(x,2)—2),x € E,z €0, 1], while (9, z) =0,z € [0, 1].
By the branching property, we have

P, e~ X0) — llogot).v).

For recent developments on measure-valued branching Markov processes, see, for
instance, [7, 20]. Define

8 o0
(1.7) a(x) = a—‘f(x, )= ﬁ(x)(Z npa(x) — 1)
n=1
and
3%y X
(1.8) A(x) 2=8—Z2(x, ) =Bx) Y (n— Dnp,(x).
n=2
By (1.4), there exists K > 0, such that
(1.9) sup(|a(x)| + Ax)) < K.
xeE

For any f € Bp(E) and (¢, x) € (0, 00) x E, define

T, f (x) := T [ef0 /G £y,

By applying (1.5) and (1.6) to 6f and differentiating with respect to 6 at 6 = 0, we
get that 7; f (x) =Ps (f, X;) forevery x € E.

It is elementary to show that (see [27], Lemma 2.1) there exists a function
q(t,x,y) on (0,00) x E x E which is continuous in (x, y) for each ¢ > 0 such
that

e X'p(t.x,y) <q(t.x.y) <e®'p(t.x.y).
(1.10)
(t,x,y)€(0,00) X E X E
and that for any bounded Borel function f on E and (¢, x) € (0, 00) X E,
150 = [ g3 f(Imdy),
Define

(L11) b :=/Eq<r,x,y)2m<dy), by(x) :=/Eq<z,y,x>2m<dy>.
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The functions x — b;(x) and x — E,(x) are continuous. In fact, by (1.2),
(1.12) g(t,x,y) < eK’p(t x,y) < eKta,/z(x)l/ZZi/z(y)]/z.

Since ¢(z,-,y) and a;/> are continuous, by the dominated convergence theo-
rem, we get b, is continuous. Similarly, by is also continuous. Thus, it follows
from (1.12) and Assumption 1(b) and (c¢’) that b; and by enjoy the following prop-
erties:

(i) For any ¢t > 0, we have b; € LI(E ,m). Moreover, b;(x) and E(x) are con-
tinuous in x € E. R
(i) There exists o > 0 such that for all ¢ > 1o, b;, b; € L*(E, m).

1.3. Preliminaries. Note that, by (1.10), we have |T; f(x)| < eKtPt|f|(x).
Thus, for any p > 1,

(1.13) 1T £l < e IR FI, < X111

Recall that « is defined in (1.7). By the boundedness of « and Khas minskii’s
lemma ([10], Lemma 3.7), one can follow the elementary arguments in the proofs
of [10], Propositions 3.8 and 3.9, to show that

(1.14) lim sup I, |ef0“(gs)ds — 1|2:0.

t—)OXeE

Thus for any f € L>(E, m; C),
T, f(x) — P f(x)|* = [T (elo*@)ds — 1) £ (&) [
< M|l @@ _ 121, | f &)

by the Cauchy—Schwarz inequality. Hence by Assumption 1(a), we have

/E}Tzf(x) — P, f(x)|*m(dx)

< sup I, [eld @& ds _ 12 f p(t.x. )| f ) Pm(dyym(dz)
E

xeE

5/ | FO)[*m(dy) - sup T |elo@@ds _ 1|2,
E x€eE

which goes to zero as ¢ |, 0 by (1.14). Thus {7} : t > 0} is strongly continuous on
L*(E,m; C).
For f, g € L2(E, m; C), define

(. g)m = /E FZIm(dx).

Let {T",, t > 0} be the adjoint semigroup of {7} : > 0} on L?(E, m; C), that is, for
f.g € L*(E,m;C),

(T fr @m = {f-T8)m
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Thus,
Trg(r) = /E q(t, v, )g(mdy).

It is well known (see, e.g., [24], Corollary 1.10.6, Lemma 1.10.1), that {T} 1t >0}
is a strongly continuous semigroup on L?(E, m; C) and that

(1.15) I Till2 = 1Ty |12 < eX!

Forallt >0and f € LZ(E, m; C), T, f and T",f are continuous. In fact, since
q(t, x,y) is continuous, by (1.12) and Assumption 1(b), using the dominated con-
vergence theorem, we get 7; f and T, Jf are continuous. It follows from property (1)
at the end of Section 1.2 that, for any 7 > 0, 7; and T; are compact operators
on L%(E,m; C). Let A and A be the infinitesimal generators of {7;:7 > 0} and
(T,:1 > 0} in L?(E,m; C), respectively. Let o (A) and o (A) be the spectra of
A and A, respectively. It follows from [24], Theorem 2.2.4 and Corollary 2.3.7,
that both o (A) and o (A) consist of eigenvalues only, and that A and A have
the same number, say N, of eigenvalues. Of course N might be finite or infinite.
Letl={1,2,..., N}, when N < oo; otherwise I = {1, 2, ...}. Under the assump-
tions of Section 1.1, using (1.10) and Jentzsch’s theorem [29], Theorem V.6.6 on
page 337, we know that the common value —A; = sup N (o (A)) = supN(o (ﬁ)) is
an eigenvalue of multiplicity one for both 4 and A, and that an eigenfunction ¢
of A associated with —A; can be chosen to be strictly positive almost everywhere
with ||¢1 |2 = 1, and an eigenfunction v of A associated with —A; can be chosen
to be strictly positive almost everywhere with (¢1, ¥1),, = 1. We list the eigenval-
ues {—Ax, k €I} of Ain anorder so A; < M(A2) <R(A3) <---. Then {—Ay, k €I}
are the eigenvalues of A. For convenience, we define, for any positive integer k not
in I, Ay = Ay = oo. For k € I, we write 0y := R(Ax) and Iy := I(Ax). We use the
convention Ny, = 00.

Let o (T;) be the spectrum of 7; in L*(E,m; C). It follows from [24], Theo-
rem 2.2.4, that o (T}) \ {0} := {e ' : k € I}. We claim that there exists * > 0 such
that, for any k # j, e ™" # e~i'" In fact, if Ry # N, then for all 1 > 0, e ™!
e MIf, for k # j, My = N, then the set {r > 0:e ™M =e My = 2nm/I(0y —
Aj):n € Z} is countable. Thus the set Uyt and o=, {t > 0:e M = e=*i"} is
countable. Hence the claim is valid. We will fix this * throughout this paper.

Now we recall some basic facts about spectral theory; for more details, see [8],
Chapter 6. For any k € [, we define Ny o := {0}, and for n > 1,

Niw = N((e T =Tp)"Y={f € LXAE, m; C): (e 7™ [ — T;+)" f =0}
and
(1.16)  Rpn =R I = Tp)") = (e ™" I — Tp)" (L*(E, m; C)).
For each k €I, there exists an integer v; > 1 such that

Nin & Nint1, n=0,1,...,u—1; Nicn =N+, n> g
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and
Rin 2 Rknt1,  n=0,1,...,ue—1;  Rppn=Rint1, 1=

For all k €I and n > 0, Ny, is a finite dimensional linear subspace of
L2(E ,m; C). Ny, and Ry, are invariant subspaces of T;. In fact, for any f €

Nk,l’h

( —Akt ) (Tzf) ( —Akt ) f 0

which implies that 7; f ENin . If f=(e ™™ I —Tn)'g, then T, f =T, (e " [ —
T)'g = (e_)‘k’ I — T+)"T;g € Rk.n. Thus {Tt|Nkv ,t > 0} is a semigroup on
Nk.v,- We denote the corresponding infinitesimal generator as Ay. By [8], The-
orem 6.7.4, J(Tt*|Nk’Vk) = {e™""}. Since o (A;) C o(A), we have o (Ay) =
{—Xk}. Define ng := dim(N,y,) and rg := dim(Ng ;). Then from linear algebra
we know that there exists a basis {qb(.k), j=1,2,...,n;}of Nk,vk such that

A0 0 g0

Jr1 0
Ji,2
k k .
0 Jk,rk
K, (k
= (0,957, .... 80 Dy,
where
—Ae 1 0
— Ak 1
Jj = ) ady,j X di, j matrix
—Ak 1
0 — Xk

with Z;": 1 dk,j = ng. Dy is uniquely determined by the dimensions of Nin,n=
1,2,...,vk; see [22], Section 7.8, for more details. Here and in the remainder of
this paper we use the convention that when an operator, like A or A, or T}, acts on
a vector-valued function, it acts componentwise. For convenience, we define the
following C"*-valued functions:

(1.17) @r(x) = (17 @), 657 0), ..., o ()
Put
Jre (1) 0
Ji,2(2)
(1.18) Di(t) := N :

0 Jk,rk (t)



CLTS FOR BRANCHING NONSYMMETRIC MARKOV PROCESSES 575

where Ji j(t) is a dy j x di, j matrix given by

1ot 2720 o il (d - 1)
01 ¢t %2

Ji,j () =
1 t
0 1
Then we have fora.e. x € E,
(1.19) T (x) = e (D4 (1)) Di(0).

More details can be found in [22], page 609. Under our assumptions, T (P07 (x)
is continuous. Thus, by (1.19), we can choose ®; to be continuous, which im-
plies (1.19) holds for all x € E. We note that here the matrix D (¢) satisfies the
semigroup property, that is, for ¢, s > 0, Di(t + s) = Dy (t)Di(s) and Di(¢) is
invertible with Dy (¢)~! = Dy(—1).

For any vector a = (ay, ..., a,)T € C", we define the L? norm of a by |al, =
(Z?Zl |aj|f’)1/1’ when 1 < p < 00 and |a|so := maX; (|a;|) when p = oo.

By Holder’s inequality, |T; (") (x)| < b;(x)"/2. By (1.19), we get (¥;)" =
! T (@) (Dy(1)) ™" Thus
(1.20) |4 (0)] o < ct, k)b ()2,
where c(¢, k) does not depend on x. When we choose ¢ = #p, by Assumption 1(b)
and (c), we get that ¢\ € L2(E, m: C) N L*(E, m: C).

Now we consider the corresponding objects for T,. We know that o (Tj+) \ {0} =
{e=*!" k e T}. Define

Niw =N((e™™ T =T)")={f € LXE,m; C): (e "1 = Tp)" £ =0}.
Note that

n
(1.21) (e = Tp)" = ™M1 = 3 (= 1)/ ! (’;) e~ (=DMt
=1

Since Z?:l(—l)j_l(';)e_(”_j)k"’* T,i is a compact operator, by [8], Theo-
rem 6.6.13, ./Vkﬂ is of the same dimension as N ,. In particular, dim(./vkyvk) =
dim(Nk, ) = ng. Thus we have

Nien G Nicnt1s n=0,1,...,u—1; Niw =Nent1s n=> .

Slmllarly, we can get, for all k e Tand n > 0, J\/’k n 18 an invariant subspace of T,
Hence, {Tt | Niw, 11> 0} is a semigroup on Nk,vk with infinitesimal generator Ak

Let {wl(k) w(k) .. w,gk)}beabasis of /\7k v such that
122 L9 = 00 ) Do),
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where Dk (t) is an n; x ny invertible matrix. Since T; (w(k) w(k) cee, @,E’,?)(x) is
continuous, we can choose (wl(k) w(k) .. xp,ﬁ") ) to be continuous. We define an
ng X ng matrix Ag by

k k
(1.23) (A= 9",

LEMMA 1.8. Foreachk el,

(1.24) L*(E, m; C) = Ni o & Wiu)" =Ny @ W)™
Morover, the matrix Zk defined in (1.23) is invertible.

PROOF. By [8], Theorem 6.6.7, we have L*(E,m;C) = Nk " 69 Ric,vp -
It follows from (1.21) and [8], Theorem 6.6.14, that Ry ., (./\/'k Uk) Thus
L>(E,m;C) = Ny, @ (M. )T Similarly, we have LZ(E m; C) = ./Vk,vk @
(Nk,vk)l-

For any vector a = (ay, .. .,ank)T € C™, we have by the definition of Zk
in (1.23),

Axa = (17 )y (057 1)y (D) ),,)

where 7 = (fﬁ\l(k) w(k) .. w,&k))a € Nk,wc-
If Aya=0, then h € (Nk,vk) . Since Ny, N (Ni,u) L = {0}, we have 7 =0,
which implies a = 0. Therefore, Ay is invertible. [J

LEMMA 1.9. Forany k €1, define
(W) == (P @, 5P ), P )
=GP, TP @, . TP )AL

Then {wl(k) w(k) .. w,ﬁ")} is a basis of./\A/'k’vk such that the ny X ny matrix Ay :=
(@ v )m) satisies
(1.26) Ar=1

(1.25)

and for any x € E,
(1.27) T, (W) (x) = e Dy (1) W (x).
Moreover, the basis of /Vk,uk satisfying (1.26) is unique.

PROOF. Since A x is invertible, {w(k) w(k) .. w,ﬁ") } is a basis of /\Afk,vk. Ac-
cording to the definition of A given by (1.23), we have

A = /E 1 (0) B ()T m(dx),
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where Uy, := (1;1(]{) lﬂ(k) ey &,E’,?)T, and the integration of a matrix is understood
element-wise.
By (1.19) and (1.22), we get

e (D) Ag = / e M (D (1) Dy (x) Ty (x) T m(dx)
E
- /E T, () U () T m(dx) = /E O (x) (1,97 ) (x)ym (dx)

= [ o@¥ @) Dem@n) = LD,
Since Dy (¢) is a real matrix, we have
(1.28) e AT (D) = Do) AL
By (1.22) and (1.28), we have
TP p® Py = @O G0, GO DA
=@ G0, ) AT (Dew)”

= e (g ) (De@)
Assume that there exists another basis \Ilk (x) of Nk v satisfying (1.26). Then there
exists a matrix B such that (¥ (x))T = (¥ (x))7 B. Thus
1= [ 0en(@0) @0 = [ o) (@) m(@x)B =,

which implies B = I. Hence, we get Wy (x) = Wi (x). The proof is now complete.
g

REMARK 1.10. Recall that ®(x), Di(r) and Wi (x) are dgﬁned in (1.17),
(1.18) and (1.25), respectively. We know that T,(®1)(x) = e—kkfcpJT(x)Dk(z).
Thus e__xk’ is also an eigenvalue of T;. Hence there exists a unique k" such that
A = Ag. It is obvious that Di(t) = Dy/(t), and we can choose @y (x) = Pr(x).
By Lemma 1.9, we have W/ (x) = Wi (x). In particular, if A is real, then k' = k.

LEMMA 1.11. For j,k €l and j # k, we have
(1.29) Njv; € Ricoe = Vi)™
In particular, Nj,vj NNy, = {0}.

PROOF. Assume f € ./\/j,,,j, then (¢ %" — T;+)¥i f = 0. Since v, > 1, we
can define g = (e /"' I — Ty+)"i~! f. Thus e *i""g = Tj+g. Hence, (e "]
Ti+)g = (e Mt™ — e_)‘f’*)g, which implies

(ef)”"l*l _ T;*)vkg _ (ef)\kt* _ ef)»‘,vz*)vk
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Therefore g = (e ! — =" )y "k (e ! [ — Tp) Vg € Ric,vi-

Assume f = fi + fo with f; € Nk, and f> € Rg,,. Then (e "] —
T)" = fi € Ni.y,. On the other hand, (e ™" I — T;)Vi7l fj = g — (e ™[ —
)"~ fa € Ry Thus (e 74" 1 — Tp)i =1 fy =0

Ifv;=1,then f =g € Ry . Ifv; > 1and f #0, then e Mt GU(Tt*kak)

By [8], Theorem 6.7.4, o (Ty+ | o )= {e_)‘k’ }. This is a contradiction. Thus, f; =
0, which implies f = f2 € Ry y,- “Therefore N, v CRiy- O

By Lemma 1.11, for k € I, we can define
My =Ny ONow, @ -+ O Niy,  and

(1.30) R
M 3:-/V1,v1 @NZ,UZ ®--- @/vk,vk~

COROLLARY 1.12. Foranyk €1,

(1.31) L*(E,m;C) = My & (Mp* = My & (Mp™.

PROOF. By (1.24), (1.31) holds for k = 1. Assume that (1.31) holds for k — 1.
Then

L*(E,m;C) = Mj_1 & (My_1)*.
For any f € (My_1)*, by (1.24), we have f = f3 + fa, where f3 € Niy, and

fa€ Wiw)*. By (1.29), f3 € 521 (Nju)® = (Mi_1)*, which implies f4 =
f—fre (/T/l\k_l)L. Thus we obtain

fr€ Niw)t N (Mi—Dt = (M)t
Hence
(M)t =Niy, & (Mp)*.

Therefore, by induction, the first part of (1.31) holds for all k € I..
The proof of L?(E,m; C) = My & (My)=* is similar. O

REMARK 1.13. Recall that & (x) and Wy (x) are defined in (1.17) and (1.25),
respectively. Since —A; is simple, which means n| =r; = v; = 1, we know that
CI>1(x) ¢1(x) and ¥ (x) = ¥ (x). Moreover, since T;¢;(x) = e Ml (x) and
Tﬂ/ll (x) =e ! Y1(x) for every x, ¢1 and | are continuous and strictly positive.
By the definition of Dg(¢) in (1.18), we see that D1 (¢) = 1.

By Lemma 1.11, {q&m,] =1,...,k,l =1,...,n;} is a basis of M and
W =1, kil=1,. nj}lsabasis of My. By (1.29) and (1.26), we get
(¢(j), )y, =1, when j = k and | = n; otherwise (¢(j), Ky —0.
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In this paper, we always assume that the branching Markov process X is super-
critical, that is:

ASSUMPTION 3. X <O.

We will use {F;:t > 0} to denote the filtration of X, that is, /; = o (X;:s €
[0, ¢]). Using the expectation formula of (¢, X;) and the Markov property of X,
one can show that (see Lemma 3.1) for any nonzero v € M (E), under P,, the
process W; := e’ (¢, X;) is a positive martingale. Therefore it converges in the
following way:

W, — Wae, P,-a.s. as t — o0.

Using Assumption 2, we can show (see Lemma 3.1 below) that as t — oo, W, also
converges in L%(P,), so Wx is nondegenerate, and the second moment is finite.
Moreover, we have P,(Wyo) = (¢1, v). Put £ = {Wy, =0}, then P,(£) < 1. It is
clear that £¢ C {X,(E) > 0, Vr > 0}.

1.4. Main results. Recall that @ (x), Di(t), Wi (x), M and M; are defined
in (1.17), (1.18), (1.25) and (1.30), respectively. For any k € I, every function
f € L>(E, m; C) can be written uniquely as the sum of a function f; € My and
a function in (/\/lk)L Similarly, every functlon f e L?*(E,m: C) can be written
uniquely as the sum of a function fk € Mk and a function in (My)=. Using
Lemma 1.9, we get that

k
Fe) =3 (@) (f, Whm € My
j=1
and
P k —
(1.32) Fe) =Y (W) (f, @) € M,
j=1
where
oW = (L) F5 s A 0S),)T
and

o @ hm = () (05 ) (1 D))
For any f € L%(E,m; C), we define
(1.33) y(f) ::inf{je]l:(f,\llj)m;réO},

where we use the usual convention that inf @ = oco. If ¥ (f) < oo, define

(1.34) C(f):=sup{j el:N; =Ny, p)}.
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For each j €I, every component of the function 7:— D;(t)(f, W), is a polyno-
mial of 7. Denote the degree of the /th component of D;(#)(f, ¥;)m by 7;:(f).
We define

(1.35) T(f) = suplziu(f) 1y () <j <L) 1=l =n;}.
Then for any j with %; =N, (5),

(1.36) Frji= tgrgot_f(f)Dj(t)(f, )

exists and there exists a j such that Fy,; # 0.
Note that if g € L2(E, m), then for any j €1,

where j’ is defined in Remark 1.10. For g(x) = Zmlzmk(Cbk(x))Tvk, we have
vk = (g, V). Thus g(x) is real if and only if vy = vy. The following three sub-
sets of L2(E, m) will be needed in the statement of our main result:

1.37) (= {g(x) = Z (Cbk(x))Tvk cvp € C™ with vy = vk/},
kel:d;>20

(1.38) C.:= {g(x) = Z (<I>k(x))Tvk (v € C™ with vy = vk/}
kel =29

and

(1.39) Cs:={g e LX(E,m)NL*(E,m): 11 <20y}

1.4.1. Some basic laws of large numbers. Recall that @ (x) and Dy(¢) are de-
fined in (1.17) and (1.18), respectively. Recall also that I is defined in the paragraph

below (1.15). For any k € I, we define an ni-dimensional random vector Ht(k) as
follows:

(1.40) HP =M (00, X,), .. (0%, X ) (Dr ()"

ng °
One can show (see Lemma 3.1 below) that if A; > 20, then, for any v € M, (E)
and v € C', Ht(k)v is a martingale under P, and bounded in L*(P,). Thus the

limit Ho(lé) = lim; H,(k) exists Py-a.s. and in L2(P,).

THEOREM 1.14. If f € L>(E, m; C) N L*(E, m; C) with 1 > 2R, (s), then
for any nonzero v € M,(E), as t — 00,

¢(f)
17T DM f X)) — 3 e NITHDF ;>0 in LA(P,),
=y (f)

where Fy j is defined in (1.36).
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REMARK 1.15. Recall that y(f), ¢(f) and t(f) are defined in (1.33), (1.34)
and (1.35), respectively. Suppose f € L>(E, m; C)NL*(E, m; C) with y (f) = 1.
Then ¢(f) = 1. Since D1(¢) =1, t(f) =0. Thus Ht(l) reduces to W, and Ho(ol) =
Woo. Therefore by Theorem 1.14 and the fact that Fy,; = (f, Y1), we get that for
any nonzero v € M,(E),

ML X)) = (fiv)mWoo  in LA(PR)),

as t — oo. It is obvious that the convergence also holds in IP,,-probability.
In particular, if f is nonzero and nonnegative, then ( f, ¥1),, 7 0 which implies

y(f)=1.

1.4.2. Central limit theorem. Our aim is to describe the limit behavior of
(f, X;) for f belonging to the subsets Cs, C. and C; of L?*(E,m). Recall that
Ci, C. and Cy are defined in (1.37), (1.38) and (1.39), respectively. For f € Cs,
define

o0
(1.41) ofi= [P AIT P, ds + 1P,
For h =3 5, —om, (Pr(x)T vy € C,, define

(1.42) pr = (142t (h)) (AFu, ¥1)m,
where Fj, (x) := Y5, —om, | (@i ()T Fp x| For

gy= > (@) v e,

kid>20%
define
Lgx)== Y e 0px)" Di(s) vy,
ki >2N,
2 ® _a 2 2
(143) pri= [ e AILgR ), du— (g ),
and

E(g):= Y. (e™HY De(t)w).
kid>2N

THEOREM 1.16. If f € Cs, h € Cc and g € C1, then o7, pj; and 7 all belong
to (0, 00). Furthermore, it holds that, under P, (-|E€), as t — 00,
(g, Xi) — Ei(8) (h, X;) (fs X1) )

Vo1, Xi) ’\/t1+2T(h)<¢)1,Xt>’ V{1, Xi)

(e“’(asl, X,),

L (W*, Gs(g). Ga(h), G (/).
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where W* has the same distribution as Weo conditioned on £¢, G3(g) ~ N (0, ,8;),

Ga(h) ~ N0, pp) and Gi(f) ~ N(0,07). Moreover, W*, G3(g), Ga(h) and
G1(f) are independent. ‘

The main difference between the setup in the theorem above and the setup
in [26] is that now the spatial motion is not assumed to be symmetric. Even in
the symmetric case, the theorem above is a unification of all the central limit the-
orems contained in [26], Theorems 1.8—1.10 and 1.12. As we will explain at the
end of this subsection (see Corollaries 1.20-1.21 and the sentence before Corol-
lary 1.20), all the central limit theorems in [26], Theorems 1.8—1.10 and 1.12, are
consequences of the theorem above. Furthermore, as we will explain in the three
corollaries below, we can also get the covariance structure of the limiting Gaussian
field.

Whenever f € C;, we will use G1(f) to denote a normal random variable
N(0, a]%). For fi, f» € C,, define

o (i f2) = /0 AT )T fo), 1), ds L1 for Vi

COROLLARY 1.17. If f1, f2 € Cs, then, under P, (-|E°),

( (f1, Xe)  (f2, Xi)
\/<¢17Xt>’ \/<¢19Xl‘

and (G1(f1), G1(f2)) is a bivariate normal random variable with covariance

>) 4 (Gi(f).Gi(f)., 1 oo,

(1.44) Cov(G1(f1), G1(f2)) = (f1, f2).
PRrROOF. Using the convergence of the fourth component in Theorem 1.16, we
get
. (thl‘) . <f2’XZ>
P <exp{191 +i6, } EC>
' Vier X Ve X))
0 02 /2, X
:Pv<exp{i< 1/1+62/2 r)} gC>
(p1, X1)
1,
— ©Xp _50(91f1+92f2) as t — 0o,
where

o0
2
0(291f1+92f2) :/(; €AIS<A(T5(91J(1 +92f2)) ,1//1>mds

+{O1f1 +0212)%, Y1),
=070}, +2010:0 (f1, f2) + 0507,
Now (1.44) follows immediately. [
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Whenever h € C., we will use G,(h) to denote a normal random variable
N(0, ,0%), where ,0% is defined in (1.42). For hy, hy € C,, define
(1.45) p(hi, hy):=(1+t(h)+ T(hz))f1 (AFny hys Y1)m,s
where

Fpyony (x) = Z q’j(x)TFhl,jq>j'(x)TFh2,j'
=20,

= Y &0 Fa ;0 Fyy .
j:klzzm]‘

(1.46)

COROLLARY 1.18. Ifhy, hy € C., then we have, under P, (-|E€),
( (h1, Xy) (ha, X;)
gy, X, \Jiist g, X,
and (G (hy), G(h2)) is a bivariate normal random variable with covariance
Cov(Ga(h1), G2(h2)) = p(h1, h2).

)) L (Ga(h)). Ga(hy)), 1t — o0,

Whenever g € C;, we will use G3(g) to denote a normal random variable
N0, B7), where 87 is defined in (1.43). For g (x), g2(x) € C;, define

B(g1.82) = /O e A(,g1) (s 82) W1}y, ds — (8182, W1)m-

Using the convergence of the second component in Theorem 1.16 and an argument
similar to that in the proof of Corollary 1.17, we get the following:

COROLLARY 1.19. Ifg1(x), g2(x) € C, then we have, under P, (-|E°),
((81, Xi) — Ei(81) (82, Xi) — E1(g2)
V<¢17Xl> , Y% <¢1,X;>

and (G3(g1), G3(g2)) is a bivariate normal random variable with covariance
Cov(G3(g1), G3(g2)) = B(g1, 82)-

For any f € L?(E, m) N L*(E, m), define
fo@ =Y (@) (f. %)),

J2M <M

fo@ =Y (@) (f. %)),
J2N =M
Jo&x) = fx) = fio(x) = foy(x).
Then fs) € Ci, fi) € Cc and f(y € Cs. Obviously, [26], Theorem 1.8, is an im-

mediate consequence of the convergence of the first and fourth components in
Theorem 1.16.

) 4 (Gs(g1), G3(g2)). 1 oo,
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REMARK 1.20. If f € L*(E,m) N L*(E,m) with A1 = 2%, (y), then f =
S + fu- Using the convergence of the fourth component in Theorem 1.16 for
fw), it holds under PP, (-|€€) that

(fwy, Xi) 4, D oo
SO x)

Thus using the convergence of the first and third components in Theorem 1.16, we
get, under P, (-|£°),

(e“’«bl, X))

<fv Xt)
JH2 (g, X))

where W* has the same distribution as Ws, conditioned on £ and G2(f(c)) ~
N(0, ,OJZC(C)). Moreover, W* and G2( f(.)) are independent. Thus [26], Theorem 1.9,

is a consequence of Theorem 1.16.

) L (W, Ga(fie), = o0,

REMARK 1.21. Assume f € L2(E,m) N L*(E, m) satisfies A1 > 2%, (7).

If fio) =0, then f = f(;) + f(5). Using the convergence of the first, second and
fourth components in Theorem 1.16, we get for any nonzero v € M, (E), it holds
under P, (-|£€) that, as t — o0,

(fs Xo) = Yaom <a, € HE D0, wk>m>)
(b1, X,)1/2

4 (W*, G1(fa)) + G3(fs))),

where W*, G3(f(5)) and G1(f() are the same as those in Theorem 1.16. Since
G3(f(s)) and G1(f(;)) are independent,

G1(f) + G3(fie) ~N(0.02, +82,).

Thus [26], Theorem 1.10, is a consequence of Theorem 1.16.
If fo) #0, then as t — oo,

(S + fisrs Xo) = Ckamy =i, € HS DD f, Wihm) 4

JH2 D (g, X))

Then using the convergence of the first and third components in Theorem 1.16, we
get

(e“f«m, X,),

0.

(fs X0) = Yoy <n, € HE D0, wmm))

(41, X, _
JiF2 N, X))

LY (W*, G2(fe)),

where W* and G2(f(c)) are the same as those in Remark 1.20. Thus [26], Theo-
rem 1.12, is a consequence of Theorem 1.16.
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2. Estimates on the moments of X. In the remainder of this paper we will
use the following notation: for two positive functions f (¢, x) and g(z, x), f(¢,x) <
g(t, x) means that there exists a constant ¢ > 0 such that f (¢, x) < cg(t, x) for all
t,x.

2.1. Estimates on the first moment of X. Recall that My and M x are defined
in (1.30), and [ is defined in the paragraph below (1.15).

LEMMA 2.1. Foreach k €1, if a < Nyy1, there exists a constant c(k,a) > 0
such that for all t > 0,

—at at

1Tl i ll2 < ek, @)e™ and || Tyl a2 < ek, a)e™

PROOF. Since (/\/lk)l is invariant for T}, {TH(Mk)J_ :t > 0} is a semigroup on
(Mp)+. By [8], Theorem 6.7.5, we have

o Tl ) \ (0 = {e ™" k+ 1< jel}.
Thus if k 4+ 1 € [, the spectral radius of T [t 18

F(Tielppyr) = e < 7",

If £ + 1 does not belong to I, then r(T",* L) =0< e,
By [8], Theorem 6.3.10, r(Ty+| (pg)1) = limy— o0 (| Tue# | g2 112) /7 thus there
exists a constant 71, such that

(2.1) 1Ty e# L g2 12 < €97

By (1.15), we have

Knit*

2.2) sup N Tilgillo< sup Tl <e

0<t<npr* O<t<npr*

For any ¢ > 0, there exist/ € N and r € [0, n), such that t = n(lt* + rt*. By (2.1)
and (2.2), we have

= = L7 —anylt* Knyt*
I Tt L 12 S W Tyl gy L N Trex L a2 12 < @ amir ghmt

* * _
SeKnlt < sup eart )e at‘
0<r<n;

Thus we can find c(k, a) > 1 such that ||T}|(Mk)L 2 < c(k,a)e™?. Similarly, we
can show that || T;| 57, 2112 < c(k, a)e™". [

Recall that ®;(x), Dy (), Vi (x), b;(x) and Zt(x) are defined in (1.17), (1.18)
(1.25) and (1.11), respectively.
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LEMMA 2.2. Foreachk €l and t| > 0, if a < Ni41, there exists a constant
clk,a,ty) >0 such thatfor all (t,x,y) € 2t;,00) X E X E,

23) |q(t.x,y)— Ze “(@;(0)) DjOT; ()| < ce by, ()b, (1)

PROOF. Recall that for any f € L*(E,m;C)andk €1, ﬁ is defined in (1.32).
Since |(f, ¢;” )m| < |1 f]l2. we have

konj ,
1 <1123 Y v wl.
j=li=1

Thus, we get ||ﬁ||2 <ci1(k)|| fll2- By Lemma 2.1, for any a < N1, there exists a
constant ¢, = c2(k, a) > 0 such that for all r > 0,

(2.4) ITi(f = fll, < c2e™ I f = Fell2 < cze™ | £z,
where ¢3 = c2(1 4 ¢1(k)). For t > t;, we have

q(z,x,y)=/Eq(z],x,z)q<r—zl,z,y>m(dz>='Ef,l(hx)(y),
where K, (z) = q(t1, x, z) € L>(E, m). Note that
hy. ) / (1. x. 287 @mdz) = T, (67) ().

Let
k _—
Bk (2) —Zth,qs(” v/ @ =Y. T,((@)T)(0)¥; ).
j=1l=1 j=1
By (1.19) and (1.27), we have
k

T (e ) ) = > T (@ NT ) Ti—p, (¥) ()
j=1
k

Ze “(@;00) Dj)D;(t — 1)W;(y)
J:

—

k
Ze (@;()" D)W, ().

~.
—_

Thus, by (2.4), we have
2

fE‘q(r,x,y) Ze (@) D) ()| m(dy)

< (ca)ze*M’*“) 72113 = cae™ by, (x),
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where ¢4 = c4(k,a,t)) = c%e_z‘”l. Since ¢ (¢, x, y) is a real-valued function, we
have, for t > ¢,

2.5) /

Repeating the above argument with 7;, we get that there exists ¢s5 = c5(k, a,
t1) > 0 such that for r > ¢1,

2

q(t,x,y) — Ze ") D)V, (y)| m(dy) < cae™ by, (x).

k 2
qt,2,) = Y e (@;(2) Dj()W,;(y)| m(dz) < cse™ by, ().

j=1
Since D;(t) = D;(t/2)D;(t/2), we get

e ™)) D), (y)

(2.6)

2.7)
= M2 /Equ/z,x,z)(cp @) Dj(t/2T;(m(dz)
and
e (D)) D))
(2.8)

Hit2 /E q(t/2, 2, 9)(®;(x))" Dj(t/)W;@m(dz).

Thus by (1.26), we have

k
fE(Ze—kﬂ/z(cbj(x))TDj(r/z)\pJ-(z)>

j=1

X (Ze i2(®;(2)) Dj(f/z)‘ljj()’)>m(d2)

J:

—

(2.9)
Ze “(®;(x)) T'p, i(t/2)D;(t/2)V;(y)

~.
—_

k
=Y e (@) DT .

~.

Thus, by the semigroup property of T; and (2.7)—(2.9), we obtain

q(t,x,y) — Ze (@ () Dj(t)‘l’j()’)

_ /E g(t/2,x,2)q(t/2, 7, y)m(dz)
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k
— Ze—kﬂ/Z/Eq(t/z,x,z)(cbj(z,))TDj(t/z)xpj(y)m(dz)

j=1
k —_—
— Y e fEcm/z, 2 0(®(0)" Dj(1/2)¥;@m(dz)

j=1

k
—I—/E<Ze Rl (D (x)) Dj(z/z)wj(z)>

Jj=1

k
x (Ze H12(0(2)) D,-(z/zwj(y))m(dz)

j=1
k

=/E<q<r/2,x,z>—<2 TR (D (x)) D;(r/b%@)))

k
x(q(t/z,z,y) (Z M (®)(2)) Dja/z)wj(y)))m(dz).

Therefore, by Holder’s inequality, (2.5) and (2.6), we get, for ¢ > 21y,

q(t,x,y) — Ze (@) Dj(l)‘l’j()’)

< C465€_atbz1 (X)I/szl (y)l/Z_ 0

Recall that y(f), ¢(f), ©(f), Fy,; and b;(x) are defined in (1.33), (1.34),
(1.35), (1.36) and (1.11), respectively.

COROLLARY 2.3. Assume f € L>(E,m;C). If y(f) < oo, then, for any
t1 > 0, there exists a constant c(f, t;) > 0 such that for all (¢, x) € (2t;,00) X E,

=T DM OIT, £ (x) — {(Zf) e~ (0;(0)T Fy
(2.10) =y
< c(fom)i by (012,
Moreover, we have, for (t, x) € (2t1,00) X E,
2.11) T, f ()] S 7P e by ()2,
If y(f) = oo, for any t| > 0, we have, for (t,x) € (2t1,00) X E,

(2.12) T, f ()] S by ()2,
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PROOF. First, we consider the case y(f) < oo, which implies y(f) € L.
By the definition of ¢(f), we have R, () < Re(p)+1. Since (f, (b)) <
1B;/ 211211 f 112, applying Lemma 2.2 with k = ¢(f) and a fixed a with 0, () <
a < Re(fy+1, we get that there exists ¢; = c1(f, #1) > 0 such that for (7, x) €
(211, 00) X E,

, o .
T f(x)—e 0t 3" e NN @;(x) D) f. Y)m
J=r(f)
<cie b, ()2,

Recall that & (x), Dy (¢) and Wi (x) are defined in (1.17), (1.18) and (1.25), respec-
tively. If 7(f) > 1, the degree of each component of D; (){f, V), — 1= Fyjis
no larger than t(f) — 1. Thus, for ¢ > 2¢,

[DjOf Y =17 Fp | S 17D

(2.13)

which implies that
(2.14) T DD O Y )m — Frjlog St

If ©(f) =0, Dj(t)(f, Vj)m — t"™PFs; = 0. By (1.20), we get, for (t,x) €
(2t1,00) x E,

¢(f)

> (@) DO Y (),
j=y(H)
oo
2.15) — DN i) F
j=r(f)

SO (0] S 7P by (012,

Now (2.10) follows from (2.13) and (2.15). By (2.10) and (1.20), we get (2.11)
immediately.

Now we deal with the case y (f) = oo. Let ko := sup{;j : {; < 0}. Thus we have
ko € I 'and Ryy1 > 0. Since y (f) = oo, we have ( f, W), = 0 for any k € I. Now,
applying Lemma 2.2 with k = kg and a = 0, we get (2.12) immediately. [J

REMARK 2.4. Since Di(¢t) =1, using (2.3) with k =1 and 1| <a < N,, we
get that, for any #; > 0, there exists c1(#1, a) > 0 such that for any f € L*(E,m)
and (t,x) € 2t;,00) x E,

(2.16) M T, f(x) — (f, Y1)mb1 (X)| < e1(t1, @)e™ D0 Fllaby, (x)1/2,
and hence there exists ¢z (f1, a) > 0 such that

(2.17) MT, f(0)] < eall fllaby (x)V2.
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2.2. Estimates on the second moment of X. We first recall the formula for the
second moment of the branching Markov process {X,:¢ > 0} for f € By(E), we
have for any (¢, x) € (0,00) X E,

t
(2.18) Py, (f. X;)? = /O TL[AIT—y f12]0) ds + T () (o),

where the function A(:) is defined in (1.8). The second moment formula above was
proved in [30], Lemma 3.3, for branching symmetric stable processes, but the argu-
ment there works for general branching nonsymmetric Markov processes. For any
feL*E,m)NL*E,m) and x € E, since (T_; f)*>(x) < eXCIT,_(f3)(x),
we have by (1.9),

[ LA 120 ds < KT (F2) () < o0,

which implies

t
(2.19) /0 T[A(Ti—s /)?|(x) ds + T (f2) (x) < (1 4+ 5T () (x) < oo,

Thus, using a routine limit argument, one can check that (2.18) also holds for
feL*(E,m)N L*E,m). Thus, for f € L>(E, m:; C) N L*(E, m; C), we have

Ps.|[(f, X)|* = Ps (R(F), X.) +Ps (3(f), X\
(2.20)

t
=/0 AT f2]0) ds + T (1 1) ().

Let Var, be the variance under P,. Then by the branching property, we have
Var, (f, X;) = (Vars ( f, X;), v). By (2.19), (2.17) and properties (i) and (ii) at the
end of Section 1.2, we get that there exists a constant ¢ = c(fg) such that for ¢ > 2¢,

Vars, (f, X¢) < ]P’SX’(f’ Xt)‘z =< (1 + €Kt)Tt(|f|2)(x)
<c(l+eX)e ™ b, () 2| £1?], € L*(E,m) N L*Y(E, m).

Recall that 7y is the constant in Assumption 1(c), and that b; and y(f) are
defined in (1.11) and (1.33), respectively.

LEMMA 2.5. Assume that f € L*>(E,m; C) N L*(E, m; C). If A > 2%y (5),
then for any (t, x) € (10fg, 00) x E, we have
2:21) sup 127D Py | (f, X,) P < by ()72,

t>10¢,

PROOF. In this proof, we always assume ¢ > 10fg. For s < 2#y, we have
Tis[AIT, f11(x) < KX To(| F19) (x) S Tr(|f*)(x). Thus, by (2.11), we have for
t > 1019,

2ty

(2.22) Ti—s[AIT f12](x) ds ST (1 1P)(x) S e M by (x)1/2,
0
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where the function A(:) is defined in (1.8). It follows from (2.11) again that
for (s, x) € (8ty, 00) x E, |Ty f(x)| < sTP e Mr5hy, (x)1/2. Thus, for (¢, x) €
(101p, 00) X E,

t

t
f T, S[AIT, f12](x) ds < 27 / eI, (b (x) ds
t

-2ty t—2tg

2to
(2.23) = 127D e Dyt /O M ST (bagy) (x) ds

. 2to
< £21() g= 20y (1)t j Ts(bagy) (x) ds.
0

We now show that for any x € E, fozto Ty (bayy)(x)ds < oo. By (1.3), we get
bary (x) < €5 0ay (x) < 'K Ty (azy) (x).

Thus, by (2.17), we have

2to 10K 2to
Ty (b (x) ds < ¢!0Ko /O Ty 11 (a2 (%) ds
(2.24)

2t
S‘/‘ 0 e_kl(.Y+210) ds bto(x)l/z S bto(x)l/z-
0
By (2.23)—(2.24), we get

t
(2.25) /t 5 Tis[AITy f1P](x) ds S 127Dl p, (x) V2,
<0

For s € [2t,t — 2tp], by (2.11), we have |T, f(x)> < s2*De=2rnsh, (x).
By (2.17), we get T,—s[A(T £)?1(x) < s27WDe=2y(nse=21=9p, (x)1/2, So, for
(t, x) € (1019, 00) x E,

t—2tg )
f2 To_s[AIT, £ 2] (x) ds

]

. t
(2.26) < 2T / e P12 (S gy (x) 12
0

5 t2r(f)672}7{),(f)tblo (x)l/z‘
Combining (2.22), (2.25) and (2.26), when A1 > 20, (7, we get
t , w
/ Ti—s[AIT; £1?](x) ds S 127D e™2Mvinlp, (x)1/2,
0
Since A1 > 2N, (), by (2.17), we have, for (¢, x) € (1019, 00) X E,

T (1 £17)(x) S e M by (0)1/2 S 27D ey (x)1/2,

Now combining the two displays above with (2.18), we arrive at (2.21). [
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Recall that #; is the constant in Assumpgon 1(c), that ¢ and | are the eigen-
functions associated with —A; of A and A, respectively, and that b, and 0]% are
defined in (1.11) and (1.41), respectively.

LEMMA 2.6. Assume that | € LZ(E,m)ﬂL“(E,m).IfM < 2Ny (f), then for
(t,x) € (101, 00) X E,

(2.27) |1 Vars, (f. X1) — 0561 (0)| S ¢ by (0)'2 + by (),

where c; is independent of x with lim;_, o, ¢; = 0 and cr% is defined in (1.41).

PROOF. First, we consider the case y(f) < oo. In this proof, we always as-
sume 7 > 10fg and f € L>(E,m) N L*(E,m). By (2.11), we have

(2.28) M2 (R (f, X,)| S 17 Dem@hyin=2012p, ()12,
We first show that o% < 00. For s <21y, by (1.13), we have
(2.29) |AIT F12], < KIT £1IF < K551 £113,

where the function A(-) is defined in (1.8). For s > 2ty, by 2.11), |Ts f(x)| <
e‘my(f)ssf(f)b,o (x)1/2. Thus, we have

00 o0
/(') e)\IS(AlTSf|2, Y1), ds < K||W1||2/0 eMS|||TSf|2”2ds

2to o0
(230) 5/ e)‘ls ds + e()»l—zmy(f))SSZ‘((f) ds
0 21y
< OQ.

Combining this with (1.41) we get that O’J% < 00. By (2.20), we have

M1 Ps, (f. X1)? — 031 (x)]
t—2to 5 2
<eM! /0 | Ti—s[AIT; 2] ) — e MO AT £17, 1), 01 (0) | ds

t
+ e [ APl ds+ [ AT ), ds 1)

M (1P () = (1 £ 12, ¥1),, 61 (0)]
=:Vi(t,x) + Vao(t, x) + Va(t, x) + Va(t, x).

First, we consider V| (t, x). By (2.16), for t — s > 2ty, there exists a € (A1, N2)
such that

| Tis [AITs f12](x) — eI AIT, £12, 1), 61 ()]
S eI AT, )2 ybry () /2.
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Therefore, by (2.11) and (2.29), we have

Vi, x) < Mt ) /

2to

t—2ty
efa(lfs)ef%?fy(f)s ds bl‘o (x)l/Z

2ty
+ et f e~ 4=9) g by, (x)'/?
2.31) 0

t :
5 e—(a—}q)ttZ‘[(f)/ e(a—2§)1y(f))s ds bt()(x)1/2 _{_e—(a—}»])tbto(x)l/Z
0

< 22 (e(/\l—zmy(f))t —i—e_(“_kl)t)bto(x)l/z.
Now we deal with V> (z, x). By (2.25), we have
(2.32) Va(t, x) S 2T D eM=2h(n)ip, (x)1/2,

For V3(t, x), by (2.30), we get [, e *(A|Ty f|*, ¥1)mds — 0, as 1 — oc.
By (1.20), we have ¢;(x) < by, (x)!/2.
Finally, we consider V4(z, x). By (2.16), we have

(2.33) Va(t, x) Se @M, (x)1/2,
Thus, by (2.31)-(2.33), we have, for (¢, x) € (10t9, o0) X E,
(2.34) |V Ps, (f, X0)? — 0 F1(0)] S erbig(0)'/2,

with lim;_, o, ¢; = 0. Now (2.27) follows immediately from (2.28) and (2.34).
Now we consider the case y (f) = oco. The proof is similar to that of the case
¥ (f) < oo, the only difference being that we now use (2.12) instead of (2.11). U

Recall that f( is the constant in Assumption 1(c), that ¢; and | are the eigen-
functions associated with —A; of A and A, respectively, and that b;, y(f) and
7(f) are defined in (1.11), (1.33) and (1.35), respectively.

LEMMA 2.7. Assume that f,h € LZ(E,m) N L4(E,m). If M =20, (p) =
2Ry, ny, then for (, x) € (1019, 00) x E,
‘t_(1+f(f)+f(h))€)"lt(COVSX((f, X, (h, Xt)) — p(f, W (x)‘
S 17 (bry ()2 + by (1),

where Covs_ is the covariance under Ps_, and p(f, h) is defined by (1.45) with
f and h in place of hy and h», respectively. In particular, we have, for (t,x) €
(1029, o0) x E,

(2.36) [e= 1T M Vars (f, X;) — p7d1 (0] S 17 (b ()2 + by (1),

(2.35)

where pj% is defined by (1.42). Moreover, we have, for (t, x) € (10ty, 0c0) X E,
(2.37) =20 M ars (f, X;) < (bry ()2 + byy (x)).



594 Y.-X. REN, R. SONG AND R. ZHANG

PROOF. In this proof we always assume ¢ > 10fg and f,h € L*(E,m) N
L*(E, m). By (2.20), we have

Covs, ((f. X1, (h, X1))

1
(2.38) = Z(Varax((f +h), X¢) — Vars ((f — h), X1))

t
= /O Ti—s[A(T YT () ds + Ti (f ) (x) = T, (f) () Ty (h) (x).
Let
Crisomy= 30 (e7(@;)" Frp)
JiA=29;
and
Chs.x)i= Y. (7% (@;0)" F, ),
JA =20
where @ (x) and Fy ; are defined in (1.17) and (1.36), respectively. Define

t—2tg

Vs(t,x) = M / To_s[A(T, £)(T,h)](x) ds.

2to

t—2tg
Ve(t, x) 1= M’ / sTIFEW ST, [AC s (s, )Ci(s, )](x) ds,

2ty

=21 :
Va(t, x) = /t t sTOTTAC 1 (s, ) Ch(s, ), Y1), ds d1 (x)

2ty

and
t—2tg
Ve(t,x) i= / ST AR 1) ds d1(2),
2to

where A is defined in (1.8), and Fyj is defined in (1.46) with f and & in place of
h1 and hj, respectively. By the definition of p( f, h) we have that

t

p(foh) =g~ IFTDre®) /0 ST AF . Y1) ds.

Thus we have

e“’/ot Tt_s[A(Tsf)(Tsh)](x)dS_tH_T(f)—H(h)p(f’ h)$1(x)

2
56M</o " >T,_S[A|Tsf||Tsh|](x)ds

t—2ty

+|Vs(t, x) — Vo(t, x)| + |Ve(t, x) — V7(t, x)| + | Va(2, x) — Vs(z, x)|

2to t
N ( /0 4 )sr<f>+f<h> ds(AF i, Y1)mepr ().

t—2to



CLTS FOR BRANCHING NONSYMMETRIC MARKOV PROCESSES 595
By (2.17), for s <t — 2ty, we have
i 1/2
TS [AITS PRI 0) S e AT, 11 Toh (b ()
It follows from (1.13) and the Cauchy—Schwarz inequality that

|AIT FNITshI, < KITs fllall Tshlla < Ke* S fllallBlla.

Thus
jr [0 < oM 1/2
< Ti—s[AIT; fIITshI](x) ds < ds (by, (x))
(2.39) 2
(bl‘o(-x))
For s > t — 21y, using arguments similar to those leading to (2.25), we get
t
(2:40) [ T AIT AT ds
t—2ty
(241) < t‘[(f)-f‘f(h)e)ull‘e—(my (h)-i—my(f))l (bto (x))l/z

= "D+ B (0 ()2,

It follows from (1.20) that

2ty t
( / n )sﬂﬂ”(’” ds(AF 3, Y1) m1 (x)
0 t—2t9

(2.42)
< TDFEp, ()12,

Next we consider |Vs5(z,x) — Vg(t,x)|. By (2.10), we have, for (s,x) €
(219, 00) X E,

| Ts f(x) — 57D 520 4 (s, x)|

< sr(f)—le—kls/tho )2,

The same is also true for 4. Thus by (2.11) and (1.20), we get that, for (s, x) €
(219, 00) x E,

|| Ts f () Tsh(x)| — sTP TR M C (5, x)Ch (5, %) |
ST f(x) —s™De ™ 12C 1 (s, )| Tyh (x) — s*We ™12 Cy (5, x) |
+ st(h)e_kls/lesf(x) — sf(f)e_kls/ch(s, x)||Ch(s, x)|

+ s’(f)e_k‘s/szsh(x) — sTMWe=21520y (s, X)||C (s, x)|
< S‘E(f)‘i"[(h)*lef)xlsbto(x)'
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Therefore, by (2.17), we have, for (¢, x) € (1079, 00) x E,
|V5(l‘, x) — Vil(t, x)|

t—21
(2.43) S [ T ORI ) (6 ds
fo
t—2t9 . h .
Sf(f)+f( )—1 ds b[o(x)l/z 5 t‘L’(f)-f—‘L’(h)th(x)l/Z.

~

2ty

For |Vs(t, x) — V7(¢, x)|, by (2.16), there exists A; < a < N», such that, for
t—s > 21,

M U=IT,_[AC (s, )Ch(s, )] (x) — (AC £ (s, )Ci (s, ), Y1), 1 (x)]
S e @) Cp (s, ) Ch(s, )| ybry () V2.
By (1.20), we get, for s > 21, |C (s, x)Cp(s, x)| S by (x). Thus, we get

t—2tg
|Vo(t, x) — Va(t, x)| 5/ sTDFTTM o =@=20E=9) gg py ()2

2ty
t—2

(2.44) < TP / @) g ()12

219

< tr(f)—’_f(h)bto(x)l/z.

Now we deal with |V7(¢, x) — Vg(¢, x)|. We can check that Cy (s, x) is real. In
fact, for each j with A =23, we also have A} =20 ;s and

eI (@ (x)) Fy o= e (@(0) F
Thus we have

Ch(s, ) =Crss 0= Y. (¢55(@;0) Fij).

JiA =20
Therefore,
Cris,0)Ch(s,x) = Y. (@) Frj(@;0) Fi;
JiA =20
—i(3;=3)s T T
+ Y (TN D () Fr(Pi(x) Fua).
y(N<jH=(f)

When j #1, since Aj # A; and 9; = N, we have J; # 3.
We claim that for any nonzero 6 € R and n > 0, we have for ¢t > 2¢,

t—2tg .
(2.45) ’ f s"e'% ds
2

0]

<.
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Then, using (1.46), we get
|Va(t,x) — Vg(t, x)|
t—2tg e~
< Z ‘/ (T =i (=305 g
y(H=jA=c ()20

x |((@, ) Frj (®10))" Fia. 1)y, 01 (x)
S tt(f)—i—r(h)bto(x)l/z'

Now we prove (2.45). Using integration by parts, for n > 1, we get

i0s 121 t—21, 1.
=219 » snelﬁvlzm 0 __ 20 0 5" 16105 g4
/ s"e'" ds| = :
2tg i
t—2to I
<t + s"hds <.
2ty

For n =0, we have

t—2ty 0
‘f é' sds‘ =
2to

Therefore, (2.45) follows immediately.
Combining (2.39), (2.40), (2.42), (2.43), (2.44) and (2.46), we get (t,x) €
(1019, 00) X E,

ei@(r—zto) _ eizeto

i

=2/161.

t
?”A;EﬂDMEfXEMMﬂdS—HHUH“mMﬁhWNM
By (2.17), we have, for (¢, x) € (1079, 00) x E,

T (1 fR1) (x) S by (x) V2.
And by (2.16) and A1 =20, (y),
HMT, £ || Th(x)| S 7 OFTWp, (x).
Now (2.35) follows immediately. [

Recall that 7y is the constant in Assumption 1(c), and that b, and y (f) are
defined in (1.11) and (1.33), respectively.

LEMMA 2.8. Assume that f € L%(E,m) N L*(E, m) with 1, < 2Ry (r) and
h e L2(E,m) N L*(E, m) with Ay = 2R, (). Then, for any (t, x) € (10ty, 00) x E,

(2.46) I Covs, (£, X1}, (1, X0)) S ((bry @)/ + by (1)).
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PROOF. In this proof, we always assume that ¢t > 1079, f € LZ(E,m) N
L*(E,m) with A1 < 2%, () and h € L*(E,m) N L*(E, m) with A1 = 2R, ).
First, we assume y (f) < 0o. By (2.38), we have

COVax((f, X:), (h, Xf))

t
= /0 Ti—s[A(Ts FY(Tsh)](x) ds + T (f 1) (x) — Te(f) () T (h) (x),

where the function A(-) is defined in (1.8). By (2.39) and (2.41), we have, for
(t,x) € (101y, 00) X E,

2to t
e*ﬂ(/ 4 )Tt_s[A|nf||Tsh|]<x>ds
0 t—2ty
g bto(x)l/z + tT(f)-i-T(I’l)e()»l/z—f?iy(f))t(bto(x))l/z g (b,o(X))l/z.
By (2.11), we have
i t—2ty
[T [AIT FIT R d

2to

=21, .
geklt‘/ 0S'L'(f)+T(h)e—()»1/2+my(f))sTvt_s(bto)(x) ds
2ty

-2
_ </z 1o GTFTR) f(h1/2=Ry 1)) ds)sz(X)l/z < bto(x)l/Z.
2

fo
Thus we have

e)»lt

t
/0 T [ACT, )T ) ds| < (B ()2

By (2.17), we get
M T (fR)(x)] < VT (1 FRI) () S bry (x)1V2.
By (2.11), for (¢, x) € (1019, o0) x E, we have
T f @) Th()| S o7 DT DNy, () < by (1)

Now (2.46) follows immediately.
Repeating the proof above by using (2.12) instead of (2.11), we get that (2.46)
also holds when y (f) =oc0. O

3. Proof of the main result. In this section, we will prove the main result of
this paper. When referring to individuals in X, we will use the classical Ulam—
Harris notation so that every individual in X has a unique label; see [12]. For each
individual u € T we shall write b, and d,, for its birth and death times, respectively,
and {z,(r) :r € [by, d,]} for its spatial trajectory. Define

Li;={ueT,b, <t <d,}, t>0.
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Thus X4, has the following decomposition:

(3.1) Xy = 3 X4,

MEEZ

where given F;, X;‘” , u € L;, are independent, and X ;‘” has the same law as X
under Ps

zu(t)*
3.1. A basic law of large numbers. Recall that H* is defined in (1.40).

LEMMA 3.1. Assume that v is an ni-dimensional vector. If A1 > 2Ny, then,
forany v e My(E), H,(k)v is a martingale under P,,. Moreover, the limit

(3.2) HY .= lim #®

t—00

exists Py-a.s. and in L*(P,).

PROOF. By the branching property, it suffices to prove the lemma for v = §;
with x € E. By (1.19), we have

Ps, H v = M T ((0)T) ) (Dr (1)) ™ 'v = (94 (x)) " w.

Recall that @4 (x) and Dy (¢) are defined in (1.17) and (1.18), respectively, and that
|v|o is defined in the paragraph above (1.20). Thus, by the Markov property, we
get that H,(k) v is a martingale under PPs_. Recall that 1y is the constant in Assump-
tion 1(c) and that b, is defined in (1.11). We claim that, for (¢, x) € (2¢y, o0) X E,

(3.3) Ps, | H®Fv|* < w2 by ()72,

from which (3.2) follows immediately.
Now we prove the claim. Let f;(x) = T (D)™ HT ®i(x). Then we have
H,(k)v = (f, X;), and by (1.19), for s < ¢, we have

To(f1)(x) = 0T (Dt — )7 D (x) = fis ().

By (2.20), we have

t
Ps, |Hv|> =Ps | (fi, X)) =/O Ty[Al £ 2] (x) ds + To (1 £12) (),

where A(-) is defined in (1.8). Since each component of Di(s)™' = Di(—s) is a
polynomial of s with degree no larger than vy, we get |Di(s) oo < (1 4 5%).
Thus, for all s > 0, we have

G4 0] S ™ ]| Di(8)] o | Pk ()| S 10loo (14 57) e bagy (x) /2.
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By (2.17), we have, for (s, x) € (2tg, 00) X E,
Ts(1£51%) () S e £ yorg (1) /2

(3.5) <12 206, — (o —29k)s 1/2
Sl (14 52%)e by (x)™/~.

Thus we have

t

(3.6) f2 T[AIAPI@) ds S by ).
0

By (3.4) and (2.24), we get

2ty

2o 2 2 2 12
(3.7) /0 LA PRI ds S 10 [ Tobay () ds S Tolebiy ()12
Thus, by (3.6)—(3.7), we have
t
(3.8) fo T [Al£512](x) ds < ol%obyy (x) V2.

Since A1 > 20y, we have sup,_,, (1 + §2%)e~M1=2M0s < o0 Thus, by (3.5), we
get

T, (1£:1%) () S 1vl3ebiy ()72,
from which (3.3) follows immediately. [
Now, we present the proof of Theorem 1.14. Recall that & (x), Di(¢) and Vg (x)

are defined in (1.17), (1.18), (1.25), y (f), ¢(f), T(f), Fy,;j and b,(x) are defined
in (1.33), (1.34), (1.35), (1.36) and (1.11), respectively.

PROOF OF THEOREM 1.14. By the branching property, it suffices to prove the
theorem for v = §, with x € E. Put

()
fFra= Y oA, f@) =) - @
J=v ()
and f,(x) = Y5) ) @; (1) D;(1)"' Fy,j. Then
¢(f)
D) = o= Y @0 D0 (YD (f, W) — Frj).
J=v(f)

By the definition of y(f) and ¢(f) in (1.33) and (1.34), we have for any j =
y ()., (),

M@ XD (1) (7T D (0)(f. W) — Frj)]
=M1 (@T, X )D; (1) (TP D (1) (f. W) — Fy ).
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Thus by (3.3) with v = t*D;(t)(f, ¥;) — Fy,j, we get that, for (t,x) €
(219, 00) x E,
_ _ 2
Ps, " DT, X )D; (1)~ (7T D) (f, W) — F)]
_ 2
S|TTO DO (f¥)) = Frjlo by ()2
Combining this with (2.14), we get that, for (¢, x) € (2ty, o0) X E,
Ps, |t T DMt (15, X, ) — Mt (£, X,)|2
(3.9) |
¢ 5
S S DD ) = Frjloobi ()2 S 17 2by (x) V2
J=v ()

By the definition of H,(j ) and (3.2), we have, as t — o0,

c(f)
MO f Xy — Y (e NITHY Fy )

=y (f)
(3.10) =
c(f)

= Y (e(H - HY)Fzj) —0,
j=r(

in Lz(]P’gx). Thus, by (3.9)-(3.10), we obtain that, as t — o0,

¢(f)
1T DM X ) — Y (eI HY Fr;) >0 in L2(Ps,).
j=r(f)

Now, to complete the proof, we only need to show that, as t — oo,
(3.11) 72 DAYy [(F, X)) - 0.
(HIf A > 29‘1),(/;), then by (2.21), we get, for (¢, x) € (2tg, 00) x E, as t — 00,
t—ZT(f)ezmy(f)t]P)ax“f’ Xt)|2 < t—zf(f)tzr(f)ez(my(f)—my(;))tbto(x)l/z 0.
Q) Ifr = 29%)/(]7-), then by (2.36), we get, as t — 00,
12D APy (X))
= 721D A2 (D1 @Ry (py=h)t =420t it py | F x| 0.
B Ifr < 2?)%)/(]7), then by (2.27), we get, as t — 00,
l—2r(f)ezs)ty(f)tpsx‘U?’ Xt>‘2 _ t—ZI(f)e(Zmy(f)—M)l‘e)qtPSX‘<f, X,)\z 0.

Combining the three cases above, we get (3.11). The proof is now complete. [J
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3.2. Proof of the main theorem. First, we recall a metric on the space of dis-
tributions on R”. For f:R" — R, define

1 F B = 1 £ lloo + sup L= SO
x#y lx =yl

For any distributions v and v, on R”, define

atwr, vy i=supl | [ ravi = [ rawliisie <1},

Then d is a metric. It follows from [11], Theorem 11.3.3, that the topology gen-
erated by this metric is equivalent to the weak convergence topology. From the
definition, we can see that if v; and v, are the distributions of two R”-valued ran-
dom variables X and Y, respectively, then

(3.12) d(vi,n) <E|X - Y| < EIX - Y|

Recall that Cg and (7]% are defined in (1.39) and (1.41), respectively.

LEMMA 3.2. If f € Cy, then aj% € (0, 00), and for any nonzero v € M, (E), it
holds under P,, that

(M1, Xo), 172 (£. X)) S (Woos GL(f W Woo)s 1> 0,
where G1(f) ~ N (0, 0]%). Moreover, Wo, and G| (f) are independent.

PROOF. The proof is similar that of [26], Theorem 1.8. We define an R2-
valued random variable U (¢) by

Ui(0) = ({1, X0), 72 ( £, X)),
By the branching property (see the argument of the beginning of the proof of [26],
Theorem 1.8), to prove this lemma, it suffices to show that for any x € E, un-
der Ps_,
d
(3.13) Ui(t) = (Woo, VW G1(f)),

where G1(f) ~ N (0, 0]%) is independent of W.
Now we show that (3.13) is valid. In the remainder of this proof, we assume
s, t > 1019 and write

Ui(s +1) = (1, Xy i), e MO (£ X ).
Recall the decomposition of X, in (3.1). Define
Y (s) = SR £, X0 and y(s) =P (Y] ()1 ).
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Given F;, Ylu’t(s) has the same law as Y;(s) := e’\ls/z(f, X,) under P(Szn(z)' Then
we have

ePROTI(f, X 1)
=MD"y (s)

MGE{

= MDY (1 () = 3 + eHMDEIPs (., X))

uel;
=:J1(s,t) + Ja(s, 1).
We first consider J>(s, t). By the Markov property, we have
Jo(s, 1) = e(?»l/Z)(s-H)(Tsf’ X,).
We claim that

(3.14) limsuplimsup Ps_J> (s, t)2 =0.

§—> 00 —>00

By (2.20), we get

(T f X,)? / To—a[A(Tuss ()] 0) dut + T(Ty 2 (0).

where the function A(-) is defined in (1.8). For the case y (f) < oo, using the
arguments leading to [26], (3.10), in the proof of [26], Theorem 1.8, we can show
that
limsup Ps, Jo(s, 1)? = limsup e TP (T, f, X;)?
1—00 =00

(3.15)
S S2‘L’(f)e()\_] —2.)1y(_f))sbt0 (X) 1/2.

Here we only give a sketch of proving (3.15). Since u + s > s > 1019, by (2.11),
we get

(3.16) Tuss FOO S ()X D20 9py, (1),
Thus, for ¢ > 101y, using (2.17), we have

t—2tg )
fo Ty —u[ ATy )2 (6)

" t—219 N
< =200 / (u + S)2r(f)e—2§hy(f)ue—)nl(t—u) du b, (x)1/2
0

< e*)»ltefzmy(f)sbto (x)l/z

~

t—2ty ) 9 ) t—2tg
x </ w2t () g(h1 =29 (p))u du~+s T(f)f
0

e()»] =20y, (p))u dl/t)
0

5 Szr(f)ei)hlleizmy(f)sbto (x)1/2.
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And by (3.16) and (2.24), we have
t
| T AT )00 du
t

-2
G.17) ! 2 20 t+s 1/2
St +5) 7D e P E9p, ()12,

By (2.11), we get that | T, f (x)|> < s2t(f)e*2m?<f>sb,0(x). Thus we have
(3.18) T(T )2 (x) S 577 Pe™ 112 07hy, (x) /2,
Consequently, we have

]P)(SX (Tsfv Xl‘>2 5 ([ + S)2T(f)e*2my(f)(tJrS)th(x)1/2
3.19
( ) +Szr(f)e—klte—Zﬂiy(f)sbto(x)1/2’

which implies (3.15). Similarly, for the case y (f) = oo, we have

(3.20) Ps ATy f. X1)? S by ()2 4 7M1 by (0) /2.

Thus

(3.21)  limsupPs, Jo(s, 1)* = limsup e Ps (T, £, X,)? < e*15by, (x) /2.
r— 00 =00

Combining (3.15) and (3.21), we get (3.14).
Next we consider Jj (s, t). We define an R2-valued random variable Ua (s, t) by
Ua(s, 1) := (" ($1, X,), Ji(s, 1)
Let Vi(x) := Vars_ Y (s). We claim that, for any x € E, under Ps_,

(3.22) Us(s. 1) > (Woo, VWeoG1(s)) st — oo,

where G1(s) ~ N (O, aJ%(s)) is independent of W, and a%(s) = (V, ¢1). The
proof of (3.22) is similar to that of [26], (3.11). We omit the details here. Thus
we get that, for any x € E, under Ps_, as t — oo,

d
Us(s, 1) := ("1, Xpp), Ji (5. 1) > (Wos, vV WooG1 (s)).
By (2.27), we have limy_, oo (Vs, ¥1)m = 07. Let G1(f) be a N'(0,07) random
variable independent of Ws,. Then ‘ ‘
Jim. d(Gi(s),Gi(f)) =0.

Let D(s + t) and 75(s,t) be the distributions of U;(s + t) and Uj(s, 1), re-
spectively, and let D(s) and D be the distributions of (W, v/ WeoG1(s)) and
Weo, v Woo G1(f)), respectively. Then, using (3.12), we have

limsupd (D(s +t), D)

—00

< limsup[d(D(s 4 1), D(s, 1)) + d(D(s, 1), D(s)) 4+ d(D(s), D)]

t—00

<limsup(Ps, J2(s, 1)%)"* + 0+ d(D(s), D).

t—00



CLTS FOR BRANCHING NONSYMMETRIC MARKOV PROCESSES 605
Using this and the definition of limsup,_, ., we get that
limsupd(D(z), D) = limsupd(D(s + 1), D)
11— 00 1—00

<limsup(Ps, J2(s, 1)%)"* + d(D(s), D).

11— 00

Letting s — oo, we get limsup,_, ., d(D(¢), D) = 0. The proof is now complete.
0

Recall that @ (x), Di(¢) and t(f) are defined in (1.17), (1.18) and (1.35), re-
spectively.

LEMMA 3.3. Assume f(x) = Zj:A1:2§,tj(cpj(x))ij € Cc, where vj € C"i.
Define

Sif () = =AU X,) T, f (), (1,%) € (0,00) x E.
Then for any ¢ > 0, § > 0 and x € E, we have

(3.23) lim Ps, (1S, £ (0% S0 £ ()] > ce) = 0.

PROOF. In this proof, we always assume ¢ > 10¢y. For each j, define
Sja () 1= 1~ UHZUN2MI2 (T ) — o4 (@ (1)) D, (1))

Thus S; f(x) = 21':11:291_; S;1(x)v;. Using the fact that for every n > 1,
2

n
2
(3.24) s wpsn <000 10 s s

=1

n
D

=1

we see that, to prove (3.23), it suffices to show that, as t — oo,

F(t,x,v;) =P (|, [Sj. (x)vj| > ce®) — 0.

Choose an integer ng > 2ty. We write t = [;ng + &, where [, € N and 0 < &; < ny.
By (1.19), we get that Tu(cpJT)(x) =e *"®;(x)T D;(t). Since A; = 2%}, for any
(t,x) € (0,00) x E, we have

Sj,t+n0 (X)

1/24+7(f)
:( 1 ) S 1(+n0)/2
t+ng
T —AjnopT .
X ((CDJ ) Xt+}’l0) - (e J CDJ ) X[)D] (nO))

1 1/247(f)
(3.25) + ( ) e im0/
t+ng
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x ((®F, X;) — e % (®;(x))" D; (1)) D (o)

1 1/2+7(f)
= R;(t
<t+n0> J()

. ;o\ 1/2HT)
—13jn0 S D ,
ny (—Hno) 540D (n0)
where
Rj(t) := MDD (9T X, 1) — (e 0T X,)Dj(no)).
Put

AL, x,v;) = {|S;(x)D;j(no)v;| > ce®},

As(t,x,v;) == {|S;,(x)D;j(no)v;| < ce®, 8(rtno) )

i4ng (V| > ce
and
A(t,x,vj) = A1(t,x,vj) UAz(t, x, v)).
Then, for any (¢, x) € (0, 00) x E, we have
F(t +no,x,vj)
<Ps. (]S, % A, x,v))) + P (IS,
=: Mi(t,x) + M>(¢, x).

Since A(t,x,vj) € F; and Ps, (R;(¢)|F;) = 0 for any (7, x) € (0,00) x E, we
have by (3.25) that

% Ayt x, v;))

1427 (f) )
Mi(t,x) = P s AL, X, v
0= () 5 1,7, v)))
14+27(f)
<t+n0> F(t,x, Dj(no)v;)
and
1+2r(f)
M0 <2 — - 5 (IR Ov; % Axte. x,v))
PN E2110)) )
2 Ps, (|S; s Ao (t, x, v;)).
+ <f—|—l’l()> 8/\(| ) 2(t, x U]))
Thus, for any (¢, x) € (0, 00) x E, we have
PN R21105)
F(t+n0,x,vj)§<t+n0) F(t,x, Dj(no)v;)

(3.26)

1 1427(f)
F t, , Uj F ta s Uj))s
+<t+n0> (Fi(t,x,v)) + Fa(t, x,v)))
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where

Fi(t, x,vj) :=2Ps (|R;(t)v;|*; A1 (1, x,vj) U As(t, x, v})),

Fa(t, x,v)) := 2" T27OP;s (|S;,()D;(no)v;| % Ax(t, x, v))).

Iterating (3.26), we get for ¢ large enough,

F(t +no,x,v;)

A

| N2 b
<t—|—n0> > (Fi(mno + &, x, Dj((ly — m)ng)v;))

m=5

1 1+2t(f) h
F Jx,Di(, — .
+<f+n0> mzzs( 2mno -+ &r, x, Dj((r = mymo)vy))

Sn0 + &, \ 127
+ ( no t) F(Sno +8t,x, Dj((ll‘ —4)]’10)1}])

t+ng
=:Ly(t,x)+ La(t, x)
Sno + & 14+27(f)
(557

First, we consider Li(t, x). By the definition of t(f) in (1.35), we have for
s >0,

F(5n0 + &, x, Dj((y —4)no)vj).

(3.27) IDj(s)vjl, S|Dj(s)vjy ST+s57.
Thus, we have for 0 <s <t and 1 > 2¢,
(3.28) |R;()D;(t —s)v;|* <|R;j)3| Dt —s)vj |3 S 27D|R;(5) 5.

It follows that for any ¢ € (0, 1),

Li(t,x) <

Z Ps, (|R;(mno + 8,)|§)

r+no 5<m<el;

2
t+ng Le

> Po(|Rj0mno + &) 531 Awmngter.x. D —mmoyv))

<m=ly

=:Ly11(t,x) + L12(t, x).

By the definition of R (s), we have

nj . .
(3.29) IR;(9)]5= 10 S b1, Xng) — (g (017), X))
=1
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Note that
1617, Xsng) = (g (0), X5)?
= [(R(@1"): X-tno) = (Tuy (B(1”)). X5
+1(3(817), Xstno) = [Ty (3(8)). X

Thus we have

P5x|(¢l(j)7XS+ﬂo> ( no(¢(J))7 >|

= T (Vars ((¢;”), X)) () + T (Vars (3(¢7), X)) ().
Hence, by (2.17), we get, for s > 5ng > 2t,

Ps,|R; ()5

nj .
(330) = MO S TR |16y Xieno) = (Tao(6)”). Xl
=1
Sy,
Therefore, we have, for (¢, x) € (5ng, 00) x E,
(3.31) Ly (1, x) S by ()2
We claim that, for any x € E:
(1)
. . 2 2
(3.32) A/Ih_r)noohgsolépﬂ”gxﬂRj(s) 5 Rj(s)5 > M) =0,

(i1) and, as t — oo,

sup Ps (Ai(s,x, Dj(t —s)v;) UAz(s,x, Dj(t —s)vj)) — 0.

te<s<t
Using these two claims we get that, as t — oo,
Lyp(t,x)
2
<

2 2
= e 5 |Rj(mno + )5 > M)

> (Ps,(|Rj(mno + &)

el;<m<l;

+ MPs (A(mno + &, x, Dj((; — m)no)v;)))

%R ()3 > M)

S sup P, (| R;(5);
s>te

+M sup Ps (A(s,x, Dj(t —s)vj))

te<s<t

%; Rj(s){g > M)

— limsupPs_(|R;(s)
§—> 00



CLTS FOR BRANCHING NONSYMMETRIC MARKOV PROCESSES 609

Letting M — o0, we get
(3.33) lim Lia(t,x)=0.
—00

Now we prove the two claims.
(i)Forl=1,2,...,nj, define

Rj11(s) 1= e CTO 20 (] ), Xy yng) — (g (7). X
and
Rj12(5) 1= eSO (), Xyiony) — (Tug (3(8])). Xs).

Using (3.24) and (3.29), we see that, to prove (3.32), we only need to show that,
fork=1,2,

(3.34) Jim_limsupPs, (| R;. 2> M) =0.
M—o0 s—o00

Repeating the proof of (3.22) with s = ng, we see that (3.22) is valid for f €
L*(E,m)NL*(E,m). Thus, for/ =1,2,...,nj,as s — 00,

d
Rj11(s) = VWG,

where G ~ N (0, et (Var(g,(%i(gblj), Xny)» ¥1)m- And by (2.16), we get, as s —
o0,

Ps, (|R;1.1(5)[7) = 1 OHOT (Vars (R(¢] ), X)) ()

> O (ary (), X, Y1) b1 ().

Let hyy(r) =7 on [0,M — 1], hys(r) =0 on [M, oo], and let 4y be linear on
[M — 1, M]. By (3.35), we have that for any x € E,

(3.35)

2>M)

limsupPs (|R;;,
S—> 00

<limsupPs, (|R;1,1(5)|*) — Py, (hpr (| R;11(5)[))

11— 00
= M0(Vars (R(¢7), Xng ) V1,01 (X) — Ps, (har (Woo G2)).
By the monotone convergence theorem, we have that for any x € E,

lim Ps_ (hy(WooG?)) = Ps, (WeoG?)
M— o0

= Ps, (Woo)Ps, (G?) = €10(Vars (R(¢7), Xno), ¥1),, &1(x),
which implies

lim hmsupIF’5 (|R;.. 2>M)=O,

M— 00 5—>
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which says (3.34) holds for kK = 1. Using similar arguments, we get (3.34) holds
for k = 2. '

(ii) Recall that v; is defined below (1.16). Since t(q&lj) <vj, by (2.37), we get
for 107 <'s,

(3.36) Ps, |} (x)|3 S 52520 < 20

By (3.27), we get, for 1079 <s <,

(3.37) Ps,|S; s ()D;(t + 1 — s)v; | S 525 (141270,

By Chebyshev’s inequality and (3.37), we have that, for any x € E, as t — 00

sup Ps, (Ai(s,x, Dj(t —s)))

te<s<t

< sup c_ze_%s]?ax}sj,s(x)Dj(f +1- S)Uj|2

te<s<t

< e—28stt2vj(1 + t2‘[(f)) — 0.
Note that, under Ps_, for any ¢ > 0,

Aa(s,x, Dj(t —s)vj)
(3.38)
C{|Rj()Dj(t —s)vj| > C€5s(88n0 — l)s(ZT(f)'H)/z}.
By (3.28) and (3.30), we get
Ps, [Rj()D;(t = )v;|* S 17" Dby (1) /2.

Similarly, by Chebyshev’s inequality, we have that, for any x € E, as t — o0,

sup Ps, Aa(s,x, Dj(t —s)vj)

te<s<t

< sup ¢ (e — 1)_26_2835_(1+27(f))IP’5X\Rj (s)Dj(t — s)vj\2
te<s<t

< e~ 2 (1)~ (+2T () 21(f) _,

Thus we have finished proving the two claims. Therefore, by (3.31) and (3.33), we
get

limsup L1(z, x) < ebyy (x) /2

—00

Letting ¢ — 0, we get

lim Lq(¢t,x)=0.
11— 00
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Now we consider Ly(¢, x). By (3.38), we have that for any x € E,
F(s,x,Dj(t —s)vj)
2
= 2s(l+2’(f))IP’5x(\Sj,s(x)Dj(t +no—s)vj|7 Aa(s, x, Dj(t — s)vj))
< 2s(1+2T(-f))ce‘3SIP’5X (|Sjs(x)D;(t +no — s)vj|
X (1R (5)D 1 —s)v; 1> cebs (@0 1ys@r 4012
<2710 — 1)e 5P, (| (x) D (t +no — $)v||R; () D (t — 5)v;]%)
< 788 M1 (s+n0) 4T (f)

X P, (|85 (x) |,(Vars (7 D (1 — 5)vj, Xpy)), X))

S e—BstT(f) Pax ’Sj,s(-x) ‘g

« \/627»15]P3X ((Vars. ((QDJTDJ'(I —5)v;j, X)) XS>2)'

By (2.37) and (1.20), we get for s <,
Vars, (97Dt — )vj. Xno)) < Ps, [(®F Dt — )vj, Xo)[*
ST DPs (b7, X
Thus by (3.36) and (2.21), we have for Sng <s <1,

Fr(s,x, Dj(t —s)vj) S e_‘SSIZT(f)s”f\/eZMSIP’gx ((bl/2 Xs)z)

to

5 6_5sl‘21(f)svj.

Thus we get, as t — oo,

I
Ze—S(mno-i—e,)(mnO_|_8t)(1+2v/')/2

m=5

Lo(t,x) <
2( )Nt+n0

I
Z e—ﬁmno((m + l)no)(1+2v,-)/2 — 0

m=>5

1
<
T t+ng

To complete the proof, we only need to show that for any x € E,

Sng 4 &\ W)
( t+ng )
By (3.27) and (3.36), we get that for any x € E,

(5no 4 ) TP F (Sng + &1, x, Dj (L — H)no)v;)

(3.39)  lim F(5n0 4 &, x, Dj((; — 4)no)v;) = 0.

—> 00

< (6n0)'" 7 sup Py, [S;.s () D (U — Hno)v; | < 27 (6ng)>,

Snp<s<6ng
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which implies (3.39).
The proof is now complete. [

Recall that Cy, C. and t(f) are defined in (1.39), (1.38) and (1.35), respectively.

LEMMA 3.4.  Assume that f € Cy and h € C.. Define for any t > 0,
Yi(t) =P f, Xo) = T f (),
Ya(r) := 1~ WHTWD M2 ((p X)) — Tih(x))
and Y; :=Y1(t) + Ya(t). Then for any ¢ > 0,8 > 0 and x € E, we have

lim Ps_(|Y,|%; Y| > ce®’) = 0.
=00

PROOF. By (3.24) and Lemma 3.3, it suffices to show that

(3.40) lim P, ([V1(0% [V1(0)] > ce®) =0,

If y(f) < oo, by (2.11), we get, as t — 00,
eklt/2|th(x)| < tr(f)e()\l/zfmy(f))tbm(x)1/2 0.
If y(f) = o0, by (2.12), we get, as t — 00,
HPTf ()] £ 12y (1)1 = 0.
Thus by Lemma 3.2, Y1 (¢) —d> VWsoG1(f). By Lemma 2.6, we have
Tlim P, ([V1(0[") = o761 (x).
Thus for any M > 0, we have
Ps, (|Y1(1)
<Ps. (V10| [Y1(0)| > M) + M?Ps_(|Y1(1)] > ce)
=L, x, M)+ L(t,x,M).

2 Y1(1)] > ce)

2

’

Let hpyy(r) =r on [0, M — 1], hps(r) =0 on [M, o], and let hy; be linear on
[M — 1, M]. Then

limsup 1y (r, x, M) < limsup P, (|Y1(1)|*) — P, (n (Y1 (0)]))
I—00

t—00

= 0261(x) = Ps, (har (|G1 (v Wec])?).

By Chebyshev’s inequality, we have, as t — oo,

Lt x, M) < M*c 2 2'Ps_(|Y1(1)|*) — 0.
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Thus we have
2

El

Y1()| > ce”) < 031 (x) — s, (hu (|G1(f)yv/Woo|))-

limsupPs_(|Y1(r)
t—00
Letting M — oo, by the monotone convergence theorem, we have that for any
xek,

Jim s (h(1G1(F)VWee)) = P, (G1(f)* Woo) = 71 (x),

which implies (3.40). The proof is now complete. [

Recall that C, C., T(f), p% and O'sz are defined in (1.39), (1.38), (1.35), (1.42)
and (1.41), respectively.
LEMMA 3.5. Assume that f € Cs and h € C.. Then
(€M (1, X,), ¢~ IH2ED2MI2 (0 x ) MI2(f X))

5 (Woo: v WesGa(h). v WesG1 ().

where Go(h) ~ N (O, pfl) and G1(f) ~ N0, o]%). Moreover, Woo, G2(h) and
G1(f) are independent.

PROOF. In this proof, we always assume ¢ > 10typ, f € C; and h € C.. We
define an R3-valued random variable by

Ui (1) = (M(g1, Xi), 1~ IFHDRMI2 0, X), M2 (f X))
For n > 2, we define
Uy (nt) = (" (@1, Xe), (nt)“TFFI2MM200 X,y 22 f, X)),

Now we define another R3-valued random variable Us(n, 1) by

M2y Xpg) — (Tn—1yth, X))
(n — 1)r)(A+2c) /2 ’

Us(n, 1) i= (e“«bl, X,),

M. Xoa) = (Tia 1y f X))
We claim that
BAD)  Us(n, 1) S (Wao, VWeoGa(h), VWG 1(f))  ast — 0.

Denote the characteristic function of Uz (n, t) under IP,, by «2(01, 62, 03, n, ). De-
fine, for s, ¢t > 0,

Y{‘”(s) — e““/z(f Xu,t> qu,z(s) ,:S_(1+2r(h))/2ex1s/2<h Xu,t)
. 9 K ) . 9 K .
We also define

Yi(s) i= "2 (f, Xy), Yo(s) i= s~ T D208/ 2y x



614 Y.-X. REN, R. SONG AND R. ZHANG

and
Y(62,03) :=0,Y2(s) + 03Y1(s).

Given F;, for k=1, 2, Y,f ‘"(s) has the same distribution as Yi(s) under Ps
Thus, fork =1, 2,

zu(t)”

e (9) = Ps, (V" ()1 Fr) = Psy ) Yi(s).
Thus, by (3.1), we have

Ur(n,1) = (e“(«zsl, Xp), M2 (Y ((n = D) — y5 ! ((n — D)),

ueLl;
M3 (VI (= D) = Y ((n = 1>t>))-
ueLl;

Let h(s, x,0,62,03) =Ps (expl{if (Ys(62,63) —Ps Y;(62,63))}). Thus we get
k2(01,02,03,n,t)

=P, (exp{i@le)‘”((m, Xn} l_[ h((n —1)t, zu(0), &2 6, 93)).

MGL[

Let ty, my — 00, as k — 0o. Now we consider

mg
S = M2y (Yej = Vi)

j=1
where Y; ; has the same law as Y(,_1),(62,63) under Péakj and y; ; =
PSak ; Y(n—1)4 (62, 03) with a; ; € E. Further, for each positive integer k, Y; ;, j =
1,2, ... are independent. Denote V/(x) := Vars, Y(,—1):(62, 63). Suppose the fol-
lowing Lindeberg conditions hold:

(1) as k — oo,

mg mg

A 2_ 2,
SN Bk — yr)T =€ Viar, ) > o
= i=1

(i1) for every ¢ > 0,

my

A 2 A2

S B (| Yk, — yi 1 Yk, — Yi,jl > ce ™M1/
j=1

my
= etk Z gun—nyy (ax,j,02,03) — 0, k — oo,
j=1
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where
g5 (x,0,03) = Py, (| (62, 603) — Py, Y, (62, 63)|*
X 1115, (62,65) B3, ¥4 (6,09 > ceH15/C0=Dy )
Then Si AN (0, 0'2), which implies
292

my
(3.42) 1_[ h((n — Dy, ax, j, PRLIC 03) —> e~ (/D0
j=1

as k — oo.

By the definition of Y, we get
V' (x) 1= Vars, Y(,—1)/(62, 63)
= 603 Vars, Y2((n — 1)t) + 63 Vars, Y1 ((n — 1)1)
+20,63((n — ])t)_(1+2f(h))/26k1(n—l)t
x Covs, ((fs Xn—1)), (s X (n—1)1))-
Thus, by (2.27), (2.36) and (2.46), we get that
Vi () = (0307 +030F) 1 ()|
S (conmy + 17 7O (b ()2 4 by, (1)),
where ¢; — 0 as t — oo. By (2.17), we get, as t — 00,
M TV (x) — (030) + 0307)1 ()] (x)
(e +171+ t_(1+2r(h))/2)e’\‘t7}(\/a+ byy) (x) — 0,
which implies

lim 11" Y V' (z(0) = lim €M (637 + 6307) (1, X1)

—>00
ME[:[
= G20+ 020 Wi,

in probability.
By Lemma 3.4, we get, as s — 00, gs(x, 63,03) — 0. Since

8-y (x,02,63) < V/'(x) Sbiy(0)'/? + by (x) € L*(E, m),
by the dominated convergence theorem, we have that for any x € E,
tl_l)IgO”g(n—l)z(x» 62,63)], =0.
By Lemma 2.17, we have that, for any x € E, as t — 00,

M Ps (g—1)e 1 02, 03), X1) S [ g1y G 02, 03) | ybry ()2 — 0,
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which implies

'Y g1y (2u(0), 02, 63) = "' (g1 (x, 62,63), X;) — O,

u EE[

in probability. Thus, for any sequence sy — 00, there exists a subsequence s; such
that, if we let 1y = sp, my = | Xy | and {ax j, j = 1,....,m} = {zu (), u € Ly},
then the Lindeberg conditions hold Ps_-a.s. Therefore, by (3.42), we have

. 1
tlggo 11 h((n — Dt, 2, (1), *1/%, 0y, 63) =exp{ 2(0 Pir +930f) }
uely

in probability. Hence by the dominated convergence theorem, we get

lim «2(61, 62,03, n,1)
— o0

) 1
=P;, (eXP{191 Woo}exp{—i(@zzple +63 Uf)WOOD

which implies our claim (3.41).
By (3.41) and the fact that e*" (¢1, X,,;) — ! (¢1, X;) — 0, in probability, as
t — 00, we get that

Us(n,t)

sant M2 ((hy X)) — (T—1ych, Xi))
= e <¢15 Xﬂt>7 5
(nt)(1+2t(h)/2

e)‘l”’/z((f, Xnt) — (Ttn—1ye [ X’>))

4 n — 1\ (42t ()/2

4 (W () VWG VWG (1) ).
Using (3.19) with s = (n — 1)¢, we get that, if y (f) < oo,

Ps (Ta-1y f. X0)* S ()™ e My ()12
+((n — l)t)Zr(f)e—klte—Zfﬁy(/-)(n—l)tth(x)l/Z'
If y (f) = oo, using (3.20) with s = (n — 1)¢, we get
Ps, (Tn—1ye f X1)> by ()2 4 e by ()12,

Therefore, we have

(3.43) lim e*"Ps (Tu—1y, f, X;)* =0,

t—00
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By (3.17), when A1 = 20,3, we get
t—2ty 5
/0 T [ ATt o1y )?] () du

< et fot_% (u+ (n— D) ™ du by (x)/?
< n2r(h)t1+2t(h)efklntbt0 )2,
By (3.44), (3.17) and (3.18), when Ay =20, (1), we have
Py (Ton_1):h, X,)? gn21(h)t1+21(f)e—k1ntbt0(x)1/2 n (nt)Zr(h)e—Alntbto(x)1/2‘

Therefore, we have

(3.44) lim_limsup(ue) =2V AMPy (T, _pyih, X1)? = 0.

t—00

Let D(nt) and D" () be the distributions of Uj(nt) and Us(n, t), respectively, and
let D" and D be those of

0 1\ (4202
(Woo,( - ) ¢WooGz<h),¢WooG1(f))

and (Weo, v Woo G2(h), v W G1(f)), respectively. Then, using (3.12), we have
limsupd(D(nt), D)
—00

< limsup[d(D(nt), D"(1)) 4+ d(D" (t), D") + d(D", D)]

t—>00

. _ 1/2
<limsup((nt) 1T AP (T ik, X)) + &P (T £, X0)2) Y

r—00
+0+d(D", D).
Using the definition of limsup,_, ., (3.43) and (3.44), we get that
limsupd(D(t), D) = limsupd(D(nt), D)
t—00 t—00
<limsup(nr)~IF2EWDnt2itps (T 1)k, X,)? +d (D", D).

t—00

Letting n — oo, we get limsup,_, ., d(D(t), D) = 0. The proof is now complete.
O

PROOF OF COROLLARY 1.18. Define
Yl(S) = S—(1+2T(h1))/26)\ls/2<h1, Xs), YZ(S) = S—(1+2‘E(l’l2))/2€)\ls/2(hz’ Xs)
and

Ys(02,03) :=02Y1(s) +03Y2(s).
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Thus we have

Vars, Y(u—1y: (62, 63) = 63 Vars Y ((n — 1)) 4 63 Vars Y2((n — 1)t)

+26,03Covs, (Yi((n — 1)1), Y2((n — 1)1)).
By (2.35) and (2.36), we get
|Vars, Y -1y (62, 63) — (6301, + 63 oi, + 262630 (h1, h2))h1 ()]
St by (02 + by (x)).

Using arguments similar to those leading to Lemma 3.5, we get

tl_ingPBx exp{i@le“t(dn, Xi) +i6Y1(1) +i63Y2 (1)}

=P, exp{i91 Woo — %(egpﬁl +63 03, + 202030 (h1, hz))Woo}.

The proof of Corollary 1.18 is now complete. []

Recall that

g)= > ) vele
ki >2N,

and

Lgx)= Y o) Di(s)  w.
ki >2N,

We can show that I, g is real. In fact, for k£ with A; > 29, we have A| > 29 and

S D ()T D () o = €0 g (x)T Di(s) ™' = 75 g (x)T Dy (s)~ g,
which implies that I;g(x) is real. Define

Hy = Z Ho(g)vk.
ki >2N,

By Lemma 3.1, we have, as s — oo,
(Iyg, Xs) > Ho, Ps,-a.s. and in LZ(PSX).
Since Ps_(I;g, X5) = g(x), we get

Ps, (Heo) = g(x).
By (2.20), we have

N

(3.45) Ps, (Isg, X)* = fo Tu[AlLg)*](x) du + Ty [(L;)*] (x).
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By (1.20) and the fact that | Dk ()" Voo = | Dk (—5) oo < (14 s%), we get that

g S Y (14 52%)bay (x).
kid>2N
Thus by (2.17), we have, for s > 219,

TlLglP(x) S D (1 +5™%) Ty (bagy) (x)
kih>2N

< Z (1+s2”’<)e(2mk*“)sb,0(x)1/2.
k20 <A

(3.46)

By (2.24), we get

/Ooo T.[AlLg 1] (x) du

2t
< > e (1 4 u") T,y (bagy) (x) du
keag =29, O
A >20g

+ (1 + u2vk) (quk )\.l)u du b (.X)l/2>
2to
by (0)'? € L2(E,m) N LY(E, m).
Therefore, by (3.45) and (3.46), we get

Ps, (Hoo)® = lim Ps,|(Lg, Xo)|*

(3.47)
—/ W[AlLg*](x)du € L*(E,m) N L*(E, m).

Hence we have

Vars, Hoo = Ps_ (Hoo)? — (Ps, Hoo)?
(3.48)

—/ (AlLug?) (0 du — ().

PROOF OF THEOREM 1.16. Recall that

E@=( 3 e‘“’Hé’s)Dko)vk)
k:2A <A
and
Yi(0) =M (f X,),  Ya(r) =1 UFEEO2M02 0 x .

Consider an R*-valued random variable Uy (¢) defined by
Ua(t) == (M (1, X)), €2 ((g, Xi) — E4(8)), Ya (1), Y1(1)).
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To get the conclusion of Theorem 1.16, it suffices to show that, under Ps_,

Us(t) S (Woor vVWooG3(2), VWao Ga(h), V WeoG1 (£)),

where W0, G3(g), G2(h) and G(f) are independent. Denote the characteristic
function of Uy(¢) under Ps_ by «3(61, 62, 83, 04, t). Then, we only need to prove

lim «3(01, 62,03, 04,1)
1—00

, 1
=P, (exp{191 Wool exp{—5 (0387 + 039 + 070 F) Woo })

Note that, by Lemma 3.1, we get

Ei(9) = lim (Lg. Xi+s) = ) lim (Ig, X{').

MEE{

Since X}’ has the same law as X under Ps_ ., HY' :=lims_ o (Isg, X}'") exists
and has the same law as H,, under }P’(;Zu(,). Thus we get E1(g) =2 _ycr, HY%! Let
h(x,0) =Ps_exp{i6 (Hsx — g(x))}. Therefore, we obtain that

k3(01,02,03,04,1)
=P;, (exp{ieleh’wl, Xi) +i03Y2(0) +i0aY1 (0} ] h(zu(@), —ezewz)).

lleﬁt

Let V(x) = Vars, Hy. We claim that:

(1) ast — oo,

MNPy |HY — g(za )] = €M1V, X))
349) C
| — (V. ¥1)mWx  in probability;

(i1) for any ¢ > 0, as t — o0,

MY Py (|HY — g(zu())

Me[:[
= €A't<k(', 1, X:)—0 in probability,
where k(x,1) :=Ps (|Hoo — g(0)|2, [Hoo — g(x)| > ge111/2),

2| HY — g(zu ()] > ee 1172

(3.50)

Then using arguments similar to those in the proof Lemma 3.5, we have

(3.51) [ 7(zu(®), —62e*172") — exp{—%@%(V, U1)m Woo},

MEAC[

in probability.
Now we prove the claims:
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(i) By (3.47), we have V(x) € L2(E, m) N L*(E, m). By Remark 1.15, (3.49)
follows immediately.

(i) Note that k(x,t) { Oast 1 oo and k(x,t) <V(x) € L2(E,m) for any x €
E.Thus lim;_, « || k(-, #)]|2 = 0. So by (2.17), we have that for any x € E,

M k(- 1), Xi) S kG, )] ybry ()2 =0 ast— oo,
which implies (3.50).
By (3.49), (3.51) and the dominated convergence theorem, we get that as t —

w?

k3(01,62,03,04,1)

P, (exp{(z‘91 - % 2V, w1>m)e*”<¢>1, X)) +i6:Y2() + i04Y1(t)})‘

<Ps,

[T A(zu(). 61727 - exp{—%eﬁv, P1)nd™ (g1, xt>H

MEZ:[

— 0.
By Lemma 3.5, we get

lim «k3(61, 602,03, 04,1)
t—00
1 . _l 2 At
= lim Ps, | expq(i6: 05V, ¥1)m Je™ (o1, Xi)
t—00 2
+i93Y1(t)+i94Y2(t)})

1
=P, (exp{i91 Woo) exp{—E(QZZ(V, V1)m + 030 +0507) Woo })

By (3.48), we get

<V,«m>m=/0 A Lg 2 ) du — (g% ). .

The proof is now complete. [J
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