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Abstract

In this paper, we establish a central limit theorem for a large class of general supercritical superprocesses
with spatially dependent branching mechanisms satisfying a second moment condition. This central limit
theorem generalizes and unifies all the central limit theorems obtained recently in Miłoś (2012) and
Ren et al. (2014) for supercritical super Ornstein–Uhlenbeck processes. The advantage of this central
limit theorem is that it allows us to characterize the limit Gaussian field. In the case of supercritical
super Ornstein–Uhlenbeck processes with non-spatially dependent branching mechanisms, our central limit
theorem reveals more independent structures of the limit Gaussian field.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Central limit theorems for supercritical branching processes were initiated by [13,14]. In
these two papers, Kesten and Stigum established central limit theorems for supercritical mul-
titype Galton–Watson processes by using the Jordan canonical form of the expectation matrix
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M . Then in [4–6], Athreya proved central limit theorems for supercritical multi-type continuous
time branching processes, using the Jordan canonical form and the eigenvectors of the matrix
Mt , the mean matrix at time t . Asmussen and Keiding [3] used martingale central limit theorems
to prove central limit theorems for supercritical multitype branching processes. In [2], Asmussen
and Hering established spatial central limit theorems for general supercritical branching Markov
processes under a certain condition. However, the condition in [2] is not easy to check and es-
sentially the only examples given in [2] of branching Markov processes satisfying this condition
are branching diffusions in bounded smooth domains. In [1], Adamczak and Miłoś proved some
central limit theorems for supercritical branching Ornstein–Uhlenbeck processes with binary
branching mechanism. We note that branching Ornstein–Uhlenbeck processes do not satisfy
the condition in [2]. In [18], Miłoś proved some central limit theorems for supercritical super
Ornstein–Uhlenbeck processes with branching mechanisms satisfying a fourth moment condi-
tion. In [19], we established central limit theorems for supercritical super Ornstein–Uhlenbeck
processes with (non-spatially dependent) branching mechanisms satisfying only a second mo-
ment condition. More importantly, the central limit theorems in [19] are more satisfactory since
our limit normal random variables are non-degenerate. In the recent paper [20], we obtained
central limit theorems for a large class of general supercritical branching Markov processes with
spatially dependent branching mechanisms satisfying only a second moment condition. The main
results of [20] are the central limit theorems contained in [20, Theorems 1.8, 1.9, 1.10, 1.12].
[20, Theorem 1.8] is the branching Markov process analog of the convergence of the first and
fourth components in Theorem 1.4. [20, Theorem 1.9] is the branching Markov process analog
of Remark 1.9, while [20, Theorems 1.10, 1.12] are the branching Markov process analogs of the
results in Remark 1.10.

It is a natural next step to try to establish counterparts of the central limit theorems of [20] for
general supercritical superprocesses with spatially dependent branching mechanisms satisfying
only a second moment condition. This is far from trivial. For a branching Markov process {Z t :

t ≥ 0}, to consider the proper scaling limit of ⟨ f, Z t ⟩ as t → ∞, where f is a test function, it is
equivalent to consider the scaling limit of ⟨ f, Z t+s⟩ as s → ∞ for any t > 0. Note that Z t+s =

u∈Lt
Zu,t

s , where Lt is the set of particles which are alive at time t , and Zu,t
s is the branching

Markov process starting from the particle u ∈ Lt . So, conditioned on Z t , Z t+s is the sum of a
finite number of independent terms, and then basically we only need to consider central limit
theorems of independent random variables. However, a superprocess is an appropriate scaling
limit of branching Markov processes, see [8,17], for example. It describes the time evolution of a
cloud of uncountable number of particles, where each particle carries mass 0 and moves in space
independently according to a Markov process. The particle picture for superprocesses is not very
clear. Recently [15] gave a backbone decomposition of superdiffusions, where the backbone is a
branching diffusion. One could combine the ideas of [19] with that of [20] to use the backbone
decomposition to prove central limit theorems for general supercritical superprocesses with
spatial dependent branching mechanisms satisfying only a second moment condition, provided
that the backbone decomposition is known. However, up to now, the backbone decomposition
has only been established for supercritical superdiffusions with spatial dependent branching
mechanisms.

In this paper, our assumption on the spatial process is exactly the same as in [20], while our
assumptions on the branching mechanism are similar in spirit to those of [20]. We will use the
excursion measures of the superprocess as a tool to replace the backbone decomposition. With
this new tool, the general methodology of [20] can be adapted to the present setting of general
supercritical superprocesses.
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Actually, we will go even further in the present paper. We will prove one central limit theorem
which generalizes and unifies all the central limit theorems of [18,19]. See the Corollaries and
Remarks after Theorem 1.4. The advantage of this central limit theorem is that it allows us
to characterize the limit Gaussian field. In the case of supercritical super Ornstein–Uhlenbeck
processes with non-spatially dependent branching mechanisms satisfying a second moment
condition, our central limit theorem reveals more independent structures of the limit Gaussian
field, see Corollaries 1.5–1.7.

1.1. Spatial process

Our assumptions on the underlying spatial process are the same as in [20]. In this subsection,
we recall the assumptions on the spatial process.

E is a locally compact separable metric space and m is a σ -finite Borel measure on E with
full support. ∂ is a point not contained in E and will be interpreted as the cemetery point. Every
function f on E is automatically extended to E∂ := E ∪{∂} by setting f (∂) = 0. We will assume
that ξ = {ξt ,Πx } is an m-symmetric Hunt process on E and ζ := inf{t > 0 : ξt = ∂} is the
lifetime of ξ . The semigroup of ξ will be denoted by {Pt : t ≥ 0}. We will always assume that
there exists a family of continuous strictly positive symmetric functions {pt (x, y) : t > 0} on
E × E such that

Pt f (x) =


E

pt (x, y) f (y)m(dy).

It is well-known that for p ≥ 1, {Pt : t ≥ 0} is a strongly continuous contraction semigroup on
L p(E,m).

Define at (x) := pt (x, x). We will always assume that at (x) satisfies the following two
conditions:

(a) For any t > 0, we have
E
at (x)m(dx) < ∞.

(b) There exists t0 > 0 such thatat0(x) ∈ L2(E, m).

It is easy to check (see [20]) that condition (b) above is equivalent to

(b′) There exists t0 > 0 such that for all t ≥ t0,at (x) ∈ L2(E,m).

These two conditions are satisfied by a lot of Markov processes. In [20], we gave several
classes of examples of Markov processes, including Ornstein–Uhlenbeck processes, satisfying
these two conditions.

1.2. Superprocesses

In this subsection, we will spell out our assumptions on the superprocess we are going to work
with. Let Bb(E) (B+

b (E)) be the set of (positive) bounded Borel measurable functions on E .
The superprocess X = {X t : t ≥ 0} we are going to work with is determined by three

parameters: a spatial motion ξ = {ξt ,Πx } on E satisfying the assumptions of the previous
subsection, a branching rate function β(x) on E which is a non-negative bounded measurable
function and a branching mechanism ψ of the form

ψ(x, λ) = −a(x)λ+ b(x)λ2
+


(0,+∞)

(e−λy
− 1 + λy)n(x, dy), x ∈ E, λ > 0, (1.1)
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where a ∈ Bb(E), b ∈ B+

b (E) and n is a kernel from E to (0,∞) satisfying

sup
x∈E


∞

0
y2n(x, dy) < ∞. (1.2)

Let M F (E) be the space of finite measures on E equipped with the topology of weak
convergence. The existence of such superprocesses is well-known, see, for instance, [10] or [17].
X is a cadlag Markov process taking values in M F (E). For any µ ∈ M F (E), we denote the law
of X with initial configuration µ by Pµ. As usual, ⟨ f, µ⟩ :=


f (x)µ(dx) and ∥µ∥ := ⟨1, µ⟩.

Then for every f ∈ B+

b (E) and µ ∈ M F (E),

− log Pµ


e−⟨ f,X t ⟩


= ⟨u f (·, t), µ⟩, (1.3)

where u f (x, t) is the unique positive solution to the equation

u f (x, t)+ Πx

 t

0
ψ(ξs, u f (ξs, t − s))β(ξs)ds = Πx f (ξt ), (1.4)

where ψ(∂, λ) = 0, λ > 0. Define

α(x) := β(x)a(x) and A(x) := β(x)


2b(x)+


∞

0
y2n(x, dy)


. (1.5)

Then, by our assumptions, α(x) ∈ Bb(E) and A(x) ∈ Bb(E). Thus there exists M > 0 such that

sup
x∈E

(|α(x)| + A(x)) ≤ M. (1.6)

For any f ∈ Bb(E) and (t, x) ∈ (0,∞)× E , define

Tt f (x) := Πx


e
 t

0 α(ξs ) ds f (ξt )

. (1.7)

It is well-known that Tt f (x) = Pδx ⟨ f, X t ⟩ for every x ∈ E .
It is shown in [20] that there exists a family of continuous strictly positive symmetric functions

{qt (x, y), t > 0} on E × E such that qt (x, y) ≤ eMt pt (x, y) and for any f ∈ Bb(E),

Tt f (x) =


E

qt (x, y) f (y)m(dy).

It follows immediately that, for any p ≥ 1, {Tt : t ≥ 0} is a strongly continuous semigroup on
L p(E,m) and

∥Tt f ∥
p
p ≤ epMt

∥ f ∥
p
p. (1.8)

Define at (x) := qt (x, x). It follows from the assumptions (a) and (b) in the previous subsec-
tion that at enjoys the following properties:

(i) For any t > 0, we have
E

at (x)m(dx) < ∞.

(ii) There exists t0 > 0 such that for all t ≥ t0, at (x) ∈ L2(E,m).

It follows from (i) above that, for any t > 0, Tt is a compact operator. The infinitesimal
generator L of {Tt : t ≥ 0} in L2(E,m) has purely discrete spectrum with eigenvalues
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−λ1 > −λ2 > −λ3 > · · · . It is known that either the number of these eigenvalues is finite,
or limk→∞ λk = ∞. The first eigenvalue −λ1 is simple and the eigenfunction φ1 associated
with −λ1 can be chosen to be strictly positive everywhere and continuous. We will assume that
∥φ1∥2 = 1. φ1 is sometimes denoted as φ(1)1 . For k > 1, let {φ

(k)
j , j = 1, 2, . . . , nk} be an

orthonormal basis of the eigenspace (which is finite dimensional) associated with −λk . It is
well-known that {φ

(k)
j , j = 1, 2, . . . , nk; k = 1, 2, . . .} forms a complete orthonormal basis of

L2(E,m) and all the eigenfunctions are continuous. For any k ≥ 1, j = 1, . . . , nk and t > 0,
we have Ttφ

(k)
j (x) = e−λk tφ

(k)
j (x) and

e−λk t/2
|φ
(k)
j |(x) ≤ at (x)

1/2, x ∈ E . (1.9)

It follows from the relation above that all the eigenfunctions φ(k)j belong to L4(E,m). For any
x, y ∈ E and t > 0, we have

qt (x, y) =

∞
k=1

e−λk t
nk
j=1

φ
(k)
j (x)φ

(k)
j (y), (1.10)

where the series is locally uniformly convergent on E × E . The basic facts recalled in this
paragraph are well-known, for instance, one can refer to [7, Section 2].

In this paper, we always assume that the superprocess X is supercritical, that is, λ1 < 0. Under
this assumption, the process X has a strictly positive survival probability, see the next paragraph.
Note that the number of negative eigenvalues is infinite except in the case when the total number
of eigenvalues is finite.

We will use {Ft : t ≥ 0} to denote the filtration of X , that is Ft = σ(Xs : s ∈ [0, t]).
Using the expectation formula of ⟨φ1, X t ⟩ and the Markov property of X , it is easy to show that
(see Lemma 1.1), for any nonzero µ ∈ M F (E), under Pµ, the process Wt := eλ1t

⟨φ1, X t ⟩ is a
positive martingale. Therefore it converges:

Wt → W∞, Pµ-a.s. as t → ∞.

Using the assumption (1.2) we can show that, as t → ∞,Wt also converges in L2(Pµ), so W∞

is non-degenerate and the second moment is finite. Moreover, we have Pµ(W∞) = ⟨φ1, µ⟩. Put
E = {W∞ = 0}, then Pµ(E) < 1. It is clear that E c

⊂ {X t (E) > 0,∀t ≥ 0}.
In this paper, we also assume that, for any t > 0 and x ∈ E ,

Pδx {∥X t∥ = 0} ∈ (0, 1). (1.11)

Here we give a sufficient condition for (1.11). Suppose that Φ(z) = infx∈E ψ(x, z)β(x) can be
written in the form:

Φ(z) =az +bz2
+


∞

0
(e−zy

− 1 + zy)n(dy)

with a ∈ R,b ≥ 0 and n is a measure on (0,∞) satisfying


∞

0 (y ∧ y2)n(dy) < ∞. Ifb +n(0,∞) > 0 and Φ(z) satisfies
∞ 1

Φ(z)
dz < ∞, (1.12)

then (1.11) holds. For the last claim, see, for instance, [8, Lemma 11.5.1].
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1.3. Main result

We will use ⟨·, ·⟩m to denote inner product in L2(E,m). Any f ∈ L2(E,m) admits the
following eigen-expansion:

f (x) =

∞
k=1

nk
j=1

ak
jφ
(k)
j (x), (1.13)

where ak
j = ⟨ f, φ(k)j ⟩m and the series converges in L2(E,m). a1

1 will sometimes be written as

a1. For f ∈ L2(E,m), define

γ ( f ) := inf{k ≥ 1 : there exists j with 1 ≤ j ≤ nk such that ak
j ≠ 0},

where we use the usual convention inf ∅ = ∞. Note that γ ( f ) = ∞ if and only if f = 0,m-a.e.
We put λ∞ := ∞.

For any f ∈ L2(E,m), we define

f ∗(x) :=

nγ ( f )
j=1

aγ ( f )
j φ

(γ ( f ))
j (x).

We note that if f ∈ L2(E,m) is nonnegative and m(x : f (x) > 0) > 0, then ⟨ f, φ1⟩m > 0
which implies γ ( f ) = 1 and f ∗(x) = a1φ1(x) = ⟨ f, φ1⟩mφ1(x). The following three subsets of
L2(E,m) will be needed in the statement of the main result:

Cl :=


g(x) =


k:λ1>2λk

nk
j=1

bk
jφ
(k)
j (x) : bk

j ∈ R and g ≠ 0


,

Cc :=


g(x) =

nk
j=1

bk
jφ
(k)
j (x) : 2λk = λ1, bk

j ∈ R and g ≠ 0


and

Cs :=


g(x) ∈ L2(E,m) ∩ L4(E,m) : g ≠ 0 and λ1 < 2λγ (g)


.

Note that Cl consists of these functions in L2(E,m) ∩ L4(E,m) that only have nontrivial
projection onto the eigen-spaces corresponding to those “large” eigenvalues −λk satisfying
λ1 > 2λk . The space Cl is of finite dimension. The space Cc is the (finite dimensional) eigen-
space corresponding to the “critical” eigenvalue −λk with λ1 = 2λk . Note that there may not
be a critical eigenvalue and in this case, Cc is empty. The space Cs consists of these functions in
L2(E,m) ∩ L4(E,m) that only have nontrivial projections onto the eigen-spaces corresponding
to those “small” eigenvalues −λk satisfying λ1 < 2λk . The space Cs is of infinite dimensional in
general.

In this subsection we give the main result of this paper. The proof will be given in Section 3.
In the remainder of this paper, whenever we deal with an initial configuration µ ∈ M F (E), we
are implicitly assuming that it has compact support.

1.3.1. Some basic convergence results
Define

H k, j
t := eλk t

⟨φ
(k)
j , X t ⟩, t ≥ 0.
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Using the same argument as in the proof of [20, Lemma 3.1], we can show that

Lemma 1.1. H k, j
t is a martingale under Pµ. Moreover, if λ1 > 2λk, supt>3t0 Pµ(H

k, j
t )2 < ∞.

Thus the limit

H k, j
∞ := lim

t→∞
H k. j

t

exists Pµ-a.s. and in L2(Pµ).

Theorem 1.2. If f ∈ L2(E,m) ∩ L4(E,m) with λ1 > 2λγ ( f ), then, as t → ∞,

eλγ ( f )t ⟨ f, X t ⟩ →

nγ ( f )
j=1

aγ ( f )
j Hγ ( f ), j

∞ , in L2(Pµ).

Proof. The proof is similar to that of [20, Theorem 1.6]. We omit the details here. �

Remark 1.3. When γ ( f ) = 1, H1,1
t reduces to Wt , and thus H1,1

∞ = W∞. Therefore by
Theorem 1.2 and the fact that a1 = ⟨ f, φ1⟩m , we get that, as t → ∞,

eλ1t
⟨ f, X t ⟩ → ⟨ f, φ1⟩m W∞, in L2(Pµ).

In particular, the convergence also holds in Pµ-probability.

1.3.2. Main result
For f ∈ Cs and h ∈ Cc, we define

σ 2
f :=


∞

0
eλ1s

⟨A(Ts f )2, φ1⟩m ds (1.14)

and

ρ2
h :=


Ah2, φ1


m
. (1.15)

For g(x) =


k:2λk<λ1

nk
j=1 bk

jφ
(k)
j (x) ∈ Cl , we define

Is g(x) :=


k:2λk<λ1

nk
j=1

eλk sbk
jφ
(k)
j (x) and β2

g :=


∞

0
e−λ1s


A(Is g)2, φ1


m

ds. (1.16)

Theorem 1.4. If f ∈ Cs, h ∈ Cc and g(x) =


k:2λk<λ1

nk
j=1 bk

jφ
(k)
j (x) ∈ Cl , then σ 2

f <

∞, ρ2
h < ∞ and β2

g < ∞. Furthermore, it holds that, under Pµ(· | E c), as t → ∞,eλ1t
⟨φ1, X t ⟩,

⟨g, X t ⟩ −


k:2λk<λ1

e−λk t
nk
j=1

bk
j H k, j

∞

√
⟨φ1, X t ⟩

,
⟨h, X t ⟩

√
t⟨φ1, X t ⟩

,
⟨ f, X t ⟩

√
⟨φ1, X t ⟩


d
→ (W ∗,G3(g),G2(h), G1( f )), (1.17)

where W ∗ has the same distribution as W∞ conditioned on E c,G3(g) ∼ N (0, β2
g),G2(h) ∼

N (0, ρ2
h) and G1( f ) ∼ N (0, σ 2

f ). Moreover, W ∗,G3(g),G2(h) and G1( f ) are independent.
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This theorem says that, under Pµ(· | E c), as t → ∞, the limits of the second, third and fourth
components on the right hand side of (1.17) are nondegenerate normal random variables. Further-
more, the limit normal random variables are independent. As consequences of this theorem, we
could also get the covariance of the limit random variables G1( f1) and G1( f2)when f1, f2 ∈ Cs ,
the covariance of the limit random variables G2(h1) and G2(h2) when h1, h2 ∈ Cc, and the co-
variance of the limit random variables G3(g1) and G3(g2) when g1, g2 ∈ Cl .

For f1, f2 ∈ Cs , define

σ( f1, f2) =


∞

0
eλ1s

⟨A(Ts f1)(Ts f2), φ1⟩m ds.

Note that σ( f, f ) = σ 2
f .

Corollary 1.5. If f1, f2 ∈ Cs , then, under Pµ(· | E c),
⟨ f1, X t ⟩

√
⟨φ1, X t ⟩

,
⟨ f2, X t ⟩

√
⟨φ1, X t ⟩


d
→ (G1( f1),G1( f2)), t → ∞,

where (G1( f1),G1( f2)) is a bivariate normal random variable with covariance

Cov(G1( fi ),G1( f j )) = σ( fi , f j ), i, j = 1, 2. (1.18)

Consider the special situation when both the branching mechanism and the branching rate func-
tion are non-spatially dependent, and φ1 is a constant function (this is the case of Ornstein–

Uhlenbeck processes). If f1 = φ
(k)
j and f2 = φ

(k′)

j ′ are distinct eigenfunctions satisfying
λ1 < 2λk and λ1 < 2λk′ , then G1( f1) and G1( f2) are independent.

Proof. Using the convergence of the fourth component in Theorem 1.4, we get

Pµ


exp


iθ1

⟨ f1, X t ⟩
√

⟨φ1, X t ⟩
+ iθ2

⟨ f2, X t ⟩
√

⟨φ1, X t ⟩

 E c


= Pµ


exp


i
⟨θ1 f1 + θ2 f2, X t ⟩

√
⟨φ1, X t ⟩

 E c


→ exp

−

1
2
σ 2
(θ1 f1+θ2 f2)


, as t → ∞,

where

σ 2
(θ1 f1+θ2 f2)

=


∞

0
eλ1s

⟨A(Ts(θ1 f1 + θ2 f2))
2, φ1⟩m ds

= θ2
1σ

2
f1

+ 2θ1θ2σ( f1, f2)+ θ2σ
2
f2
.

Note that exp

−

1
2


θ2

1σ
2
f1

+ 2θ1θ2σ( f1, f2)+ θ2σ
2
f2


is the characteristic function of

(G1( f1),G1( f2)), which is a bivariate normal random variable with covariance Cov(G1( fi ),

G1( f j )) = σ( fi , f j ), i, j = 1, 2. The desired result now follows immediately.
In particular, if both the branching mechanism and the branching rate function are non-

spatially dependent, then A(x) = A is a constant. If φ1 is a constant function, and f1 = φ
(k)
j and

f2 = φ
(k′)

j ′ are distinct eigenfunctions satisfying λ1 < 2λk and λ1 < 2λk′ , then

σ( f1, f2) = Aφ1


∞

0
e(λ1−λk−λk′ )s

⟨φ
(k)
j , φ

(k′)

j ′ ⟩m ds = 0

and thus G1( f1) and G1( f2) are independent. �
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For h1, h2 ∈ Cc, define

ρ(h1, h2) = ⟨Ah1h2, φ1⟩m .

Using the convergence of the third component in Theorem 1.4 and an argument similar to that in
the proof of Corollary 1.5, we get

Corollary 1.6. If h1, h2 ∈ Cc, then we have, under Pµ(· | E c),
⟨h1, X t ⟩

√
t⟨φ1, X t ⟩

,
⟨h2, X t ⟩

√
t⟨φ1, X t ⟩


d
→ (G2(h1),G2(h2)), t → ∞,

where (G2(h1),G2(h2)) is a bivariate normal random variable with covariance

Cov(G2(hi ),G2(h j )) = ρ(hi , h j ), i, j = 1, 2.

Consider the special situation when both the branching mechanism and the branching rate
function are non-spatial dependent and φ1 is a constant function. If h1 = φ

(k)
j and h2 = φ

(k)
j ′

are distinct eigenfunctions satisfying λ1 = 2λk , then G2(h1) and G2(h2) are independent.

For g1(x) =


k:2λk<λ1

nk
j=1 bk

jφ
(k)
j (x) and g2(x) =


k:2λk<λ1

nk
j=1 ck

jφ
(k)
j (x), define

β(g1, g2) =


∞

0
e−λ1s

⟨A(Is g1)(Is g2), φ1⟩m ds.

Using the convergence of the second component in Theorem 1.4 and an argument similar to that
in the proof of Corollary 1.5, we get

Corollary 1.7. If g1(x) =


k:2λk<λ1

nk
j=1 bk

jφ
(k)
j (x) and g2(x) =


k:2λk<λ1

nk
j=1 ck

jφ
(k)
j (x),

then we have, under Pµ(· | E c),
⟨g1, X t ⟩ −


k:2λk<λ1

e−λk t
nk
j=1

bk
j H k, j

∞

√
⟨φ1, X t ⟩

,

⟨g2, X t ⟩ −


k:2λk<λ1

e−λk t
nk
j=1

ck
j H k, j

∞

√
⟨φ1, X t ⟩


d
→ (G3(g1),G3(g2)),

where (G3(g1),G3(g2)) is a bivariate normal random variable with covariance

Cov(G3(gi ),G3(g j )) = β(gi , g j ), i, j = 1, 2.

Consider the special situation when both the branching mechanism and the branching rate

function are non-spatial dependent and φ1 is a constant function. If g1 = φ
(k)
j and g2 = φ

(k′)

j ′
are distinct eigenfunctions satisfying λ1 > 2λk and λ1 > 2λk′ , then G3(g1) and G3(g2) are
independent.

Remark 1.8. If 2λk < λ1, then, it holds under Pµ(· | E c) that, as t → ∞,eλ1t
⟨φ1, X t ⟩,


⟨φ
(k)
j , X t ⟩ − e−λk t H k, j

∞


⟨φ1, X t ⟩

1/2

 d
→ (W ∗, G3),
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where G3 ∼ N


0, 1
λ1−2λk

⟨A(φ(k)j )
2, φ1⟩m


. In particular, for φ1, we have

eλ1t
⟨φ1, X t ⟩,


⟨φ1, X t ⟩ − e−λ1t W∞


⟨φ1, X t ⟩

1/2


d
→ (W ∗, G3), t → ∞,

where G3 ∼ N


0,− 1
λ1


E A(x)(φ1(x))3 m(dx)


.

All the central limit theorems in [19] are consequences of Theorem 1.4. To see this, we recall
the following notation from [19]. For f ∈ L2(E,m), define

f(s)(x) :=


k:2λk<λ1

nk
j=1

ak
jφ
(k)
j (x),

f(l)(x) =


k:2λk>λ1

nk
j=1

ak
jφ
(k)
j (x),

f(c)(x) := f (x)− f(s)(x)− f(l)(x).

Then f(s) ∈ Cl , f(c) ∈ Cc and f(l) ∈ Cs . Obviously, [19, Theorem 1.4] is an immediate
consequence of the convergence of the first and fourth components in Theorem 1.4. Now we
explain that Theorems 1.6, 1.10 and 1.13 of [19] also follow easily from Theorem 1.4.

Remark 1.9. If f ∈ L2(E,m) ∩ L4(E,m) with λ1 = 2λγ ( f ), then f = f(c) + f(l). Using the
convergence of the fourth component in Theorem 1.4 for f(l), it holds under Pµ(· | E c) that

⟨ f(l), X t ⟩
√

t⟨φ1, X t ⟩

d
→ 0, t → ∞.

Thus using the convergence of the first and third components in Theorem 1.4, we get, under
Pµ(· | E c),

eλ1t
⟨φ1, X t ⟩,

⟨ f, X t ⟩
√

t⟨φ1, X t ⟩


d
→ (W ∗, G2( f(c))), t → ∞,

where W ∗ has the same distribution as W∞ conditioned on E c and G2( f(c)) ∼ N (0, ρ2
f(c)
).

Moreover, W ∗ and G2( f(c)) are independent. Thus [19, Theorem 1.6] is a consequence of The-
orem 1.4.

Remark 1.10. Assume f ∈ L2(E,m) ∩ L4(E,m) satisfies λ1 > 2λγ ( f ).
If f(c) = 0, then f = f(l) + f(s). Using the convergence of the first, second and fourth

components in Theorem 1.4, we get for any nonzero µ ∈ M F (E), it holds under Pµ(· | E c) that,
as t → ∞,eλ1t

⟨φ1, X t ⟩,


⟨ f, X t ⟩ −


2λk<λ1

e−λk t
nk
j=1

ak
j H k, j

∞


⟨φ1, X t ⟩

1/2

 d
→ (W ∗, G1( f(l))+ G3( f(s))),

where W ∗,G3( f(s)) and G1( f(l)) are the same as those in Theorem 1.4. Since G3( f(s)) and

G1( f(l)) are independent, G1( f(l))+ G3( f(s)) ∼ N


0, σ 2
f(l)

+ β2
f(s)


. Thus [19, Theorem 1.10]

is a consequence of Theorem 1.4.



438 Y.-X. Ren et al. / Stochastic Processes and their Applications 125 (2015) 428–457

If f(c) ≠ 0, then as t → ∞,
⟨ f(l) + f(s), X t ⟩ −


2λk<λ1

e−λk t
nk
j=1

ak
j H k, j

∞


√

t⟨φ1, X t ⟩

d
→ 0.

Then using the convergence of the first and third components in Theorem 1.4, we geteλ1t
⟨φ1, X t ⟩,


⟨ f, X t ⟩ −


2λk<λ1

e−λk t
nk
j=1

ak
j H k, j

∞


√

t⟨φ1, X t ⟩

 d
→ (W ∗, G2( f(c))),

where W ∗ and G2( f(c)) are the same as those in Remark 1.9. Thus [19, Theorem 1.13] is a
consequence of Theorem 1.4.

2. Preliminaries

2.1. Excursion measures of {X t , t ≥ 0}

We use D to denote the space of M F (E)-valued right continuous functions t → ωt on (0,∞)

having zero as a trap. We use (A,At ) to denote the natural σ -algebras on D generated by the
coordinate process.

It is known (see [17, Section 8.4]) that one can associate with {Pδx : x ∈ E} a family of
σ -finite measures {Nx : x ∈ E} defined on (D,A) such that Nx ({0}) = 0,

D
(1 − e−⟨ f,ωt ⟩)Nx (dω) = − log Pδx (e

−⟨ f,X t ⟩), f ∈ B+

b (E), t > 0, (2.1)

and, for every 0 < t1 < · · · < tn < ∞, and nonzero µ1, . . . , µn ∈ MF (E),

Nx (ωt1 ∈ dµ1, . . . , ωtn ∈ dµn) = Nx (ωt1 ∈ dµ1)Pµ1(X t2−t1 ∈ dµ2)

· · · Pµn−1(X tn−tn−1 ∈ dµn). (2.2)

For earlier work on excursion measures of superprocesses, see [12,16,11].
For any µ ∈ MF (E), let N (dω) be a Poisson random measure on the space D with intensity

E Nx (dω)µ(dx), in a probability space (Ω , F ,Pµ). Define another process {Λt : t ≥ 0} by
Λ0 = µ and

Λt :=


D
ωt N (dω), t > 0.

Let Ft be the σ -algebra generated by the random variables {N (A) : A ∈ At }. Then, {Λ,
(Ft )t≥0,Pµ} has the same law as {X, (Ft )t≥0,Pµ}, see [17, Theorem 8.24] for a proof.

Now we list some properties of Nx . The proofs are similar to those in [11, Corollary 1.2,
Proposition 1.1].

Proposition 2.1. If Pδx |⟨ f, X t ⟩| < ∞, then
D
⟨ f, ωt ⟩ Nx (dω) = Pδx ⟨ f, X t ⟩. (2.3)
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If Pδx ⟨ f, X t ⟩
2 < ∞, then

D
⟨ f, ωt ⟩

2 Nx (dω) = Varδx ⟨ f, X t ⟩. (2.4)

Proposition 2.2.

Nx (∥ωt∥ ≠ 0) = − log Pδx (∥X t∥ = 0). (2.5)

Remark 2.3. By (1.11) and Proposition 2.2, for each t > 0 and x ∈ E , we have

0 < Nx (∥ωt∥ ≠ 0) < ∞.

Thus, we can define another probability measure Nx on D as follows:

Nx (B) =
Nx (B ∩ {∥ω1∥ ≠ 0})

Nx (∥ω1∥ ≠ 0)
. (2.6)

Notice that, for f ∈ L2(E,m),Nx (⟨| f |, ωt ⟩) = Tt | f |(x) < ∞, which implies that Nx (⟨| f |,

ωt ⟩ = ∞) = 0. Thus, for f ∈ L2(E,m),

Pµ


eiθ⟨ f,X t ⟩


= Pµ


eiθ⟨ f,Λt ⟩


= Pµ


eiθ

D⟨ f,ωt ⟩ N (dω)


= exp


E


D


eiθ⟨ f,ωt ⟩ − 1


Nx (dω)µ(dx)


.

Thus, by the Markov property of superprocesses, we have

Pµ

exp {iθ⟨ f, X t+s⟩} |X t


= PX t


eiθ⟨ f,Xs ⟩


= exp


E


D
(eiθ⟨ f,ωs ⟩ − 1)Nx (dω)X t (dx)


. (2.7)

2.2. Estimates on the moments of X

In the remainder of this paper we will use the following notation: for two positive functions
f and g on E, f (x) . g(x) means that there exists a constant c > 0 such that f (x) ≤ cg(x) for
all x ∈ E .

First, we recall some results about the semigroup (Tt ), the proofs of which can be found
in [20].

Lemma 2.4. For any f ∈ L2(E,m), x ∈ E and t > 0, we have

Tt f (x) =

∞
k=γ ( f )

e−λk t
nk
j=1

ak
jφ
(k)
j (x) (2.8)

and

lim
t→∞

eλγ ( f )t Tt f (x) =

nγ ( f )
j=1

aγ ( f )
j φ

(γ ( f ))
j (x), (2.9)
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where the series in (2.8) converges absolutely and uniformly in any compact subset of E.
Moreover, for any t1 > 0,

sup
t>t1

eλγ ( f )t |Tt f (x)| ≤ eλγ ( f )t1∥ f ∥2


E

at1/2(x)m(dx)


at1(x)

1/2, (2.10)

sup
t>t1

e(λγ ( f )+1−λγ ( f ))t
eλγ ( f )t Tt f (x)− f ∗(x)


≤ eλγ ( f )+1t1∥ f ∥2


E

at1/2(x)m(dx)


(at1(x))

1/2. (2.11)

Lemma 2.5. Suppose that { ft (x) : t > 0} is a family of functions in L2(E,m). If limt→∞

∥ ft∥2 = 0, then for any x ∈ E,

lim
t→∞

eλ1t Tt ft (x) = 0.

Recall the second moments of the superprocess {X t : t ≥ 0} (see, for example, [17, Corollary
2.39]): for f ∈ Bb(E), we have for any t > 0,

Pµ⟨ f, X t ⟩
2

=

Pµ⟨ f, X t ⟩

2
+


E

 t

0
Ts[A(Tt−s f )2](x) dsµ(dx). (2.12)

Thus,

Varµ⟨ f, X t ⟩ = ⟨Varδ·⟨ f, X t ⟩, µ⟩ =


E

 t

0
Ts[A(Tt−s f )2](x) dsµ(dx), (2.13)

where Varµ stands for the variance under Pµ. Note that the second moment formula (2.12) for
superprocesses is different from that of [20, (2.11)] for branching Markov processes.

For any f ∈ L2(E,m)∩ L4(E,m) and x ∈ E , since (Tt−s f )2(x) ≤ eM(t−s)Tt−s( f 2)(x), we
have  t

0
Ts[A(Tt−s f )2](x) ds ≤ eMt Tt ( f 2)(x) < ∞.

Thus, using a routine limit argument, one can easily check that (2.12) and (2.13) also hold for
f ∈ L2(E,m) ∩ L4(E,m).

Lemma 2.6. Assume that f ∈ L2(E,m) ∩ L4(E,m).
(1) If λ1 < 2λγ ( f ), then for any x ∈ E,

lim
t→∞

eλ1t/2Pδx ⟨ f, X t ⟩ = 0, (2.14)

lim
t→∞

eλ1tVarδx ⟨ f, X t ⟩ = σ 2
f φ1(x), (2.15)

where σ 2( f ) is defined by (1.14). Moreover, for (t, x) ∈ (3t0,∞)× E, we have

eλ1tVarδx ⟨ f, X t ⟩ . at0(x)
1/2. (2.16)

(2) If λ1 = 2λγ ( f ), then for any (t, x) ∈ (3t0,∞)× E,t−1eλ1tVarδx ⟨ f, X t ⟩ − ρ2
f ∗φ1(x)

 . t−1at0(x)
1/2, (2.17)

where ρ2
f ∗ is defined by (1.15).
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(3) If λ1 > 2λγ ( f ), then for any x ∈ E,

lim
t→∞

e2λγ ( f )tVarδx ⟨ f, X t ⟩ = η2
f (x), (2.18)

where

η2
f (x) :=


∞

0
e2λγ ( f )s Ts(A( f ∗)2)(x) ds.

Moreover, for any (t, x) ∈ (3t0,∞)× E,

e2λγ ( f )tPδx ⟨ f, X t ⟩
2 . at0(x)

1/2. (2.19)

Proof. Since the first moment formulas for superprocesses and branching Markov processes
are the same, we get (2.14) easily. Although the second moment formula for superprocesses is
different from that for branching Markov processes, we can still get all results on the variance of
the superprocess X from the proof of [20, Lemma 2.3]. In fact,

Varx ⟨ f, X t ⟩ =

 t

0
Ts[A(Tt−s f )2](x) ds.

The limit behavior of the right side of the above equation, as t → ∞, was given in the proof
of [20, Lemma 2.3]. �

Lemma 2.7. Assume that f ∈ L2(E,m) ∩ L4(E,m). If λ1 < 2λγ ( f ), then for any (t, x) ∈

(3t0,∞)× E,eλ1tVarδx ⟨ f, X t ⟩ − σ 2
f φ1(x)

 .


e(λ1−2λγ ( f ))t + e(λ1−λ2)t


at0(x)
1/2. (2.20)

Proof. Without loss of generality, we assume that m(x : f (x) ≠ 0) > 0. By (2.13), we get, for
t > 3t0,eλ1tVarδx ⟨ f, X t ⟩ −


∞

0
eλ1s

⟨A(Ts f )2, φ1⟩m dsφ1(x)


=

eλ1t
 t

0
Tt−s[A(Ts f )2](x) ds −


∞

0
eλ1s

⟨A(Ts f )2, φ1⟩m dsφ1(x)


≤ eλ1t

 t−t0

0

Tt−s[A(Ts f )2](x)− e−λ1(t−s)
⟨A(Ts f )2, φ1⟩mφ1(x)

 ds

+ eλ1t
 t

t−t0
Tt−s[A(Ts f )2](x) ds +


∞

t−t0
eλ1s

⟨A(Ts f )2, φ1⟩m dsφ1(x)

=: V1(t, x)+ V2(t, x)+ V3(t, x). (2.21)

For V2(t, x), by [20, (2.26)], we have

V2(t, x) . e(λ1−2λγ ( f ))t at0(x)
1/2. (2.22)

For V3(t, x), by (2.10), for s > t − t0 > t0, |Ts f (x)| . e−λγ ( f )sat0(x)
1/2. By (1.9), φ1(x) ≤

eλ1t0/2at0(x)
1/2. Thus, we get

V3(t, x) .


∞

t−t0
e(λ1−2λγ ( f ))s ds⟨at0 , φ1⟩mφ1(x)

. e(λ1−2λγ ( f ))t at0(x)
1/2. (2.23)
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Finally, we consider V1(t, x). Let g := A(Ts f )2, noticing that g is nonnegative and non-trivial,
we have that γ (g) = 1 and g∗(x) = ⟨A(Ts f )2, φ1⟩mφ1(x). Using (2.11) with f replaced by g,
for t − s > t0, we haveTt−s[A(Ts f )2](x)− e−λ1(t−s)

⟨A(Ts f )2, φ1⟩mφ1(x)
 . e−λ2(t−s)

∥A(Ts f )2∥2at0(x)
1/2.

For s > t0, by (2.10), |Ts f (x)| . e−λγ ( f )sat0(x)
1/2. Thus,

∥A(Ts f )2∥2 . e−2λγ ( f )s∥at0∥2.

For s ≤ t0, by (1.8), it is easy to get

∥A(Ts f )2∥2 ≤ M∥Ts f ∥
2
4 ≤ Me2Ms

∥ f ∥
2
4.

Therefore, we have

V1(t, x) . eλ1t
 t−t0

t0
e−λ2(t−s)e−2λγ ( f )s ds at0(x)

1/2
+ eλ1t

 t0

0
e−λ2(t−s) ds at0(x)

1/2

.


e(λ1−2λγ ( f ))t + e(λ1−λ2)t


at0(x)
1/2. (2.24)

Now (2.20) follows immediately from (2.22)–(2.24). �

Lemma 2.8. Assume that f ∈ L2(E,m) ∩ L4(E,m) with λ1 < 2λγ ( f ) and h ∈ L2(E,m) ∩

L4(E,m) with λ1 = 2λγ (h). Then, for any (t, x) ∈ (3t0,∞)× E,

Covδx (e
λ1t/2

⟨ f, X t ⟩, t−1/2eλ1t/2
⟨h, X t ⟩) . t−1/2(at0(x))

1/2, (2.25)

where Covδx is the covariance under Pδx .

Proof. By (2.13), we haveCovδx (e
λ1t/2

⟨ f, X t ⟩, t−1/2eλ1t/2
⟨h, X t ⟩)


= t−1/2eλ1t 1

4

Varδx ⟨( f + h), X t ⟩ − Varδx ⟨( f − h), X t ⟩


= t−1/2eλ1t
 t

0
Tt−s [A(Ts f )(Tsh)] (x) ds


≤ t−1/2eλ1t

 t−t0

0
Tt−s[A |(Ts f )(Tsh)|](x) ds +

 t

t−t0
Tt−s[A |(Ts f )(Tsh)|](x) ds


=: V4(t, x)+ V5(t, x).

First, we deal with V4(t, x). By (2.10), for t − s > t0,

Tt−s[A |(Ts f )(Tsh)|](x) . e−λ1(t−s)
∥A(Ts f )(Tsh)∥2(at0(x))

1/2.

If s > t0, then by (2.10), we get

∥A(Ts f )(Tsh)∥2 . e−(λ1/2+λγ ( f ))s∥at0∥2.

If s ≤ t0, by (1.8), it is easy to get

∥A(Ts f )(Tsh)∥2 ≤ M∥Ts f ∥4∥Tsh∥4 ≤ Me2Ms
∥ f ∥4∥h∥4.
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Therefore, we have

V4(t, x) . t−1/2eλ1t
 t−t0

t0
e−λ1(t−s)e−(λ1/2+λγ ( f ))s ds +

 t0

0
e−λ1(t−s) ds


at0(x)

1/2

= t−1/2
 t−t0

t0
e(λ1/2−λγ ( f ))s ds +

 t0

0
eλ1s ds


at0(x)

1/2

. t−1/2at0(x)
1/2. (2.26)

For V5(t, x), if s > t − t0 ≥ 2t0, then by (2.10), we get

V5(t, x) . t−1/2eλ1t
 t

t−t0
e−(λ1/2+λγ ( f ))s Tt−s(a2t0)(x) ds

= t−1/2e(λ1/2−λγ ( f ))t
 t0

0
e(λ1/2+λγ ( f ))s Ts(a2t0)(x) ds

. t−1/2e(λ1/2−λγ ( f ))t
 t0

0
Ts(a2t0)(x) ds

. t−1/2(at0(x))
1/2. (2.27)

The last inequality follows from the fact that t0

0
Ts(a2t0)(x) ds . at0(x)

1/2, (2.28)

which is [20, (2.25)]. Therefore, by (2.26) and (2.27), we get (2.25) immediately. �

3. Proof of the main theorem

In this section, we will prove the main result of this paper. The general methodology is similar
to that of [20], the difference being that we use the excursion measures of the superprocess rather
than the backbone decomposition (which is not yet available in the general setup of this paper)
of superprocess.

We first recall some facts about weak convergence which will be used later. For f : Rn
→ R,

let ∥ f ∥L := supx≠y | f (x)− f (y)|/∥x − y∥ and ∥ f ∥BL := ∥ f ∥∞ +∥ f ∥L . For any distributions
ν1 and ν2 on Rn , define

d(ν1, ν2) := sup
 f dν1 −


f dν2

 : ∥ f ∥BL ≤ 1

.

Then d is a metric. It follows from [9, Theorem 11.3.3] that the topology generated by d is
equivalent to the weak convergence topology. From the definition, we can easily see that, if ν1
and ν2 are the distributions of two Rn-valued random variables X and Y respectively, then

d(ν1, ν2) ≤ E∥X − Y∥ ≤


E∥X − Y∥2. (3.1)

The following simple fact will be used several times later in this section:ei x
−

n
m=0

(i x)m

m!

 ≤ min


|x |
n+1

(n + 1)!
,

2|x |
n

n!


. (3.2)
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Before we prove Theorem 1.4, we prove several lemmas first. The first lemma below says that
the result in Lemma 1.1 also holds under Nx . Recall the probability measure Nx defined in (2.6).
On the measurable space (D,A), defineH k, j

t (ω) := eλk t
⟨φ
(k)
j , ωt ⟩, t ≥ 0, ω ∈ D.

Lemma 3.1. For x ∈ E, if λ1 > 2λk , then the limitH k, j
∞ := lim

t→∞

H k, j
t

exists Nx -a.e., in L1(Nx ) and in L2(Nx ).

Proof. On the set {ω ∈ D : ∥ω1∥ = 0}, we have ωt = 0, t > 1, thus, H k, j
∞ (ω) = 0. Thus, we

only need to show H k, j
∞ exists Nx -a.s. and in L2(Nx ).

For t > s ≥ 1, since {∥ω1∥ = 0} ⊂ {∥ωs∥ = 0} ⊂ {∥ωt∥ = 0}, we have

Nx


⟨φ
(k)
j , ωt ⟩; ∥ω1∥ ≠ 0|As


= Nx


⟨φ
(k)
j , ωt ⟩|As


= Pωs


⟨φ
(k)
j , X t−s⟩


= e−λk (t−s)

⟨φ
(k)
j , ωs⟩,

which implies {H k, j
t , t ≥ 1} is a martingale under Nx . By (2.4), we have

Nx


⟨φ
(k)
j , ωt ⟩

2
; ∥ω1∥ ≠ 0


= Nx


⟨φ
(k)
j , ωt ⟩

2


= Varδx ⟨φ
(k)
j , X t ⟩.

Then by Lemma 1.1, we easily get lim supt→∞
Nx (H k, j

t )2 < ∞, which implies H k, j
∞ existsNx -a.s. and in L2(Nx ). �

Lemma 3.2. If f ∈ Cs , then σ 2
f < ∞ and, for any nonzero µ ∈ M F (E), it holds under Pµ that

eλ1t
⟨φ1, X t ⟩, eλ1t/2

⟨ f, X t ⟩


d
→


W∞, G1( f )


W∞


, t → ∞,

where G1( f ) ∼ N (0, σ 2
f ). Moreover, W∞ and G1( f ) are independent.

Proof. We need to consider the limit of the R2-valued random variable U1(t) defined by

U1(t) :=


eλ1t

⟨φ1, X t ⟩, eλ1t/2
⟨ f, X t ⟩


, (3.3)

or equivalently, we need to consider the limit of U1(t + s) as t → ∞ for any s > 0. The main
idea is as follows. For s, t > t0,

U1(s + t) =


eλ1(t+s)

⟨φ1, X t+s⟩, eλ1(t+s)/2
⟨ f, X t+s⟩ − eλ1(t+s)/2

⟨Ts f, X t ⟩


+


0, eλ1(t+s)/2

⟨Ts f, X t ⟩


. (3.4)

The double limit, first as t → ∞ and then s → ∞, of the first term of the right side of (3.4) is
equal to the double limit, first as t → ∞ and then s → ∞, of another R2-valued random variable
U2(s, t) where

U2(s, t) :=


eλ1t

⟨φ1, X t ⟩, eλ1(t+s)/2
⟨ f, X t+s⟩ − eλ1(t+s)/2

⟨Ts f, X t ⟩


.

We will prove that the second term on the right hand side of (3.4) has no contribution to the
double limit, first as t → ∞ and then s → ∞, of the left hand side (see (3.12)).
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We claim that, under Pµ,

U2(s, t)
d
→


W∞,


W∞G1(s)


, as t → ∞, (3.5)

where G1(s) ∼ N (0, σ 2
f (s)) with σ 2

f (s) to be given later. In fact, denote the characteristic
function of U2(s, t) under Pµ by κ(θ1, θ2, s, t):

κ(θ1, θ2, s, t) = Pµ


exp


iθ1eλ1t
⟨φ1, X t ⟩

+ iθ2eλ1(t+s)/2
⟨ f, X t+s⟩ − iθ2eλ1(t+s)/2

⟨Ts f, X t ⟩


= Pµ


exp


iθ1eλ1t

⟨φ1, X t ⟩ +


E


D


exp


iθ2eλ1(t+s)/2

⟨ f, ωs⟩


− 1 − iθ2eλ1(t+s)/2

⟨ f, ωs⟩


Nx (dω)X t (dx)


, (3.6)

where in the last equality we used the Markov property of X , (2.3) and (2.7). Define

Rs(θ, x) =


D


exp{⟨iθ f, ωs⟩} − 1 − iθ⟨ f, ωs⟩ +

1
2
θ2

⟨ f, ωs⟩
2


Nx (dω).

Then, by (2.4), we get

κ(θ1, θ2, s, t) = Pµ


exp


iθ1eλ1t
⟨φ1, X t ⟩ +


E


D


−

1
2

eλ1(t+s)θ2
2 ⟨ f, ωs⟩

2


× Nx (dω)X t (dx)+ ⟨Rs(e
λ1(t+s)/2θ2, ·), X t ⟩


= Pµ


exp


iθ1eλ1t

⟨φ1, X t ⟩ −
1
2
θ2

2 eλ1t
⟨Vs, X t ⟩

+ ⟨Rs(e
λ1(t+s)/2θ2, ·), X t ⟩


, (3.7)

where Vs(x) := eλ1sVarδx ⟨ f, Xs⟩. By (3.2), we haveRs(e
λ1(t+s)/2θ2, x)

 ≤ θ2
2 eλ1(t+s)Nx


⟨ f, ωs⟩

2


eλ1(t+s)/2θ2⟨ f, ωs⟩

6
∧ 1



= θ2
2 eλ1tNx


Y 2

s


θ2eλ1t/2Ys

6
∧ 1


, (3.8)

where Ys := eλ1s/2
⟨ f, ωs⟩. Let

h(x, s, t) := Nx


Y 2

s


θ2eλ1t/2Ys

6
∧ 1


.

We note that h(x, s, t) ↓ 0 as t ↑ ∞ and by (2.16), we get

h(x, s, t) ≤ Nx (Y
2
s ) = eλ1sVarδx (⟨ f, Xs⟩) . at0(x)

1/2
∈ L2(E,m).

Thus, by (2.9), we have, for any u < t ,

lim sup
t→∞

eλ1t Tt (h(·, s, t)) ≤ lim sup
t→∞

eλ1t Tt (h(·, s, u)) = ⟨h(·, s, u), φ1⟩mφ1(x).
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Letting u → ∞, we get limt→∞ eλ1t Tt (h(·, s, t)) = 0. Therefore we have

Pµ
⟨Rs(e

λ1(t+s)/2θ2, ·), X t ⟩

 ≤ θ2
2 eλ1t Tt (h(·, s, t)) → 0, as t → ∞,

which implies

lim
t→∞

⟨Rs(e
λ1(t+s)/2θ2, ·), X t ⟩ = 0, in probability.

Furthermore, by Remark 1.3 and the fact Vs(x) . at0(x)
1/2

∈ L2(E,m) ∩ L4(E,m), we have

lim
t→∞

eλ1t
⟨Vs, X t ⟩ = σ 2

f (s)W∞, in probability,

where σ 2
f (s) := ⟨Vs, φ1⟩m . Hence by the dominated convergence theorem, we get

lim
t→∞

κ(θ1, θ2, s, t) = Pµ


exp {iθ1W∞} exp

−

1
2
θ2

2σ
2
f (s)W∞


, (3.9)

which implies our claim (3.5).
Since eλ1(t+s)

⟨φ1, X t+s⟩ − eλ1t
⟨φ1, X t ⟩ → 0 in probability, as t → ∞, we easily get that

under Pµ,

U3(s, t) :=


eλ1(t+s)

⟨φ1, X t+s⟩, eλ1(t+s)/2(⟨ f, X t+s⟩ − ⟨Ts f, X t ⟩)


d
→


W∞,


W∞G1(s)


,

as t → ∞. By (2.15), we have lims→∞ Vs(x) = σ 2
f φ1(x), thus lims→∞ σ 2

f (s) = σ 2
f . So

lim
s→∞

d(G1(s),G1( f )) = 0. (3.10)

Let D(s + t) and D(s, t) be the distributions of U1(s + t) and U3(s, t) respectively, and let D(s)
and D be the distributions of (W∞,

√
W∞G1(s)) and (W∞,

√
W∞G1( f )) respectively. Then,

using (3.1), we have

lim sup
t→∞

d(D(s + t),D) ≤ lim sup
t→∞

[d(D(s + t), D(s, t))+ d(D(s, t),D(s))

+ d(D(s),D)]

≤ lim sup
t→∞

(Pµ(eλ1(t+s)/2
⟨Ts f, X t ⟩)

2)1/2 + 0 + d(D(s),D).(3.11)

Using this and the definition of lim supt→∞, we easily get that

lim sup
t→∞

d(D(t),D) = lim sup
t→∞

d(D(s + t),D)

≤ lim sup
t→∞

(Pµ(eλ1(t+s)/2
⟨Ts f, X t ⟩)

2)1/2 + d(D(s),D).

Letting s → ∞, we get

lim sup
t→∞

d(D(t),D) ≤ lim sup
s→∞

lim sup
t→∞

(Pµ(eλ1(t+s)/2
⟨Ts f, X t ⟩)

2)1/2.

Therefore, we are left to prove that

lim sup
s→∞

lim sup
t→∞

eλ1(t+s)Pµ(⟨Ts f, X t ⟩)
2

= 0. (3.12)
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By (2.13) and (2.10), we have for any x ∈ E ,

eλ1(t+s)Varδx ⟨Ts f, X t ⟩ = eλ1(s+t)
 t

0
Tt−u[A(Ts+u f )2](x) du

= e(λ1−2λγ ( f ))s
 t

0
e(λ1−2λγ ( f ))ueλ1(t−u)Tt−u[A(eλγ ( f )(s+u)Ts+u f )2](x) du

. e(λ1−2λγ ( f ))s
 t

0
e(λ1−2λγ ( f ))ueλ1(t−u)Tt−u[a2t0 ](x) du


and  t

0
e(λ1−2λγ ( f ))ueλ1(t−u)Tt−u(a2t0)(x) du

=

 t−t0

0
+

 t

t−t0


e(λ1−2λγ ( f ))ueλ1(t−u)Tt−u(a2t0)(x) du

.
 t−t0

0
e(λ1−2λγ ( f ))u duat0(x)

1/2
+

 t0

0
e(λ1−2λγ ( f ))(t−u)eλ1u Tu(a2t0)(x) du

. at0(x)
1/2

+

 t0

0
Tu(a2t0)(x) du . at0(x)

1/2.

The last inequality follows from (2.28). Thus,

lim sup
t→∞

eλ1(t+s)Varµ⟨Ts f, X t ⟩ = lim sup
t→∞

eλ1(t+s)
⟨Varδ·⟨Ts f, X t ⟩, µ⟩

. e(λ1−2λγ ( f ))s⟨at0(x)
1/2, µ⟩. (3.13)

By (2.14), we get

lim
t→∞

eλ1(t+s)/2Pµ⟨Ts f, X t ⟩ = lim
t→∞

eλ1(t+s)/2
⟨T(t+s) f, µ⟩ = 0. (3.14)

Now (3.12) follows easily from (3.13) and (3.14). The proof is now complete. �

Lemma 3.3. Assume that f ∈ Cs and h ∈ Cc. Define

Y1(t) := t−1/2eλ1t/2
⟨h, X t ⟩, Y2(t) := eλ1t/2

⟨ f, X t ⟩, t > 0,

and

Yt := Y1(t)+ Y2(t).

Then for any c > 0, δ > 0 and x ∈ E, we have

lim
t→∞

Pδx


|Yt |

2
; |Yt | > ceδt


= 0. (3.15)

Proof. For any ϵ > 0 and η > 0, we have

Pδx


|Yt |

2
; |Yt | > ceδt


≤ 2Pδx


|Y1(t)|

2
; |Yt | > ceδt


+ 2Pδx


|Y2(t)|

2
; |Yt | > ceδt


≤ 2Pδx


|Y1(t)|

2
; |Y1(t)| > ϵeδt


+ 2ϵ2e2δtPδx


|Yt | > ceδt


+ 2Pδx


|Y2(t)|

2
; |Y2(t)|

2 > η


+ 2ηPδx


|Yt | > ceδt


=: J1(t, ϵ)+ J2(t, ϵ)+ J3(t, η)+ J4(t, η).
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Repeating the proof of [20, Lemma 3.2] (with the St f there replaced by Y1(t)), we can get

lim
t→∞

J1(t, ϵ) = 2 lim
t→∞

Pδx


|Y1(t)|

2
; |Y1(t)| > ϵeδt


= 0. (3.16)

By (2.14) and (2.15), we easily get

lim
t→∞

Pδx (|Y2(t)|
2) = σ 2

f φ1(x). (3.17)

By (2.17) and the fact Pδx (Y1(t)) = t−1/2h(x), we get

lim
t→∞

Pδx (|Y1(t)|
2) = lim

t→∞


Varδx (Y1(t))+ t−1h2(x)


= ρ2

hφ1(x).

Thus,

lim sup
t→∞

Pδx (|Yt |
2) ≤ 2 lim

t→∞
Pδx (|Y1(t)|

2
+ |Y2(t)|

2) = 2(σ 2
f + ρ2

h)φ1(x). (3.18)

Thus by Chebyshev’s inequality, we have

lim
ϵ→0

lim sup
t→∞

J2(t, ϵ) ≤ 2 lim
ϵ→0

ϵ2c−2 lim sup
t→∞

Pδx (|Yt |
2) = 0. (3.19)

For J3(t, η), by Lemma 3.2, Y2(t)
d
→ G1( f )

√
W∞. Let Ψη(r) = r on [0, η − 1],Ψη(r) = 0

on [η,∞], and let Ψη be linear on [η − 1, η]. Then, by (3.17),

lim sup
t→∞

Pδx


|Y2(t)|

2
; |Y2(t)|

2 > η


= lim sup
t→∞


Pδx


|Y2(t)|

2


− Pδx


|Y2(t)|

2
; |Y2(t)|

2
≤ η


≤ lim sup

t→∞


Pδx


|Y2(t)|

2


− Pδx


Ψη(|Y2(t)|

2)


= σ 2
f φ1(x)− Pδx


Ψη(G1( f )2W∞)


.

By the monotone convergence theorem and the fact that G1( f ) and W∞ are independent, we
have

lim
η→∞

Pδx


Ψη(G1( f )2W∞)


= Pδx


G1( f )2W∞


= Pδx


G1( f )2


Pδx W∞ = σ 2

f φ1(x).

Thus,

lim
η→∞

lim sup
t→∞

J3(t, η) = 0. (3.20)

By Chebyshev’s inequality and (3.18),

lim sup
t→∞

J4(t, η) ≤ 2ηc−2 lim sup
t→∞

e−2δtPδx (|Yt |
2) = 0. (3.21)

Thus, (3.15) follows easily from (3.16) and (3.19)–(3.21). �

Lemma 3.4. Assume that f ∈ Cs and h ∈ Cc. DefineY1(t)(ω) := t−1/2eλ1t/2
⟨h, ωt ⟩, Y2(t)(ω) := eλ1t/2

⟨ f, ωt ⟩, t > 0, ω ∈ D,

and Yt := Y1(t)+ Y2(t).
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For any c > 0 and δ > 0, we have

lim
t→∞

Nx


|Yt |

2
; |Yt | > ceδt


= 0. (3.22)

Proof. For t > 1,

Nx


|Yt |

2
; |Yt | > ceδt


= Nx


|Yt |

2
; |Yt | > ceδt , ∥ω1∥ ≠ 0


.

Thus, we only need to prove

lim
t→∞

Nx


|Yt |

2
; |Yt | > ceδt


= 0.

For any x ∈ E , let N (dω) be a Poisson random measure with intensity Nx (dω) defined on the
probability space {Ω̃ , F̃ ,Pδx } and

Λt =


D
ωt N (dω).

We know that, under Pδx , {Λt , t ≥ 0} has the same law as {X t , t ≥ 0} under Pδx . Define

Λ∗
t :=


D ωt N (dω) and Yt (Λ∗) := t−1/2eλ1t/2

⟨h,Λ∗
t ⟩ + eλ1t/2

⟨ f,Λ∗
t ⟩,

where D := {ω ∈ D : ∥ω1∥ ≠ 0}. It is clear that for t > 1,Λ∗
t = Λt and Yt (Λ∗)

d
= Yt . Since

Nx (D) < ∞,Λ∗
t is a compound Poisson process and can be written as

Λ∗
t =

K
j=1

X j
t ,

where X j
t , j = 1, 2, . . . are i.i.d. with the same law as ωt under Ñx and K is a Poisson random

variable with parameter Nx (D) which is independent of X j
t , j = 1, 2, . . . . Let

Yt (X j ) := t−1/2eλ1t/2
⟨h, X j

t ⟩ + eλ1t/2
⟨ f, X j

t ⟩.

Then, Yt (X j ) is independent of K and has the same law as Yt under Nx . Therefore, for t > 1,

Pδx (|Yt |
2
; |Yt | > ceδt ) = Pδx (|Yt (Λ∗)|2; |Yt (Λ∗)| > ceδt )

≥ Pδx (|Yt (X1)|2; |Yt (X1)| > ceδt , K = 1)

= Pδx (K = 1)Pδx (|Yt (X1)|2; |Yt (X1)| > ceδt )

= Nx (D)e−Nx (D)Nx (|Yt |
2
; |Yt | > ceδt ).

Now (3.22) follows easily from Lemma 3.3. �

Lemma 3.5. Assume that f ∈ Cs and h ∈ Cc. Then
eλ1t

⟨φ1, X t ⟩, t−1/2eλ1t/2
⟨h, X t ⟩, eλ1t/2

⟨ f, X t ⟩


d
→


W∞,


W∞G2(h),


W∞G1( f )


, (3.23)

where G2(h) ∼ N (0, ρ2
h) and G1( f ) ∼ N (0, σ 2

f ). Moreover, W∞,G2(h) and G1( f ) are
independent.



450 Y.-X. Ren et al. / Stochastic Processes and their Applications 125 (2015) 428–457

Proof. In the proof, we always assume t > 3t0. We define an R3-valued random variable by

U1(t) :=


eλ1t

⟨φ1, X t ⟩, t−1/2eλ1t/2
⟨h, X t ⟩, eλ1t/2

⟨ f, X t ⟩


.

Let n > 2 and write

U1(nt) =


eλ1nt

⟨φ1, Xnt ⟩, (nt)−1/2eλ1nt/2
⟨h, Xnt ⟩, eλ1nt/2

⟨ f, Xnt ⟩


.

To consider the limit of U1(t) as t → ∞, it is equivalent to consider the limit of U1(nt) for any
n > 2. The main idea is as follows. For t > t0, n > 2,

U1(nt) =


eλ1nt

⟨φ1, Xnt ⟩,
eλ1nt/2(⟨h, Xnt ⟩ − ⟨T(n−1)t h, X t ⟩)

((n)t)1/2
,

eλ1nt/2(⟨ f, Xnt ⟩ − ⟨T(n−1)t f, X t ⟩)


+


0, (nt)−1/2eλ1nt/2

⟨T(n−1)t h, X t ⟩, eλ1nt/2
⟨T(n−1)t f, X t ⟩


. (3.24)

The double limit, first as t → ∞ and then n → ∞, of the first term of the right side of (3.24)
is equal to the double limit, first as t → ∞ and then n → ∞, of another R2-valued random
variable U2(n, t) where

U2(n, t) :=


eλ1t

⟨φ1, X t ⟩,
eλ1nt/2(⟨h, Xnt ⟩ − ⟨T(n−1)t h, X t ⟩)

((n − 1)t)1/2
,

eλ1nt/2(⟨ f, Xnt ⟩ − ⟨T(n−1)t f, X t ⟩)


.

We will prove that the second term on the right hand side of (3.24) has no contribution to the
double limit, first as t → ∞ and then n → ∞, of the left hand side of (3.24).

We claim that

U2(n, t)
d
→


W∞,


W∞G2(h),


W∞G1( f )


, as t → ∞. (3.25)

Denote the characteristic function of U2(n, t) under Pµ by κ2(θ1, θ2, θ3, n, t). Define

Y1(t, θ2) := θ2t−1/2eλ1t/2
⟨h, X t ⟩, Y2(t, θ3) := θ3eλ1t/2

⟨ f, X t ⟩, t > 0,

and

Yt (θ2, θ3) = Y1(t, θ2)+ Y2(t, θ3).

We define the corresponding random variables on D as Ỹ1(t, θ2), Ỹ2(t, θ3) and Ỹt (θ2, θ3). Using
an argument similar to that leading to (3.6), we get

κ2(θ1, θ2, θ3, n, t) = Pµ


exp


iθ1eλ1t
⟨φ1, X t ⟩ +


E


D


exp


ieλ1t/2Ỹ(n−1)t (θ2, θ3)(ω)


− 1 − ieλ1t/2Ỹ(n−1)t (θ2, θ3)(ω)


Nx (dω)X t (dx)


.

Define

R′
t (x, θ) :=


D


exp{iθ Ỹt (θ2, θ3)(ω)} − 1 − iθ Ỹt (θ2, θ3)(ω)

+
1
2
θ2(Ỹt (θ2, θ3)(ω))

2


Nx (dω)
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and

J (n, t, x) :=


D


exp{ieλ1t/2Ỹ(n−1)t (θ2, θ3)(ω)} − 1 − ieλ1t/2Ỹ(n−1)t (θ2, θ3)(ω)


Nx (dω).

Then

J (n, t, x) = −
1
2

eλ1tNx (Ỹ(n−1)t (θ2, θ3))
2
+ R′

(n−1)t (x, eλ1t/2),

and

κ2(θ1, θ2, θ3, n, t) = Pµ

exp


iθ1eλ1t

⟨φ1, X t ⟩ + ⟨J (n, t, ·), X t ⟩

.

Let V n
t (x) := Nx (Ỹ(n−1)t (θ2, θ3))

2. Then

⟨J (n, t, ·), X t ⟩ = −
1
2

eλ1t
⟨V n

t , X t ⟩ + ⟨R′

(n−1)t (·, eλ1t/2), X t ⟩

:= J1(n, t)+ J2(n, t).

We first consider J1(n, t). By (2.4),

V n
t (x) = Varδx (Y(n−1)t (θ2, θ3))

= Varδx (Y1((n − 1)t, θ2))+ Varδx (Y2((n − 1)t, θ3))

+ Covδx (Y1((n − 1)t, θ2), Y2((n − 1)t, θ3)).

So by (2.17), (2.20) and (2.25), we have, for t > 3t0,V n
t (x)− (θ2

2ρ
2
h + θ2

3σ
2
f )φ1(x)


≤

Varδx (Y1((n − 1)t, θ2))− θ2
2ρ

2
hφ1(x)

+ Varδx (Y2((n − 1)t, θ3))− θ2
3σ

2
f φ1(x)


+
Covδx (Y1((n − 1)t, θ2), Y2((n − 1)t, θ3))


.


e(λ1−2λγ ( f ))(n−1)t
+ e(λ1−λ2)(n−1)t

+ ((n − 1)t)−1/2
+ ((n − 1)t)−1


at0(x)

1/2.

(3.26)

Thus, we have that as t → ∞,

eλ1t
V n

t (x)− (θ2
2ρ

2
h + θ2

3σ
2
f )φ1(x)

 , X t


.


e(λ1−2λγ ( f ))(n−1)t
+ e(λ1−λ2)(n−1)t

+ ((n − 1)t)−1/2
+ ((n − 1)t)−1


× eλ1t

⟨(at0)
1/2, X t ⟩ → 0,

in probability. It follows that

lim
t→∞

J1(n, t) = lim
t→∞

−
1
2

eλ1t (θ2
2ρ

2
h + θ2

3σ
2
f )⟨φ1, X t ⟩ = −

1
2
(θ2

2ρ
2
h + θ2

3σ
2
f )W∞

in probability. (3.27)

For J2(n, t), by (3.2), we have, for any ϵ > 0,

|R′

(n−1)t (x, eλ1t/2)| ≤
1
6

e
3
2λ1tNx


|Ỹ(n−1)t (θ2, θ3)|

3
; |Ỹ(n−1)t (θ2, θ3)| < ϵe−λ1t/2


+ eλ1tNx


|Ỹ(n−1)t (θ2, θ3)|

2
; |Ỹ(n−1)t (θ2, θ3)| ≥ ϵe−λ1t/2
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≤
ϵ

6
eλ1tNx


|Ỹ(n−1)t (θ2, θ3)|

2


+ eλ1tNx


|Ỹ(n−1)t (θ2, θ3)|

2
; |Ỹ(n−1)t (θ2, θ3)| ≥ ϵe−λ1t/2


=
ϵ

6
eλ1t V n

t (x)+ eλ1t Fn
t (x),

where Fn
t (x) = Nx


|Ỹ(n−1)t (θ2, θ3)|

2
; |Ỹ(n−1)t (θ2, θ3)| ≥ ϵe−λ1t/2


. Note that

eλ1tPµ⟨Fn
t (x), X t ⟩ = eλ1t

⟨Tt (F
n
t ), µ⟩. (3.28)

It follows from Lemma 3.4 that limt→∞ Fn
t (x) = 0. By (3.26), we also have

Fn
t (x) ≤ V n

t (x) . at0(x)
1/2,

which implies that ∥Fn
t ∥2 → 0 as t → ∞. By Lemma 2.5,

lim
t→∞

eλ1t Tt (F
n
t )(x) = 0.

Note that, by (2.10), eλ1t Tt (Fn
t ) . eλ1t Tt (a

1/2
t0 ) . a1/2

t0 . Since µ has compact support and at0
is continuous, we have ⟨at0 , µ⟩ < ∞. By (3.28) and the dominated convergence theorem, we
obtain limt→∞ eλ1tPµ⟨Fn

t (x), X t ⟩ = 0, which implies that eλ1t
⟨Fn

t (x), X t ⟩ → 0 in probability.
Furthermore, by (3.27), we have that as t → ∞,

ϵ

6
eλ1t

⟨V n
t , X t ⟩ →

ϵ

6
(θ2

2ρ
2
h + θ2

3σ
2
f )W∞ in probability.

Thus, letting ϵ → 0, we get that as t → ∞,

J2(n, t) → 0 in probability. (3.29)

Thus, when t → ∞,

exp {⟨J (n, t, ·), X t ⟩} → exp

−

1
2
(θ2

2ρ
2
h + θ2

3σ
2
f )W∞


(3.30)

in probability. Since the real part of J (n, t, x) is less than 0, we have

| exp {⟨J (n, t, ·), X t ⟩} | ≤ 1.

So by the dominated convergence theorem, we get that

lim
t→∞

κ2(θ1, θ2, θ3, n, t) = Pµ


exp {iθ1W∞} exp

−

1
2
(θ2

2ρ
2
h + θ2

3σ
2
f )W∞


, (3.31)

which implies our claim (3.25).
By (3.25) and the fact eλ1nt

⟨φ1, Xnt ⟩−eλ1t
⟨φ1, X t ⟩ → 0, in probability, as t → ∞, we easily

get

U3(n, t) :=


eλ1nt

⟨φ1, Xnt ⟩,
eλ1nt/2(⟨h, Xnt ⟩ − ⟨T(n−1)t h, X t ⟩)

(nt)1/2
,

eλ1nt/2(⟨ f, Xnt ⟩ − ⟨T(n−1)t f, X t ⟩)


d
→


W∞,


n − 1

n


W∞G2(h),


W∞G1( f )


.
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Using (2.17) and the fact Pµ⟨h, X t ⟩ = ⟨Tt h, µ⟩ = e−λ1t/2
⟨h, µ⟩, we can get

(nt)−1eλ1ntPµ(⟨T(n−1)t h, X t ⟩)
2

= (nt)−1eλ1tVarµ⟨h, X t ⟩ + (nt)−1eλ1t (Pµ⟨h, X t ⟩)
2

. n−1(1 + t−1). (3.32)

Using (3.13) with s = (n − 1)t , and then letting t → ∞, by (2.14) we get

eλ1ntPµ(⟨T(n−1)t f, X t ⟩)
2 . e(λ1−2λγ ( f ))(n−1)t

⟨at0(x)
1/2, µ⟩ + eλ1nt

⟨Tnt f, µ⟩
2

→ 0. (3.33)

Let D(nt) and Dn(t) be the distributions of U1(nt) and U3(n, t) respectively, and let Dn

and D be the distributions of


W∞,


n−1

n

√
W∞G2(h),

√
W∞G1( f )


and


W∞,

√
W∞G2(h),

√
W∞G1( f )


respectively. Then, using (3.1), we have

lim sup
t→∞

d(D(nt),D) ≤ lim sup
t→∞

[d(D(nt), Dn(t))+ d(Dn(t),Dn)+ d(Dn,D)]

≤ lim sup
t→∞


(nt)−1eλ1ntPµ⟨T(n−1)t h, X t ⟩

2

+ eλ1ntPµ⟨T(n−1)t f, X t ⟩
2
1/2

+ 0 + d(Dn,D). (3.34)

Using the definition of lim supt→∞, (3.32) and (3.33), we easily get that

lim sup
t→∞

d(D(t),D) = lim sup
t→∞

d(D(nt),D) ≤ c/
√

n + d(Dn,D),

where c is a constant. Letting n → ∞, we get lim supt→∞ d(D(t),D) = 0. The proof is now
complete. �

Recall that

g(x) =


k:2λk<λ1

nk
j=1

bk
jφ
(k)
j (x) and Iu g(x) =


k:2λk<λ1

nk
j=1

eλk ubk
jφ
(k)
j (x).

Note that the sum over k is a sum over a finite number of elements. Define

H∞(ω) :=


k:2λk<λ1

nk
j=1

bk
j
H k, j

∞ (ω), ω ∈ D.

By Lemma 3.1, we have, as u → ∞

⟨Iu g, ωu⟩ → H∞, Nx -a.e., in L1(Nx ) and in L2(Nx ).

Since Nx ⟨Iu g, ωu⟩ = Pδx ⟨Iu g, Xu⟩ = g(x), we get

Nx (H∞) = g(x). (3.35)

By (2.4) and (2.13), we have

Nx ⟨Iu g, ωu⟩
2

= Varδx ⟨Iu g, Xu⟩ =

 u

0
Ts

A

 
k:2λk<λ1

nk
j=1

eλk sbk
jφ

k
j

2
 (x) ds, (3.36)
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which implies

Nx (H∞)
2

=


∞

0
Ts

A

 
k:2λk<λ1

nk
j=1

eλk sbk
jφ

k
j

2
 (x) ds. (3.37)

By (1.9), we have that for any x ∈ E ,
k:2λk<λ1

nk
j=1

eλk s
|bk

j ||φ
k
j (x)| . eλK sa2t0(x)

1/2,

where K = sup{k : 2λk < λ1}. So by (3.37), (2.10) and (2.28), we have that for any x ∈ E ,

Nx (H∞)
2 .


∞

0
e(2λK −λ1)seλ1s Ts(a2t0)(x) ds

=

 t0

0
+


∞

t0


e(2λK −λ1)seλ1s Ts(a2t0)(x) ds

.
 t0

0
Ts(a2t0)(x) ds +


∞

t0
e(2λK −λ1)s ds at0(x)

1/2

. at0(x)
1/2

∈ L2(E,m) ∩ L4(E,m). (3.38)

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Consider an R4-valued random variable U4(t) defined by:

U4(t) :=


eλ1t

⟨φ1, X t ⟩, eλ1t/2


⟨g, X t ⟩ −


k:2λk<λ1

nk
j=1

e−λk t bk
j H k, j

∞


,

eλ1t/2
⟨h, X t ⟩

t1/2 , eλ1t/2
⟨ f, X t ⟩


.

To get the conclusion of Theorem 1.4, it suffices to show that, under Pµ,

U4(t)
d
→


W∞,


W∞G3(g),


W∞G2(h),


W∞G1( f )


, (3.39)

where W∞,G3(g),G2(h) and G1( f ) are independent. Denote the characteristic function of
U4(t) under Pµ by κ1(θ1, θ2, θ3, θ4, t). Then, we only need to prove

lim
t→∞

κ1(θ1, θ2, θ3, θ4, t) = Pµ


exp{iθ1W∞} exp

−

1
2
(θ2

2β
2
g + θ2

3ρ
2
h + θ2

4σ
2
f )W∞


.

(3.40)

Note that, by Lemma 1.1,


k:2λk<λ1

nk
j=1 e−λk t bk

j H k, j
∞ = limu→∞⟨Iu g, X t+u⟩,Pµ-a.s. We

have

κ1(θ1, θ2, θ3, θ4, t) = lim
u→∞

Pµ


exp


iθ1eλ1t
⟨φ1, X t ⟩ + iθ2eλ1t/2(⟨g, X t ⟩ − ⟨Iu g, X t+u⟩)

+ iθ3t−1/2eλ1t/2
⟨h, X t ⟩ + iθ4eλ1t/2

⟨ f, X t ⟩


= lim

u→∞
Pµ


exp


iθ1eλ1t
⟨φ1, X t ⟩ + iθ3t−1/2eλ1t/2

⟨h, X t ⟩

+ iθ4eλ1t/2
⟨ f, X t ⟩ + ⟨Ju(t, ·), X t ⟩


, (3.41)
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where

Ju(t, x) =


D


exp


−iθ2eλ1t/2

⟨Iu g, ωu⟩


− 1 + iθ2eλ1t/2

⟨Iu g, ωu⟩


Nx (dω).

The last equality above follows from the Markov property of X , (2.7) and the fact
D
⟨Iu g, ωu⟩Nx (dω) = Pδx ⟨Iu g, Xu⟩ = g(x).

We will show that

lim
u→∞

Ju(t, x) = Nx


exp


−iθ2eλ1t/2 H∞


− 1 + iθ2eλ1t/2 H∞


=: J (t, x). (3.42)

For u > 1, |e−iθ2eλ1t/2
⟨Iu g,ωu⟩

− 1| ≤ 21{∥ω1∥≠0}(ω). By Remark 2.3, Nx (∥ω1∥ ≠ 0) < ∞. Thus,
by Lemma 3.1 and the dominated convergence theorem, we get

lim
u→∞


D


exp


−iθ2eλ1t/2

⟨Iu g, ωu⟩


− 1


Nx (dω) = Nx


exp


−iθ2eλ1t/2 H∞


− 1


.

By (3.35), we get Nx H∞ = Nx ⟨Iu g, ωu⟩ = g(x). Then, (3.42) follows immediately.
By (3.2), we get

sup
u≥0

|Ju(t, x)| ≤
1
2
θ2

2 eλ1t sup
u≥0

Nx ⟨Iu g, ωu⟩
2 <

1
2
θ2

2 eλ1tNx H2
∞ < ∞.

Note that, by (3.38),

Pµ⟨N· H
2
∞, X t ⟩ . Pµ⟨a1/2

t0 , X t ⟩ = ⟨Tt a
1/2
t0 , µ⟩ < ∞,

which implies that ⟨N· H2
∞, X t ⟩ < ∞,Pµ-a.s. So, by the dominated convergence theorem, we

get

lim
u→∞

⟨Ju(t, ·), X t ⟩ = ⟨J (t, ·), X t ⟩, Pµ-a.s.

Using the dominated convergence theorem again, we obtain

κ1(θ1, θ2, θ3, θ4, t) = Pµ


exp


iθ1eλ1t
⟨φ1, X t ⟩ + iθ3t−1/2eλ1t/2

⟨h, X t ⟩

+ iθ4eλ1t/2
⟨ f, X t ⟩ + ⟨J (t, ·), X t ⟩


.

Let

R(θ, x) := Nx


exp {iθH∞} − 1 − iθH∞ +

1
2
θ2 H2

∞


.

Thus,

⟨J (t, ·), X t ⟩ = −
1
2
θ2

2 eλ1t
⟨V, X t ⟩ + ⟨R(−eλ1t/2θ2, ·), X t ⟩,

where V (x) := Nx (H∞)
2. By (3.2), we have

|R(−eλ1t/2θ2, x)| ≤ eλ1tθ2
2 Nx


|H∞|

2


eλ1t/2θ2|H∞|

6
∧ 1


, (3.43)
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which implies that

Pµ
⟨R(−eλ1t/2θ2, ·), X t ⟩

 ≤ θ2
2 eλ1t

⟨ Tt (k(·, t)), µ ⟩,

where

k(x, t) := Nx


|H∞|

2


eλ1t/2θ2|H∞|

6
∧ 1


.

It is clear that k(x, t) ↓ 0 as t ↑ ∞. Thus as t → ∞, eλ1t Tt (k(·, t))(x) → 0, which implies

lim
t→∞

⟨R(−eλ1t/2θ2, ·), X t ⟩ = 0 in probability. (3.44)

Since V ∈ L2(E,m) ∩ L4(E,m), by Remark 1.3, we have

lim
t→∞

eλ1t
⟨V, X t ⟩ = ⟨V, φ1⟩m W∞ in probability. (3.45)

Therefore, combining (3.44) and (3.45), we get

lim
t→∞

exp {⟨J (t, ·), X t ⟩} = exp

−

1
2
θ2

2 ⟨V, φ1⟩m W∞


in probability. (3.46)

Since the real part of J (t, x) is less than 0,

|exp {⟨J (t, ·), X t ⟩}| ≤ 1. (3.47)

Recall that limt→∞ eλ1t
⟨φ1, X t ⟩ = W∞,Pµ-a.s. Thus by (3.46), (3.47) and the dominated

convergence theorem, we get that as t → ∞,Pµ exp


iθ1 −
1
2
θ2

2 ⟨V, φ1⟩m


eλ1t

⟨φ1, X t ⟩ + iθ3t−1/2eλ1t/2
⟨h, X t ⟩

+ iθ4eλ1t/2
⟨ f, X t ⟩


− κ1(θ1, θ2, θ3, θ4, t)


≤ Pµ

exp {⟨J (t, ·), X t ⟩} − exp

−

1
2
θ2

2 ⟨V, φ1⟩meλ1t
⟨φ1, X t ⟩

 → 0. (3.48)

By Lemma 3.5,

lim
t→∞

Pµ


exp


iθ1 −
1
2
θ2

2 ⟨V, φ1⟩m


eλ1t

⟨φ1, X t ⟩ + iθ3t−1/2eλ1t/2
⟨h, X t ⟩

+ iθ4eλ1t/2
⟨ f, X t ⟩


= Pµ


exp{iθ1W∞} exp


−

1
2
(θ2

2 ⟨V, φ1⟩m + θ2
3ρ

2
f + θ2

4σ
2
f )W∞


. (3.49)

By (3.37), we get

⟨V, φ1⟩m =


∞

0
e−λ1s


A(Is g)2, φ1


m

ds.

The proof is now complete. �
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