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Abstract Consider a supercritical superprocess X = {X;, t > 0} on a locally
compact separable metric space (E, m). Suppose that the spatial motion of X is
a Hunt process satisfying certain conditions and that the branching mechanism
is of the form

Vo) = —a@A+ BN+ [ (VL dgn(edy) € B>
(0,400)

where a € %y(E), b € %, (E), and n is a kernel from E to (0,+oc)
satisfying sup,cp f0+°o y*n(r,dy) < +oo. Put Tyf(z) = Ps,{f, X;). Suppose
that the semigroup {7}; ¢t > 0} is compact. Let Ao be the eigenvalue of the
(possibly non-symmetric) generator L of {T;} that has the largest real part
among all the eigenvalues of L, which is known to be real-valued. Let ¢g
and <$0 be the eigenfunctions of L and L (the dual of L) associated with Ag,
respectively. Assume Ay > 0. Under some conditions on the spatial motion
and the ¢g-transform of the semigroup {7}}, we prove that for a large class of
suitable functions f,

t—+00

lim e 0(f, X,) = Wi /E Bo(v)f(w)m(dy), P,-as.

for any finite initial measure g on E with compact support, where W, is
the martingale limit defined by W, = limy— 4o e*)‘ot<¢o,Xt>. Moreover, the
exceptional set in the above limit does not depend on the initial measure u and
the function f.
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1 Introduction

Recently, there have been quite a few papers on law of large numbers for
superdiffusions. In [11,13,14], some weak laws of large numbers (convergence
in law or in probability) were established. The strong law of large numbers for
superprocesses was first studied in [7] followed by [10,20,22,31]. The continuity
of the sample paths of the spatial motions played an important role in all the
papers mentioned above except [7,20]. It is more difficult to establish strong
law of large numbers for superprocesses with discontinuous spatial motions. For
a good survey on recent developments in laws of large numbers for branching
Markov processes and superprocesses, see [10]. In the papers mentioned above,
either the spatial motion is assumed to be a diffusion, or the spatial motion is
assumed to be a symmetric Hunt process. In [7], where the spatial motion is a
symmetric Hunt process, a condition on the smallness at ‘infinity’ of the linear
term in the branching mechanism of the superprocess has to be assumed. The
purpose of this paper is to give a different setup under which the strong law of
large numbers for superprocesses holds. The setup of this paper complements
the previous setups. In particular, the spatial motion may be discontinuous
and non-symmetric. We will give some examples that satisfy the conditions of
this paper.

Papers [7,10,22] dealt with strong law of large numbers for superprocesses
with spatially dependent branching mechanism. The main ideas of the
arguments of [7,10,22] are similar and consist of two steps. The first step is
to prove an almost sure limit result along discrete times, and the second step
is to prove that the result is true for continuous times. An essential difficulty
comes from the second step. [22] gave a method for the transition from lattice
times to continuous times based on resolvent operator and approximation
of the indicator function of an open subset of E by resolvent functions. The
reason that this approximation works for superdiffusions is that the sample
paths of the spatial motion are continuous. [10] also used this idea to show that
indicator functions can be approximated by resolvent functions. For general
superprocesses with spatial motions which might be discontinuous, [7] is the
first paper to establish a strong law of large numbers under a second moment
condition. The paper [7] managed to overcome the difficulty of transition from
discrete times to continuous times with a highly non-trivial application of the
martingale formulation of superprocesses. However, the assumptions of [7] are
restrictive in two aspects: the spatial motion is assumed to be symmetric and
the linear term of the branching mechanism is assumed to satisfy a Kato class
condition at ‘infinity’.

Papers [20,31] studied strong law of large numbers for super-Brownian
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motions and super-a-stable processes with spatially independent branching
mechanism, respectively. The key ingredients in the argument of [20,31] are
Fourier analysis and stochastic analysis, and the conditions in [20,31] are quite
different from those of [7,22]. The mean semigroup of the superprocess is
assumed to have a spectral gap in [7,22], while the mean semigroups of the
superprocesses of [20,31] have continuous spectra. In this paper, we assume
that the spatial motion has a dual with respect to a certain measure and that
the branching mechanism satisfies a second moment condition. Under the
conditions of this paper, the mean semigroup of the superprocess
automatically has a spectral gap.

1.1 Spatial process

Our assumptions on the underlying spatial process are similar to those in [25].
In this subsection, we lay out the assumptions on the spatial process.

Suppose that (F,m) is a locally compact separable metric space and m is
a o-finite Borel measure on F with full support. Let E5 = E'U{d} be the one-
point compactification of F. Every function f on F is automatically extended
to Eg by setting f(0) = 0. We will assume that £ = {&;, 11, } is a Hunt process
on E and ¢ :=inf{t > 0: & = 0} is the lifetime of . The transition semigroup
of £ will be denoted by {P;, t > 0}. We will always assume that there exists a
family of strictly positive continuous functions {p(t,z,y), t > 0} on E x E such
that

P f(x) = /E p(t,z,y) f(y)m(dy).

Define
mm:éﬁmmmmm wm:éﬁmwmmw (1.1)

In this paper, we make the following assumption.

Assumption 1.1 (a) Forallt>0and z € E, [,p(t,y,z)m(dy) < 1.
(b) For any t > 0, a; and @; are continuous L!(E;m)-integrable functions.
(c) There exists tg > 0 such that a;,,as, € L2(E;m).

By the Chapman-Kolmogorov equation and the Cauchy-Schwarz inequality,
plt+s,2,y) = /Ep(t, 2, 2)p(s, 2, y)m(dz) < (ar(2)) 2@ ()% (1.2)
Therefore,
ourale) < o) [ @mAn). Gen(o) <ale) [ almidn)

Thus, under condition (b), condition (c) above is equivalent to
(¢') there exists tg > 0 such that for all t > tq, as, a; € L*(E;m).
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Under Assumption 1.1 (a), for every ¢t > 0, both P, and the operator B
defined by

Bf(z) = /E Pty ) f(y)m(dy)

are contraction operators in LP(E;m) for every p € [1,+00], and they are dual
to each other. Assumption 1.1 (b) implies that each P; is a Hilbert-Schmidt
operator in L?(E;m) and thus is compact. Hence, P; has discrete spectrum.

1.2 Superprocesses

In this subsection, we introduce the superprocesses. Let %,(E) (resp. %, (E))
be the family of bounded (resp. nonnegative bounded) Borel functions on E.
Denote by (-, -),, the inner product in L?(E;m).

The superprocess X = { Xy, t > 0} is determined by three objects: a spatial
motion & = {&;,II,} on F satisfying the assumptions of the previous subsection,
a branching rate function G(z) on E which is a nonnegative bounded Borel
function, and a branching mechanism v of the form

Y(x,\) = —a(x)\ + b(x)A? + / (e — 1+ My)n(z,dy), x€E, >0,

(0,+00)
(1.3)
where a € B,(E), b € %, (E), and n is a kernel from E to (0, +00) satisfying
+o0
sup/ y?n(x,dy) < +oo. (1.4)
zeE JO

Let 4 (F) be the space of finite measures on E, equipped with the weak
convergence topology. As usual,

(o= [ F@ntda). = (L.

By [21, Theorem 5.12], there is a Borel right process X = {Q,9,%;, X;,P,}
taking values in .#p(E), called superprocess, such that for every f € %, (E)
and p € Ar(E),

—log Byi(e™X0) = (up (-, 1), ), (15)

where u¢(x,t) is the unique positive solution to the equation

up(e,t) + 10, /0 BlEwr up(Ent — 8))B(E)ds = T, F(E1), (16)

where (0,\) = 0, A > 0. Here, (¢,%):>0 are augmented, (¢,t > 0) is
right continuous and X satisfies the Markov property with respect to (¢, t >
0). Moreover, such a superprocess X has a Hunt realization in .Zp(E), see
[21, Theorem 5.12]. In this paper, the superprocess we deal with always takes
such a Hunt realization.
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Define
+oo
a(z) = B(x)a(z), A(x):= [(x) <2b(:p) —|—/O yzn(x,dy)>. (1.7)

By our assumptions, a(z) € %,(E) and A(z) € %, (E). Thus, there exists
K > 0 such that

igg(!a(w)\ +A(r)) < K. (1.8)

For any f € %,(E) and (t,x) € (0,+00) X E, define

T, f(2) = I, [eo @)% £ (g, )]. (1.9)
It is well known that

Tif(x) =Py, (f, X;), VazeE.

It is known that (see, e.g., [25] and [27, Lemma 2.1]) {7}, t > 0} is a strongly
continuous semigroup on L?(E;m) and there exists a function ¢(t,x,y) on
(0,+00) x E x E which is continuous in (x,y) for each ¢t > 0 such that

e Mip(t,2,y) < q(t,z,y) < e®'p(t,z,y), (ta,y) € (0,4+00) x E x E, (1.10)

and that for any bounded Borel function f on E and (t,z) € (0,4+00) X E,

th(fv)Z/ECJ(taway)f(y)m(dy)-

It follows immediately that, for any f € LP(E,m) with p > 1,

ITeflp < ™ IPfllp < ™11 £l (1.11)

~

Mm:éﬁmmmm,wm:éﬁwwmm. (1.12)

Then b; and Bt enjoy the following properties.

(i) For any t > 0, we have by, by € LY(E;m). Moreover, by(z) and gt(x) are
continuous in x € F.

(ii) There exists to > 0 such that for all ¢ > ¢, be, by € L3(E;m).
Let {7}, t > 0} be the adjoint semigroup of {T}, ¢t > 0} on L%(E,m) defined
by

Tyg(x) = /E q(t, y, x)g(y)m(dy).

It is easy to see 7 is the dual operator of 7} in L?(E;m). Tt follows that
{T;, t > 0} is also strongly continuous in L?(E,m). Since ¢(t,-,y) and a; are
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continuous, by (1.2) and (1.10), using the dominated convergence theorem, we
get that for any t > 0 and f € L?(E;m), T;f and T.f are continuous.

It follows from (i) above that, for any ¢t > 0, T; and ft are compact operators
in L2(E;m). Let L and L be the infinitesimal generators of the semigroups {T}}
and {T;} in L2(E;m), respectively. Let o(L) and (L) be the spectra of L and
L, respectively. It follows from [23, Theorem 2.2.4, Corollary 2.3.7] that both

o(L) and o(L) consist of eigenvalues, and that o(L) and o(L) have the same
number, say N, of eigenvalues. Let

{0,1,2,...,N—1}, N < 400,
{0,1,2,...}, otherwise.

For a complex number a, we use Re(a) to denote its real part. Define
Ao := supRe(c (L)) = sup Re(o(L)).

By Jentzsch’s theorem ([29, Theorem V.6.6]), Ao is an eigenvalue of multiplicity
1 for both L and L; see [8, Theorem 7.1] and its proof for details. Assume
that ¢g and 50 are eigenfunctions of L and E, respectively, associated with \g.
Functions ¢g and 4/50 can be chosen to be continuous strictly positive and satisfy

doll2 =1, (b0, bo)m = 1.
We list the eigenvalues of {\, k € I} of L in an order so that
Mo > Re(A1) > Re(Ag) > --- .

Then {)\, k € I} are the eigenvalues of L. For convenience, we define, for any
positive integer not in I, _
)\k = )\k == —OQ.

For t > 0,
Tido(x) = e'¢y (),
and thus,
go(x) < e (). (1.13)

Similarly, we have
Tido(a) = 'o(a),  do(@) < e doll2 5, (2).
Therefore, by Assumption 1.1 (c),
do € L*(E;m) N LY(E;m).

In this paper, we always assume that the superprocess X is supercritical, that
is, Ag > 0. Define
W, i= e (¢, Xy).
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By the Markov property of X, {Wy, t > 0} is a nonnegative martingale with
respect to {¥4;, t > 0}, and thus,

We := lim W;

t—-+4o0

exists. Under our assumptions, W; is a L?-bounded martingale, and thus, W,
is non-degenerate, that is,

P,(Ws > 0) > 0.

1.3 Main results

In this subsection, we state our main results. In the remainder of this
paper, whenever we talk about an initial configuration u € .#Zp(E), we always
implicitly assume that it has compact support.

For ¢ > max{K, Ao} and f € LP(E;m) with p > 1, define

+oo +oo
/ e T, f(x)ds, / e PTs|f|(x)ds < 400,
0 0

0, otherwise.

Uyf(z) ==

Note that for p > 1, by (1.11),

([ ([T ermina) man) " < [T emmasnia

—+o00
/ e 156K ds|| ]|,
0
< 400, (1.14)

IN

which implies

+o0
| e niss € @Em),
0

and thus,
+o0o
/ e PTs|fl(x)ds < 400, m-a.e.
0

Consequently, U,f € LP(E;m). In Lemma 2.2 below, we will show that if
f € L3E,m)N L*(E,m), then (U, f, X¢) is well defined.

Theorem 1.2 Assume that Assumption 1.1 holds. If g = Uyf for some
f € L*(E,m) N LY E;m) and ¢ > max{K,\o}, then for any u € Mr(E),
as t — +o0,

e Mg, X0) = (g, 00)mWoo,  Py-as. (1.15)

For any f > 0, define

1) = e ( [aterts) o). o)
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Let Co(E;R) denote the family of real-valued continuous functions f on E
with the property that lim, .5 f(z) = 0.
We will also make the following assumption in this paper.

Assumption 1.3 The semigroup {7; td)o, t > 0} has the following properties:
for any f € Co(E;R),
lim || f — f]loo = 0. (1.17)

The following theorem is the main result of this paper.

Theorem 1.4 Under Assumptions 1.1 and 1.3, there exists Qg C Q of
probability one (that is, P,(Qo) = 1 for every p € Mr(E)) such that, for
every w € Qg and for every bounded Borel function f on E satisfying

(a) |f] < cog for some ¢ > 0,
(b) the set of discontinuous points of f has zero m-measure,

we have

1m5wmmw:mwj%@mmm» (1.18)
E

t—+00

Assumption 1.3 will be used to extend the test functions from resolvent
functions g = U,f with f € L?(E,m) N L*(E;m) to functions of the form
g = foo with f € Co(E;R). We will give some examples in Section 4 to show
that Assumptions 1.1 and 1.3 are satisfied by many interesting superprocesses
including super Ornstein-Uhlenbeck processes (both inward and outward) and
superprocesses with discontinuous spatial motions.

Remark 1.5 (1) Compared with [7], our spatial motion can be nonsymmetric
and we do not assume that o(z) = B(x)a(x) is in the Kato class K (§). The
latter would require @ be small at +o00 in some sense (see [7] for the definition
of Ko (§)). In [7], a compact embedding condition (see [7, 2.4]) is also assumed
to ensure that the generator of the semigroup {7}, t > 0} has a spectral gap. In
this paper, we assume instead Assumption 1.1, which implies that the generator
of {T}, t > 0} has discrete spectrum.

(2) Compared with [22] where the spatial motion is a diffusion, our spatial
motion may be discontinuous. The setup of [22] and the setup of the present
paper are also different in the following ways. In [22], the semigroup of the
spatial motion is assumed to be intrinsic ultracontractive. This condition
is pretty strong and it excludes some interesting examples including the OU
processes. In this paper, we assume Assumption 1.1 instead, which is weaker
than the intrinsic ultracontractive property and is enough to ensure that, for
resolvent functions g, the limit lim; ., e (g, X;) exists almost surely. In
[22], the branching mechanism is assumed to satisfy an L log L condition, while
in this paper, we assume that the branching mechanism satisfies a second
moment condition.
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2 Preliminaries

2.1 Moment estimates

By [25, Lemma 2.2] with £ = 1, for any ¢t; > 0 and a < —Re(\;), there exists
a constant ¢ = c(a,t1) > 0 such that for all (¢,z,y) € (2t1,400) X E x E,

la(t, z,y) — ' o(2)do ()] < ce by ()b (y). (2.1)

—Motwe get that for all (t,z,y) € (2t1, +00) x Ex E,

Multiplying both sides by e
_ -~ —(a 1/2, \71/2
7" (t,2,y) — dolx)do(v)] < ce™ L (@)br* (v).
Note that a < —Re(A;1) is equivalent to
a—+ X < XA — Re(/\l).

Thus, for any a € (0,A\g — Re(A\1)) and t; > 0, there exists ¢; = c1(a,t1) > 0
such that for all (¢,z,y) € (2t1,+0) X E x E,

e q(t,,y) = do(@)do(y)] < cae” (@) (). (22)
Thus, for f € L2(E;m), and for all (t,z) € (2t1,+00) x E, we have

[T £ () = G0(2)(F. Bodm| < eallby[l2 1f 26~y (),

which implies that there exists ca = ca(a,t1) > 0 such that for all (¢,z) €
(2t1, +OO) X F,

T, £ () — do(@)(f, dodm| < eall fllae 0, % (). (2.3)

Hence, by (1.13) and the fact that @ > 0, we have

$0(2)[(f, B0)m| + call fllze~%by/? (x)
(€201 | ol + c2) | f |20t/ ().

Thus, there exists ¢ = c3(a,t1) > 0 such that for all (t,z) € (2t1,4+00) X E,

e T f ()]

NN

1/2
Tof @)] < esll fllze*'ty (2). (24)
We now recall the second moment formula for the superprocess { Xy, t > 0}

(see, for example, [24]): for f € L?(E;m) N L*(E;m) and pu € .#p(E), for any
t > 0, we have

Var,(f, X;) = (Vars (f, Xy), // A(Ti—sf) ]( )dsu(dx), (2.5)
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where Var, stands for the variance under P, and A(z) is the function defined
n (1.7). Moreover, for f € L2(E;m) N L*(E;m),

Vars, (f, X;) < BT (f)(x) € L2(E;m). (2.6)

In the following lemma, we give a useful estimate on the second moment of
X. If we choose the constant a € (0, \o — Re(A1)) small enough, we can get the
next lemma by [25, Lemma 2.5]. Here, we give a direct proof.

Lemma 2.1 Suppose that Assumption 1.1 holds. For any a € (0,(M\g —
Re(A1)) A (Mo/2)) and f € L2(E;m) N LA(E;m) with (f, ¢o)m = 0, there exists
¢y = c4(to,a, f) > 0 such that

sup 2 AF DV ars (F, Xy) < eaby!*(x). (2.7)
t>10to

Proof 1In the following proof, we use ¢ = ¢(tg, a, f) to denote a constant whose
value may change from one appearance to another. Recall that

Vars, (. X)) = /2“ / o /2 AT, o) ) ds

In the following, we will deal with the above three parts separately.
(i) For t > 10ty and s < 2t, using (2.3) with ¢; = 4¢¢ and noticing that
(fsd0)m =0, we get

Ty f ()] < cePoDE=9p/2(),
Thus,

2to

2to ~
/ To[A(Ti—s f)?](z)ds < ceXPo—a)t / Ty [bag, ) ()ds.
0 0

If we can prove that

/ " Loy ()ds < (@), (2.8)
0

then we will get
2to W)t 1/2
/ TL[A(Ty— s f)?)(z)ds < ce®Xo=D1p! 2 (), (2.9)
0
Now, we prove (2.8). By Fubini’s theorem and Hoélder’s inequality, we get
oue) = [ e+ s.a) [t 2p(s, 2 pmidymidy)
= [ plte.) [ o+ s s,z pmidym(az)

< al’(2) /E p(t, 7, 2)al/?(2)m(dz),
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which implies

2
a4s(x) < </ p(t,x,z)a;ﬂ(z)m(dz)) < / p(t,z, z)as(z)m(dz).
E E
By (2.10), we get
b4t0 (x) < e8Ktoa’47ﬁo (x) < eloKtOT%o (aQto)(x)'

Thus, by Assumption 1.1 (¢’) and (2.4), we have

2to 2to
/ T, (bury) () ds < 0K / T, pory (210 (2)ds
0 0

2to 1/2
< c/ eto(s20) b, % (z)
0

< cbt10/2(x).

Therefore, (2.8) holds.

(2.10)

(2.11)

(ii) For t > 10ty and s € (2tg,t — 2tp), by (2.3), (2.4), and Assumption 1.1

(),

TS[A(Tt_Sf)z](a:) < cez(’\ofa)(t*s)Ts(th)(x) < ceQ()‘Ofa)(t*s)e)‘Osb;O/Q(m).

Thus, using the fact A\g — 2a > 0,

t—2to ~ 1/2
e~ (o *2‘l)sd$bt0 ()

t—2t0 N
/ T [A(Tt—Sf)Q](H?)ds < ce2(/\oa)t/
2

to 2to
< ce?C0= 0, (),

(iii) For t > 10ty and s > t — 2t¢, since
I Ti—sf (@) < "IT_ () (),

we have
Ty [A(Ti—s f)?)(z) < KeXUIT(£2) ()
< KeztOKc;z,e’\OtbiO/Q(:c)
< Ke2t0che2(/\0*a)tb%0/2(x)

)

where, in the last equality, we use the fact A\g — 2a > 0. Thus,

t ~
|, DA P )ds < 0o ),
t—2to

Combining (2.9), (2.12), and (2.13), we get (2.7).

(2.12)

(2.13)
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2.2 Martingale measure for superprocesses

In this subsection, we recall the associated martingale measure for the
superprocess X. For more details, see, for instance, [21, Chapter 7|. The
martingale measure for superprocesses is a very useful tool in the proof of
our main theorems.

For our superprocess X, there exists a worthy (%;)-martingale measure

{My(B) = M(t,B); t >0, B € B(E)}

with covariation measure
v(ds,dz,dy) : /A 0,(dy) Xs(dz)

such that for t > 0 and f € L?(E;m) N LY(E;m), we have, P-a.s.,

f, X0) = (T, ) / / T, f(x)M(ds, d2). (2.14)

For any v > 0 and 0 < ¢ < u, we define

MM //f M(ds, da).

Then, for any p € #r(E), {Mt(u), 0 < t < u} is a cadlag square-integrable
martingale under P, with

¢
(M) = / (A(Ty—sf)?, Xo)ds. (2.15)
0
Here, cadlag means ‘right continuous having left limits’. Note that

P (M) = P, (M™), = Var,(f, X,). (2.16)

u

In the remainder of this paper, we will always assume that ¢ > max{K, Ao}.

Lemma 2.2 Assume that Assumption 1.1 holds. If f € L?>(E;m)NL*(E;m),
then for any p € Mr(E),

P, ((Uqlfl, Xi) < 400 fort = 0) =P, ((Uyf, Xy) is finite for t > 0) = 1.

Moreover, Py-a.s., (Ugf, X¢) is cadlag on [0,4+00), and for all t > 0,

+o0
V. X0) = (T +e [ e v (2.17)
t

Proof When the spatial motion ¢ is symmetric, this lemma has been
established in [26, Lemmas 2.4,2.5]. The proof for the non-symmetric case
is almost the same. For reader’s convenience, we include a proof here. We can
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check that the argument in the proof of [26, Lemma 2.4] works without the
assumption that £ is m-symmetric, so (U, f, X¢) is right continuous on [0, +00),
P,-a.s.

For f € L*(E;m) N L*(E;m),

U,f € L*(E;m) N LY(E;m).
By (2.14), for t > 0 and p € 4 (E), we have, P -a.s.,

(Uaf Xe) = (L:(Ugf), 1 //Tt s(U f)(2)M (ds, dz)
= (T, (U, f), ///me W o f (2)duM (ds, dz)
= (Ty(Uyf), 1) + e /0 /E /t me*q“Tu,sf(z)duM(ds,dz)

+oo t
= (Ty(Uyf), 1) + e /t eq“du/0 /ETusf(z)M(ds, dz)
= Jl )+ et @), (2.18)

where the fourth equality follows from the stochastic Fubini’s theorem for
martingale measures (see, for instance, [21, Theorem 7.24]). Thus, for ¢ > 0

and p € Ar(E),
Pu((Ugf, Xo) = J{ (t) + e J{ (1)) = 1. (2.19)

Then, in light of (2.19), to prove (2.17), it suffices to prove that Jlf(t) and JQf(t)
are all cadlag in (0, +00), P,-a.s. For Jlf(t), by Fubini’s theorem, for ¢ > 0,

—+o0
Hy=et [ e m s s
t

Thus, it is easy to see that Jlf (t) is continuous in ¢ € (0, +00). Now, we consider
JQf(t). We claim that, for any ¢; > 0,
]P’M(Jg(t) is cadlag in [t;,+00)) = 1. (2.20)

By the definition of Jg, for t > tq,

“+00
Ji(t) = / e M1, du.

t1

Since t — Mt(u) 14« is right continuous, by the dominated convergence theorem,
to prove (2.20), it suffices to show that

+oo
IF’H</ e sup(|M |1t<u)du < +oo> =1 (2.21)
t1

t>t
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By the LP-maximum inequality and (2.16), we have

+oo
P, ( / e I sup(]Mt(u) ]1t<u)du>
t1

t>ty

+oo
<2/ e~/ P, | MM 2 du
t

+oo
:Q/t1 e_q“\//EVar(gz(f,XUM(dx) du. (2.22)

By (2.6) and (2.4), for u > t;, we have
[ vars (. Xajulde) < e [ 1,(7) @)t
E E

< celuton / btll//g(x)u(dx),
E

where ¢ = ¢(t1,a, f) is a positive constant and b;(x) is the function defined in
(1.12). Since x + by, jo(x) is continuous and x has compact support, we have

/Ebil//Z(x),u(dm) < +o0.

Thus, by (2.22), we have

—+oc0o
P, ( / e I sup(\Mt(u) ]1t<u)du>
t1

t>ty

+00
< 2V e~ MK Hro)u/2qy, / bi/fz(x),u(dm)
t1 E !
< 4o00.
Now, (2.21) follows immediately. Since ¢; > 0 is arbitrary, we have
P,.(J{ (t) is cadlag in (0,400)) = 1.

The proof is now complete. O

3 Strong law of large numbers

In this section, we give the proofs of Theorems 1.2 and 1.4. We start with a
lemma.

Lemma 3.1 Suppose that Assumption 1.1 holds and f € L*(E;m)NL4(E;m)
with (f, ¢o)m = 0. Then for any p € Mr(E) anda € (0, (Ao—Re(A1))A(Xo/2)),

sup eTNFTANP (sup (U, f, X3)|) < +oo. (3.1)
n>10tg n<t<n+1
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Proof In this proof, we always assume that n > 10ty and c is a positive
constant whose value does not depend on n and may change from one
appearance to another. Define

+o00
H () = (U ), T (1) = /t oA

y (2.17), for any t > 0,

P.( sup [(Ugf, X)) < sup  |J{ (@) + e/ VR,( sup  |J(1)]).
n<t<n+1 n<t<n+1 n<t<n+1

First, we consider Jlf(t). Since (Uy f, d0)m = 0, by (2.3), we have
(T, |(2) < e, ().
Thus, for n > 10t,

sup S ()] < sup (LU, )

n<t<n+1 n<t<n+1
1/2
<c sup LoD )
n<t<n+1
< cero=@m, (3.2)

Next, we deal with JQf(t). For t € [n,n+ 1],

“+00 “+00
Ji(t) = / e MM dy = / e M1, du.

t n

Thus, for n > 10t,

Pu( sup |Jf / eq“IP’ sup (|M |1t<u))du
n<t<n+1 n<t<n+1

m/ e que()\ofa)udu

<elg— Ao +a) lelmroran,

where the third equality follows from (2.15), (2.16), and (2.7). It follows that
for n > 10ty,

e‘](?’H‘l)]PJM( <§1<1p+1 J2f(t)) < Ce()\o—a)n. (33)

Combining (3.2) and (3.3), this yields (3.1). The proof is now complete. O
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Proof of Theorem 1.2 Put

F=f—(f, b0)mo-

Note that

+oo +o0
Uydho(z) = /0 e Ty (z)dt = /0 e~ e dtgy(x) = (¢ — Ao) " do(x)

and
~ +oo —~
(Usfr Bo)m = / (T, f, Go)mdt
0
+oo
= / eiqte/\Otdﬂfv $0>m
0
= (¢ = 20) "M {f, b0)m- (3.4)
Thus,

Uyf (x) = (£, $0)mUgo(x) + Ug(F)(x) = (Uyf, Go)mo(x) + Uy(F) ().
Hence, to prove (1.15), we only need to show that
e MNUL(f), X)) — 0, P as. (3.5)
Let

M, := sup e_kotKUq(f%XtH-
n<t<n+1

By (3.1), there is a constant ¢ > 0 so that
P, M, < ce™®™,  Vn > 10t.

We conclude by the Borel-Cantelli lemma that M, — 0, as n — +o0, P,-a.s.,
from which, (3.5) follows immediately. The proof is now complete. 0

For any f > 0 and ¢ > max{K, Ao}, define

+o0
U@ = [ e @, e,
0

where T, t¢° is defined in (1.16). It is easy to see that

¢0($)Uq¢0f($) = Ug+xo (¢0f)-

Proposition 3.2 Suppose that Assumptions 1.1 and 1.3 hold. For any 0 <
f € Co(E;R) and p € Mp(E),

lim e g0 f, Xi) = (o, Po)mWeo, Pu-a.s. (3.6)

t——+o0
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Proof By Theorem 1.2,
Jim TN poUR f, X) = Tim ™ Uy, (d0f), X2)

= (Ugtx0(d0f), ¢0> 0oy Pu-aus.
According to (3.4),

(Ugirg (0 )y o = (00 dobr
Therefore, for any ¢ > max{K, Ao},
tl}+moo e M poqU° f, X1) = (f o, P0)mWao, Pp-as. (3.7)
Choose a sequence g > max{K, \g} so that limy_, . qx = +o0. Put

ﬂ { lim e Aot (ﬁoqu(]d;Of, Xt(w» = <f¢07$0>mWoo(w)}

t—+o00
k>1
ﬂ { tlg-noo Wi(w) = Woo(w)}-

Then P,(€2*) = 1. Note that, for any w € Q*,

e PoarUg? f, Xe(w)) — e (o f, Xi(w))]
e olqeUS0 f — fl, Xe(w))
lakUg0 £ = Flloce ™" (b0, X1 (w)),

where || - || is the L* norm. Letting ¢ — +o00, we obtain that

lim sup e (GoarUg0 f, Xi(w)) — e o f, Xo)| < NgrUg0 f = FllocWoo(w).
(3.8)

<
<

By Assumption 1.3,
i @ —
m laxUg? f = flloo = 0.

Thus, (3.8) implies that, for w € Q*,
MU doquUg? f, Xe(w)) — e (g0 f, Xe(w)) = 0. (3.9)

lim limsup |e”
k—+0c0 t—4o00

Now, combining (3.7) and (3.9), we get (3.6). O

Proof of Theorem 1.4 Note that Eg is a compact separable metric space.
According to [30, Exercise 9.1.16 (iii)], Cy(Ep;R), the space of bounded
continuous R-valued functions f on E, is separable. Therefore, Cy(E;R) is also
a separable space. Let {f,, n > 1} be a countable dense subset of Cy(E;R).
Define € to be the intersection of the following two events:

{weq: tli?oo Wi(w) = Weo(w) },
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N {w € tirmooe*%%fwo’Xﬁ(w) = Woo(w)/ fk(y)¢o(y)$0(y)m(dy)}.
E>1 E
By Proposition 3.2, P,(€) = 1 for any pu € #r(F).

We first consider (1.18) on {W4 > 0}. For each w € Qo N {W > 0} and
t > 0, we define two probability measures 14 and v on F, respectively, by

e (1o, Xi)(w)
Wt(w) ’

v(F)(w) =

v(F) = /F oo (1)do(y)m(dy), F e B(E).

Note that the measure v, is well defined for every ¢ > 0, and v; and v are
probability measures. By the definition of €2y, we know that v, converges weakly
to v as t — 4o00. Since ¢ is strictly positive and continuous on F, if f is a
function on E such that |f| < ecgg for some ¢ > 0 and that the discontinuity
set of f has zero m-measure (equivalently, zero v-measure), then g := f/¢¢ is
a bounded function with the same set of discontinuity. We thus have

Jm [ a@mn) = [ g,

which is equivalent to

lim e f, X,)(w) = Wio(w) /E o) Fy)mdy), w € QN {Wiol(6) > 0},

t——+o0

If |f| < egp for some positive constant ¢ > 0, (1.18) holds automatically on
{W4 = 0}. This completes the proof of the theorem. O

4 Examples

In this section, we give some examples. The main purpose is to illustrate the
diverse situations where the main result of this paper can be applied. We will
not try to give the most general examples possible.

Example 4.1 (Super inward Ornstein-Uhlenbeck processes) Letd > 1, E =
R?. Suppose that the spatial motion & = {&,II,} is an Ornstein-Uhlenbeck
(OU) process on R? with infinitesimal generator

1
$:§JQA—CJ:-V on R?,

where o, ¢ > 0. Without loss of generality, we assume o = 1. Let

p(z) = (E)d/ze_m'Q’ m(dz) = ¢(z)dz.

s
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Then ¢ is symmetric with respect to the probability measure m(dx). Suppose
that the branching rate function [(z) = [ is a positive constant, and the
branching mechanism 1) is given by

O(z,\) = —>\+b(x))\2+/ (e -1+ y)n(z,dy), =R X>0, (4.1)
(0,400)

where b € £, (R?) and n is a kernel from R? to (0, 4o00) satisfying

+oo
sup / y?n(x,dy) < +oo.
zeRd JO

Then for the corresponding superprocess,
T,f(x) = ™ML [f(&)] = " P f (2).

It is easy to see that \g = 3, ¢g = 9/50 =1 and then Ttd)0 = P,.
It is well known that, for any € R?, under I1,, & is of Gaussian distribution
with mean ze~“ and variance o?, where

1— e—ZCt

o; =
t 2c

The transition density of & with respect to the probability measure m(dz) on
R? is given by

—ct|2

1 \d/2 ly — xe
tay) = (5 ) (el - =5,
p(t,z,y) 207 exp ( cly| 207

Note that

— _e—ct
(2m07) /2 exp(—ci7e |z]?)

o(z)

p(t,z,x) =

Thus, we have
a(t) =p(2t,xz,x) € LYR%m), Vt>0,

and there is some to > 0 so that a(t) € L?(R% m) for t > t,. Hence, Assumption
1.1 holds for €.
For any f € Cy(R%;R), we have

lyl”

Puf@) = [ ot sm(n) = [ n) 9 exp (= B0) flow +ae)ay.

Using the dominated convergence theorem, one can easily check that P, f €
Co(R% R). Suppose that f is a continuous function with compact support. Let
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My > 0 so that f(x) =0 for |z| > My. For any M > 0,

R~ 5] = | [ em e () s+ e ) - sty
< [ e () (o + oo~ sy

N

2
[ em e (= BD) o+ v — s@)ay
lyl<M

2
- Y
Solfle [ em e (- 2 )ay
ly|=M
= IT+1I.

For any € > 0, we choose M > 0 such that I < £/2. For part I, we claim that,
for any € > 0, there exists 0, for ¢t < 6,

Do ™

sup sup |f(owy —|—xe_0t) — f(2)| <
ly| <M xz€Rd

Therefore, I < ¢/2, and then ||P;f — f|loc — 0 as t — 0.
Now, we prove the claim. Note that

|[f(owy +xe™) = f(2)| < [f(owy + ze™) = f(we™ )| + [ f(ze™") - f(2)].

Since f is uniformly continuous on R?, there is a constant 6y > 0 such that
|f(y) — f(z)| < e/4 for any =,y satisfying |z — y| < d¢. Since oy — 0 as t — 0,
there exists d; > 0 such that, for ¢t < d1, |o¢| < dp/M, and then

sup sup |f(owy + a:efd) — f(a:e*d)\ <
ly|<M zeRd

= M

Choose &2, such that for t < &, e — 1 < §9/Mp. Then , for t < da,

)

>~ M

|f(we™) = f(@)| <[ f(we™) = f(@)|Ljn)<mest <
where, in the second inequality, we use the fact that
lze™ — x| = |z|(1 —e™) < My(e” — 1) < .

Then, choosing § = d1 A d2, we prove the claim.
For general f € Cy(R%; R), there exist continuous functions f,, with compact
support such that || f, — f]lec — 0 as n — 400. Then

HPtf - fHoo < Hjjtf - F’tfn”oo + Hjjtfn - anoo + an - f”oo
< Hjjtfn - fn”oo + 2an - fHOO
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Letting ¢ — 0 and then n — 400, we get that ||P;f — f|loc — 0 as t — 0. Since

Tt(ZSO = P;, Assumption 1.3 is satisfied. Therefore, for the superprocess in this
example, all our assumptions are satisfied.

Example 4.1 covers [10, Examples 4.1, 4.6]. For variable a(x) = §(z)a(z),
see Example 4.9.

Example 4.2 (Super outward Ornstein-Uhlenbeck processes) Letd > 1, E =
R<. Suppose that the spatial motion & = {&;,1I,} is an OU process on R? with
infinitesimal generator

1
$:§JQA+CJ:-V on RY,

where o, ¢ > 0. Without loss of generality, we assume ¢ = 1. Under II,, & is of
Gaussian distribution with mean xe® and variance (e>? —1)/(2c).
Let

B(z) = (5)*d/2e0'“"|2, m(dz) = 3(x)dz.

s

Then £ is symmetric with respect to the o-finite measure m(dx). As in Example
4.1, we suppose that the branching rate function §(z) = 3 is a positive constant,
and the branching mechanism v is given by (4.1). Then for the corresponding
superprocess,

Tof (x) = ", [ (&) = " Pof (@).
The generator of {T3: ¢t > 0} is £ + .
The transition density of & with respect to the measure m is

1 d/2 c 9 9 et
PU@$7y)::<gZ¥iTI> exp(-—ijjg:zgﬂy!-+!w\<—2x-ye C))-

Thus,

1 /2 2c|z|?
(o) =pCteo) = (=) e (- 7o)

It is obvious that a; € L'(R?;m)N L23(R?; m). Thus, Assumption 1.1 is satisfied.
Suppose B(x) = € (ed, +00).

The operator .Z + cd is the formal adjoint of the inward OU process with
infinitesimal generator 3 02A — cz -V on RY. Since ¢(z) defined in Example 4.1
is the invariant density of % o?A — cx -V on R?,

(Z +cd)p =0.

Thus, we have
(£ + B)p = (8 — cd)g.

Since ¢ € L?(R%,m) and ¢ is strictly positive everywhere, we know that

bo=¢o=p, A=/ —cd.
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Thus,
eV P,(fo)(x)
p(z)

where ﬁt is the semigroup of the inward OU-process with infinitesimal generator

T f(z) = = Bf(x),

1
§A—cx-v on R

From the discussion in Example 4.1, we see that Assumption 1.3 is satisfied.
Thus, when ((z) = § € (cd,+0), the superprocess of this example satisfies all
our assumptions.

Example 4.2 covers [10, Example 4.2].

Example 4.3 Suppose that n = {n;, I} is an m-symmetric Hunt process
on F and that n has a transition density p(¢,x,y) with respect to m. Suppose
also that p is strictly positive, continuous, and satisfies Assumption 1.1. Let
{P,,;t > 0} be the transition semigroup of n on L?(E;m). Since, for each
t >0, P, is compact, the infinitesimal generator £ of {ﬁt, t > 0} has discrete
spectrum: _ _

0= > =2

Denote the corresponding normalized eigenfunctions by {gk, k > 0}, with
HgkaLQ(E;m) = 17 Vk 2 0.

We can choose 50 so that it is strictly positive and continuous. By the spectral

representation, we can express p(t, z,y) by ZZ;’% exktgk (x)qgk(y) It follows that
p(t,z,x) is decreasing in ¢ > 0; see [9, Section 2]. Define

]St?éOf :: e_xotﬁt(f&o)(x).
$o(7)

Assume that 15t¢° satisfies Assumption 1.3.
Let S; be a subordinator, independent of n, with drift 6 > 0. Then S; > bt.
Let ¢ be the Laplace exponent of S, that is,

E(e %) =e %0 9> 0.

Suppose that a(x) = « is a constant function and satisfies o > qb(—Xo). We
put & := ng,. Let P; be the semigroup of £, and let p(t,z,y) be the transition
density of & with respect to m. Then

p(tv z, y) = Eﬁ(St, z, y)
Since t — p(t, z, ) is a decreasing function, we have

p(2t,x,x) = Eﬁ(SQtaxwf) < ﬁ(th7x7x)7
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which implies that 7 satisfies Assumption 1.1. Note that T} = e P, and

Pido(z) = E(Ps,0(z)) = Ee*5 gy (z) = e #720) gy (),

Thus, N N
Ao =a—¢(=Xg) >0, o= go.
Then N
90 () — oto(—30) DU P0)(@) _ 1o(-30)g [ Pse(fb0) (@)
TP f(x) = e o(2) = IE{ ool) }

Thus, we have
|T%¢0f(x) _ f(x)| < etqﬁ(—;\o)E‘ PSz(f¢0)($) . eXOStf(:E)‘
do()
btXho td(— N Séo ¢
< eloefol O)E[Hpstof fllso]-
Since B
IPEf = fllss =0, =0,

and N

1P f = Flloo < 21| £lloos

using the dominated convergence theorem, we get
lim || f — f]loo = 0.

Thus, the superprocess of this example satisfies all our assumptions.

In particular, this example is applicable when 7 is the outward Ornstein-
Uhlenbeck process or inward Ornstein-Uhlenbeck process dealt with in
Examples 4.1 and 4.2.

The next two examples give the cases when « is not a constant function.

Example 4.4 (Pure jump subordinate Brownian motion) Suppose that S =
{S;, t > 0} is a drift-free subordinator. The Laplace exponent ¢ of S can be
written in the form

6(\) = /0 T = e Myu(dr), (4.2)

where u is a measure on (0, +00) satisfying
+oo
/ (1A B)u(dt) < +oo.
0

The measure u is the Lévy measure of the subordinator (or of ¢). In this
example, we will assume that ¢ is a complete Bernstein function, that is, the
measure u has a completely monotone density, which we also denote by w.
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Let W = {W;,t > 0} be a Brownian motion in R¢ independent of the
subordinator S. The subordinate Brownian motion Y = {Y, t > 0} is defined by
Y; := Wg,, which is a rotationally symmetric Lévy process with Lévy exponent
#(|€]?) (see [28, Theorem 30.1]). It is known that the Lévy measure of the
process Y has a density given by x — j(|z|), where

400 9
j(r) = / (4t) =2 /Wy (t)dt, > 0. (4.3)
0

Note that the function r — j(r) is continuous and decreasing on (0, 4+00).
Suppose that ¢ satisfies the following growth condition at infinity.
(A) There exist constants 61,92 € (0,1), a; € (0,1), ag € (1,400), and
Ry > 0 such that

al)\‘slgi)(r) < @(Ar) < ag)\‘bqb(r), A>1,r> Ry

See [3] for examples of a large class of symmetric Lévy processes satisfying
condition (A).

Suppose that D is a bounded C'*! open set with characteristics (R, A), and
let £ be the subprocess of Y killed upon leaving D. It is known that £ is a Feller
process with strong Feller property in D. Moveover, by [3, Corollary 1.6], £ has
a jointly continuous transition density function pp(¢,z,y) with respect to the
Lebesgue measure on D so that for every T > 0, there exist

1 = Cl(RO)A7T7 da d)) > 15 Co = 62(R05A7T7 da ¢) > 0)

such that for 0 <t < T, x,y € D,

Cl—l (1 A w>1/2 (1 A w>1/2 (@fl(t)fd /\tj(\ac o y’)>
ng(twf?y)
)

< (1 ZODEYE () RODGINE (gt g (21721 (4

Here, ®(r) := 1/¢(r=2), j is the function defined in (4.3), and dp(z) is the
Euclidean distance between z and dD. Since pp(t,x,y) is symmetric,

ar(z) = pp(2t, ) < cp® 1 (2t) 7.

Thus, Assumption 1.1 is satisfied.

Suppose that the branching rate function 8 and the branching mechanism
satisfy the assumptions of Section 1.2, and that the corresponding superprocess
X is supercritical. The corresponding semigroup {7}: ¢ > 0} has a continuous
density ¢(t,x,y) satisfying the same two-sided estimates (4.4) with possibly
different ¢; > 1 and cy. Since

po(z) = M Ty (),
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by (4.4), there exists c3 > 1 such that
¢3 ' @2(6p(2)) < ¢o(x) < 32" (6p(x)).

We now show that Assumption 1.3 holds. Suppose f € Cy(D). For any given
e > 0, there exists 6 > 0 so that |f(z) — f(y)| < € whenever |x —y| < . Hence,
by the display above and (4.4), for small ¢ > 0,

sup |77 f (x) — f (x)
xeD
_ up e [eo € 60 (6) (1 (&) — 1 (€0))

xeD $o(x)
<t sup e M|, [efo @€y ()| £(&) — F(&0)]; I — &l > 0]
xeD do(z)
< e+ sup 2o o 1 Fllso L (10 = ol > 6)
z€D po()
V2@ (@)t 2 [oep. 1y apss ti(ealy — z]/4)dy
St e B2 (5p(x))

<edevt (1A |2/%)5(|2)dz. (4.5)
|z| =>c26/4

It follows that
lim |7 f — floc = 0

and Assumption 1.3 is satisfied.

Example 4.5 (Subordinate Brownian motion with Gaussian component)
Suppose that S = {S;, t > 0} is a subordinator with drift b6 > 0. The Laplace
exponent ¢ of S can be written in the form

+oo
H(N) = b + /0 (1 — e Myu(dt), (4.6)

where u is a measure on (0, +00) satisfying
+oo
/ (1A B)u(dt) < +oo.
0

Without loss of generality, we assume that b = 1. In this example, we will
assume that ¢ is a complete Bernstein function and that the Lévy density u(t)
of S satisfies the following growth condition near zero: for any M > 0, there
exists ¢ = ¢(M) > 1 such that

u(r) < cu(2r), re(0,M). (4.7)



26 Zhen-Qing CHEN et al.

Let W = {W;,t > 0} be a Brownian motion in R? independent of the
subordinator S. The subordinate Brownian motion Y = {Y;, t > 0} is
defined by Y; := Wg,, which is a rotationally symmetric Lévy process with
Lévy exponent ¢(|¢|?). Tt is known that the Lévy measure of the process Y has
a density j(|z|) given by (4.3).

For any open set D C R% and positive constants ¢; and ¢y, we define

hD,cl,Cg (tv Z, y)

= (1 228 (10 2D t2emelems 4= e ). (49)

Suppose that D is a bounded C'*! open set with characteristics (R, A), and
let € be the subprocess of Y killed upon leaving D. It is known that £ is a Hunt
process symmetric with respect to the Lebesgue measure on D and that £ has
a strictly positive continuous transition density pp(t,x,y) with respect to the
Lebesgue measure on D. We assume the following upper bound condition on
the transition density function p(¢, |z|) of Y': for any T' > 0, there exist C; > 1,
j =1,2,3, such that for all (¢,7) € (0,7] x [0, diam(D)],

B(t,r) < C (t—d/2e—7“2/02t RN (C%)) (4.9)

It was established in [6] that the above estimate holds for a large class of
symmetric diffusion processes with jumps with D = R?. Using Meyer’s method
of removing and adding jumps, it can be shown that (4.9) is true for a larger
class of symmetric Markov processes, including subordinate Brownian motions
with Gaussian components under some additional condition. See the paragraph
containing (1.12) in [5] for more information.

The following is proved in [5, Theorem 1].

(i) For every T > 0, there exist
c1 = c1(Ro, Ao, Mo, T, 9, d) >0, 2 = ca(Ro, Mo, Ao, d) >0,
such that for all (¢,z,y) € (0,7] x D x D,
pp(t,x,y) = c1hpc,1(t, z,y). (4.10)
(ii) If D satisfies (4.9), then for every T' > 0, there exists
c3 = c3(Ro, Mo, T, d, ¢, C1,Co,C3,d) > 1
such that for all (¢,z,y) € (0,7] x D x D,
po(t,2,y) < eshp o5t 2, y), (4.11)

where
Cy = (1602)_1, Cs = (8 V 403)_1.
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Let E = D, and let m be the Lebesgue measure on D. Since pp(t,z,y) is
symmetric, we have

ar(z) = pp(2t, x, x) < ct™ Y2,

Thus, Assumption 1.1 is satisfied.

Suppose that the branching rate function # and the branching mechanism
satisfy the assumptions of Section 1.2, and that the corresponding superprocess
X is supercritical. Using the above two-sided heat kernel estimate for £, we can
establish in a similar way as in Example 4.4 that Assumption 1.3 also holds.

Remark 4.6 In fact, in Examples 4.4 and 4.5, £ does not need to be a
subordinate Brownian motion killed upon leaving D. All we need are the heat
kernel estimates like (4.4) or (4.10)-(4.11). For example, suppose that Y © is the
subprocess of some subordinate Brownian motion Y killed upon leave D that
has property (4.4) or (4.10)-(4.11). Let & be a Markov process obtained from
Y P though a Feynman-Kac transform with bounded potential function. Then
¢ enjoys property (4.4) or (4.10)-(4.11). For other examples of processes that
satisfy two-sided bounds similar to (4.4), including censored stable processes in
Ch! open sets and their local and non-local Feynman-Kac transforms, see [4].
Our main results are applicable to these processes as well.

In all the examples above, the spatial motion ¢ is symmetric. Now, we give
two examples where the spatial motion ¢ is not symmetric.

Example 4.7 Suppose d > 3 and that v = (v!,2,...,v%), where each 17 is

a signed measure on R¢ such that

J|(d
lim sup / % =0.
=0 1 cRrd B(z,r) ‘.%' - y‘

Let ¢ = {§t(1), t > 0} be a Brownian motion with drift v in R?, see [1].
Suppose that D is a bounded domain in R?. Let M > 0 so that B(0,M/2) D D.
Put B = B(0, M). Let G be the Green function of €1) in B and define

H(zx) ::/BGB(y,x)dy.

Then H is a strictly positive continuous function on B. Let £ be the process
obtained by killing ¢! upon exiting D. ¢ is a Hunt process and it has a strictly
positive continuous transition density p(¢,x,y) with respect to the Lebesgue
measure on D. Let £ = D, and let m be the measure defined by

m(dx) = H(z)dz.

It follows from [16,17] that £ has a dual process with respect to m. The transition
density of € with respect to m is given by

p(t,z,y)

p(t7x7y> = H(y)
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Suppose further that D is C1:1. Then it follows from [15, Theorem 4.6] that
there exist ¢; > 1 and ¢ > ¢3 > 0 such that for all (¢,z,y) € (0,1] x D x D,

ey ? (1 A 513/(?) (1 A 5?/(%/)) exp ( - th_ y!2)

< plt,z,y)

< (1 2 (10 20 - B,

It follows from the display above and the semigroup property that, for any
t >0, p(t,z,y) is bounded. By [17, (2.6)], there exists ¢4 > 1 such that

01153(30) < H(x) < c40p(x).

So for z € D, ¢ < H(z) < C, where ¢,C > 0. Thus, p(t, x,y) is also bounded in
D and m is a finite measure. Thus, Assumption 1.1 is satisfied.

Suppose that the branching rate function 8 and the branching mechanism
satisfy the assumptions of Section 1.2, and that the corresponding superprocess
X is supercritical. Using the above two-sided heat kernel estimate for £, we can
establish in a similar way as in Example 4.4 that Assumption 1.3 also holds.

Example 4.8 Suppose d > 2, a € (1,2), and that v = (1,02, ..., v?), where
each 17 is a signed measure on R? such that

I|(d
lim sup / % = 0.
70 1 cRrd B(z,r) ’1‘ - y‘

Let €@ = {f,g), t > 0} be an a-stable process with drift v in R?, see [18].
Suppose that D is a bounded open set in R? and suppose that M > 0 is such
that D C B(0,M/2). Put B = B(0,M). Let G be the Green function of ¢(2)
in B and define

H(x) ::/BGB(y,:E)dy.

Then H is a strictly positive continuous function on B. Let £ be the process
obtained by killing £¢® upon exiting D. ¢ is a Hunt process and it has a strictly
positive continuous transition density p(t¢,x,y) with respect to the Lebesgue
measure on D. Let £ = D, and let m be the measure defined by

m(dx) = H(z)dz.

It follows from [2, Section 5] and [18] that £ has a dual process with respect to
m. The transition density of £ with respect to m is given by

p(t,z,y)

p(t7x7y> = H(y)
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By [2, Corollary 1.4] and [19], we can check that
0515%/2@) < H(x) < 00(5%/2(56),
where ¢y > 1. Thus, for z € D, ¢ < H(z) < C for some ¢,C > 0.

Suppose further that D is O, Then it follows from [2, Theorem 1.3] and
[19] that there exists ¢; > 1 such that for all (¢,z,y) € (0,1] x D x D,

(1 5}'5/2(96)) (1n 5%/2(9)) (0 t )

Vit Vit |z — yldte
< p(t, 7, y)
a/2 . a/2
<a (1 A 67\/;)) (1 A 51’7\/?)) (t*d/“ A W)

It follows from the display above and the semigroup property that, for any
t >0, p(t,z,y) is bounded. Since H is bounded between two positive constants,
Assumption 1.1 is satisfied.

Suppose that the branching rate function § and the branching mechanism
satisfy the assumptions of Section 1.2, and that the corresponding superprocess
X is supercritical. Using the above two-sided heat kernel estimate for £, we can
establish in a similar way as in Example 4.4 that Assumption 1.3 also holds.

In the following example, our main result does not apply directly. However,
we could apply our main result after a transform.

Example 4.9 Suppose that the spatial motion £ = {&;,II,} is an OU-process
on R? with infinitesimal generator

1
$:§UQA—CJJ-V on RY,

where o, ¢ > 0. Without loss of generality, we assume o = 1. Let

o) = (5)" e, mian) = (@)

s

Then (&,11,,) is symmetric with respect to the probability measure m(dx).
Let
a(z) = cilz* + ez, 1,00 >0,

and let P be the Feynman-Kac semigroup:

PP f(x) = T, [efo ©€)%5 £ (g)).

Suppose ¢ > /2c¢; and write
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Let
Ae := inf{\ € R: there exists u > 0 such that (.Z +a — \)u = 0 in R}

be the generalized principal eigenvalue. Let h denote the corresponding ground
state, i.e., h > 0 such that

(Z+a—A)h=0.

As was indicated in [12],

— 9uNd/2
Ae=ca+dv >0, h(z)= (C - U) exp{v|z|?}.
Note that
h = e—)xctptah

on R%. Let IT" be defined as in (1.16) with ¢g replaced by h. The transformed
process (£,T17) is also an OU-process with infinitesimal generator

1
§A—(c—21))a:-v on R%.
Let

Y(x,z) = —a(x)z + b(x)zQ,

where b € C"(R?), b(x) > 0 for all x € RY A superprocess X with spacial
motion &, branching rate 5(x) = 1, and branching mechanism v, can be defined
by

1
X ==X
h b

where X" is the superprocess with spacial motion (&, II?), branching rate 3(z) =
1, and branching mechanism

W2, 2) = —Aez + h(z)b(z)2?.

Assume that hb is bounded in R?. Then, for X", we have

m!(dz) = (“= 2U>d/26_(°_2“)|x|2d:c, M=o, dh=1.
m
From the discussion in Example 4.1, we see that Assumptions 1.1 and 1.3 are
satisfied for the superprocess X". Then, there exists Q¢ C Q of probability one
(that is, P,(Q0) = 1 for every u € .#p(R?)) such that, for every w € Qo and
for every bounded Borel measurable function f > 0 on R? with f/h < ¢ for
some ¢ > 0 and that the set of discontinuous points of f has zero m-measure,
we have

lim e_’\gt<£,Xth>(w) = Wao(w) /Rd (%)(y)mh(dy)

t——+o0

C

:Woo(w)(—)d/ ’ /R d Fy)e Ml dy  (4.12)

s
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where Woo(w) is the limit of the martingale
Wy i= e U1, X[ = e A (h, X;)

as t — +oo. We rewrite (4.12) to get the limit result on X:

(&)™ etk sy

s

. —Act _
e X)) = W) [
= Woo(w) /R ) éo(y) f(y)dy, (4.13)

where 42
T _ (¢ (v=0)lyl?
o= (5) ot

Since h is bounded from below, in the weak topology,
e X, — Weo(w)go(z)dz, P-as.,

for any p € .#r(R?). This example covers [10, Example 4.7].
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