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Conditional limit theorems for critical

continuous-state branching processes

Yan-Xia Ren} Ting Yang and Guo-Huan Zhao

Abstract

In this paper we study the conditional limit theorems for critical continuous-
state branching processes with branching mechanism ¥(\) = AFTL(1/))
where a € [0,1] and L is slowly varying at co. We prove that if € (0, 1],
there are norming constants Q; — 0 (as ¢ T 4+00) such that for every x > 0,
P, (Q:X; € | Xy > 0) converges weakly to a non-degenerate limit. The con-
verse assertion is also true provided the regularity of ¢ at 0. We give a
conditional limit theorem for the case a = 0. The limit theorems we obtain

in this paper allow infinite variance of the branching process.

1 Introduction

A [0, +00)-valued strong Markov process X = {X; : ¢ > 0} with probabilities
{P, : x > 0} is called a (conservative) continuous-state branching process (CB
process) if it has paths that are right continuous with left limits, and it employs

the following branching property: for any A > 0 and z,y > 0,
By (€7%50) = By (e B, (%), (1.1)

It can be characterized by the branching mechanism 1 which is also the Laplace
exponent of a Lévy process with non-negative jumps. Set p := ¢/(0+), then
E,.X; = ze . We call a CB process supercritical, critical or subcritical as p <
0, =0, or >0.

Let 7 := inf{t > 0 : X; = 0} denote the extinction time of X; and ¢(z) :=
P,(7 < 4+00). When ¢(z) < 1 for some (and then for all) z > 0, the asymptotic
behavior of X; is studied in [3]. It was proved that there are positive constants

1; such that 7, X, converges almost surely to a non-degenerate random variable
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as t — +o00.Note that ¢(x) = 1 if and only if X is subcritical or critical with v

satisfying .
<1

—d 1.2

AT R )

for some # > 0. In this case, one can study the asymptotic behavior of X by
conditioning it on {7 > t} (see [7, B, O [10] and the references therein). In the
subcritical case, it was proved that P, (X; € -|7 > t) converges weakly as t — +o0
to the so-called Yaglom distribution. However in the critical case, the limiting
distribution of X; conditioned on non-extinction is trivial, converging to the Dirac
measure at co. To evaluate the asymptotic behavior of X; more accurately, we
therefore have to normalize the process appropriately.

Throughout this paper, we assume 1) satisfies
P(A) = ATOL(1/N) VA>0 (1.3)

where a € [0, 1] and L is slowly varying at infinity. Our assumption on ¢ does not
require the finiteness of F,X?.

It is well known that a CB process can be viewed as the analogue of Galton-
Watson branching process in continuous time and continuous state space. So it
is necessary for us to take a look at the asymptotic behavior of critical G-W
branching processes. Let f(s) denote the probability generating function of the
offspring law of the critical G-W process Z,,. Let F(n) = Pi(Z, > 0). Slack [13,[14]

proved that Pi(F(n)Z, < y|Z, > 0) converges weakly to a non-degenerate limit
if and only if

Fo) =+ -r () (1.49)

1—s

for some a € (0,1] and L slowly varying at +oo. Later Nagaev et.al.[6] proved a
conditional limit theorem for f(s) satisfying (L4]) with o = 0. Recently, Pakes [§]
generalized the above results to continuous time Markov branching process. The
proofs given in [§], based on Karamata’s theory for regular varying functions, are
much easier. However, for discrete-state branching process, there leaves open the
question of whether (L4)) is implied by the more general conditional convergence
of Pi(b,Z, <y|Z, > 0) for some positive sequence {b,} with b, — 0.

This paper is structured as follows: In Section 2, we collect some basic facts
about regularly varying functions and CB processes. Section 3 is devoted to the
conditional limit theorems for ¢ with o € (0, 1]. We prove that there exists positive
norming constants @y — 0 such that P,(Q;X; € |7 > t) converges weakly to a
non-degenerate limit. An admissible norming is @); = P;(7 > t). This is analogous
to the result we mentioned in the above paragraph for discrete-state branching
processes. Later we prove that the converse assertion is also true provided some
regularity of ¢ at 0 (or equivalently, provided some regularity of the Lévy measure

of ¢ at infinity). In Section 4, we give a conditional limit theorem for the case
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a = 0. Its discrete state analogue is proved independently in [6] and [§]. The last
section provides some concrete examples which satisfy the assumptions in Section

3 or Section 4. The branching mechanisms in these examples are well known and

taken from [11].

2 Preliminary

In the rest of this paper, we shall use the notation f(x) ~ g(z) for functions f
and ¢ to mean that f(z)/g(x) - 1 as @ — +o0 or 0. Let x Ay := min{z, y}.

Suppose X is a CB process with branching mechanism 1. Generally v is
specified by the Lévy-Khintschine formula

P(A) = aX + bA? +/ (e™* — 14 \x)A(dz), A>0,
(0,400)
where a € (—00,400), b > 0 and A is a non-negative measure on (0, 4+00) satis-
fying f(0’+oo)(:c2 A z)A(dx) < +o0. A is called the Lévy measure of ¢). Obviously,
1 is convex and infinitely differentiable on (0,400). Since we aim at condition-
ing critical CB process on non-extinction, we assume that ¢ satisfies (L2) with
' (0+) = 0. Under this assumption, 1 is a strictly convex function on [0, +00),
(+00) = 400, and () = 0 if and only if A = 0. This assumption also implies
that P,(7 < 4+00) = 1 for every x > 0.

For # > 0 and \,t > 0, let E,(e7*%) = ¢=®*®X) Then u,(\) is the unique

positive solution to the backward equation

0

a7V = —(w (), u(d) = A (2.1)

From (1)) and the semi-group property u;(us(\)) = wugrs(N), we also get the

forward equation
—u(A),  ug(N) = A (2.2)

Note that our moment condition on A implies that E, X, = xze ?* < +oo for all
z>0and t>0.
Next define
o g, v 0
o(z) = —d§, Vz>0.
. ()

The mapping ¢ : (0,4+00) — (0, 400) is bijective with ¢(0) = +oo and ¢(+o00) =
0. We use ¢ to denote the inverse function of ¢. From (21I), we have

A
——df = At > 0.
/ut()\) Y(€) SehoATE



Hence
w(A) = p(t+o(N), A t>0. (2.3)

Since ¢(+o00) = 0, we have u;(+00) = (), and for any = > 0 and ¢ > 0,

Pyt >1)=Py(X; >0)=1— lim e %W =1 _ g=o¢lt), (2.4)

A——+o00

Let F(t) := Pi(7 > t). Obviously, we have F(t) ~ o(t) as t T +oo0.

Results about regular varying functions will be used a lot in the remaining
paper, so we collect some basic facts here. A positive measurable function L is said
to be slowly varying at oo if it is defined on (0, +00) and lim, 1o L(Az)/L(z) =1
for all A > 0. This convergence holds uniformly with respect to A on every compact
subset of (0,+00). Let & denote the set of all slowly varying functions at oco. If
L € 8, then for any § > 0, lim, ;o 2° L(z) = 400, and lim,_, 2 °L(x) = 0.

If a positive function f defined on (0,400) satisfies that f(Az)/f(z) — A as
x — 400 (resp. 0) for any A > 0, then f is called regularly varying at oo (resp. 0)
with index p € (—o0, +00), denoted by f € R,(c0) (resp. f € R,(0)). Obviously,
f(z) € R,(0) is equivalent to f(1/x) € R_,(c0). If f € R,(c0) (resp. f € R,(0)),
it can be represented by f(z) = aPL(z) (resp. f(x) = aPL(1/x)) for some L € S.

3 Thecase 0 <a<l1

The following technical lemma follows from Theorem 1.5.2 and Theorem 1.5.12 in
[1]. We omit the details here.

Lemma 1.

(1) If p € (—o0,+0), f € R,(c0) (resp. R,(0)), Ti(t), To(t) — +oo (resp. 0)
and Ty (t) ~ Ta(t) as t 1 +oo, then f(T1(t)) ~ f(1x(t)).

(2) Suppose f € Rpy(00), Ti(t), To(t) = +00 ast — +oo, and f(T1(t))/ f(T(t)) ~
€ (0,400). If p > 0, then Ty(t)/Ts(t) ~ c*/P; otherwise if p < 0 and f has
inverse function f~', then f~' € Ry;,(0) and Ty (t)/To(t) ~ c/P.

Theorem 1. If (L3) holds with 0 < o < 1, then for all z > 0 and y > 0,

lim P, (F(t)X, <y|r > t) = Ha(y), (3.1)

t—+o0

where H,(y) is a probability distribution function, and its Laplace transform is

gien by
ha(6) = / eWAH,(y) = 1 — (1+072) 7/, (3.2)
[0,4-00)
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Moreover, F(t) is regularly varying at +oo with index —1/c, and consequently,
for any 6 > 0,
lim tatF(t) = +o0, lim ta *F(t) = 0.

t——+o0 t——+o0

Proof. For any z > 0, set g(z) := ¢(1/2) = [ £€*71/L(£) d€. Then by Karamata’s
theorem (see, for example [II Theorem 1.5.11]), we have g € R, (00), more specif-
ically, g(z) ~ a™'2°L(2)™' as z — +oo. Consequently, we get ¢ € R_,(0),
P(z) ~atz7*L(1/2)"  as 2 L 0, and ¢ € R_1/4(c0).

Since 1 —e ™ ~ wu as u | 0, we have for any x,0 > 0,
1 — o—zp(t+o(0F(1)))
lim Em< Xe|r > t) = 1— lim ¢
t—+00 t—+o00 1 — e—ze(®)
t OF(t
t——4o0 o(t)

It follows from Lemma [0 and the fact that F(t) ~ ¢(t) as t T +o00, we have

SOF (1)) ~ ¢(0sp(t)) ~ 0 ¢(p(t)) = 0.
Hence we have ¢(t + ¢(0F(t))) ~ ¢((1 + 0~%)t). By B3) and the regularity of ¢
at oo, we get

o((1+6=)t

lim E, <e—9F<t>Xt|T > t) ~1— lim W 1oy e (3.

t——+o00 t——+o00 (p(t)

The assertion follows from the continuity theory for Laplace transforms (see, for
example, [2, Section 6.6 |). O

Remark 1. The stationary excess operation on H,(y) is defined by ﬁ]a(y) =
f(o ]H d:p/f0+oo) o(z)dz, where Hy(y) = 1— Hy(y). Hu(y) is also a proba-
bility distribution function, and a simple calculation shows that its Laplace trans-
form is (140=)=Y [, (y) is often called a generalized positive Linnik law. When
a =1, it gives the well-known standard exponential law. For more information on

Linnik Law, we refer readers to [8, Section /] and references therein.

The remainder of this section is devoted to the converse assertions to Theorem
I Suppose that X; is a critical CB process. If there exist x > 0 and positive
constants Q) — 0 (as t T +o00) such that P, (Q:X; € -|T > t) converges weakly to

a non-degenerate limit, then liminf, , . Q;/F(t) > 0. In fact, by Fatou’s lemma

t—-+o0

+o0
0 < liminf/ P, (Qi X >y|T>1t)dy
0
= liminf B, (Q:X; |7 > t)
t—+o00
= liminf Q,/F(t).
t—+o0



Lemma 2. Suppose 1 is the branching mechanism of a non-trivial critical CB

process. If 1 is reqularly varying at 0, then 1 € Rq14(0) with a € [0, 1].

Proof. Suppose ¥(\) = APL(1/)) for some p € (—o0,+00) and L € S. Since

A
0= ¢/(0+) = lim ? = lim X L(1/3),

we have p > 1. If p > 2, then

4(04) = lim 21/;@ = lm2¥L(1/3) = 0. (3.5)

Recall that ¢"(\) = 2b + [, a%e"**A(dx) for some b > 0 and Jopooy (@ A
2?)A(dz) < +oo. So ([BH) implies that b = 0 and A(dz) = 0, in which case
v is trivial. Hence p < 2. We set a = p — 1, thus proving the conclusion. U

Theorem 2. Suppose X; is a critical CB process with branching mechanism .
If for some x > 0, P, (F’(t)Xt <vylr > t) converges weakly to a non-degenerate
distribution function H(y), then (L3) holds with o € (0, 1].

Proof. Let H(y,t) :== P, (F(t)X; < y|r > t). Under the assumption, we have

lim g(y)dH (y,t) = / 9(y)dH (y) (3.6)
=400 J[0,400) [0,4-00)

for any continuous function ¢ defined on [0, +00) such that lim, ., g(y) = 0.
Suppose 0 > 0. Using ([B.6) with g(y) = e~ we get
h(0) ::/ e %dH(y) = lim e %dH (y,1)

t—+o00 [07_,’_00)
= lim FE, (e_GF(t)XﬂT > t)

o Lo ep{oaom(@F)
t—+00 1jexp{—:cg0(t)}
I 30),
L=t =0 (37)
Soast T +oo
w(OF () ~ h(0)p(t) ~ h(O)F(t), (3.8)

where h(f) = 1 — h(#). On the other hand,using ([B.6) with g(y) = ye %, we

obtain

h’(@):/[ )yeede(y) = lim ye "dH (y,t)
0,400

t—-+o0 [07+OO)

= lim FE, (F(t)Xte*GF(t)Xt |7 > t)

t——4o0
. F(t)E,(X,e 0F0Xt)
= Jim 1 _ o—ael® (3.9)
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From (2.I)) and (2.2]), we have

Thus \
Ex(Xte_)\Xt) — __e—anut()\) — xe_xut(A)w(Ut< )) (310)

ﬁ’(e) _ . L(t?p e Tut (OF(t) )1/}<

(3.11)

The last equality follows from a standard argument using the continuity and mono-
tonicity of ¢. Let \(0) := h(0)/0 = [ e %H(y)dy where H(y) = 1 — H(y).
A(0) is decreasing on (0, +00). Since F(t) decreases continuously to 0 as ¢ 1 +oc
and 1) is monotone on (0, +00), (B.I1]) implies that

L BA0)s)

510 17/)(5) - §<)\<9>>7 Vo > 0, (312)

for some function ¢ such that £(A(6)) = R'(§). From the continuity and mono-
tonicity of A(#), we have for any A € (0, A(0+)),
(A

i LA8)

slo (s)

Characterization theorem (see [I, Theorem 1.4.1] ) says that (B.I3) holds for all
A > 0, and there exists p € (—o0,+00) such that £(\) = AP, i.e. ¢ is regularly
varying at 0 with index p. Let a = p — 1, then « € [0, 1] by Lemma 2 If o = 0,

= ¢(N). (3.13)

we have

This has the solution h(f) = 1 — cf for some constant c¢. This is the Laplace
transform of a distribution function if and only if ¢ = 0, in which case H(y) = 1

is the distribution function of Dirac measure at 0. Therefore o > 0. O

Suppose (i is a positive measure supported on (0, 4+00). We say p is regularly
varying at +oo if u(x) := p((0,z]) is regularly varying at +oo. The following
theorem tells us that (L3]) with a € (0,1] is implied by the more general limit
P, (Q:X: < y|r >t) = H(y) where Q); are positive constants such that Q); — 0.



Theorem 3. Let ) be the branching mechanism of a non-trivial critical CB process
with Lévy measure A. Suppose x>A(dx) is reqularly varying at +oo. If there exist
x > 0 and positive constants Q; — 0 (as t T +o00) such that P, (Q:X; < y|T > t)
converges weakly to a non-degenerate limit H(y), then (L3) holds with « € (0, 1].
In this case, Q;/F(t) ~ ¢ € (0,+00), and the Laplace transform of H(y) is given
by
h(0) = / e WdH(y) =1 — (1 + ¢ 0"V,
[0,4-00)

To proof Theorem B], we need the following lemma.

Lemma 3. Suppose 1 is the branching mechanism of a non-trivial critical CB
process. Then 1 is reqularly varying at 0 if and only if v* A(dz) is regularly varying

at +00.

Proof. We may and do assume that
P(A) = bA? + / (e — 1+ Ax)A(dw)
(0,4-00)

where b > 0 and [, (z A 2?)A(dz) < +o0. Let U(z) := [, ;2°A(dz) and
U(0) = fig,400) ¢ ""dU (). If¢"(04) < +o00, then ¢ € Ry(0) and [, | 2*A(dx) <
+oo. Obviously lim., 1o U(2) = [, 2°Aldz) < +oo, which implies that
2?A(dx) is slowly varying at +oo.

Now we suppose 9" (0+) = 400, in which case f[1 o) r?A(dz) = +oo. If ¢ is
regularly varying at 0 with index p € [1,2], then for any A > 0, using L’Hospital

rule, we have

po_ oy VAN UT(AN)
AT = Iy TR e
= lim Azw = lim AQM. (3.14)

A0+ 2 U(N) A0+ U(N)

The last equality is because limg_,o, U(#) = limg_o, | (0,400) e % 22A(dz) = +oo.
Thus U is regularly varying at 0 with index p—2 € [—1,0]. By Tauberian theorem
(see, for example [I, Theorem 1.7.1]), z2A(dz) is regularly varying at +oo with

index 2 —p € [0,1]. The converse assertion is clear through the equalities in

B.14). O

Proof of Theorem [3. The proof is similar to that of Theorem 2 We pro-
vide details here for the reader’s convenience. Let H(y,t) := P, (Q:X; < y|T > t),
h(0) := f[0,+oo) e~%dH (y,t) and h(f) := 1 — k(). Similarly we can get the ana-
logues to (B.8)) and B.11)):

u (0Q;) ~ h(0)F(t) ast — +oo, (3.15)
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and

. Qr Y(w(0Q:))
t£+moo F@) o00) h'(6). (3.16)
It follows from Lemma [3] that v is regularly varying at 0. Using Lemma [I], (B.15)
and (B.10), we have B

Qv

t=toe F(2) - (6Q;)
In view of Lemma 2] we may and do assume 1 € Ry4,(0) with a € [0,1]. We
first consider the case o > 0. Put g(z) := (2¢(1/2))7!, 2 > 0. Then g € R, (+00).

(BI17) implies that

im M = lim U(h(O)F (1)) _ eQ_t _ 79
totoo g(1/R(O)F(t))  t=+oo  (0Q:)  h(O)F(t)  h(0)

=1 (0). (3.17)

(3.18)
By Lemma [Il we have for all § > 0,
th 0 _ —1/a
-~ =—h(0 t
e~ @) o it
or equivalently,
Qt 0 —1/a—1 - .
<L — ()~ t :
a0 h o) (9) , astT+4oo
Hence we have Q,/F(t) ~ c for some constant ¢ € (0, 4+00), and
0 —1/a—1
— R(0)" Ve = 0 € (0,00).
(i) O =a se)
In view of the initial condition h(0) = 1, the above equation has the unique

solution h(f) = 1 — (1 + ¢~ )" Ve,
Otherwise if o = 0, we assume (A\) = A(\) where [ is slowing varying at 0.

From B.I7), we get
LUE®) 6
t—+oo [(Qy) h(0)
Thus there exists a constant ¢; independent of # such that

6
—— N () =c, 6¢€(0,00).
(6)
This has the solution h(f) = 1 — 0" for some constant co. h(6) is the Laplace

transform of a distribution function only if ¢; = 0, in which case H(y) = 1,y €

R'(0), V6> 0.

[0,00) is the distribution function of the Dirac measure at 0. This contradicts
our assumption that H is the distribution function of a non-degenerate random

variable. Hence a > 0. We complete the proof. O



Remark 2. Through the above proof we see that for v satisfying (L3)) with o = 0,
the limit distribution of P, (Q:X; € |7 > t), if exists, must be the Dirac measure
at 0.

4 The case a =10

In this section, we stay in the regime o = 0. Suppose (A) = AL(1/)\) satisfies
our assumption (L2) and ¢'(0+) = 0. From Remark 2] we know that for a = 0,
any possible positive sequence ); — 0 overnormalizes X;. So we need to find
an alternative way to normalize X;. [8] considers the analogous conditional limit
theorem for critical Markov branching processes with the offspring generating
function f(s) = s+ (1 — s)L(1/(1 — s)) where L € §. The proof in [§] can be
adapted here to get the convergence result for a CB process.

Set
400

1 T
Vix) .:¢<1/x):/1/$ mdg:/o @l >0

Obviously, V is differentiable, strictly increasing on (0, +00), V'(z) = 27! L(z)™,
V(0) =0 and V(+o0) = 0+°° 1/1(€)dé = +oo. By Karamata’s theorem, we have
VeS, and V(x)L(z) - 400 as x — +o0.

Let R denote the inverse function of V. It is easy to see that R(z) = 1/¢(x),
R is continuous, strictly increasing on (0, +00) with R(+00) = +o00 and R(0) = 0.
By [, Theorem 2.4.7], R belongs to the class of Karamata rapidly varying func-
tions denoted by K R... We refer readers to [Il, Section 2.4] for more information
about K R,. Since y = V(R(y)), we have

’(y)

R@LEG) 7"

1=V'(R(y))R(y) =

or equivalently

= L(R(y)), Vy>0.

Thus there exist ¢, A > 0 such that

R(y) = cexp { / ’ L(R(z))dz} .y €A +o0). (4.1)

A

Lemma 4 ([8] Lemma 5.2). As t 1 +oo, I(y,t) := ry/LIRE) L(R(z))dz — vy,

ot
and this convergence holds locally uniformly with respect to y € (—00, 4+00).
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Theorem 4. If (L3) holds with o = 0, then
V(F@t)™ ) ~t, ast? +oo, (4.2)

and
lim P, (L(F(t) " )WV(Xy) <ylr>t)=1—¢? (4.3)

for any x >0 and y > 0.

Proof. [{2) follows from the fact that V(F(t)™) ~ V(R(t)) = t as t T +oo.
Henceforth we only need to prove (43)). By the monotonicity of V', we have

P (L(F() V(X)) < ylr > 1) = P (X, < R (y/LIE@®) ™)) |7 > ). (4.4)

For any 6 > 0, using the argument of (B8.3]), we have

: Xy
tEeroo P, (exp { o F’(t)—l)) } |7 > t)

L el e RLE0 )
t—+o0 cp( )
_ R(t)
R R o /R /LD ) o
where in the last equality we used the fact that R(t) = 1/¢(t),t > 0.
Since V € S and F(t) ~ o(t) = R(t)* as t T +o00, we get
6 IR (/LF@ ™) = V(GRO/LED™))
~ V(R(y/L(F()™))
_ Y
- LF@)
)
~ LRW) (4.6)

Thus by (1), (£8) and Lemma @] we have

- R(t)
ey t+gb(9/R y/L(F(t)™1))))

t+¢ (0/R(y/L(F®)~Y)))
= lim exp L(R(z))dz
t—+o00
t+y/L(R(t
= lim exp (R(z))dz
t—+o00

7
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and consequently,

: Xy ey
tl}gloo P, (exp {—«9 R G/LED ) } |7 > t) =1 :

Note that 1 —e™¥ is the Laplace transform of the defective law which assigns mass

1 —e ¥ at 0 and no mass in (0, +00). It follows from the continuity theory for
Laplace transform (see, for example [2, Section 6.6]) that

lim P, (X; <R(y/LIF@) ) |r>t)=1—¢€?,

t—+o0

or equivalently by (4.4)

5 Examples

In this section we collect a few examples of branching mechanisms that satisfy the
assumptions in Section 3 or Section 4. Branching mechanisms in Examples 1, 2
and 4 are well-known. It follows from [I1, Proposition 5.2] that ¢»(\) = Af(A) is
a critical branching mechanism if and only if f is a Bernstein function and there
exists b > 0 such that f(A) = bA+ [[7(1 — e ™ )g(x)dz with g > 0 decreasing
and [;*(z A 1)g(x)dz < co. Branching mechanisms in Examples 3 and 5 are
in given in this from. We refer the reader to [II] for more information on the
connections between branching mechanisms and Bernstein functions, and [12] for

more examples of Bernstein functions.

Example 1. Let ¢(\) = cA'™ where ¢ > 0 and o € (0,1]. In this case
B(t) = (ca)™A™, ©(t) = (cat)~'/. Thus we have

F(t) =1 —exp{—(cat) "} ~ (cat)™"* ast ] +oo0.

Similarly to ([B4]), we get

= 1—(14(ca)~to—) "V,

1/ t gt/
lim E, (e*‘% ! Xt|r > t) =1— lim plt + o )
t—+00 t——+00 (p(t)

Therefore for any y > 0,
Jim P, (tX, < y|r > t) = Haly),

where H,(y) is uniquely determined by its Laplace transform

h(h) = /0 +OO e WdH,(y) =1 — (1 + (ca)to~) "V,
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Remark 3. This case was excluded in Pakes et. al. [9, [10], and was studied
independently in Haas et.al. [J] and Zhang [15]. More specifically, [J] discussed
Ezample 1 as a special case of self-similar Markov process, while [15] viewed the
corresponding CB process as the scaling limit of a special sequence of Markov
branching processes and exploited limit theorems for some general conditioning

events.

Example 2. If ¥"(0+) = 0 < 400, then (L3 holds with & = 1 and
limgjo L(1/s) = o/2. By Karamata’s theorem, we have ¢(z) ~ 27 'L(1/2)"t ~
2/oz as 2,0, and ¢ € R_1(0c0). Thus we have

14+ 2071t
lim E, (e_eXt/t\T > t) =1-— lim PlL+ 507
t—-+00 t=+o0 (1)

2
=1-—(1+Z6H
(1407
Therefore 5
F(t) ~ = t
(t) ~— astt oo,

and for any y > 0,
lim P, (X,/t >y|r>t)=e V.
t—+o00

This conditional convergence was proved independently in Li [7] and Lambert [5].

Example 3. Let ¥(\) = A(A™ + A7)~ where 0 < 8 < a < 1. By [12]
(A~*+A"#)~1is a Bernstein function, and then v is a branching mechanism. Note
that 1(\) = MTL(1/)\) with L(z) = (1 + z—°+#)~!. By Karamata’s theorem, we
have g(z) := ¢(1/2) = [; €71/ L(§)dE € Ra(00), and

g(z) ~a 2 L(2) P ~ a2 = h(2) as z 1 +oo.

Both g and h are strictly increasing on (0, +00). Let ¢g=! and h~! respectively

denote the inverse functions of g and h. Since

L=g(g7(2))/M(h7 (2)) ~ g(g7"(2))/9(h™'(2)),

by Lemma [l we have ¢'(z) ~ h7'(2) = (az)"/® as z 1 +oo. Consequently,
() =1/g7'(t) ~ (at)"V/* as t 1 +oo. Therefore, we have

F(t) ~ (at)™V* ast — 400,

and for any y > 0,

lim P, (t7°X, < y|r > t) = Ha(y),

t—+o00
where H,(y) has the Laplace transform
ha(0) =1 — (1 4+ a7t~V

13



Example 4. Let (\) = AP + X% 0 < v < 8 < 1. Then ¥()\) =
MNFYL(1/A) with L(z) = 1 + 277 € S. Using similar arguments as that in

Example 3, we have

F(t) ~ (yt)™Y7 ast — +oo,

and for any y > 0,

lim P, (t'7X, <ylr>t) = H,(y),

t—+o0

where H.(y) has the Laplace transform:

ho(0) =1— (141071,

Example 5. Let 1/(\) = Mog ™ (1+A71), 3 € (0,1] and where log 7 (14 A1)
is a Bernstein function (see [I1, P.133]). Then ¢ satisfies (L3) with v = 0 and
L(z) = log?(1 + 2). Immediately we have V(z) ~ (8 +1)"'log”™ 2z and L(z) ~
log™? z as z 1 +oo. Inserting the asymptotic equivalents of V and L into Theorem

M we get
—log F(t) ~ [(B+ D)7, ast 1 +oo,
and .
lim Px< log ){t §y|7>t):1—ey
t=roo (B+1)log’ (F(t)~1)

for any z > 0 and y > 0.

Acknowledgement We would like to thank Professor Mei Zhang and her
student Xin Zhang from Beijing Normal University for sending us their related

work on this topic.

References

[1] N. H. Bingham, C. M. Goldie and J. L. Teugels (1987): Regular Variation,
Cambridge University Press.

2] K. L. Chung (2001): A Course in Probability Theory, Third Ed., Academic
Press.

[3] D. R. Grey (1974): Asymptotic behavior of continuous time, continuous state-
space branching processes, J. Appl. Probab. 11, 669-677.

[4] B. Haas and V. Rivero (2011): Quasi-stationary distribution and Yaglom limits
of self-similar Markov processes, Preprint, arXiv:1110.4795.

14



[5] A. Lambert (2007): Quasi-stationary distributions and the continuous-state
branching process conditioned to be never extinct, Flec. J. Prob. ; 12, 420-446.

[6] S. V. Nagaev and V. Wachtel (2007): The critical Galton-Watson process
without further power moments, J. Appl. Probab. 44, 753-769.

[7] Z.-H. Li (2000): Asymptotic behavior of continuous time and state branching
process, J. Aus. Math. Soc. Seriess A, 68, 68-84.

[8] A.G. Pakes (2010): Critical Markov branching process limit theorems allowing
infinite variance, Adv. Appl. Prob., 42, 460-488.

9] A. G. Pakes (1988): Some limit theorems for continuous-state branching pro-
cesses, J. Aus. Math. Soc. Series A, 44, 71-87.

[10] A. G. Pakes and A. C. Trajstman (1985): Some properties of continuous-state
branching processes, with application to Bartoszynski’s virus model, Adv. Appl.
Prob., 17, 23-41.

[11] Y.-X. Ren and H. Wang (2008): On states of total weighted occupation times
of a class of infinitely divisible superprocesses on a bounded domain, Potential
Anal., 28, 105-137.

[12] R. L. Schilling, R. Song and Z. Vondracek (2012): Bernstein Functions: The-
ory and Applications, Second edition. de Gruyter Studies in Mathematics, 37.
Walter de Gruyter & Co., Berlin.

[13] R. S. Slack (1968): A branching process with mean one and possibly infinite
variance, Z. Wahrscheinlichkeitsth. 9,139-145.

[14] R. S. Slack (1972): Further notes on branching processes with mean 1,
7. Wahrscheinlichkeitsth. 25, 31-38.

[15] X. Zhang (2012): Asymptotic behavior of continuous-state branching pro-
cess allowing infinite variance, unpublished Master dissertation, Beijing Normal

University.

Yan-Xia Ren: LMAM School of Mathematical Sciences & Center for Statistical
Science, Peking University, Beijing 100871, P. R. China,

E-mail: yxren@math.pku.edu.cn

Ting Yang: Institute of Applied Mathematics, Academy of Mathematics and
Systems Science, Chinese Academy of Sciences, Beijing 100080, P.R.China,

15



E-mail: yangt@amss.ac.cn

Guo-Huan Zhao: LMAM School of Mathematical Sciences, Peking University,
Beijing 100871, P. R. China,
E-mail: 1101110040@math.pku.edu.cn

16



	1 Introduction
	2 Preliminary
	3 The case 0<1
	4 The case =0
	5 Examples

