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 MULTITYPE BRANCHING BROWNIAN
 MOTION AND TRAVELING WAVES

 YAN-XIA REN,* Peking University

 TING YANG,** Chinese Academy of Sciences

 Abstract

 In this article we study the parabolic system of equations which is closely related to
 a multitype branching Brownian motion. Particular attention is paid to the monotone
 traveling wave solutions of this system. Provided with some moment conditions, we
 show the existence, uniqueness, and asymptotic behaviors of such waves with speed
 greater than or equal to a critical value ç and nonexistence of such waves with speed
 smaller than c.

 Keywords: Multitype branching Brownian motion; spine approach; additive martingale;
 traveling wave solution

 2010 Mathematics Subject Classification: Primary 60J80
 Secondary 35C07

 1. Introduction and main results

 We consider a branching particle system in which there are d (2 < d < +oo) different types
 of particles. Let S = {1,2,..., d] be the set of types. A type i particle splits into offspring
 particles of all possible types according to a distribution {pk(i)' k e Z+} after a lifetime
 which is exponentially distributed with parameter a¡ > 0. All particles engender independent
 lines of descent. In addition, each particle, when it is alive, diffuses in space R independently
 according to a Brownian motion starting from its point of creation. This system is called a
 multitype branching Brownian motion (MBBM). For more precise configuration of MBBM,
 see Section 2.

 In this article, we assume that each particle reproduces at least one child, which guarantees

 that the process survives forever with probability one. Suppose that := YlkeZd Pk(i)kj <
 +00, and that the mean matrix M - ( m¿j)ijGs is irreducible, i.e. there exists no permutation
 matrix S such that S~lMS is block triangular. We study the following parabolic system of
 equations which is strongly related to MBBM:

 du 1 d2u
 Hī = 2 ^ - H) (1)
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 218 Y.-X. REN AND T. YANG

 Here, u(t, x ) = (u'(t, jc), U2(t, jc), . . . , Ud(t, Jt))T, A is a diagonal matrix with diagonal entries
 {at : i = 1, . . . , d], and 'ļr(u) = (^i(w), ifoO*), • • • , ÝdW)T with

 d

 ýí (zì,...,zd)= n z)'
 *6Z^ J= 1

 being the generating function of offspring split by a type i particle. Our primary concern in
 this article is the solutions satisfying u(t,x) = w(x - ct) where w is a monotone function
 connecting 0 at - oo to 1 at +oo. Such solutions are called traveling waves. The analogous
 object to (1) for a single- type branching Brownian motion is called the Fisher-Kolmogorov-
 Petrovski-Piscounov (FKPP) equation. FKPP equation has been studied extensively using
 both analytic and probabilistic methods (see, for example, [3], [4], [8], [1 1], and [14]). Among
 these works, [8] and [11] give proofs for the existence, uniqueness, and asymptotic of trav-
 eling wave solutions to the FKPP equation through purely probabilistic arguments. Recently,
 Kyprianou et al. [12] extended the probabilistic arguments to the traveling wave equations
 associated to super-Brownian motions with a general branching mechanism.

 In this article we outline a probabilistic study on traveling waves of system (1). Our work
 is strongly guided by the probabilistic arguments in [1 1] with respect to single-type branching
 Brownian motions. An important tool of our probabilistic arguments is a representation of
 the family tree in terms of a suitable size-biased tree with spine. This representation is the
 continuous-time analogue of the size-biased tree representation introduced by [10]. This
 continuous-time version is also used in [6] to investigate the evolution of the ancestral types of
 typical particles for multitype Markov branching processes.

 We call u a traveling wave solution with speed c if u(t, x) satisfies (1) and u can be written
 as u(t, x) = w( x - ct) = (w'(x - ct), . . . , Wd(x - ct))T where u;,(-) is a twice continuously
 differentiable, strictly monotone function increasing from 0 at - oo to 1 at +oo. For simplicity,
 w is also called a traveling wave with speed c. Obviously, w provides a traveling wave solution
 to (1) if and only if

 1 d2w dw
 2 8? + C17 + AW",)"",)=0' ®

 Sometimes, we write jc) and w¡(x) as u(t9 jc, i) and w(x, /), respectively.
 Let N(t) := (N'(t), N2(t), . . . , A^(0)T be the vector denoting the population sizes of

 different types at time t. Suppose that m¿j(t) := E¡(Nj(t)) < +oo for every i, j e S. It is
 known that the mean matrix M (t) = (mij(t))ijes can be written as

 +2^ An
 M(t) = exp (At) = ¿2 - tn, where A = (aij)ij€S, (*ij = fl«(w,y - Sy).

 n=o n'

 It follows from the irreducibility of M that M(t) has positive entries for some t > 0 (this
 property is also called 'positive regularity' by [2]). According to the Perron-Frobenius theorem
 (see [16, Theorem 2.5]), A admits a real eigenvalue k* > 0 larger than the real part of any other
 eigenvalue. The so-called Perron's root k* is simple, with a one-dimensional eigenspace,
 and there are corresponding left and right eigenvectors with positive coordinates. In the
 following we denote by n (respectively h) the associated left (respectively right) eigenvector
 with normalization ( it , h) = {n, 1) = 1 (here, (•, •) denotes the Euclidean inner product).

 For X ^ 0, define
 X X*

 2 + T'
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 Multitype branching Brownian motion and traveling waves 219

 which will serve as the speeds of traveling waves. In the following, we deal only with the case
 ex > 0. Traveling waves with negative speeds can be analyzed by simple considerations of
 symmetry. Let ķ := y/2k*. It is easy to see that c' attains a local minimum c~cx = V2X*
 at ķ. We call (2) subcriticai , critical , or supercritical according to whether c is less than, equal
 to, or greater than c.

 Let the configuration of this MBBM at time t be given by the R x S-valued point process
 {( Xv(t ), yjrue Z(t)l where Z{t) is the set of particles alive at time f, Xv(t ) is the spatial
 location of v , and Yv is its type. For any x e R and y e S, let Pxy be the law of the process
 starting from a single particle of type y at spatial position x. Let Exy be the expectation
 corresponding to Pxy To state our main results, we introduce two types of additive martingales
 which will play an important role in this paper. For any k / 0, define

 Wx(t ) := hy^-HXviD+c^t)
 veZ(t )

 From the many-to-one formula (see Proposition 1, below), it is easy to see that { Wxit), t > 0}

 is a positive martingale under Pxy and, consequently, the almost sure limit of Wx(t) exists. Set
 W(k) := lim^+oo Wx(t). Now we define another type of additive martingale:

 Mx(í):= hYv(Xv(t) + kt)c-HX"(,)+c"' (3)
 veZit)

 Here, {Mx(t), t > 0} is a martingale which may take both positive and negative values. We
 will prove that Af (A.) := lim^+oo Mxit ) exists for every k > X (see Lemma 10, below).

 For every i e 5, suppose that (£,• ' , . . . , §/¿)T is a random vector with the law {pk(i) - k e

 Z+}. Now we are ready to state the main results of this paper.

 Theorem 1. Suppose that E log"1" %¿j) < +oo for all i, j e S.

 (a) When c > c, there is a unique traveling wave at speed c given by

 w( Jt, y) = ^[expí-WÍA.)}] = £oy[exp{-e_^ W(k)}], forall (jt, y)eRxS,

 whereO < k < ķ is the root of the equation ex = c. Further, for every y e S, l - w(x, y)

 ~ hye~Xx as x ->► +oo.

 (b) When c < c, there is no nontrivial traveling wave solution to (1) with speed c.

 Theorem 2. When c = c and log+ £,y)2 < + oc for all i, j e S, there is a unique traveling
 wave at speed c given by

 w( jt, y) = ^[expt- Af(X)}] = £oy[exp{- e^MQÇ)}], forali (jc, y) e R x S.

 Further, for every y e S, 1 - w(x , y) ~ x hyt~-x as x - > +oo.

 Comparing the above theorems with the corresponding results for the FKPP equation (see,
 for example, [8] and [11]), we see that k* plays the role of ß(m - 1) in the case of a single-
 type branching Brownian motion, where ß is the branching rate and m is the mean number of
 particles split by one particle.

 The remainder of this article is structured as follows. In Section 2, we recall the basic
 setting of family trees and the size-biased trees with spine. We also introduce some known
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 220 Y.-X. REN AND T. YANG

 results for MBBM, including the so-called many-to-one formula, and McKean representation
 of traveling wave solutions, which are necessary in the arguments afterwards. In the remaining
 two sections we concentrate on proofs of Theorem 1 and Theorem 2. To prove that, under some
 moment conditions, the traveling wave solution can be given in terms of the martingale limit
 W (A.) or M(ķ), we first answer when W (A.) (in supercritical case) and M(X) (in critical case)
 are nondegenerate (see Theorems 3 and 5, respectively).

 2. MBBM and basic facts

 It is known that the family structure of the individuals in a branching process is well expressed

 by Galton-Watson trees (see, for example, [7]). Each Galton-Watson tree has a single initial
 ancestor 0 and contains all ancestors as well as children of any of its individuals. In order to
 give other features of our MBBM, we need to introduce the concept of marked Galton-Watson
 trees. Let T be the collection of Galton-Watson trees. For each i e N where N = {1, 2, . . .},
 we write u i for the ith child of u. We use the notation v < u to mean that v is an ancestor of u

 and u e Z(t) when u is alive at time t. For every r e T, we assume that each particle u e r
 has a mark ( Xu , Yu,o rM, Au ), where

 1. au is the life time of u, which determines the fission time or the death time of particle u

 as Çu = Y.v^u + Vu (f 0 - o0) and the birth time of u as b„ = av (b0 - 0),

 2. Yu gives the type of u, while Xu : [bu, Çu) -> R gives the spatial location of u at time
 t £ [bu, £M); we also interpret the notation Xu (t) as the spatial location of the unique
 ancestor of u that was alive at time t < fM,

 3. Au = (Am(1), Au( 2), . . . , Au(d))T gives the vector of offspring size split by u when it
 dies.

 We use (r, X, Y, a, A) or simply (r, M) to denote a marked Galton-Watson tree. Let T :=
 {(r, M): r e T}. Define

 Ft := o {[w, Yu,au , Au , ( Xu(s),s e [bu, Çu )): u e r e T with Çu < t ] and

 [u, Yu , ( Xu(s ), 5 g [bu, t)): u er e T with t e [bU9 fM)]}.

 Set !F = (J,>o ^ t- There is a unique probability measure P on (T, F) such that the system is
 initiated by a single ancestor and evolves as a MBBM definedjn Section 1.

 Now we extend the probability space (T, F , P) to (7~, T , P) defined below. For any r e T,
 we can select an infinite line of descent s - {eo = 0» £1 » £2» • • •}> where sn+' e r is a child
 of sn e r for n e {0, 1, 2, . . .}. Such a genedogical line is called a spine. We write u e e to
 mean that u - Sk for some k e Z+. We use T = {(r, M , s) : e c t e T} to denote the set of

 all marked frees with distinguished spines. ^ ^
 We use Y = (Yt, t > 0) to denote the type process of the spine, X = {Xt, t > 0) to denote

 the spatial movement of the spine, and n = (nt, t > 0) to denote the counting process of fission
 times along the spine. Let nodeř(s) := u if u e s is the node in the spine that is alive at time t.
 Note that, for u e e,Yu = Ybu = Yçu-.

 If u e s, then at the fission time it gives birth to (AM, 1) offspring, one of which
 continuing the spine (we write this node simply as u + 1) while the others going on to create
 independent subtrees. Let Ou be the set of u' s children except the one in the spine. For any
 j e {1,2,..., (Au, 1)} such that uj e Ou, we use (r, M)" to denote the marked tree rooted
 at uj.
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 Multitype branching Brownian motion and traveling waves 221

 Now we introduce some filiations on T that we shall use later. First note that {J7'/, t >0}
 is also a filtration on T . Define

 Ft := a{Ft, (nodegs), 5 < 0),

 :=o{Y„Xt: 0<s <t], := a[Ys: 0 < s < t], := <r{X, : 0 < s < t),

 %t := (node5(e), 5 < t), (fM, u < node,(£))}>

 ït '= <*{?,, (Am, u < nodeř (e))}.

 Set S' = Uř>0 9> = Uř>0 9*t9 $ = U>0 ' aní^ & = Uř>0 ^
 Now we shall extend the probability measure P on (T, !F) to a probability measure P on

 (T, !F) such that the spine is a single genealogical line of descent chosen from the underlying
 tree. Enlightened by [13], when a spine node u of type i dies, we pick one of its children at
 random to be the successor on the spine. Specifically, children are picked with probabilities

 proportional to hj when their type is j. This means, when u e r, we have

 To define P we recall the following representation from [13].

 Lemma 1. Every Ft -measurable function f can be written as

 f = (4)
 K€Z(0

 where fu is Tt -measurable.

 Definition 1. We define the probability measure P on (T, !F) by

 J J uzZ(t) v<u x u' '

 for each / e Ft with representation (4).

 Intuitively, following the above method of choosing spine nodes, the type process of the
 spine F isa continuous-time Markov process valued in S , which stays at any state i e S for

 an exponential time with parameter^/, and then transitato state j with probability P(i, j) :=
 zd Pk(i)kjhj/(k , h). Given $ř, the trajectory of F, the node of the spine and the birth

 time of each spine node before time t are determined. Then we have

 A , r u i ;T' T1 Pkv(Yv) kv(Yv+')hYv+x
 = , forll r u « - I i M ;T' = J T1 P(r„ř.+,) Pkv(Yv) kv(Yv+')hYv+x fe.*) '

 where kv = (Ml). kv(2), kv(d))T e lĄ_. Now we construct a probability measure P on

 dP(r, M, e)|yf =dP(?,dB(X, [1 f
 V<£nt

 n KX,at-M J <5) v<e„tL vy u+1/ j:vjeOv J
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 222 Y.-X. REN AND T. YANG

 Here, ®(X) is the law ofa standard Brownian motion and P(y) is the law of the type process Y.
 The decomposition of P suggests the following intuitive description of the system under the
 measure P.

 1. The spine's type process Y moves as a continuous-time Markov process taking values
 in S according to the measure P. The generator G = (gij)ijes of Y is given by gij =
 <*i (^0' j) - àij). The spine's spatial movement X is a standard Brownian motion.

 2. The fission time Çv of node v in the spine is exactly the jumping time of the spine's

 type process Y , i.e. the life time crv of v is exponentially distributed with parameter dyb .
 (Here, Y may jump from i to itself at jumping time according to generator G.)

 3. At the fission time of node v in the spine, the single spine particle is replaced by a random
 vector Av of offspring with Av being distributed according to the law (Pk(Yçv-)) k(~yd ,
 and a type j child is picked to be the next spine node with probability hj /{Av, h ).

 4. The remaining ( Av , 1 ) - 1 nonspine children of v give rise to independent subtrees (r , M)vj
 for vj e Ov, each evolving as an independent subtree determined by the probability
 Py y shifted to the time of creation.

 A<VIVJ y

 Note that { N(t)9 t > 0} is a multitype branching process, where N(t) denotes the population
 size vector at time t. We have the following lemma.

 Lemma 2. (Athreya [1, Proposition 2].) The martingale

 J j :ř>01 - ļ j (N(0),h) - ļ
 is a nonnegative martingale with respect to {!Ft : t > 0}.

 In order to make the principles of the measure change method clear, we introduce a technical
 lemma which follows from an elementary argument.

 Lemma 3. Suppose that Jl' and /¿2 are two probability measures defined on the same space
 (£2, T) with Radon-Nikodym derivative g such that d/X2 = g d]X'. If F is a sub-o -field of !F,
 then the two measures ¡i' ļi' ' ? and ¡12 := UiW on (fì, !F) are related by the conditional
 expectation operation d/X2 = ßi (g I d AM .

 Noting that w(t) is a nonnegative mean-one martingale, we can define a probability mea-
 sure Q on (7~, F) by

 àQ'rt = w{t)áPWr (6)

 Lemma 3 implies that, if we want to extend Q defined by (6) to a probability measure Q
 on ( T , F), we need to construct a nonnegative martingale u5(ř) with respect to { : t > 0}
 satisfying

 dß|£=ffi(0dP|£ (7)
 and

 P(w(f) I Ft) = w(t). (8)

 According to Lemma 1, w(t) can be written as w(t) = Y^v&z{t) wvl{v€e}> where wv is
 ^-measurable. Immediately we have P(w(t) ' ^7) = J^VGZ(t) wv Y[u<vhYu+i/{Au,h) by
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 Multitype branching Brownian motion and traveling waves 223

 Definition 1. Since w(t) = X!uez(0 h), (8) implies that

 hy„ ( ļ- r hYu+ , V1 = r, j-r H (A,,*) " ex*'{N(0), h) 'ļ}v(Au,h)J ļ- = j-r H '

 and, consequently,
 v _x*ř rr fn- rr •

 V<Snt Ytv

 Next we will prove that {25(0 : t > 0} is indeed a martingale with respect to { : ř > 0}. First
 of all, for each type i e S, we introduce the size-biased distribution

 . »<■•>(*.» (9)
 <1 +

 It is a probability distribution since Ä(i)<Jt, Ã> = £7=1 ttiijhj = (1 + '*/a¡)hi for
 every i e S (the last equality follows from the fact that h is the right eigenvector of A with
 respect to A.*). For any i, j e 5, define

 A kihj fltļjh j

 p(-š* J) := £ Pk{l) A (^) = (i+A */a,)hi' j
 ke %%

 It is easy to see that {P(i, j ) : i, j G 5} is a family of transition probabilities.

 Lemma 4. Suppose that (Y, P) is defined as before. Define

 }Jn' arj P(Yv,Yv+ly ~
 Then {mt, t > 0} is a nonnegative mean-one martingale with respect to {$ř, t > 0}. We define
 another probability measure P by

 dF'ļt = mt dP|£ř. (10)

 Then, under P, Y moves as a continuous-time Markov process with generator gy := (a¡ +
 j ) - *ij)for i, j e S .

 Proof. Suppose that / : S -> R is a bounded measurable function. For every i e S9 define
 u(t, i ) := El[f(Yt)mt] where F ( ) := P(- | Fo = 0 with associated expectation operator E' .
 We use r to denote the first jumping time of Y. Then, by the strong Markov property, u(t, i)
 can be written as

 u(t, i ) = E¿[/(F,)m,l{r<r}] + El'[/(ř,)m,l{ř>r}]

 = /(/)e"~(fl,'+A,*)ř + f e~(ai+x*)s (ai + X*) P(i, j)u(t - s , j) ds
 Jo Its

 = f(i)e~(a,+k*)l + f e_(a'+r)('_í)(a¿ + À*) Y] P(i, j)u(s, j ) d.s.
 ^ yes
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 224 Y.-X. REN AND T. YANG

 Therefore, u(t, i) satisfies

 ^ = (a, + X*) £(?(*. j) - 8ij)u(t, j), (11)
 jeS

 with u( 0, /) = /(/). In particular, if we pick / = 1, from the uniqueness of the bounded
 solution to (1 1), we obtain that E lmt = 1, which together with the Markov property of Y under

 P implies that mt is a martingale. Thus, the measure P is well defined. From (1 1) we see that,

 under P, Y is a Markov process with generator g¿j. In other words, under probability measure P,
 Y can be interpreted as a Markov process which stays at each state i e Sfor an exponential time
 with parameter a¡ + A.*, and then transits to state j with probability P(i, j ). This completes
 the proof.

 Just as we did before, we can construct a probability measure Q on (T , F) by

 dar. «, «u*. = dp,?, d»« n

 xn[s^õ VK n dig- «T.«;»]. J 02, v<£„tL VK v^l/j:vj€Ov J

 under which the system can be described as follows.

 1. The spine's type process Y moves as a continuous-time Markov process valued on S
 according to the measure P. The generator of Y is given by g¡j = (ai + A.*) (P(i, j)-8ij).
 The spine's spatial movement X is a standard Brownian motion.

 2. The fission time Çv of node v in the spine is exactly the jumping time of the spine's type

 process F, i.e. ov has an exponential distribution with parameter dyb + A.*.

 3. At the fission time of node v in the spine, the single spine particle is replaced by a random

 vector Av of offspring with Av being distributed according to the law (Pk(Yçv-))keZd^,
 and a type j particle from the offspring of v will be picked to be the next spine node with

 probability h j/{Av, h).

 4. The remaining ( Av , 1 ) - 1 nonspine children of v give rise to independent subtrees (r , M)Vj
 for vj e Ov, each evolving as an independent subtree determined by the probability
 Pz y shifted to the time of creation.
 Atv Ivj y

 Applying (9), (10), and (5) to (12), wecan easily get (7). Therefore, {u;(0: t > 0} is a
 nonnegative martingale with respect to { : t > 0}. The following result is a byproduct of
 the above spine construction. The proof is much the same as [6, Theorem 4.1] in the case of
 multitype Markov branching processes. We omit the details here.

 Proposition 1. (Many-to-one formula for MBBM.) For any measurable function f :lx S
 R, we have

 Exy( T f(xu(t), yu)) = Exy(f{Xt, Yt) ^V*'Y
 Vz(r) > V nY, /
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 Multitype branching Brownian motion and traveling waves 225

 Here, Exy denotes the law of one particle motion where the type process Y moves as a Markov
 process starting from y with generator

 gij := (ai+ť)(P(iJ)-Sij),

 for i, j e 5, while the spatial location process X moves as a Brownian motion starting from x
 and is independent ofY.

 Lemma 5. (McKean representation.) If u(t,x,y) e [0, 1] is twice continuously differentiable
 in x and satisfies the parabolic system of equations (1) with initial condition u(0,x, y) =
 /( jc, y), then u has a McKean representation

 u(t,x, y) = E J ļļ f(XH(t), y„)Y
 'eZ(t) '

 The proof is similar to that of [3, Theorem 1 .36]. We omit the details here.

 Lemma 6. Suppose that c e M and w(x, y) is a bounded function satisfying 0 < w(x, y) < 1
 for any (jc, y) e M x S. Let u(t, x , y) := w(x - et, y). Then u satisfies (1) if and only if

 w(x,y) = EjJ ļļ «;(X„(/) + ci,y„)ļ. J weZ(/) J

 Proof By Lemma 5, we only need to show the sufficiency. Let Tt denote the semi-group
 of one-dimensional Brownian motion and r the split time of the root. We have

 u(t,x,y) = E^-oyi ]"ļ w(Xu(t) + ct,Yu)' '
 'ez(t) '

 = Exy( ļļ w(Xu(t), Yu)' '
 ueZ(t) '

 = Exy( ļļ «;(xu(i),yu)i(T</)) ' + ^y( ļļ weZ(ř) ' 'eZ(ř) '

 = f ayeTayS Ts'ļry(ut-s)(x) ás + e~aytTtwy(x),
 Jo

 where, for each s > 0, us is a function from R to Rd defined by us( x) := u(s,x) =
 (i u(s , jc, 1), . . . , u(s, jc, d))T. Therefore, u(t , jc, y) solves (1).

 3. Proof of Theorem 1

 Recall that, for any X ^ 0,

 Wx(t):= J2 hYue-x(Xu(t)+c^ .
 mgZ(Í)

 It follows from Proposition 1 that { W' (t) , t > 0} is a positive martingale and thus has an almost
 sure limit denoted by W (k). The following theorem answers when W (A.) is nondegenerate,
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 226 Y.-X. REN AND T. YANG

 which will be used to give explicit expressions of traveling wave solutions in the supercritical
 case.

 Theorem 3. (a)If'k' > X, then W(X) = 0 Pxy-almost surely.

 (b) Suppose that 0 < 'k' < X. If E log+ §//) < -boo for all i', j e S, then W'(t) converges
 to W (A.) in Ll(Pxy)f and Pxy(W( X) = 0) = 0. Otherwise , if E (Çij log+ = Ą-oo for some
 i, j e S , then W (A.) =0 Pxy -almost surely.

 Remark 1. It suffices to prove the claims for Poy. In this article, we only deal with the case
 A. > 0. The case A. < 0 can be analyzed by simple considerations of symmetry.

 For an^A. > 0, through similar techniques as used in Section 2, we can construct a probability

 measure Qçjy on ( T , F) such that

 áQoy'r, =

 where Q^y := In fact, Qfoy has the following decomposition:

 dôoy(T> M, e)'pt = dPy(F) dB~*(X) ]ļ
 v<£nt rv+l) 'Au, n)

 j:ljiov Xí»¥vi -I

 Here, (X, M~k) is a standard Brownian motion with drift -A., and (F, P-y) is a continuous-time
 Markov chain starting from y with generator ģļj = (a¡ + A.*)(P(/, j) - 8y). For each vj e Ov ,

 (r, M)Vj evolves as an independent subtree determined by the probability Yvj shifted to the
 time of creation.

 Lemma 7. We have the following spine decomposition for the martingale Wx(t):

 QÒ,(Wx(t) I &) = hyC-^+^ + J2 E ( Av(j ) - SYv+lj)hjC-x^)+c^' (13)
 j€S V<£nt

 Proof Here, Wx(t) can be written as

 Wx(t) = hYic~HX(t)+c>-') + ^2 hYue~HXu{t)+c>-l)
 neZ(ř), u^s

 = hye-x(x(,)+c^ + E E E hYuc-x^,)+c^.
 j' vj&Oy uGZ(t' M€(r,A/)y

 The first equality is clearly true since one of the particles u e Z(t) must stay in the spine. The
 second follows from partitioning the particles into distinct subtrees that were born by the spine
 nodes before time t. Recall that % contains all information about the spine nodes; by taking
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 Multitype branching Bwwnian motion and traveling waves 227

 the conditional expectation of W'(t), we have

 eíí.wi.«) i Ķ)

 = A.e-X(í(,ta,) + g¿y^ £ £ fty.e-»'"-«»«'» I j)
 v<8nt j:vjeOv u€Z(t),ue(T,M)Vj

 = hye-k(x(,)+c^ + £ Y1 hYvje-k(x(M+c>-M
 v<ent j : vjeOv

 XQ0y( X! hïlLç-WXuO-XtXvi+c^t-Çv)) ļ ' g Y 'eZ(f),ue(x,M)vj^rvJ ' '
 From the decomposition of dß^, we observe that, under ßoy» the subtrees coming off the
 spine evolves as if under the measure Poy- Therefore,

 &0y( m hLLe-HXu(t)-X(çv)+c.(t-i;v)) I ' j 'eZ(t),ue(T,M)vj^Yv' ' '
 This equality is true because the additive expression being evaluated on the subtrees is just a
 shifted form of the martingale Wx(t). We complete the proof.

 Lemma 8. (Durret [5, p. 241].) Suppose that fi and v are two probability measures on a
 measurable space (£2, F) with filtration (5Í)ř>o, such that d/z|^ = M(t) dv| for all t > 0.
 Let Moo •= lim supř_>+00 M(ř). Then v(Mœ = 0) = 1 if and only if ii(Mœ = -foo) == 1,
 and /ß Mqo dv = 1 if and only if < +oo) = 1.

 Proof of Theorem 3. (a) If X > X > 0, then X > c'. Obviously we have

 Wx(t) > h-e-im-tfft+W > c0e-Xta{t)/t+Cx'

 for some constant J^o > 0. Note that limř^+00 X(t)/t = -X and liminf^+oo X(t) +
 Xt = - oo, since X moves as a Brownian motion with drift -A. under Q^y. Thus, we have
 gailim sup,_>+00 Wx(t) = +oo) = 1. In view of Lemma 8, we have Poy(W(X) = 0) = 1 .

 (b) If 0 < X < X, then X < c'. Suppose that E(Çij log+ = +oo for some i, j e
 S. First note that at each fission time of the spine, we have the lower bound W'(ÇEn) >

 {ASn, h)G~k^x^£n^c^£n^; thus, by Lemma 8, it suffices to show

 Ô0y (i™ * SUP(^£n » h) = -ļ-OO^ = 1. (14) * «-»+00 '

 Obviously we have

 = exp{n[ÎM - + *)] ļ.
 Note that Qq +00 X(t)/t +cx = c'-X > 0) = 1, since X moves as a Brownian motion
 with drift -A. under . In addition, by the strong law of large numbers we have

 OLÍ lim sup - < Y 'ak + X*) < +00) = 1. V„^+oo n k€S J
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 Therefore, to prove (14), we only need to prove

 Qąy { lim sup log^g" ' h ) - -'-oo' - 1. (15) V n - >• -ļ-oo 1 /

 Let N/fa) denote the total number of jumps of Y before it hits state i for the nth time.

 Since Y moves as an irreducible Markov chain under Q^yy n/Nļ(n ) converges to a posi-
 tive constant with probability one. Note that {AfiN.(ll) : n > 0} is a sequence of independent
 random vectors with the same distribution law {/**(/): k e lĄ_}. The moment condition

 on fy implies that Qq 'og(ASNļ{nyh) = +oo. It follows from the Borel-Cantelli lemma that
 (lim supw^+00 log(AeNļ(ņ) , h)/n = +oo) = 1 and, consequently,

 7'k (v ' 1

 which implies (15).

 ^ Now we suppose that E log"1" £¿/) < -ļ-oo for all i, j e S . Then, for every ie5 we have

 ôoy(lim sup„^+OÛ log(AejVj(B) , h)/Ni(n) = 0) = 1 and, consequently,

 ôoy(X!<As»' ^e~xw<%)+cxi:£n) < +o°)
 '=i '

 (+00 E E<A^W'Ä>e~MX(H(n))+cxH(")) ~ < +°°) ' V (+00 E E<A^W'Ä>e~MX(H(n))+cxH(")) < +°°) ieS /i=l '

 PU Í '7 / v yÇ£Ni(n) /X(ÇeN (/t)) ''| '
 = eH£ PU SH'-K-ïwo Í '7 / v - 45¡w(-5¿r yÇ£Ni(n) /X(ÇeN (/t)) ■ +ci))l ''| < +o°) '
 = 1,

 where in the last equality we used the fact that X(Ç£n)/Ç£n -> - A. > - c' as n -* +00.
 Therefore, the second term in (13) is bounded from above for all t > 0. In addition, under

 ôoy, - M^(0 + O.0 = -kt(X(t)/t + ex) -► -00 as t -* +00. Thus, the first term in (13)
 is alsobounded from above. So we have (lim supř_>+00 ßqy (Wa,(0 | gl) < +00) = 1, and
 then óoy(limsupř_>+00 Wx(t) < +00) = 1 by Fatou's lemma. Therefore, by Lemma 8, Wx.(t)
 converges to W(X) in Ll(Poy) which implies that W (k) is nondegenerate.

 Let qy := Poy(W( X) = 0) < 1. For any t > s > 0, we have

 Wx(t)= e~HXv(s)+Cxs)Wx(t -s,v),
 V€Z(s)

 where {W'(t - s, v ), v e Z(s)} are independent copies of W'(t - s ) initiated by v G Z(s).
 We use JJA to denote the cardinal of a finite set A. It follows that

 qy = Eoyf n 9YV ) < E0y( ( max qj)ms}).
 'eZ(s) ' J

 The Kesten-Stigum theorem for multitype Markov branching processes (see, for example, [1])
 confirms that the total population size fl Z(s) goes to infinity almost surely on the nonextinction

 set; thus, we have qy = 0 by the dominated convergence theorem. Hence, we complete the
 proof.
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 Multitype branching Brvwnian motion and traveling waves 229

 Define L(t) := inf{XM(f) : u e Z(t)}, i.e. L(t) denotes the position of the leftmost particle
 at time t. Then we have the following result.

 Theorem 4. For any (x ,y) e M x S, Pxy('imt^+oo L(t) + ct = +00) = 1. Moreover, if
 E(ķy log+ % y) < +00 for all i, j e S , then Pjy(limř^.+00 L(í)/t - -ç) = 1.

 Proof. It is sufficient to prove the conclusion under measure Poy. Note that

 Wx(t) > Cie_A,(L(0+a0 = C'cTXt{L{t)/t+Ck' (16)

 for some constant C' > 0. Since limř_^+00 Wx(t) = 0, it follows from (16) that

 Poy ^ lim L(t) + ct = +oo^ = 1 and /fyy ^lim^nf = 1 .

 RecaHthat the spine moves as a Brownian motion with drift -k under the measure Qq , so we

 have g^Oim^+oo X(t)/t = -k) = 1. The proof of Theorem 3 shows that if Zs^ylog+Çj/) <
 +oo for all i, j e S , then dß^ - W(k)/hy d/fyy and Poy(W(k) > 0) = 1 for any k e (0, X).
 This implies that Qçjy(W(k) > 0) = 1 and Poy is absolutely continuous with respect to Q^y.
 Hence, for any 0 < k < ķ,

 Poy ( lim sup < -k' > Poy ( lim = - A. ) = 1 .

 Thus, PoyOiiïi supř_^+00 L(t)/t < - ķ = -ç) = 1. We complete the proof.

 Proof of Theorem 1(a). It follows from Theorem 3 that w(x , y) is nontrivial and lim^-oo

 w(x, y) = 0 since Po;y(W(A.) = 0) = 0. By definition, it is clear that lim^+oo w(x , y) = 1,
 and that x i-> w(x , y) is monotone for every y e S. In addition,

 w(x,y) = f^Jexpi- ^
 L I veZ (s) °° ueZ(t) ^

 v<u

 =«4n ^ 1 s LugZ(j) ^ 1 ueZ(t-s) J ' J

 = ExÁ n + cs' y")]-
 '-ueZíí)

 Thus, it follows from Lemma 6 that u(t, x, y) := w(x - ct, y) is a traveling wave solution to
 (1) with wave speed c. Since lim^+oo w(x, y) = 1 and EoyW(k) = Eoy Wx(0) = hy ,

 l-wíx.y) 1 - Eoy[exp{-e-^W(A.)}]
 hye~Xx E0y[c-XxW(k)]

 The rest of this proof is dedicated to the uniqueness. We consider the space-time barrier
 p(*,cx) ._ e ^ x R+ : y + c't = x] for x > 0. By arresting lines of descendants
 the first time they hit this barrier, we produce a random collection of particles C(jc, ex) =
 U/es Ci (*> ca.)> where C,- (jc, ex) denotes the subset of type i particles. Here, {C(jc, ex) : x > 0}
 is a family of stopping lines. We say that {C (jc , ex) : x > 0} is dissecting in the sense that all lines
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 of descendants will hit with probability one for all x > 0 because limř +00 L(t) + ct =
 +00 for c > c. We also observe that {C(jc, q.) : x > 0} is tending to infinity in the sense that, for
 each ne N, we can choose x sufficiently large such that particles in C(x, c') are descendants
 of the nth generation. (For more information on general stopping lines and properties of them,

 we refer to [4] and [9].) Let !Fr(x ,cx) be the natural filtration generated by ancestral type and
 spatial paths receding from particles at the moment they hit r^CxK Let <PCk be an arbitrary
 traveling wave at speed c'. Then

 MX(Z, ex) := [ļ <ī>a(z + Xu(t) + cxt, Yu)
 ueC(x,ck)

 = expj * ^ #C,-(x, ex) log <&Ck(z + x, i) J * ieS '

 is a Po? -martingale with respect to {!Fr(x,ck) : x > 0}. It converges to (z, A.) almost surely
 and in L1 (Poy) (by boundedness), and then it follows that

 lim - y2$Ci(x,ci)log&ck(z ' + x,i) (17) jc-^+OO '
 leS

 exists and is positive with positive probability.
 Obviously, for any *2 > x' > 0 and any v e C(x2,cx), there exists a unique

 u e C(x' , cy) such that u < v. In fact, {(1JCi(jc, ca.), . . . , JJC¿/(jc, ca.))t : x > 0} forms
 a continuous-time multitype Markov branching process (x plays the role of time). This
 follows from the strong Markov branching property (see, for example, [9]). Moreover, it
 follows from the fact Poy(linií-»+oo ^(0 + c't = +00) and the irreducibility of Y that
 {(lJCi(jt, ca.), . . . , ÖQ(jc, ca.))t : x > 0} is nonextinct and positive regular. Let MCk (jt) =

 (m^(x))ijes where m^(x) = Eoi$Cj(x, ca.), and let ACk be the matrix such that MCk( x) =
 eA°kx By the Perron-Frobenius theorem, we can find a simple positive eigenvalue k*k of
 ACk, and corresponding positive left and right eigenvectors 1 rCk = (nļk , . . . , 7T^)t and hCk =

 (hxCk, ...,hļk)J such that (n Ck,hCx) = (jrCk, 1) = 1. Immediately,

 Y^rnc+(x)hixe~k*ix = forali i e S. (18)
 jes

 For x > 0, define

 Wru.«x) W := hYu^(x"(t)+Cxt) = J2 tC,(x,
 ueC(x,ck) ieS

 Then { Wr(x,ck)W - x > 0} is a Poy-martingale with respect to : x > 0} and, conse-
 quently,

 = hi , for all i e S ; (19)
 j<=S

 in other words, e^ is an eigenvalue of MCk(x) with corresponding right eigenvector h. Using
 similar arguments as in [1 1, Theorem 8], we can show that

 lim Y JJC,-( je, CA.)/i,e_Ajf = W(X), Poy-almost surely and in L^Poy)- (20)
 jc^+OO '

 ieS
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 On the other hand, by the Kensten-Stigum theorem (see, for example, [6, Theorem 2.1]) we
 have, for any i e S,

 lim tfC| (x , cx)e~Xc* x = n ' À Wc , , iWalmost surely, (21 ) *-►+00 À

 where WCx = lim^+00 ttCf(jc, cx)7tlC)o~kc^x < +oo. Combining (20) and (21), we
 conclude that A.*À = À and Poy(WCx = aW(k)) = 1 for some constant a > 0. Using (18) and
 (19), we get hCk = ah. Thus, by (21) we have, for any i e S ,

 lim ttC/(jc, CA.)e_A"* = ani À .W(k), Pqy -almost surely. (22) JC^+OO À

 It follows from (17) and (22) that ß := lim^+oo -a nlCkQXx log <&Ck (jc, i ) exists and is
 positive. Uniqueness (up to a multiplicative constant) is now immediate since

 ^cA(z, y) = E0y(^ Cx))

 = E0y ^expj^ hrn^ ^ 11 C¡(x, cx) log 4>a(z + x, i)

 = Eoy ^exp I a ^ eXx W (A.) log 4>a (z + x , i ) j ^

 = Eoyicx PÍ-/3 W(À)e-^}).

 Hence, we complete the proof.

 Proof of Theorem 1(b). We assume that w(x, y) provides a monotone traveling wave solu-

 tion to (1) with speed c < c. Then, by Lemma 6, Y'ucZ(t) w(%u(t) +x + ct, Yu ) is a bounded
 martingale under Poy. It converges almost surely and in Ll(Poy) to some random variable. On
 the other hand, since 0 < w(x , y) < 1 and lim^oo L(t ) + ct = - oo, we have

 Jļ w(Xu(t) + x + ct, Yu ) < w(L(t) + ct, YL(t )) -* 0,
 M € Z (/ )

 where Yi ( t ) denotes the type of leftmost particle at time t. Thus, w(x , y) = 0 which contradicts
 the assumption.

 4. Proof of Theorem 2

 Note that Mt(k) defined in (3) is a signed martingale and therefore it does not necessarily
 converge almost surely. A technique used by Kyprianou [1 1] to get round this problem in the
 case of a single-type branching Brownian motion is to consider a truncated form of the derivative

 martingale which turns out to be a positive martingale. In order to describe the aforementioned
 martingale for MBBM we need more notation and lemmas.

 Lemma 9. (Kyprianou [11, Section 5].) Suppose that B = {Bt : t > 0} is a standard Brownian
 motion on R with law B and natural filtration [£t, t > 0}. For any z > 0, define tx := inf {ř >
 0 : z + Bt + kt < 0}, then

 „!<<) :=
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 is a positive mean-one martingale . Define another probability measure B* by dB^'xt =
 m'{t) dB|¿,. Then, under measure B*, {z + Bt + Xt : t > 0} is a standard Bessel-3 process
 starting from z.

 Define the space-time barrier := {(j, t) e R x R+ : y + Xt = - z] for z > 0.
 Here, Z(t) denotes the subset of Z(t) consisting of all particles which are alive at t and have
 ancestry (including themselves) whose spatial paths have not met by time t. From the
 many-to-one formula, we see that

 Vx(f):= hYu(z + Xu(t) + Xt)e-k(X»it)+c^
 ueZ(t)

 is a nonnegative martingale. We want to define a new probability measure R^y such that, if
 R0y := 01611

 á*Q,'r, = ^ dPoylr,, for all / > 0.

 To this end, Rgy should have the following decomposition:

 dÄQy(r, °y M, e)|^ = dPy(F) y dB^(X) 11 JA"{Yv)
 dÄQy(r, °y M, e)|^ = dPy(F) y vJnip(YvYv+ 1) {A»'h)

 Remark 2. Under Rq , the spine's spatial process X satisfies that {z + X(t) + Xt : t > 0} is a
 Bessel-3 process starting from z. Therefore, it never meets the barrier

 Put

 Mx(t) ■■= J2 hYu(z + Xu(t) + Xt)e-x(X"(,)+c"K
 ueZ(t)

 If we can prove that M'(t) converges to a nondegenerate limit, similar analysis as in the
 supercritical case can be carried out to obtain traveling wave solutions of (1). For this purpose,
 we need the following lemma.

 Lemma 10. Let V(A.) = lim^+oo V'(t). For any X > X, lim^+oo M'(t) exists and is
 equivalent to V(X) almost surely under P$y. In addition , M(X) := limř^+00 M'(t) does not
 depend on z.

 Proof. Recall that Vx(t) is a nonnegative martingale, its limit V (A,) exists almost surely. Let
 Y (-z,*) denote the event that the MBBM remains entirely to the right of then

 lim Mx(t)= lim Vx(t), ony(_z,x), Poy-almost surely.
 i->+oo t - > +00

 Since Poy(lim»-»-+oo L(t) + ct = +00) = 1, we have Poy(inf(>o{¿(0 + > -00) = 1 for
 all X > X. Thus, Poy(Y{~z'X)) = Poj.(inf(>o{¿(0 + A.f} > -z) f 1 as z f +00. Therefore,
 we have Po>(limř^+oo Mx(t) = lim,^.+00 Vx(i)) = 1, which implies that, for every A. > Ą.,
 lim^+oo M'(t) exists and is equal to V (X) Poy -almost surely. Note that

 Mx(t) = J2 H (*«(') + Xt)e-k(x"(t)+c^ + zWx(t).
 ueZ(t)
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 Multitype branching Bwwnian motion and traveling waves 233

 By Theorem 3, the second term of the right-hand side converges to 0 for À > À; hence, the limit

 M (A.) does not depend on z. Hence, we complete the proof.

 ^ Next^we focus on the limit theorem for the martingale V'(t). Hereafter, we simply write

 Ķ ^ as Roy.

 Theorem 5. Suppose that X = X.

 1. If EI=ij('og+ fy)2 = +00 for some i, j e S , then V(ķ) = 0 Pxy-almost surely.

 2. If EÇij('og+ ^ij)2 < +oofor all i, j e S, then V'(t) converges to V(X) in Ll(Pxy) and
 Pxy(V(X) = 0) = 0.

 To prove Theorem 5, we first prove some lemmas.

 Lemma 11. We have the following spine decomposition for Vx(t):

 Roy(Vk(t) I Ķ) = hyt(z + X(0 + A)e-^(')+£,)

 + E E (AvU) - SYv+lj)hj(z + X(çv) +
 jtS V<£nt

 Lemma 12. (a) If EŠij('og+ Šij)2 = +oofor some i, j e S, then

 lim sup (AEn , h)(z + X(Ç£n) + = +oo, Roy-almost surely.
 n-++oo

 (b) If Ei-ij(log+ Šij)2 < +00 for all i , j e S , then

 +o°

 » h)(z + X(Çen) + Àf£/l)e"-(^(^)+-^) < +00, Roy -almost surely.
 /1=0

 Proof, (a) We want to show that, for any M e (0, +oo),

 +00

 = +00' Äoy-almost surely. (23)
 n=0

 For any set B e ^ <£[0, oo) x <žB(Zļ), define </>(B) = #{n > 0: (Ç£n, AEn) e B}. Then,
 conditioned onßY , 0 is a Poisson random measure on [0, oo) x lĄ_ with intensity ( a? + A.*) d t
 x£*k&zd Pk(Yt)h(dy) (here, S denotes the delta function). Thus, for any T e (0, oo), given

 9>Y '#{n > 0: Ç£n < r, {A£n, h)(z + X(Çen) + kÇen)e~-(Xtt£ni+Ç£en) > Af} is a Poisson random
 variable with parameter

 fT
 J0 I (aýf +À ) ^2 P^(Yí)^{{k,h)(z+X(tHXOe-^(t)+^>M} J0 kezļ
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 Hence, to prove (23), we only need to show that

 p+oo ^ ^

 J0 / K + **) E Pk(Yl) ^ '(kMz+X(t)+H)e-*™^>M) dt = +°°> ^ -almost surely. J0 kezi

 Since min{a/ : l e 5} > 0, it is sufficient to prove that

 f 52 Pk(Y'i l{{k¿)(z+X(t)+U)e-±ÚM+<í')>M) < +°°) ' = V0 kcZļ '

 For any constant c € (0, +oo), put

 Ec *= I L 52 Pb^hikAKz+XÍO+yte-^xW+et^M] dř < c|-
 W0 *€ Zi '

 It suffices to show that Roy(Ec) = 0. In fact, we have

 C > Roy (IEc Í 52 Pk(Yt^{(k,h)(z+X(t)+ti)e-ttXM+&>MÌ
 V J0 ke Zi '

 p+oo ^ „
 = I ^ - 0 52 Pk{l)Roy(^Ec „
 J0 '6S teZ i
 f+oo ^
 > / Py(Y, = o J2 Pk(i)RoyaEc ^
 J° ke Zi

 where Bes(í) := z + X(t) + ht. It is known that, under P-y, Y moves as a Q-process with the
 invariant distribution ir/ = /1/717 for every l e S. Consequently, there exists some T > 0 such

 that, for any t >T, Fy(Yt = i) > > 0. We continue the above domination:

 /•+00 ^

 c - 2^' 52 Pk^ I Roy(ÍEc ^ llBesCOe-^WsM^.A)-^-^))^
 *6 Zi T

 - 3^'f 52 P*0) Jo f R0y(lEc l(Bes(í)e-iPe,W>M<*,A)-|e-i«})^ ~ - } (24) '6zi Jo ~ }
 We consider a process ((Qt, Wt), P) such^that {Qt, t > 0} and { W(, t > 0} are independent,
 (Qt, P) is identically distributed as (Yt, Roy), and (Wt, P) is a standard Brownian motion on
 R3 starting from 0. Suppose that z is a point in R3 with norm z. It is known that (Bes(i), Roy)
 is a Bessel-3 process starting from z, which is identically distributed as (| Wt + z|, P), here | • |
 denotes the Euclidean norm. We still use Ec to denote the counterpart set of Ec with respect to

 ((Qt, Wt), P). Immediately, we have

 *0y(lĒc l{Bes(ř)e-iPe,<')>W<t,A)-1e -izļ) = P(l£c ^{|1V,+ž|e-ilw»+žl>í#(t,A)-|e-4í})
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 and /tyy(£c) = We claim that there exists K* > 0 such that, when 'k' > K *,

 Jy e M3 : 1+ z < |y| < h) ļ c [y e R3 : 'y + z|e^l>,+ž| > M{k, Ar'e-^},

 which can be proved using basic analysis. Now we continue the estimation of (24) as follows:

 'eZi J° '

 - 2^'f PkiO f Wfic l(l+z<|lV, |<log+<A:,/i)/2X|) d/ - t'

 = 5^' ( J] Pk(iw(íEc Í l{l+z<|W,|<log+(ifc,A)/2¿) d'i - T'Y (25)
 'fc: |*|>Ar* ' JO / /

 Note that (| W( |, P) is a Bessel-3 process starting from 0. Let Ia, a > 0, be the family of its
 local times, then the process {/£,, a > 0} is a BESQ2(0) process which implies that l'^Ļ = al^
 and P(/¿o = 0) = 0 (see [15, Exercise 2.5]). Then we have the following calculations:

 P(1Ē<: IO 1(1+z-|Hř'l-1°8+<*'A>/2^ dí)
 / í* log+ (k,h)/2k '

 =iu-L / í* log+ (k,h)/2k *•*) '
 / /.log +(k,h)/2X fa-Hļ, '

 =riu-L / /.log +(k,h)/2X adaL fa-Hļ, dB) '

 /log"1" +z {k,h)/2k adaJo /»+oo /log"1" +z adaJo P(l£rc 1í«<«-,/žo))d"
 /•log"1" {k,h)/2X r+oo

 > ada (P(£c)-P(a-1/^ <«))+d«
 Jl+z JO

 l/log+<i k,h) '2 r+°° ,
 ^2'2X~ k,h) ) Jo (P(£c)"P(/^ , <tt))du- <26>

 In view of (25) and (26), we obtain

 ¿2 M/108"1,!*' V 2Ł H) -l-z) [+00(F(EC)-P(ll <u))+du <+oo. (27) t: |i|>AT* V 2Ł

 Given that

 £(&/(log+ ti/)2) = +00,

 we have

 pk(i)(log+(k,h))2 = +00.
 keZļ
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 It follows from (27) that
 r+oo

 / (P(£c)-P(/^<«))+d«=0.
 JO

 Thus, by the fact that P (/*<> = 0) = 0, we have P(£c) = 0 for arbitrary c > 0; consequently,
 Roy(Ec) = 0 for arbitrary c > 0. Thus, we complete the proof of part (a).

 (b) Choose X e (0, X). We have
 +00

 + *(&,) + ^sn){Asn,h)e~^n)+cUn)
 /1=0

 +00 +00

 - ' ' ) l{(AeB,A)<ex(*(fc«>+£&»>) ' ' ) ^((y4e„,A)>ex(î(fe»)+£fen)}
 «=0 n= 0

 = 0 + A.

 We only need to prove that both © and A are finite almost surely under Roy.
 Hereafter, we write 'A < B' to mean that there exists some constant c > 0 such that

 A < cB. Recall that, conditioned on §/, the split times of the spine is a Poisson point process

 with characteristic measure (aj? + A.*) dt. Therefore,

 R0y(&) = Roy (ļ+00(aYs + • A>
 x e-*(*(*)+cj) -i ~ ri A

 {(A£Bj,A><e^*W+£')) ~ aSJ ri
 /•+00

 < Jo / + À*)P y(Ys = i ) T Pk(i) B|(Bes(í)e-^-x)(Bes(l)-z) Jo its k
 x l{Bes(i)>A.-'log+<4,A)+z))^

 r+oo

 ż E J2 Pk{i) Jo / P(l Wģ + £|e"^)|W,í+z| 1(|WÍ+Ž|>^-' iog+ <*,/,>+*}) ás ieS k Jo

 < T T Pkd ) [ 'y + žie-a-«1^1 dy
 iGS k •MbH-z|>A.-1log+(*,/i}+z}

 X f J~3/2e-| y'2/2ns
 Jo

 sE I>«>( J{'y+z'>*.~1 , + !i±î!e-^®«'dy M /€ 5 k J{'y+z'>*.~1 , 'og+(k, + h)+z) M

 SEE»« ( M±V<¿-«»dy
 r+oo

 ~ E E ï>k{i) I {r2 + zr)c~^~x)r dr Its k A-'log+<*,A)
 < +00.

 Thus, /tyy(® < +oo) = 1.
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 On the other hand, we have

 Ä()>( H 1{<A£„,A)>e«í«»»+£&»>) )
 n=0 7

 /•+00

 = J° / I>« + = ') £ wO')BF(Bes(5) < A.-1 log+(fc, A) + z) ds, J° ieS k
 here we have used the fact that the split times of the spine is a Poisson point process with

 characteristic measure (a^ + A.*) d t. Then

 R°y ( Z/ 1{(/4£B,A)>eA<*<i»)+£&»)) )
 71=0 7

 /•+00

 < £ £ Pk(t) Jo p(l + z| < *-1 log+ {k, h) + Z ) di

 ;$£!><*> / dy r00 s-w-w2/2"s às
 ieS k J ['y+z'<k~l 'og+ (k,h)+z} Jo

 of lyl-1dy-
 iGS k J{'y'<'-l'og+(k,h)+2z)

 Consequently, we get

 /+°° '

 ^{( Ae„ ,A>>eÀ(*(Çn)+^en)} / SEE Pk(i)&~1 'og+<¿, h) + 2zÝ '=0 / its k

 < 00, (28)

 where in the last inequality we used the condition that £(§(/( log"1" £i/)2) < +oo. Therefore, by
 (28) we have

 Roy ( X! 1{(^e„,A)>e«i'f»)+^">) < +°°) 7 = 'i=0 7

 which means that A is a finite sum. Hence, Roy(A < +oo) = 1. Thus, we complete the proof
 of part (b).

 Proof of Theorem 5. Suppose that £(£//( log"1" Šij)2) = +oo for some i, j e S. Since

 Vx(E„) > {AEn,b)(Z + X(ÇEJ+kÇEn)t-^n)+^n'

 usingLemma 12(a), we have /?oy(limsupř_>+00 V'(t) = +oo) = 1. Thus, ^(VÍÀ) = 0) = 1
 by Lemma 8.

 On the other hand, suppose that £(£//( log"1" HijÝ) < +°° for all i, j e S.^ Recall that,
 under /Jpy, {z + X(t) + Xt : t > 0} is a Bessel-3 process which is transient, i.e. Roy('imt^+00
 X ( z + X(t) + Xt) = H-oo) = 1, then from the spine decomposition for V*(f ) and Lemma 12(b),

 we have /tyyOimsup^+^ Roy(V'.(t) | §L) < +00) = 1. By Fatou's lemma, we get
 /?0y(lim sup,_>+00 Vx(t ) < H-oo) = 1, which implies that V'(t) converges to V(À) in Ll(Poy).
 Thus, Poyí^íÀ) =0) < 1. Similar analysis as in the proof of Theorem 3 can be applied here
 to show that /byCVQJ = 0) = 0. Hence, we complete the proof.
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 Proof of Theorem 2. Using the same techniques as in the supercritical case, we can prove
 that w(jc, y ) satisfies

 w(x, y) = E0y n w( X + Xu(s) + es, Yu) 1,
 KeZ(s) J

 for any x e R and y e S. Obviously, lim^+oo w(x, y) = 1 and lim^-oo w(x, y) - 0.
 Thus, w( x, y) provides a nontrivial traveling wave solution to (1). Note that EoyM(X) =
 limř_>+oo EoyVxXt) = Eoy Vx(0) = xhy, and that lim^+oo w(x, y) = 1; thus,

 1 -w(x,y) 1 - £0y[exp{-e-^M(X)}]
 =

 Next we prove the uniqueness. Consider the space-time barrier for z > 0. By
 arresting lines of descendants the first time they hit this barrier we again produce a sequence
 of stopping lines {C(z, X) : z > 0} which are dissecting and tending to infinity. Recall that
 C(z, = Ui€5 ck) (see the proof of Theorem 1(a)). Suppose that <ï>£ is any traveling
 wave with speed c, then

 Mz(x, À) := [1 <t>c_(x + Xu(t) + ct, Yu) = exp I ^ #Q(z> A) log <M* + z, i) | ' ueC(z,èù * ieS '

 is a P$y -martingale which converges to <J>£(^, y) almost surely and in Ll(Poy).
 We turn our attention to the MBBM with a killing barrier at where x > 0. Define

 Č(z, À) to be the random set of particles for the killed process that are stopped at the barrier

 r(z'^. More precisely, C(z , A) := U ies Qfe, h) consists of particles whose lines of descen-
 dants (including themselves) have spatial paths that have met the barrier before meeting
 r(-*'^), where C/(z, À) denotes the subset of type i particles. Recall that y(~x^ denotes the
 event that the MBBM remains entirely totherightof and t las* f +oo.
 On the event y(~x>^ the MBBM and the MBBM with killing barrier r^~x^ are the same, i.e.
 #C/(z,X) = ÔQ(z,À) on y(~x^. Therefore,

 lim - Y HQ (z, Ą) log <D dz, i ) (29)
 z->+oo '

 ieS

 exists almost surely and is nonnegative on y(~x>&. Furthermore, since the function x h*
 y) is nontrivial, an elementary argument shows that, for x > 0 sufficiently large,

 limz_>+oo - ttCj(z, ķ) log 0£(z, i) is positive with positive probability on y(~x>^. Con-
 sider the sequence

 := (hyx)~x J2 hY" (x + X"(t) + kt)^MXu(l)+CJ)
 II€Č(Z,X)

 = ( hyx)~x (x + z) hi ttčj (z, A^e-^.
 ieS

 Let yrfe,cx) be the natural filtration generated by ancestral type and spatial paths receding from
 particles at the moment they hit F(zä) before meeting By the property of dissecting
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 stopping lines, { V*(z >A) : z > 0} is a mean-one Poy -martingale with respect to {Fr(z,ck) : z > 0},
 and

 lim (jc + z)e~-z = Af(À), /Walmost surely. (30)
 z->+oo '

 ieS

 The arguments on Wru,x)(A.) in the proof of Theorem 1 still work when k = k; thus, we have

 lim y^#Č,-(z, ķ)hļQ~-z = 0, Poy -almost surely. (31)
 z ->+oo '

 ieS

 Combining (30) and (31), we obtain

 lim zq~-z ttCi(z, X)A,* = AÍ(À), Poy-almost surely. (32)
 z->-+oo '

 ieS

 Applying similar arguments as in the supercritical case, we know that {(JtCi(z, À), . . . ,
 ÖQ(z, X))T : z > 0} forms a nonextinct, positive regular continuous time multitype Markov
 branching process (z plays the role of time). By the Kesten-Stigum theorem (see, for exam-

 ple, [6, Theorem 2.1]), there is a nonnegative vector - (nļ , . . . , nf) such that (itx, 1) = 1
 and, for all i e S , ffyyOim^+oo tJC/(z, À)/(J C(z, À) = 7t{) = 1 and, consequently, limz_*+oo
 tt C|(z, ķ)/ŪČ(z, A/) = 7T¿ almost surely on y(~x >&. Let jc~f +oo, we have

 lim A) _ Pov-almost surely. (33)
 *-+«> #C(z,ì) -

 Let ir = 7tx/(h , 7t). Using (32), (33), and the fact that h¡ > 0 for every i e S, we get that, for
 all i e S,

 lim ze~-z$Či(z, Ķ) = Poy-almost J surely. (34) z-»+oo J

 From (29) and (34), we conclude that ß := lim^+oo - z_1e-z log ®c(z, 0 exists and
 is positive. Uniqueness (up to a multiplicative constant) is now immediate. In fact,

 <M*. y) - E0y ^ Hrn^ Mz(x, X))

 = Eoy exp] lim V! ' ÖC,(z. A) log <Dc(* - + z, 0 ļ I Iz-^+oo*- ' - I
 1 ¡6S 1

 Since limņ|+00 Pov(Y(~'h-y) = 1. using (34) we obtain

 y) = lim £0y[exp| lim TļttČ/iz,^ log <řc(x ~ + z, i)|; ' Ijt+oo 'L lZ^+00^s ~ ' J

 = lim Eoy Ï exp I lim y^ir/AfQJe^z-1 log<M* " +z, i)'; |
 ņt+oo L l^+00~^ " J J

 = £b;y exp|-A/(À)e~-x

 X lim -X Z y ñ¡(x + z)~'e-(A+z' log <ī>c(* + z, i) ļ
 z->+oo z ~ I

 ieS 9

 - Eoy exp{- ß M (À)e~^*}.

 Hence, we complete the proof.
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