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Abstract

In this paper we establish spatial central limit theorems for a large class of supercritical
branching Markov processes with general spatial-dependent branching mechanisms. These are
generalizations of the spatial central limit theorems proved in [1] for branching OU processes
with binary branching mechanisms. Compared with the results of [1], our central limit theorems
are more satisfactory in the sense that the normal random variables in our theorems are non-
degenerate.
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1 Introduction

In recent years, there have been many papers on law of large numbers type convergence theorems

for branching Markov processes and superprocesses, see, for instance, [10, 11, 17, 18, 19, 30, 31, 39]

and the references therein. For recent results on other non-central limit theorem types convergence

results for branching Markov processes, see, for instance, [20, 21, 28, 29] and the references therein.

The focus of this paper is on spatial central limit theorems for branching Markov processes.

For critical branching Markov processes starting from a Poisson random field or an equilibrium

distribution, and subcritical branching Markov processes with immigration, some functional cen-

tral limit theorems of the occupation times were established in a series of papers, see, for instance,

[7, 8, 9, 33, 34, 35] and reference therein. However, up to now, no spatial central limit theorems

have been established for 〈f,Xt〉 of general supercritical branching Markov processes starting from

general initial configurations. In [1], some spatial central limit theorems were established for 〈f,Xt〉
of supercritical branching OU processes with binary branching mechanism starting from a point

∗The research of this author is supported by NSFC (Grant No. 11271030 and 11128101) and Specialized Research
Fund for the Doctoral Program of Higher Education.

†Research supported in part by a grant from the Simons Foundation (208236).
‡Supported by the China Scholarship Council.
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mass. In [36], some spatial central limit theorems were established for supercritical super-OU pro-

cesses with binary branching mechanisms starting from finite and compactly supported measures.

However, the central limit theorems of [1, 36] are not very satisfactory since the limiting normal

random variables maybe degenerate. In the recent preprint [37], we established spatial central limit

theorems for supercritical super-OU processes with general branching mechanisms starting from

finite and compactly supported measures. The limiting normal random variables in our central

limit theorems are non-degenerate. For earlier central limit theorems for supercritical branching

processes and supercritical multi-type branching processes, see [2, 3, 4, 24].

In this paper, we will extend the arguments of [1, 36, 37] to establish spatial central limit the-

orems for a large class of supercritical branching Markov processes with general spatial-dependent

branching mechanisms.

1.1 Spatial process

In this subsection, we spell out our assumptions on the spatial Markov process and then give some

examples.

Suppose that E is a locally compact separable metric space and that µ is a σ-finite Borel

measure on E with full support. Suppose that ∂ is a separate point not contained in E. ∂ will

be interpreted as the cemetery point. We will use E∂ to denote E ∪ {∂}. Every function f on

E is automatically extended to E∂ by setting f(∂) = 0. We will assume that ξ = {ξt,Πx} is a

µ-symmetric Hunt process on E and ζ := inf{t > 0 : ξt = ∂} is the lifetime of ξ. We will use

{Pt : t ≥ 0} to denote the semigroup of ξ. Our standing assumption on ξ is that there exists a

family of continuous strictly positive symmetric functions {pt(x, y) : t > 0} on E × E such that

Ptf(x) =

∫

E
pt(x, y)f(y)µ(dy).

It is well-known and easy to check that, for p ≥ 1, {Pt : t ≥ 0} is a strongly continuous contraction

semigroup on Lp(E,µ). In fact, it follows from Hölder’s inequality, Fubini’s theorem and symmetry

that

‖Ptf‖pp =

∫

E

∣∣∣∣
∫

E
pt(x, y)f(y)µ(dy)

∣∣∣∣
p

µ(dx) ≤
∫

E

∫

E
pt(x, y)|f |p(y)µ(dy)µ(dx) ≤ ‖f‖pp.

Define ãt(x) := pt(x, x). Throughout this paper, we will assume that ãt(x) satisfies the following

two conditions:

(a) For any t > 0, we have ∫

E
ãt(x)µ(dx) <∞.

(b) There exists t0 > 0 such that ãt0(x) ∈ L2(E,µ).

It is well-known (see, for instance, [14, Section 2]) that pt(x, y) ≤ (ãt(x)ãt(y))1/2 and that, for each

x ∈ E, the function t→ ãt(x) is a decreasing function. So condition (b) above is equivalent to
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(b′) There exists t0 > 0 such that for all t ≥ t0, ãt(x) ∈ L2(E,µ).

Now we give some examples of Markov processes satisfying the above assumptions. The purpose

of these examples is to show that the above assumptions are satisfied by many Markov processes.

We will not try to give the most general examples possible. The first example below contains OU

processes as special cases.

Example 1.1 (Subordinate OU Process) Let σ, b > 0 be two constants. Suppose that η =

{ηt : t ≥ 0} is an Ornstein-Uhlenbeck process (OU process, for short) on R
d, that is, a diffusion

process with infinitesimal generator

L :=
1

2
σ2 △−bx · ▽.

For any x ∈ R
d, we use Πx to denote the law of ξ starting from x. It is well known that under Πx,

ηt ∼ N (xe−bt, σ2t ), where σ2t = σ2(1 − e−2bt)/(2b) and η has an invariant density

µ(x) =

(
b

πσ2

)d/2

exp

(
− b

σ2
‖x‖2

)
.

Let

p0t (x, y) :=

(
1

2πσ2t

)d/2

exp

(
−‖y − xe−bt‖2

2σ2t

)
.

So

p0t (x, x) =

(
1

2πσ2t

)d/2

exp

(
− b(1 − e−bt)

σ2(1 + e−bt)
‖x‖2

)
. (1.1)

Put E = R
d and µ(dx) = µ(x)dx. The density of ηt with respect to µ is

p0t (x, y) = p0t (x, y)µ(y)−1 =

(
1

1 − e−2bt

)d/2

exp

{
− b

σ2(e2bt − 1)

(
‖y‖2 + ‖x‖2 − 2x · yebt

)}
.

In particular,

p0t (x, x) =

(
1

1 − e−2bt

)d/2

exp

{
2b

σ2(ebt + 1)
‖x‖2

}
.

Suppose that St is a subordinator, independent of Y , with Laplace exponent ϕ, that is,

E(e−θSt) = e−tϕ(θ), θ > 0.

Suppose that S has a positive drift coefficient a > 0. Then St ≥ at, for all t > 0.

The process {ξt : t ≥ 0} defined by ξt := ηSt is called a subordinate OU process. In the special

case St ≡ t, ξ reduces to the OU process η. Thus the transition density of ξt with respect to µ is

given by

pt(x, y) = E
(
p0St

(x, y)
)
.
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So pt(x, y) is symmetric. By (1.1), we have

∫

E
ãt(x)µ(dx) = E

∫

E
p0St

(x, x)dx = E(1 − e−bSt)−d ≤ (1 − e−abt)−d <∞.

Chose t0 > 0 such that 4/(eabt0 + 1) < 1. Then by Hölder’s inequality, we get

∫

E
ã2t0(x)µ(dx) ≤ E

(∫

E
p0St0

(x, x)2µ(x) dx

)
.

For t ≥ at0, we have

∫

E
p0t (x, x)2µ(x) dx =

∫

Rd

(
b

πσ2(1 − e−2bt)2

)d/2

exp

{
−
(

1 − 4

ebt + 1

)
b

σ2
‖x‖2

}
dx

=

(
(1 − e−2bt)2

(
1 − 4

ebt + 1

))−d/2

≤
(

(1 − e−2abt0)2
(

1 − 4

eabt0 + 1

))−d/2

,

which implies ∫

E
ã2t0(x)µ(dx) ≤

(
(1 − e−2abt0)2

(
1 − 4

eabt0 + 1

))−d/2

<∞.

Thus the process ξ satisfies all the assumptions in the beginning of this subsection.

Example 1.2 Suppose a > 2 is a constant. Let ξ be a Markov process on R
d corresponding to the

infinitesimal generator ∆ − |x|a. Let pt(x, y) denote the transition density of ξ with respect to the

Lebesgue measure on R
d. It follows from [13, Section 4.5] that, for any t > 0, there exists ct > 0

such that

pt(x, y) ≤ ct exp

(
− 2

2 + a
|x|1+a/2

)
exp

(
− 2

2 + a
|y|1+a/2

)
, x, y ∈ R

d.

Taking E = R
d and µ to be the Lebesgue measure on R

d, using the display above, one can easily

check that all the assumptions at the beginning of this subsection are satisfied in this case.

Example 1.3 Suppose that V is a nonnegative and locally bounded function on R
d such that

there exist R > 0 and M ≥ 1 such that for all |x| > R,

M−1(1 + V (x)) ≤ V (y) ≤M(1 + V (x)), y ∈ B(x, 1),

and that

lim
|x|→∞

V (x)

log |x| = ∞.

Suppose α ∈ (0, 2) is a constant. Let ξ be a Markov process on R
d corresponding to the infinitesimal

generator −(−∆)α/2 − V (x). Let pt(x, y) denote the transition density of ξ with respect to the
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Lebesgue measure on R
d. It follows from [22, Corollaries 3 and 4] that, for any t > 0, there exists

ct > 0 such that

pt(x, y) ≤ ct
1

(1 + V (x))(1 + |x|)d+α

1

(1 + V (y))(1 + |y|)d+α
, x, y ∈ R

d.

Taking E = R
d and µ to be the Lebesgue measure on R

d, using the display above, one can easily

check that all the assumptions at the beginning of this subsection are satisfied in this case.

Example 1.4 A nondecreasing function L : [0,∞) → [0,∞) is said to be in the class L if

limt→∞ L(t) = ∞ and there exists c > 1 such that

L(t+ 1) ≤ c(1 + L(t)), t ≥ 0.

Suppose that V is a nonnegative function on R
d such that

lim
|x|→∞

V (x)

|x| = ∞

and that there exists a function L ∈ L such that there exists C > 0 such that

L(|x|) ≤ V (x) ≤ C(1 + L(|x|), x ∈ R
d.

Suppose that m > 0 and α ∈ (0, 2) are constants. Let ξ be a Markov process on R
d corresponding

to the infinitesimal generator m−(−∆+m2/α)α/2−V (x). Let pt(x, y) denote the transition density

of ξ with respect to the Lebesgue measure on R
d. It follows from [27, Theorem 1.6] that, for any

t > 0, there exists ct > 0 such that

pt(x, y) ≤ ct
exp(−m1/α|x|)

(1 + V (x))(1 + |x|)(d+α+1)/2

exp(−m1/α|y|)
(1 + V (y))(1 + |y|)(d+α+1)/2

, x, y ∈ R
d.

Taking E = R
d and µ to be the Lebesgue measure on R

d, using the display above, one can easily

check that all the assumptions at the beginning of this subsection are satisfied in this case.

The next example shows that a lot of important Markov processes on bounded subsets of Rd

satisfy the above assumptions.

Example 1.5 Suppose that E is a locally compact separable metric space, µ is a finite Borel

measure on E with full support and that ξ = {ξt,Πx} is a µ-symmetric Hunt process on E.

Suppose that, for each t > 0, ξt has a continuous, symmetric and strictly positive density pt(x, y)

with respect to µ. If the semigroup of ξ is ultracontractive, or equivalently, for any t > 0, there

exists constant ct > 0 such that

pt(x, y) ≤ ct, for any (x, y) ∈ E × E.

Then it is trivial to see that, in this case, all the assumptions at the beginning of this subsection

are satisfied.

Some particular cases of this example are as follows:
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(1) Suppose that D is a connected open subset of R
d with finite Lebesgue measure and that µ

denotes the Lebesgue measure on D. Then the subprocess in D of any diffusion process in R
d

corresponding to a uniformly elliptic divergence form second order differential operator satis-

fies the assumptions of the first paragraph in this example and therefore all the assumptions

at the beginning of this subsection.

(2) Suppose that D is a bounded connected C2 open set in R
d and that µ denotes the Lebesgue

measure on D. The reflecting Brownian motion in D satisfies the assumptions of the first

paragraph in this example and therefore all the assumptions at the beginning of this subsec-

tion.

(3) Suppose that D is an open subset of Rd with finite Lebesgue measure and that µ denotes the

Lebesgue measure on D. Then the subprocesses in D of any of the subordinate Brownian

motions studied in [25, 26] satisfy the assumptions of the first paragraph in this example and

therefore all the assumptions at the beginning of this subsection.

1.2 Branching Markov process

In this subsection, we spell out our assumptions on the branching Markov process.

The branching Markov process {Xt : t ≥ 0} on E we are going to work with is determined

by three parameters: a spatial motion ξ = {ξt,Πx} on E satisfying the assumptions at the be-

ginning of the previous subsection, a branching rate function β(x) on E which is a non-negative

bounded measurable function and an offspring distribution {pn(x) : n = 0, 1, , 2, . . . } satisfying the

assumption

sup
x∈E

∞∑

n=0

n2pn(x) <∞. (1.2)

We denote the generating function of the offspring distribution by

ϕ(x, z) =

∞∑

n=0

pn(x)zn, x ∈ E, |z| ≤ 1.

Consider a branching system on E characterized by the following properties: (i) each individual

has a random birth and death time; (ii) given that an individual is born at x ∈ E, the conditional

distribution of its path is determined by Πx; (iii) given the path ξ of an individual up to time t

and given that the particle is alive at time t , its probability of dying in the interval [t, t + dt) is

β(ξt)dt + o(dt); (iv) when an individual dies at x ∈ E, it splits into n individuals all positioned at

x, with probability pn(x); (v) when an individual reaches ∂, it disappears from the system; (vi) all

the individuals, once born, evolve independently.

Let Ma(E) be the space of finite atomic measures on E, and let Bb(E) be the set of bounded

Borel measurable functions on E. Let Xt(B) be the number of particles alive at time t located

in B ∈ B(E). Then X = {Xt, t ≥ 0} is an Ma(E)-valued Markov process. For any ν ∈ Ma(E),
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we denote the law of X with initial configuration ν by Pν . As usual, 〈f, ν〉 :=
∫
E f(x) ν(dx). For

0 ≤ f ∈ Bb(E), let

ω(t, x) := Pδxe
−〈f,Xt〉,

then ω(t, x) is the unique positive solution to the equation

ω(t, x) = Πx

∫ t

0
ψ(ξs, ω(t− s, ξs)) ds + Πx(e−f(ξt)), (1.3)

where ψ(x, z) = β(x)(ϕ(x, z) − z), x ∈ E, z ∈ [0, 1], while ψ(∂, z) = 0, z ∈ [0, 1]. By the branching

property, we have

Pνe
−〈f,Xt〉 = e〈logω(t,·),ν〉.

Define

α(x) := β(x)

(
∞∑

n=1

npn(x) − 1

)
and A(x) := β(x)

∞∑

n=2

(n− 1)npn(x). (1.4)

By (1.2), there exists K > 0, such that

sup
x∈E

(|α(x)| +A(x)) ≤ K. (1.5)

For any f ∈ Bb(E) and (t, x) ∈ (0,∞) × E, define

Ttf(x) := Πx

[
e
∫ t
0 α(ξs) dsf(ξt)

]
. (1.6)

It is well-known that Ttf(x) = Pδx〈f,Xt〉 for every x ∈ E.

For any (t, x, y) ∈ (0,∞) × E × E, define

I0(t, x, y) = pt(x, y),

In(t, x, y) =

∫ t

0

∫

E
ps(x, z)In−1(t− s, z, y)α(z)µ(dz)ds, n ≥ 1.

By induction we can see that for any f ∈ Bb(E) and any n ≥ 0,

∫

E
In(t, x, y)f(y)µ(dy) =

1

n!
Πx

[(∫ t

0
α(ξs) ds

)n

f(ξt)

]
, (t, x) ∈ (0,∞) × E, (1.7)

|In(t, x, y)| ≤ (‖α‖∞t)n
n!

pt(x, y), (t, x, y) ∈ (0,∞) × E × E. (1.8)

Thus

qt(x, y) :=

∞∑

n=0

In(t, x, y) ≤ e‖α‖∞tpt(x, y), (t, x, y) ∈ (0,∞) × E × E, (1.9)

and, for each t > 0, the series above converges locally uniformly. Similarly we also have qt(x, y) ≥
exp(−‖α‖∞t)pt(x, y) for all (t, x, y) ∈ (0,∞) ×E ×E. For any ǫ ∈ (0, t/2) and (x, y) ∈ E ×E , we

have
∣∣∣∣
∫ ǫ

0

∫

E
ps(x, z)pt−s(z, y)α(z)µ(dz)ds

∣∣∣∣ ≤ ‖α‖∞
∫ ǫ

0

∫

E
ps(x, z)pt−s(z, y)µ(dz)ds

7



= ǫ‖α‖∞pt(x, y).

Similarly, for any (x, y) ∈ E × E , we have

∣∣∣∣
∫ t

t−ǫ

∫

E
ps(x, z)pt−s(z, y)α(z)µ(dz)ds

∣∣∣∣ ≤ ǫ‖α‖∞pt(x, y).

Hence, for any t > 0, as ǫ→ 0,

∫ t−ǫ

ǫ

∫

E
ps(x, z)pt−s(z, y)α(z)µ(dz)ds

converges to I1(t, x, y) locally uniformly. For s ∈ (ǫ, t− ǫ) we have,

ps(x, z)pt−s(z, y) ≤ (ãǫ(x)ãǫ(y))1/2ãǫ(z), (x, y, z) ∈ E × E × E,

thus it follows from (a) and the dominated convergence theorem that I1(t, x, y) is continuous on

E × E. Using (1.8) and induction, we can show that, for each n > 1 and t > 0, In(t, x, y) is

continuous on E×E. I1(t, x, y) is obviously symmetric in x and y. Using (1.7) and some standard

arguments (see the proof of [12, Theorem 3.10]), one can easily show that, for each n > 1 and t > 0,

In(t, x, y) is symmetric on E × E. Thus, for any t > 0, qt(x, y) is a continuous strictly positive

symmetric function on E ×E and for any bounded Borel function f and any (t, x) ∈ (0,∞) × E,

Ttf(x) =

∫

E
qt(x, y)f(y)µ(dy).

It follows immediately from (1.9) that, for any p ≥ 1, {Tt : t ≥ 0} is a strongly continuous semigroup

on Lp(E,µ) and

‖Ttf‖pp ≤ epKt‖f‖pp.

Define at(x) := qt(x, x). It follows from (1.9) and the assumptions (a) and (b) in the previous

subsection that at enjoys the following properties.

(i) For any t > 0, we have ∫

E
at(x)µ(dx) <∞.

(ii) There exists t0 > 0 such that for all t ≥ t0, at(x) ∈ L2(E,µ).

It follows from (i) above that, for any t > 0, Tt is a Hilbert-Schmidt operator and thus a compact

operator. Let L be the infinitesimal generator of {Tt : t ≥ 0} in L2(E,µ). L has purely discrete

spectrum with eigenvalues −λ1 > −λ2 > −λ3 > · · · , and the first eigenvalue −λ1 is simple and

the eigenfunction φ1 associated with −λ1 can be chosen to be strictly positive everywhere and

continuous. We will assume that ‖φ1‖2 = 1. φ1 is sometimes denoted as φ
(1)
1 . For k > 1, let

{φ(k)j , j = 1, 2, · · · nk} be an orthonormal basis of the eigenspace (which is finite dimensional)

associated with −λk. It is well-known that {φ(k)j , j = 1, 2, · · · nk; k = 1, 2, . . . } forms a complete

8



orthonormal basis of L2(E,µ) and all the eigenfunctions are continuous. For any k ≥ 1, j =

1, . . . , nk and t > 0, we have Ttφ
(k)
j (x) = e−λktφ

(k)
j (x) and

e−λkt/2|φ(k)j |(x) ≤ at(x)1/2, x ∈ E. (1.10)

It follows from the relation above that all the eigenfunctions φ
(k)
j belong to L4(E,µ). For any

x, y ∈ E and t > 0, we have

qt(x, y) =

∞∑

k=1

e−λkt
nk∑

j=1

φ
(k)
j (x)φ

(k)
j (y), (1.11)

where the series is locally uniformly convergent on E × E. For the basic facts in the paragraph,

one can refer to [14, Section 2].

In this paper, we always assume that the branching Markov process X is supercritical, that is,

λ1 < 0.

We will use {Ft : t ≥ 0} to denote the filtration of X, that is Ft = σ(Xs : s ∈ [0, t]). Using the

expectation formula of 〈φ1,Xt〉 and the Markov property of X, it is not hard to prove that (see

Lemma 3.1 for a proof), for any nonzero ν ∈ Ma(E), under Pν, the process Wt := eλ1t〈φ1,Xt〉 is a

positive martingale. Therefore it converges:

Wt →W∞, Pν-a.s. as t→ ∞.

Using the assumption (1.2) we can show that, as t → ∞, Wt also converges in L2(Pν), so W∞

is non-degenerate and the second moment is finite. Moreover, we have Pν(W∞) = 〈φ1, ν〉. Put

E = {W∞ = 0}, then Pν(E) < 1. It is clear that Ec ⊂ {Xt(E) > 0,∀t ≥ 0}.

We will use 〈·, ·〉 to denote inner product in L2(E,µ). Any f ∈ L2(E,µ) admits the following

expansion:

f(x) =

∞∑

k=1

nk∑

j=1

akjφ
(k)
j (x), (1.12)

where akj = 〈f, φ(k)j 〉 and the series converges in L2(E,µ). a11 will sometimes be written as a1.

1.3 Main results

For f ∈ L2(E,µ), define

γ(f) := inf{k ≥ 1 : there exists j with 1 ≤ j ≤ nk such that akj 6= 0},

where we use the usual convention inf ∅ = ∞. We note that if f ∈ L2(E,µ) is nonnegative and

µ(x : f(x) > 0) > 0, then 〈f, φ1〉 > 0 which implies γ(f) = 1. Define

f(s)(x) :=
∑

2λk<λ1

nk∑

j=1

akjφ
(k)
j (x),

9



f(c)(x) :=
∑

2λk=λ1

nk∑

j=1

akjφ
(k)
j (x),

f(l)(x) := f(x) − f(s)(x) − f(c)(x),

f1(x) :=

nγ(f)∑

j=1

a
γ(f)
j φ

(γ(f))
j (x),

f̃(x) := f(x) − f1(x).

The main results of this paper are stated in three separate cases: λ1 > 2λγ(f); λ1 = 2λγ(f) and

λ1 < 2λγ(f). When the branching rate β(x) and the offspring distribution {pn(x);n = 0, 1, . . . } are

both independent of x, the function α defined in (1.4) reduces to a constant and the eigenvalues

−λk of L are related to the eigenvalues −λ̃k of the generator of ξ by −λk = −λ̃k + α. Therefore,

λ1 > 2λγ(f); λ1 = 2λγ(f) and λ1 < 2λγ(f) are equivalent to α > 2λ̃γ(f) − λ̃1; α = 2λ̃γ(f) − λ̃1

and α < 2λ̃γ(f) − λ̃1 respectively. Because of this, when the branching rate β(x) and offspring

distribution {pn(x);n = 0, 1, . . . } are both independent of x, the cases λ1 > 2λγ(f); λ1 = 2λγ(f)

and λ1 < 2λγ(f) are called the large branching rate case, the critical branching rate case and the

small branching rate case respectively in [1] and [37]. Therefore in this paper, even when the

branching rate β(x) and offspring distribution {pn(x);n = 0, 1, . . . } depend on x, we still call the

cases λ1 > 2λγ(f); λ1 = 2λγ(f) and λ1 < 2λγ(f) the large branching rate case, the critical branching

rate case and the small branching rate case respectively. Here are the main results of this paper.

1.3.1 The large branching rate case: λ1 > 2λγ(f)

Define

Hk,j
t := eλkt〈φ(k)j ,Xt〉. (1.13)

H1,1
t will sometimes be written as H1

t . One can show (see Lemma 3.1 below) that, if λ1 > 2λk,

then, for any nonzero ν ∈ Ma(E), Hk,j
t is a martingale under Pν and bounded in L2(Pν), and thus

the limit Hk,j
∞ := limt→∞Hk,j

t exists Pν-a.s. and in L2(Pν).

Theorem 1.6 If f ∈ L2(E,µ) ∩ L4(E,µ) with λ1 > 2λγ(f), then for any nonzero ν ∈ Ma(E), as

t→ ∞,

eλγ(f)t〈f,Xt〉 →
nγ(f)∑

j=1

a
γ(f)
j Hγ(f),j

∞ , in L2(Pν).

Remark 1.7 Suppose f ∈ L2(E,µ) ∩ L4(E,µ). When γ(f) = 1, H1
t reduces to Wt, and thus

H1
∞ = W∞. Therefore by Theorem 1.6 and the fact that a1 = 〈f, φ1〉, we get that for any nonzero

ν ∈ Ma(E),

eλ1t〈f,Xt〉 → 〈f, φ1〉W∞, in L2(Pν),

as t→ ∞. In particular, the convergence also holds in Pν-probability.
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1.3.2 The small branching rate case: λ1 < 2λγ(f)

Define

σ2f :=

∫ ∞

0
eλ1s〈A(Tsf)2, φ1〉 ds + 〈f2, φ1〉. (1.14)

Theorem 1.8 If f ∈ L2(E,µ) ∩ L4(E,µ) with λ1 < 2λγ(f), then σ2f < ∞ and, for any nonzero

ν ∈ Ma(E), it holds under Pν(· | Ec) that
(
eλ1t〈φ1,Xt〉,

〈f,Xt〉√
〈φ1,Xt〉

)
d→ (W ∗, G1(f)), t→ ∞,

where W ∗ has the same distribution as W∞ conditioned on Ec and G1(f) ∼ N (0, σ2f ). Moreover,

W ∗ and G1(f) are independent.

1.3.3 The critical branching rate case: λ1 = 2λγ(f)

Define

ρ2f :=
〈
Af21 , φ1

〉
. (1.15)

Theorem 1.9 If f ∈ L2(E,µ) ∩ L4(E,µ) with λ1 = 2λγ(f), then ρ2f < ∞ and, for any nonzero

ν ∈ Ma(E), it holds under Pν(· | Ec) that
(
eλ1t〈φ1,Xt〉,

〈f,Xt〉√
t〈φ1,Xt〉

)
d→ (W ∗, G2(f)), t→ ∞,

where W ∗ has the same distribution as W∞ conditioned on Ec and G2(f) ∼ N (0, ρ2f ). Moreover,

W ∗ and G2(f) are independent.

1.3.4 Further results in the large branching rate case

In this subsection we give two central limit theorems for the case λ1 > 2λγ(f). Define

H∞ :=
∑

2λk<λ1

nk∑

j=1

akjH
k,j
∞ . (1.16)

Let

β2f :=

∫ ∞

0
e−λ1s

〈
A(

∑

2λk<λ1

nk∑

j=1

eλksakjφ
k
j )2, φ1

〉
ds− 〈(f(s))2, φ1〉. (1.17)

In Section 3.3 we will see that β2f = 〈V arδ·H∞, φ1〉.

Theorem 1.10 If f ∈ L2(E,µ) ∩ L4(E,µ) satisfies λ1 > 2λγ(f) and f(c) = 0, then σ2f(l) < ∞ and

β2f <∞. For any nonzero ν ∈ Ma(E), it holds under Pν(· | Ec) that, as t→ ∞,


eλ1t〈φ1,Xt〉, 〈φ1,Xt〉−1/2


〈f,Xt〉 −

∑

2λk<λ1

e−λkt
nk∑

j=1

akjH
k,j
∞




 d→ (W ∗, G3(f)),

11



where W ∗ has the same distribution as W∞ conditioned on Ec, and G3(f) ∼ N (0, σ2f(l) + β2f ).

Moreover, W ∗ and G3(f) are independent.

Remark 1.11 If 2λk < λ1, then, for any nonzero ν ∈ Ma(E), it holds under Pν(· | Ec) that, as

t→ ∞, 
eλ1t〈φ1,Xt〉,

(
〈φ(k)j ,Xt〉 − e−λktHk,j

∞

)

〈φ1,Xt〉1/2


 d→ (W ∗, G3),

where G3 ∼ N
(

0, 1
λ1−2λk

〈A(φ
(k)
j )2, φ1〉

)
. In particular, for φ1, we have

(
eλ1t〈φ,Xt〉,

(
〈φ1,Xt〉 − e−λ1tW∞

)

〈φ1,Xt〉1/2

)
d→ (W ∗, G3), t → ∞,

where G3 ∼ N
(

0,− 1
λ1

∫
E A(x)(φ1(x))3µ(dx)

)
.

Theorem 1.12 If f ∈ L2(E,µ)∩L4(E,µ) satisfies λ1 > 2λγ(f) and f(c) 6= 0, then, for any nonzero

ν ∈ Ma(E), it holds under Pν(· | Ec) that, as t→ ∞,

eλ1t〈φ1,Xt〉, t−1/2〈φ1,Xt〉−1/2


〈f,Xt〉 −

∑

λk<λ1/2

e−λkt
nk∑

j=1

akjH
k,j
∞




 d→ (W ∗, G4(f)),

where W ∗ has the same distribution as W∞ conditioned on Ec, and G4(f) ∼ N (0, ρ2f(c)). Moreover,

W ∗ and G4(f) are independent.

Remark 1.13 By combining the techniques of this paper with the backbone decomposition of

superprocesses (see [6]), one can extend the central limit theorems, for super-OU processes, of [37]

to superprocesses with spatial-dependent branching mechanisms and with spatial motions satisfying

the assumptions (a) and (b).

2 Preliminaries

In this section, we will give the estimates on the moments of the branching Markov process X.

2.1 Estimates on the semigroup Tt

In the remainder of this paper we will use the following notation: for two positive functions f and

g on E, f(x) . g(x) for x ∈ E means that there exists a constant c > 0 such that f(x) ≤ cg(x) for

any x ∈ E.

Lemma 2.1 For any f ∈ L2(E,µ), x ∈ E and t > 0, we have

Ttf(x) =
∞∑

k=γ(f)

e−λkt
nk∑

j=1

akjφ
(k)
j (x) (2.1)
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and

lim
t→∞

eλγ(f)tTtf(x) =

nγ(f)∑

j=1

a
γ(f)
j φ

(γ(f))
j (x), (2.2)

where the series in (2.1) converges absolutely and uniformly in any compact subset of E. Moreover,

for any t1 > 0,

sup
t>t1

eλγ(f)t|Ttf(x)| . (at1(x))1/2, (2.3)

sup
t>t1

e(λγ(f)+1−λγ(f))t
∣∣∣eλγ(f)tTtf(x) − f1(x)

∣∣∣ . (at1(x))1/2. (2.4)

Proof: Using (1.11), it is easy to see that for any (t, x) ∈ (0,∞) × E,

Ttf(x) =

∫

E

∞∑

k=1

e−λkt
nk∑

j=1

φ
(k)
j (x)φ

(k)
j (y)f(y)µ(dy).

To prove (2.1), we only need to show that, for any t1 > 0 and any (t, x) ∈ (t1,∞) ×E,

∞∑

k=1

e−λkt
nk∑

j=1

|φ(k)j (x)|
∫

E
|φ(k)j (y)||f(y)|µ(dy) <∞,

and that the series convergent uniformly on any compact subset of E. By Hölder’s inequality, we

get
∫
E |φ(k)j (y)||f(y)|µ(dy) ≤ ‖f‖2. Then by (1.10), for (t, x) ∈ (t1,∞) × E, we have

∞∑

k=1

e−λkt
nk∑

j=1

|φ(k)j (x)|
∫

E
|φ(k)j (y)||f(y)|µ(dy) ≤

∞∑

k=1

nke
−λk(t−t1/2)‖f‖2at1(x)1/2 (2.5)

≤ e−λ1(t−t1)‖f‖2at1(x)1/2
∞∑

k=1

nke
−λkt1/2. (2.6)

By (1.11), we have
∞∑

k=1

e−λkt1/2
nk∑

j=1

|φ(k)j (x)|2 = at1/2(x), x ∈ E. (2.7)

Consequently, integrating both sides of (2.7),

∞∑

k=1

nke
−λkt1/2 =

∫

E
at1/2(x)µ(dx) <∞. (2.8)

Thus, for any (t, x) ∈ (t1,∞) × E,

∞∑

k=1

e−λkt
nk∑

j=1

|φ(k)j (x)|
∫

E
|φ(k)j (y)||f(y)|µ(dy) ≤ e−λ1(t−t1)‖f‖2at1(x)1/2

∫

E
at1/2(x)µ(dx). (2.9)
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Thus, we get (2.1). The above argument shows that for any (t, x) ∈ (t1,∞) × E,

|Ttf(x)| ≤
∞∑

k=γ(f)

e−λkt
nk∑

j=1

|akj ||φ
(k)
j (x)| ≤ e−λγ(f)(t−t1)‖f‖2at1(x)1/2

∫

E
at1/2(x)µ(dx), (2.10)

which implies (2.3).

Applying (2.3) to f̃ , we obtain that for x ∈ E,

sup
t>t1

eλγ(f)+1t|Tt(f̃)(x)| . (at1(x))1/2.

Now (2.2) and (2.4) follow immediately. ✷

The proof of the lemma above also yields the following result which will be used later.

Lemma 2.2 Suppose that {ft(x) : t > 0} is a family of functions in L2(E,µ). If limt→∞ ‖ft‖2 = 0,

then for any x ∈ E,

lim
t→∞

eλ1tTtft(x) = 0.

Proof: Applying (2.10) to ft and using the fact λ1 ≤ λγ(ft), we get that for any (t, x) ∈
(t0,∞) × E,

|Ttft(x)| ≤ e−λ1(t−t0)‖ft‖2(at0(x))1/2
∫

E
at0/2(x)µ(dx).

Thus, for any (t, x) ∈ (t0,∞) × E,

|eλ1tTtft(x)| ≤ eλ1t0(at0(x))1/2‖ft‖2
∫

E
at0/2(x)µ(dx),

from which the assertion of the lemma follows immediately. ✷

2.2 Estimates on the second moment of the branching Markov process

Recall the formula for the second moment of the branching Markov process {Xt : t ≥ 0} (see, for

example, [38, Lemma 3.3]): for f ∈ Bb(E), we have for any (t, x) ∈ (0,∞) × E,

Pδx〈f,Xt〉2 =

∫ t

0
Ts[A(Tt−sf)2](x) ds + Tt(f

2)(x). (2.11)

For any f ∈ L2(E,µ) ∩ L4(E,µ) and x ∈ E, by (Tt−sf)2(x) ≤ eK(t−s)Tt−s(f
2)(x), we have

∫ t

0
Ts[A(Tt−sf)2](x) ds ≤ KeK(t−s)tTt(f

2)(x) <∞,

which implies
∫ t
0 Ts[A(Tt−sf)2](x) ds + Tt(f

2)(x) < ∞. Thus, using a routine limit argument, one

can easily check that (2.11) also holds for f ∈ L2(E,µ) ∩ L4(E,µ).

Lemma 2.3 Assume that f ∈ L2(E,µ) ∩ L4(E,µ).
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(1) If λ1 < 2λγ(f), then for any x ∈ E,

lim
t→∞

eλ1t/2Pδx〈f,Xt〉 = 0, (2.12)

lim
t→∞

eλ1tPδx〈f,Xt〉2 =

∫ ∞

0
eλ1s〈A(Tsf)2, φ1〉 dsφ1(x) + 〈f2, φ1〉φ1(x). (2.13)

Moreover, for (t, x) ∈ (3t0,∞) × E, we have

eλ1tV arδx〈f,Xt〉 . at0(x)1/2. (2.14)

(2) If λ1 = 2λγ(f), then for any (t, x) ∈ (3t0,∞) × E,

∣∣∣t−1eλ1tV arδx〈f,Xt〉 − ρ2fφ1(x)
∣∣∣ . t−1

(
at0(x)1/2 + at0(x)

)
, (2.15)

where ρ2f is defined by (1.15).

(3) If λ1 > 2λγ(f), then for any x ∈ E,

lim
t→∞

e2λγ(f)tPδx〈f,Xt〉2 = η2f (x), (2.16)

where

η2f (x) :=

∫ ∞

0
e2λγ(f)sTs(Af

2
1 )(x) ds.

Moreover, for any (t, x) ∈ (3t0,∞) × E,

e2λγ(f)tPδx〈f,Xt〉2 . at0(x)1/2. (2.17)

Proof: (1) If λ1 < 2λγ(f), then by (1.6) and (2.3), we have for any (t, x) ∈ (t0,∞) × E,

eλ1t/2 |Pδx〈f,Xt〉| = e(λ1−2λγ(f))t/2[eλγ(f)t|Ttf(x)|]
. e(λ1−2λγ(f))t/2at0(x)1/2 → 0, as t→ ∞. (2.18)

In the remainder of the proof of (1), we always assume t > 3t0. It follows from (2.11) that for any

x ∈ E,

eλ1tPδx〈f,Xt〉2 = eλ1t

∫ t

0
Tt−s[A(Tsf)2](x) ds + eλ1tTt(f

2)(x)

=

∫ t

0
e(λ1−2λγ(f))seλ1(t−s)Tt−s[A(eλγ(f)sTsf)2](x) ds + eλ1tTt(f

2)(x)

=

(∫ t−t0

0
+

∫ t

t−t0

)
e(λ1−2λγ(f))seλ1(t−s)Tt−s[A(eλγ(f)sTsf)2](x) ds + eλ1tTt(f

2)(x)

=: V1(t, x) + V2(t, x) + eλ1tTt(f
2)(x). (2.19)
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For V1(t, x), we claim that for s < t− t0, we have

eλ1(t−s)Tt−s[A(eλγ(f)sTsf)2](x) . at0(x)1/2, x ∈ E. (2.20)

If s ≤ t0, using (Tsf(x))2 ≤ eKsTs(f
2)(x) and (2.3), we obtain that for any x ∈ E,

eλ1(t−s)Tt−s[A(eλγ(f)sTsf)2](x) ≤ KeKse−(λ1−2λγ(f))seλ1tTt(f
2)(x) . at0(x)1/2.

If t0 < s < t− t0, by (2.3), we have for any x ∈ E,

eλ1(t−s)Tt−s[A(eλγ(f)sTsf)2](x) . eλ1(t−s)Tt−sat0(x) . at0(x)1/2. (2.21)

Thus, we have proved the claim. By (2.20), we get that for any x ∈ E,

V1(t, x) . (at0(x))1/2. (2.22)

By (2.2) and the dominated convergence theorem, we easily get that for any x ∈ E,

lim
t→∞

V1(t, x) =

∫ ∞

0
eλ1s〈A(Tsf)2, φ1〉 dsφ1(x). (2.23)

Now we deal with V2(t, x). It follows from (2.3) that eλγ(f)sTsf(x) . a2t0(x)1/2 for (s, x) ∈
(2t0,∞) × E. Thus,

V2(t, x) .

∫ t

t−t0

e(λ1−2λγ(f))seλ1(t−s)Tt−s(a2t0)(x) ds

= e(λ1−2λγ(f))t

∫ t0

0
e2λγ(f)sTs(a2t0)(x) ds

. e(λ1−2λγ(f))t

∫ t0

0
Ts(a2t0)(x) ds. (2.24)

We now show that for any x ∈ E,
∫ t0
0 Ts(a2t0)(x) ds <∞. By (1.11), we have

a2t0(x) =

∞∑

k=1

nk∑

j=1

e−2λkt0
∣∣∣φ(k)j (x)

∣∣∣
2

=

∞∑

k=1

nk∑

j=1

e−λkt0
∣∣∣Tt0/2φ

(k)
j (x)

∣∣∣
2

≤ eKt0/2
∞∑

k=1

nk∑

j=1

e−λkt0Tt0/2

∣∣∣φ(k)j

∣∣∣
2

(x) = eKt0/2Tt0/2(at0)(x).

So, by Hölder’s inequality, we have

Ts(a2t0)(x) ≤ eKt0/2Ts+t0/2(at0)(x) ≤ eKt0/2‖at0‖2a2s+t0(x)1/2.

By (1.11), we have

a2s+t0(x) =

∞∑

k=1

nk∑

j=1

e−λk(t0+2s)
∣∣∣φ(k)j (x)

∣∣∣
2
≤ e−2λ1sat0(x),
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which implies ∫ t0

0
Ts(a2t0)(x) ds . at0(x)1/2. (2.25)

Hence for any x ∈ E, as t→ ∞,

V2(t, x) . e(λ1−2λγ(f))tat0(x)1/2 → 0. (2.26)

Thus, by (2.23) and (2.26), we get that for any x ∈ E,

lim
t→∞

eλ1t

∫ t

0
Tt−s[A(Tsf)2](x) ds =

∫ ∞

0
eλ1s〈A(Tsf)2, φ1〉 dsφ1(x). (2.27)

Since f2 ∈ L2(E,µ), by (2.2), we easily get limt→∞ eλ1tTt(f
2)(x) = 〈f2, φ1〉φ1(x) for every x ∈ E,

which implies (2.13).

By (2.3), we also have eλ1tTt(f
2)(x) . at0(x)1/2 for any x ∈ E. Combining (2.22) and (2.26),

we get that for any (t, x) ∈ (3t0,∞) × E,

eλ1tV arδx〈f,Xt〉 ≤ eλ1tPδx〈f,Xt〉2 . at0(x)1/2.

The proof of (1) is now complete.

(2) If 2λγ(f) = λ1, then by (1.6) and (2.11), we have for any (t, x) ∈ (0,∞) × E,

t−1eλ1tV arδx〈f,Xt〉 = t−1

∫ t

0
eλ1sTs[A(eλγ(f)(t−s)Tt−sf)2](x) ds

+t−1eλ1tTt(f
2)(x) − t−1

(
eλγ(f)tTtf(x)

)2
. (2.28)

Thus,

∣∣∣t−1eλ1tV arδx〈f,Xt〉 − ρ2fφ1(x)
∣∣∣

≤ t−1

∫ t

0
eλ1sTs

[
A
∣∣∣(eλγ(f)(t−s)Tt−sf)2 − f21

∣∣∣
]

(x) ds

+t−1

∫ t

0

∣∣∣eλ1sTs(Af
2
1 )(x) − 〈Af21 , φ1〉φ1(x)

∣∣∣ ds

+t−1eλ1tTt(f
2)(x) + t−1

(
eλγ(f)tTtf(x)

)2

=: A1(t, x) +A2(t, x) +A3(t, x) +A4(t, x). (2.29)

In the remainder of the proof of (2), we always assume t > 3t0.

For A1(t, x), by (1.10), (2.3) and (2.4), for t− s > 2t0, we have for any x ∈ E,

∣∣∣(eλγ(f)(t−s)Tt−sf)2 − f1(x)2
∣∣∣ ≤

∣∣∣eλγ(f)(t−s)Tt−sf(x) − f1(x)
∣∣∣ (eλγ(f)(t−s)|Tt−sf(x)| + |f1(x)|)

. e(λγ(f)−λγ(f)+1)(t−s)a2t0(x).
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So by (2.3) and (2.25), we have for any (t, x) ∈ (3t0,∞) × E,

t−1

∫ t−2t0

0
eλ1sTs[A|(eλγ(f)(t−s)Tt−sf)2 − f21 |](x) ds (2.30)

. t−1

∫ t−2t0

0
e(λγ(f)−λγ(f)+1)(t−s)eλ1sTs(a2t0)(x) ds

. t−1

∫ t0

0
e(λγ(f)−λγ(f)+1)(t−s)eλ1sTs(a2t0)(x) ds + t−1

∫ t−2t0

t0

e(λγ(f)−λγ(f)+1)(t−s) dsat0(x)1/2

. t−1

∫ t0

0
Ts(a2t0)(x) ds + t−1at0(x)1/2 . t−1at0(x)1/2. (2.31)

Using (Tt−sf(x))2 ≤ eK(t−s)Tt−s(f
2)(x) and (2.3), we get that for any x ∈ E,

t−1

∫ t

t−2t0

eλ1sTs

[
A|(eλγ(f)(t−s)Tt−sf)2 − f21 |

]
(x) ds

≤ Kt−1

∫ t

t−2t0

eλ1sTs

(
e(2λγ(f)+K)(t−s)Tt−s(f

2) + f21

)
(x) ds

= Kt−1

∫ t

t−2t0

eλ1se(2λγ(f)+K)(t−s) dsTt(f
2)(x) +Kt−1

∫ t

t−2t0

eλ1sTs(f
2
1 )(x) ds

= Kt−1

∫ 2t0

0
e−λ1se(2λγ(f)+K)s ds eλ1tTt(f

2)(x) +Kt−1

∫ t

t−2t0

eλ1sTs(f
2
1 )(x) ds

. t−1at0(x)1/2. (2.32)

Thus we get that for any x ∈ E,

A1(t, x) . t−1at0(x)1/2. (2.33)

Next we consider A2(x, t). By (2.4), we have for (s, x) ∈ (t0,∞) × E,
∣∣∣eλ1sTs(Af

2
1 )(x) − 〈Af21 , φ1〉φ1(x)

∣∣∣ . e−(λ2−λ1)sat0(x)1/2,

which implies

t−1

∫ t

t0

∣∣∣eλ1sTs(Af
2
1 )(x) − 〈Af21 , φ1〉φ1(x)

∣∣∣ ds

. t−1

∫ t

t0

e−(λ2−λ1)s dsat0(x)1/2 . t−1at0(x)1/2. (2.34)

By (1.10), we get φ1(x) . at0(x)1/2 and |f1(x)| . a2t0(x)1/2 for any x ∈ E. So for any x ∈ E,

t−1

∫ t0

0

∣∣∣eλ1sTs(Af
2
1 )(x) − 〈Af21 , φ1〉φ1(x)

∣∣∣ ds

. Kt−1

∫ t0

0
eλ1sTs(a2t0)(x) ds +Kt−1〈f21 , φ1〉φ1(x)

. t−1

∫ t0

0
Ts(a2t0)(x) ds + t−1at0(x)1/2 . t−1at0(x)1/2.
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Thus, we get that for any x ∈ E,

A2(t, x) . t−1at0(x)1/2. (2.35)

By (2.3), we easily get that for any x ∈ E,

A3(t, x) . t−1at0(x)1/2 and A4(t, x) . t−1at0(x).

Consequently, we have
∣∣∣t−1eλ1tV arδx〈f,Xt〉 − ρ2fφ1(x)

∣∣∣ . t−1
(
at0(x) + at0(x)1/2

)
. (2.36)

The proof of (2) is now complete.

(3) If λ1 > 2λγ(f), then by (2.11), we have, for t > 3t0 and x ∈ E,

e2λγ(f)tPδx〈f,Xt〉2

=

∫ t

0
e−(λ1−2λγ(f))seλ1sTs[A(eλγ(f)(t−s)Tt−sf)2](x) ds + e−(λ1−2λγ(f))teλ1tTt(f

2)(x)

=

(∫ t0

0
+

∫ t

t0

)
e−(λ1−2λγ(f))seλ1sTs[A(eλγ(f)(t−s)Tt−sf)2](x) ds + e−(λ1−2λγ(f))teλ1tTt(f

2)(x)

= B1(t, x) +B2(t, x) +B3(t, x). (2.37)

In the remainder of this proof, we always assume t > 3t0. For s ≤ t0, we get t − s > 2t0. So for

any x ∈ E,

(eλγ(f)(t−s)Tt−sf(x))2 . a2t0(x),

which implies

B1(t, x) .

∫ t0

0
e−(λ1−2λγ(f))seλ1sTs(a2t0)(x) ds .

∫ t0

0
Ts(a2t0)(x) ds . at0(x)1/2.

Thus by the dominated convergence theorem, we get that for any x ∈ E,

lim
t→∞

B1(t, x) =

∫ t0

0
e−(λ1−2λγ(f))seλ1sTs(Af

2
1 )(x) ds.

Now we consider B2(t, x). Using (2.20), we get, for (s, x) ∈ (t0,∞) × E,

eλ1sTs[A(eλγ(f)(t−s)Tt−sf)2](x) . at0(x)1/2.

So for any x ∈ E,

B2(t, x) .

∫ t

t0

e−(λ1−2λγ(f))s dsat0(x)1/2 . at0(x)1/2.

Thus by the dominated convergence theorem, we get that for any x ∈ E,

lim
t→∞

B2(t, x) =

∫ ∞

t0

e−(λ1−2λγ(f))seλ1sTs(Af
2
1 )(x) ds.

By (2.3), we easily get that for any x ∈ E,

B3(t, x) . e−(λ1−2λγ(f))tat0(x)1/2 → 0

as t→ ∞. Thus, the proof of (3) is now complete. ✷
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3 Proofs of the Main Results

In this section, we will prove the main results of this paper. When referring to individuals in X

we will use the classical Ulam-Harris notation so that every individual in X has a unique label,

see [21]. Although the Ulam-Harris labelling of individuals is rich enough to encode genealogical

order, the only feature we really need of the Ulam-Harris notation is that individuals are uniquely

identifiable amongst T , the set of labels of individuals realized in X. For each individual u ∈ T
we shall write bu and du for its birth and death times respectively and {zu(r) : r ∈ [bu, du]} for its

spatial trajectory. Define

Lt = {u ∈ T , bu ≤ t < du}, t ≥ 0.

Thus, Xs+t has the following decomposition:

Xs+t =
∑

u∈Lt

Xu,t
s , (3.1)

where given Ft, X
u,t
s , u ∈ Lt, are independent and Xu,t

s has the same law as Xs under Pδzu(t)
.

3.1 The large branching rate case: λ1 > 2λγ(f)

Lemma 3.1 If λ1 > 2λk, then, for any ν ∈ Ma(E), Hk,j
t is a martingale under Pν. Moreover, the

limit

Hk,j
∞ := lim

t→∞
Hk,j

t (3.2)

exists Pν-a.s. and in L2(Pν).

Proof: By the branching property, it suffices to prove the lemma for ν = δx for x ∈ E.

Since φ
(k)
j (x) is an eigenfunction corresponding to −λk, we have, for any (t, x) ∈ (0,∞) × E,

PδxH
k,j
t = φ

(k)
j (x). Thus, by the Markov property, we get that, for any x ∈ E, Hk,j

t is a martingale

under Pδx . Using (2.17), we have that for any x ∈ E,

sup
t>3t0

Pδx(Hk,j
t )2 . at0(x)1/2 <∞,

from which the convergence asserted in the lemma follow easily. ✷

Now we present the proof of Theorem 1.6.

Proof of Theorem 1.6: By the branching property, it suffices to prove the lemma for ν = δx

for x ∈ E. Define Mt := eλγ(f)t〈f̃ ,Xt〉. It follows from the definition of f̃ that γ(f̃) ≥ γ(f) + 1.

From Lemma 2.3, we have the following:

(i) If λ1 > 2λ
γ(f̃ )

, then for any x ∈ E,

lim
t→∞

e
2λ

γ(f̃)tPδx〈f̃ ,Xt〉2 (3.3)
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exists, thus we have

PδxM
2
t = e

−2(λγ(f̃)−λγ(f))te
2λγ(f̃)tPδx〈f̃ ,Xt〉2

= O(e
−2(λ

γ(f̃)−λγ(f))t) → 0, as t → ∞.

(ii) If λ1 = 2λ
γ(f̃)

, then, for any x ∈ E, limt→∞ t−1eλ1tPδx〈f̃ ,Xt〉2 exists. Thus we have for any

x ∈ E,

PδxM
2
t = te

−2(λ
γ(f̃)−λγ(f))t(t−1eλ1tPδx〈f̃ ,Xt〉2)

= O(te
−2(λγ(f̃ )−λγ(f))t) → 0, as t→ ∞.

(iii) If 2λ
γ(f̃ )

> λ1 > 2λγ(f), then by Lemma 2.3(2), for any x ∈ E, limt→∞ eλ1tPδx〈f̃ ,Xt〉2 exists.

Thus we have for any x ∈ E,

PδxM
2
t = e−(λ1−2λγ(f))t(eλ1tPδx〈f̃ ,Xt〉2)

= O(e−(λ1−2λγ(f))t) → 0, as t→ ∞.

Combining the three cases above, we get that, for any x ∈ E, limt→∞Mt = 0 in L2(Pδx). Now

using Lemma 3.1, we easily get the convergence in Theorem 1.6. ✷

3.2 The small branching rate case: λ1 < 2λγ(f)

First, we recall some properties of weak convergence. For f : Rd → R, let ‖f‖L := supx 6=y |f(x) −
f(y)|/‖x− y‖ and ‖f‖BL := ‖f‖∞ + ‖f‖L. For any distributions ν1 and ν2 on R

d, define

β(ν1, ν2) := sup

{∣∣∣∣
∫
f dν1 −

∫
f dν2

∣∣∣∣ : ‖f‖BL ≤ 1

}
.

Then β is a metric. By [15, Theorem 11.3.3], the topology generated by this metric is equivalent

to the weak convergence topology. From the definition, we can easily see that, if ν1 and ν2 are the

distributions of two R
d-valued random variables X and Y respectively, then

β(ν1, ν2) ≤ E‖X − Y ‖ ≤
√

E‖X − Y ‖2. (3.4)

Proof of Theorem 1.8: We define an R
2-valued random variable U1(t) by

U1(t) :=
(
eλ1t〈φ1,Xt〉, eλ1t/2〈f,Xt〉

)
. (3.5)

To get the conclusion of Theorem 1.8, it suffices to show that, for any nonzero ν ∈ Ma(E), under

Pν ,

U1(t)
d→
(
W∞,

√
W∞G1(f)

)
, (3.6)
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where G1(f) ∼ N (0, σ2f ) is independent of W∞. To show the above, it suffices to show that, for

any x ∈ E, under Pδx,

U1(t)
d→
(
W∞,

√
W∞G1(f)

)
, (3.7)

where G1(f) ∼ N (0, σ2f ) is independent of W∞. In fact, if ν =
∑n

j=1 δxj
, n = 1, 2, . . . , {xj ; j =

1, · · · , n} ⊂ E, then

Xt =

n∑

j=1

Xj
t

where Xj
t is a branching Markov process starting from δxj

, j = 1, . . . , n, and Xj , j = 1, · · · , n, are

independent. If (3.7) is valid, we put W j
∞ := limt→∞ eλ1t〈φ1,Xj

t 〉. Then we easily get under Pν ,

W∞ =
∑n

j=1W
j
∞. For λ1 < 2λγ(f),

Pν exp
{
iθ1e

λ1t〈φ1,Xt〉 + iθ2e
(λ1/2)t〈f,Xt〉

)

=
n∏

j=1

Pν exp
{
iθ1e

λ1t〈φ1,Xj
t 〉 + iθ2e

(λ1/2)t〈f,Xj
t 〉
)

→
n∏

j=1

Pν exp

{
iθ1W

j
∞ − 1

2
θ22σ

2
fW

j
∞

)

= Pν exp

{
iθ1W∞ − 1

2
θ22σ

2
fW∞

)
,

which implies that (3.6) is valid.

Now we show that (3.7) is valid. Let s, t > 3t0 and write

U1(s+ t) =
(
eλ1(s+t)〈φ1,Xt+s〉, e(λ1/2)(s+t)〈f,Xs+t〉

)
.

Recall the decomposition of Xs+t in (3.1). Define

Y u,t
s := eλ1s/2〈f,Xu,t

s 〉 and yu,ts := Pδx(Y u,t
s |Ft). (3.8)

Given Ft, Y
u,t
s has the same law as Ys := eλ1s/2〈f,Xs〉 under Pδzu(t)

. Then we have

e(λ1/2)(s+t)〈f,Xs+t〉 = e(λ1/2)t
∑

u∈Lt

Y u,t
s

= e(λ1/2)t
∑

u∈Lt

(Y u,t
s − yu,ts ) + e(λ1/2)(t+s)

Pδx(〈f,Xs+t〉|Ft)

=: J1(s, t) + J2(s, t). (3.9)

We first consider J2(s, t). By the Markov property, we have

J2(s, t) = e(λ1/2)(s+t)〈Tsf,Xt〉.
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Thus, by (2.11) and (2.3), we have for any x ∈ E,

Pδx(J2(s, t)2) = eλ1(s+t)

∫ t

0
Tt−u[A(Ts+uf)2](x) du + eλ1(s+t)Tt[(Tsf)2](x)

= e(λ1−2λγ(f))s

∫ t

0
e(λ1−2λγ(f))ueλ1(t−u)Tt−u[A(eλγ(f)(s+u)Ts+uf)2](x) du

+e(λ1−2λγ(f))seλ1tTt[(e
λγ(f)sTsf)2](x)

. e(λ1−2λγ(f))s

(∫ t

0
e(λ1−2λγ(f))ueλ1(t−u)Tt−u[a2t0 ](x) du+ at0(x)1/2

)

and

∫ t

0
e(λ1−2λγ(f))ueλ1(t−u)Tt−u(a2t0)(x) du

=

(∫ t−t0

0
+

∫ t

t−t0

)
e(λ1−2λγ(f))ueλ1(t−u)Tt−u(a2t0)(x) du

.

∫ t−t0

0
e(λ1−2λγ(f))u dua2t0(x)1/2 +

∫ t0

0
e(λ1−2λγ(f))(t−u)eλ1uTu(a2t0)(x) du

. at0(x)1/2 +

∫ t0

0
Tu(a2t0)(x) du . at0(x)1/2.

Thus for any x ∈ E,

lim sup
t→∞

Pδx(J2(s, t)2) . e(λ1−2λγ(f))sat0(x)1/2. (3.10)

Next we consider J1(s, t). We define an R
2-valued random variable U2(s, t) by

U2(s, t) :=
(
eλ1t〈φ1,Xt〉, J1(s, t)

)
.

Let Vs(x) := V arδxYs. We claim that, for any x ∈ E, under Pδx,

U2(s, t)
d→
(
W∞,

√
W∞G1(s)

)
, as t→ ∞, (3.11)

where G1(s) ∼ N (0, σ2f (s)) is independent of W∞ and σ2f (s) = 〈Vs, φ1〉. Denote the characteristic

function of U2(s, t) under Pδx by κ(θ1, θ2, s, t):

κ(θ1, θ2, s, t) = Pδx

(
exp

{
iθ1e

λ1t〈φ1,Xt〉 + iθ2e
(λ1/2)t

∑

u∈Lt

(Y u,t
s − yu,ts )

})

= Pδx

(
exp{iθ1eλ1t〈φ1,Xt〉}

∏

u∈Lt

hs(zu(t), e(λ1/2)tθ2)

)
, (3.12)

where

hs(x, θ) = Pδxe
iθ(Ys−PδxYs).
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Let tk,mk → ∞, as k → ∞, and ak,j ∈ E, j = 1, 2, · · ·mk. Now we consider

Sk := eλ1tk/2
mk∑

j=1

(Yk,j − yk,j), (3.13)

where Yk,j has the same law as Ys under Pδak,j
and yk,j = Pδak,j

Ys. Further, Yk,j, j = 1, 2, . . . are

independent. Suppose the Lindeberg conditions hold:

(i) as k → ∞,

eλ1tk

mk∑

j=1

E(Yk,j − yk,j)
2 = eλ1tk

mk∑

j=1

Vs(ak,j) → σ2;

(ii) for any ǫ > 0,

eλ1tk

mk∑

j=1

E

(
|Yk,j − yk,j|2, |Yk,j − yk,j| > ǫe−λ1tk/2

)

= eλ1tk

mk∑

j=1

Pδak,j

(
|Ys − ys|2, |Ys − ys| > ǫe−λ1tk/2

)
→ 0, as k → ∞.

Then using the Lindeberg-Feller theorem, we have Sk
d→ N (0, σ2), which implies

mk∏

j=1

hs(ak,j, e
λ1tk/2θ) → e−

1
2
σ2θ2 . (3.14)

By Lemma 2.3(1), Vs ∈ L2(E,µ) ∩ L4(E,µ). So using Remark 1.7, we have

eλ1t
∑

u∈Lt

Vs(zu(t)) = eλ1t〈Vs,Xt〉 → 〈Vs, φ1〉W∞, in probability, as t→ ∞. (3.15)

Let g(x, s, t) = Pδx

(
|Ys − ys|2, |Ys − ys| > ǫe−λ1t/2

)
. We note that g(x, s, t) ↓ 0 as t ↑ ∞ and

g(x, s, t) ≤ Vs(x) for any x ∈ E. Thus by Lemma 2.2 we have for any x ∈ E,

eλ1tPδx〈g(·, s, t),Xt〉 = eλ1tTt(g(·, s, t))(x) → 0, as t→ ∞,

which implies

eλ1t
∑

u∈Lt

Pδzu(t)

(
|Ys − ys|2, |Ys − ys| > ǫe−λ1t/2

)
→ 0, as t→ ∞, (3.16)

in Pδx-probability. Therefore, for any sequence sk → ∞, there exists a subsequence s′k such that,

if we let tk = s′k, mk = |Xs′k
| and {ak,j, j = 1, 2 · · ·mk} = {zu(s′k), u ∈ Ls′k

}, then the Lindeberg

conditions hold Pδx-a.s. for any x ∈ E, which implies

lim
k→∞

∏

u∈Ls′
k

hs(zu(s′k), e(λ1/2)s′kθ2) = exp

{
−1

2
θ22〈Vs, φ1〉W∞

}
, Pδx-a.s. (3.17)
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Consequently, we have

lim
t→∞

∏

u∈Lt

hs(zu(t), e(λ1/2)tθ2) = exp

{
−1

2
θ22〈Vs, φ1〉W∞

}
, in probability. (3.18)

Hence by the dominated convergence theorem, we get

lim
t→∞

κ(θ1, θ2, s, t) = Pδx exp {iθ1W∞} exp

{
−1

2
θ22〈Vs, φ1〉W∞

}
, (3.19)

which implies our claim (3.11). Thus, we easily get that, for any x ∈ E, under Pδx ,

U3(s, t) :=
(
eλ1(t+s)〈φ1,Xt+s〉, J1(s, t)

)
d→
(
W∞,

√
W∞G1(s)

)
, as t→ ∞.

By (2.12) and (2.13), we have

lim
s→∞

〈Vs, φ1〉 = σ2f .

Let G1(f) be a N (0, σ2f ) random variable independent of W∞. Then

lim
s→∞

β(G1(s), G1(f)) = 0. (3.20)

Let L(s + t) and L̃(s, t) be the distributions of U1(s + t) and U3(s, t) respectively, and let L(s)

and L be the distributions of (W∞,
√
W∞G1(s)) and (W∞,

√
W∞G1(f)) respectively. Then, using

(3.4), we have

lim sup
t→∞

β(L(s+ t),L) ≤ lim sup
t→∞

[β(L(s + t), L̃(s, t)) + β(L̃(s, t),L(s)) + β(L(s),L)]

≤ lim sup
t→∞

Pδx(J2(s, t)2)1/2 + 0 + β(L(s),L). (3.21)

Using this and the definition of lim supt→∞, we easily get that

lim sup
t→∞

β(L(t),L) = lim sup
t→∞

β(L(s+ t),L) ≤ lim sup
t→∞

(PδxJ2(s, t)2)1/2 + β(L(s),L).

Letting s→ ∞, we get lim supt→∞ β(L(t),L) = 0. The proof is now complete. ✷

3.3 Proof of Theorem 1.10

In this subsection we consider the case: λ1 > 2λγ(f) and f(c) = 0. By Lemma 3.1, we have for

2λk < λ1,

Hk,j
∞ = lim

s→∞
eλk(t+s)〈φ(k)j ,Xt+s〉 = eλkt lim

s→∞

∑

u∈Lt

〈φ(k)j ,Xu,t
s 〉eλks. (3.22)

Since Xu,t
s has the same law as Xs under Pδzu(t)

, Hu,t,k,j
∞ = lims→∞〈φ(k)j ,Xu,t

s 〉eλks exists and has

the same law as Hk,j
∞ under Pδzu(t)

. Thus

Hk,j
∞ = eλkt

∑

u∈Lt

Hu,t,k,j
∞ . (3.23)
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Recall from (1.16) that

H∞ :=
∑

2λk<λ1

nk∑

j=1

akjH
k,j
∞ .

Denote

Hu,t
∞ :=

∑

2λk<λ1

nk∑

j=1

akjH
u,t,k,j
∞ .

It is easy to see that given Ft, H
u,t
∞ has the same law as H∞ under Pδzu(t)

. By Lemma 3.1, we have

that for any x ∈ E,
∑

2λk<λ1

nk∑

j=1

eλktakj 〈φ
(k)
j ,Xt〉 → H∞, in L2(Pδx).

It follows that

PδxH∞ = f(s)(x), x ∈ E (3.24)

and by (2.11), we have that for any x ∈ E,

Pδx(H∞)2 =

∫ ∞

0
Ts


A



∑

2λk<λ1

nk∑

j=1

eλksakjφ
k
j




2
 (x) ds. (3.25)

Proof of Theorem 1.10: By (3.23), we have

∑

λk<λ1/2

e−λkt
nk∑

j=1

akjH
k,j
∞ =

∑

u∈Lt

Hu,t
∞ .

Consider the R
2-valued random variable U1(t):

U1(t) :=

(
eλ1t〈φ1,Xt〉, e(λ1/2)t

(
〈f,Xt〉 −

∑

u∈Lt

Hu,t
∞

))
. (3.26)

Using an argument similar to that in the beginning of the proof of Theorem 1.8, we can see that,

to get the conclusion of Theorem 1.10, it suffices to show that for any x ∈ E, under Pδx , as t→ ∞,

U1(t)
d→
(
W∞,

√
W∞G3(f)

)
, (3.27)

where G3(f) ∼ N (0, σ2f(l) + β2f ) is independent of W∞. Denote the characteristic function of U1(t)

under Pδx by κ1(θ1, θ2, t) and let h(x, θ) := Pδx exp{iθ(H∞−f(s)(x))}. Then we have for any x ∈ E,

κ1(θ1, θ2, t)

= Pδx exp

{
iθ1e

λ1t〈φ1,Xt〉 + iθ2e
(λ1/2)t

(
〈f,Xt〉 −

∑

u∈Lt

Hu,t
∞

)}

= Pδx exp

{
iθ1e

λ1t〈φ1,Xt〉 + iθ2e
(λ1/2)t

(
〈f(l),Xt〉 −

∑

u∈Lt

(
Hu,t

∞ − f(s)(zu(t))
)
)}
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= Pδx exp
{
iθ1e

λ1t〈φ1,Xt〉
}

exp
{
iθ2e

(λ1/2)t〈f(l),Xt〉
} ∏

u∈Lt

h
(
zu(t),−θ2e(λ1/2)t

)
. (3.28)

Let V (x) = V arδxH∞. We claim that

(i) as t→ ∞,

eλ1t
∑

u∈Lt

Pδx(Hu,t
∞ − f(s)(zu(t)))2 = eλ1t〈V,Xt〉 → 〈V, φ1〉W∞, in probability; (3.29)

(ii) for any ǫ > 0, as t→ ∞,

eλ1t
∑

u∈Lt

Pδx(|Hu,t
∞ − f(s)(zu(t))|2, |Hu,t

∞ − f(s)(zu(t))| > ǫe−λ1t/2) → 0, in probability. (3.30)

Then using arguments similar to those in the proof Theorem 1.8, we have

∏

u∈Lt

h
(
zu(t),−θ2e(λ1/2)t

)
→ exp

{
−1

2
θ22〈V, φ1〉W∞

}
, in probability. (3.31)

Now we will prove the claims.

(i) By Remark 1.7, we only need to show that V (x) ∈ L2(E,µ) ∩ L4(E,µ). By (1.10), we have

that for any x ∈ E,
∑

2λk<λ1

nk∑

j=1

eλks|akj ||φkj (x)| . eλmsa2t0(x)1/2,

where m = sup{k : 2λk < λ1}. So by (3.25) and (2.3), we have that for any x ∈ E,

Pδx(H∞)2 .

∫ ∞

0
e(2λm−λ1)seλ1sTs(a2t0)(x) ds

=

(∫ t0

0
+

∫ ∞

t0

)
e(2λm−λ1)seλ1sTs(a2t0)(x) ds

.

∫ t0

0
Ts(a2t0)(x) ds +

∫ ∞

t0

e(2λm−λ1)s ds at0(x)1/2

. at0(x)1/2 ∈ L2(E,µ) ∩ L4(E,µ).

Thus V (x) ∈ L2(E,µ) ∩ L4(E,µ).

(ii) Let

gt(x) = Pδx

(
|H∞ − f(s)(x)|2, |H∞ − f(s)(x)| > ǫe−λ1t/2

)
, (t, x) ∈ (0,∞) × E.

Then for any t > 0,

eλ1t
∑

u∈Lt

Pδx

(
|Hu,t

∞ − f(s)(zu(t))|2, |Hu,t
∞ − f(s)(zu(t))| > ǫe−λ1t/2

)
= eλ1t〈gt,Xt〉.
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We easily see that gt(x) ↓ 0 as t ↑ ∞ and gt(x) ≤ V (x) for any x ∈ E. So, by Lemma 2.2, we have

that for any x ∈ E,

eλ1tPδx〈gt,Xt〉 = eλ1tTt(gt)(x) → 0, as t→ ∞,

which implies (3.30).

By (3.31) and the dominated convergence theorem, we get that as t→ ∞,
∣∣∣∣κ1(θ1, θ2, t) − Pδx exp

{
iθ1e

λ1t〈φ1,Xt〉 + iθ2e
λ1t/2〈f(l),Xt〉 −

1

2
θ22〈V, φ1〉W∞

}∣∣∣∣→ 0. (3.32)

Since λ1 < 2λγ(f(l)), by Theorem 1.8, we have that as t→ ∞,

(
eλ1t〈φ1,Xt〉, e(λ1/2)t〈f(l),Xt〉

)
d→
(
W∞,

√
W∞G1(f(l))

)
, (3.33)

where G1(f(l)) ∼ N (0, σ2f(l)) is independent of W∞. Therefore, for any x ∈ E, as t→ ∞,

Pδx exp
{
iθ1e

λ1t〈φ1,Xt〉 + iθ2e
(λ1/2)t〈f(l),Xt〉

}
exp

{
−1

2
θ22〈V, φ1〉W∞

}

→ Pδx

(
exp{iθ1W∞} exp{−1

2
θ22(σ2f(l) + 〈V, φ1〉)W∞}

)
. (3.34)

By (3.24) and (3.25), we get

〈V, φ1〉 =

∫ ∞

0
e−λ1s

〈
A(

∑

2λk<λ1

nk∑

j=1

eλksakjφ
k
j )2, φ1

〉
ds− 〈(f(s))2, φ1〉.

The proof is now complete. ✷

3.4 The critical branching rate case: λ1 = 2λγ(f)

To prove Theorem 1.9, we need the following lemma.

Lemma 3.2 Assume f =
∑nk

j=1 b
k
jφ

(k)
j , where bkj ∈ R and λ1 = 2λk. Define

Stf(x) := t−1/2e(λ1/2)t(〈f,Xt〉 − Ttf(x)), (t, x) ∈ (0,∞) × E.

Then for any c > 0, δ > 0 and x ∈ E, we have

lim
t→∞

Pδx

(
|Stf(x)|2; |Stf(x)| > ceδt

)
= 0. (3.35)

Proof: We write t = [t] + ǫt, where [t] is the integer part of t. Let

F (t, x) := Pδx

(
|Stf(x)|2; |Stf(x)| > ceδt

)
, (t, x) ∈ (0,∞) × E.

By the definition of f , we easily get Tuf(x) = e−λ1u/2f(x). So we get that for any (t, x) ∈ (0,∞)×E,

St+1f(x) =

(
1

t+ 1

)1/2

e(λ1/2)(t+1)
(
〈f,Xt+1〉 − 〈e−λ1/2f,Xt〉

)
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+

(
1

t+ 1

)1/2

e(λ1/2)t (〈f,Xt〉 − Ttf(x))

=

(
1

t+ 1

)1/2

R(t, f) +

(
t

t+ 1

)1/2

Stf(x), (3.36)

where

R(t, f) := e(λ1/2)(t+1) (〈f,Xt+1〉 − 〈T1f,Xt〉) .

Thus we have that for any (t, x) ∈ (0,∞) × E,

F (t+ 1, x)

≤ Pδx

(
|St+1f(x)|2; |Stf(x)| > ceδt

)
+ Pδx

(
|St+1f(x)|2; |Stf(x)| ≤ ceδt, |St+1f(x)| > ceδ(t+1)

)

=: M1(t, x) +M2(t, x).

Put

A1(t, x) = {|Stf(x)| > ceδt},
A2(t, x) = {|Stf(x)| ≤ ceδt, |St+1f(x)| > ceδ(t+1)}.

Since A1(t, x) ∈ Ft and Pδx(R(t, f)|Ft)=0 for any (t, x) ∈ (0,∞) × E, we have by (3.36) that

M1(t, x) =
1

t+ 1
Pδx

(
|R(t, f)|2;A1(t, x)

)
+

t

t+ 1
F (t, x),

and

M2(t, x) ≤ 2

t+ 1
Pδx

(
|R(t, f)|2;A2(t, x)

)
+

2t

t+ 1
Pδx

(
|Stf(x)|2;A2(t, x)

)
.

Thus we have that for any (t, x) ∈ (0,∞) × E,

F (t+ 1, x) ≤ t

t+ 1
F (t, x) +

1

t+ 1
(F1(t, x) + F2(t, x)), (3.37)

where

F1(t, x) = 2Pδx

(
|R(t, f)|2;A1(t, x) ∪A2(t, x)

)
,

F2(t, x) = 2tPδx

(
|Stf(x)|2;A2(t, x)

)
.

Choose an integer k0 > 3t0. Iterating (3.37), we get for t large enough

F (t+ 1, x) ≤ 1

t+ 1

[t]∑

m=k0

(F1(m+ ǫt, x) + F2(m + ǫt, x)) +
k0 + ǫt
t+ 1

F (k0 + ǫt, x)

:= L1(t, x) + L2(t, x) +
k0 + ǫt
t+ 1

F (k0 + ǫt, x). (3.38)
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First, we will consider L1(t, x). By (2.3), we have that for any x ∈ E and s ≥ k0,

F1(s, x) ≤ 2Pδx

(
|R(s, f)|2

)
= 2eλ1(s+1)Ts(V arδ·〈f,X1〉)(x) ≤ Cat0(x)1/2, (3.39)

where C is a constant. We claim that for any x ∈ E,

F1(t, x) → 0, as t→ ∞. (3.40)

Then, for any ǫ > 0 and x ∈ E, there exists K ∈ N such that s ≥ K implies F1(s, x) < ǫ. So, by

(3.39), we get that for any x ∈ E and t large enough,

L1(t, x) =
1

t+ 1

K−1∑

m=k0

F1(m+ ǫt, x) +
1

t+ 1

[t]∑

m=K

F1(m+ ǫt, x) ≤ CK

t+ 1
at0(x)1/2 + ǫ.

Thus lim supt→∞ L1(t, x) ≤ ǫ for any x ∈ E, which implies

lim
t→∞

L1(t, x) = 0, x ∈ E. (3.41)

Now we prove the claim. First, we will show that, for any x ∈ E, as t→ ∞,

Pδx(A1(t, x) ∪A2(t, x)) → 0. (3.42)

By Chebyshev’s inequality and (2.15), we have that, for any x ∈ E, as t→ ∞,

Pδx(A1(t, x)) ≤ c−2e−2δt
Pδx |Stf(x)|2 → 0.

It is easy to see that, under Pδx , for any t > 0,

A2(t, x) ⊂
{
|R(t, f)| > ceδt(eδ

√
t+ 1 −

√
t)
}
. (3.43)

Similarly, by Chebyshev’s inequality, we have that, for any x ∈ E,

Pδx(A2(t, x)) ≤ c−2e−2δt(eδ
√
t+ 1 −

√
t)−2

Pδx |R(t, f)|2.

By (2.2), we get that, for any x ∈ E,

Pδx |R(t, f)|2 = eλ1(t+1)Tt(V arδ·〈f,X1〉)(x) → eλ1〈V arδ·〈f,X1〉, φ1〉φ1(x), (3.44)

which implies Pδx(A2(t, x)) → 0 for any x ∈ E.

Using (3.9), we have

R(t, f) = e(λ1/2)(t+1) (〈f,Xt+1〉 − 〈T1f,Xt〉) = e(λ1/2)t
∑

u∈Lt

(Y u,t
1 − yu,t1 ),

where Y u,t
1 , yu,t1 are defined in (3.8). From the proof of (3.11), we see that (3.11) is also true when

λ1 = 2λγ(f). Recall that V1(x) = eλ1V arδx〈f,X1〉 for any x ∈ E. So we have R(t, f)
d→ √

W∞G,

where G ∼ N (0, 〈V1, φ1〉) is independent of W∞. Then Pδx(W∞G
2) = 〈V1, φ1〉φ1(x) for any x ∈ E.
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Let ΨM (r) = r on [0,M − 1], ΨM(r) = 0 on [M,∞], and let ΨM be linear on [M − 1,M ].

Therefore by (3.42) and (3.44), we have that for any x ∈ E,

lim sup
t→∞

F1(t, x) ≤ lim sup
t→∞

2Pδx(|R(t, f)|2; |R(t, f)|2 > M) + 2M lim sup
t→∞

Pδx(A1(t, x) ∪A2(t, x))

≤ 2 lim sup
t→∞

(
Pδx(|R(t, f)|2) − Pδx(ΨM (|R(t, f)|2))

)

= 2
(
〈V1, φ1〉φ1(x) − Pδx(ΨM (W∞G

2))
)
.

By the monotone convergence theorem, we have that for any x ∈ E,

lim
M→∞

Pδx(ΨM (W∞G
2)) = Pδx(W∞G

2) = 〈V1, φ1〉φ1(x),

which implies F1(t, x) → 0 for any x ∈ E.

Now we consider L2(t, x). We also claim that for any x ∈ E,

F2(t, x) → 0, as t→ ∞. (3.45)

In fact, by (3.43), we have that for any x ∈ E,

F2(t, x) = 2tPδx

(
|Stf(x)|2;A2(t, x)

)

≤ 2tceδtPδx

(
|Stf(x)|; |R(t, f)| > ceδt(eδ

√
t+ 1 −

√
t)
)

≤ 2c−1te−δt(eδ
√
t+ 1 −

√
t)−2

Pδx

(
|Stf(x)| · |R(t, f)|2

)

. e−δteλ1(t+1)
Pδx (|Stf(x)|〈V arδ·〈f,X1〉,Xt〉)

. e−δt
√

Pδx|Stf(x)|2
√
e2λ1tPδx (〈V arδ·〈f,X1〉,Xt〉2).

By (2.15) and (2.16), we get F2(t, x) → 0 for any x ∈ E as t→ ∞. Thus, for any ǫ > 0 and x ∈ E,

there exists K ∈ N such that s ≥ K implies F2(s, x) < ǫ. It is easy to see that,

sup
s≤K

F2(s, x) ≤ sup
s≤K

2c2se2δs ≤ 2c2Ke2δK .

Thus, we get

L2(t, x) =
1

t+ 1

K−1∑

m=k0

F2(m+ ǫt, x) +
1

t+ 1

[t]∑

m=K

F2(m+ ǫt, x) ≤ 2c2K2e2δK

t+ 1
+ ǫ.

Thus lim supt→∞ L2(t, x) ≤ ǫ, which implies

lim
t→∞

L2(t, x) = 0. (3.46)

To finish the proof, we need to show that for any x ∈ E,

lim
t→∞

k0 + ǫt
t+ 1

F (k0 + ǫt, x) = 0. (3.47)
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By (2.15), we get that for any x ∈ E,

sup
t>0

(k0 + ǫt)F (k0 + ǫt, x) ≤ (k0 + 1) sup
s≥k0

Pδx(Ssf(x))2 <∞,

which implies (3.47).

Thus, we finish the proof. ✷

Now we are ready to prove Theorem 1.9.

Proof of Theorem 1.9: The proof is similar to that of Theorem 1.8. We define an R
2-valued

random variable by

U1(t) := (eλ1t〈φ1,Xt〉, t−1/2e(λ1/2)t〈f1,Xt〉).

Since λ1 = 2λγ(f), f = f1 + f(l). Using Theorem 1.8 for f(l), we have

t−1/2e(λ1/2)t〈f(l),Xt〉 d→ 0, t→ ∞.

Thus, using an argument similar to that in the beginning of the proof of Theorem 1.8, to get

conclusion of Theorem 1.9, we only need to show that, for any x ∈ E, under Pδx , as t→ ∞,

U1(t)
d→
(
W∞,

√
W∞G2(f)

)
, (3.48)

where G2(f) ∼ N (0, ρ2f ) is independent of W∞. Let t > 3t0 and n > 2. We write

U1(nt) =
(
eλ1(nt)〈φ1,Xnt〉, (nt)−1/2e(λ1/2)(nt)〈f1,Xnt〉

)
.

Define

Y u,n
t := ((n − 1)t)−1/2eλ1(n−1)t/2

〈
f1,X

u,t
(n−1)t

〉
.

Given Ft, Y
u,n
t has the same distribution as Y n

t := ((n − 1)t)−1/2eλ1(n−1)t/2〈f1,X(n−1)t〉 under

PδZu(t)
. Since for u > 0, Tuf1(x) = e−λ1u/2f1(x), we have

yu,nt := Pδx(Y u,n
t |Ft) = ((n− 1)t)−1/2f1(zu(t)).

Thus

(nt)−1/2e(λ1/2)nt〈f1,Xnt〉 =

√
n− 1

n
e(λ1/2)t

∑

u∈Lt

Y u,n
t

=

√
n− 1

n
e(λ1/2)t

∑

u∈Lt

(Y u,n
t − yu,nt ) + (nt)−1/2eλ1t/2〈f1,Xt〉

=: Jn
1 (t) + Jn

2 (t). (3.49)

From the proof of (2.15), we get that for any x ∈ E,

PδxJ
n
2 (t)2 . n−1(ρ2fφ1(x) + t−1(at0(x) + at0(x)1/2)).
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Thus, there exists c > 0 such that for any x ∈ E,

lim sup
t→∞

PδxJ
n
2 (t)2 ≤ cn−1φ1(x). (3.50)

Now we consider Jn
1 (t). We define an R

2-valued random variable U2(n, t) by

U2(n, t) :=

(
eλ1t〈φ1,Xt〉, e(λ1/2)t

∑

u∈Lt

(Y u,n
t − yu,nt )

)
.

We claim that

U2(n, t)
d→
(
W∞,

√
W∞G2(f)

)
, as t→ ∞. (3.51)

Denote the characteristic function of U2(n, t) under Pδx by κ2(θ1, θ2, n, t). Using an argument

similar to that leading to (3.12), we get

κ2(θ1, θ2, n, t) = Pδx

(
exp{iθ1eλ1t〈φ1,Xt〉}

∏

u∈Lt

hnt

(
zu(t), e(λ1/2)tθ2

))
,

where

hnt (x, θ) = Pδxe
iθ(Y n

t −PδxY
n
t ).

Let tk,mk → ∞, as k → ∞. Now we consider

Sk := eλ1tk/2
mk∑

j=1

(Yk,j − yk,j), (3.52)

where Yk,j has the same law as Y n
tk

under Pδak,j
and yk,j = Pδak,j

Y n
tk

. Further, Yk,j, j = 1, 2, . . . are

independent. Denote V n
t (x) := V arδxY

n
t . Suppose the Lindeberg conditions hold:

(i) as k → ∞,

eλ1tk

mk∑

j=1

E(Yk,j − yk,j)
2 = eλ1tk

mk∑

j=1

V n
tk(ak,j) → σ2;

(ii) for every c > 0,

eλ1tk

mk∑

j=1

E

(
|Yk,j − yk,j|2, |Yk,j − yk,j| > ce−λ1tk/2

)

= eλ1tk

mk∑

j=1

Pδak,j

(
|Y n

tk
− yntk |

2, |Y n
tk
− yntk | > ce−λ1tk/2

)
→ 0, k → ∞.

Then Sk
d→ N (0, σ2) which implies

mk∏

j=1

hntk(ak,j , e
λ1tk/2θ) → e−

1
2
σ2θ2 , as k → ∞. (3.53)
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By Lemma 2.3, |V n
t (x) − ρ2fφ1(x)| . ((n − 1)t)−1(at0(x)1/2 + at0(x)) for every x ∈ E. So by (2.2),

we get

t−1eλ1tTt(
√
at0 + at0)(x) → 0, as t→ ∞,

which implies

t−1eλ1t〈√at0 + at0 ,Xt〉 → 0, as t→ ∞,

in probability. Thus,

lim
t→∞

eλ1t
∑

u∈Lt

V n
t (zu(t)) = lim

t→∞
eλ1t〈ρ2fφ1,Xt〉 = ρ2fW∞, in probability. (3.54)

Let

gn(t, x) = Pδx

(
|Y n

t − ynt |2, |Y n
t − ynt | > ce−λ1t/2

)
.

We will show that, as t→ ∞,

eλ1t
∑

u∈Lt

Pδzu(t)

(
|Y n

t − ynt |2, |Y n
t − ynt | > ce−λ1t/2

)
= eλ1t〈gn(t, ·),Xt〉 → 0, (3.55)

in probability. By Lemma 3.2, limt→∞ gn(t, x) = 0 for every x ∈ E. Since

gn(t, x) ≤ V n
t (x) . ρ2fφ1(x) + at0(x)1/2 + at0(x) ∈ L2(E,µ),

by the dominated convergence theorem, we have that for any x ∈ E,

lim
t→∞

‖gn(t, x)‖2 = 0.

By Lemma 2.2, we have that for any x ∈ E,

eλ1tPδx〈gn(t, ·),Xt〉 = eλ1tTt(gn(t, ·))(x) → 0, as t→ ∞,

which implies (3.55). Thus, for any sequence sk → ∞, there exists a subsequence s′k such that,

if we let tk = s′k, mk = |Xtk | and {ak,j, j = 1, . . . ,mk} = {zu(tk), u ∈ Ltk}, then the Lindeberg

conditions hold Pδx-a.s. Therefore, by (3.53), we have

lim
t→∞

∏

u∈Lt

hnt (zu(t), e(λ1/2)tθ2) = exp

{
−1

2
θ22ρ

2
fW∞

}
, in probability. (3.56)

Hence by the dominated convergence theorem, we get

lim
t→∞

κ2(θ1, θ2, n, t) = Pδx exp {iθ1W∞} exp

{
−1

2
θ22ρ

2
fW∞

}
, (3.57)

which implies our claim (3.51). Thus, we easily get that under Pδx ,

U3(n, t) :=
(
eλ1(nt)〈φ1,Xnt〉, Jn

1 (t)
)

d→
(
W∞,

√
n− 1

n

√
W∞G2(f)

)
, as t→ ∞,
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where G2(f) ∼ N (0, ρ2f ) is independent of W∞.

Let L(nt) and L̃n(t) be the distributions of U1(nt) and U3(n, t) respectively, and let Ln and L
be the distributions of (W∞,

√
n−1
n

√
W∞G2(f)) and (W∞,

√
W∞G2(f)) respectively. Then, using

(3.4), we have

lim sup
t→∞

β(L(nt),L) ≤ lim sup
t→∞

[β(L(nt), L̃n(t)) + β(L̃n(t),Ln) + β(Ln,L)]

≤ lim sup
t→∞

Pδx(Jn
2 (t))2)1/2 + 0 + β(Ln,L). (3.58)

Using this and the definition of lim supt→∞, we easily get that

lim sup
t→∞

β(L(t),L) = lim sup
t→∞

β(L(nt),L) ≤
√
cφ1(x)/n + β(Ln,L).

Letting n→ ∞, we get lim supt→∞ β(L(t),L) = 0. The proof is now complete. ✷

Proof of Theorem 1.12: First note that

t−1/2(〈φ1,Xt〉)−1/2


〈f,Xt〉 −

∑

λk<λ1/2

e−λkt
nk∑

j=1

akjH
k,j
∞




= t−1/2(〈φ1,Xt〉)−1/2〈f(cl),Xt〉 + t−1/2(〈φ1,Xt〉)−1/2


〈f(s),Xt〉 −

∑

λk<λ1/2

e−λkt
nk∑

j=1

akjH
k,j
∞




=: J1(t) + J2(t),

where f(cl) = f(l) + f(c). By the definition of f(s), we have (f(s))(c) = 0. Then using Theorem 1.10

for f(s), we have

(〈φ1,Xt〉)−1/2


〈f(s),Xt〉 −

∑

λk<λ1/2

e−λkt
nk∑

j=1

akjH
k,j
∞


 d→ G3(f(s)). (3.59)

Thus

J2(t)
d→ 0, t→ ∞. (3.60)

Since λ1 = 2λγ(f(cl)), so using Theorem 1.9 for f(cl), we have

(eλ1t〈φ1,Xt〉, J1(t)))
d→ (W ∗, G2(f(cl))), (3.61)

where G2(f(cl)) ∼ N (0, ρ2f(cl)). By the definition of ρ2f given by (1.15), we have ρ2f(cl) = ρ2f(c) .

Combining (3.60) and (3.61), we arrive at the conclusion of Theorem 1.12. ✷
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[34] Mi loś, P.: Occupation times of subcritical branching immigration systems with Markov mo-
tions, Stoch. Proc. Appl. 119 (2009), 3211–3237.
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