arXiv:submit/0709405 [math.PR] 3 May 2013

Central Limit Theorems for Supercritical Branching Markov
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Abstract

In this paper we establish spatial central limit theorems for a large class of supercritical
branching Markov processes with general spatial-dependent branching mechanisms. These are
generalizations of the spatial central limit theorems proved in [I] for branching OU processes
with binary branching mechanisms. Compared with the results of [I], our central limit theorems
are more satisfactory in the sense that the normal random variables in our theorems are non-
degenerate.
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1 Introduction

In recent years, there have been many papers on law of large numbers type convergence theorems
for branching Markov processes and superprocesses, see, for instance, [10} 111 17, 18] 19} 30} 3], 39]
and the references therein. For recent results on other non-central limit theorem types convergence
results for branching Markov processes, see, for instance, [20] 2] 28], 29] and the references therein.

The focus of this paper is on spatial central limit theorems for branching Markov processes.
For critical branching Markov processes starting from a Poisson random field or an equilibrium
distribution, and subcritical branching Markov processes with immigration, some functional cen-
tral limit theorems of the occupation times were established in a series of papers, see, for instance,
7 8 @, B3, B4, B5] and reference therein. However, up to now, no spatial central limit theorems
have been established for (f, X;) of general supercritical branching Markov processes starting from
general initial configurations. In [I], some spatial central limit theorems were established for (f, X;)

of supercritical branching OU processes with binary branching mechanism starting from a point
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mass. In [36], some spatial central limit theorems were established for supercritical super-OU pro-
cesses with binary branching mechanisms starting from finite and compactly supported measures.
However, the central limit theorems of [Il 6] are not very satisfactory since the limiting normal
random variables maybe degenerate. In the recent preprint [37], we established spatial central limit
theorems for supercritical super-OU processes with general branching mechanisms starting from
finite and compactly supported measures. The limiting normal random variables in our central
limit theorems are non-degenerate. For earlier central limit theorems for supercritical branching
processes and supercritical multi-type branching processes, see [2], 3[4, 24].

In this paper, we will extend the arguments of [I], 36, [37] to establish spatial central limit the-
orems for a large class of supercritical branching Markov processes with general spatial-dependent

branching mechanisms.

1.1 Spatial process

In this subsection, we spell out our assumptions on the spatial Markov process and then give some
examples.

Suppose that E is a locally compact separable metric space and that p is a o-finite Borel
measure on E with full support. Suppose that 0 is a separate point not contained in E. 0 will
be interpreted as the cemetery point. We will use Ey to denote E U {0}. Every function f on
E is automatically extended to Ejy by setting f(0) = 0. We will assume that £ = {&,I1,} is a
p-symmetric Hunt process on E and ¢ := inf{t > 0 : & = 0} is the lifetime of {&. We will use
{P; : t > 0} to denote the semigroup of £. Our standing assumption on § is that there exists a

family of continuous strictly positive symmetric functions {p;(x,y) : t > 0} on E x E such that

Puf(x) = /E P, y) () (dy).

It is well-known and easy to check that, for p > 1, {P; : t > 0} is a strongly continuous contraction
semigroup on LP(E, u). In fact, it follows from Hélder’s inequality, Fubini’s theorem and symmetry
that

|Pf | = /E ' /E P y) F@)(dy)| p(de) < /E /E P )| 1P () ldy) () < || I,

Define a;(x) := pi(x,x). Throughout this paper, we will assume that a,(x) satisfies the following

two conditions:
(a) For any ¢t > 0, we have
/ ay(x)p(dr) < oo.
E
(b) There exists o > 0 such that ay (z) € L*(E, ).

It is well-known (see, for instance, [I4], Section 2]) that p;(z,y) < (a;(z)a;(y))/? and that, for each

x € E, the function t — a(x) is a decreasing function. So condition (b) above is equivalent to



(b’) There exists tg > 0 such that for all ¢ > tg, a;(z) € L*(E, ).

Now we give some examples of Markov processes satisfying the above assumptions. The purpose
of these examples is to show that the above assumptions are satisfied by many Markov processes.
We will not try to give the most general examples possible. The first example below contains OU

processes as special cases.

Example 1.1 (Subordinate OU Process) Let 0,0 > 0 be two constants. Suppose that n =
{n; : t > 0} is an Ornstein-Uhlenbeck process (OU process, for short) on R?, that is, a diffusion

process with infinitesimal generator

L:= %02A—b$'v.

For any z € R?, we use II, to denote the law of ¢ starting from z. It is well known that under II,,

ne ~ N (ze™,0?), where 6 = 0%(1 — e72%)/(2b) and 7 has an invariant density

() = (%)M exp (ol )

d/2 —bt||2
1 |y — ze™|]
0
xT,y) = exp| —————+—— | .
pt( v) <27mf> p( 20't2

p?(:n,x):< ! >d/2exp< Lﬁ_w))\w?), (1.1)

2mo? o214

Let

So

Put F = R? and u(dz) = p(z)dz. The density of 7; with respect to u is

1 d/2 b
=0 _ .0 -1 _ 2 2 bt
Py (2, y) = pi (2, y)uly)” = <m> exXp {—m (H?J” + [z — 2z - ye )} .

1\ 2b
=0 _ 2
pi(z, @) = <1_7€_2bt> exp {m”x” }

Suppose that S; is a subordinator, independent of Y, with Laplace exponent ¢, that is,

In particular,

E(e0%) = e=t¢(0), 6 > 0.

Suppose that S has a positive drift coefficient a > 0. Then S; > at, for all ¢ > 0.

The process {& : t > 0} defined by & := ng, is called a subordinate OU process. In the special
case Sy = t, £ reduces to the OU process 1. Thus the transition density of & with respect to p is
given by

pi(a,y) = E (P8, (2,9)) -



So pi(z,y) is symmetric. By (1), we have

/ ay(x)pu(dr) = E/ p%t(x,x)dx =E(l—e )< (1—e )" < 0.
E E

Chose ty > 0 such that 4/(e® + 1) < 1. Then by Hélder’s inequality, we get

@) < B [, @uw ).
E E
For t > aty, we have

Y. 4/2 4 N b,
[ B sPuta) s - /R d (m2 ) ew{= (10 ) llel? f as
—d
— —2bt 1— 4 /2
el +1
—2abt0 1— 4 _d/2
eabto +1 )

| @ @) < ((1 ey (1 - %))d/ -

Thus the process £ satisfies all the assumptions in the beginning of this subsection.

IN

which implies

Example 1.2 Suppose a > 2 is a constant. Let £ be a Markov process on R? corresponding to the
infinitesimal generator A — |z|*. Let p¢(x,y) denote the transition density of £ with respect to the
Lebesgue measure on R, Tt follows from [I3, Section 4.5] that, for any ¢ > 0, there exists ¢; > 0
such that

2 1
< +a/2 1+a/2 e RY,
pi(w,y) < crexp ( B a’x‘ > exp < 5 a‘y’ ) T,y

Taking F = R? and u to be the Lebesgue measure on R?, using the display above, one can easily
g

check that all the assumptions at the beginning of this subsection are satisfied in this case.

Example 1.3 Suppose that V is a nonnegative and locally bounded function on R? such that
there exist R > 0 and M > 1 such that for all |z| > R,

MY 14V(@) <V(y) <M1A+V(z)), yeB(zx1),

and that
V(x)

Suppose a € (0,2) is a constant. Let & be a Markov process on R? corresponding to the infinitesimal

generator —(—A)*2 — V(z). Let p;(z,y) denote the transition density of & with respect to the



Lebesgue measure on R?. It follows from [22, Corollaries 3 and 4] that, for any ¢ > 0, there exists
¢; > 0 such that

1 1
L+ V(@) A+ |z 1+ V() (A + [y’

pt(‘ray) SCt( x7y€Rd‘

Taking F = R? and u to be the Lebesgue measure on R?, using the display above, one can easily

check that all the assumptions at the beginning of this subsection are satisfied in this case.

Example 1.4 A nondecreasing function L : [0,00) — [0,00) is said to be in the class L if

limy_, o L(t) = oo and there exists ¢ > 1 such that
Lt+1) <e(l+L(t), t>0.

Suppose that V is a nonnegative function on R¢ such that

lim V(z) =

|z]—oo ||

and that there exists a function L € L such that there exists C' > 0 such that
L(|z|) < V(z) < C(1 + L(|z]), z € RY.

Suppose that m > 0 and a € (0,2) are constants. Let ¢ be a Markov process on R? corresponding
to the infinitesimal generator m — (—A+m?/®)*/2 _V (x). Let p;(x,y) denote the transition density
of ¢ with respect to the Lebesgue measure on R, It follows from [27, Theorem 1.6] that, for any
t > 0, there exists ¢; > 0 such that

exp(—ml/a|:17|) exp(—ml/o‘|y|)

R,
1+ V()1 + |z))dtatD/2 (1 + V(y))(1 + |y|)(d+atD)/2’ Ty €

pe(w,y) < Ct(

Taking F = R? and u to be the Lebesgue measure on R?, using the display above, one can easily

check that all the assumptions at the beginning of this subsection are satisfied in this case.

The next example shows that a lot of important Markov processes on bounded subsets of R?

satisfy the above assumptions.

Example 1.5 Suppose that E is a locally compact separable metric space, p is a finite Borel
measure on F with full support and that £ = {&,II,} is a p-symmetric Hunt process on FE.
Suppose that, for each ¢t > 0, & has a continuous, symmetric and strictly positive density pi(z,y)
with respect to p. If the semigroup of £ is ultracontractive, or equivalently, for any ¢t > 0, there

exists constant ¢; > 0 such that
pi(x,y) < ¢, for any (x,y) € B x E.

Then it is trivial to see that, in this case, all the assumptions at the beginning of this subsection
are satisfied.

Some particular cases of this example are as follows:



(1) Suppose that D is a connected open subset of R? with finite Lebesgue measure and that pu
denotes the Lebesgue measure on D. Then the subprocess in D of any diffusion process in R¢
corresponding to a uniformly elliptic divergence form second order differential operator satis-
fies the assumptions of the first paragraph in this example and therefore all the assumptions

at the beginning of this subsection.

(2) Suppose that D is a bounded connected C? open set in R? and that p denotes the Lebesgue
measure on D. The reflecting Brownian motion in D satisfies the assumptions of the first
paragraph in this example and therefore all the assumptions at the beginning of this subsec-

tion.

(3) Suppose that D is an open subset of R? with finite Lebesgue measure and that p denotes the
Lebesgue measure on D. Then the subprocesses in D of any of the subordinate Brownian
motions studied in [25] 26] satisfy the assumptions of the first paragraph in this example and

therefore all the assumptions at the beginning of this subsection.

1.2 Branching Markov process

In this subsection, we spell out our assumptions on the branching Markov process.

The branching Markov process {X; : t > 0} on E we are going to work with is determined
by three parameters: a spatial motion & = {&,1I,} on E satisfying the assumptions at the be-
ginning of the previous subsection, a branching rate function f(z) on E which is a non-negative
bounded measurable function and an offspring distribution {p,(z) : n =0,1,,2,... } satisfying the
assumption

[e.e]
sup Z n*pp(x) < co. (1.2)
S D—

We denote the generating function of the offspring distribution by
[ee]
(10(337'2) = an(x)znv xr € F, |Z| <1
n=0

Consider a branching system on E characterized by the following properties: (i) each individual
has a random birth and death time; (ii) given that an individual is born at x € E, the conditional
distribution of its path is determined by II,; (iii) given the path & of an individual up to time ¢
and given that the particle is alive at time ¢ , its probability of dying in the interval [¢,t + dt) is
B(&)dt + o(dt); (iv) when an individual dies at x € E, it splits into n individuals all positioned at
x, with probability p,(z); (v) when an individual reaches 9, it disappears from the system; (vi) all
the individuals, once born, evolve independently.

Let M, (E) be the space of finite atomic measures on F, and let B,(E) be the set of bounded
Borel measurable functions on E. Let X;(B) be the number of particles alive at time ¢ located
in B € B(E). Then X = {X;,t > 0} is an M, (E)-valued Markov process. For any v € M,(E),



we denote the law of X with initial configuration v by P,. As usual, = [ f B
0< feBy(E), let
w(t, ) = Ps, e HX0)

then w(t,z) is the unique positive solution to the equation

t
_nx/ W(Es ot — 5,€,)) ds + T (e E)),
0

. For

(1.3)

where ¢(x, z) = B(z)(p(x,2) — 2),z € E,z € [0,1], while ¥)(9,z) = 0,z € [0,1]. By the branching

property, we have
]P)Ve_<f7Xt> — e(logw(t,-),zx).

Define

x) (Z npp(z) — 1) and A(z) := f(x) Z(n — Dnpy(z).
n=1 n=2

By (2]), there exists K > 0, such that

sup (|a(x)| + A(z)) < K.
zel

For any f € By(E) and (t,z) € (0,00) x E, define

Tif(2) =10, [eo 2% p(g)]

It is well-known that T; f(z) = Ps, (f, X¢) for every x € E.
For any (t,z,y) € (0,00) x E x E, define

In(t,z,y) = pi(z,y),
Lit.ey) = //p Loa(t— s,z p)a(2)p(de)ds,  n>1.

By induction we can see that for any f € By(E) and any n > 0,

[ nteasoman = S [( [aras) re].  ne oo <p

(ledlot)”

|In(t, @, y)| < ol

pe(z,9), (t,z,y) € (0,00) x E X E.
Thus

au(z.y) ZI ta,y) < eloletp(@,y),  (ta,y) € (0,00) x E x E,

n=0

(1.9)

and, for each ¢t > 0, the series above converges locally uniformly. Similarly we also have ¢(z,vy) >
exp(—||a|oot)pt(x, y) for all (¢,z,y) € (0,00) x E x E. For any € € (0,t/2) and (z,y) € E X E , we

have

ps(@, 2)pe—s (2, y)a(z)p(dz)ds
E

7

<l /0 6 /E Pa(, 2)pr—s (2, y)r(dz)ds



= ellalloopi(, y).

Similarly, for any (z,y) € £ x E , we have

| [ paomsea@u:ds| < ol

Hence, for any t > 0, as € — 0,

/:_6 /Eps@Z)Pt—s(z,y)a(z)u(dz)ds

converges to I (t,z,y) locally uniformly. For s € (¢, — €) we have,
Po(, 2)pi-s(2,) < (@c(@)ac(y)) ac(z),  (w,y,2) € EXExE,

thus it follows from (a) and the dominated convergence theorem that I (¢, x,y) is continuous on
E x E. Using (L) and induction, we can show that, for each n > 1 and t > 0, I,,(¢,z,y) is
continuous on E x E. I1(t,z,y) is obviously symmetric in # and y. Using (7)) and some standard
arguments (see the proof of [I2, Theorem 3.10]), one can easily show that, for each n > 1 and ¢ > 0,
I,(t,x,y) is symmetric on £ x E. Thus, for any t > 0, q.(z,y) is a continuous strictly positive

symmetric function on E x E and for any bounded Borel function f and any (¢t,z) € (0,00) X E,

ﬂﬂmzé%mwﬂmmm

It follows immediately from (LZ9]) that, for any p > 1, {7} : ¢t > 0} is a strongly continuous semigroup
on LP(E, u) and
T fIIE < eS| £

Define a;(x) := q(x,z). It follows from (9] and the assumptions (a) and (b) in the previous

subsection that a; enjoys the following properties.

(i) For any ¢ > 0, we have

/E ay(@)p(dz) < 0o,

(ii) There exists to > 0 such that for all t > tq, a;(x) € L*(E, ).

It follows from (i) above that, for any ¢t > 0, T} is a Hilbert-Schmidt operator and thus a compact
operator. Let L be the infinitesimal generator of {7} : ¢ > 0} in L?(E, ). L has purely discrete
spectrum with eigenvalues —A; > —Xo > —A3 > ---, and the first eigenvalue —\; is simple and
the eigenfunction ¢; associated with —A; can be chosen to be strictly positive everywhere and
continuous. We will assume that ||¢1]]2 = 1. ¢1 is sometimes denoted as qbgl). For k > 1, let
{¢§k)7 j = 1,2,---n} be an orthonormal basis of the eigenspace (which is finite dimensional)

associated with —A,. It is well-known that {qﬁgk),j =1,2,---ng;k = 1,2,...} forms a complete

8



orthonormal basis of L?(E,u) and all the eigenfunctions are continuous. For any k > 1, j =
1,...,ng and ¢t > 0, we have Ttgbg-k) (x) = e_’\ktgbg-k)(x) and

e—)\kt/2’¢§k)‘(x) < at(m)l/2, €T € FE. (110)

It follows from the relation above that all the eigenfunctions ¢§-k) belong to L*(E, u). For any
z,y € F and t > 0, we have

ai(zy) =3 e ol (@)l (y), (1.11)

k=1 j=1

where the series is locally uniformly convergent on F x E. For the basic facts in the paragraph,
one can refer to [I4, Section 2].

In this paper, we always assume that the branching Markov process X is supercritical, that is,
)\1 < 0.

We will use {F; : t > 0} to denote the filtration of X, that is F; = o(X; : s € [0,¢t]). Using the
expectation formula of (¢, X}) and the Markov property of X, it is not hard to prove that (see
Lemma 3.1 for a proof), for any nonzero v € My (E), under P, the process W; := eMt (¢, X;) is a
positive martingale. Therefore it converges:

Wy - Wy, Pyas. ast— oo.

Using the assumption (2) we can show that, as t — oo, W; also converges in L%(P,), so W
is non-degenerate and the second moment is finite. Moreover, we have P, (Ws) = (¢1,v). Put
E ={Wy =0}, then P,(€) < 1. It is clear that £¢ C {X{(F) > 0,Vt > 0}.

We will use (-,-) to denote inner product in L?(E,u). Any f € L*(E, ) admits the following

expansion:

0o N
k
fle) =32 ayol @), (1.12)
k=1 j=1
where a¥ = (f, ¢§»k)> and the series converges in L2(E, i). a} will sometimes be written as aj.

j
1.3 Main results
For f € L?(E, j1), define
v(f) :=inf{k > 1: there exists j with 1 < j < my such that a;? # 0},

where we use the usual convention inf @ = co. We note that if f € L?(E, ) is nonnegative and
w(z: f(x) >0) >0, then (f, ¢1) > 0 which implies v(f) = 1. Define

f(s)(x) = Z Za§¢§k)(x)v

2Ap <A1 j=1

9



fo@ = > Y e (),

2rAr j—1
fo@) = f(@)— fo(@) — fo(),
Ny (f)

fi(z) = Za;_/(f)qbg“/(f))(x)’
j=1

f@) = [fx) = filz)

The main results of this paper are stated in three separate cases: A1 > 2\, (y); A1 = 2\, and
A1 < 2M,()- When the branching rate (z) and the offspring distribution {p,(z);n =0,1,... } are
both independent of x, the function « defined in (IL4]) reduces to a constant and the eigenvalues
— M\, of L are related to the eigenvalues —Xk of the generator of £ by — )\, = —Xk + «. Therefore,
Al > 2)\.\/(]0); A= 2)\7(” and A\ < 2)\7(” are equivalent to a > 2f)\v.y(f) - Xl; o = 2f)\v,y(f) - Xl
and a < 2)\,s) — A1 respectively. Because of this, when the branching rate B(x) and offspring
distribution {p,(x);n = 0,1,...} are both independent of z, the cases A1 > 2X\(5); A1 = 2\, (p
and A1 < 2\, (y) are called the large branching rate case, the critical branching rate case and the
small branching rate case respectively in [I] and [37]. Therefore in this paper, even when the
branching rate (z) and offspring distribution {p,(z);n = 0,1,...} depend on z, we still call the
cases A\1 > 2 (p); A1 = 2A(y) and Ay < 2A,(;) the large branching rate case, the critical branching
rate case and the small branching rate case respectively. Here are the main results of this paper.

1.3.1 The large branching rate case: A\; > 2\

Define
H = MM X (1.13)

H}"' will sometimes be written as H}. One can show (see Lemma B below) that, if A\; > 2,
then, for any nonzero v € M,(FE), Hf "/ is a martingale under P, and bounded in L?(P,), and thus
the limit HY/ := limy—s 0 Hf’j exists P,-a.s. and in L2(P,).

Theorem 1.6 If f € L?(E,p) N LA(E, 1) with A\ > 2\, (f), then for any nonzero v € M, (E), as

t — o0
’ Ty (f)

MOUF XY = Y ]V HLDI i LA(B,).
j=1
Remark 1.7 Suppose f € L*(E,p) N L*(E,p). When v(f) = 1, H} reduces to Wy, and thus
Hl = W,,. Therefore by Theorem and the fact that ay = (f,¢1), we get that for any nonzero
veMq(E),
MUF, X)) = (fr o) Weo, in LA(B,),

as t — oo. In particular, the convergence also holds in P, -probability.

10



1.3.2 The small branching rate case: A\; <2\,

Define .
U%%AemM@ﬂMM@+W@Q (1.14)

Theorem 1.8 If f € L*(E,pu) N LY(E, p) with Ay < 2\, then 0]% < oo and, for any nonzero
v e My(E), it holds under P, (- | £°) that

(f, Xt)
(1, X4)

where W* has the same distribution as Weo conditioned on £ and G1(f) ~ /\/’(0,0?). Moreover,
W* and G1(f) are independent.

<€A1t<¢1,Xt>a ) LW, Gi(f), t— oo,

1.3.3 The critical branching rate case: A\; =2\,
Define
o= (A2 dn). (1.15)

Theorem 1.9 If f € L?(E,pu) N L*(E,p) with \; = 2\ (y), then p?c < oo and, for any nonzero
v e My(E), it holds under P, (- | £°) that

t(p1, Xi)

where W* has the same distribution as Wo, conditioned on £ and Go(f) ~ /\/’(O,p?). Moreover,
W* and Ga(f) are independent.

Gmwxm—@§L>iwﬁ@myt%w

1.3.4 Further results in the large branching rate case

In this subsection we give two central limit theorems for the case Ay > 2A (). Define

nk
Hyi= Y Y dfHY. (1.16)
20 <A1 j=1
Let
0 "k
B3 ::/ e NS <A( > ZeAksa§¢f)27¢1> ds — ((fs))% ¢1)- (1.17)
0 2L <A1 j=1

In Section 3.3 we will see that ﬁj% = (Vars Hoo, ¢1).

Theorem 1.10 If f € L*(E,u) N L*(E, n) satisfies Ay > 2M, () and fo) = 0, then 012”(1) < oo and
ﬁj% < 00. For any nonzero v € My(FE), it holds under P, (- | £°) that, as t — oo,

g
Moy, Xo), (o1, Xo) V2 (X0 — Y0 e dbEET | | S (W, Ga(f)),
20 <A1 j=1

11



where W* has the same distribution as Wy conditioned on E°¢, and Gs(f) ~ N(0,0'ch(l) + ﬁ?)
Moreover, W* and Gs(f) are independent.

Remark 1.11 If 2\, < Ay, then, for any nonzero v € My(FE), it holds under P,(- | £°) that, as
t — 00,

<<¢§k)7Xt> N e_AktH&j)
(d1, X)1/?

M1, Xy), 4 (W, Gs),

where Gy ~ N (0, M+M<A(¢§-k))2, ¢1>>, In particular, for ¢1, we have

(<¢17 Xt> - e_AltWoo)
(f1, X¢)1/2

(e’\lt<¢,Xt>, ) bW, Gs), t— oo,

where Gz ~ N (0, —A—ll [ Alz)(d1 (:E))g,u(dzn))

Theorem 1.12 If f € L*(E, u)NL*(E, 1) satisfies Ay > 2M(p) and f) # 0, then, for any nonzero
v € My(E), it holds under P,(- | £°) that, as t — oo,

ng
e)\lt<¢17Xt>7 t_1/2<¢17Xt>_1/2 <f7 Xt> - Z e_)\kt ZQ‘I;H&] i) (W*7 G4(f))7
)\k<)‘1/2 j:1

where W* has the same distribution as Weo conditioned on E¢, and G4(f) ~ N (0, p?c(c)). Moreover,
W* and G4(f) are independent.

Remark 1.13 By combining the techniques of this paper with the backbone decomposition of
superprocesses (see [6]), one can extend the central limit theorems, for super-OU processes, of [37]
to superprocesses with spatial-dependent branching mechanisms and with spatial motions satisfying

the assumptions (a) and (b).
2  Preliminaries
In this section, we will give the estimates on the moments of the branching Markov process X.

2.1 Estimates on the semigroup 7;

In the remainder of this paper we will use the following notation: for two positive functions f and
gon E, f(z) < g(x) for x € F means that there exists a constant ¢ > 0 such that f(x) < cg(x) for
any z € I.

Lemma 2.1 For any f € L*(E,u), * € E and t > 0, we have

Tf@) = 3 eNtS abolP(a) (2.1)
k=~(f) j=1

12



and

ey (f)

o Apt _ Z (), (v()

tllg.loe v(f) ﬂf(.’,l’) = 2 a, ¢j (ac), (22)
‘]:

where the series in (2.1)) converges absolutely and uniformly in any compact subset of E. Moreover,
for any t1 > 0,

sup MO T f ()] S (ar, ()72, (2.3)
t>t1
sup e )10 MO f () = fi(w)| S (an ()2, (2.4)
t>t1

Proof: Using (LIT), it is easy to see that for any (¢,z) € (0,00) x E,

T.f (x / Ze‘*’“iﬁ )f (y) p(dy).
E k=1
To prove (2.I]), we only need to show that, for any t; > 0 and any (¢,z) € (t1,00) X E,
o0 ng
)\ k k

S eI @) [ 165 W ()] nldy) < oo
k=1 j=1 E

and that the series convergent uniformly on any compact subset of F. By Hélder’s inequality, we
get [ 64" W) £ ()| p(dy) < || £]l2- Then by (LI), for (t,z) € (1,00) x E, we have

> ey 16 (@) / 657 W1 W)] nldy) < 7 ke 12 fllaay, ()72 (2.5)

k=1 j=1 k=1
< e M| fllpay, ()2 Z e /2, (2:6)
k=1
By (LII), we have
i e /2 ik: 61 (@) = anppla),  zeE. 27)
k=1 j=1

Consequently, integrating both sides of ([2.7]),

ane_“tl/z = / ag, j2(z)pu(dr) < oo. (2.8)
k=1 E

Thus, for any (¢,z) € (t1,00) X E,

Ze*”ZW ) / 6 @)1 ()] i(dy) < e D £ lpay, ()2 /Eatlm(x)mdx). (2.9)

k=1 J=1

13



Thus, we get ([2I). The above argument shows that for any (¢,x) € (t1,00) X E,

(o] N
Tf @) < Y e b6l (@)] < e MO flaay, (2)"/ [E ay, jp(@)ulde),  (2.10)
k=) =l

which implies ([2.3]).
Applying (23] to f, we obtain that for z € E,

sup M0+ T3() (@) 5 (an, (@))%
>t

Now (Z2) and ([Z4) follow immediately. O

The proof of the lemma above also yields the following result which will be used later.

Lemma 2.2 Suppose that {fi(z) : t > 0} is a family of functions in L*(E,u). Iflim o0 || fill2 = 0,
then for any x € E,

lim eklttht(ﬂf) = 0.

t—o0

Proof: Applying 2I0) to f; and using the fact A\; < A 5,), we get that for any (f,x) €
(t(]v OO) X E7

@) < M ilatary (2)' [ iy p(ohutao)
Thus, for any (t,z) € (tg,00) X E,
T3] < N @) Pl [ o @t
from which the assertion of the lemma follows immediately. O

2.2 Estimates on the second moment of the branching Markov process

Recall the formula for the second moment of the branching Markov process {X; : t > 0} (see, for
example, [38, Lemma 3.3]): for f € By(E), we have for any (t,z) € (0,00) x E,

t
o (. X0 = [ TUAT- PR ds + T (a). (211)
For any f € L*(E,u) N L*(E, p) and = € E, by (Ti_sf)*(x) < KT, (f?)(x), we have
/t Ty[A(Ti—s f)’](x) ds < KeMUT(f2) () < oo,
0

which implies fg T A(Ty—_s f)?)(z) ds + T;(f?)(z) < co. Thus, using a routine limit argument, one
can easily check that (ZII) also holds for f € L*(E,u) N LY(E, p).

Lemma 2.3 Assume that f € L*(E, u) N LY(E, ).

14



(1) If A1 < 2X\y(5), then for any x € E,

lim M2Ps (f, X;) =0, (2.12)

Jim NPy, (f, Xi)* = /OOO MA(T f)?, 1) dsn (@) + (f2, d1)én (). (2.13)
Moreover, for (t,z) € (3tg,00) x E, we have
MVars, (f, X)) < agy ()2 (2.14)
(2) If \1 = 2\(5), then for any (t,x) € (3tg,00) X E,
t M Vars (f, X;) — p?c(bl (az)‘ <ttt <at0 ()% + ay, (x)) , (2.15)
where pfc is defined by (LI9).
(3) If A1 > 2X\(5), then for any x € E,
lim ' Py (f, Xe)? = n7(x), (2.16)

t—o00

where

@)= [ T AR e) ds
0
Moreover, for any (t,z) € (3ty,00) X E,

N Ps (F, X)) < gy ()2, (2.17)

Proof: (1) If Ay < 2X,(f), then by (L6) and [.3]), we have for any (,x) € (to,o0) x E,

6A1t/2’P51<f,Xt>’ _ e(>\1—2)w(f))t/2[eAw(f)t’th(x)H

< NP2, (2)V2 50, ast — oo, (2.18)

In the remainder of the proof of (1), we always assume ¢ > 3tg. It follows from (ZI1]) that for any
rel,

MNP, (f, Xi)? = e /t T s[A(Ts f)?)(x) ds + M T () (x)
0

t
— / e()\l—Q)W(f))se)\l(t—s)flﬂt_S[A(e)\,y(f)sTsf)2] (f]}') ds 4 eAlt,,Z—’t(fz)(x)
0

t—to "
= ([ ) e I AT Pl s+ ) )
0 t—to

= Vi(t,z) + Va(t, ) + eMT(f2) (). (2.19)
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For Vi (t,z), we claim that for s <t — tg, we have
ME=IT_JA(MDT )2 (2) < a(2)V?, z € E. (2.20)
If s < tg, using (T f(2))? < eXT,(f?)(x) and (2Z3)), we obtain that for any x € E,
MET,_ [A(MOSTL ) (z) < KeKse™M=2am)sehit,(£2)(z) < g, (z)Y/2.
If tg < s <t —tg, by (23], we have for any x € E,
MEIT,_ JA(MDSTL ) () < MEIT_ay, (2) < agy ()2, (2.21)
Thus, we have proved the claim. By ([2.20]), we get that for any x € F,

Vi(t,z) < (ag, (x))"/2. (2.22)

By (22]) and the dominated convergence theorem, we easily get that for any = € E,
Jlim Vi(t,z) = / M (A(TLf)?, 1) dsér (). (2.23)
> 0

Now we deal with Va(t,x). It follows from [Z3) that eMWT,f(x) < agy(x)'/? for (s,z) €
(2tg,00) x E. Thus,

t
Va(t,z) < / eM=P)s M U=IT, (agy ) (z) ds
t—t
0 “
e()‘l_z)‘w(f))t/ e2>‘“/(f)sTS(a2to)(x) ds
0

to
< fMm2h )t / Ty (amy ) () ds. (2.24)
0

We now show that for any x € E, fgo Ts(ag, )(x)ds < co. By (1), we have

0o np 9 oo Nk 2
agty(z) = Z 26_2/\kt0 ¢§‘k) (x)‘ - Z Ze_)\kto Tt0/2¢§k) (x)‘
oo N 2
< eKto/2 ZZ e_)\ktOTto/Q ‘(ﬁgk)‘ (LZ') = eKtO/2TtO/2(at0)(x)'
k=1 j=1

So, by Hélder’s inequality, we have
To(az) (@) < MO n(ag,) (@) < €02 |lag [laass i, ()72

By (LII), we have
0o Nk

A2s+t (l‘) = Z Z e—Ak(t0+2s)

k=1 j=1

o @) < P ay (o),
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which implies
to
| o) @ ds S 0y (02 (2.25)
0

Hence for any x € E, as t — oo,
Va(t,z) < eM=2Mn)tg, (2)Y2 = 0. (2.26)

Thus, by ([2:23) and ([2:26]), we get that for any z € E,

lim ! / T,_[A(Ts f)*)(z) ds = / h (AT f)?, 1) dsoy (). (2.27)
0 0

t—o00

Since f2 € L2(E, u), by 22), we easily get lim;_,o. M Ty (f2)(x) = (f2, ¢1)¢1(x) for every x € E,
which implies (2.13)).

By [23), we also have eMTi(f2)(z) < agy ()2 for any = € E. Combining 222) and 26,
we get that for any (¢,z) € (3tp,00) x E,

eAltvaT&c <f7 Xt> S e>\1t]p51 <f7 Xt>2 S.z a’tO (x)l/z’

The proof of (1) is now complete.
(2) If 2M,(y) = A1, then by (L6) and (Z.I1), we have for any (¢,z) € (0,00) x E,

t1eMVars (f, X)) = t7! /Ot AT A(MOEIT,_ £)?)(x) ds
HONL () () 17 (AT () (2:28)
Thus,
‘t_le“‘/arax<f, Xi) = pion (;p)‘

1 /t eAlsTg [A ‘(eA“f(f)(t_s)Tt_gf)z _ f12H (z)ds
0

IN

t
+t—1/0 [ TAFD) @) — (AFR 1)1 ()| ds

+t_1€>\1tn(f2)($) + t—l (eAy(f)tT%f(x))2
= Ai(t,z) + Aa(t,x) + As(t,x) + Ay(t, ). (2.29)

In the remainder of the proof of (2), we always assume t > 3.
For Ai(t,z), by (LIO), Z3) and @24), for t — s > 2tg, we have for any z € FE,

(e/\w)(t—S)Tt_sf)? _ fl(x)2‘

IN

‘e)"v(f)(t_s)Tt_Sf(x) — fi(z) (e)"v(f)(t_s)‘Tt—sf(x)’ + [f1(2)])

< e =) t=8) gy, (1),
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So by [2.3) and ([2.25]), we have for any (¢,x) € (3tg,00) X E,

t—2tg
- /0 AT [A(eMO T, )2 — f2(x) ds (2.30)

A

t—2tg
t—l/ e M+ (=) ST (g, ) (1) ds
0
to t—2tg
< t—l/ ePrn =M+ E=8) MST (g, Y () ds—l—t_l/ e +)E=9) ggq, ()12
0 to
to
< / T (o) () ds + 1 gy ()2 S 1™y ()12, (2.31)
0

Using (T)_f(x))? < eXE=9T,_(f?)(x) and (Z3), we get that for any z € E,

t
t‘l/ Mo, {A‘(ewf)(t—s)ﬂ_sf)Q — f12\] () ds
t—2tg

IN

t
Kt—l/ e>\1sTs (e(2)w(f)+K)(t—s)Tt_s(f2) + f12) (l‘) ds
t—2tg
t t
= Kt ! / M 5ePn TEE=3) 4Ty (£2) () + Kt™! / ST (f2)(2) ds
t—21g t—2lo
2to t
= Kt_l/ e MM TE)s gg MUY (£2)(2) + Kt_l/ ST (f2)(z) ds
0 t—2tg

t L ay, ()2, (2.32)

A

Thus we get that for any x € F,
Ai(tz) <t lay, (2)/2 (2.33)

Next we consider As(x,t). By ([24]), we have for (s,z) € (tp,00) x E,

[T (A2 (@) — (AFE 01)1(2)| S e Moay, ()2,

t
! /
to

t
5 t_l/ e_(h_)\l)s dsato (33)1/2 5 t_lato(x)l/Q’ (2'34)
to

which implies

AMT(AfY)(x) — (AfF, 1)1 ()| ds

By (LI0), we get ¢1(z) < agy(x)'/? and |f1(x)] < agt, (2)Y/? for any 2 € E. So for any = € E,
o [T - (AR oo @) ds
< Kt /Oto AT (gt ) () ds + Kt~ (], o1)¢1 ()
St /0 ’ To(az,) (@) ds + t  ag (2)/? St ay, ()2,
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Thus, we get that for any z € F,
Ag(t, ) <t tay, (z)V2 (2.35)
By (23]), we easily get that for any = € F,
As(t,z) St lag (2)V? and  Ag(t,z) <t lay, ().
Consequently, we have
tteMVars, (f, X;) — pfcqﬁl(az)‘ <t <at0 (x) + ay, (a:)l/2) . (2.36)

The proof of (2) is now complete.
(3) If A1 > 2X\ 5y, then by ([2.II]), we have, for ¢ > 3ty and = € E,

e DPs (f, X;)?

t
_ / _()‘1_2)‘7(f))5 )\18T [A( Ay(p) (t=s) T, 8f)2](x) ds + 6_()\1_2)\7(f))t€)\1t,ft(f2)(w)

(ﬁ)/>_w”wmhvm<wﬂs Ty of () ds + = Pa- P eI (2) (1)
to
= Bl t x) + BQ(t x) + Bg(t $) (237)

In the remainder of this proof, we always assume ¢t > 3tg. For s < tg, we get t — s > 2ty. So for
any x € I,
(MOUIT_ f(@) S az (),

which implies

to to
&@@5/fﬁwﬂmwmnmm@@g/:m%mmwg%@W?
0 0
Thus by the dominated convergence theorem, we get that for any = € F,
to

lim By(t,x) = / e M m2n)s ST (A FR) () ds.

t—o0 0
Now we consider Bs(t,z). Using ([2.20)), we get, for (s,z) € (tp,00) X E,

M T[AEMDIT, f)?)(2) S agy ()7

So for any = € F,
t
&w@S/é““%W%wmwﬂs%@W?

to
Thus by the dominated convergence theorem, we get that for any = € F,

E@%m@Z/fﬂ“ﬂm%“nMﬁmm&

to
By [23), we easily get that for any = € F,

By(t,) S e 1= Ptay (2)2 0

as t — oo. Thus, the proof of (3) is now complete. O
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3 Proofs of the Main Results

In this section, we will prove the main results of this paper. When referring to individuals in X
we will use the classical Ulam-Harris notation so that every individual in X has a unique label,
see [21]. Although the Ulam-Harris labelling of individuals is rich enough to encode genealogical
order, the only feature we really need of the Ulam-Harris notation is that individuals are uniquely
identifiable amongst T, the set of labels of individuals realized in X. For each individual v € T
we shall write b, and d,, for its birth and death times respectively and {z,(r) : r € [by,d,]|} for its
spatial trajectory. Define
Li={ueT,b,<t<d,}, t=>0.

Thus, X1+ has the following decomposition:

Xoit = Xt (3.1)
ueLy

where given F;, Xg ’t, u € Ly, are independent and X' " has the same law as X, under Ps,, "

3.1 The large branching rate case: \; > 2\

Lemma 3.1 If Ay > 2\, then, for any v € My(FE), Hf’j 1s a martingale under P,,. Moreover, the
limit
k7j — 3 kvj
HSI tllgloHt (3.2)
exists P,-a.s. and in L*(P,).

Proof: By the branching property, it suffices to prove the lemma for v = 9§, for z € FE.
Since ¢§-k)(x) is an eigenfunction corresponding to —\g, we have, for any (¢,z) € (0,00) x E,
Ps Hf J = ¢§-k)(x). Thus, by the Markov property, we get that, for any =z € F, Hf 7 is a martingale
under Ps,. Using ([2.I7), we have that for any = € E,

x

y
sup Ps, (H, ’3)2 < ato(x)1/2 < 00,
t>3to

from which the convergence asserted in the lemma follow easily. O
Now we present the proof of Theorem
Proof of Theorem By the branching property, it suffices to prove the lemma for v = ¢,
for # € E. Define My := eMWH(f, X;). Tt follows from the definition of f that v(f) > v(f) + 1.
From Lemma 23] we have the following:

(i) If Ay > 2)\%]?), then for any z € F,

Jim M Py (f, Xy)? (3.3)
— 00
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exists, thus we have

Ps, MZ = e M M0N0y (F) X,)

= 0(6_2()‘W(f>_)‘”(f))t) — 0, ast— oo.

(ii) If Ay = 2)\7(]7), then, for any x € F, limy_, t_le)‘ltIP’(szQ?, X;)? exists. Thus we have for any
r e FE,

P5th2 = te_2()"y(f)_)"Y(f))t(t—le)qt]P;éz <f,.: Xt>2)

= O(te_2()‘ﬁ(f)_’\7(f))t) — 0, ast— oo.

(iii) If 2)\%]7) > A1 > 2A,(5), then by Lemma 2.3(2), for any x € E, lim; o eAltP(;xO?, X;)? exists.

Thus we have for any = € F,

P;, Mt2 _ e—(Al—”‘w(f))t(e)‘ltPaz (f, Xt>2)

= O(e M=) 50,  ast — .

Combining the three cases above, we get that, for any = € E, lim; o, M; = 0 in L?(Ps,). Now
using Lemma [B1] we easily get the convergence in Theorem |
3.2 The small branching rate case: \; <2\,

First, we recall some properties of weak convergence. For f: R — R, let || f[| := sup,, |f(z) —
FW)|/llz =yl and || f]|sL := || flloo + || f]|L- For any distributions 4 and v» on R%, define

Blvr, ) :zsup{'/fdvl —/fdu2

Then S is a metric. By [I5, Theorem 11.3.3], the topology generated by this metric is equivalent

s fllBL < 1}-

to the weak convergence topology. From the definition, we can easily see that, if 1 and o are the

distributions of two R%valued random variables X and Y respectively, then
B(n,ve) <E|X = Y| < VE[X - Y]>. (3.4)
Proof of Theorem [[L8t We define an R?-valued random variable Uy (¢) by
Ui(t) = (M1, X0), MV2(F, X)) (3.5)

To get the conclusion of Theorem [[L§] it suffices to show that, for any nonzero v € M, (E), under
Py,
d
Ur(t) % (Wooo VWsG1(f) (5.6)
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where G1(f) ~ N(0, a]%) is independent of W,,. To show the above, it suffices to show that, for
any z € E, under P;_,

Ur(t) 5 (Woe, VWG () (3.7)

where G1(f) ~ N(O,a?) is independent of W,. In fact, if v = Z;‘L:I 0zsm = 1,2,... {xj5] =
1,--+,n} C E, then

n
Xp=> X}
j=1
where Xg is a branching Markov process starting from d,,,j = 1,...,n, and X/, j=1,---,n, are

independent. If [B.7) is valid, we put W2 = limy_eo e>‘1t<¢1,th ). Then we easily get under P,,
We = Z?:l Wgo For )\1 < 2)\7(”,

P, exp {i916A1t<¢17 Xe) + ieze()‘l/z)t<fa Xt>>

= H P, exp {i@le)‘lt(qﬁl, X7 + ihpeM /DU f, Xt]>)
j=1

— I_IIPV exp {zolwgo - §9§0§Wgo>
J:

1
= P,exp {z’@lVVoo — §9§0§Woo> ,

which implies that (38 is valid.
Now we show that (7)) is valid. Let s,t > 3ty and write

Ui(s +1t) = (e/\l(s+t)<¢1,Xt+s>, /20 (f, Xs+t>) :
Recall the decomposition of X in (B.I]). Define
Yot im MOR(F XY and gt = By, (YT, (3.5)
Given F, V" has the same law as Y, 1= e)‘ls/z(f, X) under Ps, - Then we have

e()\l/2)(s+t) <f7 Xs+t> — e()x1/2)t Z Y*su,t

uely
e(A1/2)t Z (Yt — oty 4 eQ/2Eps (£ X )| F)
ueLy
=: Ji(s,t) + Jo(s, ). (3.9)

We first consider Jy(s,t). By the Markov property, we have

Jo(s,t) = eM/AEE T £ X,
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Thus, by (211 and (23], we have for any z € E,
t
Po.(a(sitf) = M [ B AT ) dut MOTIT P 2)
0

t
— 6()\1—2)‘w(f))s/ eM=2apluht=ur, 14O EHIT L £)?)(2) du
0
PP AT (M0 ST, )2 (2)

t
M= ()5 ( / M=) u AT, Tag, 1(2) du + agy ()Y 2)
0

A

and

t
/ e()\l—z)‘w(f))ue)\l (t_u)ﬂ—u (a2to ) (‘T) du
0

t—to t
- (/ +/ > eM=2)ueh =0T, (a9 ) () du
0 t—to

t—t t
/ 2 duagy, (x)"/? + / O =P MUT, (0 ) () du
0 0

A

A

to
arg ()2 + / To(azey) (@) du < agg () /2.
0

Thus for any x € E,
lim sup Py, (Ja(s,1)%) < ePM=2M)3q, ()12, (3.10)

t—o00

Next we consider Ji(s,t). We define an R2-valued random variable Us(s,t) by
Us(s.2) = ({91, X1), Ji(s,1) )
Let Vi(x) := Vars,Y;. We claim that, for any x € E, under Py,
Us(s,t) KN (WOO, \/W—OoGl(S)) , ast— oo, (3.11)
where G1(s) ~ N (O,O'J%(S)) is independent of W, and Jj%(s) = (V, ¢1). Denote the characteristic

function of Us(s,t) under Ps, by x(61, 02, s,1):

k(01,02,s,t) = Pg, (exp {z’@le’\lt<¢1,Xt> + iy /2! Z (Y2t — y;‘t)})

uELy

= P, (exp{i91€)‘1t<¢1,Xt>} 11 hs(zu(t),e()‘l/2)t92)> : (3.12)

uely

where
hs(x,0) = Ps, 0o —Po, Ys)
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Let ty,my — 00, as k — o0, and ay ; € F, j = 1,2,---my. Now we consider

my
Sy = e Mtk/2 Z(Yk,j _ yk,j)7 (3.13)
j=1

where Y}, ; has the same law as Y, under ]P’(;akj and yy ; = Ps ij- Further, Yy ;,7 = 1,2,... are

A

independent. Suppose the Lindeberg conditions hold:
(i) as k — oo,

mp mp
MENTE(Vig — ky)? = MY Vilag ) — o
j=1 j=1

(ii) for any € > 0,

mg
MY E (!Yk,j — Ygl* Yes = ykgl > 66”“”2)
j=1

my
eMte Z]P’gam <|Ys —ys|?, |YVs — s > ee_)‘ltk/z) — 0, ask — oo.
j=1

Then using the Lindeberg-Feller theorem, we have Sy L\ N(0,02), which implies

my
H hs(ag ;, eMtr/2g) e 270, (3.14)
j=1

By Lemma Z3(1), Vi € L?(E, 1) N L*(E, u). So using Remark [L7, we have

eMt Z Vi(zu(t)) = MYV, X)) — (Vi, $1)Wae,  in probability, as t — co. (3.15)
ueLy

Let g(z,s,t) = Ps, (|Ys — ys|% |Ys — ys| > ee*1/2) . We note that g(z,s,t) | 0 as t 1 co and
g(x,s,t) < Vi(x) for any x € E. Thus by Lemma 2.2] we have for any = € FE,

e)\lt]P)(Sx <g('7 S,t),Xt> = e)\ltTt(g('y Svt))($) —0, as t— oo,
which implies

NS P (1Y = plP Vs — gl > e ™2) 50, as b oo, (3.16)
ueLly
in Ps,-probability. Therefore, for any sequence s, — 0o, there exists a subsequence s). such that,
if we let t = s}, my = | X | and {ag;,j = 1,2---mp} = {zu(s}),u € Ly }, then the Lindeberg
conditions hold Ps_ -a.s. for any x € E, which implies

k—00
uEACS;C

lim hs(zu(s),), eX1/2%k05) = exp {—%9%(‘/3, gbl)Woo} , Ps, -a.s. (3.17)
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Consequently, we have

lim h(zu (1), €M /205) = exp {—%9%(‘/8, ¢1>Woo} , in probability. (3.18)

t—00
Hence by the dominated convergence theorem, we get
tliglo K(01,02,5,t) = Ps_ exp {i01 W } exp {—%03(‘/3, gbl)Woo} , (3.19)
which implies our claim (BII]). Thus, we easily get that, for any « € E, under Py,
Us(s,t) := (e)\l(t+s)<¢1,Xt+s>, Jl(s,t)) 4 (Woo, \/W—OoGl(s)> , ast— oo.

By 2I2)) and [2ZI3)), we have
lim (Vs, 1) = JJZc.

S§—00

Let G1(f) be a N(0, a]%) random variable independent of W,. Then

lim 5(G1(s), G1(f)) = 0. (3.20)

5§—00

Let £(s + t) and L(s,t) be the distributions of Uy (s + t) and Us(s,t) respectively, and let £(s)
and £ be the distributions of (We, vVWooG1(s)) and (Weo, vVWsG1(f)) respectively. Then, using
B4), we have

limsup B(L(s +1),£) < limsup[B(L(s + 1), L(s,t)) + B(L(s,t), L(s)) + B(L(s), L)]

t—o00 t—o00

< limsup Py, (Jo(s,6)2) % + 04 B(L(s), £). (3.21)

o t—o00

Using this and the definition of lim sup,_, ., we easily get that

limsup B(L(t), £) = limsup B(L(s + t), £) < lim sup(Py, Jo(s,)%)/? + B(L(s), L).

t—00 t—00 t—o00

Letting s — oo, we get limsup,_, . 5(L(t), L) = 0. The proof is now complete. O

3.3 Proof of Theorem

In this subsection we consider the case: A1 > 2A,) and f) = 0. By Lemma B.I] we have for
2 < A1,
; . ) s k . k U s
HE = lim MO (o) X, ) = M im Y (o), Xptete, (3.22)

S—00 §—00
uELy

Since X;L’t has the same law as X under IP’(;Zu(t), Hé‘g)t’k’] = hms_,oo(qﬁg ),X;“"t>e>‘k8 exists and has

the same law as Hé“gﬂ under IP’(;ZU " Thus

HE = My~ Hubh, (3.23)
uELy
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Recall from (LI6) that

Tk
krrk,j
S S

20 <A1 j=1

Hu t Z Z akHu,t,k,]

20 <A1 =1

Denote

It is easy to see that given JF;, HY%' has the same law as H.o under Ps,, - By Lemma [3-1] we have
that for any x € E,

ng
> D, eAkta§(¢§k),Xt> — Hoo,  in L*(Ps,).

22, <A1 j=1
It follows that
Ps, Hoo = f(5)(T), reFE (3.24)
and by (2I1]), we have that for any = € E,
- 2
Ps, (Hoo)? = /OOO To AL DD D Mkl | | (2)ds. (3.25)

225 <A1 j=1
Proof of Theorem [I.I0¢ By (3:23]), we have
ny
> o n - Y
Ap<A1/2 Jj=1 u€Ly
Consider the R%-valued random variable U (t):

Up(t) == <e)\1t<¢laXt> elh/2)t <f Xi) — Z Hut)) (3.26)

ueLy

Using an argument similar to that in the beginning of the proof of Theorem [[.8 we can see that,

to get the conclusion of Theorem [[.10] it suffices to show that for any x € E, under Pj,_, as t — oo,

Ul(t) i (Woo, \ WooG3(f)) ) (327)

where G3(f) ~ N (0, 0']2c(l) + B]%) is independent of Ws,. Denote the characteristic function of Uj (¢)
under Ps, by #1(01,02,t) and let h(z,0) := Ps, exp{il(Ho — f(s)(7))}. Then we have for any x € E,

K1(61,02,1)
= Ps, exp {1916)‘”(¢1,Xt> + ifpeP1/2)t ((f Xy — Z H;‘j)}

ueLy

= Ps, exp {191@”(@51, 1) + 10N/ <<f(l Xi) — Z (ng—f(s)(zu(t))))}

ueLy
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= Ps, exp {i@le)‘lt@bl, Xt>} exp {i@ge()‘l/z)t(f(l),Xt>} H h (zu(t), —926()\1/2)t) . (3.28)

uely

Let V(z) = Vars, Hx. We claim that
(i) as t — oo,

MNPy, (HY — fi)(za(1))? = MUV, Xy) — (V, 1) Wao, in probability; (3.29)
uely

(ii) for any € > 0, as t — o0,

MUY Py, (|HY = fioy(2u®) P IHE = fioy(2u(t)] > ee1%) — 0, in probability. (3.30)
uELy

Then using arguments similar to those in the proof Theorem [L.8 we have

1
H h <zu(t), —926()\1/2)t> — exp {—§0§<V, ¢1>WOO} , in probability. (3.31)
ueLly

Now we will prove the claims.

(i) By Remark [7, we only need to show that V(z) € L2(E, u) N L*(E, 1). By (LI0), we have
that for any x € E,

ng
> Y lafllof @) S M tan (@)1,

2Ap <A1 j=1

where m = sup{k : 2\, < A\1}. So by [B.23) and (Z3)), we have that for any = € F,

Ps.(Hy)? < / ePAn NS AT, (ay, ) () ds
0

to 00
B (/ +/ )emm_Al)sest(a%o)(w)ds
0 to
to

/ T, (assy) () ds + / eOAms g q ()12
0 to

5 ato(‘r)l/2 € Lz(Enu') n L4(E7:u')

N

Thus V(z) € L*(E,pn) N LY(E, p).
(ii) Let

90(@) = P, (|Hoo = fio (@)%, [Hoo = fis)(@)| > ee™12) . (t,) € (0,00) x E.
Then for any ¢t > 0,

NS Py, (IS — fiocu®)P [HE — fio)(zu(8)] > ee™2) = Mi(g,, X)),
uELy
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We easily see that g.(z) L 0 as t T oo and g(z) < V(x) for any x € E. So, by Lemma 22 we have
that for any x € F,
MPs (gi, Xy) = eMTi(gy)(z) — 0,  ast — oo,

which implies ([B3.30]).
By ([33I)) and the dominated convergence theorem, we get that as t — oo,

1
K1 (91, 92, t) - P(sz eXp {’wle}\lt((ﬁl, Xt> + ’L'ege)‘ltp (f(l),Xt> - §9§<V, ¢1>Woo}' — 0. (3'32)
Since A1 < 2A,(y)), by Theorem [[8, we have that as t — oo,

(M1, X0}, /24y, X)) 5 (Woon VTG (i) (3.33)

where G1(f)) ~ N(0, O'ch(l)) is independent of W,,. Therefore, for any = € F, as t — oo,

Ps, exp {2916)‘1 (1, X;) + i0geP1/? <f(l XQ}exp{—%H%(V, <;51>Woo}
— Ps, <exp{i91Woo}exp{—%@%(cr]%m +(V, <;51>)Woo}> . (3.34)

By B24) and (325]), we get
(V, ¢1) = /0 T <A< > Zekk8a§¢§>2,¢1> ds — ((f(s)?, 61)-

20 <A1 =1

The proof is now complete. g

3.4 The critical branching rate case: \; = 2\
To prove Theorem [L9, we need the following lemma.

Lemma 3.2 Assume f = Z"k bk (k ), where bg? € R and A\ = 2\.. Define
Sif (@) =t PN AN(f X)) — Tuf (). (t.2) € (0,00) X E.
Then for any ¢ >0, § >0 and x € E, we have
lim P, (yst F(@)%|Sef (x)] > ceét) — 0. (3.35)
Proof: We write ¢t = [t] + ¢, where [t] is the integer part of ¢. Let
F(t,z) =P, <|Stf(:1:)|2; 1S, f (2)| > ce5t) . (tz) € (0,00) x E.

By the definition of f, we easily get T, f(z) = e M%/2f(z). So we get that for any (t,z) € (0,00)x E,

1/2
S f(z) = (#) e/ <<f Xiv1) — <_’\1/2f7Xt>)
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*(:5%1)1/2 (. X0) = Tif (@)
- (L)/ RN+ (o )1/2stf<x>, (3.36)

t+1 t+1

where
R(t, f) = MDD (£ X 0) = (T1f, X)) -

Thus we have that for any (¢,z) € (0,00) x E,

F(t+1,x)
< By, (ISnif@[%1Sif@)] > ce®) +Bs, (Sunrf @)% S0 (@)] < ce®, i1 ()] > e’V
=: Mi(t,z) + Ms(t, ).
Put

Ai(t,x) = {|Sif(z)| > ce®},
Ao(t,z) = {[Sif(x)] < ce®,[Spsr f(a)| > ce®THVY,

Since A;(t,x) € F; and Ps_(R(t, f)|F:)=0 for any (¢,x) € (0,00) x E, we have by (330]) that

Miltx) = o, (RO D) A (2) + s Flt,2)
and
Mo(t2) S rBa, (1R NP5 Aslt2) + 1B, (10 (@ Aalt2)

Thus we have that for any (t,z) € (0,00) x E,

Flt+1,2) < H_%F(t,:v) + H_%(Fl (t,2) + Fy(t,2)), (3.37)

where

Fl (t, LZ')
Fg(t,x)

2]P>51 (‘R(t7 f)’2; Al(t7x) U AQ(t7‘T)) ’
2tPs, (1Sef ()% Aa(t, @) .

Choose an integer ko > 3tg. Iterating (B37), we get for ¢ large enough

k()—i-ﬁt

Fit+1,r) < Z (Fi(m+ e, x) + Fo(m + €, 1)) + P F(ko + €, x)
2
— Li(t,x) + Lo(t,z) + OiftF(kO+et,:p). (3.38)
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First, we will consider Lq(¢,x). By (23], we have that for any € F and s > ko,
Fi(s,z) < 2Ps, (|R(s, f)?) = 2eM DT (Vars (f, X1))(2) < Cayy ()", (3.39)
where C' is a constant. We claim that for any x € F,
Fi(t,x) -0, ast— oc. (3.40)

Then, for any € > 0 and = € E, there exists K € N such that s > K implies Fj(s,x) < €. So, by
[B39), we get that for any x € E and ¢ large enough,

K—-1 [t]

CK
Li(t,z) = — Z Fl(m+€t,$)+t+—1 Z Fi(m+ e, x) < P
m=K

1/2

ag, ()= + €.

m=kg

Thus lim sup,_, . L1(t,z) < € for any = € E, which implies
tliglo Li(t,z) =0, re k. (3.41)
Now we prove the claim. First, we will show that, for any = € E, as t — oo,
Ps, (A1 (t,x) U As(t,x)) — 0. (3.42)
By Chebyshev’s inequality and (28], we have that, for any x € E, as t — oo,
Ps, (A1(t, ) < ¢ 2e 2Py |Sy f(@)|* — 0.
It is easy to see that, under Ps,, for any ¢ > 0,
As(t,z) C {\R(t, £l > et @Vitrl— ﬁ)} . (3.43)
Similarly, by Chebyshev’s inequality, we have that, for any x € F,
Ps, (As(t,2)) < ¢ %e™ (2 VE+1 = Vi) Py, | R(t, f)]*.
By (22I), we get that, for any = € F,
Po, [R(t, NP = MV (Vars (f, X1)(2) = " (Vars (£, %), 61) 1 (), (3.44)

which implies Ps, (A2 (t, z)) — 0 for any = € E.
Using ([B.3]), we have

R(t,f) = eMPED((F X 0) = (Tif, Xp)) = N0 (vpth — gyt
uely

where Y;“*, %" are defined in (38). From the proof of BII)), we see that (3II) is also true when
A1 = 2)(y). Recall that Vi(z) = eMVars, (f, X1) for any x € E. So we have R(t, f) LN VWsG,
where G ~ N(0, V4, ¢1)) is independent of W,. Then Ps (WoG?) = (V1, ¢1)é1 () for any x € E.
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Let Upr(r) = 7 on [0, M — 1], Wp(r) = 0 on [M,o0], and let Uy be linear on [M — 1, M].

Therefore by [3.42) and ([3.44]), we have that for any = € E,

limsup Fy(f,2) < limsup2Ps, (|R(t, £)[% |R(E f)> > M) +2M limsup P, (Ay (£, 2) U As(t, )
t—o00

t—o00 t—o00

< 2dimsup (P, (R(E 1)) = P, (War (R(E 1))
= 2((Va,d)oa(a) — B, (Var(Wee))).

By the monotone convergence theorem, we have that for any = € F,
A}iinoopcgz(\IlM(WooG2)) = Ps, (W G?) = (Vi, 1)1 (),

which implies F(t,2) — 0 for any = € E.

Now we consider La(t, ). We also claim that for any x € E,
Fy(t,xz) - 0, as t— oc.

In fact, by (343]), we have that for any x € E,

Fy(t,x) = 2tPs, (|Sif ()% Az(t, @)

2tce™ Py, (1Suf(2)]; [R(E )] > ce(VETT - VA))
2 e (VI T — V) P, (ISf ()] - [R(E, f)P)
e MR, (1S f (@) [(Vars (f, X1), X4))

o IS @) e B, (Vars (1,20), X02)

IN

IZANRIA

A

(3.45)

By ([2I0) and (2.14), we get Fy(t,z) — 0 for any = € F as t — oco. Thus, for any € > 0 and = € E,

there exists K € N such that s > K implies F5(s,x) < e. It is easy to see that,

sup Fy(s,z) < sup 202562 < 22 K e?0K
s<K s<K

Thus, we get

[t]
1
t+ W;{‘Fé(m—i_etax)é

—_

K—1
1
Ly(t,z) = —— F:
2(t:2) = g D Palmteno) + tt1

m=ko

Thus limsup,_, o, La(t,z) < ¢, which implies

tllglo Ly(t,z) = 0.
To finish the proof, we need to show that for any z € F,

. kot+e
lim
t—oo t4+1

F(lﬁo + et,x) = 0.
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By [2I3), we get that for any = € F,
sup(ko + €) F(ko + €, ) < (ko + 1) sup Ps, (S, f(z))* < oo,

t>0 s>ko

which implies ([3.47)).
Thus, we finish the proof. O

Now we are ready to prove Theorem
Proof of Theorem The proof is similar to that of Theorem [[.8 We define an R?-valued

random variable by

UL(t) := (€1, Xe), t72eNDHf1, X)),

Since A1 = 2\, (p), f = f1 + fu). Using Theorem [LY for f(;), we have
t_1/2€()\1/2)t<f(l), Xt) i> 0, t— oo.

Thus, using an argument similar to that in the beginning of the proof of Theorem [[.8, to get

conclusion of Theorem [.9 we only need to show that, for any z € E, under Ps_, as t — oo,
d
UL(t) % (Woes VIVocGa(f))

where Ga(f) ~ N (0, p?c) is independent of W,. Let ¢t > 3tg and n > 2. We write

Ur(nt) = (01, Xur), (n) /260200 (1 X))

(3.48)

Define
VI = ((n — 1))~ M2M-12 <f1,XE“i;t_1)t> .
((n = 1)t)~/2eM 0D f1, X, ae) under

Given F;, Y,"" has the same distribution as Y} :
Ps,, - Since for u >0, T, fi(z) = e~ MU/2 £ (z), we have

" =P, (Y F) = (0= D)) fizu(t)-

n—1 u,n
(nt)_1/26()\1/2)nt<f1,Xnt> — /Te()\l/2)t Z Y;/ )
ueLy
n—1 u,n u,mn -
= [ NI T ) ()TN (X

ueLly
(3.49)

Thus

() + JR().

From the proof of (2I5]), we get that for any = € E,
]P’51J2n(t)2 < n_l(p%qﬁl(x) + t_l(at()(x) + ato(x)l/z)).
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Thus, there exists ¢ > 0 such that for any z € F,

limsup Ps, J5 (t)* < en Loy (x). (3.50)

t—o00

Now we consider JJ'(t). We define an R2-valued random variable Us(n,t) by

Ua(n,t) == <eht<¢1, X,), eM/20 S (v yf’n)> ‘

ueLy

We claim that

Us(n,t) LA (Woo, \/WooGg(f)> , ast— oo. (3.51)

Denote the characteristic function of Us(n,t) under Ps, by k2(01,62,n,t). Using an argument
similar to that leading to (312]), we get

ko(b1,02,n,t) = Ps, (exp{z@le oy, Xi)} H hy <zu Ql/z)t@g))
ueLly

where
hi(x,0) = Py, 0" Fou Y1),

Let tg, mi — o0, as k — co. Now we consider
mg
Sy 1= eMtR/2 Z(ka — k) (3.52)
j=1

where Y} ; has the same law as Y} under IP’(;akj and yi ; = Ps, Y)'. Further, Yy ;,7 =1,2,... are

Ok,

independent. Denote V" (x) := Vars, Y;". Suppose the Lindeberg conditions hold:

(i) as k — oo,

Mt 2 it o2
1k§:EYkJ Yk.j) _elkE:tkakJ )

(ii) for every ¢ > 0,

mg
MY E <\Yk,j = el Vg — ymgl > Ce_m’“ﬂ)
j=1

my
eMin ZIP’(;%J_ <| ytk|2 Yyl =y | > ce )‘”k/2> —0, k— oo

Then Sj, % A (0,0%) which implies

my
150 (an o e5/20) — €727 as k- oo (3.53)
j=1
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By Lemma B3, [V () — #3¢1(2)] S ((n — 1)~ (a1 (2)"/? + a1y (2)) for every & € E. So by (@),
we get
tLeMITy (g, + ag,)(z) — 0, as t — oo,

which implies
t_le’\lt@/ato + ayy, X¢) — 0, as t — oo,

in probability. Thus,

lim ! Z Vi (zu(t)) = tliglo e>‘1t<p%¢1,Xt> = p?Woo, in probability. (3.54)

t—o0
uely

Let
galt, @) = o, (V" = i, ¥ = g | > ce™2)

We will show that, as t — oo,

NN P (V= P = 0] > M) = Mg (1), X)) 0, (355)
ucLly

in probability. By Lemma B2l lim; ,~ g, (t,2) = 0 for every x € E. Since
gn(t, ) <Vi"(2) S phon (@) + ary(2)'/? + ayy (x) € LP(E, p),
by the dominated convergence theorem, we have that for any x € F,
Jim lga(t, ) = 0.
By Lemma [2.2] we have that for any x € E,
P, (gn(t, ), Xi) = €' T(ga(t, ) (w) = 0, as ¢ — oo,

which implies [B55). Thus, for any sequence s, — 0o, there exists a subsequence s} such that,
if we let ty = sp., my = | Xy, | and {axj,j = 1,...,mp} = {zu(tg),u € Ly}, then the Lindeberg
conditions hold Ps_-a.s. Therefore, by [3.53]), we have

1

: n (A1/2)t _ 92 2 : s

tllglo |€£| hi'(zy(t),e 02) = exp { 292pf Woo} , in probability. (3.56)
u t

Hence by the dominated convergence theorem, we get
1
lim k9(01,62,n,t) = Ps,_ exp {i6h W } exp {——Hg,o?cWoo} , (3.57)
t—o00 2

which implies our claim (35]]). Thus, we easily get that under P,

Us(n,t) == (e*1<m><¢1,xm>,mt>) 4 (Wm,\/”;lx/woo@(f)) . ast o0,
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where Ga(f) ~ N (0, p?) is independent of W.
Let £(nt) and £"(t) be the distributions of U} (nt) and Us(n, t) respectively, and let £ and £

be the distributions of (W, /22 v/WaoGa(f)) and (Wee, vWeeGa(f)) respectively. Then, using
B4)), we have

limsup B(L(nt), £) < limsup[B(L(nt), L(t)) + BL (1), L") + B(L™, L)]

t—o00 t—00

< limsup Py, (J5(1)2)Y2 + 0+ B(L™, L). (3.58)

o t—00

Using this and the definition of limsup,_, ., we easily get that

limsup B(L(t), £) = limsup S(L(nt), L) < \/cp1(x)/n+ B(L", L).

t—o0 t—o0

Letting n — oo, we get limsup,_, ., S(L(t), L) = 0. The proof is now complete. O
Proof of Theorem First note that

2((¢1, X)) 712 <<f,Xt> > e“tiaﬁH&j)
j=1

Ae<A1/2

t_1/2(<¢17 Xt>)_1/2 <f(cl)7 Xt> + t_1/2(<¢17 Xt>)_1/2 <<f(s) ) Xt> - Z e_)\kt Z CL?H&])
j=1

)\k<>\1/2
=: Jl(t) + Jg(t),

where fy = fi) + f(c). By the definition of f(,), we have (f(s))(c) = 0. Then using Theorem [.T0]

for f(s), we have

n
(o, X))V (o, Xy = > e ™ abHE L G3(frs))- (3.59)
Ap<A1/2 Jj=1
Thus
Jo(t) 50, t— 0. (3.60)

Since A\ = 2/\7(1:(61)), so using Theorem for fi.1), we have

d *
(M1, X0), J1())) = (W, Ga(fian)), (3.61)
where Ga(f(c)) ~ N(O,pff(cl)). By the definition of p?c given by (LIH), we have p}(cl) = p}(c).
Combining ([3.60) and (B.61]), we arrive at the conclusion of Theorem O
References

[1] Adamczak, R. and Mitos, P.: CLT for Ornstein-Uhlenbeck branching particle system. Preprint,
2011. larXiv:1111.4559.

35


http://arxiv.org/abs/1111.4559

Athreya, K. B.: Limit theorems for multitype continuous time Markov branching processes I:
the case of an eigenvector linear functional. Z. Wahrs. Verw. Gebiete, 12 (1969), 320-332.

Athreya, K. B.: Limit theorems for multitype continuous time Markov branching processes II:
the case of an arbitrary linear functional. Z. Wahrs. Verw. Gebiete 13 (1969), 204-214.

Athreya, K. B.: Some refinements in the theory of supercritical multitype Markov branching
processes. Z. Wahrs. Verw. Gebiete 20 (1971), 47-57.

Athreya, K. B. and Ney, P. E.: Branching Processes. Springer-Verlag, 1972.

Berestycki, J., Kyprianou, A. E. and Murillo-Salas, A.: The prolific backbone for supercritical
superprocesses. Stoch. Proc. Appl. 121 (2011), 1315-1331.

Bojdecki, T., Gorostiza, L. G. and Talarczyk, A.: Limit theorems for occupation time fluctu-
ations of branching systems I: long-range dependence. Stoch. Proc. Appl. 116 (2006), 1-18.

Bojdecki, T., Gorostiza, L. G. and Talarczyk, A.: Limit theorems for occupation time fluctu-
ations of branching systems II: critical and lage dimensions. Stoch. Proc. Appl. 116 (2006),
19-35.

Bojdecki, T., Gorostiza, L. G. and Talarczyk, A.: Occupation time limits of inhomogeneous
Poisson systems of independent particles, Stoch. Proc. Appl. 118 (2008), 28-52.

Chen, Z.-Q., Ren, Y.-X. and Wang, H.: An almost sure scaling limit theorem for Dawson-
Watanabe superprocesses. J. Funct. Anal. 254 (2008), 1988-2019.

Chen, Z.-Q. and Shiozawa, Y.: Limit theorems for branching Markov processes. J. Funct.
Anal. 250 (2007), 374-399.

Chung, K. L. and Zhao, Z.: From Brownian Motion to Schridinger’s Equation. Springer,
Berlin, 1991.

Davies, E. B.: Heat Kernels and Spectral Theory. Cambridge University Press, Cambridge,
1989.

Davies, E. B. and Simon, B.: Ultracontractivity and the kernel for Schrédinger operators and
Dirichlet Laplacians. J. Funct. Anal. 59 (1984), 335-395.

Dudley, R. M.: Real Analysis and Probability, Cambridge University Press, 2002.

Durrett, R. : Probability: Theory and Ezamples, 4th Edition, Cambridge University Press,
2010.

Englander, J.: Law of large numbers for superdiffusions: the non-ergodic case. Ann. Inst.
Henri Poincaré Probab. Statist. 45 (2009), 1-6.

Englander, J., Harris, S. C. and Kyprianou, A. E.: Strong law of large numbers for branching
diffusions. Ann. Inst. Henri Poincaré Probab. Statist. 46 (2010), 279-298.

Englander, J. and Winter, A.: Law of large numbers for a class of superdiffusions. Ann. Inst.
Henri Poincaré Probab. Statist. 42 (2006), 171-185.

Harris, S. C.: The convergence of a Gibbs-Boltzmann random measure for a typed branching
diffusion. Seminaire de Probabilites XXXIV, Lecture Notes in Math. 1729 (2000), 239-256.
Springer, Berlin.

36



21]
[22]
23]
[24]
[25)
26]
27]
28]
[20]
30]
31)
32)
33]
34]

[35]

Hardy, R. and Harris, S.C.: A spine aproach to branching diffusions with applications to
LP-convergence of martingales, Séminaire de Probabilités XLII (2009), 281-330.

Kaleta, K. and Kulczycki, T.: Intrinsic ultracontractivity for Schrodinger operators based on
fractional Laplacians. Potential Anal. 33 (2010), 313-339.

Kesten, H. and Stigum, B. P.: A limit theorem for multidimensional Galton-Watson processes.
Ann. Math. Statist. 37 (1966), 1211-1223.

Kesten, H. and Stigum, B. P.: Additional limit theorems for indecomposable multidimensional
Galton-Watson processes. Ann. Math. Statist. 37 (1966), 1463-1481.

Kim, K., Song, R. and Vondracek, Z.: Two-sided Green function estimates for killed subordi-
nate Brownian motions. Proc. London Math. Soc. 104, (2012), 927-958.

Kim, K., Song, R. and Vondracek, Z.: Potential theory of subordinate Brownian motions with
Gaussian components. Stoch. Proc. Appl. 123, (2013), 764-795.

Kulczycki, T. and Siudeja, B.: Intrinsic ultracontractivity of the Feynman-Kac semigroup for
relativistic stable processes. Trans. Amer. Math. Soc. 358 (2006), 5025-5057.

Liu, R., Ren, Y.-X. and Song, R.: Llog L criterion for a class of superdiffusions. J. Appl.
Probab. 46 (2009), 479-496.

Liu, R., Ren, Y.-X. and Song, R.: Llog L criterion for supercritical branching Hunt processes.
J. Theoret. Probab. 24 (2011), 170-193.

Liu, R., Ren, Y.-X. and Song, R.: Strong law of large numbers for a class of superdiffusions.
Acta Appl. Math. 123 (2013), 73-97.

Kouritzin, M. A. and Ren, Y.-X.: A strong law of large numbers for super-stable processes,
Preprint, 2012.

Mito$, P.: Occupation time fluctuations of Poisson and equilibrium finite variance branching
systems, Probab. Math. Statist. 27 (2007), 181-203.

Mitos, P.: Occupation time fluctuations of Poisson and equilibrium branching systems in
critical and large dimensions, Probab. Math. Statist. 28 (2008), 235-256.

Mitos, P.: Occupation times of subcritical branching immigration systems with Markov mo-
tions, Stoch. Proc. Appl. 119 (2009), 3211-3237.

Mito$, P.: Occupation times of subcritical branching immigration systems with Markov mo-
tion, CLT and deviation principles, Infin. Dimens. Anal. Quantum Probab. Relat. 15 (2012),
1250002, 28 pp.

Mito$, P.: Spatial CLT for the supercritical Ornstein-Uhlenbeck superprocess. Preprint, 2012.
arXiv:1203:6661v

Ren, Y.-X., Song, R. and Zhang, R.: Central limit theorems for super-OU processes. Preprint,
2013. larXiv:1302.1254

Shiozawa, Y.: Exponential growth of the numbers of particles for branching symmetric a-stable
processes. J. Math. Soc. Japan 60 (2008), 75-116.

37


http://arxiv.org/abs/1302.1254

[39] Wang, L.: An almost sure limit theorem for super-Brownian motion. J. Theoret. Probab. 23
(2010), 401C416.

Yan-Xia Ren: LMAM School of Mathematical Sciences & Center for Statistical Science, Peking
University, Beijing, 100871, P.R. China. Email: yxren@math.pku.edu.cn

Renming Song: Department of Mathematics, University of Illinois, Urbana, IL 61801, U.S.A.

FEmail: rsong@math.uiuc.edu

Rui Zhang: LMAM School of Mathematical Sciences, Peking University, Beijing, 100871, P.R.
China. Email: ruizhang8197@Qgmail.com

38



	1 Introduction
	1.1 Spatial process
	1.2 Branching Markov process
	1.3 Main results
	1.3.1 The large branching rate case: 1>2(f)
	1.3.2 The small branching rate case: 1<2(f)
	1.3.3 The critical branching rate case: 1=2(f)
	1.3.4 Further results in the large branching rate case


	2 Preliminaries
	2.1 Estimates on the semigroup Tt
	2.2 Estimates on the second moment of the branching Markov process

	3 Proofs of the Main Results
	3.1 The large branching rate case: 1>2(f)
	3.2 The small branching rate case: 1<2(f)
	3.3 Proof of Theorem ??
	3.4 The critical branching rate case: 1=2(f)


