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Abstract Suppose that X = {Xt : t ≥ 0} is a supercritical super Ornstein-Uhlenbeck pro-
cess, that is, a superprocess with an Ornstein-Uhlenbeck process on R

d corresponding
to L = 1

2 σ 2� − bx · ∇ as its underlying spatial motion and with branching mechanism
ψ(λ) = −αλ+βλ2 + ∫

(0,+∞)
(e−λx − 1 +λx)n(dx), where α = −ψ ′(0+) > 0, β ≥ 0, and n

is a measure on (0,∞) such that
∫

(0,+∞)
x2n(dx) < +∞. Let Pμ be the law of X with initial

measure μ. Then the process Wt = e−αt‖Xt‖ is a positive Pμ-martingale. Therefore there is
W∞ such that Wt → W∞, Pμ-a.s. as t → ∞. In this paper we establish some spatial central
limit theorems for X.

Let P denote the function class

P := {f ∈ C
(
R

d
) : there exists k ∈ N such that |f (x)|/‖x‖k → 0 as ‖x‖ → ∞}.

For each f ∈ P we define an integer γ (f ) in term of the spectral decomposition of f . In
the small branching rate case α < 2γ (f )b, we prove that there is constant σ 2

f ∈ (0,∞) such
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that, conditioned on no-extinction,
(

e−αt‖Xt‖, 〈f,Xt 〉√‖Xt‖
)

d→ (
W ∗, G1(f )

)
, t → ∞,

where W ∗ has the same distribution as W∞ conditioned on no-extinction and G1(f ) ∼
N (0, σ 2

f ). Moreover, W ∗ and G1(f ) are independent. In the critical rate case α = 2γ (f )b,
we prove that there is constant ρ2

f ∈ (0,∞) such that, conditioned on no-extinction,

(

e−αt‖Xt‖, 〈f,Xt 〉
t1/2

√‖Xt‖
)

d→ (
W ∗, G2(f )

)
, t → ∞,

where W ∗ has the same distribution as W∞ conditioned on no-extinction and G2(f ) ∼
N (0, ρ2

f ). Moreover W ∗ and G2(f ) are independent. We also establish two central limit
theorems in the large branching rate case α > 2γ (f )b.

Our central limit theorems in the small and critical branching rate cases sharpen the cor-
responding results in the recent preprint of Miłoś in that our limit normal random variables
are non-degenerate. Our central limit theorems in the large branching rate case have no
counterparts in the recent preprint of Miłoś. The main ideas for proving the central limit
theorems are inspired by the arguments in K. Athreya’s 3 papers on central limit theorems
for continuous time multi-type branching processes published in the late 1960’s and early
1970’s.

Keywords Central limit theorem · Backbone decomposition · Superprocess · Super
Ornstein-Uhlenbeck process · Branching process · Branching Ornstein-Uhlenbeck
process · Ornstein-Uhlenbeck process

Mathematics Subject Classification (2000) Primary 60J80 · Secondary 60G57 · 60J45

1 Introduction

1.1 Model

Throughout this paper, d ≥ 1 is an integer and b > 0 is a number. We use ξ = {ξt : t ≥ 0}
to denote an Ornstein-Uhlenbeck process (OU process, for short) on R

d , that is, a diffusion
process with infinitesimal generator

L := 1

2
σ 2� − bx · ∇. (1.1)

For any x ∈ R
d , we use Πx to denote the law of ξ starting from x. The semigroup of ξ will

be denoted by {Tt : t ≥ 0}.
Consider a branching mechanism of the form

ψ(λ) = −αλ + βλ2 +
∫

(0,+∞)

(
e−λx − 1 + λx

)
n(dx), λ > 0, (1.2)

where α = −ψ ′(0+) > 0, β ≥ 0, and n is a measure on (0,∞) such that
∫

(0,+∞)

x2n(dx) < +∞. (1.3)
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Let MF (Rd) be the space of finite measures on R
d . In this paper we will always assume

that X = {Xt : t ≥ 0} is a super-Ornstein-Uhlenbeck process (super-OU process, for short)
with underlying spatial motion ξ and branching mechanism ψ . We will sometimes call X a
(ξ,ψ)-superprocess. The existence of such superprocesses is well-known, see, for instance,
[13]. X is a Markov branching process taking values in MF (Rd). For any μ ∈ MF (Rd),
we denote the law of X with initial configuration μ by Pμ. The total mass of the process
X is a continuous-state branching process with branching mechanism ψ . The assumption
(1.3) implies that the total mass process of X does not explode. Since we always assume
that α > 0, X is a supercritical superprocess.

Let B+
b (Rd) be the space of positive, bounded measurable functions on R

d . As usual,
〈f,μ〉 := ∫ f (x)μ(dx) and ‖μ‖ := 〈1,μ〉. Then for every f ∈ B+

b (Rd) and μ ∈ MF (Rd),

− logPμ

(
e−〈f,Xt 〉)= 〈uf (·, t),μ〉, (1.4)

where uf (x, t) is the unique positive solution to the equation

uf (x, t) + Πx

∫ t

0
ψ
(
uf (ξs, t − s)

)
ds = Πxf (ξt ). (1.5)

In addition, we assume that ψ(∞) = ∞ which implies that the probability of the extinc-
tion event E := {limt→∞ ‖Xt‖ = 0} is contained in (0,1), see for example the summary at
the end of [23, Sect. 10.2.2]. Since ψ is convex with ψ(0) = 0,ψ(∞) = ∞ and ψ ′(0+) < 0,
ψ has exactly two roots in [0,∞); let λ∗ be the larger one. We have

Pμ

(
lim
t→∞‖Xt‖ = 0

)
= e−λ∗‖μ‖.

Using the expectation formula of ‖Xt‖ and the Markov property of X, it is not hard to
prove that (see Lemma 3.1 for a proof), under Pμ, the process Wt = e−αt‖Xt‖ is a positive
martingale. Therefore it converges:

Wt → W∞, Pμ-a.s. as t → ∞. (1.6)

Using the assumption (1.3) one can show that, as t → ∞, Wt also converges in L2(Pμ), so
W∞ is non-degenerate and the second moment is finite. Moreover, we have Pμ(W∞) = ‖μ‖
and {W∞ = 0} = E .

The purpose of this paper is to establish some spatial central limit theorems for the super-
OU process. More precisely, we want to find At and Ct , for suitable test functions f , such
that Ct(〈f,Xt 〉−At) converges to some non-degenerate normal random variable as t → ∞.
It turns out that Ct is determined by the second moment of 〈f,Xt 〉 which depends on the
sign of α − 2γ (f )b, where γ (f ) is a quantity to be defined later.

There are many papers studying laws of large numbers for branching processes, branch-
ing diffusions and superprocesses. For example, see [2, 3, 17] for branching processes, [10,
11, 31] for branching diffusions and [16, 18, 26, 27] for superprocesses. For super-OU pro-
cesses with binary branching mechanism, the following weak law of large numbers was
proved in [18]:

e−αt 〈f,Xt 〉 → 〈f,ϕ〉W∞, in probability (1.7)

where f ∈ C+
c (Rd), ϕ(x) = ( b

πσ 2 )d/2 exp(− b

σ 2 ‖x‖2) and 〈f,ϕ〉 = ∫
Rd f (x)ϕ(x)dx. When

〈f,ϕ〉 = 0, it is natural to consider central limit theorems for 〈f,Xt 〉, that is, to find a nor-
malization Ct so that Ct 〈f,Xt 〉 converges to a non-degenerate Gaussian random variable
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as t → ∞. For branching processes, there are already papers dealing with central limit the-
orems. In 1966, Kesten and Stigum [21, 22] gave a central limit theorem for multi-type
Galton-Watson processes by using the Jordan canonical form of the expectation matrix
M . Then in [6–8], Athreya proved central limit theorems for multi-type continuous time
branching processes; the main tools used in [6–8] are also the Jordan canonical form and
the eigenvectors of the matrix Mt , the mean matrix at time t . Asmussen, Hering and Kei-
ding discussed central limit theorems for some general branching Markov processes, see
[4, 5] for example. Recently, central limit theorems for branching OU particle systems and
for super-OU processes were established in [1] and [29] respectively. However, the limiting
normal random variables in the central limit theorems in [1, 29] (see [1, Theorems 3.2 and
3.6] and [29, Theorems 3 and 4]) may be degenerate (i.e., equal to zero), so the central limit
theorems in [1, 29] are not completely satisfactory.

In this paper, we sharpen the results of [29] and establish central limit theorems for super-
OU processes which are more satisfactory in the sense that the limiting normal random
variables in our results are non-degenerate. The setup of this paper is more general than that
of [29] since we allow a general branching mechanism as opposed to the binary branching
mechanism in [29]. The only assumption on the branching mechanism is the second moment
condition (1.3), which is necessary for central limit theorems.

We mention that we are following Athreya’s argument for multi-type (finite type)
branching processes, also called multidimensional Galton-Watson processes, and show that
Athreya’s ideas for multi-type branching processes also work for super-OU processes, which
can be regarded as an infinite-type branching process. The main tool of this paper is, similar
to that of [29], also the backbone decomposition of supercritical superprocesses, see [9].
The main idea of the backbone decomposition is that a supercritical super-OU process can
be constructed from a branching OU process (known as the backbone), in which particles
live forever (known as immortal particles). After dressing the backbone with subcritical
super-OU processes, we get a measure-valued Markov process, which gives a version of the
super-OU process. Since subcritical super-OU process will become extinct in finite time,
we can imagine that the limit behavior of super-OU process is determined by the backbone
branching OU process. In this paper we prove that these intuitive ideas work well. For the
precise backbone decomposition, see Sect. 2.1.

We remark here that, under the extra condition
∫∞ 1

ψ(λ)
dλ < ∞ on the branching mech-

anism, we could use the excursion measures {Nx, x ∈ R
d} of our superprocess instead of the

backbone decomposition to prove our central limit theorems. In fact, in this case, the argu-
ments are somewhat shorter. We choose to use the backbone decomposition argument since
we could not make the excursion measure argument work in the general case. The main dif-
ficulty is that Nx is not a finite measure. Under the assumption

∫∞ 1
ψ(λ)

dλ < ∞, the event E
is equal to the event {ζ0 < ∞}, Pμ-a.s., where ζ0 = inf{t > 0,‖Xt‖ = 0}, and more impor-
tantly, Nx(·, ζ0 > t) < ∞ is a finite and non-zero measure for any t > 0. Without the extra
assumption, it might happen that Pδx (ζ0 ≤ t) = 0 for all t > 0 and thus Nx(ζ0 > t) = ∞.

The main feature of the super OU processes used in this paper is that the spectrum of
the generator of the OU process is discrete and that eigenfunctions form a complete or-
thonormal basis in a certain L2 space. A natural and important follow-up question is the
following: can one extend the central limit theorems to supercritical superprocesses with
general spatial motion and with spatial-dependent branching mechanism? In the sequel [30]
to the present paper, we formulated a general setup and established spatial central limit the-
orems for supercritical branching Markov processes with general spatial motion and general
spatial-dependent branching mechanism. By combining the ideas of the present paper with
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that of [30], one could extend the central limit theorems of this paper to supercritical su-
perprocesses with general spatial motion and with spatial-dependent branching mechanism.
We will carry this out later.

1.2 Eigenfunctions of OU Processes

Recall that {Tt , t ≥ 0} is the semigroup of the OU process ξ . It is well-known that ξ has an
invariant density

ϕ(x) =
(

b

πσ 2

)d/2

exp

(

− b

σ 2
‖x‖2

)

. (1.8)

Let L2(ϕ) := {h : ∫
Rd |h(x)|2ϕ(x)dx < ∞}. For h1, h2 ∈ L2(ϕ), we define

〈h1, h2〉ϕ :=
∫

Rd

h1(x)h2(x)ϕ(x)dx.

In this subsection, we recall some results on the spectrum in L2(ϕ) of the operator L defined
in (1.1), more details can be found in [28]. For p = (p1,p2, . . . , pd) ∈ Z

d+, let |p| =∑d

j=1 pj

and p! =∏d

j=1 pj !. Recall the Hermite polynomials {Hp(x),p ∈ Z
d+}:

Hp(x) = (−1)|p|e‖x‖2 ∂

∂x
p1
1 · · · ∂x

pd

d

(
e−‖x‖2)

. (1.9)

The eigenvalues of L are {−mb,m = 0,1,2, . . .} and the corresponding eigenspaces Am are
given by

Am := Span{φp, |p| = m}, (1.10)

where

φp(x) = 1
√

p!2|p| Hp

(√
b

σ
x

)

.

In particular, φ0,0,...,0(x) = 1, φei
(x) =

√
2b
σ

xi , where ei stands for the unit vector in the xi

direction. The function φp is an eigenfunction of L corresponding to the eigenvalue −|p|b
and therefore

Ttφp(x) = e−|p|btφp(x). (1.11)

Moreover, the eigenfunctions {φp(x),p ∈ Z
d+} form a complete orthonormal basis for

L2(ϕ). Thus every f ∈ L2(ϕ) admits the following L2(ϕ) expansion:

f (x) =
∞∑

m=0

∑

|p|=m

apφp(x), (1.12)

where ap = 〈f,φp〉ϕ . Define

γ (f ) := inf
{
n ≥ 0 : there exists p ∈ Z

d
+ with |p| = n such that ap �= 0

}
, (1.13)

where we use the usual convention inf∅ = ∞. In this paper we will use P to denote the
function class

P := {f ∈ C
(
R

d
) : there exists k ∈N such that |f (x)|/‖x‖k → 0 as ‖x‖ → ∞}.



14 Y.-X. Ren et al.

We easily see that P ⊂ L2(ϕ) and for f ∈ P , there exists k ∈ N such that

|f (x)| � 1 + ‖x‖k,

where we used the following notation: for two positive functions f and g, f (x) � g(x)

means that there exists a constant c > 0 such that f (x) ≤ cg(x).

1.3 Main Results for Super-OU Processses

In this subsection we give the main results of this paper. The proofs will be given in the
later sections. In the remainder of this paper, whenever we deal with an initial configuration
μ ∈ MF (Rd), we are implicitly assuming that it has compact support.

1.3.1 Large Branching Rate: α > 2bγ (f )

For each p ∈ Z
d+, we define

H
p
t := e−(α−|p|b)t 〈φp,Xt 〉, t ≥ 0.

Then one can show (see Lemma 3.1 below) that, if α > 2|p|b, H
p
t is a Pμ-martingale

bounded in L2(Pμ), and thus the limit H
p
∞ := limt→∞ H

p
t exists Pμ-a.s. and in L2(Pμ).

Theorem 1.1 If f ∈ P satisfies α > 2γ (f )b, then as t → ∞,

e−(α−γ (f )b)t 〈f,Xt 〉 →
∑

|p|=γ (f )

apHp
∞, in L2(Pμ).

Remark 1.2 When γ (f ) = 0, H 0
t reduces to Wt , and thus H 0∞ = W∞. Therefore by Theo-

rem 1.1 and the fact that a0 = 〈f,ϕ〉, we get that, as t → ∞,

e−αt 〈f,Xt 〉 → 〈f,ϕ〉W∞, in L2(Pμ).

In particular, the convergence also holds in Pμ-probability, so it implies the results in [18]
in the case of super-OU processes. Moreover, by (1.6), on Ec , we have

‖Xt‖−1〈f,Xt 〉 → 〈f,ϕ〉, in Pμ-probability.

Remark 1.3 We think that the convergence in Theorem 1.1 is also valid in the almost sure
sense. In fact, from the proof below we see that the first-order term is a L2(Pμ)-bounded
martingale, and the second moment of the remainder term decays exponentially fast, which
implies that we have almost sure convergence along the discrete time sequences {nδ,n ≥ 1}
for any δ > 0. However, we have not been able yet to prove the almost sure convergence for
continuous time. In [10], Conner gave a proof of a similar almost sure convergence result
for branching Brownian motion in a finite interval with absorbing boundary, however, his
technology does not work in the present case.
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1.3.2 Small Branching Rate: α < 2γ (f )b

Let

σ 2
f := A

∫ ∞

0
eαs
〈
(Tsf )2, ϕ

〉
ds = A

∞∑

n=γ (f )

∑

|p|=n

a2
p

2nb − α
, (1.14)

where

A := ψ(2)(0+) = 2β +
∫

(0,∞)

x2n(dx) < ∞. (1.15)

Obviously, under the assumptions of this paper, A ∈ (0,∞). In the rest of this paper, A will
always stand for this constant.

Theorem 1.4 If f ∈ P satisfies α < 2γ (f )b, then σ 2
f ∈ (0,∞) and, under Pμ(· | Ec), it

holds that
(

e−αt‖Xt‖, 〈f,Xt 〉√‖Xt‖
)

d→ (
W ∗, G1(f )

)
, t → ∞, (1.16)

where W ∗ has the same distribution as W∞ conditioned on Ec and G1(f ) ∼ N (0, σ 2
f ).

Moreover, W ∗ and G1(f ) are independent.

Remark 1.5 Using the theorem above, we get that if α < 2γ (f )b, then, under Pμ, we have

e−αt/2〈f,Xt 〉 d→ G1(f )
√

W∞,

where G1(f ) is the same as in the theorem above.

1.3.3 The Critical Case: α = 2γ (f )b

Define

ρ2
f := A

∑

|p|=γ (f )

(ap)2. (1.17)

Obviously, ρ2
f ∈ (0,∞).

Theorem 1.6 If f ∈ P satisfies α = 2γ (f )b, then, under Pμ(· | Ec), it holds that

(

e−αt‖Xt‖, 〈f,Xt 〉
t1/2

√‖Xt‖
)

d→ (
W ∗, G2(f )

)
, t → ∞,

where W ∗ has the same distribution as W∞ conditioned on Ec , G2(f ) ∼ N (0, ρ2
f ). More-

over W ∗ and G2(f ) are independent.

Remark 1.7 Using the theorem above, we get that if α = 2γ (f )b, then, under Pμ, we have

t−1/2e−αt/2〈f,Xt 〉 d→ G2(f )
√

W∞, t → ∞,

where G2(f ) is the same as in the theorem above.
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Remark 1.8 Note that the limiting normal random variables in our Theorems 1.4 and 1.6 are
non-degenerate.

Remark 1.9 The results of [29] correspond to the case γ (f ) = 1 in the present paper. For
the small branching rate case of [29], the definition of σ 2

f in [29, (3.1)] can be simplified and
there is a minor mistake in [29, (3.1)]. In fact, using the notation of [29],

σ 2
f = 2β

∫ ∞

0
e−αs

〈
ϕ,
(
Pα

s f̃ (·))2〉ds,

f̃ (x) = f (x) − 〈f,φ〉, since it is easy to check that the sum of the last two parts of [29,
(3.1)] is 0, that is

∫ ∞

0

〈
ϕ,
(−2β

(
P−α

s f̃ (·))2 + 4αβu(·, s))〉ds = 0,

where u(x, s) = ∫ s

0 P−α
s−u[(P−α

u f̃ (·))2](x) du. Furthermore, the factor β/α on the right side
of [29, (3.1)] should also be deleted. In the critical branching case of [29], the factor β/α on
the right side of [29, (3.2)] should be deleted. The correct form of [29, (3.2)] should be (in
the notation of [29])

σ 2
f = 2β

∫

Rd

(
x ◦ 〈grad(f ),ϕ

〉)2
ϕ(x)dx.

With these minor corrections, the results of [29] coincide with our Theorems 1.1, 1.4 and
1.6 when γ (f ) = 1.

For convenience, we introduce the following notation. For any f ∈ L2(ϕ), we define

f(s)(x) =
∑

γ (f )≤m<α/(2b)

∑

|p|=m

apφp(x), f(c)(x) =
∑

m=α/(2b)

∑

|p|=m

apφp(x),

and

f(l)(x) = f (x) − f(s)(x) − f(c)(x) =
∞∑

m>α/(2b)

∑

|p|=m

apφp(x).

Strictly speaking, f(s), f(c), f(l) also depend on α/(2b). For simplicity of notation, we omit
this dependence in the notation above.

Combining Theorems 1.1, 1.4 and 1.6, we have the following expansion of 〈f,Xt 〉: for
any f ∈ P ,

〈f,Xt 〉 =
∑

γ (f )≤m< α
2b

∑

|p|=m

ape−(α−mb)t 〈φp,Xt 〉 · e(α−mb)t

+
∑

|p|= α
2b

apt−1/2e−(α/2)t 〈φp,Xt 〉 · √te(α/2)t + 〈f(l),Xt 〉

=
∑

γ (f )≤m< α
2b

∑

|p|=m

apUp(t) · e(α−mb)t +
∑

|p|= α
2b

apUp(t) · √teαt/2 + 〈f(l),Xt 〉,

(1.18)
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where

Up(t) =
{

e−(α−|p|b)t 〈φp,Xt 〉, |p| < α
2b

,

t−1/2e−αt/2〈φp,Xt 〉, |p| = α
2b

.

Further, if |p| < α
2b

, then Up(t) = H
p
t converges to H

p
∞, Pμ-a.s. and in L2(Pμ); if |p| = α

2b
,

Up(t) converges in law to G2(φp)
√

W∞ with G2(φp) ∼ N (0,A); e−(α/2)t 〈f(l),Xt 〉 con-
verges in law to G1(f(l))

√
W∞.

1.3.4 Further Results in the Large Branching Rate Case

In this subsection we give two central limit theorems for the case α > 2γ (f )b. These two
theorems have no counterparts in [29]. Define

H∞ :=
∑

γ (f )≤m<α/(2b)

∑

|p|=m

apHp
∞. (1.19)

Let

β2
f(s)

:= A
∑

γ (f )≤m<α/(2b)

1

α − 2mb

∑

|p|=m

a2
p. (1.20)

In Sect. 3.3 we will see that β2
f(s)

= 〈Varδx H∞, ϕ〉.

Theorem 1.10 If f ∈ P satisfies α > 2γ (f )b and f(c) = 0, then β2
f(s)

∈ (0,∞). Under
Pμ(· | Ec), it holds that, as t → ∞,
(

e−αt‖Xt‖, ‖Xt‖−1/2

(

〈f,Xt 〉 −
∑

γ (f )=m<α/(2b)

e(α−mb)t
∑

|p|=m

apHp
∞

))
d→ (

W ∗, G3(f )
)
,

(1.21)
where W ∗ has the same distribution as W∞ conditioned on Ec , and G3(f ) ∼ N (0, σ 2

f(l)
+

β2
f(s)

). Moreover, W ∗ and G3(f ) are independent.

Remark 1.11 If α > 2|p|b, then under Pμ(· | Ec), it holds that, as t → ∞,

(

e−αt‖Xt‖, (〈φp,Xt 〉 − e(α−|p|b)tH
p
∞)

‖Xt‖1/2

)
d→ (

W ∗, G3

)
, (1.22)

where G3 ∼ N (0, A
α−2|p|b ). In particular, for |p| = 0, we have

(

e−αt‖Xt‖, ‖Xt‖ − eαtW∞√‖Xt‖
)

d→ (
W ∗, G3

)
, t → ∞,

where G3 ∼ N (0, A
α
).

Remark 1.12 Using the theorem above, we get that if α > 2γ (f )b and f(c) = 0, then under
Pμ, we have, as t → ∞,
(

e−αt‖Xt‖, e−(α/2)t

(

〈f,Xt 〉 −
∑

γ (f )≤m<α/(2b)

e(α−mb)t
∑

|p|=m

apHp
∞

))
d→ (

W∞,
√

W∞G3(f )
)
,

where G3(f ) is the same as in the theorem above.
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Theorem 1.13 If f ∈ P satisfies f(c) �= 0, then, under Pμ(· | Ec), it holds that, as t → ∞,
(

e−αt‖Xt‖, t−1/2‖Xt‖−1/2

(

〈f,Xt 〉−
∑

γ (f )≤m<α/(2b)

e(α−mb)t
∑

|p|=m

apHp
∞

))
d→ (

W ∗, G4(f )
)
,

(1.23)
where W ∗ has the same distribution as W∞ conditioned on Ec , and

G4(f ) ∼ N
(

0,A
∑

|p|=α/2b

(ap)2

)

.

Moreover, W ∗ and G4(f ) are independent.

Remark 1.14 Note that the limiting normal random variables in our Theorems 1.10 and 1.13
are non-degenerate.

2 Preliminaries

2.1 Backbone Decomposition of Super-OU Processes

In this subsection, we recall the backbone decomposition of [9]. Define another branching
mechanism ψ∗ by

ψ∗(λ) = ψ
(
λ + λ∗)

= α∗λ + βλ2 +
∫

(0,∞)

(
e−λx − 1 + λx

)
e−λ∗xn(dx), (2.1)

where

α∗ = −α + 2βλ∗ +
∫

(0,∞)

(
1 − e−λ∗x

)
xn(dx).

It is easy to see that α∗ = (ψ∗)′(0+) = ψ ′(λ∗) > 0. So the (ξ,ψ∗)-superprocess is subcrit-
ical. Note that it follows from (2.1) that the measure n∗ associated with ψ∗ is e−λ∗xn(dx),
thus for any n ∈ N,

∫∞
0 xnn∗(dx) < ∞. It follows from [9, Lemma 2] that the (ξ,ψ)-

superprocess conditioned on E has the same law as the (ξ,ψ∗)-superprocess. Let P∗
μ be

the law of the (ξ,ψ∗)-superprocess with initial configuration μ, and define

u∗
f (x, t) = − logP∗

δx

(
e−〈f,Xt 〉).

It was shown in [14] that one can associate with {P∗
δx

: x ∈ R
d} a family of measures

{N∗
x : x ∈ R

d}, defined on the same measurable space as the probabilities {P∗
δx

: x ∈ R
d} and

satisfying

N
∗
x

(
1 − e−〈f,Xt 〉)= − logP∗

δx

(
e−〈f,Xt 〉)= u∗

f (x, t), (2.2)

for all f ∈ B+
b (Rd) and t > 0. The branching property implies that P∗

δx
is an infinitely di-

visible measure on the path space of X, that is to say, the space of measure-valued cadlag
functions, D([0,∞),MF (Rd)), and (2.2) is a Lévy-Khinchine formula in which N

∗
x plays

the role of its Lévy measure. The measures {N∗
x : x ∈ R

d} are also called excursion mea-
sures, see[14] and [25] for further details on N

∗
x . For earlier work on excursion measures of

superprocesses, see [15] and [24].
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Let Ma(R
d) be the space of finite integer-valued atomic measures on R

d . For ν ∈
Ma(R

d), let Z = (Zt : t ≥ 0) be a branching OU-process with initial configuration ν.
{Zt, t ≥ 0} is an Ma(R

d)-valued Markov process in which individuals, from the moment
of birth, live for an independent and exponentially distributed period of time with parameter
α∗ during which they move according to the OU-process issued from their position of birth
and at death they give birth at the same position to an independent number of offspring with
distribution (pn : n ≥ 0), where p0 = p1 = 0 and for n ≥ 2,

pn = 1

λ∗α∗

{

β
(
λ∗)21{n=2} + (λ∗)n

∫

(0,∞)

xn

n! e
−λ∗xn(dx)

}

.

The generator of Z is given by

F(s) = α∗∑

n≥0

pn

(
sn − s

)= 1

λ∗ ψ
(
λ∗(1 − s)

)
. (2.3)

Z is referred as the (ξ,F )-backbone in [9]. Moreover, when referring to individuals in Z

we will use the classical Ulam-Harris notation so that every particle in Z has a unique label,
see [20]. Let T be the set of labels of individuals realized in Z. Let |Zt | be the number of
particles alive at time t . For each individual u ∈ T we shall write τu and σu for its birth and
death times respectively and {zu(r) : r ∈ [τu, σu]} for its spatial trajectory. Now we follow
[9] and describe three kinds of immigrations along the backbone Z as follows.

1. Continuous immigration: The process IN
∗

is measure-valued on R
d such that

IN
∗

t :=
∑

u∈T

∑

u∧τu<r≤t∧σu

X
(1,u,r)
t−r ,

where, given Z, independently for each u ∈ T with τu < t , the processes X(1,u,r)· are
countable in number and correspond to D([0,∞),MF (Rd))-valued, Poissonian immi-
gration along the time-space trajectory {(r, zu(r)) : r ∈ (τu, t ∧ σu]} with rate 2βdr ×
dN∗

zu(r).
2. Discontinuous immigration: The processes IP

∗
is measure-valued on R

d such that

IP
∗

t :=
∑

u∈T

∑

t∧τu<r≤t∧σu

X
(2,u,r)
t−r ,

where, given Z, independently for each u ∈ T with τu < t , the processes X(2,u,r)·
are countable in number and correspond to D([0,∞),MF (Rd))-valued, Poissonian
immigration along the time-space trajectory {(r, zu(r)) : r ∈ (τu, t ∧ σu]} with rate
dr × ∫

y∈(0,∞)
ye−λ∗yn(dy)dP∗

yδzu(r)
.

3. Branching point biased immigration: The process I η is measure-valued on R
d such

that

I
η
t =

∑

u∈T
1σu≤tX

(3,u)
t−σu

,

where, given Z, independently for each u ∈ T with σu ≤ t , the process X(3,u)· is an in-
dependent copy of the canonical process X issued at time σu with law P

∗
Yuδzu(σu)

where,
given u has n ≥ 2 offspring, Yu is an independent random variable with distribution
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ηn(dy), where

ηn(dy) = 1

pnλ∗α∗

{

β
(
λ∗)2δ0(dy)1{n=2} + (λ∗)n yn

n! e
−λ∗yn(dy)

}

.

Now we define another MF (Rd)-valued process I = {It : t ≥ 0} by

I := IN
∗ + IP

∗ + I η,

where the processes IN
∗ = {IN

∗
t : t ≥ 0}, IP

∗ = {IP
∗

t : t ≥ 0} and I η = {I η
t : t ≥ 0}, condi-

tioned on Z, are independent of each other. We denote the law of I by Qν . Recall that ν is
the initial configuration of Z.

For μ ∈ MF (Rd), let X̃ be an independent copy of X under P∗
μ and be independent of I .

Then we define a measure-valued process Λ = {Λt : t ≥ 0} by

Λ = X̃ + I. (2.4)

Note that Z, X̃ and the three immigration processes above are defined on the same proba-
bility space. We denote the law of Λ by Pμ×ν . When ν is a Poisson random measure with
intensity measure λ∗μ, then we write this law by Pμ. The following result is proved in [9].

Proposition 2.1 For any μ ∈ MF (Rd), the process (Λ,Pμ) is Markovian and has the same
law as (X,Pμ).

We will need the following σ -fields later on:

Ft = σ(Λs, s ≤ t), t ≥ 0, (2.5)

Gt = σ(Λs,Zs, s ≤ t), t ≥ 0. (2.6)

2.2 Moments

Now we use Laplace transforms to calculate the moments of X. We will omit some details,
for these omitted details, see [13]. For any f ∈ P , we define

uf (x, t, θ) = − logPδx

(
e−〈θf,Xt 〉),

then

uf (x, t, θ) + Πx

∫ t

0
ψ
(
uf (ξs, t − s, θ)

)
ds = θΠxf (ξt ). (2.7)

For convenience, we use u
(n)
f (x, t,0) to denote

dnuf (x,t,θ)

dθn |θ=0. Differentiating both sides of
(2.7) with respect to θ , we get

u
(1)
f (x, t,0) = e−ψ ′(0+)tTtf (x), (2.8)

u
(2)
f (x, t,0) = −ψ(2)(0+)

∫ t

0
e−ψ ′(0+)(t−s)Tt−s

[
u

(1)
f (·, s,0)

]2
(x)ds

= −Aeαt

∫ t

0
eαsTt−s[Tsf ]2(x) ds. (2.9)
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The moments are given by

Pμ

(〈f,Xt 〉
)n = (−1)n dn(e−〈uf (·,t,θ),μ〉)

dθn

∣
∣
∣
θ=0

.

In particular,

Pμ〈f,Xt 〉 = 〈u(1)
f (x, t,0),μ

〉= eαt 〈Ttf,μ〉, (2.10)

Pμ

(〈f,Xt 〉 − Pμ〈f,Xt 〉
)2 = −〈u(2)

f (x, t,0),μ
〉
. (2.11)

Recall that X̃t is defined in Sect. 2.1. It is a subcritical superprocess with branching
mechanism ψ∗(λ) = ψ(λ + λ∗). Thus dmψ∗

dλm (0+) = dmψ

dλm (λ∗) exists for all m ≥ 1. For any
f ∈ P , we define

u∗
f (x, t, θ) = − logPδx

(
e−〈θf,X̃t 〉). (2.12)

Then

u∗
f (x, t, θ) + Πx

∫ t

0
ψ∗(u∗

f (ξs, t − s, θ)
)
ds = θΠxf (ξt ). (2.13)

Differentiating both sides of (2.12) with respect to θ , we have

(
u∗

f

)(1)
(x, t,0) = e−α∗t Ttf (x), (2.14)

(
u∗

f

)(2)
(x, t,0) = −(ψ∗)(2)

(0+)

∫ t

0
e−(ψ∗)′(0+)(t−s)Tt−s

[(
u∗

f

)(1)
(·, s,0)

]2
(x)ds

= −(ψ∗)(2)
(0+)e−α∗t

∫ t

0
e−α∗sTt−s[Tsf ]2(x) ds, (2.15)

(
u∗

f

)(3)
(x, t,0) = −(ψ∗)(3)

(0+)

∫ t

0
e−α∗sTs

[(
u∗

f

)(1)
(·, t − s,0)

]3
(x) ds

− 3
(
ψ∗)(2)

(0+)

∫ t

0
e−α∗sTs

[((
u∗

f

)(1)(
u∗

f

)(2))
(·, t − s,0)

]
(x) ds, (2.16)

and

(
u∗

f

)(4)
(x, t,0) = −

∫ t

0
e−α∗sTs

[
J (·, t − s)

]
(x) ds, (2.17)

where

J (x, t) = [(ψ∗)(4)
(0)
((

u∗
f

)(1))4 + 6
(
ψ∗)(3)

(0)
((

u∗
f

)(1))2(
u∗

f

)(2)]
(x, t,0)

+ [4(ψ∗)(2)
(0)
(
u∗

f

)(1)(
u∗

f

)(3) + 3
(
ψ∗)(2)

(0)
((

u∗
f

)(2))2]
(x, t,0).

By (2.12), the moments of X̃ are given by

Pμ

(〈f, X̃t 〉
)n = (−1)n dn(e

−〈u∗
f

(·,t,θ),μ〉
)

dθn

∣
∣
∣
θ=0

.
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In particular, we have

Pμ〈f, X̃t 〉 = 〈(u∗
f

)(1)
(x, t,0),μ

〉= e−α∗t 〈Ttf,μ〉, (2.18)

Pμ

(〈f, X̃t 〉 − Pμ〈f, X̃t 〉
)2 = −〈(u∗

f

)(2)
(x, t,0),μ

〉
, (2.19)

Pμ

(〈f, X̃t 〉 − Pμ〈f, X̃t 〉
)4 = −〈(u∗

f

)(4)
(x, t,0),μ

〉+ 3
〈(
u∗

f

)(2)
(x, t,0),μ

〉2
. (2.20)

2.3 Estimates on the Semigroup Tt

Recall that ξ = {ξt : t ≥ 0} is the OU process and {Tt } is the semigroup of ξ . It is well-known
that under Πx , ξt ∼ N (xe−bt , σ 2

t ), where σ 2
t = σ 2(1 − e−2bt )/(2b). Let G be an R

d -valued
standard normal random variable, then using (a + b)n ≤ 2n(an + bn), a ≥ 0, b ≥ 0, we get

Tt

(‖ · ‖n
)
(x) = E

(‖σtG + xe−bt‖n
)≤ 2n

[
(σ/

√
2b)nE

(‖G‖n
)+ ‖x‖n

]
. (2.21)

Using this, we can easily get that

Tt

(
1 + ‖ · ‖n

)
(x) ≤ c(n)

(
1 + ‖x‖n

)
, (2.22)

where c(n) does not depend on t .

Lemma 2.2 For any f ∈ L2(ϕ), we have that, for every x ∈ R
d ,

Ttf (x) =
∞∑

n=γ (f )

e−nbt
∑

|p|=n

apφp(x), (2.23)

lim
t→∞ eγ (f )btTtf (x) =

∑

|p|=γ (f )

apφp(x). (2.24)

Moreover, there exists c > 0 such that for t ≥ 1,

|Ttf (x)| ≤ ce−γ (f )bt e
b

2σ2 ‖x‖2
, x ∈R

d . (2.25)

Proof For every f ∈ L2(ϕ), using the fact that ϕ(x) is the invariant density of ξ we get that
∫

ϕ(x)
(
Tt |f |(x)

)2
dx ≤

∫
ϕ(x)Tt

[|f |2](x) dx =
∫

|f (y)|2ϕ(y)dy < ∞, (2.26)

so Ttf (x) ∈ L2(ϕ). Moreover, by the fact ξt ∼ N (xe−bt , σ 2
t ), Tt |f |(x) is continuous in x.

Thus Tt |f |(x) < ∞ for all x ∈ R
d . (2.26) implies that Tt is a bounded linear operator on

L2(ϕ). Let fk(x) =∑k

n=0

∑
|p|=n apφp(x). Since fk → f in L2(ϕ), we have Ttfk → Ttf in

L2(ϕ), as k → ∞. By linearity, we have

Ttfk(x) =
k∑

n=0

e−nbt

(∑

|p|=n

apφp(x)

)

.

We claim that the series
∑∞

n=0 e−nbt (
∑

|p|=n apφp(x)) is uniformly convergent on any com-
pact subset of Rd . Thus

∑∞
n=0 e−nbt (

∑
|p|=n apφp(x)) is continuous in x. So for all x ∈ R

d ,

Ttf (x) =
∞∑

n=0

e−nbt

(∑

|p|=n

apφp(x)

)

.
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Now we prove the claim. In fact, by Cramer’s inequality (for example, see [19, Equation (19)
on p. 207]), for all p ∈ Z

d+ we have

|φp(x)| ≤ Ke
b

2σ2 ‖x‖2
, (2.27)

where K is a constant. So we only need to prove
∑∞

n=0 e−nbt (
∑

|p|=n |ap|) < ∞. By Hölder’s
inequality,

∞∑

n=0

e−nbt

(∑

|p|=n

|ap|
)

≤
( ∞∑

n=γ (f )

Kne
−2nbt

)1/2( ∞∑

n=γ (f )

∑

|p|=n

|ap|2
)1/2

, (2.28)

where Kn = (n+d−1
d−1

)= �{p ∈ Z
d+ : |p| = n}. Since Kn ≤ (n + d)d , we have that

∞∑

n=γ (f )

Kne
−2nbt < ∞.

Using the fact that {φp(x),p ∈ Z
d+} form a complete orthogonal basis for L2(ϕ), we get∑∞

n=γ (f )

∑
|p|=n |ap|2 = ∫ ϕ(x)|f (x)|2 dx < ∞. Therefore the claim is true.

By (2.27) and (2.28), for t ≥ 1, we have

|Ttf (x)| ≤ e−γ (f )bt

( ∞∑

n=0

Kn+γ (f )e
−2nb

)1/2( ∞∑

n=γ (f )

∑

|p|=n

|ap|2
)1/2

Ke
b

2σ2 ‖x‖2

� e−γ (f )bt e
b

2σ2 ‖x‖2
, x ∈R

d . (2.29)

Therefore, for t ≥ 1,

∣
∣
∣
∣e

γ (f )btTtf (x) −
∑

|p|=γ (f )

apφp(x)

∣
∣
∣
∣ = eγ (f )bt

∣
∣
∣
∣Ttf (x) − e−γ (f )bt

∑

|p|=γ (f )

apφp(x)

∣
∣
∣
∣

= eγ (f )bt

∣
∣
∣
∣Tt

(

f −
∑

|p|=γ (f )

apφp

)

(x)

∣
∣
∣
∣

� e−bt e
b

2σ2 ‖x‖2
, (2.30)

which implies (2.24). The proof is now complete. �

For p ∈ Z
d+, we use the notation f (p)(x) := ∂

∂x
p1
1 ∂x

p2
2 ···∂x

pd
d

f (x). Define

P∗ = {f ∈ C∞ : f (p) ∈ P for all p ∈ Z
d
+
}
.

It can be easily shown that, for any f ∈ P , Ttf (x) ∈ P∗ for every t > 0.

Lemma 2.3 For any f ∈ P∗ and p ∈ Z
d+ satisfying 0 ≤ |p| ≤ γ (f ), we have γ (f (p)) ≥

γ (f ) − |p|.
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Proof By the definition of φp and ϕ, it is easy to check that

φp(x)ϕ(x) = (−1)|p|cpϕ(p)(x),

where cp = 1√
p!2|p| (

σ 2

b
)|p|/2. Integrating by parts, we get

∫
f (x)φp(x)ϕ(x) dx = cp

∫

Rd

f (p)(x)ϕ(x) dx. (2.31)

Thus

γ (f ) = inf

{

k : there exists p such that |p| = k and
∫

Rd

f (p)(x)ϕ(x) dx �= 0

}

.

Hence if |p′| < γ (f ) − |p|, we have
∫
Rd f (p+p′)(x)ϕ(x) dx = 0, which implies γ (f (p)) ≥

γ (f ) − |p|. �

In the following lemma, we give another estimate for Ttf , which will be very useful
later.

Lemma 2.4 For every f ∈ P , there exist r ∈N and c > 0 such that

eγ (f )bt |Ttf (x)| ≤ c
(
1 + ‖x‖r

)
, (2.32)

∣
∣
∣
∣e

γ (f )btTtf (x) −
∑

|p|=γ (f )

apφp(x)

∣
∣
∣
∣≤ ce−bt

(
1 + ‖x‖r

)
. (2.33)

Proof Let g(x) = T1f (x) ∈ P∗. Then γ (g) = γ (f ) and there exist k ∈ N and c1 > 0 such
that, for |p| = 0,1, . . . , γ (f ), |g(p)(x)| ≤ c1(1 + ‖x‖k). For x = (x1, x2, . . . , xd) ∈ R

d , we
define xp :=∏d

i=1 x
pi

i . Then for s > 0 we have

Tsg(x) = Ts

[
g
(· + xe−bs

)]
(0)

= Ts

[

g
(· + xe−bs

)−
γ (f )−1∑

m=0

∑

|p|=m

g(p)(·)xpe−mbs/p!
]

(0)

+
γ (f )−1∑

m=0

∑

|p|=m

Ts

[
g(p)
]
(0)xpe−mbs/p!

= (I ) + (II).

It follows from (2.25) and the fact that γ (g(p)) ≥ γ (g) − |p|, we have

sup
s>0

e(γ (g)−|p|)bs |Ts

[
g(p)
]
(0)| < ∞.

Thus

|(II)| � e−γ (f )bs

γ (f )−1∑

m=0

∑

|p|=m

|xp| � e−γ (f )bs
(
1 + ‖x‖γ (f )

)
.
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Using Taylor’s formula and the fact |g(p)(x)|� 1 + ‖x‖k , we get

∣
∣
∣
∣
∣
g
(
y + xe−bs

)−
γ (f )−1∑

m=0

∑

|p|=m

g(p)(y)xpe−mbs/p!
∣
∣
∣
∣
∣
=

∑

|p|=γ (f )

|g(p)(θ)||xp|e−γ (f )bs/
(
γ (f )!)

�
(
1 + ‖y‖k + ‖x‖k

)|x|γ (f )e−γ (f )bs ,

where θ is a point on the line segment connecting y and y + xe−bs . Then by the fact that
Ts[‖ · ‖k](x)� 1 + ‖x‖k , we get sups>0 Ts[‖ · ‖k](0) < ∞. Therefore, we have

|(I )| � (1 + ‖x‖k+γ (f )
)
e−γ (f )bs .

Consequently,

eγ (f )bs |Tsg|(x) � 1 + ‖x‖k+γ (f ).

Let r1 = k + γ (f ). For t ≥ 1, combining Ttf (x) = Tt−1(g)(x) with the above inequality,
we arrive at (2.32) for t ≥ 1. For t < 1,

eγ (f )bt |Ttf (x)|� eγ (f )b
(
1 + ‖x‖k

)
� 1 + ‖x‖r1 ,

so (2.32) is also valid.
It follows from (2.32) that there exists r2 ∈N such that

e(γ (f )+1)bt

∣
∣
∣
∣Ttf (x) − e−γ (f )bt

∑

|p|=γ (f )

apφp(x)

∣
∣
∣
∣� 1 + ‖x‖r2 .

Now (2.33) follows immediately. �

From the above calculations, we have

Lemma 2.5 Let f ∈ P .

(i) If α < 2γ (f )b, then

lim
t→∞ e−(α/2)t

Pδx

(〈f,Xt 〉
)= 0,

lim
t→∞ e−αt

Varδx 〈f,Xt 〉 = σ 2
f ,

(2.34)

where Varδx stands for the variance under Pδx and σ 2
f is defined in (1.14).

(ii) If α = 2γ (f )b, then

lim
t→∞ t−1/2e−(α/2)t

Pδx

(〈f,Xt 〉
)= 0, (2.35)

and there exists r ∈N such that

|t−1e−αt
Varδx 〈f,Xt 〉|� 1 + ‖x‖2r (2.36)

and

|t−1e−αt
Varδx 〈f,Xt 〉 − ρ2

f | � t−1
(
1 + ‖x‖r

)
, (2.37)
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which in particular implies that

lim
t→∞ t−1e−αt

Varδx 〈f,Xt 〉 = ρ2
f , (2.38)

where ρ2
f is defined in (1.17).

(iii) If α > 2γ (f )b, then

lim
t→∞ e−2(α−γ (f )b)t

Varδx 〈f,Xt 〉 = η2
f (x), (2.39)

where

η2
f (x) = A

∫ ∞

0
e−(α−2γ (f )b)sTs

( ∑

|p|=γ (f )

apφp

)2

(x) ds. (2.40)

Proof It follows from (2.9) and (2.11) that

Varδx 〈f,Xt 〉 = Aeαt

∫ t

0
eαsTt−s[Tsf ]2(x)ds = Ae2αt

∫ t

0
e−αsTs[Tt−sf ]2(x)ds. (2.41)

(i) If α < 2γ (f )b, by Lemma 2.2, we have limt→∞ eγ (f )btTtf (x) =∑|p|=γ (f ) apφp(x).
Thus

lim
t→∞ e−(α/2)t

Pδx 〈f,Xt 〉 = lim
t→∞ e(α−2γ (f )b)t/2

[
eγ (f )btTtf (x)

]= 0.

It follows from Lemma 2.4 that there exists r ∈ N such that eγ (f )bs |Tsf |(x) � 1 + ‖x‖r .
Using (2.22), we have

Tt−s

[
eγ (f )bsTsf

]2
(x)� 1 + ‖x‖2r . (2.42)

Thus eαsTt−s[Tsf ]2(x) � e(α−2γ (f )b)s(1 +‖x‖2r ). Hence by the dominated convergence the-
orem, we get

lim
t→∞

∫ t

0
eαsTt−s[Tsf ]2(x) ds =

∫ ∞

0
eαs
〈
(Tsf )2, ϕ

〉
ds.

By (2.23) and the fact that {φp(x),p ∈ Z
d+} is orthonormal in L2(ϕ), we have

〈
(Tsf )2, ϕ

〉=
∞∑

n=γ (f )

∑

|p|=n

e−2nbsa2
p,

which implies (2.34).
(ii) If α = 2γ (f )b, then by (2.41), we have

t−1e−αt
Varδx 〈f,Xt 〉 = At−1

∫ t

0
Tt−s

[
eγ (f )bsTsf

]2
(x) ds. (2.43)

By Lemma 2.4, there exists r ∈N satisfying (2.32), (2.33) and

∣
∣
∣
∣
∑

|p|=γ (f )

apφp(x)

∣
∣
∣
∣� 1 + ‖x‖r ,
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which follows from the fact that φp(x) is a polynomial. Then by (2.32) and (2.43), it is easy
to get (2.36).

Let h(x) := (
∑

|p|=γ (f ) apφp(x))2. Then we have

∣
∣
(
eγ (f )bsTsf (x)

)2 − h(x)
∣
∣

≤
∣
∣
∣
∣e

γ (f )bsTsf (x) −
∑

|p|=γ (f )

apφp(x)

∣
∣
∣
∣

(

eγ (f )bs |Tsf |(x) +
∣
∣
∣
∣
∑

|p|=γ (f )

apφp(x)

∣
∣
∣
∣

)

� e−bs
(
1 + ‖x‖2r

)
.

Since γ (h) = 0 and
∑

|p|=γ (f ) a
2
p = 〈h,ϕ〉, by (2.33), there exists r ′ ∈N such that

∣
∣
∣
∣Tt−sh(x) −

∑

|p|=γ (f )

a2
p

∣
∣
∣
∣� e−b(t−s)

(
1 + ‖x‖r ′)

. (2.44)

Let r0 = max(2r, r ′), then
∣
∣
∣
∣Tt−s

(
eγ (f )bsTsf

)2
(x) −

∑

|p|=γ (f )

a2
p

∣
∣
∣
∣

≤ Tt−s

∣
∣(eγ (f )bsTsf (x)

)2 − h(x)
∣
∣+
∣
∣
∣
∣Tt−sh(x) −

∑

|p|=γ (f )

a2
p

∣
∣
∣
∣

�
(
e−bs + e−b(t−s)

)(
1 + ‖x‖r0

)
.

It follows that

1

t

∫ t

0

∣
∣
∣
∣Tt−s

(
eγ (f )bsTsf

)2
(x) −

∑

|p|=γ (f )

a2
p

∣
∣
∣
∣ds

�
∫ t

0 (e−bs + e−b(t−s))(1 + ‖x‖r0) ds

t
� t−1

(
1 + ‖x‖r0

)
. (2.45)

Then (2.37) follows from (2.43) and (2.45).
(iii) If α > 2γ (f )b, then by (2.41), we have

e−2(α−γ (f )b)t
Varδx 〈f,Xt 〉 = A

∫ t

0
e−(α−2γ (f )b)sTs

[
eγ (f )b(t−s)Tt−sf

]2
(x) ds.

By Lemma 2.4, there exists r ∈N such that [eγ (f )b(t−s)Tt−sf (x)]2 ≤ c(1 + ‖x‖2r ). Thus

Ts

[
eγ (f )b(t−s)Tt−sf

]2
(x)� 1 + ‖x‖2r .

Now by the dominated convergence theorem and (2.24), we have

lim
t→∞

∫ t

0
e−(α−2γ (f )b)sTs

[
eγ (f )b(t−s)Tt−sf

]2
(x) ds

= A

∫ ∞

0
e−(α−2γ (f )b)sTs

( ∑

|p|=γ (f )

apφp

)2

(x) ds.

The proof of (iii) is now complete. �
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According to [9], under Pδx , we have that, conditioned on Ft (see (2.5)), the backbone
Zt is a Poisson point process with the intensity λ∗Λt . In particular, Z0 = Nδx , where N is a
Poisson random variable with parameter λ∗. Then we have

Λt = X̃t +
N∑

j=1

I
j
t , (2.46)

where I j , j = 1,2, . . . are independent copies of I under Qδx and are independent of N .
The first moment of I can be calculated by

Pδx 〈f,Λt 〉 = Pδx 〈f, X̃t 〉 + λ∗
Qδx 〈f, It 〉. (2.47)

Thus

Qδx 〈f, It 〉 = 1

λ∗
(
Pδx 〈f,Λt 〉 − Pδx 〈f, X̃t 〉

)= 1

λ∗
(
eαt − e−α∗t

)
Ttf (x). (2.48)

For the second moment, let Varδx stand for the variance under Pδx and Vδx stand for the
variance under Qδx . By (2.46), we have

Varδx 〈f,Λt 〉 = Varδx 〈f, X̃t 〉 + λ∗
Qδx 〈f, It 〉2.

Thus

Qδx 〈f, It 〉2 = 1

λ∗
(
Varδx 〈f,Xt 〉 − Varδx 〈f, X̃t 〉

)
. (2.49)

Corollary 2.6 Let {It }t≥0 be the process described in the Sect. 2.1 and f ∈ P .

(i) If α < 2γ (f )b, then

lim
t→∞ e−(α/2)t

Qδx

(〈f, It 〉
)= 0, (2.50)

lim
t→∞ e−αt

Vδx 〈f, It 〉 = A

λ∗

∫ ∞

0
eαs
〈
(Tsf )2, ϕ

〉
ds = σ 2

f

λ∗ . (2.51)

(ii) If α = 2γ (f )b, then

lim
t→∞ t−1/2e−(α/2)t

Qδx

(〈f, It 〉
)= 0, (2.52)

and there exists r ∈N such that

|t−1e−αt
Vδx 〈f, It 〉| � 1 + ‖x‖2r (2.53)

and
∣
∣
∣
∣t

−1e−αt
Vδx 〈f, It 〉 − A

λ∗
∑

|p|=γ (f )

a2
p

∣
∣
∣
∣� t−1

(
1 + ‖x‖r

)
, (2.54)

which in particular implies that

lim
t→∞ t−1e−αt

Vδx 〈f, It 〉 = A

λ∗
∑

|p|=γ (f )

a2
p. (2.55)
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(iii) If α > 2γ (f )b, then

lim
t→∞ e−2(α−γ (f )b)t

Vδx 〈f, It 〉 = η2
f (x)

λ∗ − 1

(λ∗)2

( ∑

|p|=γ (f )

apφp(x)

)2

. (2.56)

Proof Using (2.46) and Lemma 2.5, we can easily obtain the corollary. Here we just give
the proof of (2.51). By (2.49), we have

e−αt
Vδx 〈f, It 〉 = 1

λ∗ e−αt
Varδx 〈f,Xt 〉 − 1

λ∗ e−αtVarδx 〈f, X̃t 〉 − e−αt
(
Qδx 〈f, It 〉

)2
. (2.57)

Using (2.15) and (2.19), we have

Varδx 〈f, X̃t 〉 = (ψ∗)′′(0+)e−α∗t

∫ t

0
e−α∗sTt−s[Tsf ]2(x) ds. (2.58)

By the fact that there exists r ∈ N such that |Ttf (x)| � 1 + ‖x‖r , we get Tt−s[Tsf ]2(x) �
(1 + ‖x‖2r ). Thus

Varδx 〈f, X̃t 〉 � e−α∗t
(
1 + ‖x‖2r

)→ 0, t → ∞. (2.59)

By (2.48), |Qδx 〈f, It 〉| � eαt |Ttf (x)|� e(α−γ (f )b)t (1 + ‖x‖r ), thus we have

lim
t→∞ e−αt

(
Qδx 〈f, It 〉

)2 � lim
t→∞ e(α−2γ (f )b)t

(
1 + ‖x‖2r

)= 0. (2.60)

Now, using (2.34), (2.59) and (2.60), we easily get (2.51). �

Lemma 2.7 For f ∈ P , it holds that

Pμ

(〈f, X̃t 〉 − Pμ〈f, X̃t 〉
)4 �

〈
1 + ‖x‖4r ,μ

〉+ 〈1 + ‖x‖2r ,μ
〉2
. (2.61)

Proof By (2.32), there exists r ∈ N such that |Ttf (x)| � 1 + ‖x‖r . So by (2.14),
|(u∗

f )(1)(x, t,0)| � 1 + ‖x‖r . By (2.59) and (2.19), we have |(u∗
f )(2)(x, t,0)| � 1 + ‖x‖2r .

Thus using (2.16), we get |(u∗
f )(3)(x, t,0)| � 1 + ‖x‖3r . Then by (2.17), we have

|(u∗
f )(4)(x, t,0)| � 1 + ‖x‖4r . Now (2.61) follows immediately from (2.20). �

3 Proofs of the Main Theorems

In this section, we will prove the main results of this paper. Recall that we assume that the
initial measure μ is a finite measure on R

d with compact support, and that (Xt ,Pμ) and
(Λt ,Pμ) have the same law. Thus in the remainder of this paper, we will replace (Xt ,Pμ)

by (Λt ,Pμ). Define

Lt = {u ∈ T , τu ≤ t < σu}, t ≥ 0,

which is the collection of particles which are alive at time t . From the construction of Λt ,
we have

Λ(t+s) = X̃t
s +
∑

u∈Lt

I u,t
s , (3.1)
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where, conditioned on Gt , X̃t is a superprocess with the same law as X under P∗
Λt

and I u,t

has the same law as I under Qzu(t). The processes I u,t , u ∈ Lt , are independent.

3.1 The Large Rate Case: α > 2bγ (f )

Recall that

H
p
t = e−(α−|p|b)t 〈φp,Xt 〉, t ≥ 0.

Lemma 3.1 H
p
t is a martingale under Pμ. Moreover, if α > 2|p|b, we have supt Pμ(H

p
t )2 <

∞, and therefore the limit

Hp
∞ := lim

t→∞H
p
t

exists Pμ-a.s. and in L2(Pμ).

Proof Since φp is an eigenfunction of L corresponding to −|p|b, by (2.10), we have
PμH

p
t = 〈φp,μ〉. Thus, by the Markov property, we get that H

p
t is a martingale. Using

(2.10) and (2.11), we get

Pμ〈φp,Xt 〉2 = e2(α−|p|b)t 〈φp,μ〉2 + Aeαt

∫

Rd

∫ t

0
e(α−2|p|b)sTt−s

[
φ2

p

]
(x) ds μ(dx).

Thus, when α > 2|p|b, we have by the definition of H
p
t ,

Pμ

(
H

p
t

)2 = 〈φp,μ〉2 + A

∫

Rd

∫ t

0
e−(α−2|p|b)sTs

[
φ2

p

]
(x) ds μ(dx)

≤ 〈φp,μ〉2 + A

∫

Rd

∫ ∞

0
e−(α−2|p|b)sTs

[
φ2

p

]
(x) ds μ(dx).

Since |φ2
p|� 1 + ‖x‖2|p|, by (2.22), we have |Ts[φ2

p](x)| � 1 + ‖x‖2|p|. Thus

∫

Rd

∫ ∞

0
e−(α−2|p|b)sTs

[
φ2

p

]
(x) ds μ(dx)�

∫

Rd

(
1 + ‖x‖2|p|)μ(dx) < ∞, (3.2)

from which the convergence asserted in the lemma follows easily. �

We now present the proof of Theorem 1.1.

Proof of Theorem 1.1 Define Mt := e−(α−γ (f )b)t 〈f̃ ,Xt 〉, where

f̃ (x) = f (x) −
∑

|p|=γ (f )

apφp(x) =
∞∑

n=γ (f )+1

∑

|p|=n

apφp(x).

It is clear that γ (f̃ ) ≥ γ (f ) + 1. From Lemma 2.5 and (2.32), we have

(1) If α > 2γ (f̃ )b, then

lim
t→∞ e−2(α−γ (f̃ )b)t

Pμ〈f̃ ,Xt 〉2 (3.3)
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exists, thus we have

PμM2
t = e−2(γ (f̃ )−γ (f ))bt e−2(α−γ (f̃ )b)t

Pμ〈f̃ ,Xt 〉2

= O
(
e−2(γ (f̃ )−γ (f ))bt

)→ 0, as t → ∞.

(2) If α = 2γ (f̃ )b, then limt→∞ t−1e−αt
Pμ〈f̃ ,Xt 〉2 exists. Thus we have

PμM2
t = te−2(γ (f̃ )−γ (f ))t

(
t−1e−αt

Pμ〈f̃ ,Xt 〉2
)

= O
(
te−2(γ (f̃ )−γ (f ))t

)→ 0, as t → ∞.

(3) If 2γ (f )b < α < 2γ (f̃ )b, then limt→∞ e−αt
Pμ〈f̃ ,Xt 〉2 exists. Thus we have

PμM2
t = e−(α−2γ (f )b)t

(
e−αt

Pμ〈f̃ ,Xt 〉2
)

= O
(
e−(α−2γ (f )b)t

)→ 0, as t → ∞.

Combining the three cases above, we get limt→∞ Mt = 0 in L2(Pμ). Now using Lemma 3.1,
we easily get the convergence in Theorem 1.1. �

3.2 The Small Rate Case: α < 2γ (f )b

First, we recall some property of weak convergence. For f : Rd → R, let ‖f ‖L :=
supx �=y |f (x) − f (y)|/‖x − y‖ and ‖f ‖BL := ‖f ‖∞ + ‖f ‖L. For any distributions ν1 and
ν2 on R

d , define

β(ν1, ν2) := sup

{∣
∣
∣
∣

∫
f dν1 −

∫
f dν2

∣
∣
∣
∣ : ‖f ‖BL ≤ 1

}

.

Then β is a metric. By [12, Theorem 11.3.3], the topology generated by this metric is equiv-
alent to the weak convergence topology. From the definition, we can easily see that, if ν1

and ν2 are the distributions of two R
d -valued random variables X and Y respectively, then

β(ν1, ν2) ≤ E‖X − Y‖ ≤
√

E‖X − Y‖2. (3.4)

We will use the following elementary fact later: If X is a real-valued random variable
with E|X|n < ∞, then

∣
∣
∣
∣
∣
E

(

eiθX −
n∑

m=0

(iθX)m

m!

)∣∣
∣
∣
∣
≤ |θ |n

n! E

(

|X|n
( |θX|

n + 1
∧ 2

))

, (3.5)

which is an immediate consequence of the simple inequality
∣
∣
∣
∣
∣
eix −

n∑

m=0

(ix)m

m!

∣
∣
∣
∣
∣
≤ min

( |x|n+1

(n + 1)! ,
2|x|n
n!
)

.

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4 We define an R
2-valued random variable U1(t) by

U1(t) := (e−αt‖Λt‖, e−(α/2)t 〈f,Λt 〉
)
. (3.6)



32 Y.-X. Ren et al.

To get the conclusion of Theorem 1.4, it suffices to show that, under Pμ,

U1(t)
d→ (

W∞,
√

W∞G1(f )
)
, (3.7)

where G1(f ) ∼ N (0, σ 2
f ). Let s, t > 0 and write

U1(s + t) = (e−α(s+t)‖Λs+t‖, e−(α/2)(s+t)〈f,Λs+t 〉
)
.

Recall the representation (3.1). Define

Y u,t
s := e−αs/2

〈
f, Iu,t

s

〉
and yu,t

s := Pμ

(
Y u,t

s |Gt

)
, (3.8)

here Gt is defined by (2.6). Given Gt , Y u,t
s has the same law as Ys := e−αs/2〈f, Is〉 under

Qδzu(t)
. So by (2.48),

yu,t
s = 1

λ∗ e−αs/2
(
eαs − e−α∗s

)
Tsf
(
zu(t)

)
.

Then we have

e−(α/2)(s+t)〈f,Λs+t 〉
= e−(α/2)(s+t)

〈
f, X̃t

s

〉+ e−(α/2)t
∑

u∈Lt

Y u,t
s

= e−(α/2)(s+t)
(〈
f, X̃t

s

〉− Pμ

(〈
f, X̃t

s

〉|Gt

))+ e−(α/2)t
∑

u∈Lt

(
Y u,t

s − yu,t
s

)

+
[

e−(α/2)(s+t)e−α∗s〈Tsf,Λt 〉 + 1

λ∗ e−(α/2)(t+s)
(
eαs − e−α∗s

)〈Tsf,Zt 〉
]

=: J0(s, t) + J1(s, t) + J2(s, t). (3.9)

Put Ṽs(x) := Varδx 〈f, X̃s〉. Then

PμJ0(s, t)
2 = e−α(t+s)Pμ〈Ṽs ,Λt 〉 = e−αs〈Tt Ṽs ,μ〉.

By (2.59), there exists r ∈N such that Ṽs(x)� e−α∗s(1 + ‖x‖2r ). Thus

PμJ0(s, t)
2 � e−αse−α∗s

∫

Rd

(
1 + ‖x‖2r

)
μ(dx). (3.10)

Next we consider J2(s, t). We have

PμJ2(s, t)
2 ≤ 2e−α(s+t)Pμ〈Tsf,Λt 〉2 + 2

1

(λ∗)2
eαse−αtPμ〈Tsf,Zt 〉2. (3.11)

By (2.10) and (2.11), we have

e−αtPμ〈Tsf,Λt 〉2 = A

∫

Rd

∫ t

0
eαuTt−u[Ts+uf ]2(x) duμ(dx) + eαt 〈Tt+sf,μ〉2

� e−2γ (f )bs

∫

Rd

(
1 + ‖x‖2r

)
μ(dx), (3.12)



Central Limit Theorems for Super Ornstein-Uhlenbeck Processes 33

here the last inequality follows from the fact that there exists r ∈ N such that

|Ts+uf |(x) � e−γ (f )b(u+s)
(
1 + ‖x‖r

)
. (3.13)

Since, given Λt , Zt is a Poisson random measure with intensity λ∗Λt , we have

e−αtPμ〈Tsf,Zt 〉2 = λ∗e−αtPμ

〈
(Tsf )2,Λt

〉+ (λ∗)2e−αtPμ〈Tsf,Λt 〉2

= λ∗〈Tt (Tsf )2,μ
〉+ (λ∗)2e−αtPμ〈Tsf,Λt 〉2

� e−2γ (f )bs

∫

Rd

(
1 + ‖x‖2r

)
μ(dx), (3.14)

here the last inequality follows from (3.12) and (3.13). Thus by (3.11), (3.12) and (3.14), we
get

PμJ2(s, t)
2 � e(α−2γ (f )b)s

∫

Rd

(
1 + ‖x‖2r

)
μ(dx). (3.15)

Thus by (3.10) and (3.15), we have

lim
s→∞ lim sup

t→∞
Pμ

(
J0(s, t) + J2(s, t)

)2 = 0. (3.16)

Now we consider J1(s, t). We define an R
2-valued random variable U2(s, t) by

U2(s, t) := (e−αt‖Λt‖, J1(s, t)
)
.

We claim that, under Pμ,

U2(s, t)
d→ (

W∞,
√

W∞G1(s)
)
, as t → ∞, (3.17)

where G1(s) ∼ N (0, σ 2
f (s)) and σ 2

f (s) will be given later. Denote the characteristic function
of U2(s, t) under Pμ by κ(θ1, θ2, s, t):

κ(θ1, θ2, s, t) = Pμ

(

exp

{

iθ1e
−αt‖Λt‖ + iθ2e

−(α/2)t
∑

u∈Lt

(
Y u,t

s − yu,t
s

)
})

= Pμ

(

exp
{
iθ1e

−αt‖Λt‖
} ∏

u∈Lt

hs

(
zu(t), e

−(α/2)t θ2

)
)

= Pμ

(
exp
{
iθ1e

−αt‖Λt‖
}

exp
{
λ∗〈hs

(·, e−(α/2)t θ2
)− 1,Λt

〉})
, (3.18)

where hs(x, θ) = Qδx e
iθ(Ys−Qδx Ys ). The last equality in the display above follows from the

fact that, given Λt , Zt is a Poisson random measure with intensity λ∗Λt . Define

es(x, θ) := hs(x, θ) − 1 + 1

2
θ2
Vδx Ys

and Vs(x) := Vδx Ys . Then

exp
{
λ∗〈hs

(·, e−(α/2)t θ2

)− 1,Λt

〉} = exp

{

−λ∗ 1

2
θ2

2 e−αt 〈Vs,Λt 〉
}

exp
{
λ∗〈es

(·, e−(α/2)t θ2

)
,Λt

〉}

= J1,1(s, t)J1,2(s, t).



34 Y.-X. Ren et al.

By (3.5), we have

∣
∣es

(
x, e−(α/2)t θ2

)∣∣≤ θ2
2 e−αt

Qδx

(

|Ys −Qδx Ys |2
(

e−(α/2)t θ2|Ys −Qδx Ys |
6

∧ 1

))

.

Let

g(x, s, t) :=Qδx

(

|Ys −Qδx Ys |2
(

e−(α/2)t θ2|Ys −Qδx Ys |
6

∧ 1

))

.

By (2.10),

Pμ

∣
∣〈es

(·, e−(α/2)t θ2

)
,Λt

〉∣∣≤ θ2
2

〈
Tt

(
g(·, s, t)), μ

〉
.

We notice that g(x, s, t) ↓ 0 as t ↑ ∞. For any u < t ,

lim sup
t→∞

Tt

(
g(·, s, t))≤ lim sup

t→∞
Tt

(
g(·, s, u)

)= 〈g(·, s, u),ϕ
〉
.

Then letting u → ∞, we get limt→∞〈es(·, e−(α/2)t θ2),Λt 〉 = 0 in probability, which implies
that limt→∞ J1,2(s, t) = 1 in probability. Furthermore, by Remark 1.2, we have

lim
t→∞ e−αt 〈Vs,Λt 〉 = 〈Vs, ϕ〉W∞ in probability,

which implies that limt→∞ J1,1(s, t) = exp{− 1
2 θ2

2 σ 2
f (s)W∞}, where σ 2

f (s) := λ∗〈Vs, ϕ〉.
Thus

lim
t→∞ exp

{
λ∗〈hs

(·, e−(α/2)t θ2

)− 1,Λt

〉}= exp

{

−1

2
θ2

2 σ 2
f (s)W∞

}

in probability. (3.19)

Since hs(x, θ) is a characteristic function, its real part is less than 1, which implies
∣
∣exp

{
λ∗〈hs

(·, e−(α/2)t θ2
)− 1,Λt

〉}∣∣≤ 1.

Hence by the dominated convergence theorem, we get

lim
t→∞κ(θ1, θ2, s, t) = Pμ exp{iθ1W∞} exp

{

−1

2
θ2

2 σ 2
f (s)W∞

}

, (3.20)

which implies our claim (3.17). Since e−α(t+s)‖Λt+s‖ − e−αt‖Λt‖ → 0 in probability as
t → ∞, we easily get that, under Pμ,

U3(s, t) := (e−α(t+s)‖Λt+s‖, J1(s, t)
) d→ (

W∞,
√

W∞G1(s)
)
, as t → ∞.

By (2.51), we have lims→∞ Vs(x) = σ 2
f

λ∗ , thus lims→∞ σ 2
f (s) = σ 2

f . So

lim
s→∞β

(
G1(s),G1(f )

)= 0. (3.21)

Let D(s + t) and D̃(s, t) be the distributions of U1(s + t) and U3(s, t) respectively, and let
D(s) and D be the distributions of (W∞,

√
W∞G1(s)) and (W∞,

√
W∞G1(f )) respectively.

Then, using (3.4), we have

lim sup
t→∞

β
(
D(s + t),D

) ≤ lim sup
t→∞

[
β
(
D(s + t), D̃(s, t)

)+ β
(
D̃(s, t),D(s)

)+ β
(
D(s),D

)]
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≤ lim sup
t→∞

(
Pμ

(
J0(s, t) + J2(s, t)

)2)1/2 + 0 + β
(
D(s),D

)
. (3.22)

Using this and the definition of lim supt→∞, we easily get that

lim sup
t→∞

β
(
D(t),D

) = lim sup
t→∞

β
(
D(s + t),D

)

≤ lim sup
t→∞

(
Pμ

(
J0(s, t) + J2(s, t)

)2)1/2 + β
(
D(s),D

)
.

Letting s → ∞, we get lim supt→∞ β(D(t),D) = 0. The proof is now complete. �

3.3 Proof of Theorem 1.10

In this section we consider the case α > 2γ (f )b and f(c) = 0. Recalling the decomposition
of Λt under Pδx in (2.46), we have for |p| = m < α/(2b),

Hp
s = e−(α−mb)s〈φp, X̃s〉 +

N∑

j=1

e−(α−mb)s
〈
φp, I j

s

〉
. (3.23)

Let

H̃ p
s := e−(α−mb)s〈φp, Is〉.

Then, under Pδx , the processes {e−(α−mb)s〈φp, I
j
s 〉, s ≥ 0}, j = 1,2 . . . are i.i.d. with a com-

mon law equal to that of {H̃ p
s , s ≥ 0} under Qδx . Since φp is an eigenvalue of L correspond-

ing to −|p|b, we have

Pδx 〈φp, X̃s〉 = e−(α∗+mb)sφp(x) → 0, as s → ∞. (3.24)

Thus, by (2.59), we have that as s → ∞,

Pδx

(〈φp, X̃s〉
)2 � e−α∗s

(
1 + ‖x‖2|p|)→ 0, (3.25)

which implies lims→∞ e−(α−mb)s〈φp, X̃s〉 = 0 in L2(Pδx ). By Lemma 3.1, lims→∞ H
p
s = H

p
∞

in L2(Pδx ). Thus

lim
s→∞

N∑

j=1

e−(α−mb)s
〈
φp, I j

s

〉= Hp
∞ in L2(Pδx ). (3.26)

From the fact that N is independent of I j , we have for any s, t ≥ 0,

Pδx

[
N∑

j=1

(
e−(α−mb)s

〈
φp, I j

s

〉− e−(α−mb)t
〈
φp, I

j
t

〉)
]2

≥ Pδx

[(
e−(α−mb)s〈φp, Is〉 − e−(α−mb)t 〈φp, It 〉

)2;N = 1
]

= Pδx (N = 1)Qδx

(
H̃ p

s − H̃
p
t

)2
.

By (3.26), we get for any x ∈R
d ,

Qδx

(
H̃ p

s − H̃
p
t

)2 → 0, s, t → ∞. (3.27)



36 Y.-X. Ren et al.

Thus H̃
p
s converges in L2(Qδx ). Let

H̃ p
∞ := lim

s→∞ H̃ p
s in L2(Qδx ),

which implies H
j,p
∞ := lims→∞〈φp, I

j
s 〉e−(α−mb)s exists in L2(Pδx ). Furthermore, H

j,p
∞ , un-

der Pδx , are i.i.d. with a common law equal to that of H̃
p
∞ under Qδx . Hence by (3.26), it is

easy to get

Hp
∞ =

N∑

j=1

Hj,p
∞ , Pδx -a.s. (3.28)

Recall the decomposition of Λt+s in (3.1). By Lemma 3.1, we have for |p| = m <

α/(2b),

H
p
t+s = e−(α−mb)(s+t)

〈
φp, X̃t

s

〉+ e−(α−mb)t
∑

u∈Lt

e−(α−mb)s
〈
φp, I u,t

s

〉
. (3.29)

From the definition of X̃t
s , using (2.59) and (3.24), we have

Pμ

(〈
φp, X̃t

s

〉)2 ≤ 2Pμ

(〈
φp, X̃t

s

〉− Pμ

(〈
φp, X̃t

s

〉|Ft

))2 + 2Pμ

(
Pμ

(〈
φp, X̃t

s

〉|Ft

))2

= 2Pμ

〈
Varδ· 〈φp, X̃s〉,Λt

〉+ 2Pμ

〈
Pδ· 〈φp, X̃s〉,Λt

〉2 → 0, as s → ∞.

Hence lims→∞ e−(α−mb)(s+t)〈φp, X̃t
s〉 = 0 in L2(Pμ). Thus lims→∞ e−(α−mb)(s+t)〈φp, X̃t

s〉 = 0
in L2(Pμ). Thus

lim
s→∞ e−(α−mb)t

∑

u∈Lt

〈
φp, I u,t

s

〉
e−(α−mb)s = Hp

∞ in L2(Pμ). (3.30)

Note that under Pμ, given Zt , e−(α−mb)s〈φp, I u,t
s 〉 has the same law as H̃

p
s under Qδzu(t)

.
Thus by (3.27), for each u ∈ Lt , e−(α−mb)s〈φp, I u,t

s 〉 converges in L2(Pμ) to a limit, denoted
as H

u,t,p
∞ . Furthermore, given Zt , H

u,t,p
∞ has the same law as H̃

p
∞ under Qδzu(t)

.
We claim that, for each t ≥ 0,

Hp
∞ = e−(α−mb)t

∑

u∈Lt

H u,t,p
∞ . (3.31)

In fact,

Pμ

(∑

u∈Lt

e−(α−mb)s
〈
φp, I u,t

s

〉− Hu,t,p
∞

)2

≤ Pμ|Zt |
∑

u∈Lt

(
e−(α−mb)s

〈
φp, I u,t

s

〉− Hu,t,p
∞

)2

= Pμ|Zt |
∑

u∈Lt

QδZu(t)

(
H̃ p

s − H̃ p
∞
)2

.

By (2.49), we have

Qδx

(
H̃ p

s

)2 ≤ 1

λ∗Varδx

(
Hp

s

)≤ 1

λ∗Pδx

(
Hp

s

)2 � 1 + ‖x‖2|p|.
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Thus Qδx (H̃
p
s − H̃

p
∞)2 ≤ 2 sups≥0 Qδx (H̃

p
s )2 � 1 + ‖x‖2|p|. We can easily get that

Pμ|Zt |
〈(

1 + ‖ · ‖2|p|),Zt

〉
< ∞.

So by the dominated convergence theorem, we have lims→∞ Pμ(
∑

u∈Lt
e−(α−mb)s〈φp, I u,t

s 〉−
H

u,t,p
∞ )2 = 0. Now the claim (3.31) follows easily from (3.30).
Define

Hu,t
∞ :=

∑

γ (f )≤m<α/2b

∑

|p|=m

apHu,t,p
∞ and H̃∞ :=

∑

γ (f )≤m<α/2b

∑

|p|=m

apH̃ p
∞.

Recall the definition of H∞ in (1.19). By (3.28), we have

H∞ =
∑

u∈L0

Hu,0
∞ .

Under Pδx , Hu,0∞ are i.i.d. with a common law equal to that of H̃∞ under Qδx . Thus we have

Pδx H∞ = λ∗
Qδx H̃∞, (3.32)

Varδx H∞ = λ∗
Qδx (H̃∞)2. (3.33)

On the other hand, by Lemma 3.1, we get

lim
t→∞

∑

γ (f )≤m<α/2b

e−(α−mb)t
∑

|p|=m

ap〈φp,Λt 〉 = H∞, in L2(Pδx ).

It follows that

Pδx H∞ = f(s)(x), (3.34)

and by (2.41),

Varδx H∞ = A

∫ ∞

0
e−αsTs

( ∑

γ (f )≤m<α/2b

embs
∑

|p|=m

apφp

)2

(x) ds. (3.35)

Proof of Theorem 1.10 By (3.31), we have

∑

γ (f )≤m<α/2b

e(α−mb)t
∑

|p|=m

apHp
∞ =

∑

u∈Lt

H u,t
∞ .

Consider the R
2-valued random variable U1(t):

U1(t) :=
(

e−αt‖Λt‖, e−(α/2)t

(

〈f,Λt 〉 −
∑

u∈Lt

H u,t
∞

))

. (3.36)

To get the conclusion of Theorem 1.10, it suffices to show that

U1(t)
d→ (

W∞,
√

W∞G3(f )
)
. (3.37)
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Denote the characteristic function of U1(t) under Pμ by κ1(θ1, θ2, t) and let h(x, θ) :=
Qδx exp{iθH̃∞}. Then we have

κ1(θ1, θ2, t)

= Pμ exp

{

iθ1e
−αt‖Λt‖ + iθ2e

−(α/2)t

(

〈f,Λt 〉 −
∑

u∈Lt

H u,t
∞

)}

= Pμ exp
{
iθ1e

−αt‖Λt‖
}

exp
{
iθ2e

−(α/2)t 〈f,Λt 〉
} ∏

u∈Lt

h
(
Zu(t),−θ2e

−(α/2)t
)

= Pμ exp
{
iθ1e

−αt‖Λt‖
}

exp
{
iθ2e

−(α/2)t 〈f,Λt 〉 + λ∗〈h
(·,−θ2e

−(α/2)t
)− 1,Λt

〉}
. (3.38)

The third equality above follows from the fact that, given Λt , Zt is a Poisson point process
with density λ∗Λt . By (3.32) and (3.34), we get Qδx H̃∞ = f(s)(x)/λ∗. Let

e(x, θ) := h(x, θ) − 1 − iθ

λ∗ f(s)(x) + 1

2
Qδx (H̃∞)2θ2

and V (x) := Varδx H∞. Then, by (3.33), we have

iθ2e
−(α/2)t 〈f,Λt 〉 + λ∗〈h

(·,−θ2e
−(α/2)t

)− 1,Λt

〉

= iθ2e
−(α/2)t 〈f(l),Λt 〉 − 1

2
θ2

2 e−αt 〈V,Λt 〉 + λ∗〈e
(·,−θ2e

−(α/2)t
)
,Λt

〉

=: J1(t) + J2(t) + J3(t).

By (3.5), we have

|e(x, θ)| ≤ θ2
Qδx

(

|H̃∞|2
(

θ |H̃∞|
6

∧ 1

))

, (3.39)

which implies that

|J3(t)| ≤ θ2
2 e−αt

〈
g(·, t),Λt

〉
,

where

g(x, t) :=Qδx

(

|H̃∞|2
(

e−(α/2)t θ2|H̃∞|
6

∧ 1

))

.

It is clear that g(x, t) ↓ 0 as t ↑ ∞. Thus

Pμ|J3(t)| ≤ θ2
2

〈
Tt

(
g(·, t)),μ〉→ 0, as t → ∞, (3.40)

which implies limt→∞ J3(t) = 0 in probability. By Remark 1.2, we have

lim
t→∞ e−αt 〈V,Λt 〉 = 〈V, ϕ〉W∞ in probability. (3.41)

Recall that limt→∞ e−αt‖Λt‖ = W∞, Pμ-a.s. Therefore

lim
t→∞ exp

{
iθ1e

−αt‖Λt‖
}

exp
{
J2(t) + J3(t)

}= exp{iθ1W∞} exp

{

−1

2
θ2

2 〈V, ϕ〉W∞
}

in probability. (3.42)
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Thus by the dominated convergence theorem, we get that as t → ∞,
∣
∣
∣
∣κ1(θ1, θ2, t) − Pμ exp

{
iθ2e

−(α/2)t 〈f(l),Λt 〉
}

exp{iθ1W∞} exp

{

−1

2
θ2

2 〈V, ϕ〉W∞
}∣∣
∣
∣→ 0.

(3.43)
Since α < 2γ (f(l))b, by Theorem 1.4, we have that as t → ∞,

(
e−αt‖Λt‖, e−(α/2)t 〈f(l),Λt 〉

) d→ (
W∞,

√
W∞G1(f(l))

)
, (3.44)

where G1(f(l)) ∼ N (0, σ 2
f(l)

). Therefore,

lim
t→∞ Pμ exp

{
iθ2e

−(α/2)t 〈f(l),Λt 〉
}
eiθ1W∞ exp

{

−1

2
θ2

2 〈V, ϕ〉W∞
}

= Pμeiθ1W∞ exp

{

−1

2
θ2

2

(
σ 2

f(l)
+ 〈V, ϕ〉)W∞

}

. (3.45)

By (3.35), we get

〈V, ϕ〉 = A
∑

γ (f )≤m<α/2b

1

α − 2mb

∑

|p|=m

a2
p.

The proof is now complete. �

3.4 The Critical Case: α = 2γ (f )b

To prove Theorem 1.6, we need the following lemma. The idea of the proof is mainly from
[8].

Lemma 3.2 Assume f (x) =∑|p|=k bpφp(x), where bp ∈ R and α = 2kb. Define T α
t f (x) :=

eαtTtf (x) = Pδx 〈f,Xt 〉 and

Stf (x) := t−1/2e−(α/2)t
(〈f,Xt 〉 − T α

t f (x)
)
.

Then for any c > 0 and δ > 0, we have

lim
t→∞Pδx

(|Stf (x)|2; |Stf (x)| > ceδt
)= 0. (3.46)

Proof We write t = [t] + εt , where [t] is the integer part of t . Let

F(t, x) := Pδx

(|Stf |2; |Stf | > ceδt
)
.

By the definition of f , we get T α
u f (x) = eαu/2f (x). Note that

St+1f (x) =
(

1

t + 1

)1/2

e−(α/2)(t+1)
(〈f,Xt+1〉 − 〈eα/2f,Xt

〉)

+
(

1

t + 1

)1/2

e−(α/2)t
(〈f,Xt 〉 − T α

t f (x)
)

=
(

1

t + 1

)1/2

R(t, f ) +
(

t

t + 1

)1/2

Stf (x), (3.47)
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where R(t, f ) := e−(α/2)(t+1)(〈f,Xt+1〉 − 〈T α
1 f,Xt 〉). Thus we have

F(t + 1, x) ≤ Pδx

(|St+1f (x)|2; |Stf (x)| > ceδt
)

+ Pδx

(|St+1f (x)|2; |Stf (x)| ≤ ceδt , |St+1f (x)| > ceδ(t+1)
)

=: M1(t, x) + M2(t, x).

Put

A1(t, x) = {|Stf (x)| > ceδt
}
,

A2(t, x) = {|Stf (x)| ≤ ceδt , |St+1f (x)| > ceδ(t+1)
}
.

Since A1(t, x) ∈ Ft and Pδx (R(t, f )|Ft )=0, we have by (3.47) that

M1(t, x) = 1

t + 1
Pδx

(|R(t, f )|2;A1(t, x)
)+ t

t + 1
F(t, x),

and

M2(t, x) ≤ 2

t + 1
Pδx

(|R(t, f )|2;A2(t, x)
)+ 2t

t + 1
Pδx

(|Stf (x)|2;A2(t, x)
)
.

Thus we have

F(t + 1, x) ≤ t

t + 1
F(t, x) + 1

t + 1

(
F1(t, x) + F2(t, x)

)
, (3.48)

where

F1(t, x) = 2Pδx

(|R(t, f )|2;A1(t, x) ∪ A2(t, x)
)
,

F2(t, x) = 2tPδx

(|Stf (x)|2;A2(t, x)
)
.

Iterating (3.48), we get

F(t + 1, x) ≤ 1

t + 1

[t]∑

m=0

F1(m + εt , x) + 1

t + 1

[t]∑

m=0

F2(m + εt , x) + εt

t + 1
F(εt , x)

:= L1(t, x) + L2(t, x) + εt

t + 1
F(εt , x). (3.49)

First, we consider L1(t, x). By (2.36) and (2.32), there exist C > 0 and r ∈ N such that,
for any s > 0 and x ∈R

d

F1(s, x) ≤ 2Pδx

(|R(s,f )|2)= 2e−αTs

(
Varδ· 〈f,X1〉

)
(x) ≤ C

(
1 + ‖x‖r

)
. (3.50)

We claim that for any x ∈ R
d ,

F1(t, x) → 0, as t → ∞. (3.51)

Then, for any ε > 0, there exists K ∈ N such that s ≥ K implies F1(s, x) < ε. So, by (3.50),
we get that for any x ∈R

d and t > 0,

L1(t, x) = 1

t + 1

K−1∑

m=0

F1(m + εt , x) + 1

t + 1

[t]∑

m=K

F1(m + εt , x) ≤ CK

t + 1

(
1 + ‖x‖r

)+ ε.
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Thus lim supt→∞ L1(t, x) ≤ ε for any x, which implies

lim
t→∞L1(t, x) = 0, x ∈ R

d . (3.52)

Now we prove the claim (3.51). First, we will show that, for any x ∈ R
d , as t → ∞,

Pδx

(
A1(t, x) ∪ A2(t, x)

)→ 0. (3.53)

By Chebyshev’s inequality and (2.38), we have that, for any x ∈R
d , as t → ∞,

Pδx

(
A1(t, x)

)≤ c−2e−2δt
Pδx |Stf (x)|2 → 0.

It is easy to see that, under Pδx , for any t > 0,

A2(t, x) ⊂ {|R(t, f )| > ceδt
(
eδ

√
t + 1 − √

t
)}

. (3.54)

Similarly, by Chebyshev’s inequality, we have that

Pδx

(
A2(t, x)

)≤ c−2e−2δt
(
eδ

√
t + 1 − √

t
)−2

Pδx |R(t, f )|2.
By (2.24), we get that

Pδx |R(t, f )|2 = e−αTt

(
Varδ· 〈f,X1〉

)
(x) → e−α

〈
Varδ· 〈f,X1〉, ϕ

〉
, as → ∞, (3.55)

which implies Pδx (A2(t, x)) → 0 for any x ∈R
d .

In the rest of the proof of (3.51), we will replace (Xt ,Pμ) by (Λt ,Pμ). Using (3.9) with
s = 1, we have

R(t, f ) = e−(α/2)(t+1)
(〈f,Λt+1〉 − 〈T α

1 f,Λt

〉)

= e−(α/2)(t+1)(
〈
f, X̃t

1

〉− Pδx

(〈
f, X̃t

1

〉|Gt

)+ e−(α/2)t
∑

u∈Lt

(
Y

u,t
1 − y

u,t
1

)

+ e−(α/2)(t+1)
(
eα − e−α∗)

e−α/2

(
1

λ∗ 〈f,Zt 〉 − 〈f,Λt 〉
)

=: J0(t) + J1(t) + J2(t),

where Y
u,t
1 , y

u,t
1 are defined in (3.8). So for any ε > 0,

F1(t, x) ≤ 6Pδx

(|J0(t)|2;A1(t, x) ∪ A2(t, x)
)+ 6Pδx

(|J1(t)|2;A1(t, x) ∪ A2(t, x)
)

+ 6Pδx

(|J2(t)|2;A1(t, x) ∪ A2(t, x)
)

=: F11(t, x) + F12(t, x) + F13(t, x). (3.56)

For F11(t, x) and F13(t, x), we claim that

lim sup
t→∞

Pδx |J0(t)|4 < ∞ and lim sup
t→∞

Pδx |J2(t)|4 < ∞. (3.57)

Then by (3.53),

lim sup
t→∞

F11(t, x) ≤ 6 lim sup
t→∞

Pδx

(|J0(t)|2; |J0(t)|2 > M
)+ 6M lim sup

t→∞
Pδx

(
A1(t, x) ∪ A2(t, x)

)

≤ 6M−2 lim sup
t→∞

Pδx

(|J0(t)|4
)
.
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Letting M → ∞, we get F11(t, x) → 0 as t → ∞. Similarly, we have F13(t, x) → 0 as
t → ∞. Now we prove the claim (3.57).

For J0(t), by (2.61), there exists r ∈N such that

Pδx |J0(t)|4 � e−2α(t+1)Pδx

(〈
1 + ‖ · ‖4r ,Λt

〉+ 〈1 + ‖ · ‖2r ,Λt

〉2)

= e−α(t+2)Tt

(
1 + ‖ · ‖4r

)
(x) + e−2α(t+1)Pδx

〈
1 + ‖ · ‖2r ,Λt

〉2
.

Thus, by (2.24) and (2.39), we get

lim sup
t→∞

Pδx |J0(t)|4 < ∞.

For J2(t), since, given Λt , Zt is a Poisson random measure with intensity λ∗Λt , we have

e−2αtPδx

(〈f,Zt 〉 − λ∗〈f,Λt 〉
)4 = λ∗e−2αtPδx

〈
f 4,Λt

〉+ 3
(
λ∗)2e−2αtPδx

〈
f 2,Λt

〉2

= λ∗e−αtTt

(
f 4
)
(x) + 3

(
λ∗)2e−2αtPδx

〈
f 2,Λt

〉2
.

Thus, by (2.24) and (2.39), we get

lim sup
t→∞

Pδx |J2(t)|4 < ∞.

Next, we consider F12(t, x). From the proof of (3.17), we see that (3.17) is also true when

α = 2γ (f )b. So we have J1(t)
d→ √

W∞G where G is a Gaussian random variable. We also
have Pδx |J1(t)|2 → Pδx (W∞G2).

Let ΨM(r) = r on [0,M −1], ΨM(r) = 0 on [M,∞], and let ΨM be linear on [M −1,M].
Therefore by (3.53) and (3.55), we have that for any x ∈ E,

lim sup
t→∞

F12(t, x) ≤ lim sup
t→∞

6Pδx

(|J1(t)|2; |J1(t)|2 > M
)+ 6M lim sup

t→∞
Pδx

(
A1(t, x) ∪ A2(t, x)

)

≤ 6 lim sup
t→∞

(
Pδx

(|J1(t)|2
)− Pδx

(
ΨM

(|J1(t)|2
)))

= 6
(
Pδx

(
W∞G2

)− Pδx

(
ΨM

(
W∞G2

)))
.

By the monotone convergence theorem, we have that,

lim
M→∞

Pδx

(
ΨM

(
W∞G2

))= Pδx

(
W∞G2

)
,

which implies that F12(t, x) → 0, as t → ∞. Therefore, (3.51) is valid.
Now we consider L2(t, x).

F2(t, x) = 2tPδx

(|Stf (x)|2;A2(t, x)
)

≤ 2tceδt
Pδx

(|Stf (x)|; |R(t, f )| > ceδt
(
eδ

√
t + 1 − √

t
))

≤ 2c−1te−δt
(
eδ

√
t + 1 − √

t
)−2

Pδx

(|Stf (x)| · |R(t, f )|2)

� e−δt e−α(t+1)
Pδx

(|Stf (x)|〈Varδ· 〈f,X1〉,Xt

〉)

� e−δt

√
Pδx |Stf (x)|2

√
e−2αtPδx

(〈
Varδ· 〈f,X1〉,Xt

〉2)
.
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By (2.38) and (2.39), we get F2(t, x) → 0 as t → ∞. Thus, for any ε > 0, there exists K ∈N

such that s ≥ K implies F2(s, x) < ε. It is easy to see that,

sup
s≤K

F2(s, x) ≤ sup
s≤K

2c2se2δs ≤ 2c2Ke2δK .

Thus, we get

L2(t, x) = 1

t + 1

K−1∑

m=0

F2(m + εt , x) + 1

t + 1

[t]∑

m=K

F2(m + εt , x) ≤ 2c2K2e2δK

t + 1
+ ε.

Therefore lim supt→∞ L2(t, x) ≤ ε, which implies that limt→∞ L2(t, x) = 0.
To finish the proof, we need to show that,

lim
t→∞

εt

t + 1
F(εt , x) = 0. (3.58)

By (2.36), we get that for any x ∈R
d ,

sup
t>0

(εt )F (εt , x) ≤ sup
s≥0

Pδx

(
Ssf (x)

)2
< ∞,

which implies (3.58). �

In the following lemma we give a result similar to Lemma 3.2 for the process I .

Lemma 3.3 Assume f ∈ P satisfies α = 2γ (f )b. Define

Y ∗
t (f ) := t−1/2e−(α/2)t

(〈f, It 〉 −Qδx 〈f, It 〉
)
.

Then for any c > 0 and δ > 0, we have

lim
t→∞Qδx

(|Y ∗
t (f )|2; |Y ∗

t (f )| > ceδt
)= 0. (3.59)

Proof Recall the decomposition in (2.4). Define

S∗
t = t−1/2e−(α/2)t

(〈f, X̃t 〉 − Pδx 〈f, X̃t 〉
)
,

St = t−1/2e−(α/2)t
(〈f,Λt 〉 − Pδx 〈f,Λt 〉

)
,

and

Ỹt = t−1/2e−(α/2)t
(〈f, It 〉 − Pδx 〈f, It 〉

)
.

Then we have Ỹt = St − S∗
t . Thus

Pδx

(|Ỹt |2; |Ỹt | > ceδt
) ≤ Pδx

(|Ỹt |2; |St | > (c/2)eδt
)+ Pδx

(|Ỹt |2; |S∗
t | > (c/2)eδt

)

≤ 2Pδx

(|St |2; |St | > (c/2)eδt
)+ 2Pδx

(|S∗
t |2
)

+ Pδx

(|Ỹt |2; |S∗
t | > (c/2)eδt

)

= I1(t) + I2(t) + I3(t).
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By Lemma 3.2, we have limt→∞ I1(t) = 0. By (2.59), we have

I2(t) = 2t−1e−αtVarδx 〈f, X̃t 〉 → 0, t → ∞.

Since It and X̃ are independent, we have

I3(t) = Pδx

(|Ỹt |2
)

Pδx

(|S∗
t | > (c/2)eδt

)
.

Since St = S∗
t + Ỹt , and S∗

t and Ỹt are independent, by (2.38), we get

Pδx

(|Ỹt |2
)= Pδx

(|St |2
)− Pδx

(
S∗

t |2
)→ ρ2

f , t → ∞.

By Chebyshev’s inequality, we have

Pδx

(|S∗
t | > (c/2)eδt

)≤ (c/2)−2e−2δtPδx

(|S∗
t |2
)→ 0, t → ∞.

Hence limt→∞ I3(t) = 0. Thus

Pδx

(|Ỹt |2; |Ỹt | > ceδt
)→ 0. (3.60)

Recall that under Pδx , It =∑N

j=1 I
j
t , where I j , j = 1, . . . are independent copies of I

under Qδx , and are independent of N . Thus,

Pδx

(|Ỹt |2; |Ỹt | > ceδt
) ≥ Pδx

(|Ỹt |2; |Ỹt | > ceδt ,N = 1
)

= Pδx (N = 1)Qδx

(|Y ∗
t (f )|2; |Y ∗

t (f )| > ceδt
)
.

Since Pδx (N = 1) > 0, (3.59) follows easily from (3.60). �

Now, we are ready to prove Theorem 1.6.

Proof of Theorem 1.6 The proof is similar to that of Theorem 1.4. Since α = 2γ (f )b,
f (x) = f(c)(x) + f(l)(x). Using Theorem 1.4 for f(l), we have as t → ∞,

t−1/2e−(α/2)t 〈f(l),Λt 〉 d→ 0.

So we only need to prove Theorem 1.6 for the case f (x) =∑|p|=γ (f ) apφp(x). We define
an R

2-valued random variable by

U1(t) := (e−αt‖Λt‖, t−1/2e−(α/2)t 〈f,Λt 〉
)
.

We need to show that as t → ∞,

U1(t)
d→ (

W∞,
√

W∞G2(f )
)
, (3.61)

where G2(f ) ∼ N (0, ρ2
f ). Let n > 0 and write

U1(nt) = (e−αnt‖Λnt‖, (nt)−1/2e−(α/2)nt 〈f,Λnt 〉
)
.

Recall the representation (3.1). Define

Y u,n
t := ((n − 1)t

)−1/2
e−α(n−1)t/2

〈
f, I

u,t
(n−1)t

〉
and yu,n

t := Pμ

(
Y u,n

t |Gt

)
.
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Y
u,n
t has the same distribution as Y n

t := ((n − 1)t)−1/2e−α(n−1)t/2〈f, I(n−1)t 〉 under Qδzu(t)
.

Thus

(nt)−1/2e−(α/2)nt 〈f,Λnt 〉

= (nt)−1/2e−(α/2)nt
〈
f, X̃t

(n−1)t

〉+
√

n − 1

n
e−(α/2)t

∑

u∈Lt

Y u,n
t

= (nt)−1/2e−(α/2)nt
(〈
f, X̃t

(n−1)t

〉− Pμ

(〈
f, X̃t

(n−1)t

〉|Gt

))+
√

n − 1

n
e−(α/2)t

∑

u∈Lt

(
Y u,n

t − yu,n
t

)

+ (nt)−1/2e−(α/2)nt

(

e−α∗(n−1)t 〈T(n−1)t f,Λt 〉 + 1

λ∗
(
eα(n−1)t − e−α∗(n−1)t

)〈T(n−1)t f,Zt 〉
)

=: J n
0 (t) + J n

1 (t) + J n
2 (t). (3.62)

Put Ṽs(x) := Varδx 〈f, X̃s〉. Then by (2.59), there exists r ∈ N such that Ṽs(x) � e−α∗s(1 +
‖x‖2r ). From the definition of X̃t

s , we have

PμJ n
0 (t)2 = (nt)−1e−α(nt)Pμ

(〈Ṽ(n−1)t ,Λt 〉
)

= (nt)−1e−α(n−1)t
〈
Tt (Ṽ(n−1)t ,μ

〉

� (nt)−1e−α(n−1)t e−α∗(n−1)t → 0, as t → ∞. (3.63)

Since Tuf (x) = e−αu/2f (x),

(
J n

2 (t)
)2 = (nt)−1e−(2n−1)αt

(

e−α∗(n−1)t 〈f,Λt 〉 + 1

λ∗
(
eα(n−1)t − e−α∗(n−1)t

)〈f,Zt 〉
)2

� (nt)−1e−(2n−1)αt 〈f,Λt 〉2 + (nt)−1e−αt 〈f,Zt 〉2.

By (2.36), we have

Pμ〈f,Λt 〉2 = 〈Varδ· 〈f,Λt 〉,μ
〉+ eαt 〈f,μ〉2 � (t + 1)eαt .

Using an argument similar to that in the proof of (3.14), we can get

e−αtPμ〈f,Zt 〉2 = λ∗e−αtPμ

〈
f 2,Λt

〉+ (λ∗)2e−αtPμ〈f,Λt 〉2

= λ∗〈Tt

(
f 2
)
,μ
〉+ (λ∗)2e−αtPμ〈f,Λt 〉2

� λ∗〈Tt

(
f 2
)
,μ
〉+ (t + 1). (3.64)

Thus,

lim sup
t→∞

Pμ

(
J n

2 (t)
)2 � n−1. (3.65)

Combining (3.63) and (3.65), there exists c > 0 such that

lim sup
t→∞

Pμ

(
J n

0 (t) + J n
2 (t)

)2 ≤ c/n. (3.66)
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Now we consider J n
1 (t). We define an R

2-valued random variable U2(n, t) by

U2(n, t) :=
(

e−αt‖Λt‖, e−(α/2)t
∑

u∈Lt

(
Y u,n

t − yu,n
t

)
)

.

We claim that

U2(n, t)
d→ (

W∞,
√

W∞G2(f )
)
, as t → ∞. (3.67)

Denote the characteristic function of U2(n, t) under Pμ by κ2(θ1, θ2, n, t). Using an argu-
ment similar to that leading to (3.18), we get

κ2(θ1, θ2, n, t) = Pμ

(
exp
{
iθ1e

−αt‖Λt‖
}

exp
{
λ∗〈hn

t

(·, e−(α/2)t θ2

)− 1,Λt

〉})
,

where hn
t (x, θ) =Qδx e

iθ(Yn
t −Qδx Yn

t ). Define

en
t (x, θ) := hn

t (x, θ) − 1 + 1

2
θ2
Vδx Y

n
t

and V n
t (x) :=Vδx Y

n
t . Then

exp
{
λ∗〈hn

t

(·, e−(α/2)t θ2

)− 1,Λt

〉}

= exp

{

−1

2
λ∗θ2

2 e−αt
〈
V n

t ,Λt

〉
}

exp
{
λ∗〈en

t

(·, e−(α/2)t θ2

)
,Λt

〉}

=: J1,1(n, t)J1,2(n, t).

We first consider J1,1(n, t). By (2.37), we have that as t → ∞,

e−αt
〈|λ∗V n

t − ρ2
f |,Λt

〉
� t−1e−αt

〈(
1 + ‖x‖r

)
,Λt

〉→ 0 in probability.

It follows that

lim
t→∞ e−αt

〈
λ∗V n

t ,Λt

〉= lim
t→∞ e−αt

〈
ρ2

f ,Λt

〉= ρ2
f W∞ in probability, (3.68)

which implies that limt→∞ J1,1(n, t) = exp{− 1
2θ2

2 ρ2
f W∞}.

For J1,2(n, t), by (3.5), we have, for any ε > 0,

|en
t

(
x, e−(α/2)t θ2

)| ≤ 1

6
|θ2|3e− 3

2 αt
Qδx

(|Y n
t −Qδx Y

n
t |3; |Y n

t −Qδx Y
n
t | < εeαt/2

)

+ θ2
2 e−αt

Qδx

(|Y n
t −Qδx Y

n
t |2; |Y n

t −Qδx Y
n
t | ≥ εeαt/2

)

≤ ε

6
|θ |32e−αt

Qδx

(|Y n
t −Qδx Y

n
t |2)

+ θ2
2 e−αt

Qδx

(|Y n
t −Qδx Y

n
t |2; |Y n

t −Qδx Y
n
t | ≥ εeαt/2

)

= ε

6
|θ |32e−αtV n

t (x) + θ2
2 e−αtF n

t (x),

where Fn
t (x) = Qδx (|Y n

t −Qδx Y
n
t |2; |Y n

t −Qδx Y
n
t | ≥ εeαt/2). It follows from Lemma 3.3 that

limt→∞ Fn
t (x) = 0. By (2.53), we also have

Fn
t (x) ≤ Qδx

(|Y n
t −Qδx Y

n
t |2)� 1 + ‖x‖2r .
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Note that

e−αtPμ

〈
Fn

t (x),Λt

〉= 〈Tt

(
Fn

t

)
,μ
〉
.

Thus by the dominated convergence theorem, we get limt→∞ e−αtPμ〈Fn
t (x),Λt 〉 = 0. It

follows that e−αt 〈Fn
t (x),Λt 〉 → 0 in probability. Furthermore from (3.68), we obtain that as

t → ∞,

ε

6
θ3

2 e−αt
〈
V n

t ,Λt

〉→ ε

6λ∗ θ3
2 ρ2

f W∞ in probability.

Thus, letting ε → 0, we get that as t → ∞,

〈∣
∣en

t

(
x, e−(α/2)t θ2

)∣
∣,Λt

〉→ 0 in probability, (3.69)

which implies J1,2(n, t) → 1 in probability, as t → ∞.
Thus, when t → ∞,

exp
{
λ∗〈hn

t

(·, e−(α/2)t θ2

)− 1,Λt

〉}→ exp

{

−1

2
θ2

2 ρ2
f W∞

}

(3.70)

in probability. Since hn
t (x, θ) is a characteristic function, its real part is less than 1, which

implies

∣
∣ exp

{
λ∗〈hn

t

(·, e−(α/2)t θ2
)− 1,Λt

〉}∣∣≤ 1.

So by the dominated convergence theorem, we get that

lim
t→∞κ2(θ1, θ2, n, t) = Pμ exp{iθ1W∞} exp

{

−1

2
θ2

2 ρ2
f W∞

}

, (3.71)

which implies our claim (3.67). By (3.67) and the fact that e−αnt‖Λnt‖ − e−αt‖Λt‖ → 0, as
t → ∞ in probability, we easily get

U3(n, t) := (e−αnt‖Λnt‖, J n
1 (t)

) d→
(

W∞,

√
n − 1

n

√
W∞G2(f )

)

.

Let D(nt) and D̃n(t) be the distributions of U1(nt) and U3(n, t) respectively, and let

Dn and D be the distributions of (W∞,

√
n−1
n

√
W∞G2(f )) and (W∞,

√
W∞G2(f )) respec-

tively. Then, using (3.4), we have

lim sup
t→∞

β
(
D(nt),D

) ≤ lim sup
t→∞

[
β
(
D(nt), D̃n(t)

)+ β
(
D̃n(t),Dn

)+ β
(
Dn,D

)]

≤ lim sup
t→∞

(
Pμ

(
J n

0 (t) + J n
2 (t)

)2)1/2 + 0 + β
(
Dn,D

)
. (3.72)

Using this and the definition of lim supt→∞, we easily get that

lim sup
t→∞

β
(
D(t),D

)= lim sup
t→∞

β
(
D(nt),D

)≤√c/n + β
(
Dn,D

)
.

Letting n → ∞, we get lim supt→∞ β(D(t),D) = 0. The proof is now complete. �
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Proof of Theorem 1.13 First note that

t−1/2‖Xt‖−1/2

(

〈f,Xt 〉 −
∑

γ (f )≤m<α/2b

e(α−mb)t
∑

|p|=m

apHp
∞

)

= t−1/2‖Xt‖−1/2〈f(cl),Xt 〉 + t−1/2‖Xt‖−1/2

(

〈f(s),Xt 〉 −
k∑

n=1

e(α−mb)t
∑

|p|=m

apHp
∞

)

=: J1(t) + J2(t),

where f(cl) = f(l) +f(c). By the definition of f(s), we have (f(s))(c) = 0. Then using Theorem
1.10 for f(s), we have

‖Xt‖−1/2

(

〈f(s),Xt 〉 −
k∑

n=1

e(α−mb)t
∑

|p|=m

apHp
∞

)
d→ G1(f(s)). (3.73)

Thus

J2(t)
d→ 0, t → ∞. (3.74)

Since α = 2γ (f(cl))b, so using Theorem 1.6 for f(cl), we have

(
e−αt‖Xt‖, J1(t)

)
)

d→ (
W ∗,G2(f(cl))

)
, (3.75)

where G2(f(cl)) ∼ N (0, ρ2
f(cl)

). By (1.17), we have ρ2
f(cl)

= A
∑

|p|=α/2b(ap)2. Combing
(3.74) and (3.75), we arrive at the conclusion of Theorem 1.13. �
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