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Abstract Suppose that X = {X, : ¢ > 0} is a supercritical super Ornstein-Uhlenbeck pro-
cess, that is, a superprocess with an Ornstein-Uhlenbeck process on R? corresponding
to L = %GZA — bx -V as its underlying spatial motion and with branching mechanism
Y(A) = —ak+ BA2 +f(0’+oo) (e — 14 Ax)n(dx), where o = —'(0+) > 0, 8 >0, and n
is a measure on (0, co) such that f<0,+oo) x%n(dx) < +o00. Let P, be the law of X with initial
measure . Then the process W, = e=*'|| X, || is a positive P, -martingale. Therefore there is
Woo such that W, — W, P,-a.s. as t — 0o. In this paper we establish some spatial central
limit theorems for X.
Let P denote the function class

P :={f € C(R"): there exists k € N such that | £ (x)|/[lx|* — 0 as ||x]| = oo}.

For each f € P we define an integer y (f) in term of the spectral decomposition of f. In
the small branching rate case « < 2y (f)b, we prove that there is constant o‘% € (0, 00) such
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that, conditioned on no-extinction,

aXl
(e*“’nxtn, <f”X ﬁ) LW G 1 oo,

where W* has the same distribution as W, conditioned on no-extinction and G, (f) ~
N(O, a]%). Moreover, W* and G(f) are independent. In the critical rate case a = 2y (f)b,

we prove that there is constant ,0? € (0, 00) such that, conditioned on no-extinction,

’ Xt
<e-‘"||xt||, tlffi”X)D S (W, Ga(f). 1 o0,

where W* has the same distribution as W, conditioned on no-extinction and G,(f) ~
N(O, p;). Moreover W* and G,(f) are independent. We also establish two central limit
theorems in the large branching rate case o > 2y (f)b.

Our central limit theorems in the small and critical branching rate cases sharpen the cor-
responding results in the recent preprint of Mito$ in that our limit normal random variables
are non-degenerate. Our central limit theorems in the large branching rate case have no
counterparts in the recent preprint of Mitos. The main ideas for proving the central limit
theorems are inspired by the arguments in K. Athreya’s 3 papers on central limit theorems
for continuous time multi-type branching processes published in the late 1960’s and early
1970’s.

Keywords Central limit theorem - Backbone decomposition - Superprocess - Super
Ornstein-Uhlenbeck process - Branching process - Branching Ornstein-Uhlenbeck
process - Ornstein-Uhlenbeck process

Mathematics Subject Classification (2000) Primary 60J80 - Secondary 60G57 - 60J45

1 Introduction
1.1 Model

Throughout this paper, d > 1 is an integer and b > 0 is a number. We use & = {§, : t > 0}
to denote an Ornstein-Uhlenbeck process (OU process, for short) on RY, that is, a diffusion
process with infinitesimal generator

1
L:= EUZA—bx-V. (1.1)
For any x € R?, we use I1, to denote the law of £ starting from x. The semigroup of & will

be denoted by {7 : t > 0}.
Consider a branching mechanism of the form

V(L) = —ak+ pA% +f (e™™ — 1+ Ax)n(dx), 1>0, (1.2)
(0,400)
where o = —¢/'(0+) > 0, B > 0, and 7 is a measure on (0, c0) such that
/ x2n(dx) < +o0. (1.3)
(0,+00)
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Central Limit Theorems for Super Ornstein-Uhlenbeck Processes 11

Let M p(R?) be the space of finite measures on R?. In this paper we will always assume
that X = {X; : ¢t > 0} is a super-Ornstein-Uhlenbeck process (super-OU process, for short)
with underlying spatial motion & and branching mechanism . We will sometimes call X a
(&, ¥)-superprocess. The existence of such superprocesses is well-known, see, for instance,
[13]. X is a Markov branching process taking values in Mz (R?). For any u € Mg (R?),
we denote the law of X with initial configuration p by IP,. The total mass of the process
X is a continuous-state branching process with branching mechanism . The assumption
(1.3) implies that the total mass process of X does not explode. Since we always assume
that « > 0, X is a supercritical superprocess.

Let B+ (R?) be the space of positive, bounded measurable functions on R?. As usual,
(f, ) ff(x),u(dx) and ||u|| ;= (1, u). Then for every f € Bb (R and p € Mp(RY),

_log]pu(e*(f,xt)) =<uf(.!l)’l’L)’ (1.4)

where u ¢ (x, t) is the unique positive solution to the equation

uf(x,t)+17x/0 U (st —s))ds = I, f (&) (1.5

In addition, we assume that 1 (co) = oo which implies that the probability of the extinc-
tion event £ := {lim,_, » || X;|| = 0} is contained in (0, 1), see for example the summary at
the end of [23, Sect. 10.2.2]. Since v is convex with 1 (0) = 0, ¥ (c0) = oo and ¥’ (0+) < 0,
¥ has exactly two roots in [0, 00); let A* be the larger one. We have

B, (lim [1X, ] =0) = eI,

Using the expectation formula of || X;|| and the Markov property of X, it is not hard to
prove that (see Lemma 3.1 for a proof), under IP,,, the process W, = e™*'|| X, || is a positive
martingale. Therefore it converges:

W, — Wy, Py-as. ast— oo. (1.6)

Using the assumption (1.3) one can show that, as t — oo, W, also converges in LZ(PM), )
W is non-degenerate and the second moment is finite. Moreover, we have P, (W) = || ]|
and {W,, =0} =

The purpose of this paper is to establish some spatial central limit theorems for the super-
OU process. More precisely, we want to find A, and C,, for suitable test functions f, such
that C; ({ f, X;) — A;) converges to some non-degenerate normal random variable as t — oo.
It turns out that C, is determined by the second moment of {f, X,) which depends on the
sign of @« — 2y (f)b, where y (f) is a quantity to be defined later.

There are many papers studying laws of large numbers for branching processes, branch-
ing diffusions and superprocesses. For example, see [2, 3, 17] for branching processes, [10,
11, 31] for branching diffusions and [16, 18, 26, 27] for superprocesses. For super-OU pro-
cesses with binary branching mechanism, the following weak law of large numbers was
proved in [18]:

e “(f, X;) > (f,9)Ws, in probability (1.7)

where f € CF(R?), p(x) = (z55)"2exp(—Z ||x|1*) and (f, ¢) = [pa f(X)@(x)dx. When
(f, @) =0, it is natural to con§1der central 11m1t theorems for ( f, X,), that is, to find a nor-
malization C, so that C;(f, X,) converges to a non-degenerate Gaussian random variable
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12 Y.-X. Ren et al.

as t — oo. For branching processes, there are already papers dealing with central limit the-
orems. In 1966, Kesten and Stigum [21, 22] gave a central limit theorem for multi-type
Galton-Watson processes by using the Jordan canonical form of the expectation matrix
M. Then in [6-8], Athreya proved central limit theorems for multi-type continuous time
branching processes; the main tools used in [6—8] are also the Jordan canonical form and
the eigenvectors of the matrix M,, the mean matrix at time . Asmussen, Hering and Kei-
ding discussed central limit theorems for some general branching Markov processes, see
[4, 5] for example. Recently, central limit theorems for branching OU particle systems and
for super-OU processes were established in [1] and [29] respectively. However, the limiting
normal random variables in the central limit theorems in [1, 29] (see [1, Theorems 3.2 and
3.6] and [29, Theorems 3 and 4]) may be degenerate (i.e., equal to zero), so the central limit
theorems in [1, 29] are not completely satisfactory.

In this paper, we sharpen the results of [29] and establish central limit theorems for super-
OU processes which are more satisfactory in the sense that the limiting normal random
variables in our results are non-degenerate. The setup of this paper is more general than that
of [29] since we allow a general branching mechanism as opposed to the binary branching
mechanism in [29]. The only assumption on the branching mechanism is the second moment
condition (1.3), which is necessary for central limit theorems.

We mention that we are following Athreya’s argument for multi-type (finite type)
branching processes, also called multidimensional Galton-Watson processes, and show that
Athreya’s ideas for multi-type branching processes also work for super-OU processes, which
can be regarded as an infinite-type branching process. The main tool of this paper is, similar
to that of [29], also the backbone decomposition of supercritical superprocesses, see [9].
The main idea of the backbone decomposition is that a supercritical super-OU process can
be constructed from a branching OU process (known as the backbone), in which particles
live forever (known as immortal particles). After dressing the backbone with subcritical
super-OU processes, we get a measure-valued Markov process, which gives a version of the
super-OU process. Since subcritical super-OU process will become extinct in finite time,
we can imagine that the limit behavior of super-OU process is determined by the backbone
branching OU process. In this paper we prove that these intuitive ideas work well. For the
precise backbone decomposition, see Sect. 2.1.

We remark here that, under the extra condition [* -1~

Y)
anism, we could use the excursion measures {N,, x € R’} of our superprocess instead of the

backbone decomposition to prove our central limit theorems. In fact, in this case, the argu-
ments are somewhat shorter. We choose to use the backbone decomposition argument since
we could not make the excursion measure argument work in the general case. The main dif-
ficulty is that N, is not a finite measure. Under the assumption | * ﬁdk < 00, the event £
is equal to the event {¢y < 00}, IP,-a.s., where {y = inf{t > 0, || X;|| = 0}, and more impor-
tantly, N, (-, o > t) < oo is a finite and non-zero measure for any ¢ > 0. Without the extra
assumption, it might happen that Ps (o <t) =0 for all # > 0 and thus N, (¢, > 1) = oo.
The main feature of the super OU processes used in this paper is that the spectrum of
the generator of the OU process is discrete and that eigenfunctions form a complete or-
thonormal basis in a certain L? space. A natural and important follow-up question is the
following: can one extend the central limit theorems to supercritical superprocesses with
general spatial motion and with spatial-dependent branching mechanism? In the sequel [30]
to the present paper, we formulated a general setup and established spatial central limit the-
orems for supercritical branching Markov processes with general spatial motion and general
spatial-dependent branching mechanism. By combining the ideas of the present paper with

dX\ < 0o on the branching mech-
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Central Limit Theorems for Super Ornstein-Uhlenbeck Processes 13

that of [30], one could extend the central limit theorems of this paper to supercritical su-
perprocesses with general spatial motion and with spatial-dependent branching mechanism.
We will carry this out later.

1.2 Eigenfunctions of OU Processes

Recall that {7}, r > 0} is the semigroup of the OU process &. It is well-known that £ has an

invariant density
b\ b
e =(=—) exp—=IxI?). (1.8)
o o

Let L*(¢) :={h : [ga |h(x)|*@(x)dx < oc}. For hy, hy € L*(¢), we define
hohs)y = [ i RpCOds.
R

In this subsection, we recall some results on the spectrum in L?(p) of the operator L defined
in (1.1), more details can be found in [28]. For p = (p1, p2, ..., pa) € Zi, let|p| = Z’j.:] Dj

and p! = I—[‘;zl p;!. Recall the Hermite polynomials {H,(x), p € Zi}:

! d 2
H.(x) = (—1)Plehi? oIy 1.9
p0) = DY S () (1.9)
The eigenvalues of L are {—mb,m =0, 1,2, ...} and the corresponding eigenspaces A,, are

given by

Ay :=Span{g,, |p|=m}, (1.10)
where
1 Vb
=—H,| —x ).
¢r () Jp2il ”( o x)
In particular, ¢, o(x) =1, ¢, (x) = @xi, where e; stands for the unit vector in the x;

o
direction. The function ¢, is an eigenfunction of L corresponding to the eigenvalue —|p|b

and therefore

Ti¢,(x) =e PP ¢, (x). (1.11)

Moreover, the eigenfunctions {¢,(x), p € Zi} form a complete orthonormal basis for
L?(¢). Thus every f € L?(¢p) admits the following L?(¢) expansion:

f)=Y"" a,p,(x), (1.12)

m=0|p|=m
where a, = (f, ¢,),. Define
y(f):= inf{n > 0: there exists p € Zi with |p| = n such that a, # O}, (1.13)

where we use the usual convention inf @ = co. In this paper we will use P to denote the
function class

P:={feC(R): there exists k € N such that | f(x)|/[x]|* — 0as [x]| - oo}.
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14 Y.-X. Ren et al.

We easily see that P C L?(¢) and for f € P, there exists k € N such that
Lf IS T+ Ix]f,

where we used the following notation: for two positive functions f and g, f(x) < g(x)
means that there exists a constant ¢ > 0 such that f(x) <cg(x).

1.3 Main Results for Super-OU Processses

In this subsection we give the main results of this paper. The proofs will be given in the
later sections. In the remainder of this paper, whenever we deal with an initial configuration
€ Mp(R%), we are implicitly assuming that it has compact support.

1.3.1 Large Branching Rate: a > 2by (f)

For each p € 74, we define
H i=e7 @M g, X)), 120

Then one can show (see Lemma 3.1 below) that, if « > 2|p|b, H/ is a [P,-martingale
bounded in L2(P,), and thus the limit HY, := lim,_, o, H/ exists P,-a.s. and in L2(P,).

Theorem 1.1 If f € P satisfies a« > 2y (f)b, then as t — o0,

eI XY > Y a,HL, in L*(B,).
=

Remark 1.2 When y(f) =0, H,0 reduces to W,, and thus Hfo = Weo. Therefore by Theo-
rem 1.1 and the fact that ap = (f, ¢), we get that, as t — o0,

e X)) = (fL9)Wao, in L2(P)).

In particular, the convergence also holds in P, -probability, so it implies the results in [18]
in the case of super-OU processes. Moreover, by (1.6), on £¢, we have

X, 7" (f, X;) = (f,@), inP,-probability.

Remark 1.3 We think that the convergence in Theorem 1.1 is also valid in the almost sure
sense. In fact, from the proof below we see that the first-order term is a LZ(P#)—bounded
martingale, and the second moment of the remainder term decays exponentially fast, which
implies that we have almost sure convergence along the discrete time sequences {nd,n > 1}
for any § > 0. However, we have not been able yet to prove the almost sure convergence for
continuous time. In [10], Conner gave a proof of a similar almost sure convergence result
for branching Brownian motion in a finite interval with absorbing boundary, however, his
technology does not work in the present case.
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Central Limit Theorems for Super Ornstein-Uhlenbeck Processes 15

1.3.2 Small Branching Rate: o <2y (f)b

Let
0 0 Clz
2. s 2 _ )4
o} ._A/O (T )2 p)ds = A Z > T (1.14)
n=y(f) |pl=n
where
A= 1/f<2>(0+)=2ﬂ+/ x2n(dx) < oo. (1.15)
(0,00)

Obviously, under the assumptions of this paper, A € (0, 00). In the rest of this paper, A will
always stand for this constant.

Theorem 1.4 If f € P satisfies a« <2y (f)b, then 013 € (0, 00) and, under P, (- | £°), it
holds that

aXt *
(e—“’nxtu, <f||x ﬁ) L (W, Gi(f), - o, (1.16)

where W* has the same distribution as Wy, conditioned on £ and G(f) ~ N (0, 0‘%).
Moreover, W* and G(f) are independent.

Remark 1.5 Using the theorem above, we get that if o < 2y (f)b, then, under P, we have
—a d
e f, X)) = GV Weo,
where G (f) is the same as in the theorem above.
1.3.3 The Critical Case: o« =2y (f)b

Define
pr=A Y (a,) 1.17)

IpI=y(f)

Obviously, ,oj% € (0, 00).

Theorem 1.6 If f € P satisfies a =2y (f)b, then, under P, (- | £°), it holds that

k] Xl
<e—w||xt||, tlfzfﬁ) LW, Ga(), 1 oo,

where W* has the same distribution as Wy, conditioned on £, G,(f) ~ N (0, pj%). More-
over W* and G,(f) are independent.

Remark 1.7 Using the theorem above, we get that if o = 2y (f)b, then, under IP,,, we have

1272 £ X)L Go(F) Wy 1 —> 00,

where G,(f) is the same as in the theorem above.
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16 Y.-X. Ren et al.

Remark 1.8 Note that the limiting normal random variables in our Theorems 1.4 and 1.6 are
non-degenerate.

Remark 1.9 The results of [29] correspond to the case y(f) = 1 in the present paper. For
the small branching rate case of [29], the definition of o} in [29, (3.1)] can be simplified and
there is a minor mistake in [29, (3.1)]. In fact, using the notation of [29],

ﬁ=mﬂeﬂwwwbﬁw

f(x) = f(x) — (f, ¢), since it is easy to check that the sum of the last two parts of [29,
(3.1)] is O, that is

[ o (2P FO) + dapuc ) as <o

where u(x,s) = fos PP f(~))2](x) du. Furthermore, the factor 8/« on the right side
of [29, (3.1)] should also be deleted. In the critical branching case of [29], the factor 8/« on
the right side of [29, (3.2)] should be deleted. The correct form of [29, (3.2)] should be (in
the notation of [29])

7t =28 [ (volamd(s). o] ocods

With these minor corrections, the results of [29] coincide with our Theorems 1.1, 1.4 and
1.6 when y(f) = 1.

For convenience, we introduce the following notation. For any f € L?(¢), we define
fo@= Y D a0,  fo@= D Y ap,x).
y(f)Sm<a/(2b) |pl=m m=a/(2b) |p|=m

and

fo@) =f@) = fo) = fo@= > Y ayp,x).

m>a/(2b) |p|=m

Strictly speaking, fi, fi¢), fo) also depend on o/(2b). For simplicity of notation, we omit
this dependence in the notation above.

Combining Theorems 1.1, 1.4 and 1.6, we have the following expansion of ( f, X;): for
any f € P,

(f, X[) = Z Z a e—(a—mb)r<¢p, X[> . e(a—mb)r

y(f)sm<zp S5 |pl=m

n Z apt e X,y N1 4 (fuy, Xy)

Ipl= 21,
= 2 2 aUp0- T Y a,Up0) Ve (fo X,
y(f)<m<$ |pl=m Ipl=1%5

(1.18)
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Central Limit Theorems for Super Ornstein-Uhlenbeck Processes 17

where
—(a—Iplb
e~ (@=lpl )t(¢p7Xt>» Ipl < ;_b’

U,(t) = {
t71/28701/2<¢p, Xt)s |p| = ;‘—b,

Further, if |p| < 5, then U, (1) = H/ converges to HZ,, P,-a.s. and in L*(P,);if |p| = 35
U, (1) converges in law to G2(¢,)v/Wa with G2(¢,) ~ N (0, A); e~ “/?"(fy), X,) con-

verges in law to G (f))v/ Weo-
1.3.4 Further Results in the Large Branching Rate Case

In this subsection we give two central limit theorems for the case o > 2y (f)b. These two
theorems have no counterparts in [29]. Define

Ho:i= Y Y a,HL. (1.19)

y(f)<m<a/(22b) |p|l=m

Let
1

2 . 2
Bl =A D =) 4 (1.20)
Ipl=m

y(f)sm<a/(2b)

In Sect. 3.3 we will see that ﬂ%(s) = (Vars, Hy, ¢).

Theorem 1.10 If f € P satisfies o > 2y(f)b and f) =0, then '3/2‘(5) € (0, 00). Under
P.(-| &), it holds that, as t — oo,

<e—“’||xt||, ||X,||—‘/2(<f, X)— Y ey %H&))i (W*, G3(/)),

y(f)=m=<a/(2b) |pl=m
(1.21)

where W* has the same distribution as Wy, conditioned on £°, and G3(f) ~ N (0, U.%(z) +
,6}2[“)). Moreover, W* and G(f) are independent.

Remark 1.11 If oo > 2|p|b, then under P, (- | £), it holds that, as t — oo,

_ pla=Iplb)t g P
<e*“’||xt||, {9y, Xi) —e” 7 H°°)>$(W*, G3), (1.22)

X172

where G5 ~ N (0, ﬁ). In particular, for |p| = 0, we have

X —e*'W,
(e, L) L e, o), 1o,
1l
where G5 ~ N(0, £).

Remark 1.12 Using the theorem above, we get that if o« > 2y (f)b and f.) =0, then under
P,, we have, as t — 00,

<e—“’||xt||,e—<“/2>’<<f,x,>— > e“"”b)’ZapH;;))i(Wm, VWaGs(1)).

y(f)sm<a/(2b) |pl=m

where G3(f) is the same as in the theorem above.
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18 Y.-X. Ren et al.

Theorem 1.13 If f € P satisfies f() # 0, then, under P, (- | £°), it holds that, as t — oo,

(e—“’nx,u,r—”2||x,||—‘/2(<f,x,>— > e“‘"’“ZapH;z))i(W*, Ga(f)).

y(f)<m<a/(2b) |pl=m
(1.23)

where W* has the same distribution as Wy, conditioned on ¢, and

Ga(f) ~N(0, AN (a,»z).

|pl=a/2b

Moreover, W* and G 4(f) are independent.

Remark 1.14 Note that the limiting normal random variables in our Theorems 1.10 and 1.13
are non-degenerate.

2 Preliminaries
2.1 Backbone Decomposition of Super-OU Processes

In this subsection, we recall the backbone decomposition of [9]. Define another branching
mechanism ¢* by

YO =y (h+1Y)

=a*A+ BA + / (e — 1+ 2rx)e ™ *n(dx), 2.1
(0,00)

where

af =—a+ 281+ f (1 — e_x*")xn(dx).
(0,00)
It is easy to see that «* = (¥*) (0+) = ¥'(A*) > 0. So the (&, ¥*)-superprocess is subcrit-
ical. Note that it follows from (2.1) that the measure n* associated with ¥* is e p(dx),
thus for any n € N, fooc x"n*(dx) < oo. It follows from [9, Lemma 2] that the (&, v)-
superprocess conditioned on £ has the same law as the (&, ¢*)-superprocess. Let [P}, be
the law of the (&, y*)-superprocess with initial configuration p, and define

wi(x,1) = —logP; (e7/X0)).

It was shown in [14] that one can associate with {P§ :x € R?} a family of measures
(Ni:xe R%}, defined on the same measurable space as the probabilities {P5, :x € R?} and
satisfying

Ni(1 — e VX)) = —logPy (e”VX) = (x, 1), 2.2)

forall f € B; (R?) and ¢ > 0. The branching property implies that IP5, is an infinitely di-
visible measure on the path space of X, that is to say, the space of measure-valued cadlag
functions, ([0, 00), M (R?)), and (2.2) is a Lévy-Khinchine formula in which N7¥ plays
the role of its Lévy measure. The measures {N7 : x € R4} are also called excursion mea-
sures, see[14] and [25] for further details on N¥. For earlier work on excursion measures of
superprocesses, see [15] and [24].
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Central Limit Theorems for Super Ornstein-Uhlenbeck Processes 19

Let M,(R?) be the space of finite integer-valued atomic measures on R?. For v €
MR, let Z =(Z, :t > 0) be a branching OU-process with initial configuration v.
{Z,,t >0} is an M, (R)-valued Markov process in which individuals, from the moment
of birth, live for an independent and exponentially distributed period of time with parameter
a* during which they move according to the OU-process issued from their position of birth
and at death they give birth at the same position to an independent number of offspring with
distribution (p, : n > 0), where py = p; =0 and for n > 2,

1 n "
P = e :5(”)21ln=2> + () / e Xn(dx)}
« (

0,00) n!

The generator of Z is given by

1
F()=a") pu(s"—s5)= F1//(A*(1 —5)). (2.3)

n>0

Z is referred as the (&, F))-backbone in [9]. Moreover, when referring to individuals in Z
we will use the classical Ulam-Harris notation so that every particle in Z has a unique label,
see [20]. Let 7 be the set of labels of individuals realized in Z. Let | Z,| be the number of
particles alive at time ¢. For each individual u € 7 we shall write t, and o, for its birth and
death times respectively and {z,(r) : r € [1,, 0,]} for its spatial trajectory. Now we follow
[9] and describe three kinds of immigrations along the backbone Z as follows.

1. Continuous immigration: The process I is measure-valued on R? such that

-y Y

UET UNT, <r<tAoy

where, given Z, independently for each u € 7 with 7, < ¢, the processes X" are
countable in number and correspond to ([0, 00), M p(R?))-valued, Poissonian immi-
gration along the time-space trajectory {(r, z,(r)) : r € (7,,t A o,]} with rate 28dr x
dN;, - *
2. Discontinuous immigration: The processes IT" is measure-valued on R? such that

I[P* = Z Z Xt(i’:f,r) ’

UET tAT, <r<tAoy

where, given Z, independently for each u € 7 with 7, < t, the processes X @7
are countable in number and correspond to ([0, c0), M r(R?))-valued, Poissonian
immigration along the time-space trajectory {(r,z,(r)) : r € (t,,t A o,]} with rate
dr x fE(O o) Ve - yn(dy)d[?’}5 o
3. Branching point biased immigration: The process I” is measure-valued on R? such

that
3,
= Z 1"’u§f Xt(—g,z ’
ueT

where, given Z, independently for each u € T with o, < ¢, the process X®* is an in-

dependent copy of the canonical process X issued at time o, with law P} 51 o) where,
given u has n > 2 offspring, Y, is an independent random variable with “distribution
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n,(dy), where

na(dy) = {/3()»*)250(61)’)1{n=2) + ()" %e*"ynwy)}.

pnk*a*
Now we define another M (R)-valued process I = {I, : t > 0} by
=1+ 1"+,

where the processes I = (IN" :¢ >0}, I" ={I" :+ >0} and I" = {1 : t > 0}, condi-
tioned on Z, are independent of each other. We denote the law of I by Q,. Recall that v is
the initial configuration of Z.

For € Mp(RY), let X be an independent copy of X under P}, and be independent of /.
Then we define a measure-valued process A = {A, : ¢ > 0} by

A=X+1. (2.4)

Note that Z, X and the three immigration processes above are defined on the same proba-
bility space. We denote the law of A by P,,,. When v is a Poisson random measure with
intensity measure A* i, then we write this law by P,,. The following result is proved in [9].

Proposition 2.1 For any i € Mp(R?), the process (A, P,) is Markovian and has the same
law as (X, P,).

We will need the following o -fields later on:
Fr=0(Ass<t), t=0, (2.5)
gt :U(A.Yaz.&‘asft)v tZO' (2.6)

2.2 Moments

Now we use Laplace transforms to calculate the moments of X. We will omit some details,
for these omitted details, see [13]. For any f € P, we define

uf(x, t,0) = —log]PSX (e—<0f,Xz)),
then
up(x,t,0)+ 11, f 1//(uf(§s, t—s, 9))ds =011, f(&). (2.7)
0

For convenience, we use u(;') (x,t,0) to denote

(2.7) with respect to 6, we get

d" ufr(x,t,0)

o le=0- Differentiating both sides of

WP (x,1,0) = e VOV, f(x), (2.8)
t
u (x,1,0) = =2 (0+4) / eV ONIT [u (s, 0] ()ds
0

= —Ae" / e T, [T, f17 (x) ds. (2.9)
0
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The moments are given by

dr (e—(“j (utﬂ),u))

P, ((f. X)) = (=1)" don ‘9:0'

In particular,
WX = () (1,00, ) = e (T, f. o), (2.10)
P, ((f, X)) = Pu(f, X)) = (P (x.1,0), ). 2.11)

Recall that X, is defined in Sect. 2. 1 It is a subcritical superprocess with branching
mechanism ¥ *(A) = Y (A + 1%). Thus ¢ (0+) d)J" (A*) exists for all m > 1. For any
f € P, we define

)Lm

Wi (x,1,0) = —log Py (e”H%0). (2.12)
Then
t
wyp(x,t,0)+ I, /0 Y (&t —5,0))ds =0T, f(&). (2.13)
Differentiating both sides of (2.12) with respect to 8, we have

(%) (e, 1,0) = T, f (), (2.14)

(u”})(z)(x,t,O) = —(1//*)(2>(0+)/ e_(’/’*)/(oﬁ([_”]},s[( )(1)( s, 0)] (x)ds
' 0

=—(¥") 7O f T T, fR () ds, 2.15)

0

() x,1,0) = —(w*)(3’(0+)/[e—“*m[( DNV —5,0] (0 ds
—3(y%) <2’(0+)f T () () ?) ot — 5, 0] () ds, (2.16)
and
() 1,0 = /Ote*“*fn[J(,t—s)](x)ds, 2.17)

where

10 =[0) PO () ") +6() P O () ) ()] cx 1, 0)
+ 4 2O @) @) +3w7) P O () P) ] x, 1, 0).

By (2.12), the moments of X are given by

dar (e—(”j« (<.t,6),u))

P ((f. §t>)n =(=D" don ‘9:0'
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In particular, we have
Pu(f X0 = (%) (1,00, 1) = e T, £, 1), 2.18)
P ((f. X)) —Pu(f. X1)" = —((u?)? (x,1,0), ), (2.19)
P ((f. X0 —Bu(f. X)) = —((u3) Y e, 1,00, ) 4+ 3((uh) ® (x,1,0), ). (2220)

2.3 Estimates on the Semigroup T,

Recall that & = {&, : t > 0} is the OU process and {7;} is the semigroup of &. It is well-known
that under I7,, & ~ N (xe ™", otz), where 67 = o2(1 — e~")/(2b). Let G be an R?-valued

t
standard normal random variable, then using (a + b)" <2"(a" +b"), a >0, b >0, we get

(111" @) = E(lloeG +xe™ ") < 2"[(o/v2b)"E(IGII") + I1x]"]. 2.21)
Using this, we can easily get that
(141 1") @) < cm) (1 + [Ix]"), (2.22)

where c(n) does not depend on 7.

Lemma 2.2 For any f € L*(¢), we have that, for every x € R¢,

Tf)= Y e™ Y a,p,(x), (2.23)
n=y(f) Ipl=n

lim e’ DT f() = Y ape,(x). (2.24)

e pl=r(f)

Moreover, there exists ¢ > 0 such that fort > 1,
—y(Hbt 3l d
T, f(x)| <ce 7V e2x2™" | x e RY. (2.25)

Proof Forevery f € L?(¢), using the fact that ¢(x) is the invariant density of & we get that
[eeisicoy ax = [ewrnlirtlmar= [1roPemidy <o @26

so T, f(x) € L*(¢). Moreover, by the fact & ~ N (xe™, 62), T;| f|(x) is continuous in x.
Thus T;| f|(x) < oo for all x € R?. (2.26) implies that T} is a bounded linear operator on
L (g). Let fi(x)=Y"_, > pi=n @p®p(x). Since fy — fin L*(¢), we have T, fy — T, f in
L2(<p), as k — oo. By linearity, we have

k
Tfi(x)=7) e ( > apm(x)).

n=0 |pl=n

We claim that the series Zzio e (Z‘ plen pPp (X)) is uniformly convergent on any com-

pact subset of RY. Thus "2 e (3, ,_, a,¢,(x)) is continuous in x. So for all x € R?,

=n

Tfx)=Y) e ( > apqsp(x)).

n=0 |pl=n
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Now we prove the claim. In fact, by Cramer’s inequality (for example, see [19, Equation (19)
on p. 207]), forall p € Zi we have

16, ()] < Kezo? ™V, 2.27)

where K is a constant. So we only need to prove Y oo e " (2 pj=n lap]) < co. By Holder’s
inequality,

- 0 172 00 12
Zefnbt(z |ap|> < ( Z Kneant> ( Z Z |ap|2> , (2.28)

n=0 Ipl=n n=y (f) n=y (f)|pl=n

where K, = ("**") = #{p € Z< : | p| = n}. Since K,, < (n +d)?, we have that

o0
Z K,e 2" < o0,
n=y (f)

Using the fact that {¢,(x), p € Zi} form a complete orthogonal basis for L%(¢), we get
ZZO:V(f) > ipl=n la,1* = [ (x)| f(x)|*dx < co. Therefore the claim is true.
By (2.27) and (2.28), for t > 1, we have

e} 1/2 00 172
b k12
T f (ol < e (Z Kn+y(f>€_2"b) ( > 2 |ap|2> Kenzh

n=0 n=y(f)|pl=n

. b 2
S e 7 WDhtepz W7 e RY, (2.29)

Therefore, fort > 1,

I @) = Y appp ()| = DT ) = eI T ()
Ipl=y () Ipl=y ()
=’ M|T, (f - Z ap¢p> ()
Ipl=y(f)
s e*btezé_jz llx? , (230)
which implies (2.24). The proof is now complete. ]
For p € Z¢, we use the notation £ (x) := Wf(x). Define

P ={feC®: fP ePforall peZi}.
It can be easily shown that, for any f € P, T, f (x) € P* for every t > 0.

Lemma 2.3 For any f € P* and p € Z‘i satisfying 0 < |p| < y(f), we have y (f®) >
y(f) —Ipl.
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Proof By the definition of ¢, and g, it is easy to check that

¢,()(x) = (=D, (x),

(22)IP172_ Integrating by parts, we get

1
where ¢, =
P el b

/f(x)qbp(x)(p(x)dx:Cp /]Rd FPx)e(x)dx. (2.31)

Thus
y(f)= inf{k : there exists p such that | p| =k and / FP(x)p(x)dx # 0}.
R4

Hence if [p'| < ¥ (f) — |pl., we have [p, f?*?)(x)¢(x)dx =0, which implies y (f ) >
y(f)—1Ipl. O

In the following lemma, we give another estimate for 7; f, which will be very useful
later.

Lemma 2.4 For every f € P, there exist r € N and ¢ > 0 such that

DT f ) < c(1+ 1x]7), (232)
T ) = D appp ()| <ce™ (14 |x7). (2.33)
lpl=y ()

Proof Let g(x) =T, f(x) € P*. Then y(g) = y(f) and there exist k € N and c¢; > 0 such
that, for |p| =0, 1, ...,y(f) lgP ()| < e (1 + [|x]%). For x = (x1, x2,...,x3) € RY, we

define x? := ]_[7 X; . Then for s > 0 we have

Tg(x) = Ti[g(- +xe™™)](0)

y(f)—1
ﬂ[ xe )= Y Y gP()xre -f"’"/p}(m

m=0 |p|=m
y(f)—1
+ Y Y 1[gP]©xre " p!
m=0 |p|=m
=)+ UD.

It follows from (2.25) and the fact that y (g”) > y(g) — | p|, we have

sup e()/(g)—ll'l)b”TX [g(li)](o)l < 0.

s>0

Thus
y(f)—1

(D] < eV (Nbs Z Z Ix?| < e—V(f)bs(l + ”x“}/(f)).

m=0|p|=m
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Using Taylor’s formula and the fact |g® (x)] <14 ||x||¥, we get

y(H-1
g(y—l—xe*bs)— Z Z g(p)(y)x”e*”’bs/p! _ Z |g(”)(6’)||xp|e7y(f)bs/(y(f)!)
m=0 |p|=m Ipl=y ()

k ) ,—v ()b
S (U1 <) e Pemr e,

where @ is a point on the line segment connecting y and y + xe~”*. Then by the fact that
Tl - 1F1(x) S 1+ llx|l*, we get sup,_o Ty[]l - 11(0) < oo. Therefore, we have

(DS (14 [x 470 e=r Db
Consequently,

e M| Tgl () S 1+ 7.
Let ry =k + y(f). For t > 1, combining T; f (x) = T,_;(g)(x) with the above inequality,
we arrive at (2.32) forr > 1. Fort < 1,

IMT OIS e PP (14 1Ix)%) S 14+ (x|,

so (2.32) is also valid.
It follows from (2.32) that there exists 7, € N such that
eVIHEIT f(x) — e 7D Ny, ()| ST+ X))
IpI=y(f)

Now (2.33) follows immediately. O
From the above calculations, we have

Lemma 2.5 Let f € P.
1) Ifa <2y(f)b, then

lim e~ @/>'Ps ((f, X,)) =0,

1—00

(2.34)
lim e~ Vars, (f, X;) =07},
1—00
where Vars, stands for the variance under Ps_ and 013 is defined in (1.14).
() If a =2y (f)b, then
lim ¢~'2e~“/?"Py ((f, X)) =0, (2.35)
1—00
and there exists r € N such that
[t e Vars, (f, X} S 1+ I|x]* (2.36)
and
[t e Vars, (f. X,) — p7| St (1 + 1Ix17). 2.37)
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which in particular implies that

lim 1=~ Vars, (f. X,) = p}. (2.38)

—>00

where ,0/% is defined in (1.17).
(i) If o > 2y (f)b, then

lim 72D ars (f, X;) =} (x), (2.39)
where
o] i 2
np(x)=A / e—<“-2y<f>"“n< Z a,,¢,,> (x)ds. (2.40)
0

Ipl=y(f)

Proof 1t follows from (2.9) and (2.11) that

t

Vars (f, X,) = Ae*™! f e T[T, f1P(x)ds = Ae™ f e T [T—, f1A(x)ds.  (2.41)
0 0

() If @ < 2y (f)b, by Lemma 2.2, we have lim,_, ., e? V¥ T, f (x) = Z\pl=y<f) apep(x).
Thus

lim e (01/2)t]p§ (f, X)) = hm e 2y(f)b)f/2[e}/(f)bfT f(x)]

t—00

It follows from Lemma 2.4 that there exists r € N such that e” V% |T, f(x) <14+ [x]".
Using (2.22), we have

T [e" DT £ o) S 1+ x> (2.42)

Thus e* T, [T, f1>(x) < @2 (1 4 |1x||?"). Hence by the dominated convergence the-
orem, we get

lim [ T, [T, fP(x)ds = / " T g)ds
0 0

—>00

By (2.23) and the fact that {¢,(x), p € Zi} is orthonormal in L?(p), we have

(T f) (P Z Z —2nbs 2

n=y (f) |pl=n

which implies (2.34).
(ii) If « =2y (f)b, then by (2.41), we have

t
t~ e ™ Vars, (f, X,) = At f T, [e" O T, f T () ds. (2.43)
0

By Lemma 2.4, there exists r € N satisfying (2.32), (2.33) and

Z ap¢p (x)

Ipl=y(f)

ST+,
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which follows from the fact that ¢, (x) is a polynomial. Then by (2.32) and (2.43), it is easy
to get (2.36).
Let h(x) := (Zm:wf) a,¢,(x))*. Then we have

(7P T, £ (x))* = h(x)|

ey(f)bs'Tsf(x)— Z ap,,(x)

IpI=y ()

=

D apgpx)

IpI=y ()

(e”f””mﬂ(x) +

)

Se ™ (L+I1x)™).

Since y (h) =0 and ZIpIzy(f) 12, = (h, @), by (2.33), there exists ' € N such that

T h(x)— Y a
Ipl=y(f)

S e (14 | )|™). (2.44)

Let ro = max(2r, '), then

’Tts(eJ/(f)bevf)z(_x)— Z af?

Ipl=y(f)

< T (P T f ) = h)| + | Trosh) = Y a2

Ipl=y(f)
5 (e—bx —i—e_b(t_s))(l + ”x”f‘o)_
It follows that

l t
;/ ‘T‘[_S(ey(f)bsryf)z(x)_ Z a}z} ds

0 Ipl=y (/)

L —bs —b(t—s) T
e +e 14+ ||x||"*)ds
< Jo( t)( i) S+ x)). (2.45)

Then (2.37) follows from (2.43) and (2.45).
(iii) If ¢ > 2y (f)b, then by (2.41), we have

t
e 2@ DD ars (f, X,) =Af e*(“*zﬂf”’”Ts[eV(fW’*‘)T,_Sf]z(x)ds.
0

By Lemma 2.4, there exists € N such that [e” V?C=9T,_ £ (x)]> < c(1 + ||x||*"). Thus
L[ PP fT ) S 1+ e

Now by the dominated convergence theorem and (2.24), we have

'
. —(a— _ 2
lim e @ 2V(f)b)XTS[eV(f)b(t S)thsf] (x)ds

1—00 0
o] 2
= A/ e’(“’z’/(f)b)sTs( Z apci)p) (x)ds.
0 pl=y (/)
The proof of (iii) is now complete. O
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According to [9], under P;_, we have that, conditioned on F; (see (2.5)), the backbone
Z, is a Poisson point process with the intensity A* A,. In particular, Zy = NJ,, where N is a
Poisson random variable with parameter A*. Then we have

N
A=X+) 1, (2.46)
j=1

where I/, j = 1,2, ... are independent copies of I under Q;, and are independent of N.
The first moment of I can be calculated by

Ps (f, A) =Ps (f, X))+ 1°Qs, (f, 1) (2.47)

Thus

1 .
Qs, (S, 1) = F(Psxf,A —Ps (£, X)) = — (e — ™), f (). (2.48)

=

For the second moment, let Vars, stand for the variance under Ps, and V; stand for the
variance under (Qs, . By (2.46), we have

Vars (f, A) = Vars, (f, X))+ 1*Qs, (f, ).
Thus
1 ~
Qs (f 1) = = (Vars (f, X;) — Vars (f. X)) (2.49)

Corollary 2.6 Let {I,},>¢ be the process described in the Sect. 2.1 and f € P.
@) Ifa <2y (f)b, then

lim e~ @2Qs, ((f. 1)) =0, (2.50)
A [ 2 oj
lim e Vs (f, I,) = —/ e (T, f)7, p)ds = —. 2.51)
t—00 A* 0 A*
(i) If a =2y (f)b, then
lim 1= 2e=@2Q, ((f. 1) =0, (2.52)

and there exists r € N such that
[ e Vs (f ) ST+ x| (2.53)
and

A
t“e‘“’VSx(f,It)—F > @ S (1), (2.54)

Ipl=y ()

which in particular implies that

. —1 _—at
lim eV (f. 1) = Z al (2.55)
\pl r(f)
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(i) If o > 2y (f)b, then

2

2
lim e~ 2@y, (£ 1y = ©__1 ( > ap(/),,(x)) (2.56)

— * - *)2
e A AP \oSo

Proof Using (2.46) and Lemma 2.5, we can easily obtain the corollary. Here we just give
the proof of (2.51). By (2.49), we have

1 1 ~
e Vs (fi i) = Fef‘”Varax (fs Xi) — Fef‘”Varax (X)) = e Qo (f 1)) @57)

Using (2.15) and (2.19), we have

Vars, (f, X)) = (%) 0+)e ™" / ST, f (o) ds. (258)
0

By the fact that there exists € N such that |7, f(x)| < 1+ ||x|I”, we get T[T, f1*(x) <
(1 + [|x|I>"). Thus

Vars (£, X)) Se™ " (1+x]*) =0, t— oc. (2.59)

By (2.48), |Qs, (f. IN| S eI T, f ()| S 7P (1 + [lx||"), thus we have

lim e~ (Qs, (f, 1,))" S Tim €@ 2P (1 4 x| ) =0. (2.60)
1—00 1—>00
Now, using (2.34), (2.59) and (2.60), we easily get (2.51). O

Lemma 2.7 For f € P, it holds that

P, ((f, %) =Pl £, X)) S {1+ I, )+ (1 + x>, ). 2.61)

Proof By (2.32), there exists r € N such that |T, f(x)| < 1 + |lx|I". So by (2.14),
[P x, 1,00 S 1+ llx[". By (2.59) and (2.19), we have |(u})® (x,7,0)] S 14 [[x|*.
Thus using (2.16), we get |(u*})<3)(x,t,0)| <1+ ||Ix|I*. Then by (2.17), we have
|(Lt’})<4> (x, 6,0 <1+ llx]|* . Now (2.61) follows immediately from (2.20). O

3 Proofs of the Main Theorems

In this section, we will prove the main results of this paper. Recall that we assume that the
initial measure y is a finite measure on R? with compact support, and that (X, P,) and
(A, P,) have the same law. Thus in the remainder of this paper, we will replace (X,,P,)
by (A, P,). Define

Li={ueT, v, <t<o,}, t=0,

which is the collection of particles which are alive at time ¢. From the construction of A,,
we have

Ay =X+ Y I, 3.1)

uely

@ Springer



30 Y.-X. Ren et al.

where, conditioned on G,, X" is a superprocess with the same law as X under P}, and 1"’
has the same law as I under Q,, ). The processes "', u € L, are independent.

3.1 The Large Rate Case: o > 2by (f)
Recall that
H = el (dp, X1), t=0.

Lemma 3.1 H/ is a martingale under P,,. Moreover, if « > 2| p|b, we have sup, [F",L(H,p)2 <
00, and therefore the limit

H? := lim H
1—>00
exists P, -a.s. and in LZ(IP’“).
Proof Since ¢, is an eigenfunction of L corresponding to —|p|b, by (2.10), we have

P,H = (¢,, ). Thus, by the Markov property, we get that H/ is a martingale. Using
(2.10) and (2.11), we get

Py{gp. X,)? = TG, 1) + Ae / / T 93] ds ).

Thus, when o > 2|p|b, we have by the definition of H/,

Py (H)' = (¢ 1) + A / f AP T (¢ ] (o) ds pe(dx)
R4
<@+ [ / e~ @205 T [62](x) ds pa ().
R4 Jo

Since |, < 1+ [lx]1*7, by (2.22), we have |Ti[¢1(x)| < 1+ [lx[|*7. Thus

o0
/ / e~ @ 2P T [§2](x) ds u(d) < / (1+ I P7) w(dx) <00, (32)
R4 Jo Rd
from which the convergence asserted in the lemma follows easily. ]
‘We now present the proof of Theorem 1.1.

Proof of Theorem 1.1 Define M, := e=©@=7(b1 (£ X} where
o0
fO=f@ = Y app)= Y Y app,x).
Ipl=y(f) n=y(f)+1|pl=n

It is clear that y(f) >y (f)+ 1. From Lemma 2.5 and (2.32), we have
(1) If & > 2y (f)b, then

lim e~ 27 DDp, (F X,)2 (3.3)

—>00
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exists, thus we have
P, M> = o2 (D=y (bt g=2(—y (Fb) P(f X,)2
— O(e—z(wf)—y(.f»bt) —0, ast—> oco.
Q) fa=2y (f)b, then lim,_, o, t‘le‘“’P#(f, X,)? exists. Thus we have
P M2 = te 20Dy (=1, (F, X,)?)
= O(te’z(y(f)’y(f))’) —0, ast— oo.
Q) f2y(f)b<a<2y (f)b, then lim,_, o, e“"’IP’M(f, X,)? exists. Thus we have
P M} = eI (~p (L X,)?)
=0(e@ M) 50, ast— oo

Combining the three cases above, we get lim,_, o, M; =0 in Lz(PM). Now using Lemma 3.1,
we easily get the convergence in Theorem 1.1. ]

3.2 The Small Rate Case: o <2y (f)b
First, we recall some property of weak convergence. For f : RY — R, let | f|l. =

sup,, [ f(x) = fI/llx — yll and [ fll s := Il flles + I /Il .. For any distributions v; and
v, on R?, define

B, 1) :=sup{’/fdv1 —/fdvz

N flleL = 1}-

Then B is a metric. By [12, Theorem 11.3.3], the topology generated by this metric is equiv-
alent to the weak convergence topology. From the definition, we can easily see that, if v,
and v, are the distributions of two R?-valued random variables X and Y respectively, then

Bwi,») <EX Y <VE|X—Y]|> (34

We will use the following elementary fact later: If X is a real-valued random variable
with E|X|" < oo, then

(o B el () oo

m=0

which is an immediate consequence of the simple inequality

) n (ix)n1 ) |x|n+1 2|x|n
ix
=2 | =i G )

m=0
Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4 We define an R2-valued random variable U, (¢) by

Ui (1) = (e ™| A/l e (f, Ar)). (3.6)
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To get the conclusion of Theorem 1.4, it suffices to show that, under P,,,

U1(0) > (Woos VW G1 (1), 37
where G (f) ~N(0,07). Let s, > 0 and write
Ui(s +1) = (e M Ay [l e @260 (£ AL,
Recall the representation (3.1). Define
Yl i=e @R(f, 1) and y*':=P,(Y"'G), (3.8)

here G, is defined by (2.6). Given G,, Y!' has the same law as Y, := e=*/2(f, I,) under
Qs S0 by (2.48),

1 *
;ht _ Fe—as/Z(eas _ e—ot X)va(zu(l’)).
Then we have

—(ot/2)(s
e P, Asya)

— e_(a/z)(S'H)(f, )N(§> + e @/t Z Y;"t

ueL;

= (1 R = (£ R0 e (12

ueLly
+ |:ef(a/2)(5+t)efa*s(7}f, A+ %ef(aﬂ)(tﬂ)(eas —670[*5)(Tsf, Z,):|
=: Jo(s, 1) + Ji(s, 1) + Jo(s, 1). (3.9)
Put V,(x) := Vars, (f, X,). Then
P, Jo(s, 1)? = e IR (V,, A) = e (T, V,, ).

By (2.59), there exists r € N such that ‘Z(x) < e (14 lx11?"). Thus

P Jo(s, 1)} e e / (1+ 11 ) (). (3.10)
R4

Next we consider J,(s, t). We have

P Jo(s,1)? < 2e P (T, £, A)? +2— e e P (T, f. Z,)%. 3.11)

()2
By (2.10) and (2.11), we have
t
RATL AP = A [ [T T P ) 4 e (T o0
R4 JO

Sei / (14 elP") w(d), (3.12)
R4
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here the last inequality follows from the fact that there exists r € N such that
T f100) S 7P (14 |1x]17). (3.13)
Since, given A,, Z, is a Poisson random measure with intensity A*A,, we have
R f, Z0)? = 2T (TP A+ () e R(T f, A
= ML % )+ (V) e Pu(TL £, A

ge*ZVW"/ (L+ 1x[17) m(dx), G.14)
R4

here the last inequality follows from (3.12) and (3.13). Thus by (3.11), (3.12) and (3.14), we
get

PHJZ(s,t)zge(“_zy(f)b”/ (L+ 1xl?) p(dx). (3.15)
R4

Thus by (3.10) and (3.15), we have

lim limsupP,, (Jo(s, 1) + Jo(s, 1))’ = 0. (3.16)
[e¢]

sS04
Now we consider J; (s, ). We define an R?-valued random variable U, (s, t) by
Us(s. 1) == (e [l All, Ji (s, D).
We claim that, under P,,,

Un(s, 1) > (W, Y WeaG1 (), ast — o0, (3.17)

where G (s) ~ N (0, a_)% (s)) and a_)% (s) will be given later. Denote the characteristic function
of Uy(s, t) under P, by x(61,6,,s,1):

k(O1,05,5,1) =P, (exp{i@le“’” | A, Nl + i6re@/?! Z (Yt —yih) })

ueLly

=P, (exp{iele*“’ 1A} T (2o, e*<“/2>fez))
uel;

=P, (exp{i0ie~ | Al exp{A*(hs (-, e7“2"0,) — 1, A,)}), (3.18)

where &, (x, 0) = Qs, €Y~ ¥s) The last equality in the display above follows from the
fact that, given A,, Z, is a Poisson random measure with intensity A* A,. Define

es(x,0) :=hy(x,0) — 1+ %ezw Y,
and V,(x) := V;_¥,. Then
exp{A*(hs (-, e “2"0,) — 1, A,)} = exp{—x*%efe—“’m, Ay) } exp{A*(es (-, e ?'0,), A,)}
= Ji.1(s,0)J12(5, 7).
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By (3.5), we have

—(@/2)tg Y, — Y,
e | Qs, Y5l R 1))

les (x,e™/2"0,)| < 677" Qs, (IY.Y —Q, Y,gI2< g

Let

e~ @G|, — Qs Y,
g(x.s.1) :=@sx<|Ys—anYs|2( S Al)).
By (2.10),

P |(es(-.e”"0,), A,)| <03 (Ti(gCos.0), )
We notice that g(x, s, ) | 0 as ¢ 1 oo. For any u < ¢,

limsup 7, (g(-, 5,1)) <limsup T, (g (-, s,u)) = (g (-, s, u), ¢).
t—00

—00

Then letting u — oo, we get lim,_, o (e (-, e~“/?"8,), A,;) = 0 in probability, which implies
that lim,_, o, J1 2(s, #) = 1 in probability. Furthermore, by Remark 1.2, we have

lim e™*"(Vy, A;) = (Vy, ¢)W,, in probability,

—00

which implies that 1im, .o J1.1(s, 1) = exp{—56707(s) Wao}, Where o} (s) := A*(V,, ¢).
Thus ‘

=00

1
lim exp{2*{h, (-, e “/2'6,) — 1, A,)} = exp{—zega_,%(s)wm} in probability. (3.19)
Since h;(x, 0) is a characteristic function, its real part is less than 1, which implies
’exp{)\*(hs(~, e_(“/z)’G'z) -1, A,)H <1.

Hence by the dominated convergence theorem, we get
1
lim « 6y, 63, 5, 1) =P, exp{if) W} exp[ —Eegaﬁ(s)woo } (3.20)
t—00

which implies our claim (3.17). Since e *“*9|| A, .|| — e™¥||A,|| = O in probability as
t — oo, we easily get that, under P,

Us(s. 1) i= (e [ Al Ji(5, D) > (Woos V WasG1(5)), as £ — o0

0,2
By (2.51), we have lim,_, V;(x) = 5%, thus lim_, UJ%(S) = 0‘%. So

Slilgﬂ(Gl(S), Gi(f)) =0. (32D

Let D(s 4+ ¢) and 5(5, t) be the distributions of U; (s + t) and Us(s, t) respectively, and let
D(s) and D be the distributions of (W, v/ Woo G (s)) and (Weo, v Woo G1(f)) respectively.
Then, using (3.4), we have

lim sup,B(D(s +1), D) < lim sup[ﬂ (D(s +1), 5(s, t)) + ﬂ(ﬁ(s, 1), D(s)) + ﬂ(D(s), D)]
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< limsup(P, (Jo(s, 1) + Jo(5,0))°) > + 0+ B(D(5), D).  (3.22)

—00

Using this and the definition of limsup,_, ., we easily get that

lim supﬂ(D(l), D) = lim supﬂ(D(s +1), D)

<Tlimsup(P, (Jo(s, 1) + Jo(s,1))°) > + B(D(s), D).

—>00
Letting s — oo, we get limsup,_, ., B(D(t), D) = 0. The proof is now complete. O
3.3 Proof of Theorem 1.10
In this section we consider the case o > 2y (f)b and f.) = 0. Recalling the decomposition

of A; under P;_ in (2.46), we have for |p| =m < a/(2b),

N
HP = e % (g, X))+ e @ (g,, 1)). (3.23)

j=1
Let

H} =" ¢y, ).

Then, under P;,, the processes {e~©""% (¢, I] y,s >0}, j=1,2... are i.i.d. with a com-
mon law equal to that of {Hsp ,s > 0} under Qj, . Since ¢, is an eigenvalue of L correspond-
ing to —|p|b, we have

Ps, (0), X;) =e @™ (x) >0, ass — oo. (3.24)
Thus, by (2.59), we have that as s — oo,
P, (6, X)) S e (14 |Ix]*7) — 0, (3.25)

which implies lim;_, o e~ (¢,,, X,) =0in L2(P;s,). By Lemma 3.1, lim,_, o, H/ = HZ,
in L2(P5,). Thus

lim Ze @mbs(g, 1)) = HL  in L*(Py). (3.26)

§—>00

From the fact that N is independent of I/, we have for any s, t > 0,

N 2
|:Z 7(01 mb)s ¢ Ij) (amb)t(¢p71tj>):|

> Py [(e7 @ (g, ) — e, 1)) N =1]
=P; (N =1)Qs, (A — A7)

By (3.26), we get for any x € R9,

Qs (H? — ')’ >0, 5,1 oc. (3.27)
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Thus H/ converges in L%(Qs,). Let
ﬁo‘; = lim ﬁsp in LZ(Q(SX),
§—>00

which implies HLP = lim,_, 5 (), 1] Ye=@mb)s exigts in L*(P;,). Furthermore, HLP | un-
der Ps_, are i.i.d. with a common law equal to that of HE under Q;s, - Hence by (3.26), it is
easy to get

N
HY = "HJP, Py -as. (3.28)
j=1

Recall the decomposition of A,y in (3.1). By Lemma 3.1, we have for |p| =m <
a/(2b),

Htis — e*(afmb)(s+t)<¢p’ ii) 4 e*(afmb)t Z e*(otfmb)s<¢p7 Isu,t>. (329)

uely

From the definition of X !, using (2.59) and (3.24), we have

P (¢ X1))" < 2P, (0, X2) = Pul(@p, XL)F)) + 2P (P (0, X1)IF))°
= 2P, (Vars (¢, X}, A)+ 2P, (Ps (p,, X), A, =0, ass— oo.

Hence lim,_, o, e~ @60 (¢ X'y =0 in L2(P,,). Thus lim,_, o, e~ @6+ (¢ X1y =0
in L2(P,). Thus

sl_i)rgoe—(a—mb)t Z<¢[H Isu,t>e—(ot—mb)s — Hopo in LZ(PM) (330)
ueLly

Note that under P, given Z,, e~ @5 (¢,, I"') has the same law as H? under Qs,, -

Thus by (3.27), for each u € £, e~@~"b)s (¢, 1}"") converges in LZ(PM) to a limit, denoted

as H""? . Furthermore, given Z,, H5"" has the same law as H% under Qs,, (-
‘We claim that, for each t > 0,

HP = =D P, (3.31)

ueLly
In fact,

2
P/L(Z ef(ozfmb)s((bp, IYL”) _ Hou(;t,p> < P;4|Zt| Z(ei(aimh)s((ﬁpv Ixu,t) _ Houét’p)z

uelys uely

=PuIZ| Y Qs (H - iy,

uel;

By (2.49), we have

5

~ 1 1
Qi (HP) < - Vars, (H?) < By, (H?) S 1+ x]P7.
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Thus Qs (H? — H2)? < 2sup;- Qs, (H?)? <1+ ||x||?7!. We can easily get that

P AZA((1+1- 1771, Z,) < o0.

So by the dominated convergence theorem, we have lim oo P, (3", o, €@ (¢, 117) —

HX"P)? = 0. Now the claim (3.31) follows easily from (3.30).
Define

HY = Z Z a,HY"? and H, = Z Z apI-NIO‘”O.

y(f)sm<a/2b|pl=m y(f)=m<a/2b|pl=m

Recall the definition of H,, in (1.19). By (3.28), we have

Hyo= Y HY'.

uely

Under P, H" are i.i.d. with a common law equal to that of Hy, under Q;s, - Thus we have

Péx Hoo = }\*QBX i:iocv
Vars, Hy, = AQs, (Hoo)?.

On the other hand, by Lemma 3.1, we get

lim Y7 e« ay (g, A) = Heo, in LP(Py,).
y(f)<m<a/2b |pl=m

It follows that

P(SX Hoo = f(s)(x)a
and by (2.41),

o0
Vars Hy, = A / ef"‘STS(
0 y(f)=m<a/2b Ipl=m

Proof of Theorem 1.10 By (3.31), we have

Z e(afmb)l Z apHo[Z; — Z Houo,t

y(f)<m<a/2b |pl=m uel;

Consider the R2-valued random variable U, (7):

Uito) = (e*“’nAzn, e*"“)'((f, PES Hoo)>

uely

To get the conclusion of Theorem 1.10, it suffices to show that

Ur() 5 (Wao, VWaoG3(f)).

2
embs Z apd)p) (x)ds.

(3.32)
(3.33)

(3.34)

(3.35)

(3.36)

(3.37)
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Denote the Ncharacteristic function of U, (t) under P, by «i(6;,6,,¢t) and let h(x,6) :=
Qs, exp{i® Hy}. Then we have

k1 (01,02, 1)
=P, exp{iele—“’nAtn + ieze—<“/2>’<<f, AY=) Hoo)}
ueLl;
=P, expfibie | All}exp{ifhe™“P(f, AN} [ | h(Zu(0), —62¢= ")
uely

=P, exp{ifie || A, ||} exp{ibre™ P (f, A) + A*(h(-, =0 “/P") — 1, A,)}.(3.38)

The third equality above follows from the fact that, gNiven Ay, Z, is a Poisson point process
with density A* A,. By (3.32) and (3.34), we get Qs Hx = f(5)(x)/A*. Let

e(x,0) :=h(x,0)—1— ;—if@)(x) + %an(ﬁw)zez
and V (x) := Vars, Hy. Then, by (3.33), we have
1026~ DN f, A + 15 (h (-, —0re”P") — 1, A))
=i6e P fu), A) — %ezze—“’w, A+ 2 e, —02e "), A,)
=:J1(t) + J2(t) + J3(2).

By (3.5), we have

le(x, )] SGzst(Iﬁoolz(mIZw' A 1)) (3.39)

which implies that
|30 < 603¢7(g(-, 1), A,),

where

- —(@/21g ﬁoo
g, 1) 1= Q, <|Hm|2<ef2" A 1))

It is clear that g(x,t) | 0 as ¢ 1 co. Thus
P01 <602 (T(g(.0), )= 0, ast— oo, (3.40)
which implies lim;_, o, J3(¢) = 0 in probability. By Remark 1.2, we have

lim e™'(V, A;) =(V, ¢)W,, in probability. (3.41)

1—00

Recall that lim,_, o ™% || A;|| = W, P, -a.s. Therefore

. o —a . 1
Tim expfithe ™| A} exp{2(1) + J3(1)} = expli6 W) exp{—59§<v, ¢>Wm}
in probability. (3.42)
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Thus by the dominated convergence theorem, we get that as t — oo,

10, o~ @/t i Lo
k101,02, 1) — P, expfifae (fwy, Ar)} explif Woo} exp _592“/’ )W t| — 0.

(3.43)
Since o < 2y (f))b, by Theorem 1.4, we have that as t — oo,
_ _ d
(€A e 2 fay, AD) = (Weos v/ WG (f) (3.44)
where G (f)) ~ N(0, U]%(l)). Therefore,
; 1
lim P, exp{ifhe™ /2" fy), A,) }e' > exp{ - 5922(\/, @) Ww}
[—00
. 1
— P, exp{ —Eeg(aﬁm +(V, 9))Wa } (3.45)
By (3.35), we get
1 2
(V,p)=A Z ~—omb Z a,.
y(f)sm<a/2b |pl=m
The proof is now complete. ]

3.4 The Critical Case: « =2y (f)b

To prove Theorem 1.6, we need the following lemma. The idea of the proof is mainly from

[8].

Lemma 3.2 Assume f(x) = Z|P|=k b,¢,(x),whereb, € Rand a =2kb. Define T* f (x) :=
e“T, f(x) =Ps (f, X;) and

S f () =17 P @RI ((f, X)) = T £ ().
Then for any ¢ > 0 and § > 0, we have

lim P, (IS, £ I3 1S f(x)] > ce™) =0. (3.46)

Proof We write t = [t] + ¢;, where [¢] is the integer part of 7. Let
F(t,x) :=Ps, (IS f 1% 1S f| > ce™).

By the definition of f, we get T f(x) = e?"/? £ (x). Note that

172
S f(x) = (L) e @D ((F X, 1) — (e f, X1))

r+1
1 1/2 )
+ <t+_1> PI((f, X,) — T ()
1 1/2 t 1/2
= (H—1> R(t, f)+ <t+—1> S f(x), (3.47)
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where R(t, ) := e~ @/DUD((f, X, 1) — (T¥ £, X,)). Thus we have
F(t+1,x) < Py, (IS4 O 1S f (x)] > ce™)

+ Ps, (ISt f O 1S £ ()] < ce™, |81 £ ()] > ce®TD)
=: M(t,x) + M,(t, x).

Put
Ar(t,x) ={IS, f(x)] > ce™},
Ao(t,x) = {IS; fO] < ce”, |Si1 f ()] > TV
Since A, (¢, x) € F; and Ps_ (R(¢, f)|F;)=0, we have by (3.47) that
1 t
M(t,x) = ——Ps (|R@, /)I?; A (2, —F(t,x),
1z, x) P 5. (IR(2, )75 Ar( x))+t+l (t,x)

and

2
Ma(t,x) < —— P (IR, )% As(t. ) + Z—tﬁ%x(wtf(x)ﬁ; As(t, ).

t+1 +1

Thus we have

F(t+1,x) < H%F(t,x) + H%(Fl(t,x) + P (1, x)), (3.48)
where
Fi(t,x) = 2Ps, (IR, f)I*s A (1, x) U As (1, X)),
Fy(t, x) = 21Ps, (1S, f (0); Ax(t, x)).
Iterating (3.48), we get

[t] [7]
1 1 €;
Fit+1,x) < H_—lmzzoFl(m +¢€,x)+ H_—lméon(m +e€,x)+ H——IF(G[’X)

€
== L,(t,x) 4+ La(t, x) + H_—tlF(e,, x). (3.49)

First, we consider L (¢, x). By (2.36) and (2.32), there exist C > 0 and r € N such that,
for any s > 0 and x € R¢

Fi(s,x) <2P5 (IR(s, f)IP) = 2T, (Vars (f, X1))(x) < C(L + |Ix[I").  (3.50)
We claim that for any x € R4,
Fi(t,x)— 0, ast— oo. (3.51)

Then, for any € > 0, there exists K € N such that s > K implies Fi(s, x) < €. So, by (3.50),
we get that for any x € R? and 7 > 0,

K—1 1 [1] CK
F, , — F Jx) < —(1 r )
Z 1(m+ ¢ x)+t+ln;( 1(m+¢€,x) t+1( +lxl") +€

m=0

Li(t,x) = ——
12, x) 1
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Thus limsup,_, ., L (¢, x) < € for any x, which implies

lim L,(t,x) =0, xeR’ (3.52)
1—00

Now we prove the claim (3.51). First, we will show that, for any x € R¢, as t — oo,
Ps, (A1(r,x) U Ay(1,x)) = 0. (3.53)
By Chebyshev’s inequality and (2.38), we have that, for any x € R¢, as t — oo,
Ps, (A1, %)) < ¢ 72 PPy, 1S, f (0)]* = 0.
It is easy to see that, under IPs_, for any ¢ > 0,
As(t,x) C IR, f)I > ce® (VT +1— 1)) (3.54)

Similarly, by Chebyshev’s inequality, we have that

P, (Ax(r, %)) < ¢ 2 2 (V1 + 1 — /1) Py, IR(2, )
By (2.24), we get that
Ps, [R(t, )P = e T, (Vars (f. X1)) (x) = e *(Vars (f. X1), ¢), as — o0,  (3.55)

which implies Ps_(A» (¢, x)) — O for any x € R,
In the rest of the proof of (3.51), we will replace (X,,P,) by (A,, P,). Using (3.9) with
s =1, we have
R(t, f) = e PUV((f, Ay) — (T f. AY))
= e CPEN(LX) = o (£ XDNG) e @2 Y (1 = yi)
ueLly

+ e—(a/2>(z+1>(ea _ e—a*)e—“ﬂ‘(%(ﬁ Z) —(f, Az)>
= Jo(t) + J] (I) + J2(I)v

where Y, y|"' are defined in (3.8). So for any € > 0,

Fi(t,x) < 6Py, (IJ0()]* A (1, x) U Ay(1, ) + 6Ps, (111 (D)7 A1(2, x) U Ay(t, x))
+ 6P, (I2(0)1%; A1 (2, x) U Ay (2, x))
=: F1(t,x) + Fip(t, x) + Fi3(¢, x). (3.56)

For Fy(t, x) and Fi3(¢, x), we claim that

limsupPs_ [Jo@®)|* <oo and lim supPs, [ L) < 0. (3.57)

t—>00 1—>00

Then by (3.53),
limsup Fy; (1, x) < 6limsupP;, (1Jo(1)[*; [Jo(1)]* > M) + 6M limsupP;s (A, (1, x) U A (1, x))
t—00 t—00 t—00

<6M*limsupP;s, (|Jo(1)]*).
—>0o0
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Letting M — oo, we get Fj;(¢,x) — 0 as t — oo. Similarly, we have Fi3(¢,x) — 0 as
t — 0o. Now we prove the claim (3.57).
For Jy(t), by (2.61), there exists » € N such that

Ps, [Jo)[* S e 2P (L4 - I, A)+ {14117, 4,))
— €7a<t+2>T,(l + ” . ||4r)(x) +672a(f+1)1)5x<1 + ” X ||2r’ At>2.
Thus, by (2.24) and (2.39), we get

limsup Ps, | Jo(r)|* < oo.

t—00

For J,(t), since, given A,, Z, is a Poisson random measure with intensity A* A,, we have
—2a * 4 * —2a #\2  —2a 2
e Py ((f. Z) = M (f, A)) =05 2Py, (4, A) +3(0) e 2Py (2, AY)
= 2T (1)) + 3(0) e Ry, (2, ALY
Thus, by (2.24) and (2.39), we get

limsup Ps, |2 (1)|* < oo.

t—>00

Next, we consider F,(, x). From the proof of (3.17), we see that (3.17) is also true when

a =2y (f)b.So we have J;(¢) 4 +/WsG where G is a Gaussian random variable. We also
have Ps, | J;(1)[> — P, (W G?).

LetWy(r)=ron[0,M—1],¥y(r) =0o0n[M, oo], and let ¥, be linecaron [M — 1, M].
Therefore by (3.53) and (3.55), we have that for any x € E,

limsup Fi» (7, x) < limsup6P;, (1J;(1)[*; |J1(1)]* > M) + 6M limsupPs (A (r,x) U A (1, x))

t—00 —>00 t—>00
< 6limsup(Ps, (|71 ()[*) — Ps, (Zu (171(DI%)))
t—0o0

= 6(Ps, (W G?) — Ps, (W3 (W G?))).
By the monotone convergence theorem, we have that,
im By, (83 (WesG) =By, (W),

which implies that Fj,(¢, x) — 0, as ¢t — oo. Therefore, (3.51) is valid.
Now we consider L, (z, x).

Fy(t,x) = 2P, (IS, f (1) s Az(1, %))
< 2¢e”Ps, (1S f (O IR, )] > ce® (V1 + 1= 1))
<27 1e (VT 1 = V1) P (IS f )1 - IR, )P)
S e e Py (IS, £ (0)|(Vars (f. X)), X,))

Se [Py, IStf(X)|2\/e*2“f1P’sX ((vars £, X1), X.)').
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By (2.38) and (2.39), we get F,(t, x) — 0 as t — oo. Thus, for any € > 0, there exists K € N
such that s > K implies F,(s, x) < €. It is easy to see that,

sup F> (s, x) < sup 2c%5e* < 2K K,
s<K s<K

Thus, we get

= 1 22K 202K
Lo(t,x) = —— Fm+e¢,x —_— FFm+¢,x) < — + €.
2( )t+1;)2(+t)+t+1”;2(+t) s

Therefore limsup,_, ., L2(¢, x) < €, which implies that lim,_, o, L2(#, x) = 0.
To finish the proof, we need to show that,

lim 6—’1F(e,, x) =0. (3.58)

t—o0 t +

By (2.36), we get that for any x € RY,

sup(e;) F (e, x) < supPs, (S, £ (x))” < oo,

t>0 5>0

which implies (3.58). O
In the following lemma we give a result similar to Lemma 3.2 for the process 1.
Lemma 3.3 Assume f € P satisfies « =2y (f)b. Define
YE(f) =7 e (L) = Qo (fo 1))
Then for any ¢ > 0 and § > 0, we have

Jlim Qs (1Y (O 1Y ()] > ce™) =0. (3.59)

Proof Recall the decomposition in (2.4). Define

S = 1@ (£, %) — Py (£, K1),
S, = 1712~V ((f, Ay — Py (. AY)),

and

~

Y, =17 @£, L) — Py (f. ).
Then we have 17, =S, — S;. Thus
Ps (1Y, 171V > ce™) < Ps, (1Y% 18] > (c/2)e™) + Ps, (1Y% |71 > (c/2)e”)
< 2P; (IS % 1Si] > (c/2)e™) + 2P, (IS )
+Ps, (1Y, 171871 > (c/2)e™)

=L+ L)+ L).
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By Lemma 3.2, we have lim,_, o, 1;(t) = 0. By (2.59), we have

L(t)=2t""e""Vars (f.X,) =0, — oc.
Since I; and X are independent, we have

L) =Ps, (V) Py, (IS71 > (c/2)e™).
Since S, = S} + }7, and S} and 17, are independent, by (2.38), we get
P; (1Y) =Py, (1S,1?) = Ps, (S;1°) = pj, 1= oo,
By Chebyshev’s inequality, we have
P, (171> (c/2)e) < (c/2) e ' Ps, (IS/17) > 0, t— oo.
Hence lim,_, o, I3(t) = 0. Thus
P (1%1%; Y] > ce™) — 0. (3.60)

Recall that under Ps_, I; = 2721 I,j , where I/, j =1, ... are independent copies of /
under Qs , and are independent of N. Thus,

Ps (1Y, 1% 1V] > ce™) = Ps (1Y% 1¥i] > ce™ N =1)
=P;s, (N = DQs, (1Y (O3 1Y ()] > ce™).
Since Ps (N =1) > 0, (3.59) follows easily from (3.60). O

Now, we are ready to prove Theorem 1.6.

Proof of Theorem 1.6 The proof is similar to that of Theorem 1.4. Since o = 2y (f)b,
f(x) = fio(x) + fuy(x). Using Theorem 1.4 for f{;), we have as t — oo,

d
1712 @A) S 0.

So we only need to prove Theorem 1.6 for the case f(x) = le|=y(.f') a,$,(x). We define
an R?-valued random variable by

Ui(0) = (e | Al 17" P (£, AL)).
‘We need to show that as t — oo,
Ui (1) % (Weo, v WosGa (), (3.61)
where G»(f) ~ N (0, pj%). Let n > 0 and write
Ur(nt) = (e | Aull, (1) 2@ (£, A,)).
Recall the representation (3.1). Define

t t

Yo = (0= Dr) e D et ) and yit =P (VG ).
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Y;"" has the same distribution as Y := ((n — 1)t)~"/2e~*"=D2(f [, _,)) under Qs_ ..
Thus

(nt)fl/Zef(a/Z)nt(f, Ant)

_ —(a/2)n ford n—1 —(a u,n
= ()PP f R )y e Yy

ueLly

~ ~ —1
= ()" Pem P (£, X0, ) = Pu((f X1 )IG)) + /nTe*“*/Z)’ Z (v — yum)

ueLly

*(n— 1 a(n— —a*(n—
+ (nt)—l/Ze—(ot/Z)m <e—a (n 1)[<T(n—l)lf7 A+ F(e (n—Dt _ e ( l)t)(T(n—l)rfs Z/))
=1 JI() + T + TR ). (3.62)

Put \Z (x) :=Vars (f, is). The~n by (2.59), there exists r € N such that VY x) < e (1 +
llx1I?"). From the definition of X !, we have

P,y (1) = (n1) e OP, (Vi 1y, A))
= (nt)ileia(niwt(]ﬂt(V(nfl)t’ M)

< (nt) e @m0 a5t — 00. (3.63)

Since T, f (x) = e~/ f (x),

(12"(0)2 = (nr)~ e~ @Dt (e’“*(”’l)’(f, A+ %(e‘“"*”' —e D, Z,))2
S ()T em O ALY + () e f Z,)
By (2.36), we have
P (f, A)* = (Vars (£, A, i) + e (f, 1)* S (2 + 1e.

Using an argument similar to that in the proof of (3.14), we can get

TIPS, Z0)P = W (2, A+ (W) e RS, A

= 2T (7). )+ () P f A
SAT(fP). w)+ ¢+ D). (3.64)
Thus,
limsup P, (J3(1))” Sn. (3.65)

Combining (3.63) and (3.65), there exists ¢ > 0 such that

limsupP,, (J (1) + J3 (1)’ < ¢/n. (3.66)

1—>00
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Now we consider J|'(t). We define an R2-valued random variable U, (n, t) by

Us(n,t) := (e*”“ 1AL e @2 > (v — yi""))
ueLl;
We claim that
Us(n,1) > (Waor VW Ga(f)), st — oo, (3.67)

Denote the characteristic function of U,(n, t) under P, by «»(6;, 0, n, t). Using an argu-
ment similar to that leading to (3.18), we get

1201, 02, n, 1) =P, (expliie | A, ||} exp{A*(h} (-, e “"0,) — 1, A,)}),
where A (x, 0) = Q,, e =Y Define
er(x,0):=h'(x,0) — 1+ éGZst Y"
and V)" (x) :=V; Y. Then

exp{A*(h7 (- e “P"0,) — 1, A,)}

x| g5 A el e ). )
= Ji1(n,t)J12(n,t).
We first consider J; ;(n,t). By (2.37), we have that as ¢t — oo,
e (V) = p7l, A) St7e (1 + [Ix])"). A;) > O in probability.
It follows that

lim e*"”(k* v, At> = lim e*"”(p;, At> = p; Wo in probability, (3.68)

1—>00 t—00

which implies that lim, .o J1.1(n, ) = exp{—363 p7 Woo}.
For J, 2(n, t), by (3.5), we have, for any € > 0,

(e ) = P, (1%~ Qo Y 1Y~ Q¥ < )
+03e Qs (1Y) = Qo Y[ P11V = Q5 Y| 2 ee?)
< ZIORe Qs (1Y) — Qs ¥/T%)
+03e Qo (1Y) = Qo Y/ 1Y) — Q5,1 2 ee?)
= SIORe V7 () + 63 F (o),

where F}'(x) = Qs (1Y) —Qs, Y/ % Y —Qs, Y)'| > €e”'/?) Tt follows from Lemma 3.3 that
lim,_, o F/'(x) = 0. By (2.53), we also have

Fl(x) < Qs (1Y) — Qs ¥/ *) S 1+ ||
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Note that
e PUF] (), A) = (T (F)'), ).

Thus by the dominated convergence theorem, we get lim,_, o e P, (F/'(x), A;) = 0. It
follows that e™*'(F;* (x), A,;) — 0 in probability. Furthermore from (3.68), we obtain that as
t — 00,

Segefat(vtn’ A >

G 9; pWe  in probability.

6A*
Thus, letting € — 0, we get that as t — oo,
(et (x,e/?"0,)|, A) > 0 in probability, (3.69)

which implies J; »(n, 1) — 1 in probability, as t — oo.
Thus, when ¢ — o0,

exp{A*(n2 (-, e~ @Pig,) — 1, A} — exp{—%&z P W. } (3.70)

in probability. Since A} (x, 0) is a characteristic function, its real part is less than 1, which
implies

’exp{k*(hf(, e_(“/z)’Oz) -1, A,)H <1.

So by the dominated convergence theorem, we get that
1
1im k501, 62,1, 1) =Py, expli) oo}exp{ 20§p§Woo}, 3.71)

which implies our claim (3.67). By (3.67) and the fact that e *"|| A,/ || — e || A;|| = 0, as
t — oo in probability, we easily get

Us(n, 1) = (e[| A, I} (1)) = ( 007\/ \/ Gz(f))

Let D(nt) and ol (t) be the distributions of U, (nt) and Us(n, t) respectively, and let

D" and D be the distributions of (W, ./ %./ WooG2(f)) and (Wx, v W G2 (f)) respec-
tively. Then, using (3.4), we have

limsup (D (nr), D) < limsup[B(D(nt), D" (1)) + B(D" (1), D") + B(D", D)]

t—00 t—00

<limsup(P, (0 () + 73 0)°)? +0+ (D", D).  (3.72)

—>00

Using this and the definition of limsup,_, ., we easily get that

limsup B(D(1), D)—hmsupﬂ(D(m) D) </c/n+B(D", D).

—00

Letting n — oo, we get limsup,_, ., B(D(t), D) = 0. The proof is now complete. g
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Proof of Theorem 1.13 First note that

z*‘/2||x,||*‘/2(<f,x,>— > e“*"”’”ZapHo’;)

y(f)=m<a/2b [pl=m

=t PUX T fas Xo) + UK (Fo X0 Z oy " a, HY,

|pl=m

=:J1() + L(1),

where f.y = fu)+ fi). By the definition of f(;), we have (f(;))() = 0. Then using Theorem
1.10 for f, we have

_ a—m d
XA ( ( firs X Ze( PN a,HE | S G fo). (3.73)
n=1 |pl=m
Thus
L350, 1 oo (3.74)

Since o = 2y (f(c1))b, so using Theorem 1.6 for f.;), we have

(e IX I, J1 () = (W*, Ga(fy)), (3.75)

where Ga(fir)) ~ N(O,. p]%(cl)). By (1.17'), we have ,o_?(d) =A le‘:a/% (ap)*. Combing
(3.74) and (3.75), we arrive at the conclusion of Theorem 1.13. O
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