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Abstract In this paper we prove that, under certain conditions, a strong law of large
numbers holds for a class of superdiffusions X corresponding to the evolution equa-
tion ∂tut = Lut + βut − ψ(ut ) on a domain of finite Lebesgue measure in R

d , where
L is the generator of the underlying diffusion and the branching mechanism ψ(x,λ) =
1
2α(x)λ2 + ∫ ∞

0 (e−λr − 1 + λr)n(x,dr) satisfies supx∈D

∫ ∞
0 (r ∧ r2)n(x,dr) < ∞.
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1 Introduction

1.1 Motivation

Recently many people (see [3, 4, 9–12, 26] and the references therein) have studied limit
theorems for branching Markov processes or super-processes using the principal eigenvalue
and ground state of the linear part of the characteristic equations. All the papers above,
except [11], assumed that the branching mechanisms satisfy a second moment condition. In
[11], a (1 + θ)-moment condition, θ > 0, on the branching mechanism is assumed instead.

In [1], Asmussen and Hering established a Kesten-Stigum L logL type theorem for a
class of branching diffusion processes under a condition which is later called a positive
regular property in [2]. In [19, 20] we established Kesten-Stigum L logL type theorems for
superdiffusions and branching Hunt processes respectively.

This paper is a natural continuation of [19, 20]. Our main purpose of this paper is to
establish a strong law of large numbers for a class of superdiffusions and our main tool is
the stochastic integral representation of superdiffusions.

Throughout this paper, we will use the following notations. For any positive integer k,
Ck

b(R
d) denotes the family of bounded functions on R

d whose partial derivatives of order up
to k are bounded and continuous, Ck

0 (R
d) denotes the family of functions of compact support

on R
d whose partial derivatives of order up to k are continuous. For any open set D ⊂ R

d ,
the meanings of Ck

b(D) and Ck
0 (D) are similar. B(D) stands for the family of Borel functions

on D, B+(D) stands for the family of non-negative Borel functions on D, and B+
b (D) stands

for the family of non-negative bounded Borel functions on D. We denote by MF (D) the
space of finite measures on D equipped with the topology of weak convergence. We will use
MF (D)0 to denote the subspace of nontrivial measures (i.e., nonzero measures) in MF (D).
The integral of a function ϕ with respect to a measure μ will often be denoted as 〈ϕ,μ〉.

For convenience we use the following convention throughout this paper: For any proba-
bility measure P , we also use P to denote the expectation with respect to P .

1.2 Model

In this paper, we will always assume that D is a domain of finite Lebesgue measure in
R

d . Suppose that aij ∈ C1
b (R

d), i, j = 1, . . . , d , and that the matrix (aij ) is symmetric and
satisfies

κ|υ|2 ≤
∑

i,j

aij υiυj , for all x ∈ R
d and υ ∈ R

d

for some positive constant κ . We assume that bi, i = 1, . . . , d , are bounded Borel functions
on R

d . Under these assumptions, there is a diffusion process (ξ,�x, x ∈ R
d) corresponding

to the operator

L = 1

2
∇ · a∇ + b · ∇.

We will use (ξD, �x, x ∈ D) to denote the process obtained by killing ξ upon exiting from
D, that is,

ξD
t =

{
ξt , if t < τ,

∂, if t ≥ τ,

where τ = inf{t > 0; ξt /∈ D} is the first exit time of D and ∂ is a cemetery point. Any
function f on D is automatically extended to D ∪ {∂} by setting f (∂) = 0. The reason
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we defined the coefficients aij , bj and assumed the above conditions on them on the whole
of R

d is to guarantee the existence of ξ . Since we are interested in superdiffusions with
underlying motion ξD in this paper, what we really need is that the assumptions above on
the coefficients aij , bj are valid on D.

We will always assume that β is a bounded Borel function on D. We will use {P D
t }t≥0 to

denote the following Feynman-Kac semigroup

P D
t f (x) = �x

(

exp

(∫ t

0
β
(
ξD
s

)
ds

)

f
(
ξD
t

)
)

, x ∈ D.

It is easy to show (see, for instance, the arguments in [5, Sect. 3.2] and [24, Sect. 2]) that the
semigroup {P D

t }t≥0 is strongly continuous in L2(D) and, for any t > 0, P D
t has a bounded,

continuous and strictly positive density pD(t, x, y).
Let {P̂ D

t }t≥0 be the dual semigroup of {P D
t }t≥0 defined by

P̂ D
t f (x) =

∫

D

pD(t, y, x)f (y)dy, x ∈ D.

It is well known (see, for instance, [8, p. 8]) that {P̂ D
t }t≥0 is also strongly continuous in

L2(D).
Let A and Â be the generators of the semigroups {P D

t }t≥0 and {P̂ D
t }t≥0 in L2(D) respec-

tively. Let σ(A) (σ(Â) resp.) denote the spectrum of A (Â, resp.). It follows from Jentzsch’s
theorem ([23, Theorem V.6.6, p. 337]) and the strong continuity of {P D

t }t≥0 and {P̂ D
t }t≥0

that the common value λ1 := sup Re(σ (A)) = sup Re(σ (Â)) is an eigenvalue of multiplicity
1 for both A and Â, and that an eigenfunction φ of A associated with λ1 can be chosen to
be strictly positive a.e. on D and an eigenfunction φ̂ of Â associated with λ1 can be chosen
to be strictly positive a.e. on D. By [16, Proposition 2.3] we know that φ and φ̂ are bounded
and continuous on D, and so they are in fact strictly positive everywhere on D. We choose
φ and φ̂ so that

∫
D

φ(x)φ̂(x)dx = 1.
Throughout this paper we assume the following

Assumption 1 The semigroups {P D
t }t≥0 and {P̂ D

t }t≥0 are intrinsically ultracontractive, that
is, for any t > 0, there exists a constant ct > 0 such that

pD(t, x, y) ≤ ctφ(x)φ̂(y), for all (x, y) ∈ D × D.

Intrinsic ultracontractivity for non-symmetric semigroups was defined for semigroups on
L2(E,m), where E is a locally compact separable metric space and m is a finite measure
on E. This is the reason that we assume that D is of finite Lebesgue measure since we are
dealing with semigroups on L2(D) with respect to the Lebesgue measure. Assumption 1 is a
very weak regularity assumption on D. It follows from [16, 17] that Assumption 1 is satisfied
when D is a bounded Lipschitz domain. For other, more general, examples of domains D

for which Assumption 1 is satisfied, we refer our readers to [17] and the references therein.
Define the ground state transform of pD by

qD(t, x, y) = e−λ1t

φ(x)
pD(t, x, y) φ(y). (1.1)
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Then it follows from [16, Theorem 2.7] that if Assumption 1 holds, then for any σ > 0 there
are positive constants C(σ) and ν such that

∣
∣qD(t, x, y) − φ(y)φ̂(y)

∣
∣ =

∣
∣
∣
∣
e−λ1tpD(t, x, y)φ(y)

φ(x)
− φ(y)φ̂(y)

∣
∣
∣
∣

≤ C(σ)e−νtφ(y)φ̂(y), x, y ∈ D, t > σ. (1.2)

By the definition of φ and φ̂, it is easy to check that, for any t > 0, qD(t, ·, ·) is a probability
density and that φφ̂ is its unique invariant probability density. The above display shows
that qD(t, ·, x) converges to φ(x)φ̂(x) uniformly with exponential rate. Denote by QD

t the
semigroup with density qD(t, ·, ·). For any measure μ on D, �D

μ denotes the probability
generated by (QD

t )t≥0 with initial distribution μ. When μ = δx , �D
μ will be written as �D

x ,
and when μ(dx) = u(x)dx for some function u on D, �D

μ will be written as �D
u . Then

(ξD,�D

φφ̂
) is a diffusion with initial distribution φ(x)φ̂(x)dx.

The superdiffusion (X,Pμ),μ ∈ MF (D), we are going to study is a (ξD, ψ(λ) − βλ)-
super-process, which is a measure-valued Markov process with underlying spatial motion
ξD , branching rate dt and branching mechanism ψ(λ) − βλ, where

ψ(x,λ) = 1

2
α(x)λ2 +

∫ ∞

0

(
e−rλ − 1 + λr

)
n(x,dr), λ > 0,

for some nonnegative bounded measurable function α on D and for some σ -finite kernel n

from (D, B(D)) to (R+, B(R+)), that is, n(x,dr) is a σ -finite measure on R+ for each fixed
x, and n(·,B) is a measurable function for each Borel set B ⊂ R+. The measure μ here is
the initial value of X. In this paper we will always assume that

sup
x∈D

∫ ∞

0

(
r ∧ r2

)
n(x,dr) < ∞. (1.3)

Note that this assumption implies, for any fixed λ > 0, ψ(·, λ) is bounded on D. Define
a new kernel nφ(x,dr) from (D, B(D)) to (R+, B(R+)) such that for any nonnegative
measurable function f on R+,

∫ ∞

0
f (r)nφ(x,dr) =

∫ ∞

0
f

(
rφ(x)

)
n(x,dr), x ∈ D. (1.4)

Then, by (1.3) and the boundedness of φ, nφ satisfies

sup
x∈D

∫ ∞

0

(
r ∧ r2

)
nφ(x,dr) < ∞. (1.5)

1.3 Stochastic Integral Representation and Main Result

Let (�, F ,Pμ,μ ∈ MF (D)) be the underlying probability space equipped with the filtra-
tion (Ft ), which is generated by X and is completed as usual with the F∞-measurable and
Pμ-negligible sets for every μ ∈ MF (D). Without loss of generality we can assume that
(�, F ) is the space of all the cadlag functions from [0,∞) to MF (D) equipped with its
Borel σ -field.

Set Mt(φ) := e−λ1t 〈φ,Xt 〉. Then Mt(φ), t ≥ 0, is a nonnegative right continuous martin-
gale with left limits, see (1.18) below. Denote by M∞(φ) the almost sure limit of Mt(φ) as
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t → ∞. All the martingales in this paper are right continuous with left limits. We will not
mention this explicitly.

The main goal of this paper is to establish the following almost sure convergence result.

Theorem 1.1 Suppose Assumption 1 holds, λ1 > 0 and that X is a (ξD,ψ(λ) − βλ)-
superdiffusion. Then there exists �0 ⊂ � of probability one (that is, Pμ(�0) = 1 for every
μ ∈ MF (D)) such that, for every ω ∈ �0 and for every nonnegative bounded Borel mea-
surable function f on D such that f ≤ cφ for some c > 0 and that the set of discontinuous
points of f has zero Lebesgue measure, we have

lim
t→∞ e−λ1t 〈f,Xt 〉(ω) = M∞(φ)(ω)

∫

D

φ̂(y)f (y)dy. (1.6)

As a consequence of this theorem, we have the following result.

Theorem 1.2 Suppose Assumption 1 holds, λ1 > 0 and that X is a (ξD,ψ(λ) − βλ)-
superdiffusion. Then there exists �0 ⊂ � of probability one (that is, Pμ(�0) = 1 for every
μ ∈ MF (D)0) such that, for every ω ∈ �0 and for every nontrivial nonnegative bounded
Borel function f on D such that f ≤ cφ for some constant c > 0 and that the set of discon-
tinuous points of f has zero Lebesgue measure, we have

lim
t→∞

〈f,Xt 〉(ω)

Pμ〈f,Xt 〉 = M∞(φ)(ω)

〈φ,μ〉 . (1.7)

Note that the above result says that, on the set {M∞(φ)(ω) > 0}, the quantity 〈f,Xt 〉(ω)

grows like its expectation. So this result can be regarded as a strong law of large numbers.
As a special case of this theorem we immediately get the following

Corollary 1.3 Suppose Assumption 1 holds, λ1 > 0 and that X is a (ξD,ψ(λ) − βλ)-
superdiffusion. Then there exists �0 ⊂ � of probability one (that is, Pμ(�0) = 1 for every
μ ∈ MF (D)0) such that, for every ω ∈ �0 and every relatively compact Borel subset B of
D of positive Lebesgue measure whose boundary is of Lebesgue measure zero, we have

lim
t→∞

Xt(B)(ω)

Pμ[Xt(B)] = M∞(φ)(ω)

〈φ,μ〉 .

Remark 1.4

(i) The general strategy, to be presented in Sect. 2, for proving our main result is similar
to that of [3]. However, since our process ξ is not symmetric in general, one of the key
steps in [3], the proof of [3, Lemma 3.5], does not go through. We have to find a way
to get around this difficulty, see the proof of Theorem 2.1 below.

(ii) In [3, 9, 10, 12, 26], the branching mechanism is assumed to be binary, while in the
present paper we deal with a general branching mechanism. The paper [11] considers
a general branching mechanism under a (1 + θ)-moment condition, θ > 0, while in
the present paper, we only assume a L logL condition. In [3] the underlying motion is
assumed to be a symmetric Hunt process, while in the present paper, our underlying
process need not be symmetric.
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(iii) Although our Assumption 1 on the linear semi-group P D
t is mild, it does exclude some

interesting cases. For example, the superprocess analogues of [10, Examples 10 and
11] do not satisfy Assumption 1. So it is worthwhile to relax this assumption.

(iv) Our Assumption 1 is similar to condition (M) in [1], which is called a positive regular
property in [2]. We prefer to use Assumption 1 which is stated in terms of intrinsic
ultracontractivity because there are many (easy to check) sufficient conditions for in-
trinsic ultracontractivity in the literature.

Note that the quantity M∞(φ) in Theorems 1.1–1.2 and Corollary 1.3 may be zero almost
surely. If M∞(φ) = 0 a.s., then (1.6) does not give the exact growth rate of 〈f,Xt 〉 as t goes
to infinity. It is a very interesting problem to find a function s(t) such that s(t)e−λ1t 〈f,Xt 〉
has a non-degenerate limit as t tends to infinity. This is beyond the reach of this paper, and
we intend to deal with this in a future project.

In [19], we studied the relationship between the degeneracy property of M∞(φ) and the
following function l:

l(y) :=
∫ ∞

1
r ln rnφ(y,dr), (1.8)

and established an L logL criterion (see Theorem 1.5 below) in the case when α = 0. To
extend this criterion to the case α ≥ 0, we will need the integral representation of superdif-
fusions.

We will use the standard notation �Xs = Xs − Xs− for the jump of X at time s. It is
known (cf. [6, Sect. 6.1]) that the superdiffusion X is a solution to the following martingale
problem: for any ϕ ∈ C2

0 (D) and h ∈ C2
b (R),

h
(〈ϕ,Xt 〉

) − h
(〈ϕ,μ〉) −

∫ t

0
h′(〈ϕ,Xs〉

)〈Aϕ,Xs〉ds − 1

2

∫ t

0
h′′(〈ϕ,Xs〉

)〈
αϕ2,Xs

〉
ds

−
∫ t

0

∫

D

∫

(0,∞)

(
h
(〈ϕ,Xs〉 + rϕ(x)

) − h
(〈ϕ,Xs〉

) − h′(〈ϕ,Xs〉
)
rϕ(x)

)
n(x,dr)Xs(dx)ds

(1.9)

is a martingale. Let J denote the set of all jump times of X and δ denote the Dirac measure.
From the last part of martingale problem (1.9), one infers that the only possible jumps of
X are point measures of the form rδx for some r > 0 and x ∈ D, see [18, Sect. 2.3]. Thus
the compensator of the random measure (for the definition of the compensator of a random
measure, see, for instance, [6, p. 107])

N :=
∑

s∈J

δ(s,�Xs )

is a random measure N̂ on R+ × MF (D) such that for any nonnegative predictable function
F on R+ × � × MF (D),

∫ ∞

0

∫

MF (D)

F (s,ω, ν)N̂(ds,dν) =
∫ ∞

0
ds

∫

D

Xs(dx)

∫ ∞

0
F(s,ω, rδx)n(x,dr),

(1.10)
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where n(x,dr) is the kernel of the branching mechanism ψ . Therefore we have

Pμ

[∑

s∈J

F (s,ω,�Xs)

]

= Pμ

∫ ∞

0
ds

∫

D

Xs(dx)

∫ ∞

0
F(s,ω, rδx)n(x,dr). (1.11)

See [6, p. 111]. Let F be a predictable function on R+ × � × MF (D) satisfying

Pμ

[( ∑

s∈[0,t],s∈J

F (s,�Xs)
2

)1/2]

< ∞, for all μ ∈ MF (D).

Then the stochastic integral of F with respect to the compensated random measure N − N̂

∫ t

0

∫

MF (D)

F (s, ν)(N − N̂)(ds,dν),

can be defined (cf. [18] and the reference therein) as the unique purely discontinuous mar-
tingale (vanishing at time 0) whose jumps are indistinguishable from IJ (s)F (s,�Xs). Here
and throughout this paper, for any set A, IA stands for the indicator function of A.

Suppose that ϕ is a measurable function on R+ × D. Define

Fϕ(s, ν) :=
∫

D

ϕ(s, x)ν(dx), ν ∈ MF (D) (1.12)

whenever the integral above makes sense. We write

SJ
t (ϕ) =

∫ t

0

∫

D

ϕ(s, x)SJ (ds,dx) :=
∫ t

0

∫

MF (D)

Fϕ(s, ν)(N − N̂)(ds,dν), (1.13)

whenever the right hand side of (1.13) makes sense. If ϕ is bounded on R+ ×D, then SJ
t (ϕ)

is well defined. Indeed, we only need to check that

Pμ

[( ∑

s∈[0,t],s∈J

Fϕ(s,�Xs)
2

)1/2]

< ∞, for all μ ∈ MF (D). (1.14)

Note that, for any μ ∈ MF (D),

Pμ

[( ∑

s∈[0,t],s∈J

Fϕ(s,�Xs)
2

)1/2]

= Pμ

[( ∑

s∈[0,t],s∈J

(∫
ϕ(s, x)(�Xs)(dx)

)2)1/2]

≤ ‖ϕ‖∞Pμ

[( ∑

s∈[0,t],s∈J

〈1,�Xs〉2I{〈1,�Xs 〉≤1} +
∑

s∈[0,t],s∈J

〈1,�Xs〉2I{〈1,�Xs 〉>1}
)1/2]

≤ ‖ϕ‖∞Pμ

[( ∑

s∈[0,t],s∈J

〈1,�Xs〉2I{〈1,�Xs 〉≤1}
)1/2]

+ ‖ϕ‖∞Pμ

[( ∑

s∈[0,t],s∈J

〈1, �Xs〉2I{〈1,�Xs 〉>1}
)1/2]

.
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Using the first two displays on [18, p. 203], we get (1.14). Thus for any bounded function ϕ

on R+ × D, (SJ
t (ϕ))t≥0 is a martingale.

For any ϕ ∈ C2
0 (D) and μ ∈ MF (D),

〈ϕ,Xt 〉 = 〈ϕ,μ〉 + SJ
t (ϕ) + SC

t (ϕ) +
∫ t

0
〈Aϕ,Xs〉ds, (1.15)

where SC
t (ϕ) is a continuous local martingale with quadratic variation

〈
SC(ϕ)

〉
t
=

∫ t

0

〈
αϕ2,Xs

〉
ds. (1.16)

In fact, according to [13, 14], the above is still valid when A is replaced by L + β , where
L is the weak generator of ξD in the sense of [13, Sect. 4]. Using this, [14, Corollary 2.18]
and applying a limit argument, one can show that for any bounded function g on D,

〈g,Xt 〉 = 〈
P D

t g,μ
〉 +

∫ t

0

∫

D

P D
t−sg(x)SJ (ds,dx) +

∫ t

0

∫

D

P D
t−sg(x)SC(ds,dx), (1.17)

where SJ (ds,dx) is defined by (1.13) and SC(ds,dx) is a martingale measure in the sense of
Walsh [25] (see [14] or [21] for the precise definition). In particular, taking g = φ in (1.17),
where φ is the positive eigenfunction of A defined in Sect. 1.1, we get that

e−λ1t 〈φ,Xt 〉 = 〈φ,μ〉 +
∫ t

0
e−λ1s

∫

D

φ(x)SJ (ds,dx) +
∫ t

0
e−λ1s

∫

D

φ(x)SC(ds,dx).

(1.18)

The following result is the L logL criterion mentioned above. The condition in the first
part of the theorem below says that the kernel nφ satisfies an L logL integrability condition.

Theorem 1.5 [19, Theorem 1.1] Suppose that Assumption 1 holds, λ1 > 0 and that X is a
(ξD,ψ(λ) − βλ)-superdiffusion. Then the following assertions hold:

(1) If
∫

D
l(y)φ̂(y)dy < ∞, then M∞(φ) is non-degenerate under Pμ for any μ ∈ MF (D)0,

and M∞(φ) is also the L1(Pμ) limit of Mt(φ).
(2) If

∫
D

l(y)φ̂(y)dy = ∞, then M∞(φ) = 0, Pμ-a.s. for any μ ∈ MF (D)0.

Remark 1.6 In [19, Theorem 1.1], we only stated that in case (1) under the extra assumption
α ≡ 0, M∞(φ) is non-degenerate under Pμ for any μ ∈ MF (D)0. But actually in this case
we have PμM∞(φ) = PμM0(φ) (see [19, Lemma 3.4]), and therefore Mt(φ) converges to
M∞(φ) in L1(Pμ).

For general α ≥ 0, by the L2 maximum inequality (see [7, Theorem 4.4.3]), and using
the fact that α and φ are bounded in D, we have

Pμ

[

sup
t≥0

(∫ t

0
e−λ1s

∫

D

φ(x)SC(ds,dx)

)2]

≤ 4 sup
t≥0

Pμ

(∫ t

0
e−λ1s

∫

D

φ(x)SC(ds,dx)

)2

= 4Pμ

∫ ∞

0
e−2λ1sds

∫

D

α(x)φ2(x)Xs(dx)
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= 4
∫ ∞

0
e−λ1sds

∫

D

φ(y)μ(dy)

∫

D

qD(s, y, x)α(x)φ(x)dx

< ∞.

Thus the martingale (
∫ t

0 e−λ1s
∫

D
φ(x)SC(ds,dx))t≥0 converges almost surely and in

L1(Pμ). Denote the limit by
∫ ∞

0 e−λ1s
∫

D
φ(x)SC(ds,dx). Furthermore, when λ1 > 0 and

∫
D

l(x)φ̂(x)dx < ∞, the martingale
∫ t

0 e−λ1s
∫

D
φ(x)SJ (ds,dx) converges almost surely

and in L1(Pμ) as well. Denote the limit by
∫ ∞

0 e−λ1s
∫

D
φ(x)SJ (ds,dx). Thus it follows

from (1.18) that Mt(φ) converges to a non-degenerate M∞(φ) Pμ-almost surely and in
L1(Pμ) for every μ ∈ MF (D)0.

2 Proof of Main Results

In this section we will give the proofs of our main results, Theorems 1.1–1.2. These proofs
will be based on Theorem 2.1 below. The proof of Theorem 2.1 is pretty long and contains
most of technical contributions of this paper. For the benefit of our readers, the proof of
Theorem 2.1 will be postponed until the last section.

Let {Uq;q > 0} be the resolvent operators associated with the semigroup {QD
t ; t ≥ 0},

i.e., for any f ∈ Bb(D),

Uqf (x) =
∫ ∞

0
e−qtQD

t f (x)dt, x ∈ D. (2.1)

In particular, if f = IA(x) for some Borel measurable set A ⊂ D, UqIA(x) will be denoted
by Uq(x,A):

Uq(x,A) = UqIA(x) =
∫ ∞

0
e−qt�D

x (ξt ∈ A)dt, x ∈ D. (2.2)

Here is the statement of our main technical result. This result constitutes the major in-
gredient in the proofs of our main results.

Theorem 2.1 Suppose Assumption 1 holds, λ1 > 0 and that X is a (ξD,ψ(λ) − βλ)-
superdiffusion. Then for any f ∈ B+

b (D), q > 0, and μ ∈ MF (D),

lim
t→∞ e−λ1t

〈
φqUqf,Xt

〉 = M∞(φ)

∫

D

φ̂(x)φ(x)f (x)dx, Pμ-a.s. (2.3)

Moreover, when
∫

D
φ̂(x)l(x)dx < ∞, the above limit holds in the L1(Pμ) sense as well.

The main goal of this paper is to prove (2.4) below. For this we want to use a technique
which was first used in [1] and later in [10] for branching diffusions and in [4] for more
general branching Markov processes. The technique consists of first obtaining the almost
sure limit result at discrete times and then extending it to all times. However the transition
from discrete time to continuous time is pretty difficult for superdiffusions. In [3], the sym-
metry of the underlying Markov process played an essential role. Without the symmetry
assumption, one of the key steps in [3], the proof of [3, Lemma 3.5], does not go through.
Our strategy is to extend the discrete time limit result with IA replaced by Uqf first and
then approach IA by functions of the form Uqf .
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Theorem 2.2 Suppose Assumption 1 holds, λ1 > 0 and that X is a (ξD,ψ(λ) − βλ)-
superdiffusion. Then for any μ ∈ MF (D) and any relatively compact open subset A of D

with |∂A| = 0,

lim
t→∞ e−λ1t 〈φIA,Xt 〉 = M∞(φ)

∫

A

φ̂(x)φ(x)dx, Pμ-a.s. (2.4)

Proof Recall the definition of Uq(x,A), x ∈ D, given by (2.2). Define the first hitting time
σA := inf{t > 0; ξt ∈ A}. Then for any x ∈ D,

qUq(x,A) ≤
∫ ∞

0
qe−qt�D

x (σA ≤ t)dt = �D
x

∫ ∞

σA

qe−qtdt = �D
x

(
exp{−qσA}),

while for any x /∈ A and any closed subset A′ of D,

Uq
(
x,A′) ≥ �D

x

∫ ∞

σA

e−qt IA′(ξt )dt = �D
x

(
e−qσAUq

(
ξσA

,A′)).

Since ξ is a diffusion, we have ξσA
∈ ∂A when it starts from x /∈ A. Thus for x /∈ A,

�D
x

(
e−qσA

) ≤
(

inf
y∈∂A

Uq
(
y,A′)

)−1
Uq

(
x,A′). (2.5)

Define Aε = {x ∈ A,dist(x, ∂A) ≥ ε}, where ε > 0 is chosen such that Aε �= ∅. Then

e−λ1t
〈
φqUqIAε ,Xt

〉 ≤ e−λ1t
〈
φ�D

· e−qσAε ,Xt

〉

≤ e−λ1t 〈φIA,Xt 〉 + e−λ1t
〈
ID\Aφ�D

· e−qσAε ,Xt

〉
. (2.6)

Recall that �x is the probability of ξ with infinitesimal generator L on R
d and that τ is the

first exit time of ξ from D. According to the definition of �D
x , x ∈ D, for any F ∈ Gt :=

σ(ξs; s ≤ t),

�D
y (F ) = φ(y)−1e−λ1t�y

(

exp

{∫ t

0
β(ξs)ds

}

φ(ξt );F, τ > t

)

. (2.7)

Set A′
ε = {x ∈ A;dist(x, ∂Aε) ≤ ε/2}. When ξ0 ∈ ∂Aε , {sup0≤s≤t/q |ξs − ξ0| ≤ ε/2} ⊂ {ξt/q

∈ A′
ε}. Moreover these two events belong to Gt/q , thus for any y ∈ ∂Aε ,

�D
y

(
ξt/q ∈ A′

ε

)

≥ �D
y

(
sup

0≤s≤t/q

|ξs − y| ≤ ε/2
)

= φ(y)−1e−λ1t/q�y

(

exp

{∫ t/q

0
β(ξs)ds

}

φ(ξt/q); sup
0≤s≤t/q

|ξs − y| ≤ ε/2, τ > t/q

)

≥
(

sup
x∈∂Aε

φ(x)
)−1

e−(λ1+‖β‖∞)t/q�y

(
inf

x∈A′
ε

φ(x); sup
0≤s≤t/q

|ξs − y| ≤ ε/2, τ > t/q
)
.

Since ∂Aε,A
′
ε ⊂ A, and {sup0≤s≤t/q |ξs − y| ≤ ε/2} ⊂ {τ > t/q} �y -a.s., we have

�D
y

(
ξt/q ∈ A′

ε

) ≥ infx∈A φ(x)

supx∈A φ(x)
e−(λ1+‖β‖∞)t/q�y

(
sup

0≤s≤t/q

|ξs − y| ≤ ε/2
)
.
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Denote infx∈A φ(x)/ supx∈A φ(x) by c(A,φ). Then for any y ∈ ∂Aε and any fixed T > 0,

qUq
(
y,A′

ε

) =
∫ ∞

0
e−t�D

y

(
ξt/q ∈ A′

ε

)
dt

≥ c(A,φ)

∫ T

0
e−(1+(λ1+‖β‖∞)/q)t�y

(
sup

0≤s≤t/q

|ξs − y| ≤ ε/2
)

dt

≥ c(A,φ)

∫ T

0
e−(1+(λ1+‖β‖∞)/q)tdt�y

(
sup

0≤s≤T/q

|ξs − y| ≤ ε/2
)
. (2.8)

The operator L satisfies the assumptions in [22, Theorem 2.2.2], so when q is chosen to be
large enough so that ε > 4(‖∇a‖∞ + ‖b‖∞)T /q ,

�y

(
sup

0≤s≤T/q

|ξs − y| ≤ ε/2
)

≥ 1 − 2d exp

{ −qε2

32dCT

}

, (2.9)

where

C = sup
x∈D

sup
|v|=1

〈
v, a(x)v

〉
.

Therefore, for q large enough,

inf
y∈∂Aε

qUq
(
y,A′

ε

)

≥ c(A,φ)(1 − exp{−(1 + (λ1 + ‖β‖∞)/q)T })
1 + (λ1 + ‖β‖∞)/q

(

1 − 2d exp

{ −qε2

32dCT

})

. (2.10)

Denote the right hand side of the above display by V (q,T ). It is obvious that limT →∞
limq→∞ V (q,T ) = c(A,φ). Using (2.5) (applied to Aε) and (2.10), we get that for any fixed
T > 0, and sufficiently large q > 0,

lim sup
t→∞

e−λ1t
〈
ID\Aφ�D

· e−qσAε ,Xt

〉

≤ 1

V (q,T )
lim sup

t→∞
e−λ1t

〈
φqUqIA′

ε
,Xt

〉

= 1

V (q,T )
M∞(φ)

∫

A′
ε

φ̂(x)φ(x)dx, Pμ-a.s. (2.11)

where in the last equality, we used Theorem 2.1. Letting t → ∞ on both sides of (2.6), we
get from Theorem 2.1 and (2.11) that

M∞(φ)

∫

Aε

φ̂(x)φ(x)dx = lim inf
t→∞ e−λ1t

〈
φqUqIAε ,Xt

〉

≤ lim inf
t→∞ e−λ1t 〈φIA,Xt 〉 + lim sup

t→∞
e−λ1t

〈
ID\Aφ�D

· e−qσAε ,Xt

〉

≤ lim inf
t→∞ e−λ1t 〈φIA,Xt 〉 + 1

V (T , q)
M∞(φ)

∫

A′
ε

φ̂(x)φ(x)dx, Pμ-a.s.
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Now letting q → ∞, and then T → ∞, we get

M∞(φ)

∫

Aε

φ̂(x)φ(x)dx ≤ lim inf
t→∞ e−λ1t 〈φIA,Xt 〉 + M∞(φ)

c(A,φ)

∫

A′
ε

φ̂(x)φ(x)dx, Pμ-a.s.

Finally letting ε tend to 0, we obtain

M∞(φ)

∫

A

φ̂(x)φ(x)dx ≤ lim inf
t→∞ e−λ1t 〈φIA,Xt 〉, Pμ-a.s. (2.12)

Now we define the set Aε := {x ∈ D;dist(x,A) ≤ ε/2}, where ε > 0 is small enough so
that Aε � D. Applying (2.9) and using a similar argument as for A′

ε , we get that for any
T > 0, q > 0 and x ∈ A,

qUq
(
x,Aε

) =
∫ ∞

0
e−t�D

x

(
ξt/q ∈ Aε

)
dt

≥ inf|y−x|<ε/2 φ(y)

φ(x)

∫ T

0
e−(1+(λ1+‖β‖∞)/q)tdt�x

(
sup

0≤s≤T/q

|ξs − x| ≤ ε/2
)

≥ inf|y−x|<ε/2 φ(y)(1 − e−(1+(λ1+‖β‖∞)/q)T )

φ(x)((λ1 + ‖β‖∞)/q + 1)

(

1 − 2d exp

{ −qε2

32dCT

})

= inf|y−x|<ε/2 φ(y)V (q,T )

φ(x)c(A,φ)
. (2.13)

Since φ is a positive continuous function in D and Aε � D, φ is uniformly continuous and
has a positive lower bound in Aε . Thus for any κ ∈ (0,1), we can choose ε small enough
such that inf|y−x|<ε/2 φ(y) > κφ(x) for any x ∈ A. (We can choose ε so that ε → 0 as
κ → 1.) In this case, IA(x) ≤ c(A,φ)(κV (q,T ))−1qUq(x,Aε). Thus,

lim sup
t→∞

e−λ1t 〈φIA,Xt 〉 ≤ c(A,φ)
(
κV (q,T )

)−1
lim sup

t→∞
e−λ1t

〈
φqUq

(·,Aε
)
,Xt

〉
.

Letting q → ∞ and then T → ∞, using Theorem 2.1, we get

lim sup
t→∞

e−λ1t 〈φIA,Xt 〉 ≤ κ−1M∞(φ)

∫

Aε

φ̂(x)φ(x)dx, Pμ-a.s.

Finally letting κ → 1 (which implies ε → 0), we obtain

lim sup
t→∞

e−λ1t 〈φIA,Xt 〉 ≤ M∞(φ)

∫

A

φ̂(x)φ(x)dx, Pμ-a.s.

The proof is now complete. �

Theorem 1.1 strengthens Theorem 2.2 in the sense that the exceptional set does not de-
pend on f and μ.

Proof of Theorem 1.1 Note that there exists a countable base U of open subsets {Uk, k ≥ 1}
of D so that U is closed under finite unions and each open set in U is a relatively compact
set whose boundary has zero Lebesgue measure. Define

�0 :=
{

ω ∈ � : lim
t→∞ e−λ1t 〈IUk

φ,Xt 〉(ω) = M∞(φ)(ω)

∫

Uk

φ̂(y)φ(y)dy for every k ≥ 1

}

.
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By Theorem 2.2, Pμ(�0) = 1 for any μ ∈ MF (D).
We first consider (1.6) on {M∞(φ) > 0}. For each ω ∈ �0 ∩ {M∞(φ) > 0} and t ≥ 0, we

define two probability measures νt and ν on D respectively by

νt (A)(ω) = e−λ1t 〈IAφ,Xt 〉(ω)

Mt(φ)(ω)
, and ν(A) =

∫

A

φ̂(y)φ(y)dy, A ∈ B(D).

Note that the measure νt is well-defined for every t ≥ 0. By the definition of �0 we know that
νt converges vaguely to ν as t → ∞. Since ν is a probability measure, νt actually converges
weakly to ν as t → ∞. Using the fact that φ is strictly positive and continuous on D, we
know that if f is a nonnegative function on D such that f ≤ cφ for some c > 0 and that the
discontinuity set of f has zero Lebesgue-measure (equivalently zero ν-measure), g := f/φ

is a nonnegative bounded function with the same set of discontinuity. We thus have

lim
t→∞

∫

D

g(x)νt (dx) =
∫

D

g(x)ν(dx),

which is equivalent to saying

lim
t→∞ e−λ1t 〈f,Xt 〉(ω) = M∞(φ)(ω)

∫

D

φ̂(y)f (y)dy,

for every ω ∈ �0 ∩ {
M∞(φ) > 0

}
. (2.14)

If f ≤ cφ for some positive constant c > 0, (1.6) holds automatically on {M∞(φ) = 0}.
This completes the proof of the theorem. �

It is well known that for any g ∈ B+(D),

Pμ〈g,Xt 〉 = 〈
P D

t g,μ
〉
. (2.15)

The above formula is the super-process counterpart of the so-called ‘many-to-one’ formula
in branching particle systems, see [15] for example. The formula (2.15) will be used quite a
few times later in this paper.

Proof of Theorem 1.2 It follows from (2.15) that

e−λ1t
Pμ〈f,Xt 〉 =

∫

D

μ(dx)e−λ1tP D
t f (x)

=
∫

D

μ(dx)

∫

D

e−λ1tpD(t, x, y)f (y)dy

=
∫

D

μ(dx)φ(x)

∫

D

qD(t, x, y)
f (y)

φ(y)
dy.

Using (1.2) and the dominated convergence theorem, we get

lim
t→∞ e−λ1t

Pμ〈f,Xt 〉 = 〈φ,μ〉
∫

D

f (y)φ̂(y)dy.

Theorem 1.2 is simply a combination of this and Theorem 1.1. �
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3 Proof of Theorem 2.1

In this section we will give the proof of Theorem 2.1. We will first prove the discrete-time
version, Theorem 3.5, for which we do not need to use the resolvent operators. However, a
substantial amount of work is needed to go from discrete time to continuous time. For this
we need to use the resolvent operators Uq .

According to Theorem 1.5(2), when
∫

D
φ̂(x)l(x)dx = ∞, we have

M∞(φ) = lim
t→∞ e−λ1t 〈φ,Xt 〉 = 0, Pμ-a.s.

For any f ∈ B+
b (D),

lim sup
t→∞

e−λ1t 〈φf,Xt 〉 ≤ ‖f ‖∞ lim sup
t→∞

e−λ1t 〈φ,Xt 〉 = 0 Pμ-a.s.

and (2.3) follows immediately from the nonnegativity of f . Thus we only need to deal
with the case when

∫
D

φ̂(x)l(x)dx < ∞. In this case, e−λ1t 〈φqUqf,Xt 〉 is controlled by a
constant multiple of Mt(φ), which is uniformly integrable by Theorem 1.5(1), thus the L1

limit result is an immediate consequence of the almost sure limit result. So we will only
need to prove the almost sure limit result.

In the remainder of this section, we assume that the assumptions of Theorem 2.1 hold
and that f ∈ B+

b (D) is fixed. Define

S(ds,dx) = SJ (ds,dx) + SC(ds,dx).

As mentioned in Sect. 2, to prove Theorem 2.1, we will first prove the almost sure limit result
at discrete times, see Theorem 3.5 below. The steps are similar to that of [1]. Since we are
considering superdiffusions here, we will use stochastic integrals with respect to continuous
random measures and jump random measures. For the jump part, we also need to handle
‘small jumps’ and ‘large jumps’ separately. Now let us give the precise definition of ‘small
jumps’ and ‘large jumps’. A jump at time s is called ‘small’ if 0 < �Xs(φ) < eλ1s , and
‘large’ if �Xs(φ) ≥ eλ1s , here �Xs(φ) = rφ(x) when �Xs = rδx with r > 0 and x ∈ D.

Define

N
(1)
φ :=

∑

0<�Xs(φ)<eλ1s

δ(s,�Xs ) and N
(2)
φ :=

∑

�Xs(φ)≥eλ1s

δ(s,�Xs),

and denote the compensators of N
(1)
φ and N

(2)
φ by N̂

(1)
φ and N̂

(1)
φ respectively. Then for any

nonnegative predictable function F on R+ × � × MF (D),

∫ ∞

0

∫

MF (D)

F (s, ν)N̂
(1)
φ (ds,dν) =

∫ ∞

0
ds

∫

D

Xs(dx)

∫ eλ1s

0
F

(
s, rφ(x)−1δx

)
nφ(x,dr),

(3.1)
and

∫ ∞

0

∫

MF (D)

F (s, ν)N̂
(2)
φ (ds,dν) =

∫ ∞

0
ds

∫

D

Xs(dx)

∫ ∞

eλ1s
F

(
s, rφ(x)−1δx

)
nφ(x,dr),

(3.2)
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where nφ was defined in (1.4). Let J
(1)
φ denote the set of jump times of N

(1)
φ , and J

(2)
φ the set

of jump times of N
(2)
φ . Then

∫ ∞

0

∫

MF (D)

F (s, ν)N
(1)
φ (ds,dν) =

∑

s∈J
(1)
φ

F (s,ω,�Xs), (3.3)

∫ ∞

0

∫

MF (D)

F (s, ν)N
(2)
φ (ds,dν) =

∑

s∈J
(2)
φ

F (s,ω,�Xs), (3.4)

Pμ

[ ∑

s∈J
(1)
φ

F (s,ω,�Xs)

]

= Pμ

∫ ∞

0
ds

∫

D

Xs(dx)

∫ eλ1s

0
F

(
s,ω, rφ(x)−1δx

)
nφ(x,dr), (3.5)

and

Pμ

[ ∑

s∈J
(2)
φ

F (s,ω,�Xs)

]

= Pμ

∫ ∞

0
ds

∫

D

Xs(dx)

∫ ∞

eλ1s
F

(
s,ω, rφ(x)−1δx

)
nφ(x,dr).

(3.6)

We construct two martingale measures SJ,(1)(ds,dx) and SJ,(2)(ds,dx) respectively from
N

(1)
φ (ds,dν) and N

(2)
φ (ds,dν), similar to the way we constructed SJ (ds,dx) from N(ds,dν).

Then for any bounded measurable function g on R+ × D,

S
J,(1)
t (g) =

∫ t

0

∫

D

g(s, x)SJ,(1)(ds,dx) =
∫ t

0

∫

MF (D)

Fg(s, ν)
(
N

(1)
φ − N̂

(1)
φ

)
(ds,dν), (3.7)

and

S
J,(2)
t (g) =

∫ t

0

∫

D

g(s, x)SJ,(2)(ds,dx) =
∫ t

0

∫

MF (D)

Fg(s, ν)
(
N

(2)
φ − N̂

(2)
φ

)
(ds,dν), (3.8)

where Fg(s, ν) = ∫
D

g(s, x)ν(dx).
For any m,n ∈ N, σ > 0 and f ∈ B+

b (D), define

H(n+m)σ (f ) := e−λ1(n+m)σ

∫ (n+m)σ

0

∫

D

P D
(n+m)σ−s(φf )(x)SJ,(1)(ds,dx)

and

L(n+m)σ (f ) := e−λ1(n+m)σ

∫ (n+m)σ

0

∫

D

P D
(n+m)σ−s(φf )(x)SJ,(2)(ds,dx).

Lemma 3.1 If
∫

D
l(x)φ̂(x)dx < ∞, then for any m ∈ N, σ > 0, μ ∈ MF (D) and f ∈

B+
b (D),

∞∑

n=1

Pμ

[
H(n+m)σ (f ) − Pμ

(
H(n+m)σ (f )|Fnσ

)]2
< ∞ (3.9)

and

lim
n→∞

(
H(n+m)σ (f ) − Pμ

[
H(n+m)σ (f )|Fnσ

]) = 0, in L2(Pμ) and Pμ-a.s. (3.10)
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Proof Since P D
t (φf ) is bounded in [0, T ] × D for any T > 0, the process

Ht(f ) := e−λ1(n+m)σ

∫ t

0

∫

D

P D
(n+m)σ−s(φf )(x)SJ,(1)(ds,dx), t ∈ [

0, (n + m)σ
]

is a martingale with respect to (Ft )t≤(n+m)σ . Thus

Pμ

(
H(n+m)σ (f )|Fnσ

) = e−λ1(n+m)σ

∫ nσ

0

∫

D

P D
(n+m)σ−s(φf )(x)SJ,(1)(ds,dx),

and hence

H(n+m)σ (f ) − Pμ

(
H(n+m)σ (f )|Fnσ

)

= e−λ1(n+m)σ

∫ (n+m)σ

nσ

∫

D

P D
(n+m)σ−s(φf )(x)SJ,(1)(ds,dx). (3.11)

Since

Mt := e−λ1(n+m)σ

∫ t

nσ

∫

D

P D
(n+m)σ−s(φf )(x)SJ,(1)(ds,dx)

=
∫ t

nσ

∫

MF (D)

Fe−λ1(n+m)σ PD
(n+m)σ−·(φf )(s, ν)

(
N

(1)
φ − N̂

(1)
φ

)
(ds,dν), t ∈ [

nσ, (n + m)σ
]

is a martingale with quadratic variation

∫ t

nσ

∫

MF (D)

Fe−λ1(n+m)σ PD
(n+m)σ−·(φf )(s, ν)2N̂

(1)
φ (ds,dν),

we have

Pμ

[
H(n+m)σ (f ) − Pμ

(
H(n+m)σ (f )|Fnσ

)]2

= Pμ

∫ (n+m)σ

nσ

∫

MF (D)

Fe−λ1(n+m)σ PD
(n+m)σ−·(φf )(s, ν)2N̂

(1)
φ (ds,dν)

= Pμ

[ ∑

s∈J̃
(1)
n,m

Fe−λ1(n+m)σ PD
(n+m)σ−·(φf )(s,�Xs)

2

]

, (3.12)

where J̃ (1)
n,m = J

(1)
φ ∩ [nσ, (n + m)σ ]. Note that for any f ∈ Bb(D), ‖QD

t f ‖∞ ≤ ‖f ‖∞ for
all t ≥ 0, which is equivalent to

P D
t (φf )(y) ≤ ‖f ‖∞eλ1tφ(y), ∀t ≥ 0, y ∈ D. (3.13)

Using (3.1) and (3.5), we obtain

Pμ

[ ∑

s∈J̃
(1)
n,m

Fe−λ1(n+m)σ PD
(n+m)σ−·(φf )(s,�Xs)

2

]

= Pμ

∫ (n+m)σ

nσ

ds

∫

D

Xs(dx)

∫ eλ1s

0
F 2

e−λ1(n+m)σ PD
(n+m)σ−·(φf )

(
s, rφ(x)−1δx

)
nφ(x,dr)



Strong Law of Large Numbers for a Class of Superdiffusions 89

= e−2λ1(n+m)σ

∫ (n+m)σ

nσ

ds

∫

D

μ(dy)

×
∫

D

pD(s, y, x)dx

∫ eλ1s

0

[
P D

(n+m)σ−s(φf )(x)φ(x)−1
]2

r2nφ(x,dr)

≤ ‖f ‖2
∞

∫ (n+m)σ

nσ

e−2λ1sds

∫

D

μ(dy)

∫

D

pD(s, y, x)dx

∫ eλ1s

0
r2nφ(x,dr),

where in the second equality we used the fact that

Fe−λ1(n+m)σ PD
(n+m)σ−·(φf )

(
s, rφ(x)−1δx

) = re−λ1(n+m)σ φ−1(x)P D
(n+m)σ−s(φf )(x) (3.14)

and in the last inequality we used (3.13). It follows from (1.2) that there is a constant C > 0
such that

pD(s, y, x) ≤ Ceλ1sφ(y)φ̂(x), ∀s > σ, x, y ∈ D. (3.15)

Thus

Pμ

[ ∑

s∈J̃
(1)
n,m

Fe−λ1(n+m)σ PD
(n+m)σ−·(φf )(s,�Xs)

2

]

≤ C‖f ‖2
∞〈φ,μ〉

∫

D

φ̂(x)dx

∫ ∞

nσ

e−λ1sds

∫ eλ1s

0
r2nφ(x,dr).

Summing over n, we get

∞∑

n=1

Pμ

[ ∑

s∈J̃
(1)
n,m

Fe−λ1(n+m)σ PD
(n+m)σ−·(φf )(s,�Xs)

2

]

≤
∞∑

n=1

C‖f ‖2
∞〈φ,μ〉

∫

D

φ̂(x)dx

∫ ∞

nσ

e−λ1sds

∫ eλ1s

0
r2nφ(x,dr)

≤ C‖f ‖2
∞〈φ,μ〉

∫

D

φ̂(x)dx

∫ ∞

0
dt

∫ ∞

tσ

e−λ1sds

∫ eλ1s

0
r2nφ(x,dr)

= C

σ
‖f ‖2

∞〈φ,μ〉
∫

D

φ̂(x)dx

∫ ∞

0
se−λ1sds

∫ eλ1s

0
r2nφ(x,dr)

≤ C

σ
‖f ‖2

∞〈φ,μ〉
∫

D

φ̂(x)dx

∫ ∞

1
r2nφ(x,dr)

∫ ∞

λ−1
1 ln r

se−λ1sds

+ C

σ
‖f ‖2

∞〈φ,μ〉
∫

D

φ̂(x)dx

∫ 1

0
r2nφ(x,dr)

∫ ∞

0
se−λ1sds

=: I + II. (3.16)

Using (1.5) we immediately get that II < ∞. On the other hand,

I = C

λ2
1σ

‖f ‖2
∞〈φ,μ〉

∫

D

φ̂(x)dx

∫ ∞

1
r(ln r + 1)nφ(x,dr).
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Now we can use
∫

D
l(x)φ̂(x)dx < ∞ and (1.3) to get that I < ∞. The proof of (3.9) is now

complete. For any ε > 0, using (3.9) and Chebyshev’s inequality we have

∞∑

n=1

Pμ

(∣∣H(n+m)σ (f ) − Pμ

[
H(n+m)σ (f )|Fnσ

]∣∣ > ε
)

≤ ε−2
∞∑

n=1

Pμ

[
H(n+m)σ (f ) − Pμ

(
H(n+m)σ (f )|Fnσ

)]2

< ∞.

Then (3.10) follows easily from the Borel-Cantelli lemma. �

Lemma 3.2 If
∫

D
l(x)φ̂(x)dx < ∞, then for any m ∈ N, σ > 0, μ ∈ MF (D) and f ∈

B+
b (D) we have

lim
n→∞

(
L(n+m)σ (f ) − Pμ

[
L(n+m)σ (f )|Fnσ

]) = 0, in L1(Pμ) and Pμ-a.s. (3.17)

Proof It is easy to see that

Pμ

[
L(n+m)σ (f )|Fnσ

] = e−λ1(n+m)σ

∫ nσ

0

∫

D

P D
(n+m)σ−s(φf )(x)SJ,(2)(ds,dx).

Therefore,

∣
∣L(n+m)σ (f ) − Pμ

[
L(n+m)σ (f )|Fnσ

]∣∣

=
∣
∣
∣
∣e

−λ1(n+m)σ

∫ (n+m)σ

nσ

∫

D

P D
(n+m)σ−s(φf )(x)SJ,(2)(ds,dx)

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ (n+m)σ

nσ

∫

MF (D)

Fe−λ1(n+m)σ PD
(n+m)σ−·(φf )(·)(s, ν)

(
N

(2)
φ − N̂

(2)
φ

)
(ds,dν)

∣
∣
∣
∣

≤
∫ (n+m)σ

nσ

∫

MF (D)

Fe−λ1(n+m)σ PD
(n+m)σ−·(φf )(·)(s, ν)

(
N

(2)
φ + N̂

(2)
φ

)
(ds,dν). (3.18)

Using (3.13) we get,

∫ (n+m)σ

nσ

∫

MF (D)

Fe−λ1(n+m)σ PD
(n+m)σ−·(φf )(·)(s, ν)

(
N

(2)
φ + N̂

(2)
φ

)
(ds,dν)

≤
∫ ∞

nσ

∫

MF (D)

F‖f ‖∞e−λ1 ·φ(s, ν)
(
N

(2)
φ + N̂

(2)
φ

)
(ds,dν).

Using (3.2) and (3.15) we get

Pμ

∫ ∞

nσ

∫

MF (D)

F‖f ‖∞e−λ1 ·φ(s, ν)
(
N

(2)
φ + N̂

(2)
φ

)
(ds,dν)

= 2‖f ‖∞Pμ

[∫ ∞

nσ

e−λ1sds

∫

D

Xs(dx)

∫ ∞

eλ1s
rnφ(x,dr)

]
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= 2‖f ‖∞
∫ ∞

nσ

e−λ1sds

∫

D

μ(dy)

∫

D

pD(s, y, x)dx

∫ ∞

eλ1s
rnφ(x,dr)

≤ 2C‖f ‖∞〈φ,μ〉
∫ ∞

nσ

ds

∫

D

φ̂(x)dx

∫ ∞

eλ1s
rnφ(x,dr)

≤ 2C‖f ‖∞〈φ,μ〉
∫

D

φ̂(x)dx

∫ ∞

eλ1nσ
rnφ(x,dr)

∫ λ−1
1 ln r

0
ds

= 2C‖f ‖∞
λ1

〈φ,μ〉
∫

D

φ̂(x)dx

∫ ∞

eλ1nσ
r ln rnφ(x,dr).

Note that
∫

D
φ̂(x)dx

∫ ∞
eλ1nσ r ln rnφ(x,dr) ≤ ∫

D
φ̂(x)l(x)dx. Applying the dominated con-

vergence theorem and using the fact that
∫ ∞

nσ

∫

MF (D)

F‖f ‖∞e−λ1 ·φ(s, ν)
(
N

(2)
φ + N̂

(2)
φ

)
(ds,dν)

is decreasing in n, we obtain that, when
∫

D
φ̂(x)l(x)dx < ∞,

lim
n→∞

∫ ∞

nσ

∫

MF (D)

F‖f ‖∞e−λ1 ·φ(s, ν)
(
N

(2)
φ + N̂

(2)
φ

)
(ds,dν) = 0, in L1(Pμ) and Pμ-a.s.

(3.19)
Therefore by (3.18), we have (3.17). The proof is complete. �

For any m,n ∈ N, σ > 0, set

C(n+m)σ (f ) := e−λ1(n+m)σ

∫ (n+m)σ

0

∫

D

(
P D

(n+m)σ−sφf
)
(x)SC(ds,dx), f ∈ B+

b (D).

Then

Pμ

(
C(n+m)σ (f )|Fnσ

) = e−λ1(n+m)σ

∫ nσ

0

∫

D

(
P D

(n+m)σ−sφf
)
(x)SC(ds,dx).

Lemma 3.3 For any m ∈ N, σ > 0, μ ∈ MF (D) and f ∈ B+
b (D) we have

lim
n→∞

(
C(n+m)σ (f ) − Pμ

[
C(n+m)σ (f )|Fnσ

]) = 0, in L2(Pμ) and Pμ-a.s. (3.20)

Proof Note that

C(n+m)σ (f ) − Pμ

[
C(n+m)σ (f )|Fnσ

] = e−λ1(n+m)σ

∫ (n+m)σ

nσ

∫

D

(
P D

(n+m)σ−sφf
)
(x)SC(ds,dx).

(3.21)
From the quadratic variation formula (1.16) and the definition of QD

t ,

Pμ

[
C(n+m)σ (f ) − Pμ

(
C(n+m)σ (f )|Fnσ

)]2

=
∫ (n+m)σ

nσ

e−2λ1(n+m)σ ds

∫

D

μ(dx)

∫

D

pD(s, x, y)
(
P D

(n+m)σ−sφf
)2

(y)α(y)dy

≤
∫ (n+m)σ

nσ

e−2λ1sds

∫

D

μ(dx)

∫

D

pD(s, x, y)φ2(y)
(
QD

(n+m)σ−sf
)2

(y)α(y)dy
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≤ ‖f ‖2
∞

∫ (n+m)σ

nσ

e−λ1sds

∫

D

φ(x)QD
s (αφ)(x)μ(dx)

≤ 1

λ1
‖φα‖∞‖f ‖2

∞〈φ,μ〉e−λ1nσ . (3.22)

Therefore, we have

∞∑

n=1

Pμ

[
C(n+m)σ (f ) − Pμ

(
C(n+m)σ (f )|Fnσ

)]2
< ∞. (3.23)

By the Borel-Cantelli lemma, we get (3.20). �

Combining the three lemmas above, we have the following result. The idea for proving
the next result comes from [1].

Lemma 3.4 If
∫

D
l(x)φ̂(x)dx < ∞, then for any m ∈ N, σ > 0, μ ∈ MF (D) and f ∈

B+
b (D) we have

lim
n→∞ e−λ1(n+m)σ 〈φf,X(n+m)σ 〉 − Pμ

[
e−λ1(n+m)σ 〈φf,X(n+m)σ 〉|Fnσ

] = 0,

in L1(Pμ) and Pμ-a.s. (3.24)

Proof From (1.17), we know that e−λ1(n+m)σ 〈φf,X(n+m)σ 〉 can be decomposed into three
parts:

e−λ1(n+m)σ 〈φf,X(n+m)σ 〉

= e−λ1(n+m)σ
〈
P D

(n+m)σ (φf ),μ
〉 + e−λ1(n+m)σ

∫ (n+m)σ

0

∫

D

P D
(n+m)σ−s(φf )(x)S(ds,dx)

= e−λ1(n+m)σ
〈
P D

(n+m)σ (φf ),μ
〉 + H(n+m)σ (f ) + L(n+m)σ (f ) + C(n+m)σ (f ).

Therefore,

e−λ1(n+m)σ 〈φf,X(n+m)σ 〉 − Pμ

[
e−λ1(n+m)σ 〈φf,X(n+m)σ 〉|Fnσ

]

= H(n+m)σ (f ) − Pμ

[
H(n+m)σ (f )|Fnσ

] + L(n+m)σ (f ) − Pμ

[
L(n+m)σ (f )|Fnσ

]

+ C(n+m)σ (f ) − Pμ

[
C(n+m)σ (f )|Fnσ

]
.

Now the conclusion of this lemma follows immediately from Lemmas 3.1–3.3. �

Theorem 3.5 If
∫

D
l(x)φ̂(x)dx < ∞, then for any σ > 0, μ ∈ MF (D) and f ∈ B+

b (D) we
have

lim
n→∞ e−λ1nσ 〈φf,Xnσ 〉 = M∞(φ)

∫

D

φ̂(z)φ(z)f (z)dz, in L1(Pμ) and Pμ-a.s.

Proof By (2.15) and the Markov property of super-processes, we have

Pμ

[
e−λ1(n+m)σ 〈φf,X(n+m)σ 〉|Fnσ

] = e−λ1nσ
〈
e−λ1mσ P D

mσ (φf ),Xnσ

〉
. (3.25)
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Note that it follows from (1.2) that there exist constants c > 0 and ν > 0 such that

∣
∣
∣
∣
e−λ1mσ P D

mσ (φf )(x)

φ(x)
−

∫

D

φ̂(z)φ(z)f (z)dz

∣
∣
∣
∣ ≤ ce−νmσ

∫

D

φ̂(z)φ(z)f (z)dz,

for every x ∈ D,

which is equivalent to

∣
∣
∣
∣

e−λ1mσ P D
mσ (φf )(x)

φ(x)
∫

D
φ̂(z)φ(z)f (z)dz

− 1

∣
∣
∣
∣ ≤ ce−νmσ , for every x ∈ D.

Thus there exist positive constants km ≤ 1 and Km ≥ 1 such that for any x ∈ D,

kmφ(x)

∫

D

φ̂(z)φ(z)f (z)dz ≤ e−λ1mσ P D
mσ (φf )(x) ≤ Kmφ(x)

∫

D

φ̂(z)φ(z)f (z)dz,

and that limm→∞ km = limm→∞ Km = 1. Hence,

e−λ1nσ
〈
e−λ1mσ P D

mσ (φf ),Xnσ

〉 ≥ kme−λ1nσ 〈φ,Xnσ 〉
∫

D

φ̂(z)φ(z)f (z)dz

= kmMnσ (φ)

∫

D

φ̂(z)φ(z)f (z)dz, Pμ-a.s. (3.26)

and

e−λ1nσ
〈
e−λ1mσ P D

mσ (φf ),Xnσ

〉 ≤ Kme−λ1nσ 〈φ,Xnσ 〉
∫

D

φ̂(z)φ(z)f (z)dz

= KmMnσ (φ)

∫

D

φ̂(z)φ(z)f (z)dz, Pμ-a.s. (3.27)

Using (3.25), Lemma 3.4 and (3.27) we get that for any m ∈ N,

lim sup
n→∞

e−λ1nσ 〈φf,Xnσ 〉 = lim sup
n→∞

e−λ1(n+m)σ 〈φf,X(n+m)σ 〉

= lim sup
n→∞

e−λ1nσ
〈
e−λ1mσ P D

mσ (φf ),Xnσ

〉

≤ lim sup
n→∞

KmMnσ (φ)

∫

D

φ̂(z)φ(z)f (z)dz

= KmM∞(φ)

∫

D

φ̂(z)φ(z)f (z)dz.

Letting m → ∞, we get

lim sup
n→∞

e−λ1nσ 〈φf,Xnσ 〉 ≤ M∞(φ)

∫

D

φ̂(z)φ(z)f (z)dz. (3.28)

Similarly, using (3.25), Lemma 3.4 and (3.26) we get that for any m ∈ N,

lim inf
n→∞ e−λ1nσ 〈φf,Xnσ 〉 = lim inf

n→∞ e−λ1(n+m)σ 〈φf,X(n+m)σ 〉

= lim inf
n→∞ e−λ1nσ

〈
e−λ1mσ P D

mσ (φf ),Xnσ

〉
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≥ lim inf
n→∞ kmMnσ (φ)

∫

D

φ̂(z)φ(z)f (z)dz

= kmM∞(φ)

∫

D

φ̂(z)φ(z)f (z)dz.

Letting m → ∞, we get

lim inf
n→∞ e−λ1nσ 〈φf,Xnσ 〉 ≥ M∞(φ)

∫

D

φ̂(z)φ(z)f (z)dz. (3.29)

Combining (3.28) and (3.29) we arrive at the almost sure assertion of the theorem. Since
e−λ1nσ 〈φf,Xnσ 〉 is controlled by a constant multiple of Mnσ (φ), which is uniformly inte-
grable by Theorem 1.5(1), the L1 assertion now follows immediately from the almost sure
assertion. �

We are now ready to give the proof of Theorem 2.1.

Proof of Theorem 2.1 First note that for t ∈ [nσ, (n + 1)σ ],
|e−λ1t

〈
φQD

(n+1)σ−t qUqf,Xt

〉 − e−λ1t
〈
φqUqf,Xt

〉| ≤ Mt(φ)�σ (f ), (3.30)

where �σ (f ) := sup0≤t≤σ ‖q(QD
t Uqf − Uqf )‖∞. Since for any s > 0, we have by the

definition of the resolvent Uq

∣
∣q

(
QD

s Uqf (x) − Uqf (x)
)∣∣ =

∣
∣
∣
∣
(
eqs − 1

)
∫ ∞

s

qe−qtQD
t f (x)dt −

∫ s

0
qe−qtQD

t f (x)dt

∣
∣
∣
∣

≤ 2‖f ‖∞
(
1 − e−qs

)
,

we have limσ→0 �σ (f ) = 0. Thus, for any q > 0,

lim
σ→0

lim
n→∞ sup

t∈[nσ,(n+1)σ ]

∣
∣e−λ1t

〈
φQD

(n+1)σ−t qUqf,Xt

〉 − e−λ1t
〈
φqUqf,Xt

〉∣
∣ = 0, Pμ-a.s.

Since φ̂φ is the invariant probability density of the semigroup (QD
t ), we have that

∫

D

φ̂(x)φ(x)qUqf (x)dx =
∫

D

φ̂(x)φ(x)f (x)dx.

Therefore, to obtain (2.3), we only need to prove for f ∈ B+
b (D), the following holds,

lim
σ→0

lim
n→∞ sup

t∈[nσ,(n+1)σ ]
e−λ1t

〈
φQD

(n+1)σ−t f,Xt

〉 = M∞(φ)

∫

D

φ̂(x)φ(x)f (x)dx, Pμ-a.s.

(3.31)

For any n ∈ N and σ > 0, (Xt , t ∈ [nσ, (n + 1)σ ],Pμ(·|Fnσ )) can be regarded as a
(ξD,ψ(λ) − βλ)-superdiffusion with initial value Xnσ . Thus, for arbitrary g ∈ B+

b (D), we
have by (1.17)

e−λ1t 〈φg,Xt 〉 = e−λ1t
〈
P D

t−nσ (φg),Xnσ

〉 + e−λ1t

∫ t

nσ

∫

D

P D
t−s(φg)(x)S(ds,dx),

t ∈ [
nσ, (n + 1)σ

]
.
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Taking g(x) = QD
(n+1)σ−t f (x) in the above identity and using (1.1), we get

e−λ1t
〈
φQD

(n+1)σ−t f,Xt

〉 = e−λ1nσ
〈
φQD

σ f,Xnσ

〉

+
∫ t

nσ

e−λ1s

∫

D

(
φQD

(n+1)σ−sf
)
(x)S(ds,dx). (3.32)

Since φ̂φ is the invariant probability density of the semigroup (QD
t ), we have by Theo-

rem 3.5,

lim
n→∞ e−λ1nσ

〈
φQD

σ f,Xnσ

〉 = M∞(φ)

∫

D

φ̂(x)φ(x)QD
σ f (x)dx

= M∞(φ)

∫

D

φ̂(x)φ(x)f (x)dx, Pμ-a.s. (3.33)

Hence, by (3.32) and (3.33), to prove (3.31) it suffices to show that

lim
σ→0

lim
n→∞ sup

t∈[nσ,(n+1)σ ]

∫ t

nσ

e−λ1s

∫

D

(
φQD

(n+1)σ−sf
)
(x)S(ds,dx) = 0, Pμ-a.s. (3.34)

Since S(ds,dx) = SJ (ds,dx) + SC(ds,dx) = SJ,(1)(ds,dx) + SJ,(2)(ds,dx) + SC(ds,dx),
we have ∫ t

nσ

e−λ1s

∫

D

(
φQD

(n+1)σ−sf
)
(x)S(ds,dx)

=
∫ t

nσ

e−λ1s

∫

D

(
φQD

(n+1)σ−sf
)
(x)SJ,(1)(ds,dx)

+
∫ t

nσ

e−λ1s

∫

D

(
φQD

(n+1)σ−sf
)
(x)SJ,(2)(ds,dx)

+
∫ t

nσ

e−λ1s

∫

D

(
φQD

(n+1)σ−sf
)
(x)SC(ds,dx)

=: Hσ
n,t (f ) + Lσ

n,t (f ) + Cσ
n,t (f ).

Thus we only need to prove that

lim
σ→0

lim
n→∞ sup

t∈[nσ,(n+1)σ ]
Hσ

n,t (f ) = 0, Pμ-a.s. (3.35)

lim
σ→0

lim
n→∞ sup

t∈[nσ,(n+1)σ ]
Lσ

n,t (f ) = 0, Pμ-a.s. (3.36)

and

lim
σ→0

lim
n→∞ sup

t∈[nσ,(n+1)σ ]
Cσ

n,t (f ) = 0, Pμ-a.s. (3.37)

It follows from Chebyshev’s inequality that, for any ε > 0, we have

Pμ

(
sup

t∈[nσ,(n+1)σ ]

∣
∣Hσ

n,t (f )
∣
∣ > ε

)

≤ 1

ε2
Pμ

(

sup
t∈[nσ,(n+1)σ ]

∫ t

nσ

e−λ1s

∫

D

(
φQD

(n+1)σ−sf
)
(x)SJ,(1)(ds,dx)

)2

. (3.38)
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Since the process (Hσ
n,t (f ); t ∈ [nσ, (n + 1)σ ]) is a martingale with respect to

(Ft )t∈[nσ,(n+1)σ ], applying the Burkholder-Davis-Gundy inequality to Hσ
n,t (f ), we obtain

Pμ

(

sup
t∈[nσ,(n+1)σ ]

∫ t

nσ

e−λ1s

∫

D

(
φQD

(n+1)σ−sf
)
(x)SJ,(1)(ds,dx)

)2

≤ C1Pμ

(∫ (n+1)σ

nσ

e−λ1s

∫

D

φ(x)QD
(n+1)σ−sf (x)SJ,(1)(ds,dx)

)2

≤ C1e
σ
Pμ

(

e−(n+1)σ

∫ (n+1)σ

nσ

∫

D

P D
(n+1)σ−s(φf )(x)SJ,(1)(ds,dx)

)2

, (3.39)

where C1 is a positive constant independent of n. Using Lemma 3.1 with m = 1 and the
identity (3.11), we obtain

∞∑

n=1

Pμ

(

e−(n+1)σ

∫ (n+1)σ

nσ

∫

D

P D
(n+1)σ−s(φf )(x)SJ,(1)(ds,dx)

)2

< ∞. (3.40)

Combining (3.38)–(3.40), we get that, for any ε > 0,

∞∑

n=1

Pμ

(
sup

t∈[nσ,(n+1)σ ]

∣
∣Hσ

n,t (f )
∣
∣ > ε

)
< ∞. (3.41)

Thus by the Borel-Cantelli lemma we have, for any σ > 0,

lim
n→∞ sup

t∈[nσ,(n+1)σ ]
Hσ

n,t (f ) = 0, Pμ-a.s.

Therefore (3.35) is valid.
Similarly, we can prove that

lim
n→∞ sup

t∈[nσ,(n+1)σ ]

∣
∣Cσ

n,t (f )
∣
∣ = 0, Pμ-a.s. (3.42)

and thus (3.37) holds. We omit the details here.
Using an argument similar to (3.18) we see that

∣
∣Lσ

n,t (f )
∣
∣ =

∣
∣
∣
∣

∫ t

nσ

∫

MF (D)

Fe−λ1 ·QD
(n+1)σ−·f

(s, ν)
(
N

(2)
φ − N̂

(2)
φ

)
(ds,dν)

∣
∣
∣
∣

≤
∫ ∞

nσ

∫

MF (D)

F‖f ‖∞e−λ1 ·φ(s, ν)
(
N

(2)
φ + N̂

(2)
φ

)
(ds,dν).

Now using (3.19), we get (3.36) holds. The proof is now complete. �
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