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1 Introduction and main results

In this paper we will always assume that α ∈ (0, 2] and that ξ = {ξt, t > 0} is a symmetric α-stable

process in Rd. The law of the symmetric α-stable process starting at x ∈ Rd will be denoted by Πx.

We will use Pα(t, x, y) = Pα(t, x− y) to denote the transition density of ξ with respect to the Lebesgue

measure and △α to denote the infinitesimal generator of ξ. The domain of the generator △α will be

denoted by D(△α).

In this paper we will consider a particle system in Rd satisfying the following conditions:

i) At time 0 there are finitely many particles in the system;

ii) Each particle undergoes an independent motion according to a symmetric α-stable process during

its lifetime and the lifetime of each particle is an exponential random variable with mean 1. At the end

of each particle’s lifetime, it produces, at its death site, 2 particles or 0 particle with equal probability;

iii) Each new particle evolves in the same manner. All particles’ movements, lifetimes and offspring

numbers are independent.

And we also consider another system which keep the conditions ii) and iii), but replace i) by i)’ below:

i)’ At time 0 particles are distributed according to a random point measure on Rd with intensity λ,

the Lebesgue measure on Rd.

For any Borel subset of Rd, we will use Nt(B) to denote the number of particles in B at time t. Then

{Nt : t > 0} is a Markov process on the space of point measures on Rd. This process is called a branching
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symmetric α-stable process. When the initial distribution of N is δx for some x ∈ Rd, that is, initially

there is only one particle in the system and the particle is located at x, we will denote the law of the

branching α-stable process by Px. When the initial distribution of the branching symmetric α-stable

process is an independent Poisson random measure on Rd with intensity λ, we will denote the law of the

branching α-stable process by P . Expectation with respect to the measure P will be denoted by E. The

occupation time process of the branching symmetric α-stable process is defined as∫ t

0

Nsds, t > 0.

It is well-known that λ is invariant for the symmetric α-stable process, which implies in particular that

ENt = λ for all t. The purpose of this paper is to establish a large deviation principle for the occupation

time process of the branching α-stable process under the measure P .

Denote by S(Rd)+ the space of positive C∞ functions on Rd such that supx∈Rd f(x)|x|r < ∞ with

r > d and r < d + α in case α < 2. The Laplace functional of the occupation time process under P is

given by

E exp

[
−
∫ t

0

⟨Ns, φ⟩ds
]

= E [exp (⟨log(1 − v̂(t)), η⟩)]

= exp⟨−v̂(t), λ⟩, φ(x) ∈ S(Rd)+, t > 0,

(1.1)

where η stands for a Poisson random measure on Rd with intensity λ and

v(t, x) =: 1 − v̂(t, x) = Ex exp

[
−
∫ t

0

⟨Ns, φ⟩ds
]

satisfies the equation

v(t, x)

= Πx

[
e−t exp

(
−
∫ t

0

φ(ξs)ds

)
+

∫ t

0

e−s exp

(
−
∫ s

0

φ(ξr)dr

)
1

2

(
1 + v2(t− s, ξs)

)
ds

]
.

(1.2)

Using the Feynman-Kac formula (see [1], for instance), it follows that v̂(t, x) is the mild solution of the

non-linear equation: {
∂
∂t v̂(t, x) = ∆αv̂(t, x) − 1

2 v̂
2(t, x) + φ(x)(1 − v̂(t, x)),

v̂(0, x) = 0.
(1.3)

Large deviations of occupation times of critical branching Brownian motions have been studied in

several papers. Cox and Griffeath [2] established a large deviation principle for the occupation times of

critical branching Brownian motions when the dimension d > 3. However, the large deviation results

of [2] are not entirely satisfactory in dimensions d = 3, 4. For dimension d = 3, only a large deviation

result in a neighborhood of 1 was established in [2], and for dimension d = 4, the large deviation result

of [2] was in a weak form. Iscoe and Lee [3] improved the results of [2] in dimensions d = 3 and d = 4.

Large deviations for occupation times of super-Brownian motions have also been the object of several

papers, for instance, see [3], [4], [5] and [6].

Recently occupation time processes of branching α-stable processes have been studied by quite a few

authors. In [7] and [8], Bojdecki, Gorostiza and Talarczyk established functional limit theorems for the

occupation time fluctuations of a critical branching α-stable process. These papers treated the rescaled

occupation time process in three different cases: the intermediate dimensions (α < d < 2α), the critical

dimension (d = 2α) and the large dimensions (d > 2α), and they showed that the limiting behaviors

are different in these 3 cases. Many interesting results were also obtained for the subcritical branching

α-stable processes (see, for example, [9], [10] and [11]). Hong and Li [12] and Mi loś [13] obtained large

deviation and moderate deviation results for occupation times of subcritical branching processes with

immigration.
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In this paper, we will deal with the large dimensions d > 2α and prove a large deviation principle for

occupation times of critical branching α-stable processes under P .

Before we state the main result of this paper, we introduce some notations: B(Rd) will stand for the

space of Borel function in Rd, Cc(R
d)(C+

c (Rd)) will stand for the space of (positive) continuous functions

with compact support in Rd, and H(Rd) will stand for the space of Hölder continuous functions in Rd.

Define

A =

{
V (x) : V (x) ∈ H(Rd) ∩ C+

c (Rd),

∫
Rd

V (x)dx = 1

}
.

For any V (x) ∈ A, define

WV,T =
1

T

∫ T

0

∫
Rd

V (x)Nt(dx)dt.

TWV,T is called the occupation time of the TWV,T . To discuss the large deviation for TWV,T ,

the occupation time, we first need to find the cumulant generating function lnE [exp(θTWV,T )] . The

following lemma relates it to a nonlinear differential equation.

Lemma 1.1. Let d > 2α. Then there exists θ0 > 0, for every V ∈ A and |θ| 6 θ0,

E[exp(θtWV,t)] = exp

[∫
Rd

w(t, x, θV )dx

]
, t > 0,

where

w(t, x, θV ) = Ex exp [θtWV,t] − 1 (1.4)

is the unique bounded mild solution of the following problem:{
∂w
∂t = △αw + 1

2w
2 + θV w + θV, (t, x) ∈ (0,∞) ×Rd,

w(0, x) = 0.
(1.5)

Proof. Replacing −φ(x) by θV (x) and −v̂(t, x) by w(t, x, θV ) in (1.1) and (1.3) we can see that the

conclusion of the lemma is in fact valid for all θ < 0. Observe that, for any real θ,

E[exp(θtWV,t)] = E exp

[
θ

∫ t

0

⟨Ns, V ⟩ds
]

= E exp⟨log v(t), η⟩
= exp⟨v(t) − 1, λ⟩, t > 0,

(1.6)

where η is a Poisson random measure on Rd with intensity λ and

v(t, x) = Ex exp(θtWV,t) = Ex exp

[
θ

∫ t

0

⟨Ns, V ⟩ds
]

= w(t, x, θV ) + 1. (1.7)

We need to prove that there is θ0 > 0 such that when |θ| 6 θ0, Ex[exp(θtWV,t)] < ∞ for any x ∈ Rd

and E[exp(θtWV,t)] < ∞.

Define

E(θ, t) = logE[exp(θtWV,t)].

It follows from (1.6) that

E(θ, t) =

∫
Rd

[Ex (exp(θtWV,t)) − 1] dx.

Thus when the expansion of E(θ, t) in terms of its cumulants

E(θ, t) =
∞∑

n=1

mn(t)
θn

n!
(1.8)
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converges absolutely, we have

mn(t) =

∫
Rd

mn(t, x)dx, (1.9)

with

mn(t, x) = Ex[(tWV,t)
n]. (1.10)

As in the proof of (2.2) in [2], mn(t, x) is given recursively by

m1(t, x) =

∫ t

0

∫
Rd

Pα(t− s, x− y)V (y)dyds, t > 0, x ∈ Rd,

mn(t, x) =

∫ t

0

∫
Rd

Pα(t− s, x− y)

·

nmn−1(s, y)V (y) +
1

2

n−1∑
j=1

Cj
nmj(s, y)mn−j(s, y)

 dyds,

n > 2, t > 0, x ∈ Rd,

(1.11)

where Cj
n = n!

j!(n−j)! . It is well known that the transition density Pα(t, x) is smooth and symmetric in x,

and that it satisfies the scaling property Pα(t, x) = t−d/αPα(1, t−1/αx) (see [1], for instance). Hence we

can follow the proof of (3.3) in [2] to get the following:

mn(t, x) 6 3C(n)H̃(t)n−1, mn(t) 6 tC(n)H̃(t)n−1, t > 1, (1.12)

where

C(n) = n!4n−1(||V || ∨ 1)n, H̃(t) = 12 + 2H(2t),

and

H(t) =

∫ t

1

uPα(u, 0)du =
αPα(1, 0)

d− 2α
(1 − t2−

d
α ).

Therefore there exist a θ0 > 0, M > 0 and T0 > 1 such that

w(t, x, θV ) =

∞∑
n=1

θn
mn(t, x)

n!
= Ex [exp (θtWV,t)] − 1 < ∞, θ 6 θ0

and that

sup
06t6T,θ6θ0

∫
Rd

w(t, x, θV )dx < MT, for all T > T0.

Using the recursive formula (1.11), we get

w(t, x, θV ) =

∫ t

0

∫
Rd

Pα(t− s, x− y)

[
θV (y)(1 + w(s, y, θV )) +

1

2
w(s, y, θV )2

]
dyds,

thus w(t, x, θV ) is the mild solution of equation (1.5). We will revisit the existence of w(t, x, θV ) in

Lemma 2.6. For the uniqueness of the bounded solution of (1.5), see Lemma 2.6. 2

To investigate the large deviation for tWV,t, we also need to investigate the limit w(x, θV )=: limt→∞ w(t, x, θV ).

We will show in Theorem 2.5 below that it is a solution of the following non-linear equation:

△αw +
1

2
w2 + θV w + θV = 0, x ∈ Rd. (1.13)

The main result of this paper is the following



Li Q Y et al. Sci China Math Feb. 2011 Vol. 54 No. 2 5

Theorem 1.2. Assume d > 2α. For every V ∈ A, there exists a positive constant θ and a neighborhood

O of 1 such that if U ⊂ O is open and C ⊂ O is closed, then

lim inf
T→∞

1

T
logP (WV,T ∈ U) > − inf

σ∈U
sup

−θ6θ6θ

[σ · θ − Λ(θ)],

lim sup
T→∞

1

T
logP (WV,T ∈ C) 6 − inf

σ∈C
sup

−θ6θ6θ

[σ · θ − Λ(θ)],

where

Λ(θ) =:

∫
Rd

[
1

2
w(x, θV )2 + (1 + w(x, θV ))θV (x)

]
dx,

and w(x, θV ) is the unique solutions of (1.13) .

Remark 1.3. In particular, when α = 2, we get a large deviation principle for the occupation times of

critical branching Brownian motions when d > 4. So, our result is an extension of Theorem 5 in [2].

In [6], we proved a large deviation principle for occupation times of critical super α-stable processes

by considering the following two nonlinear differential equations:{
∂w
∂t = △αw + w2 + V, (t, x) ∈ (0,∞) ×Rd,

w(0, x) = 0,
(1.14)

and

△αw + w2 + V = 0, x ∈ Rd. (1.15)

Comparing with (1.14) and (1.15), there is an extra term θV w in the corresponding equations (1.5) and

(1.13) for critical branching α-stable processes. Dealing with this extra term θV w is the main difficulty

of this paper.

Throughout this paper C denotes a constant which may change values from line to line.

2 Nonlinear Differential Equations

When α < d, the process ξ is transient and its potential density G(x, y) = G(x− y) is given by

G(x, y) =

∫ ∞

0

Pα(t, x, y)dt = A1(d, α)|x− y|α−d,

where A1(d, α) = 2−απ−α
2 Γ(d−α

2 )Γ(α
2 )−1. For any function V , we define

GV (x) =

∫
Rd

G(x− y)V (y)dy.

Definition 2.1. (1) A function f : Rd → R is said to be in the Kato class Kd,α, if

lim
r→0

sup
x∈Rd

∫
|x−y|<r

|f(y)|
|x− y|d−α

dy = 0.

(2) A function f : Rd → R is said to be in K∞
d,α if it is Kd,α and if for every ϵ > 0, there exists a

compact set K such that

sup
x∈Rd

∫
Kc

|f(y)|
|x− y|d−α

dy < ϵ.

The following two lemmas have been proved in [6].

Lemma 2.2. Suppose d > α. For any ρ > α, {V (x) ∈ Kd,α : V (x) = O(|x|−ρ) as |x| → ∞} ⊆ K∞
d,α.
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Lemma 2.3. Suppose d > α, f ∈ Kd,α and that |f | = O(|x|−ρ) with ρ > α. Then the function Gf

is a bounded continuous solution of ∆αu = −f . Conversely, if u is a bounded continuous solution of

∆αu = −f , then u = Gf + C for some constant C.

The following lemma is a modification of Lemma 3.1 in [6], and it will play an important role in dealing

with the nonlinear differential equations (1.5) and (1.13).

Lemma 2.4. Suppose d > 2α. There exists a constant M > 0 such that the function φ(x) = M(1 +

|x|)2(α−d) on Rd satisfies

Gφ(x) <
1

4

(
φ(x)

1
2 ∧ 1

)
, x ∈ Rd.

Proof. Since G(x) 6 C|x|α−d, we have

Gφ(x)

φ
1
2 (x)

=

∫
Rd G(x− y)φ(y)dy

φ
1
2 (x)

6 CM (1−1/2)

∫
Rd

(
1 + |x|
|x− y|

)d−α
dy

(1 + |y|)(d−α)2
.

It is not hard to check that
∫
Rd

(
1+|x|
|x−y|

)d−α
dy

(1+|y|)2(d−α) is bounded in Rd (for details see the proof of

Lemma 3.1 in [6]). Then there is M > 0 such that Gφ(x) < 1
4φ(x)

1
2 . Since Gφ(x) is bounded in Rd, we

can choose M small enough such that ∥Gφ∥∞ < 1/4. 2

Now we are ready to discuss (1.5) and (1.13). The goal of this section is to prove the following theorem:

Theorem 2.5. Suppose d > 2α and that V ∈ A. Define

θ = min

{
θ0, min

x∈suppV

φ(x)

V (x)

}
(> 0), (2.1)

where θ0 is the same as in Lemma 1.1 and suppV is the support of V . Then for every θ ∈ [−θ, θ],

Equation (1.5) has a unique bounded solution w(t, x, θV ); furthermore, the limit

w(x, θV ) =: lim
t→∞

w(t, x, θV )

exists for every x ∈ Rd and w(x, θV ) is a bounded K∞
d,α solution of (1.13).

Let Sα
t denote the transition semigroup of ξ. To prove this theorem, we first consider, as in [6], solutions

of the following integral equations:

w(t, x, θV ) =

∫ t

0

Sα
t−s

[
1

2
w2(s, ·, θV ) + θ(1 + w(s, ·, θV ))V

]
(x)ds, (2.2)

and

w(x, θV ) = G

[
1

2
w2(·, θV ) + θ(1 + w(·, θV ))V

]
(x), x ∈ Rd. (2.3)

w(t, x, θV ) and w(x, θV ) are called mild solutions of (1.5) and (1.13) respectively. Then we prove that

the mild solutions are classical solutions under some conditions.

Also, we say w(t, x) is a mild subsolution of Equation (2.2) and w(t, x) is a mild supersolution of

Equation (2.2), if they satisfy

w(t, x) 6
∫ t

0

Sα
t−s

[
1

2
w2(s, ·) + θ(1 + w(s, ·))V

]
(x)ds,

w(t, x) >
∫ t

0

Sα
t−s

[
1

2
w2(s, ·) + θ(1 + w(s, ·))V

]
(x)ds,

respectively.
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Lemma 2.6. Suppose d > 2α, V ∈ A and that θ ∈ [−θ, θ]. The integral Equation (2.2) has a unique

bounded solution w(t, x, θV ).

Proof. For θ ∈ [−θ, θ], to show the existence of a solution of Equation (2.2), we first find its mild

supersolution and mild subsolution. Set

w(t, x) = −8Gφ(x); w(t, x) = 8Gφ(x).

Note that θ ∈ [−θ, θ] implies −φ 6 θV 6 φ. Then using Lemma 2.4, we get∫ t

0

Sα
t−s

(
1

2
w2(s, ·) + θ(1 + w(s, ·))V

)
(x)ds

>
∫ t

0

Sα
t−s (−φ− 8φGφ) (x)ds

>
∫ t

0

Sα
t−s (−φ− 2φ) (x)ds

> −G (3φ) (x) > w(t, x),

and ∫ t

0

Sα
t−s

(
1

2
w2(s, ·) + θ(1 + w(s, ·))V

)
(x)ds

6
∫ t

0

Sα
t−s

(
1

2
(8Gφ)2 + φ + 8φGφ

)
(x)ds

6
∫ t

0

Sα
t−s (2φ + φ + 2φ) (x)ds

6 G (5φ) (x) 6 w(t, x).

Therefore, w(t, x) and w(t, x) are mild subsolution and mild supersolution of Equation (2.2), respectively.

So by a standard iteration argument, a mild solution w(t, x; θV ) of Equation (2.2) exists and satisfies

w(t, x) 6 w(t, x; θV ) 6 w(t, x).

Indeed, define

w0(t, x, θV ) = 0,

w1(t, x, θV ) =

∫ t

0

Sα
t−s(θV )(x)ds,

. . .

wn+1(t, x, θV ) =

∫ t

0

Sα
t−s

(
1

2
w2

n(s, ·, θV ) + θ(1 + wn(s, ·, θV ))V

)
(x)ds,

. . .

It can be checked by induction that w(t, x) 6 wn(t, x, θV ) 6 w(t, x) for all n, t, x and θ, and then

|wn(t, x, θV )| 6 2, (t, x) ∈ [0,∞) × Rd. To prove the limit function w(t, x, θV ) = limn→∞ wn(t, x, θV )

exists, we only need to prove that, for any fixed t > 0 and any x ∈ Rd, the series

∞∑
n=0

[wn+1(t, x, θV ) − wn(t, x, θV )] (2.4)

is convergent. For any function h(t, x) defined on [0,∞)×Rd, we use ∥h(t)∥x to denote the sup norm of

h(t, x) with respect to x, that is, ∥h(t)∥x = supx∈Rd |h(t, x)|. Recall that φ(x) = M(1 + |x|)2(α−d) 6 M

for any x ∈ Rd. We claim that

∥wn+1(t) − wn(t)∥x 6 [(2 + M)t]n+1

(n + 1)!
. (2.5)
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In fact, for n = 0, we have

∥w1(t) − w0(t)∥x = ∥
∫ t

0

Sα
t−s(θV )(x)ds∥x 6 ∥φ∥∞t 6 (2 + M)t.

Now suppose that the claim (2.5) holds for n = k − 1, we have

∥wk+1(t) − wk(t)∥x =

∥∥∥∥∫ t

0

Sα
t−s

[
1

2
(w2

k − w2
k−1) + θ(wk − wk−1)V

]
(x)ds

∥∥∥∥
x

6
∥∥∥∥1

2

∫ t

0

Sα
t−s|wk + wk−1||wk − wk−1|(x)ds +

∫ t

0

Sα
t−s|θV ||wk − wk−1|(x)ds

∥∥∥∥
x

6 (2 + M)

∫ t

0

∥wk(s) − wk−1(s)∥xds

6 (2 + M)

∫ t

0

[(2 + M)s]k

k!
ds =

[(2 + M)t]k+1

(k + 1)!
.

That is (2.5) also holds in the case when n = k. Therefore the claim above is valid. It follows from the

claim above that, for any t > 0, the series
∑∞

n=0[wn+1(t, x, θV ) − wn(t, x, θV )] is convergent in the sup

norm ∥ · ∥x. Notice w(t, x) is bounded in x and by the bounded convergence theorem, w(t, x, θV ) is a

bounded solution of Equation (2.2).

We now prove the uniqueness of the solution of Equation (2.2). Suppose w1(t, x, θV ) and w2(t, x, θV )

are two bounded solutions of Equation (2.2). Then we have

||w1(t) − w2(t)||x

=

∥∥∥∥∫ t

0

Sα
t−s

[
1

2

(
w2

1(s, ·, θV ) − w2
2(s, ·, θV )

)
+ θV (w1(s, ·, θV ) − w2(s, ·, θV ))

]
(x)ds

∥∥∥∥
x

6 C

∫ t

0

∥w1(s) − w2(s)∥xds.

By Gronwall’s inequality, we have ||w1(t)−w2(t)||x = 0. So w1(t, x, θV ) = w2(t, x, θV ) for any t > 0 and

any x ∈ Rd. 2

The proof of the next result is similar to that of Lemma 3.4 in [6]. We omit the details.

Lemma 2.7. Suppose d > 2α, V ∈ A and that θ ∈ [−θ, θ]. w is a solution of the integral Equation (2.2)

if and only if it is a solution of Equation (1.5).

Proof of Theorem 2.5. It follows from Lemma 2.6 and Lemma 2.7 that Equation (1.5) has a unique

bounded solution w(t, x, θV ). It is easy to see from the definition of w(t, x, θV ) that for 0 6 θ 6 θ,

w(t, x, θV ) is increasing in t and for −θ 6 θ < 0, w(t, x, θV ) is decreasing in t. Thus the limit w(x, θV ) ≡
limt→∞ w(t, x, θV ) exists. By the proof of Lemma 2.6, we know that |w(t, x, θV )| 6 8Gφ, and hence

|w(x, θV )| 6 8Gφ(x). (2.6)

By Lemma 2.4 and the dominated convergence theorem, we have

w(x, θV ) =

∫ ∞

0

Sα
s

[
1

2
w2(·, θV ) + θ(1 + w(·, θV ))V

]
(x)ds, x ∈ Rd,

which can be written as

w(x, θV ) = G

[
1

2
w2(·, θV ) + θ(1 + w(·, θV ))V

]
(x), x ∈ Rd.

Then Lemma 2.3 implies that w(x, θV ) satisfies

△αw(x, θV ) +
1

2
w2(x, θV ) + θ(1 + w(x, θV ))V (x) = 0, x ∈ Rd.
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Now we prove that w(x, θV ) ∈ K∞
d,α. Using Lemma 2.4 and (2.6), we get |w(x, θV )| 6 8Gφ(x) 6

2φ
1
2 (x) = O(|x|α−d) as x → ∞. The assumption d > 2α implies that α − d < −α. Thus we have

w(x, θV ) ∈ K∞
d,α by Lemma 2.2. 2

Lemma 2.8. Suppose d > 2α, V ∈ A and that θ ∈ [−θ, θ). The differential equation{
∆α(f − 1) + (w(x, θV ) + θV )f = 0, x ∈ Rd,

f > 0, f(x) → 1, as x → ∞
(2.7)

has a unique solution which can be written as f(x, θV ), where w(x, θV ) is the bounded solution of (1.13)

constructed in Theorem 2.5.

Proof. Let c(x) = w(x, θV ) + θV . It is easy to see that |θV | 6 φ = O(|x|2(α−d)). Together with the

fact that w(x, θV ) ∈ K∞
d,α proved in the proof of Theorem 2.5, we get c(x) ∈ K∞

d,α.

Put U(x) = w(x, θV ) − w(x, θV ), θ ∈ [−θ, θ). It is easy to see that U > 0 and(
∆α +

1

2

w(x, θV )2 − w(x, θV )2

w(x, θV ) − w(x, θV )
+

(θ − θ)V (x)

w(x, θV ) − w(x, θV )
+

θV (x)w(x, θV ) − θV (x)w(x, θV )

w(x, θV ) − w(x, θV )

)
U = 0.

We denote the above equation simply by (∆α + c + q)U = 0, where

q =
1

2

(
w(x, θV ) − w(x, θV )

)
+

(θ − θ)V (x)

w(x, θV ) − w(x, θV )
+

(θ − θ)V (x)w(x, θV )

w(x, θV ) − w(x, θV )
.

Obviously q > 0. Thus the Schrödinger equation (∆α + c + q)u = 0 has a bounded solution U .

This implies that ∆α + c is subcritical by Proposition 2.5 in [6]. By Proposition 2.6 in [6], w0(x) =

Ex

[
exp

(∫∞
0

c(ξs)ds
)]

is a bounded c-harmonic function.

Now we show that w0(x) → 1, as |x| → ∞. Using the Markov property of {ξs, s > 0}, it can be checked

that

w0(x) − 1 = G(cw0)(x) =

∫
Rd

G(x, z)c(z)w0(z)dz

(see the argument in the proof of (32) in [14]). Since c(x) ∈ K∞
d,α, we have the family {

∫
Rd G(x, z)c(z)dz, x ∈

Rd} is uniformly integrable. Using the fact that w0(x) is bounded, we get

lim
|x|→∞

∫
Rd

G(x, z)c(z)w0(z)dz = 0.

Therefore, lim|x|→∞ w0(x) = 1. By Lemma 2.3, w0(x) satisfies ∆α(w0(x)−1) = −c(x)w0(x) in Rd, which

means that w0(x) is a solution of (2.7).

We now prove the uniqueness. Assume that w(x) is a solution of ∆αw(x) + c(x)w(x) = 0 and satisfies

lim|x|→∞ w(x) = 0. It suffices to prove that w(x) ≡ 0. Note that ∆αw(x) = −c(x)w(x). By Lemma

2.3, w(x) = G(cw)(x) + C for some constant C. Since lim|x|→∞ G(cw)(x) = 0, C = 0 and then we have

w(x) = G(cw)(x), which implies that w(x) ≡ 0 by using the iteration method. 2

3 Proof of the main result

Recall that

Λ(θ)=

∫
Rd

[
1

2
w(x, θV )2 + (1 + w(x, θV ))θV (x)

]
dx, (3.1)

where w(x, θV ) is the unique solutions of (1.13).
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Lemma 3.1. Suppose d > 2α, V ∈ A and that θ ∈ [−θ, θ], where θ is defined by (2.1). We have

lim
t→∞

1

t

∫
Rd

w(t, x, θV )dx = Λ(θ), (3.2)

where w(t, x, θV ) is the unique solutions of (1.5).

Proof.

1

t

∫
Rd

w(t, x, θV )dx

=
1

t

∫ t

0

∫
Rd

Sα
t−s

[
1

2
w2(s, ·, θV ) + θ(1 + w(s, ·, θV ))V (·)

]
(x)dxds

=
1

t

∫ t

0

∫
Rd

∫
Rd

Pα(t− s, x− y)

[
1

2
w2(s, y, θV ) + θ(1 + w(s, y, θV ))V (y)

]
dxdyds

=
1

t

∫ t

0

∫
Rd

[
1

2
w2(s, y, θV ) + θ(1 + w(s, y, θV ))V (y)

]
dyds. (3.3)

By the proof of Lemma 2.6, we have |w(t, x, θV )| 6 8Gφ, and then using Lemma 2.4, we get w(t, x, θV )2 6
4φ(x) for θ ∈ [−θ, θ]. Thus by the dominated convergence theorem, we have

lim
t→∞

∫
Rd

(
1

2
w(t, y, θV )2 + θ(1 + w(t, y, θV ))V (y)

)
dy =

∫
Rd

(
1

2
w(y, θV )2 + θ(1 + w(y, θV ))V (y)

)
dy.

Hence, from (3.3) we see that

lim
t→∞

1

t

∫
Rd

w(t, x, θV )dx = lim
t→∞

∫
Rd

(
1

2
w(t, y, θV )2 + θ(1 + w(t, y, θV ))V (y)

)
dy

=

∫
Rd

(
1

2
w(y, θV )2 + θ(1 + w(y, θV ))V (y)

)
dy.

2

Lemma 3.2. Assume V ∈ A. Then Λ(θ) defined in (3.1) is strictly convex, continuously differentiable

on [−θ, θ] and Λ′(0) = 1.

Proof. From the definition of w(t, x, θV ) given in (1.4), we know that w(t, x, θV ) is increasing and

convex in θ ∈ [−θ, θ]. Thus w(x, θV ) = limt→∞ w(t, x, θV ) is increasing and convex in θ ∈ [−θ, θ]. Using

the fact that

w(x, θV )

{
> 0, if θ > 0,

6 0, if θ < 0,

we can easily get θw(x, θV ) is also convex in θ ∈ [−θ, θ]. The difficult part in proving the strict convexity

of Λ(θ) is the term w2(x, θV ). We can not get the convexity of w2(x, θV ) directly from the convexity

of w(x, θV ) since w(x, θV ) can take negative values. We overcome this difficulty by giving another

representation of the function Λ(θ).

Consider the nonnegative function

g(t, x, θV ) := w(t, x, θV ) − w(t, x,−θV ). (3.4)

g(t, x, θV ) satisfies
∂g(t, x, θV )

∂t
=

[
∆α + w(t, x,−θV ) − θV

]
g + h(g(t, x, θV ), t, x) + k(θ, t, x), t > 0, x ∈ Rd

g(0, x) = 0, x ∈ Rd,
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where h(g, t, x) = 1
2

[
g(t, x, θV ) + w(t, x,−θV )

]2 − 1
2w

2(t, x,−θV ) −
[
w(t, x,−θV ) − θV

]
g(t, x, θV ), and

k(θ, t, x) = θV w(t, x, θV ) + θV w(t, x,−θV ) + (θ + θ)V. It is easy to see that h(g, t, x) is strictly convex

in g for each fixed t and x, and k(θ, t, x) is convex in θ for each fixed t and x. Note that h(0, t, x) = 0

and w(t, x,−θV ) 6 0 for t > 0, x ∈ Rd. Then

Λ(θ) = lim
t→∞

1

t

∫
Rd

w(t, x, θV )dx

= lim
t→∞

1

t

∫
Rd

w(t, x,−θV )dx + lim
t→∞

1

t

∫
Rd

g(t, x, θV )dx

= Λ(−θ) + lim
t→∞

1

t

∫
Rd

g(t, x, θV )dx.

Recall that, by Lemma 2.8,

f(x,−θV ) = Ex

[
exp

(∫ ∞

0

(w(ξs,−θV ) − θV (ξs))ds

)]
(3.5)

is the unique solution of the following equation{
∆α(f − 1) + (w(x,−θV ) − θV )f = 0, x ∈ Rd,

f > 0, f(x) → 1, as x → ∞.

We claim that

Λ(θ) = Λ(−θ) +

∫
Rd

[h(g(x, θV ), x) + k(θ, x)] f(x,−θV )dx, (3.6)

where

g(x, θV ) = lim
t→∞

g(t, x, θV ) = w(x, θV ) − w(x,−θV ),

k(θ, x) = lim
t→∞

k(θ, t, x) = θV w(x, θV ) + θV w(x,−θV ) + (θ + θ)V,

and

h(g(x, θV ), x) = lim
t→∞

h(g, t, x) =
1

2

[
g(x, θV ) + w(x,−θV )

]2 − 1

2
w2(x,−θV ) −

[
w(x,−θV ) − θV

]
g.

Noticing that the function u 7→ u2 is strictly convex and g > 0, together with the convexity of k(θ, x) for

fixed x, we can get the strict convexity of Λ(θ). Now we prove (3.6). We denote by Qt the Schrödinger

semigroup corresponding to the operator ∆α + w(t, x,−θV ) − θV , and by q(t, x, y) its density function.

Then by (3.9) in [16], we have Qtf(x) = Ex[exp(
∫ t

0
(w(s, ξs,−θV ) − θV (ξs))ds)f(ξt)]. Then

lim
t→∞

1

t

∫
Rd

g(t, x, θV )dx

= lim
t→∞

1

t

∫
Rd

∫ t

0

Qt−s(h(g(t, ·, θV ), t, ·) + k(t, θ, ·))(x)dsdx

= lim
t→∞

1

t

∫
Rd

∫ t

0

∫
Rd

q(t− s, x, y)(h(g(t, y, θV ), t, y) + k(t, θ, y))dydsdx

= lim
t→∞

1

t

∫ t

0

∫
Rd

∫
Rd

q(t− s, x, y)dx(h(g(t, y, θV ), t, y) + k(t, θ, y))dyds

= lim
t→∞

1

t

∫ t

0

∫
Rd

(Qt−s1)(y)(h(g(t, ·, θV ), t, y) + k(t, θ, y))dy,

where in the last equality we used the self-adjointness of ∆α. Using Cesaro’s theorem and the dominated
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convergence theorem, we get

lim
t→∞

1

t

∫
Rd

g(t, x, θV )dx

= lim
t→∞

∫
Rd

(Qt−s1)(y)(h(g(t, ·, θV ), t, y) + k(t, θ, y))dy

=

∫
Rd

Ey

[
exp

(∫ ∞

0

(w(ξs,−θV ) − θV (ξs))ds

)]
(h(g(·, θV ), y) + k(θ, y))dy

=

∫
Rd

[h(g(x, θV ), x) + k(θ, x)] f(x,−θV )dx.

Therefore, (3.6) holds.

Next, we prove that Λ′(θ) exists and is continuous. We simply denote w(x, θV ) by w(x, θ). Define

q(ϵ, x) =
w(x, θ + ϵ) − w(x, θ)

ϵ
,

β(ϵ, x) =
1

2
(w(x, θ + ϵ) + w(x, θ)) + θV.

Then the function q(ϵ, x) satisfies the linear elliptic PDE,

[∆α + β(ϵ, x)]q(ϵ, x) + [1 + w(x, θ + ϵ)]V (x) = 0.

We claim that the Feynman-Kac representation holds:

q(ϵ, x) = Πx

{∫ ∞

0

[1 + w(ξt, θ + ϵ)]V (ξt) exp

(∫ t

0

β(ϵ, ξs)ds

)
dt

}
.

Since V ∈ K∞
d,α, the dominated convergence theorem implies that

∂w

∂θ
(x, θ) = lim

ϵ→0
q(ϵ, x) = Πx

{∫ ∞

0

[1 + w(ξt, θ)]V (ξt) exp

(∫ t

0

(w(ξs, θ) + θV (ξs))ds

)
dt

}
. (3.7)

Using (3.7), (3.1), and the dominated convergence theorem, we get

Λ′(θ) =

∫
Rd

[
(w(x, θ) + θV (x))

∂w

∂θ
(x, θ) + V (x)w(x, θ) + V (x)

]
dx,

which is continuous for θ ∈ [−θ, θ]. It is easy to see that Λ′(0) =
∫
Rd V (x)dx = 1. 2

Proof of Theorem 1.1. The argument is similar to that of the proof of Theorem 1.1 in [15]. Here

we only give an outline of the proof. Let θ be defined by (2.1). From Lemmas 1.1 and 3.1, we have

lim
T→∞

1

T
logE{exp(Tθ ·WV,T )} = Λ(θ)

for −θ 6 θ 6 θ. A general large deviation result (see [17], for instance) ensures two estimates:

lim inf
T→∞

1

T
logP (WV,T ∈ U) > − inf

σ∈U
sup

−θ6θ6θ

[σ · θ − Λ(θ)],

lim sup
T→∞

1

T
logP (WV,T ∈ C) 6 − inf

σ∈C
sup

−θ6θ6θ

[σ · θ − Λ(θ)].

The theorem is proved. 2
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