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Abstract

In this paper, we first give a direct construction of the N-measure of a continuous
state branching process. Then we prove, with the help of this N-measure, that any
continuous state branching process with immigration can be constructed as the inde-
pendent sum of a continuous state branching process (without immigration), and two
immigration parts (jump immigration and continuum immigration). As an application
of this construction of a continuous state branching process with immigration, we give
a proof of a necessary and sufficient condition, first stated without proof in [9], for a
continuous state branching process with immigration to a proper almost sure limit. As
another application of the N-measure, we give a “conceptual” proof of an L logL crite-
rion for a continuous state branching process without immigration to have an L1-limit
first proved in [2].

1 N-measure for continuous state branching processes

The spine decomposition is an important probabilistic tool in branching processes, multi-
type branching processes, branching Hunt processes and superprocesses. Using the spine
decomposition, many classical results on these processes can be proved more directly, see, for
example, [5], [6], [7] and [8]. In the spine decomposition for a superprocess under a martingale
change of measure, the N-measure, defined by Dynkin-Kuznetsov, is a key ingredient (see
[5]). It is natural to ask if it is possible to describe the spine decomposition for a continuous
state branching process using the N-measure of the continuous state branching process.

The N-measure of a continuous state branching process can be thought of as a special
case of the N-measure of a superprocess, constructed in [3], by taking the underlying spa-
tial motion to a constant process. However, a superprocess is a much more complicated
model than a continuous state branching process. It is desirable to have a direct construc-
tion of the N-measure of a continuous state branching process, without using knowledge of
superprocesses.

∗Corresponding author; The research of this author is supported by NSFC (Grant No. 10871103 and
10971003)
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In this paper, we first give a direct construction of the N-measure of a continuous state
branching process. Then in Section 2.1, we prove that any continuous state branching
process with immigration can be constructed as the independent sum of a continuous state
branching process (without immigration), and two immigration parts (jump immigration
and continuum immigration). As an application of this construction, in Section 2.2, we
give a proof of a necessary and sufficient condition, first stated without a proof in [9], for
a continuous state branching process with immigration to have a proper scaling limit. As
another application of the construction, we give a “conceptual” proof of an L logL criterion
for the non-degeneracy of a martingale limit of a continuous state branching process first
proved in [2].

Suppose that X = (Xt : t ≥ 0) is a continuous time and continuous state branching
process. For any x ∈ (0,∞), we use Px to denote the law of X starting from x. We say that
the process is canonical if (Ω,F) is the path space (that is, Ω consists of all [0,∞)-valued
functions ω that are right continuous with left limit on [0,∞), and F is generated by the
sets {ω : ω(t) < c} where t ≥ 0, c ∈ [0,∞)) and if Xt(ω) = ω(t).

Throughout this paper we assume that for any x > 0,

Px(Xt = 0) > 0, for any t > 0. (1)

Theorem 1.1 Suppose for each x ∈ [0,∞), X = (Xt,Px : t ≥ 0) is a canonical continuous
state branching process starting from x. Then for every x ∈ [0,∞), there exists a unique
measure Nx on the space Ω such that:

1) For any integer n ≥ 1, and ti, λi ≥ 0, i = 1, · · ·n,

Nx

(
1− exp

(
−

n∑
i=1

λiXti

))
= − logPx exp

(
−

n∑
i=1

λiXti

)
. (2)

2) Nx(Ω̃) = 0, where Ω̃ = ∩t≥0{Xt = 0}.

The measure Nx is the “Lévy measure” of Px, and can be thought of as an “excursion
measure” on path space. As we remarked before, Dynkin and Kuznetsov [3] first proved
the counterpart of this result for superprocesses. The above theorem can be obtained from
Theorem 1.1 of [3], by taking the underlying spatial motion to be a constant process. Below
we give a direct proof of Theorem 1.1, without using the knowledge of superprocesses.

Proof of Theorem 1.1 We follow the general strategy of the proof of Theorem 1.1 of
[3]. For any integer k > 0 and any t, λ ≥ 0, by the branching property of X, we have

Px exp (−λXt) =
(
Px/k exp(−λXt)

)k
,

which implies that the distribution of Xt is infinitely divisible. Thus by the Lévy-Khintchine
formula there exists unique pair (m,R(t)

x ) such that

Px exp (−λXt) = exp

(
−mλ−

∫ ∞

0

(1− e−λz)R(t)
x (dz)

)
,
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where m ≥ 0 is a constant and R(t)
x is a measure on (0,∞) satisfying

∫∞
0
(1∧z)R(t)

x (dz) <∞
(see P. 385 of [10]). Letting λ → ∞ we see that Px(Xt = 0) > 0 implies m = 0 and

R(t)
x ((0,∞)) <∞, and therefore

Px exp (−λXt) = exp

(
−
∫ ∞

0

(1− e−λz)R(t)
x (dz)

)
.

Similarly, for any integers n, k ≥ 1, and ti, λi ≥ 0, i = 1, · · ·n, we have

Px exp

(
−

n∑
i=1

λiXti

)
=

(
Px/k exp

(
−

n∑
i=1

λiXti

))k

.

Put I = (t1, · · · , tn). Then there exists a unique RI
x such that

Px exp

(
−

n∑
i=1

λiXti

)
= exp

(
−
∫
[0,∞)×n

(1− e−
∑n

i=1 λizi)RI
x(dz)

)
,

where RI
x is a measure on (0,∞)×n and z = (z1, · · · , zn). RI

x has the following properties i),
ii) and iii):

i) For I = (t1, · · · , tn), and t > 0, put t ◦ I = (t, t1, · · · , tn). We have

Rt◦I
x

(
z0 ̸= 0, exp

(
−

n∑
i=1

λizi

))

= − logPx

(
Xt = 0, exp

(
−

n∑
i=1

λiXti

))
+ logPx

(
exp

(
−

n∑
i=1

λiXti

))
.

(3)

In fact,

Rt◦I
x

(
− exp

(
−

n∑
i=1

λizi − λz0

)
+ exp

(
−

n∑
i=1

λizi

))

= Rt◦I
x

(
1− exp

(
−

n∑
i=1

λizi − λz0

))
−Rt◦I

x

(
1− exp

(
−

n∑
i=1

λizi

))

= − logPx

(
exp

(
−

n∑
i=1

λiXti − λXt

))
+ logPx

(
exp

(
−

n∑
i=1

λiXti

))
.

Letting λ→ ∞, we get (3).
ii) For t1 < t2, from the property of branching process, it is obvious that

Px(Xt2 = 0|Xt1 = 0) = 1. (4)

Thus we have
R(t1,t2)
x (z1 = 0, z2 ̸= 0) = 0. (5)
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In fact, it follows from (3) that

R(t1,t2)
x (z2 ̸= 0, exp(−λz1)) = − logPx (Xt2 = 0, exp(−λXt1)) + logPx exp(−λXt1). (6)

Letting λ→ ∞, we get

R(t1,t2)
x (z2 ̸= 0, z1 = 0) = − logPx (Xt2 = 0, Xt1 = 0) + logPx(Xt1 = 0)

= − logPx(Xt2 = 0|Xt1 = 0) = 0.

iii) If I = (t1, · · · , tn) and J = (t1, · · · , tn, tn+1, · · · , tn+m) with m,n ≥ 1, ti ≥ 0, i =
1, · · · ,m+ n and m ≥ 1, then for any t ≥ 0, we have

Rt◦I
x (z0 ̸= 0, (z1, · · · , zn) ∈ B) = Rt◦J

x (z0 ̸= 0, (z1, · · · , zn) ∈ B) (7)

for any Borel set B ⊂ (0,∞)×n.
In fact, for any λi ≥ 0, i = 1, · · · , n, we have from (3) that

Rt◦I
x

(
z0 ̸= 0, exp

(
−

n∑
i=1

λizi

))

= − logPx

(
Xt = 0, exp

(
−

n∑
i=1

λiXti

))
+ logPx exp

(
−

n∑
i=1

λiXti

)

= Rt◦J
x

(
z0 ̸= 0, exp

(
−

n∑
i=1

λizi

))
,

which implies (7).

It follows from (3) that

Rt◦I
x (z0 ̸= 0) = − logPx(Xt = 0)

is finite and does not depend on I. Let Ωt = {ω;X(t) ̸= 0} and Ft = Ωt∩F . By Kolmogorov’s
theorem, there exists a finite measure Nt

x on (Ωt,Ft) such that

Nt
x exp

(
−

n∑
i=1

λiXti

)
= Rt◦I

x

(
z0 ̸= 0, exp

(
−

n∑
i=1

λizi

))
. (8)

The measure Nt
x has the following properties a), b) and c):

a) For any nonnegative measurable function F ,

Nt
x (F (Xt1 , · · · , Xtn)) = Rt◦I

x (z0 ̸= 0, F (z1, · · · , zn)) . (9)

b) If t1 < t2, then Ωt2 ⊂ Ωt1 and Nt1
x = Nt2

x on Ωt2 .
c) For any t1, t2 ≥ 0, Nt1

x = Nt2
x on Ωt1 ∩ Ωt2 .

In fact, a) follows from (8). The first part of b) holds because it follows from (9) and (5)
that

Nt2
x (Xt1 = 0) = R(t1,t2)(z2 ̸= 0, z1 = 0) = 0.
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The second part of b) follows from the relation

Nt2
x

(
Xt2 ̸= 0, F

(
Xt3 , · · · , Xtn+2

))
= Nt1

x

(
Xt2 ̸= 0, F

(
Xt3 , · · · , Xtn+2

))
with F being any nonnegative measurable function and ti+2 ≥ 0, i = 1, · · · , n. This relation
comes from the observation that

Nt1
x

(
Xt2 ̸= 0, F

(
Xt3 , · · · , Xtn+2

))
= Rt1◦t2◦I

x (z1 ̸= 0, z2 ̸= 0, F (z3, · · · , zn+2)) ,

and

Nt2
x

(
Xt2 ̸= 0, F

(
Xt3 , · · · , Xtn+2

))
= Rt2◦I

x (z2 ̸= 0, F (z3, · · · , zn+2))

= Rt1◦t2◦I
x (z2 ̸= 0, F (z3, · · · , zn+2))

= Rt1◦t2◦I
x (z1 ̸= 0, z2 ̸= 0, F (z3, · · · , zn+2)) ,

where the second to the last equality follows from (7), and the last equality holds since

Rt1◦t2◦I
x (z1 = 0, z2 ̸= 0) = R(t1,t2) (z1 = 0, z2 ̸= 0) = 0.

c) holds because Nt1
x = Nt1∧t2

x on Ωt1 and Nt2
x = Nt1∧t2

x on Ωt2 .

Define Ω∗ =
∪
t≥0 Ωt. Then there exists a measure Nx on Ω∗ such that

Nx = Nt
x on Ωt for any t > 0.

Define Nx(Ω \ Ω∗) = 0. We claim that

Nx

(
1− exp

(
−

n∑
i=1

λiXti

))
= − logPx exp

(
−

n∑
i=1

λiXti

)
, ti ≥ 0, i = 1, · · · , n. (10)

In fact, let t = min{t1, · · · , tn}. Since for any i = 1, · · · , n, {Xt = 0} ⊂ {Xti = 0} Nx-a.s.,
we have

Nx

(
1− exp

(
−

n∑
i=1

λiXti

))

= Nx

(
Xt ̸= 0, 1− exp

(
−

n∑
i=1

λiXti

))

= Nt
x

(
1− exp

(
−

n∑
i=1

λiXti

))
.

(11)

By (3) and (9), we have

Nt
x

(
1− exp

(
−

n∑
i=1

λiXti

))
= Rt◦I

x

(
z0 ̸= 0, 1− exp

(
−

n∑
i=1

λizi

))

= − logPx exp

(
−

n∑
i=1

λiXti

)
.

(12)

Combining (11) and (12), we get (10).
�
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2 Applications

2.1 Construction of a continuous state branching process with im-
migration

Suppose that (Z,Px) = (Zt,Px : t ≥ 0) is a supercritical continuous state branching process
with immigration starting from x ≥ 0. Suppose that the branching mechanism ψ and
immigration mechanism φ are given as follows:

ψ(λ) = βλ+ αλ2 +

∫ ∞

0

(
e−λx − 1 + λxI{x<1}

)
Π(dx),

φ(λ) = bλ+

∫ ∞

0

(
1− e−λx

)
n(dx),

where β ∈ R, α ≥ 0, b ≥ 0, and Π and n are nonnegative measures on (0,∞) such that∫ ∞

0

(
1 ∧ x2

)
Π(dx) <∞,

∫ ∞

0

(1 ∧ x)n(dx) <∞. (13)

The Laplace transform of Z is given by

Exe−λZt = exp

{
−xut(λ)−

∫ t

0

φ(us(λ))ds

}
, t ≥ 0, λ ≥ 0, x ≥ 0, (14)

where ut(λ) satisfies

u0(λ) = λ,
∂

∂t
ut(λ) + ψ(ut(λ)) = 0. (15)

Z = (Zt, t ≥ 0) is usually called a CBI(ψ, φ). In particular, if φ = 0, CBI(ψ, 0) is a contin-
uous state branching process (without immigration), and is called a CB(ψ).

In the remainder of this paper we assume that∫ ∞

0

(x ∧ x2)Π(dx) <∞. (16)

Then we can write ψ in the following form

ψ(λ) = aλ+ αλ2 +

∫ ∞

0

(
e−λx − 1 + λx

)
Π(dx).

Using some ideas from [5], we can decompose the immigration of a CBI(ψ, φ) into two
parts, called jump immigration and continuum immigration respectively. And then we con-
struct a CBI(ψ, φ) as the independent sum of a CB(ψ) and the two immigration parts. Now
we construct this decomposition, which is called the spine decomposition of continuous state
branching process.

Suppose that Z = (Zt : t ≥ 0) is a CB(ψ) starting from x defined on some probability

space (Ω(0),F (0),P
(0)
x ). Condition (16) implies that E

(0)
x Zt = xe−ψ

′(0+)t <∞.
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Put

φ1(λ) =

∫ ∞

0

(
1− e−λx

)
n(dx), (17)

and
φ2(λ) = bλ. (18)

Suppose that S = (St : t ≥ 0), defined on a probability space (Ω(1),F (1),P(1)), is a
pure jump subordinator with Laplace exponent φ1, and J is the Poisson random measure
associated with the jumps of S. That is St =

∫ t
0

∫∞
0
xJ(dsdx). For each (s, x) in the support

of J, let Zx
t−s denote an independent copy of the process (Z,P(0)

x ) starting at time s. Define

Z(1)
t =

∫ t

0

∫ ∞

0

Zx
t−sJ(dsdx). (19)

Assume T1 is the set of jumping times of S, then T1 is at most countable. Thus we can define
Z(1)
t in the following way:

Z(1)
t =

∑
σ∈T1∩[0,t]

Z∆Sσ
t−σ . (20)

For any jumping time σ of S and the corresponding jumping height ∆Sσ, Z
∆Sσ
t−σ satisfies

E(1) exp
{
−λZ∆Sσ

t−σ |S
}
= exp {−∆Sσut−σ(λ)} , (21)

and we also have

E(1)
[
Z∆Sσ
t−σ |S

]
= ∆Sσe

m(t−σ). (22)

From these we can get

E(1)e−λZ
(1)
t = exp

{
−
∫ t

0

φ1(us(λ))ds

}
. (23)

For details one can refer to Chapter 10 of [4].
The term φ2 corresponds to a continuum immigration. According to Theorem 1.1, we

know that for the canonical CBI(ψ, 0), denoted as X = (Xt,Px : t ≥ 0), there exists a unique
measure Nx on (Ω,F) satisfying

Nx[1− e−λXt ] = − logPx[e−λXt ] = xut(λ). (24)

Suppose that n is a Poisson point process with rate ds × b dN1, defined on a probability
space (Ω(2),F (2),P(2)). For each (s, ω) in the support of n, n generates an independent copy
of (X,N1), denoted as Xn,s. Let T2 be the set of its jumping times. Define

Z(2)
t =

∫ t

0

∫
Ω

Xn,s
t−sn(dsdN1) =

∑
s∈T2∩[0,t]

Xn,s
t−s (25)
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where all the processes {Xn,s, s <∞} are independent. By (24), we have

E(2)e−λZ
(2)
t = E(2) exp

{
− λ

∑
s∈T2∩[0,t]

Xn,s
t−s

}
(26)

= exp

{
−b
∫ t

0

∫
Ω

1− e−λXt−sdN1ds

}
= exp

{
−b
∫ t

0

ut−s(λ)ds

}
. (27)

Define the process Z + Z(1) + Z(2) on the product space

(Ω̃, F̃ ,Px) = (Ω(0),F (0),P(0)
x )× (Ω(1),F (1),P(1))× (Ω(2),F (2),P(2))

Then Z, Z(1) and Z(2) are independent, and Z+Z(1)+Z(2) has the same Laplace transform
as (Z,Px), and therefore is a CBI(ψ, φ) starting from x.

2.2 Almost sure limit of continuous state branching processes with
immigration

First note that, since Z is a CB(ψ) with m = −ψ′
(0+) <∞, e−mtZt is a positive martingale.

Hence limn→∞ e−mtZt exist a.s., denoted as W.
We only consider the supercritical case, i.e., m > 0. The following result was stated

in Pinsky [9] without proof. In this subsection we give a proof using the decompsoition
developed in Section 2.1.

Theorem 2.1 Suppose that (Zt, t ≥ 0) is a supercritical CBI(ψ, φ). Then as t→ ∞, e−mtZt

has a finite almost sure limit if and only if∫ ∞

1

(log x)n(dx) <∞. (28)

Proof: (1) We first prove that if
∫∞
1
(log x)n(dx) <∞, then e−mtZt has a finite almost

sure limit as t→ ∞.
Suppose Z = Z + Z(1) + Z(2) is a CBI(ψ, φ) under Px, constructed in Section 2.1. Put

Wt = e−mtZt = e−mtZt + e−mtZ(1)
t + e−mtZ(2)

t . (29)

By the martingale convergence theorem and Fatou’s lemma, we have

Wt := e−mtZt → W <∞ Px-a.s. (30)

We write Wt as

Wt = e−mtZt = Wt + e−mt
(
Z(1)
t + Z(2)

t

)
. (31)

We need to prove that

Wt → W Px-a.s. (32)
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for some finite random variable W . Suppose G is the σ−field generated by (Ss, s ≥ 0), and
Ft = σ (Zs, s ≤ t) . Then by Lemma 3.3 of [6], we only need to prove that Zt is a Px(·|G)
submartingale with respect to (Ft, t ≥ 0) , and

sup
t≥0

Px [Wt|G] <∞. (33)

For details one may refer to [6]. First observe that

Px [Wt|Fs ∨ G] = e−mtPZs

[
Zt−s + Z(1)

t−s + Z(2)
t−s|G

]
= e−msZs + e−mtPZs

[
Z(1)
t−s + Z(2)

t−s|G
]
≥ Ws. (34)

We claim that Px[Wt|G] < ∞ for any t ≥ 0, which will be clear by (35) and (36) below,
thus Zt is a P (·|G) submartingale with respect to (Ft, t ≥ 0). Given G, Z(1) is the sum of a
sequence of independent CB(ψ, 0). Z and Z(2) are independent of G. Together with (22),
we have

Px [Wt|G] = x+

∫ t

0

∫ ∞

0

ye−msJ(dsdy) +Px

[
e−mtZ(2)

t

]
. (35)

For the continuum immigration part, we have

Px

[
e−mtZ(2)

t

]
= e−mtPx

[∫ t

0

∫
Ω

Xn,s
t−sn(dsdN1)

]
= be−mt

∫ t

0

∫
Ω

Xt−sdN1ds = be−mt
∫ t

0

N1Xt−sds

= be−mt
∫ t

0

em(t−s)ds = b(1− e−mt)/m. (36)

Here we used the fact that N1Xs = P1Xs, which can be induced from Theorem 1.1 easily.
Thus we have

sup
t≥0

Px

[
e−mtZ(2)

t

]
<∞.

So we left to prove that, under condition (28),

sup
t≥0

∫ t

0

∫ ∞

0

ye−msJ(dsdy) <∞, Px-a.s.,

that is ∫ ∞

0

∫ ∞

0

ye−msJ(dsdy) <∞, Px-a.s. (37)

Recall that T1 is the set of all jumping times of S, which is at most countable. The integral
above can be written as ∑

σ∈T1

e−mσ∆Sσ. (38)
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We divide the sum into two parts as follows:∑
σ∈T1

e−mσ∆Sσ =
∑
σ∈T1

e−mσ∆SσI{e−δσ∆Sσ≤1} +
∑
σ∈T1

e−mσ∆SσI{e−δσ∆Sσ>1},

where 0 < δ < m is a constant. Now we first estimate the second part:

Px

[∑
σ∈T1

I{e−δσ∆Sσ>1}

]
= Px

[∫ ∞

0

∫
{e−δsy>1}

J(dyds)

]
=

∫ ∞

0

∫
{e−δsy>1}

n(dy)ds =
1

δ

∫ ∞

1

(log y)n(dy) <∞. (39)

By Borel-Cantelli Lemma, we get

Px

(
e−δσ∆Sσ > 1 i. o.

)
= 0,

and then ∑
σ∈T1

e−mσ∆SσI{e−δσ∆Sσ>1} <∞, Px-a.s. (40)

On the other hand, for the first part, we have

Px

[∑
σ∈T1

e−mσ∆SσI{e−δσ∆Sσ≤1}

]
=

∫ ∞

0

∫
{e−δsy≤1}

ye−msn(dy)ds

=

∫ ∞

0

∫ 1

0

ye−msn(dy)ds+

∫ ∞

0

∫ eδs

1

ye−msn(dy)ds

=
1

m

∫ 1

0

yn(dy) +

∫ ∞

0

∫ eδs

1

ye−msn(dy)ds. (41)

Since y ≤ eδs in the second integral, we have

(41) ≤ 1

m

∫ 1

0

yn(dy) +

∫ ∞

0

∫ eδs

1

e−(m−δ)sn(dy)ds

≤ 1

m

∫ 1

0

yn(dy) +

∫ ∞

0

∫ ∞

1

e−(m−δ)sn(dy)ds

=
1

m

∫ 1

0

yn(dy) +
1

m− δ

∫ ∞

1

n(dy) <∞.

The last inequality is due to (13). Thus we have∑
σ∈T1

e−mσ∆SσI{e−δσσ∆Sσ≤1} <∞, Px-a.s. (42)

Combining (40) and (42), we obtain that (37) holds. Therefore we have proved (32).
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(2) Next we prove that if ∫ ∞

1

(log x)n(dx) = ∞,

then limt−→∞ e−ctZt = ∞.
For any constant K > 1, c > 0,

Px

[∑
σ∈T1

I{e−cσ∆Sσ>K}

]
= Px

[∫ ∞

0

∫
{e−csy>K}

J(dsdy)

]
=

∫ ∞

0

∫
{e−csy>K}

n(dy)ds =
1

c

∫ ∞

K

(log y − logK)n(dy)

= ∞. (43)

We thus have
Px

(
e−cσ∆Sσ > K i. o.

)
= 1,

which implies that
lim sup
σ−→∞

e−cσ∆Sσ > K.

Since K is arbitrary, we obtain that

lim sup
σ−→∞

e−cσ∆Sσ = ∞.

Therefore

lim sup
t−→∞

e−ctZt ≥ lim sup
σ−→∞

e−cσZ(1)
σ ≥ lim sup

σ−→∞
e−cσ∆Sσ = ∞, Px-a.s.

2.3 L logL criterion for non-degeneracy of martingale limit of CB(ψ)

Suppose (Zt, t ≥ 0) is a CB(ψ) and Wt = e−mtZt, which is a non-negative martingale. Using
the results of Subsection 2.2, we will prove that

∫∞
1
x log xΠ(dx) < ∞ is a sufficient and

necessary condition for the martingale Wt to have a non-degenerate limit. This result was
given in [2]. We restate it as Theorem 2.2.

Theorem 2.2 Suppose (Zt,Px : t ≥ 0) is a CB(ψ) starting from x > 0.

Wt −→W Px-a.s. & L1( as t→ ∞) ⇐⇒
∫ ∞

1

(x log x)Π(dx) <∞. (44)

Before we prove Theorem 2.2, we first recall the following result (see [1] Theorem 3.4.3
for reference).

Lemma 2.3 Suppose (Ω,F) is a measurable space and (Ft)t≥0 is a filtration on it. Let P
and Q be two probability measures on (Ω,F), and (Wt)t≥0 be a non-negative P-martingale
with respect to (Ft)t≥0.Then limt→∞Wt exists and is finite P-a.s. Put W := limt→∞Wt. If

dQ
dP

∣∣∣∣
Ft

= Wt, ∀t ≥ 0,

11



then the following holds:

W = 0, P-a.s. ⇐⇒ P ⊥ Q ⇐⇒ W = ∞, Q-a.s.,∫
Ω

WdP = 1 ⇐⇒ Q ≪ P ⇐⇒ W <∞, Q-a.s.

Proof of Theorem 2.2 For fixed x, define a new measure Qx by the following martingale
transform:

dQx

dPx

∣∣∣∣
Ft

=
1

x
e−mtZt. (45)

Then the Laplace transform under Qx is given by

Qxe
−λZt = Px

[
1

x
e−mtZte

−λZt

]
= − ∂

∂λ
Px
[
e−λZt

] 1
x
e−mt

=
∂

∂λ
(ut(λ)) exp(−xut(λ))e−mt, (46)

where ut(λ) is the unique nonnegative solution of (15), which is equivalent to the following
integral equation:

ut(λ) = λ−
∫ t

0

ψ(us(λ))ds.

Then we get
∂

∂λ
(ut(λ)) = exp

{
−
∫ t

0

ψ′(us(λ))ds

}
. (47)

Combining (46) and (47), we obtain

Qxe
−λZt = exp

{
−xut(λ)−

∫ t

0

φ(us(λ))ds

}
, (48)

where φ(λ) = ψ′(λ) +m = 2αλ +
∫∞
0
x(1 − e−λx)Π(dx), which is the Laplace exponent of

a subordinator. The corresponding Lévy measure is n(dx) = xΠ(dx). Therefore under Qx,
(Zt, t ≥ 0) is a CBI(ψ, φ). Set

W = lim sup
t→∞

e−mtZt.

Note that
∫∞
1
(x log x)Π(dx) <∞ is equivalent to

∫∞
1
(log x)n(dx) <∞. By Theorem 2.1, if∫∞

1
(x log x)Π(dx) < ∞, then W < ∞ Qx-a.s., and thus by Lemma 2.3, we have ExW = x

and Wt → W in L1. While if
∫∞
1
(x log x)Π(dx) = ∞, by Theorem 2.1, we have W = ∞,

Qx-a.s. and thus by Lemma 2.3 we have W = 0, Px-a.s.

Combining Theorem 2.1 and Theorem 2.2, we have

Theorem 2.4 Suppose Z = (Zt, t ≥ 0) is a CBI(ψ, ϕ) andm > 0. Assume that
∫∞
1
(x log x)Π(dx) <

∞. Then Wt = e−mtZt has a non-degenerate finite limit if and only if∫ ∞

1

(log x)n(dx) <∞. (49)
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