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Abstract

In this paper, we first give a direct construction of the N-measure of a continuous
state branching process. Then we prove, with the help of this N-measure, that any
continuous state branching process with immigration can be constructed as the inde-
pendent sum of a continuous state branching process (without immigration), and two
immigration parts (jump immigration and continuum immigration). As an application
of this construction of a continuous state branching process with immigration, we give
a proof of a necessary and sufficient condition, first stated without proof in [9], for a
continuous state branching process with immigration to a proper almost sure limit. As
another application of the N-measure, we give a “conceptual” proof of an Llog L crite-
rion for a continuous state branching process without immigration to have an L'-limit
first proved in [2].

1 N-measure for continuous state branching processes

The spine decomposition is an important probabilistic tool in branching processes, multi-
type branching processes, branching Hunt processes and superprocesses. Using the spine
decomposition, many classical results on these processes can be proved more directly, see, for
example, [5], [6], [7] and [8]. In the spine decomposition for a superprocess under a martingale
change of measure, the N-measure, defined by Dynkin-Kuznetsov, is a key ingredient (see
[5]). It is natural to ask if it is possible to describe the spine decomposition for a continuous
state branching process using the N-measure of the continuous state branching process.

The N-measure of a continuous state branching process can be thought of as a special
case of the N-measure of a superprocess, constructed in [3], by taking the underlying spa-
tial motion to a constant process. However, a superprocess is a much more complicated
model than a continuous state branching process. It is desirable to have a direct construc-
tion of the N-measure of a continuous state branching process, without using knowledge of
superprocesses.
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In this paper, we first give a direct construction of the N-measure of a continuous state
branching process. Then in Section 2.1, we prove that any continuous state branching
process with immigration can be constructed as the independent sum of a continuous state
branching process (without immigration), and two immigration parts (jump immigration
and continuum immigration). As an application of this construction, in Section 2.2, we
give a proof of a necessary and sufficient condition, first stated without a proof in [9], for
a continuous state branching process with immigration to have a proper scaling limit. As
another application of the construction, we give a “conceptual” proof of an Llog L criterion
for the non-degeneracy of a martingale limit of a continuous state branching process first
proved in [2].

Suppose that X = (X; : t > 0) is a continuous time and continuous state branching
process. For any x € (0,00), we use P, to denote the law of X starting from x. We say that
the process is canonical if (€2, F) is the path space (that is, € consists of all [0, co)-valued
functions w that are right continuous with left limit on [0, 00), and F is generated by the
sets {w : w(t) < ¢} where t > 0, ¢ € [0,00)) and if X;(w) = w(t).

Throughout this paper we assume that for any x > 0,

P.(X;=0) >0, foranyt>0. (1)

Theorem 1.1 Suppose for each x € [0,00), X = (X, P, : t > 0) is a canonical continuous
state branching process starting from x. Then for every x € [0,00), there exists a unique
measure N, on the space Q) such that:

1) For any integer n > 1, and t;; \; > 0,i=1,---n,

N, (1 — exp (— Z )\,-Xti>> = —log P, exp <— Z )\,-Xti> . (2)
i=1 i=1

2) N, (Q) = 0, where Q = Ny>o{X; = 0}.

The measure N, is the “Lévy measure” of P,, and can be thought of as an “excursion
measure” on path space. As we remarked before, Dynkin and Kuznetsov [3] first proved
the counterpart of this result for superprocesses. The above theorem can be obtained from
Theorem 1.1 of [3], by taking the underlying spatial motion to be a constant process. Below
we give a direct proof of Theorem 1.1, without using the knowledge of superprocesses.

Proof of Theorem 1.1 We follow the general strategy of the proof of Theorem 1.1 of
[3]. For any integer k£ > 0 and any ¢, A > 0, by the branching property of X, we have

P,exp (—A\X;) = (Px/k exp(—)\Xt))k,

which implies that the distribution of X, is infinitely divisible. Thus by the Lévy-Khintchine
formula there exists unique pair (m, Rg)) such that

P, exp (—AX}) = exp (—m/\ - / (1-— e_kz)Rg)(dz)) ,
0
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where m > 0 is a constant and RY is a measure on (0, 00) satisfying (1 /\z)Rg;t) (dz) < o0
(see P. 385 of [10]). Letting A\ — oo we see that P,(X; = 0) > 0 implies m = 0 and
R ((0,00)) < 00, and therefore

P, exp (—AX,) = exp (— /000(1 — e—*Z)R;ﬂ(dz)) :

Similarly, for any integers n,k > 1, and t;, \; > 0,2 =1,---n, we have

n n k
P, exp (— Z /\,-Xti> = (Px/k exp (— Z )\Z»Xti) > )
i=1 i=1

Put [ = (t;,--- ,t,). Then there exists a unique R. such that

P, exp (— Z )\iXtZ) = exp (—/ (1—e X /\zzz)Ri(dz)) )
i=1 [O,OO)X"

where R! is a measure on (0,00)*™ and z = (21, , 2,). RL has the following properties i),
ii) and iii):
i) For I = (t1,-- ,t,), and t > 0, put t o I = (¢, t1,--- ,t,). We have

R (zo #0,exp (— Z )\Zzl)>
=g n (3)
= —logP, (Xt =0, exp (— Z /\z‘th-)) + log P, (exp (— Z/\iXt@-)) .
i=1 =1

In fact,
Rt;’] (— exp <— Z NiZy — )\ZO> + exp (— Z )\,zz>)
i=1 1=1

= Rt;’] (1 — exp (— Z iz — /\zo>> - RZOI (1 — exp (— Z )\,zz>)
i=1 i=1

= —logP, (exp (— Z Xy, — )\Xt)> + log P, (exp (— Z )‘iXt,->> .
i=1 i=1

Letting A — oo, we get (3).
ii) For t; < tq, from the property of branching process, it is obvious that

Px(Xt2 — 0|Xt1 — 0) — 1 (4)
Thus we have
R (2 = 0,29 # 0) = 0. (5)
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In fact, it follows from (3) that
R (2) £ 0,exp(—Az)) = —log P, (X, = 0,exp(—AXy,)) 4 log P, exp(—AX,, ). (6)

Letting A — oo, we get

RUL) (25 £ 0,2 =0) = —logP, (X;, = 0,X;, = 0) + logP,(X;, = 0)
= —logP,(X;, =0|X;,, =0)=0.
i) If 1 = (t1,+ ,tp) and J = (1, by bust, -+ s tngm) With myn > 1, 8, > 0, i =
1,--- ,m+nand m > 1, then for any ¢ > 0, we have
RtxOI<ZO 7é 07 <Z17 e 7Zn) € B) = RZOJ<ZO 7é 07 (Zla e 7Zn) S B) (7)

for any Borel set B C (0, 00)*™
In fact, for any A\; > 0,7 =1,--- ,n, we have from (3) that

RZOI (zo #0, exp (— z”: )\Zzl)>

= —logP, (Xt =0, exp ( Z)\ X4, )) + log P, exp <_Z/\iXti>
i=1

(o m(£0)

which implies (7).
It follows from (3) that
R (20 # 0) = —log P, (X, = 0)

is finite and does not depend on /. Let ©; = {w; X (t) # 0} and F; = Q;NF. By Kolmogorov’s
theorem, there exists a finite measure N’ on (€, ;) such that

! exp ( Z i X,%) = R! (zo #0, exp (— Z /\lzz)> . (8)

The measure NE has the following properties a), b) and c):
a) For any nonnegative measurable function F,

Ntx (F (tha o 7th)) = Rt;[ (ZO 7é 0, F(Zla T 7271))' (9)

b) If 1 < ta, then Q, C Q, and N = N2 on €.
c) For any t,ty > 0, NI = N2 on Q;, N Q.
In fact, a) follows from (8). The first part of b) holds because it follows from (9) and (5)
that
N2(X,, = 0) = R (2 £ 0,2, = 0) = 0.
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The second part of b) follows from the relation
szz (Xt2 7& 07 F (Xt:s’ e 7th+2)) = Ni:l (th 7é 07 F (Xt37 T 7th+2))

with F' being any nonnegative measurable function and ¢;,5 > 0,7 =1,--- ,n. This relation
comes from the observation that

Ntzl (XtQ 7é 07 F (Xt37 T 7th+2)) = R?Oho[ (Zl # 07 22 7£ 07 F (237 U 7Zn+2)) ’
and

N? (XtQ 7é 0, F (Xt37 U 7th+2)) = R?OI (ZQ 7é 0, F (237 o ’Zn+2))
= ,R'Z:loboj (22 7é 07 F (237 o 7zn+2))
- R?OQOI (Zl ;é 07 Z2 7é 07 F (Z37 T 7Zn+2>) )

where the second to the last equality follows from (7), and the last equality holds since
Ruetol (1) =0, 2 #0) = R (2) = 0,2 # 0) = 0.
¢) holds because N&t = N2 on , and N2 = N2 on Q.
Define Q* = J,5 €% Then there exists a measure N, on 2* such that
N, = N; on ), for any t > 0.
Define N, (Q\ 2*) = 0. We claim that

N, (1 — exp <_Z)\iXti>> = —logP, exp <_Z)\iXt¢> , t;>0,i=1,--- n. (10)
i=1 i=1

In fact, let ¢ = min{ty,--- ,¢,}. Since for any i = 1,--- ,n, {X; = 0} C {X,, = 0} N,-a.s.,
we have
N, [1—exp (— Z )\iXti>>
i=1
= N, [ X,#0, 1—exp (— Z)\ith)) (11)
i=1
= N [1—exp <— Z )\Z’Xti>>

By (3) and (9), we have

N (1 — exp (— i )\iXti>) = RY! <ZO #0, 1—exp (— i Am))
=1 =1 (12)

= —logP,exp (— Z )\iXti>
i=1

Combining (11) and (12), we get (10).



2 Applications

2.1 Construction of a continuous state branching process with im-
migration

Suppose that (Z,P,) = (Z;,P, : t > 0) is a supercritical continuous state branching process
with immigration starting from x > 0. Suppose that the branching mechanism ) and
immigration mechanism ¢ are given as follows:

P(A) = BA+a)\® + / h (e — 14 Aelgyaqy) I(dz),
0

©(A) = b\ + /000 (1—e) n(dz),

where f € R, a >0, b> 0, and II and n are nonnegative measures on (0, c0) such that

/000 (1A 2?) II(dz) < oo, /000(1 A z)n(dz) < oo. (13)

The Laplace transform of Z is given by

t
]ExG_AZt = exp {_Ztut()\) o / SO(US(/\))dS} s t >0, A= 0, =20, <14)
0

where u, () satisfies

0
up(A) = A, @ut(/\) + P(ug(N)) = 0. (15)
Z = (2;,t >0) is usually called a CBI(¢, ¢). In particular, if ¢ = 0, CBI(%,0) is a contin-
uous state branching process (without immigration), and is called a CB(v)).
In the remainder of this paper we assume that

/000(1:/\1:2)H(dx) < oo. (16)

Then we can write ¥ in the following form
P(A) = a) +a\® + / (e — 1+ Az) H(dz).
0

Using some ideas from [5], we can decompose the immigration of a CBI(¢, ¢) into two
parts, called jump immigration and continuum immigration respectively. And then we con-
struct a CBI(¢, ) as the independent sum of a CB(¢)) and the two immigration parts. Now
we construct this decomposition, which is called the spine decomposition of continuous state
branching process.

Suppose that Z = (Z; : t > 0) is a CB(¢) starting from x defined on some probability

space (Q©, 7© PY). Condition (16) implies that EY 7, = ze=*' (09 < 0.
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Put -
e1(AN) = /0 (1 — 6_)‘:6) n(dz), (17)
and
©a(A) = bA. (18)

Suppose that S = (S, : t > 0), defined on a probability space (Q1), F PM) is a
pure jump subordinator with Laplace exponent ¢, and J is the Poisson random measure
associated with the jumps of S. That is S; = fg Jy° 23 (dsdz). For each (s,z) in the support

of J, let Z7 . denote an independent copy of the process (Z, IP’&;O)) starting at time s. Define

- /0 t /0 h 7 J(dsdx). (19)

Assume 77 is the set of jumping times of S, then 77 is at most countable. Thus we can define
Zt(l) in the following way:

= Yz 20
oeT1N[0,t]
For any jumping time o of S and the corresponding jumping height AS,, Z Ai" satisfies
Yexp {-AZ2%|S} = exp {—AS,u—s(N)}, (21)
and we also have
EW [Z2%|S] = AS,em), (22)

From these we can get

EWe 2" exp{— /0 tgpl(us()\))ds}. (23)

For details one can refer to Chapter 10 of [4].

The term ¢, corresponds to a continuum immigration. According to Theorem 1.1, we
know that for the canonical CBI(¢,0), denoted as X = (X, P, : t > 0), there exists a unique
measure N, on (Q, F) satisfying

N,[1 — e = —log P.[e™**!] = zuy(N). (24)

Suppose that n is a Poisson point process with rate ds x bdNj, defined on a probability
space (Q2®, F) P®)). For each (s,w) in the support of n, n generates an independent copy
of (X,Ny), denoted as X™*. Let Ty be the set of its jumping times. Define

z® / / XPn(dsdN) = Y X (25)

SETQﬂ 0, t



where all the processes {X™*® s < oo} are independent. By (24), we have

_2z® ns
E®@e 227 — E® exp{—/\ Z Xtis} (26)

s€T2N(0,t]

= exp{—b/ot/ﬂl—e)‘xt‘stlds}
- exp{—b /0 tuts(A)ds}. (27)

Define the process Z + Z1) + Z2) on the product space
(0.F.P) = (@O, F0,PO) x (0, 7O PO) x (22, 7O, P)

Then Z, ZM and Z® are independent, and Z + Z1) 4+ Z3) has the same Laplace transform
as (Z,P,), and therefore is a CBI(¢, ¢) starting from z.

2.2 Almost sure limit of continuous state branching processes with
immigration
First note that, since Z is a CB(v) with m = —1'(0+) < 0o, e "™ Z, is a positive martingale.
Hence lim,,_,., e 7, exist a.s., denoted as W.
We only consider the supercritical case, i.e., m > 0. The following result was stated

in Pinsky [9] without proof. In this subsection we give a proof using the decompsoition
developed in Section 2.1.

Theorem 2.1 Suppose that (Z;,t > 0) is a supercritical CBI(¢, p). Then ast — oo, e”™ Z,
has a finite almost sure limit if and only if

/100(10g z)n(dz) < oco. (28)

Proof: (1) We first prove that if [ (logz)n(dz) < oo, then e"™ Z, has a finite almost
sure limit as ¢t — oo.
Suppose Z = Z + ZM + 2 is a CBI(v, ¢) under P,, constructed in Section 2.1. Put

W, =e ™Z, = ™7, + e*tht(l) + e*tht@). (29)

By the martingale convergence theorem and Fatou’s lemma, we have

W,i=e ™7, - W < 00 P.-as. (30)
We write W; as
W, = e ™Z, =W, +e (Zt(l) + Zt(?)) . (31)
We need to prove that
W, — W P,-as. (32)



for some finite random variable W. Suppose G is the o—field generated by (S5, s > 0), and
Fi = 0 (25,5 <t). Then by Lemma 3.3 of [6], we only need to prove that Z; is a P,(-|G)
submartingale with respect to (F;,t > 0), and

sup P, [W;|G] < 0. (33)

t>0

For details one may refer to [6]. First observe that

Pz [th]:s V g] - _thZg |:Zt s + Zt( s + Zt |g]

= e™Z, e P, [zﬁ) + Z§E’S|g] > Wi (34)

S

We claim that P,[W;|G] < oo for any ¢t > 0, which will be clear by (35) and (36) below,
thus Z; is a P(-|G) submartingale with respect to (F,¢ > 0). Given G, ZM) is the sum of a
sequence of independent C'B(v,0). Z and Z2) are independent of G. Together with (22),
we have

t [e%s)
P, WG] =2+ / / ye ™ J(dsdy) + P, [e—mtzf)] : (35)
0 0

For the continuum immigration part, we have
t
P, [e*mtzﬂ = ¢ MP, { / / Xt"’Ssn(dstl)]
0 JQ
t t
= bemt/ /thleds:bemt/ N; X;_.ds
0 Ja 0

t
= be_mt/ e =9ds = b(1 — e ™) /m. (36)
0

Here we used the fact that N; X, = P; X, which can be induced from Theorem 1.1 easily.
Thus we have

sup P, [e’tht(Z)] < oo0.

£>0
So we left to prove that, under condition (28),
t o]
sup/ / ye ™ J(dsdy) < oo, P,-as.,
t>0 Jo Jo

that is
/ / ye "™ J(dsdy) < oo, P,-a.s. (37)
o Jo

Recall that T} is the set of all jumping times of S, which is at most countable. The integral
above can be written as

D e ™AS,. (38)

€Ty
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We divide the sum into two parts as follows:

Z e MAS, = Z e " AS, [e-song,<1} T Z e "7 ASyl{e-so 75,51}

oeTy oeT) oeTy

where 0 < 6 < m is a constant. Now we first estimate the second part:

Z Ite-sons,51) | = [/ / d@/ds)}
{e=%sy>1}

oeTy

- [ J ., s = 5 [ o niay) < o .

By Borel-Cantelli Lemma, we get

P, (e7AS,>1 i 0. ) =0,
and then

Z e " AS Ije-song, 513 < 00, Pg-as. (40)

o€Ty

On the other hand, for the first part, we have

Z e "7AS,Ie-s0n3, <1}] / / e”"n(dy)ds
{6‘53y<1}

oeTy

= / /ye_msn(dy)ds+/ / ye ™ n(dy)ds
o Jo o J1
1 1 00 eds
= —/ yn(dy)+/ / ye "™ n(dy)ds. (41)
m Jo o Ji
Since y < €% in the second integral, we have
(41) < —/ yn(dy) / / ~m=0on(dy)ds
< —/ yn(dy)+/ / e~ m=9)sp(dy)ds
m Jjo o Ji
= L P+ s [Tt <
= o ), ydn o | nldy) < oo

The last inequality is due to (13). Thus we have

> €A I-inons, <1y < 00, Pras. (42)

o€l

Combining (40) and (42), we obtain that (37) holds. Therefore we have proved (32).
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(2) Next we prove that if
/ (log z)n(dx) =
1

then lim,_,., e"Z, = oo.
For any constant K > 1, ¢ > 0,

Z Iie-cons,>Ky

e[ )]
o€eT) {e7y>K}
o 1 o
_ / / —+ [ (ogy ~ oz Kyn(ay
0 {e*csy>K} CJK

= 0. (43)

We thus have
P, (e"“AS, > K i 0. )=1,

which implies that
limsupe “’AS, > K.

g —>00

Since K is arbitrary, we obtain that

limsupe “AS, = o0.
T—>00

Therefore

limsupe “Z, > limsupe™ CUZ > limsupe “AS, =00, P,-as.

t—00 o—>00 o—>00

2.3 Llog L criterion for non-degeneracy of martingale limit of C'B(%))

Suppose (Z;,t > 0) is a CB(¢)) and Wy = e~™ Z,, which is a non-negative martingale. Using
the results of Subsection 2.2, we will prove that [~ zlogzII(dz) < oo is a sufficient and
necessary condition for the martingale W; to have a non-degenerate limit. This result was
given in [2]. We restate it as Theorem 2.2.

Theorem 2.2 Suppose (Z;,P, :t > 0) is a CB(¢) starting from x > 0.
W, — W Pg-as & L'( ast — o0) <= / (xlog z)II(dx) < oo. (44)
1

Before we prove Theorem 2.2, we first recall the following result (see [1] Theorem 3.4.3
for reference).

Lemma 2.3 Suppose (2, F) is a measurable space and (Fi)i>o is a filtration on it. Let P
and Q be two probability measures on (2, F), and (Wi)i>0 be a non-negative P-martingale
with respect to (Fi)io. Then limy_oo Wy ezists and is finite P-a.s. Put W = limy_,oo W;. If

dQ

— = t>
aP |, Wy, VvVt >0,
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then the following holds:
W=0, P-as. <= PLQ <= W =00, Q-as.,
/Wd]P’zl — Q<P <= W<oo, Q-as
Q

Proof of Theorem 2.2  For fixed z, define a new measure Q, by the following martingale
transform:

1

d@z = Ee_tht. (45)

dP,

Fi
Then the Laplace transform under Q, is given by

1
QIG—AZ,: — Px |:_e—tht€—)\Zt:|
x
0

1
— __]P)gg —\Z¢ —,—mt
O\ [«™] 2
o o
= 3y (W) exp(=zus(A))e™™, (46)
where u¢() is the unique nonnegative solution of (15), which is equivalent to the following
integral equation:

() = /\—/0 Wlus(A))ds.

Then we get

o ) = e {= [ v/} (47)

Combining (46) and (47), we obtain

Qe = exp { o) - [ ptu)as} (15)

where p(X) = /() +m = 20X + [;7 2(1 — e *)II(dz), which is the Laplace exponent of
a subordinator. The corresponding Lévy measure is n(dx) = xIl(dz). Therefore under Q,,
(Z;,t > 0) is a CBI(¢, ). Set

W = limsupe ™Z,.

t—o00

Note that [ (zlogz)II(dz) < oo is equivalent to [ (logz)n(dz) < co. By Theorem 2.1, if
floo(x log 2)II(dx) < oo, then W < oo @,-a.s., and thus by Lemma 2.3, we have E,W = x
and W, — W in L*. While if [ (xlogz)II(dz) = oo, by Theorem 2.1, we have W = oo,
Q.-a.s. and thus by Lemma 2.3 we have W = 0, P -a.s.

Combining Theorem 2.1 and Theorem 2.2, we have

Theorem 2.4 Suppose Z = (Z;,t > 0) is a CBI(¢, ¢) andm > 0. Assume that [ (xlog z)II(dz) <
o0o. Then Wy = e"™Z; has a non-degenerate finite limit if and only if

/loo(log z)n(dzr) < oo. (49)
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