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a b s t r a c t

We consider a branching Brownian motion on R in which one particle splits into 1 + X
children. There exists a critical value λ in the sense that λ is the lowest velocity such that a
traveling wave solution to the corresponding Kolmogorov–Petrovskii–Piskunov equation
exists. It is also known that the traveling wave solutionwith velocity λ is closely connected
with the rescaled Laplace transform of the limit of the so-called derivative martingale
∂Wt(λ). Thus special interest is put on the property of its limit ∂W (λ). Kyprianou
[Kyprianou, A.E., 2004. Traveling wave solutions to the K–P–P equation: alternatives to
Simon Harris’ probability analysis. Ann. Inst. H. Poincaré 40, 53–72.] proved that, ∂W (λ) >
0 if EX(log+ X)2+δ < +∞ for some δ > 0 while ∂W (λ) = 0 if EX(log+ X)2−δ

= +∞. It is
conjectured that ∂W (λ) is non-degenerate if and only if EX(log+ X)2 < +∞. The purpose
of this article is to prove this conjecture.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

We consider a branching Brownian motion: an initial particle commences a standard Brownian motion on R. After a
lifetime η which is exponentially distributed with parameter β > 0, it splits into 1 + X particles where X is distributed
according to {pk: k ∈ Z+ := {0, 1, 2, . . .}} and m :=

∑
k kpk < +∞. These children, starting from their point of creation,

will move and reproduce in the same way as their ancestor. P is implicitly understood as the law of such a process.
To avoid ambiguity, we use the same notation as used in Kyprianou (2004). We give a short description here. The sample

path of the branching Brownian motion is a marked Galton–Watson tree τ . Let T denote the space of all marked G–W
trees. All particles in τ are labeled according to the Ulam–Harris convention, for example, ∅231 or 231 is the first child
of the third child of the second child of the initial ancestor ∅. Besides, each particle u ∈ τ has a mark (Ξu, σu, Xu) where
Ξu : [bu, vu) → R is the spatial location of u during its lifetime [bu, vu) (bu is its birth time, and vu its death time), σu is the
length of its life, and 1 + Xu is the number of its offspring. We use u < v to mean that v is an ancestor of u. Let Nt denote
the set of particles alive at time t and the sigma algebra Ft includes all the information of particles born before time t .

Since the process survives with probability 1, for each tree τ , we can choose a distinguished genealogical line of descent
from the initial ancestor. Such a line is called a spine and denoted as ξ = {ξ0 := ∅, ξ1, ξ2, . . .}, where ξi is the label of the ith
spine node. We shall use Ξ := {Ξ(t): t ≥ 0} and n := {nt : t ≥ 0} respectively to denote the spatial path and the counting
process of fission times along the spine. G is the sigma field generated by ξ, Ξ , n and {Xξi : i ≥ 0}. T denotes the space of
Galton–Watson trees with a distinguished spine. Suppose (P∗, T ) is an extension of (P, T ) under which the nth spine node
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is uniformly chosen from the children of the (n − 1)th spine node. We refer back to Kyprianou (2004) for the definition of
P∗ and are not going to give details here.

For any λ > 0, let cλ :=
λ
2 +

βm
λ
. cλ reaches its minimum c :=

√
2βm when λ = λ :=

√
2βm. It is known that

∂Wt(λ) :=

−
u∈Nt

(Ξu(t) + λt)e−λ(Ξu(t)+cλt) (1)

is a P-martingale with respect to Ft which is also referred to as the derivative martingale.
LetNt denote the set of particles in Nt whose ancestors and themselves never meet the space–time barrier y+ λt = −x.

Define

V x
t (λ) =

−
u∈Nt

x + Ξu(t) + λt
x

e−λ(Ξu(t)+cλt). (2)

Kyprianou (2004) proved that V x
t (λ) is a mean 1 P-martingale, and that when λ ≥ λ, ∂W (λ) := limt→+∞ ∂Wt(λ) exists

and equals limt→+∞ xV x
t (λ).

The importance of the limit ∂W (λ) lies in that when ∂W (λ) is non-degenerate, its rescaled Laplace transform provides
a traveling wave solution to the K–P–P equation

∂u
∂t

=
1
2

∂2u
∂x2

+ β(f (u) − u), (3)

where f (s) = E(s1+X ). By traveling wave we mean the solutions of the form u(t, x) = w(x − ct) where w is a monotone
function connecting 0 at −∞ to 1 at +∞ and c is called the speed of the wave. Kyprianou (2004) proved the existence and
uniqueness of the traveling wave at the criticality case (that is, when c = c) under the assumption that EX(log+ X)2+δ <
+∞ for some δ > 0. Our Corollary 1 shows that the same result holds under a looser condition EX(log+ X)2 < +∞.

2. Main result and proof

Theorem 1. If λ = λ, ∂W (λ) > 0 P-almost surely when EX(log+ X)2 < +∞ and ∂W (λ) = 0 P-almost surely when
EX(log+ X)2 = +∞.

Remark 1. Our Theorem 1 fills the ‘gap’ that appears in the necessary and sufficient conditions for ∂W (λ) to be non-
degenerate in the case of branching Brownian motion studied in Kyprianou (2004). Kyprianou et al. (2010) considered
travelingwaves for the correspondingnonlinear differential equation related to super-Brownianmotion andprove the above
result for super-Brownian motion.

Proof of Theorem 1. We use the method of measure change developed in (Kyprianou (2004) Section 6). Let Π∗
t be a

probability on (T , Ft) such that

dΠ∗
t

dP∗
t


Ft

= V x
t (λ),

where P∗
t := P∗

|Ft . It is known (see, for example, P. 66 in Kyprianou, 2004) that under the new probability measure Π∗, the
diffusion along the spine is such that {x + Ξ(t) + λt: t ≥ 0} is a Bessel-3 process on (0, +∞) started at x (that is to say the
diffusion along the spineΞ moves away from the line {(t, y): y+λt = −x, t ≥ 0} as a Bessel-3 process and nevermeets it);
the points of fission along the spine form a Poisson process with rate β(m + 1); and the offspring number at each point of
fission on the spine has the size-biased distribution


p̃k :=

k+1
m+1pk: k ∈ Z+


. Revisiting the proof of Theorem 3 in Kyprianou

(2004), it is straightforward to see from the spine methodology presented there that the proof of Theorem 1 is complete as
soon as we can show:

(i) when EX(log+ X)2 = +∞,

lim sup
n→+∞

Xξn(x + Ξ(vξn) + λvξn)e
−λ(Ξ(vξn )+λvξn )

= +∞ Π∗-a.s.; (4)

(ii) when EX(log+ X)2 < +∞,

+∞−
n=0

Xξn(x + Ξ(vξn) + λvξn)e
−λ(Ξ(vξn )+λvξn ) < +∞ Π∗-a.s. (5)

We first prove (i). It suffices to show that for anyM > 0

+∞−
n=0

1
{Xξn (x+Ξ(vξn )+λvξn )e−λ(Ξ(vξn )+λvξn )

≥M}
= +∞ Π∗-a.s. (6)
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Let G denote the sigma field generated by Ξ (the spatial path of the spine). For any set B ∈ B[0, +∞) × B(Z+), define

ϕ(B) := #{n: (vξn , Xξn) ∈ B}, (7)

then conditioned on G, ϕ is a Poisson randommeasure on [0, +∞) × Z+ with intensity β(m + 1)dt
∑

k∈Z+
p̃kδk(dy) (here

δ denotes the delta function). Thus for any T ∈ (0, +∞), when G is given,

NT := #{n: vξn ≤ T , Xξn(x + Ξ(vξn) + λvξn)e
−λ(Ξ(vξn )+λvξn )

≥ M}

is a Poisson random variable with parameter∫ T

0
β(m + 1)

−
k

p̃k1{k(x+Ξ(t)+λt)e−λ(Ξ(t)+λt)≥M}
dt.

Hence to prove (6), we only need to show that∫
+∞

0
β(m + 1)

−
k

p̃k1{k(x+Ξ(t)+λt)e−λ(Ξ(t)+λt)≥M}
dt = +∞ Π∗-a.s.

For any c ∈ (0, +∞), let

Ac :=

∫
+∞

0
β(m + 1)

−
k

p̃k1{k(x+Ξ(t)+λt)e−λ(Ξ(t)+λt)≥M}
dt ≤ c


.

We only need to prove that

Π∗(Ac) = 0, ∀c > 0. (8)

Note that under Π∗, x + Ξ(t) + λt is a Bessel-3 process starting from x which is identically distributed to the modulus
process of Wt + x̂ where (Wt , P) is a three-dimensional standard Brownian motion and x̂ is a point in R3 with norm x. We
still use Ac to denote the same set corresponding to (Wt , P).

c ≥ Π∗


1Ac

∫
+∞

0
β(m + 1)

−
k∈Z+

p̃k1{k(x+Ξ(t)+λt)e−λ(Ξ(t)+λt)≥M}
dt



=

∫
+∞

0
β(m + 1)

−
k∈Z+

p̃kΠ∗


1Ac1{(x+Ξ(t)+λt)e−λ(x+Ξ(t)+λt)≥Mk−1e−λx}


dt

= β(m + 1)
−
k∈Z+

p̃k

∫
+∞

0
P(1Ac1{|Wt+x̂|e−λ|W (t)+x̂|≥Mk−1e−λx})dt. (9)

We claim that there exists K1 > 1 such that when k ≥ K1
y ∈ R3

: 1 + x ≤ |y| ≤
log k
2λ


⊂


y ∈ R3

: |y + x̂|e−λ|y+x̂|
≥ Mk−1e−λx


. (10)

In fact, 1 + x ≤ |y| ≤
log k
2λ implies 1 ≤ |y + x̂| ≤

log k
2λ + x. Consider the function f (x) = xe−λx. On the positive half line, it

increases to a supremum and then decreases to 0 as x goes to infinity. Thus we can find K1 > 1 large enough such that when
k ≥ K1,

1 + x ≤ |y| ≤
log k
2λ

⇒ f (|y + x̂|) ≥ f

log k
2λ

+ x


⇒ |y + x̂|e−λ|y+x̂|
≥


log k
2λ

+ x

k−1/2e−λx.

Then we get (10).
We continue the estimation of (9): when k ≥ K1,

c ≥ β(m + 1)
−

k:k≥K1

p̃k

∫
+∞

0
P

1Ac1{1+x≤|Wt |≤

log k
2λ }


dt

= β(m + 1)
−

k:k≥K1

p̃kP

1Ac

∫
+∞

0
1

{1+x≤|Wt |≤
log k
2λ }

dt


. (11)
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(|Wt |, P) is a Bessel-3 process starting from 0. Let {la: a ≥ 0} be the family of its local times, then the process {la
∞

, a ≥ 0} is

a BESQ2(0) process which implies la
∞

d
= al1

∞
and P(l1

∞
= 0) = 0 (see Revuz and Yor, 1991, P. 425, Exercise 2.5).

P

1Ac

∫
+∞

0
1

{1+x≤|Wt |≤
log k
2λ }

dt


= P


1Ac

∫ log k
2λ

1+x
la
∞
da



= P


1Ac

∫ log k
2λ

1+x
a da

∫ a−1 la∞

0
du



=

∫ log k
2λ

1+x
ada

∫
+∞

0
P(1Ac1{u≤a−1 la∞})du. (12)

Note that

P(1Ac1{u≤a−1 la∞}) ≤

P(Ac) − P(a−1la

∞
< u)

+
=

P(Ac) − P(l1

∞
< u)

+
,

and there exists a constant C > 0 and K2 > 1 such that for large k ≥ K2∫ log k
2λ

1+x
ada =

1
2


log k
2λ

2

− (1 + x)2


≥ C(log k)2.

Then (12) implies

P

1Ac

∫
+∞

0
1

{1+x≤|Wt |≤
log k
2λ }

dt


≥ C(log k)2
∫

∞

0


P(Ac) − P(l1

∞
< u)

+
du. (13)

Set K = K1 ∨ K2. Using (11) and (13) we get−
k:k≥K

p̃k (log k)2
∫

+∞

0


P(Ac) − P(l1

∞
< u)

+
du < +∞. (14)

The assumption that EX(log+ X)2 = +∞ is equivalent to
∑

k∈Z+
p̃k(log+ k)2 = +∞. Then by (14),∫

+∞

0


P(Ac) − P(l1

∞
< u)

+
du = 0.

Thus P(Ac) = 0 by the property that P(l1
∞

= 0) = 0. Thus we proved (8), and then the second part of Theorem 1.
Next we prove (ii). Choose any h ∈ (0, λ),

+∞−
n=0

(x + Ξ(vξn) + λvξn)Xξne
−λ(Ξ(vξn )+λvξn )

=

+∞−
n=0

(· · ·)1
{Xξn≤eh(Ξ(vξn )+λvξn )

}
+

+∞−
n=0

(· · ·)1
{Xξn>eh(Ξ(vξn )+λvξn )

}

=: I + II. (15)

We will prove that both I and II are finite almost surely under Π∗.
Recall that ϕ is defined by (7). We can rewrite I as

I =

∫
[0,+∞)×Z+

(x + Ξ(s) + λs)ye−λ(Ξ(s)+λs)1
{y≤eh(Ξ(s)+λs)}ϕ(ds × dy).

Since Π∗(I) = Π∗ (Π∗ (I|G)), by compensation formula of Poisson random measure (see, for example, Theorem 4.4 in
Kyprianou, 2006), we have

Π∗(I) = Π∗

∫
+∞

0
β(m + 1)(x + Ξ(s) + λs)

−
k

p̃kke−λ(Ξ(s)+λs)1
{k≤eh(Ξ(s)+λs)}ds



≤ β(m + 1)
−
k

p̃k

∫
+∞

0
Π∗


(x + Ξ(s) + λs)e−(λ−h)(Ξ(s)+λs)1{Ξ(s)+λs≥h−1 log+ k}


ds. (16)

Hereafter, we will write ‘‘A . B’’ when there exists a constant c > 0, which may only depend on x, such that A ≤ cB. Note
that x + Ξ(t) + λt under Π∗ is a Bessel-3 process, which has the same distribution as |Wt + x̂| under P where (Wt , P) is
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a three-dimensional standard Brownian motion starting from 0. Using the distribution of Wt , we can continue the above
estimation to get

Π∗(I) .
−
k

p̃k

∫
+∞

0
P

|Ws + x̂|e−(λ−h)|Ws+x̂|1{|Ws+x̂|≥h−1 log+ k+x}


ds

.
−
k

p̃k

∫
{|y+x̂|≥h−1 log+ k+x}

|y + x̂|e−(λ−h)|y+x̂|dy
∫

+∞

0
s−3/2e−|y|2/2πsds

=

−
k

p̃k

∫
{|y+x̂|≥h−1 log+ k+x}

|y + x̂|
|y|

e−(λ−h)|y+x̂|dy
∫

+∞

0
t−1/2e−t/2πdt

.
−
k

p̃k

∫
{|y+x̂|≥h−1 log+ k+x}

|y + x̂|
|y|

e−(λ−h)|y+x̂|dy

≤

−
k

p̃k

∫
{|y|≥h−1 log+ k}

|y| + x
|y|

e−(λ−h)(|y|−x)dy.

By changing the above triple integration to integration under polar coordinates, we get

Π∗(I) .
−
k

p̃k

∫
+∞

h−1 log+ k
(r2 + xr)e−(λ−h)rdr

< +∞,

and therefore,

Π∗(I < +∞) = 1. (17)

On the other hand, by similar calculation, we have

Π∗


+∞−
n=0

1
{Xξn>eh(Ξ(vξn )+λvξn )

}


= β(1 + m)

−
k

p̃k

∫
+∞

0
Π∗


(x + Ξ(s) + λs) < h−1 log+ k + x


ds

.
−
k

p̃k

∫
+∞

0
P

|Ws + x̂| < h−1 log+ k + x


ds

.
−
k

p̃k

∫
{|y+x̂|<h−1 log+ k+x}

dy
∫

+∞

0
s−3/2e−|y|2/2πsds

.
−
k

p̃k

∫
{|y|<h−1 log+ k+2x}

|y|−1dy

.
−
k

p̃k(h−1 log+ k + 2x)2. (18)

The assumption that EX(log+ X)2 < +∞ implies that
∑

k∈Z+
p̃k(log+ k)2 < +∞, which implies that the sum in (18) is

finite. Therefore
∑

+∞

n=0 1{Xξn>eh(Ξ(vξn )+λvξn )
}
< +∞, Π∗-a.s., that means, II is a sum of finite terms. Hence

Π∗(II < +∞) = 1. (19)

Combining (15), (17) and (19), we get (5). Hence we complete the proof. �

Corollary 1. When c = c and EX(log+ X)2 < +∞ then there is a unique traveling wave at speed c given by

Φc(x) = E

exp{−e−λx∂W (λ)}


.

Proof. The proof is similar to that of Kyprianou (2004) on the existence and uniqueness of traveling wave under the
condition that EX(log+ X)2+δ < +∞ for some δ > 0. We will not repeat the proof here. �

Remark 2. Obviously, if Φc(x) is a traveling wave then so is Φc(x+ y) for every y ∈ R. Therefore, uniqueness is established
up to a spatial shift.
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