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1. Introduction and Main Result

Assume that ξ = {ξt, t ≥ 0} is a symmetric α-stable process in R
d, whose char-

acteristic function is e−t|z|α . Let Sα
t denote the corresponding semigroup and

∆α = −(−∆)
α
2 the infinitesimal generator. The domain of ∆α is denoted by D(∆α).

Let M(Rd) denote the space of positive Radon measures on B(Rd), the Borel σ-

algebra of R
d. M(Rd) carries the vague topology. C(Rd) denotes the Banach space

of continuous bounded function on R
d equipped with the usual sup norm ‖ · ‖. We

also define:

Mr(R
d) = {µ ∈ M(Rd) : (1 + |x|r)−1dµ(x) is a finite measure} , r > 0 .

Cr(R
d) = {f ∈ C(Rd) : ‖f(x) · |x|r‖ <∞} , Cr(R

d)+ = {f ∈ Cr(R
d), f ≥ 0} .
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Let D(R1
+,Mr(R

d)) denote the Polish space of cádlág paths form R
1
+ to Mr(R

d)

with the Skorokhod J1-topology. And let 0 < α ≤ 2 and r < d + α in case α <

2. According to Ref. 13, there exists an Mr(R
d)-valued Markov process Xt, with

sample paths in D(R1
+,Mr(R

d)) almost surely, such that

Eµ[exp(−〈ψ,Xt〉)] = exp[−〈u(t), µ〉] , µ ∈Mr(R
d), ψ ∈ Cr(R

d)+ ,

where u(t) is the mild solution of the evolution equation:
{

u̇(t) = ∆αu(t) − u2(t) ,

u(0) = ψ .

We call X = (Xt; t ≥ 0) the super α-stable process. Specially, when α = 2, the

process is known as super Brownian-motion.

Let V : R
d → R be Hölder-continuous with compact support. Define the V -

weighted occupation time DT,V by

DT,V =
1

T

∫ T

0

∫

V (x)Xs(dx)ds .

Assume that V ≥ 0 and V is not identically equal to zero. Iscoe and Lee14 studied

the large deviations for occupation times of super-Brownian motion in dimensions

3 and 4, and their results show slower than exponential decay of tail probabilities.

Lee10 studied the large deviation results of super-Brownian motion in dimension

d > 4. Lee proved that for dimension d > 4 the tail (as T → ∞) probability that
1
T

∫ T

0 Xsds deviates from Lebesgue measure (i.e. DT,V deviates from
∫

Rd V (x)dx)

decays exponentially, and showed that the rate function is

I(γ) =

∫

Rd

(∆γ)(x)2

4γ(x)
dx , γ > 0, γ − 1 ∈ C2(Rd) and has compact support .

Where ∆ is the Laplace operator on R
d. Now assume that α ∈ (0, 2) and that X =

(Xt, t ≥ 0) is a super α-stable process on R
d. There have been some results about

Super α-stable process when dimension d satisfies d < 2α. Zhang18 generalized

results of Iscoe and Lee14 to super α-stable process with dimension d = 2 (< 2α).

We note that Zhang’s result in Ref. 18 is just for dimension d = 2, but his result

remains true when d < 2α and his proofs also work for the general case d < 2α.

The question that we are going to address in this paper is the following: can

one estimate the asymptotic probability that 1
T

∫ T

0 Xsds deviates from Lebesgue

measure when dimension d > 2α? As far as we know, this question has not been

addressed in the literature. Lee’s proof in Ref. 10 was based on analytic techniques

of PDEs related to the operator ∆. But these techniques are unclear for nonlocal

operator ∆α, the generator of symmetric α-stable process. It seems that, to answer

the question above, one has to develop some results on solutions of differential

equations related to ∆α. In this paper, we are going to tackle the question above

by using Dirichlet form of symmetric α-stable process and results on Schrödinger
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operator ∆α +µ with µ in class K∞
d,α (see Definition 2.1) developed by Takeda and

Uemura (see Ref. 15).

For the occupation time process 1
T

∫ T

0
Xsds of super α-stable process X , Fleis-

chman and Gärtner7 proved the strong law that as T → ∞, 1
T

∫ T

0
Xsds converges

(in the vague topology) with probability one to the Lebesgue measure λ when d > α.

This is the starting point of large deviation theory.

The following theorem is our main result:

Theorem 1.1. Let d > 2α, define

A = {V : V is a Hölder continuous function in R
d with compact support} ,

G =

{

γ : γ is a Borel measurable function in R
d satisfying:

inf
x
γ(x) > 0 , γ − 1 ∈ D(∆α),

∫

Rd

|∆α(γ − 1)(x)|2dx <∞

}

.

Assume that the functions V1, V2, . . . , Vn are non-negative and belong to the class

A. Define

DT,V =

(

1

T

∫ T

0

∫

V1(x)Xs(dx)ds,
1

T

∫ T

0

∫

V2(x)Xs(dx)ds, . . . ,

1

T

∫ T

0

∫

Vn(x)Xs(dx)ds

)

.

Then there exists a neighborhood O of

(
∫

Rd

V1(x)dx,

∫

Rd

V2(x)dx, . . . ,

∫

Rd

Vn(x)dx

)

such that if U ⊂ O is open and C ⊂ O is closed, then

lim inf
T→∞

1

T
logP (DT,V ∈ U) ≥ − inf

λ∈U
I(γ) ,

lim sup
T→∞

1

T
logP (DT,V ∈ C) ≤ − inf

λ∈C
I(γ) ,

where λ =
∫

V (x)γ(x)dx, I(γ) =
∫

Rd

(∆α(γ−1)(x))2

4γ(x) dx, γ ∈ G.

Remark 1.1. When the function V satisfies
∫

Rd V (x)dx = 0, the large deviation

for DT,V of super-Brownian motion with dimension d = 3 was first studied by

Lee and Remillard11 in 1995, and left a conjecture. In 1998, Deuschel and Rosen5

developed complete large deviations for DT,V of super-α stable process (1 < α ≤ 2)

with dimension d < 2α < 2 + d, and answered Lee and Remillard’s conjecture.
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To prove the main theorem, we need to develop some results on the following

two nonlinear differential equations:






∂u

∂t
= ∆αu+ |u|p + V (x) , (t, x) ∈ (0,∞) × R

d ,

u(0) = 0 ,

(1.1)

and

∆αu+ |u|p + V (x) = 0 , x ∈ R
d . (1.2)

We will prove that if d > αp
p−1 (p > 1), V ∈ A and |V | ≤ M(1 + |x|)(α−d)p, x ∈ R

d

for some constantM > 0, then Eq. (1.1) has a unique proper solution (see definition

given in Sec. 3) u(t, x, V ); furthermore, the limit function

u(x, V ) ≡ lim
t→∞

u(t, x, V )

exists pointwise and is a proper solution of Eq. (1.2). This result is of independent

interest and will be addressed in Sec. 3.

2. Preparation: α-stable Schrödinger Operator

In this section, we will give some results about symmetric α-stable process and

related Schrödinger operator ∆α+µ. The symmetric α-stable process ξ = {ξt, t ≥ 0}

in R
d has a transition density p(t, x, y) = p(t, x − y) with respect to the Lebesgue

measure. When α < d, the process ξ is transient and its potential density G(x, y) =

G(x − y) is given by

G(x, y) =

∫ ∞

0

p(t, x, y)dt = A1(d, α)|x − y|α−d ,

where A1(d, α) = 2−απ−α
2 Γ(d−α

2 )Γ(α
2 )−1. For any function V , we define

GV (x) =

∫

G(x− y)V (y)dy .

By a signed measure we mean in this paper the difference of two non-negative

measures at most one of which can have infinite total mass. For any signed measure

on R
d, we use µ+ and µ− to denote its positive and negative parts, and |µ| = µ++µ−

its total variation. For any signed measure µ, we define

Gµ(x) =

∫

G(x− y)µ(dy) .

The Dirichlet form (E ,F) of ξ is given by

E(u, v) =
1

2
A2(d,−α)

∫

Rd

∫

Rd

(u(x) − u(y))(v(x) − v(y))

|x− y|d+α
dxdy ,

F =

{

u ∈ L2(Rd) :

∫

Rd

∫

Rd

(u(x) − u(y))2

|x− y|d+α
dxdy <∞

}

,
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where

A2(d,−α) =
|α|Γ(d+α

2 )

21−απd/2Γ(1 − α
2 )
.

The following result is well known (see Corollary 1.3.1 in Ref. 9).

Proposition 2.1. D(∆α) ⊂ F , and

E(u, v) = (−∆αu, v), u ∈ D(∆α), v ∈ F .

Definition 2.1. (1) A signed Radon measure µ on R
d is said to be in the Kato

class Kd,α, if

lim
r→0

sup
x∈Rd

∫

|x−y|<r

|µ|(dy)

|x− y|d−α
= 0 ,

where |µ| is the total variation measure of µ.

(2) A signed Radon measure µ on R
d is said to be in K∞

d,α, if for every ε > 0,

there exist a compact set K and a constant δ > 0, such that

sup
x∈Rd

∫

Kc

G(x, y)|µ|(dy) < ε ,

and for any measurable set B ⊂ K with |µ|(B) < δ,

sup
x∈Rd

∫

B

G(x, y)|µ|(dy) < ε .

(3) A function f on R
d is said to be in the class Kd,α or K∞

d,α, if µ := f(x)dx is

in the corresponding spaces (see Ref. 2).

The following proposition was shown by Chen2 and Chen and Song4:

Proposition 2.2. Assume that µ is a measure in Kd,α.

(i) µ is in the class K∞
d,α if and only if

lim
r→∞

sup
x∈Rd

∫

|y|>r

G(x, y)|µ|(dy) = 0 . (2.1)

(ii) If µ ∈ K∞
d,α, then

sup
x∈Rd

∫

Rd

G(x, y)|µ|(dy) <∞ . (2.2)

Proposition 2.3. Suppose d > α. For ρ > α, {V ∈ Kd,α : V (x) = O(|x|−ρ) as

|x| → ∞} ⊆ K∞
d,α.

Proof. When ξ is a Brownian motion with dimension d > 2, this was proved in

Ref. 19. An argument similar to that of Proposition 2 in Ref. 19 shows that the

result holds for symmetric α-stable process with d > α.

Definition 2.2. Suppose V and f are measurable functions.
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(1) We say that u is a solution of ∂u
∂t = ∆αu + V u + f , if u a continuously

differentiable curve: R+
1 → D(∆α) satisfying ∂u(t,x)

∂t = ∆αu(x) + V (x)u(x) + f(x),

x ∈ R
d.

(2) We say that u is a solution of ∆αu+ V u+ f = 0 in R
d, if u ∈ D(∆α) and

satisfies ∆αu(x) + V (x)u(x) + f(x) = 0, x ∈ R
d.

Proposition 2.4. Let d > α. Suppose that f ∈ Kd,α and |f | = O(|x|−ρ) with

ρ > α. Then the function Gf is a bounded continuous solution of ∆αu = −f .

Conversely, if u is a bounded continuous solution of ∆αu = −f, then u = Gf + c

for some constant c.

Proof. By Proposition 2.3, f ∈ K∞
d,α. Then by Proposition 2.2, Gf is bounded in

R
d. Since

StGf = Gf −

∫ t

0

Ssfds

and Ssf → f uniformly as s → 0 it follows that Gf ∈ D(∆α) and ∆α(Gf) = −f .

Assume that u is a bounded continuous solution of ∆αu = −f . Then u − Gf is

bounded, continuous and satisfies ∆α(u−Gf) = 0. Since ξ is transient, we get that

u−Gf = c for some constant c.

Note that the Harnack inequality holds for the operator ∆α + V (see, for in-

stances, Chen and Song3). If the Green’s function, denoted by GV (x, y), exists for

the operator ∆α +V , from the general theory of Markov processes and their poten-

tial theory (see, for instance, Ref. 8), we know that there exists a positive solution

of (∆α + V )u = 0. This motivates the following classification of operators.

Definition 2.3. (1) We say that V is subcritical if the operator ∆α + V admits a

Green function.

(2) We say that V is critical if ∆α + V is not subcritical but admits a positive

solution of the equation (∆α + V )u = 0.

(3) We say that V is supercritical if ∆α + V does not admit a positive solution

of the equation (∆α + V )u = 0.

The following proposition is well known for Brownian motion (see, for instance,

Ref. 12). But for symmetric α-stable processes, we were unable to point out an

actual reference and we give the proof in detail. The idea of the proof comes from

Theorem C.8.1 in Ref. 16 and Theorem 2.4 in Ref. 12.

Proposition 2.5. If there exists an essentially nonzero function q ≥ 0 such that

(∆α + V + q)u = 0 has a positive solution, then V is subcritical.

Proof. Assume that u is a positive solution of (∆α + V + q)u = 0. We first prove

that for ϕ ∈ D(∆α)

((∆α + V + q)ϕ, ϕ) = −

∫

Rd

∫

Rd

(ϕ(x)u(y) − ϕ(y)u(x))2

u(x)u(y)|x− y|d+α
dxdy , (2.3)
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that is to say, ∆α + V + q ≤ 0. Since V + q = −u−1∆αu we have

((∆α + V + q)ϕ, ϕ) = −E(ϕ, ϕ) + (V + q, ϕ2)

= −E(ϕ, ϕ) − (u−1∆αu, ϕ
2)

= −E(ϕ, ϕ) − (∆αu, u
−1ϕ2) .

By Proposition 2.1, −(∆αu, u
−1ϕ2) = E(u, u−1ϕ2), so

((∆α + V + q)ϕ, ϕ) = −E(ϕ, ϕ) + E(u, u−1ϕ2) .

By a direct calculation, we get

−E(ϕ, ϕ) + E(u, u−1ϕ2) = −

∫

Rd

∫

Rd

(ϕ(x)u(y) − ϕ(y)u(x))2

u(x)u(y)|x− y|d+α
dxdy .

Then we proved (2.3).

We can choose a bounded Borel set A of positive measure such that Ā ⊂ R
d

and

a = inf{q(x);x ∈ A} > 0 .

Put w(x) = aIA(x), where IA is the indicator function of A. Let {Dj , j ≥ 1} be a

sequence of bounded smooth domains such that

D̄j ⊂ Dj+1 and Dj ↑ R
d ,

where D̄j is the closure of Dj . Denote by G
V +q−w
Dj

(x, y) the Green’s function for

the operator ∆α +V + q−w in Dj with the zero Dirichlet boundary condition. For

j with Ā ⊂ Dj , define a function hj on Dj by

hj(x) = G
V +q−w
Dj

w(x) ,

where GV +q−w
Dj

is the integral operator with kernel GV +q−w
Dj

(x, y). We have that hj

belongs to D(∆α) and (∆α + V + q − w)hj = −w. By (2.3),

((∆α + V + q)hj , hj) ≤ 0 .

Then we have that
∫

wh2
jdx ≤

∫

whjdx ≤

(
∫

wh2
jdx

)1/2(∫

wdx

)1/2

.

Thus
∫

wh2
jdx ≤

∫

wdx ,

which implies

a2

∫

A

dx

(
∫

A

G
V +q−w
Dj

(x, y)dy

)2

≤ a

∫

A

dx .
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This shows that GV +q−w
Dj

(x, y) converges, which means that ∆α + V + q − w is

subcritical. Denoting by GV
Dj

(x, y) the Green’s function for the operator ∆α +V in

Dj with the zero Dirichlet boundary condition, we have

(∆α + V + q − w)(GV +q−w
Dj

−GV
Dj

) = (q − w)GV
Dj
.

Since q − w ≥ 0 and GV
Dj

≥ 0, we thus obtain that GV
Dj

≤ G
V +q−w
Dj

. This together

with the convergence of GV +q−w
Dj

shows that ∆α + V is subcritical.

Definition 2.4. Let µ ∈ K∞
d,α and Aµ(t) be the continuous additive functional of

ξ associated with µ. We say that u is µ-harmonic in R
d if

u(x) = Ex[u(ξτU
)eAµ(τU )] , x ∈ U

for every bounded open set U .

The following proposition is taken from Takeda and Uemura15:

Proposition 2.6. Let d > α, µ ∈ K∞
d,α and Aµ(t) be the continuous additive

functional of ξ associated with µ. Then the following conditions are equivalent:

(i) u0(x) = Ex[eAµ(∞)] 6≡ ∞, x ∈ R
d;

(i’) supx∈Rd u0(x) <∞;

(ii) the operator ∆α+µ admits a Green function Gµ(x, y) satisfying Gµ(x, y) <∞

for x, y ∈ R
d, x 6= y;

(iii) there exists µ-harmonic function u so that infx∈Rd u(x) > 0.

Moreover, if one of the above conditions hold, then u0(x) = Ex[eAµ(∞)] is a

µ-harmonic function satisfying 0 < infx∈Rd u0(x) ≤ supx∈Rd u0(x) <∞.

Throughout this paper, the notation C always denotes a constant which may

change values from line to line.

3. Nonlinear Differential Equations

To prove the main theorem, we need to develop some results on nonlinear differential

equations. Let d > αp
p−1 and p > 1. Consider the following two equations:







∂u

∂t
= ∆αu+ |u|p + V (x) , (t, x) ∈ (0,∞) × R

d ,

u(0) = 0 ,

(3.1)

and

∆αu+ |u|p + V (x) = 0 , x ∈ R
d . (3.2)

As in Ref. 10, a function u(x) is called proper if |u(x)| ≤ C(1 + |x|)α−d for

some C > 0 and u(t, x) is called proper if supt>0|u(t, x)| is proper. Lee’s analytic

techniques do not work for nonlocal operator ∆α. To overcome these difficulties,
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we first consider their mild solutions, i.e. solutions of their corresponding integral

equations:

u(t, x) =

∫ t

0

Sα
t−s(|u(s, ·)|

p + V )(x)ds , (3.3)

and

u(x, V ) = G(|u|p + V )(x) , x ∈ R
d , (3.4)

and then prove that the mild solutions are solutions in the sense of Definition 2.2

under some conditions. Results proved in this section are not only sufficient to prove

our main results, but also have independent interest.

Lemma 3.1. If d > αp
p−1 , p > 1, then there exists a constant M > 0 such that

ϕ(x) = M(1 + |x|)(α−d)p, x ∈ R
d satisfies

Gϕ <
1

2
ϕ

1
p .

Proof. First by G(x) ≤ C|x|α−d, we have

Gϕ(x)

ϕ
1
p (x)

=

∫

Rd G(x − y)ϕ(y)d y

ϕ
1
p (x)

≤ CM (1−1/p)

∫

Rd

(

1 + |x|

|x− y|

)d−α
d y

(1 + |y|)(d−α)p
.

For simplicity, we define

J(x) =

∫

Rd

(

1 + |x|

|x− y|

)d−α
d y

(1 + |y|)(d−α)p
.

We assert that J(x) is bounded in R
d. Then we can choose M sufficiently small

such that Gϕ < 1
2ϕ

1
p .

Now we are left to prove the assertion. Fix M > 0. We estimate J(x) separately

on the set {|x| ≤M} and the set {|x| > M}. On {|x| ≤M}, we have

J(x) =

(

∫

|y−x|≥1

+

∫

|y−x|<1

)

(

1 + |x|

|x− y|

)d−α
d y

(1 + |y|)(d−α)p

≤ C

(

∫

d y

(1 + |y|)(d−α)p
+

∫

|x−y|<1

d y

|x− y|d−α

)

≤ C .

On {|x| > M}, we have

J(x) =

(

∫

|y−x|≥1+|x|
2

+

∫

|y−x|<1+|x|
2

)

(

1 + |x|

|x− y|

)d−α
d y

(1 + |y|)(d−α)p

≤ C

(

∫

d y

(1 + |y|)(d−α)p
+ (1 + |x|)d−α(1 + |x|)−(d−α)p

∫

1+|x|
2

0

rα−1dr

)

≤ C .

Then we have J(x) is bounded in R
d, and the lemma is proved.
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Theorem 3.1. Let d > αp
p−1 (p > 1), and ϕ as in Lemma 3.1. If V ∈ A and

|V | ≤ ϕ, then Eq. (3.1) has a unique proper solution u(t, x, V ); furthermore, the

limit function

u(x, V ) ≡ lim
t→∞

u(t, x, V )

exists pointwise and is a proper solution of Eq. (3.2).

To prove the theorem, we need some lemmas.

Lemma 3.2. Let d > αp
p−1 (p > 1), and ϕ as in Lemma 3.1. Suppose V ∈ A and

|V | ≤ ϕ. The integral Eq. (3.3) has a unique proper solution u(t, x, V ).

Proof. We begin with the existence of a solution. Define the usual Picard iteration

scheme {un(t, x, V )}:


















































u0 = 0 ,

u1 =

∫ t

0

Sα
t−sV (x)ds ,

· · ·

un+1 =

∫ t

0

Sα
t−s(|un|

p + V )(x)ds ,

· · ·

then we have

−Gϕ(x) ≤ un(t, x) ≤ 2Gϕ(x) .

In fact, by the construction of un we easily have

un(t, x) ≥

∫ t

0

Sα
t−sV (x)ds ≥ −

∫ t

0

Sα
t−sϕ(x)ds ≥ −Gϕ(x) .

On the other hand, it is easy to see u0 ≤ 2Gϕ(x), u1 ≤ Gϕ(x) ≤ 2Gϕ(x). Then it

follows by induction and by noticing that Gϕ < 1
2ϕ

1
p , we have for each n,

un(t, x) ≤

∫ t

0

Sα
t−s(|2Gϕ|

p + ϕ)(x)ds ≤ 2Gϕ(x) .

Thus we get

|un(t, x)| ≤ 2Gϕ(x) ≤ ϕ1/p(x) ,

and then |un(t, x)| is bounded in [0,∞)×R
d. To prove the limit function u(t, x, V ) =

limn→∞ un(t, x, V ) exists, we only need to prove, for any fixed t ≥ 0 and any x ∈ R
d,

the series
∞
∑

n=1

[un+1(t, x, V ) − un(t, x, V )] (3.5)
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is convergent. We claim that

‖un+1(t) − un(t)‖ ≤
‖V ‖

C
·
(Ct)n+1

(n+ 1)!
. (3.6)

We prove this claim by induction. In fact, for n = 0, we have ‖u1(t) − u0(t)‖ =

‖
∫ t

0 S
α
t−sV (x)ds‖ ≤ ‖V ‖t. Now suppose that the claim (3.6) holds for n = k. Using

the fact that |xp
1 − x

p
2| ≤ pmax(|x1|, |x2|)|x1 − x2|, we have

‖uk+1(t) − uk(t)‖ =

∥

∥

∥

∥

∫ t

0

Sα
t−s(|uk|

p − |uk−1|
p)(x)ds

∥

∥

∥

∥

≤ C

∥

∥

∥

∥

∫ t

0

Sα
t−s|uk − uk−1|(x)ds

∥

∥

∥

∥

≤ C

∫ t

0

‖uk − uk−1‖ds

≤ C ·
‖V ‖

C

∫ t

0

(Cs)k

k!
ds

=
‖V ‖

C
·
(Ct)k+1

(k + 1)!
. (3.7)

That is (3.6) also holds in the case when n = k+1. Therefore the claim above is valid.

It follows from the claim above that, for any t ≥ 0, the series
∑∞

n=1[un+1(t, x, V )−

un(t, x, V )] is convergent in the sup norm ‖ · ‖. Now by the boundedness of ϕ

and the bounded convergence theorem, we obtain that u is a solution of (3.3).

Since supt≥0|un(t, x, V )| ≤ 2Gϕ(x), by Lemma 3.1, u(t, x, V ) is a proper solution

of (3.3).

Then we are left to prove the uniqueness of the solution of Eq. (3.3). Assume

that u,w are two solutions of (3.3). Then we have

u(t, x) − w(t, x) =

∫ t

0

Sα
t−s(|u(s)|

p − |w(s)|p)(x)ds .

By an argument similar to that of (3.7), we have

‖u(t) − w(t)‖ ≤ C

∫ t

0

‖u(s) − w(s)‖ds .

By Gronwall’s inequality, we have ‖u(t) − w(t)‖ = 0. So u(t, x) = w(t, x) for any

t ≥ 0 and any x ∈ R
d.

Lemma 3.3. Let d > αp
p−1 (p > 1), and ϕ as in Lemma 3.1. Suppose V ∈ A and

|V | ≤ ϕ. Consider the following integral equation

w(t, x) = Sα
t V (x) +

∫ t

0

Sα
t−s[p|u(s)|

p−1sgn(u(s))w(s)](x)ds , (3.8)
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where u is the unique solution of (3.3). There exists a unique solution to the above

equation, and

d+

dt
u(t) = w(t) .

Proof. The existence and uniqueness of solution to (3.8) can be proved by a similar

argument as that in the proof of Lemma 3.2. We omit the details. Set

wh(t, x) =
u(t+ h, x) − u(t, x)

h
, h > 0 .

By (3.3),

u(t+ h, x) =

∫ t+h

0

Sα
t+h−s(|u(s)|

p + V )(x)ds

=

∫ h

0

Sα
t+h−s(|u(s)|

p + V )(x)ds +

∫ t+h

h

Sα
t+h−s(|u(s)|

p + V )(x)ds

=

∫ h

0

Sα
t+s(|u(h− s)|p + V )(x)ds +

∫ t

0

Sα
t−s(|u(h+ s)|p + V )(x)ds .

Then we have

wh(t, x) =
1

h

∫ h

0

Sα
t+s(|u(h− s)|p + V )(x)ds

+
1

h

∫ t

0

Sα
t−s(|u(s+ h)|p − |u(s)|p)(x)ds .

Note that wh(0, x) = 1
h

∫ h

0
Sα

s (|u(h− s)|p + V )(x)ds and Sα
t is a contraction semi-

group. We have

‖wh(t)‖ ≤ ‖wh(0)‖ + C

∫ t

0

‖wh(s)‖ds .

By an application of Gronwall’s inequality, we have

‖wh(t)‖ ≤ ‖wh(0)‖eCt .

Since u and V are both bounded, it is easy to see that ‖wh(0)‖ is bounded in h, so

‖wh(t)‖ is also bounded in h.

Similarly we have, for x ∈ R
d,

wh(t, x) − w(t, x)

=
1

h

∫ h

0

Sα
t (Sα

s [|u(h− s)|p + V ] − V )(x)ds

+

∫ t

0

Sα
t−s

(

|u(s+ h)|p − |u(s)|p

h
− p|u(s)|p−1sgn(u(s))w(s)

)

(x)ds .
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Note that

wh(0, x) − w(0, x) =
1

h

∫ h

0

Sα
s (|u(h− s)|p + V )(x)ds − V (x) ,

and that
∥

∥

∥

∥

|u(s+ h)|p − |u(s)|p

h
− p|u(s)|p−1sgn(u(s))wh(s)

∥

∥

∥

∥

→ 0 , as h→ 0 .

Then we have ∀ ε > 0, there exists a δ > 0, such that for every h satisfying |h| < δ,

‖wh(t) − w(t)‖ ≤ ‖wh(0) − w(0)‖ + CTε+ C

∫ t

0

‖wh(s) − w(s)‖ds , t ≤ T .

Using Gronwall’s inequality, we get

‖wh(t) − w(t)‖ ≤ (‖wh(0) − w(0)‖ + CTε)eCt , t ≤ T .

It is easy to see that ‖wh(0) − w(0)‖ → 0, as h → 0. Therefore, for any t ≥ 0,
d+

dt u(t) = w(t).

The next lemma says that to consider solution of Eq. (3.1) is equivalent to

consider solution of the integral Eq. (3.3).

Lemma 3.4. Let d > αp
p−1 (p > 1), and ϕ as in Lemma 3.1. Suppose V ∈ A and

|V | ≤ ϕ. u is a solution of the integral Eq. (3.3) if and only if it is a solution of

Eq. (3.1).

Proof. By Lemma 3.3 and a standard lemma (see p. 239, Ref. 17), u(t, x, V ) is

actually continuously differentiable, and it is straightforward to check that u(t, x, V )

satisfies
{

u̇(t) = ∆αu+ |u|p + V (x) ,

u(0) = 0 .

Conversely, the solution of (3.1) also satisfies the integral Eq. (3.3). In fact,

if u satisfies (3.1), let w(t) =
∫ t

0
Sα

t−s(|u(s, ·)|
p + V )(x)ds, so w satisfies ∂w

∂t =

∆αw(t)+|u|p+V (x) and we have ∂[u(t)−w(t)]
∂t = ∆α[u(t)−w(t)] and u(0) = w(0) = 0,

so w(t) = u(t).

Proof of Theorem 3.1. It follows from Lemmas 3.2 and 3.3 that Eq. (3.1) has

a unique proper solution u(t, x, V ). From the integral equation (3.3), it is easy to

see that |u(t, x, V )| ≤ u(t, x, ϕ). Let w(t, ϕ) = ∂u(t,x,ϕ)
∂t , w(t, V ) = ∂u(t,x,V )

∂t . By

Lemma 3.3, w(t, ϕ) and w(t, V ) satisfy

w(t, ϕ) = Sα
t ϕ(x) +

∫ t

0

Sα
t−s[p|u(s, ϕ)|p−1sgn(u(s, ϕ)) · w(s, ϕ)](x)ds

and

w(t, V ) = Sα
t V (x) +

∫ t

0

Sα
t−s[p|u(s, V )|p−1sgn(u(s, V )) · w(s, V )](x)ds ,
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respectively. Let {wn(t, ϕ), n ≥ 0} and {wn(t, V ), n ≥ 0} be the Picard iteration

sequences corresponding to w(t, ϕ) and w(t, V ), respectively. By induction, it is

easy to check that |wn(t, V )| ≤ wn(t, ϕ), and then w(t, V ) ≤ w(t, ϕ). That is to say

∂[u(t, x, ϕ) − u(t, x, V )]

∂t
≥ 0 , t ≥ 0 , x ∈ R

d .

Then u(t, x, ϕ) − u(t, x, V ) is increasing in t, and then

u(t2, x, V ) − u(t1, x, V ) ≤ u(t2, x, ϕ) − u(t1, x, ϕ) , 0 ≤ t1 ≤ t2 , x ∈ R
d .

(3.9)

Similarly, we can also prove that u(t, x, ϕ) + u(t, x, V ) is increasing in t and

−[u(t2, x, V ) − u(t1, x, V )] ≤ u(t2, x, ϕ) − u(t1, x, ϕ) , 0 ≤ t1 ≤ t2 , x ∈ R
d .

(3.10)

Combining the above (3.9) and (3.10) to arrive at

|u(t2, x, V ) − u(t1, x, V )| ≤ u(t2, x, ϕ) − u(t1, x, ϕ) , 0 ≤ t1 ≤ t2 , x ∈ R
d .

(3.11)

Since ϕ is non-negative, u(t, x, ϕ) is increasing in t and then the limit u(x, ϕ) ≡

limt→∞ u(t, x, ϕ) exists. By the above inequalities, u(x, V ) = limt→∞ u(t, x, V ) also

exists. By Lemma 3.1 and the dominated convergence theorem, we have

u(x, V ) =

∫ ∞

0

Sα
s (|u|p + V )(x)ds , x ∈ R

d ,

which can be written as

u(x, V ) = G(|u|p + V )(x) , x ∈ R
d .

Since u(t, x, V ) is proper, the limit u(x, V ) is also proper. Then Proposition 2.4

implies that u(x, V ) satisfies

∆αu+ |u|p + V (x) = 0 , x ∈ R
d .

Now the theorem is proved.

Lemma 3.5. Let d > αp
p−1 (p > 1), and ϕ as in Lemma 3.1. If V ∈ A and |V | ≤ ϕ,

then the differential equation
{

∆α(f − 1) + p(sgn(u(x, V ))|u(x, V )|p−1f = 0 , x ∈ R
d ,

f > 0 , f(x) → 1, as x → ∞ ,
(3.12)

has a unique solution, written as f(x, u(·, V )), where u(x, V ) is the proper solution

of (3.2) constructed in Theorem 3.1.

Proof. Let w(x) = p(sgn(u(x, V )))|u(x, V )|p−1, µ(dx) = w(x)dx. Since |u(x, V )| ≤

Cϕ
1
p (x), we have |w(x)| ≤ Cϕ

(p−1)
p (x) = O(|x|−α+αp−d(p−1)) as x → ∞. So the
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assumption d > αp
p−1 implies that −α+αp−d(p−1) < −α. Then we have µ ∈ K∞

d,α

by Proposition 2.3.

Let U(x) ≡ u(x, ϕ) − u(x, V ). It is easy to see that U > 0 and
(

∆α +
u(x, ϕ)p − u(x, V )p

u(x, ϕ) − u(x, V )
+

ϕ(x) − V (x)

u(x, ϕ) − u(x, V )

)

U = 0 .

We denote the above equation simply by (∆α + w + q)U = 0, where

q =
u(x, ϕ)p − u(x, V )p

u(x, ϕ) − u(x, V )
− p(sgn(u(x, V )))|u(x, V )|p−1 +

ϕ(x) − V (x)

u(x, ϕ) − u(x, V )
.

By the convexity, we have

u(x, ϕ)p − u(x, V )p

u(x, ϕ) − u(x, V )
≥ p(sgn(u(x, V )))|u(x, V )|p−1 ,

then q ≥ 0. Thus the Schrödinger equation (∆α+w+q)u = 0 has a bounded solution

U . This implies that ∆α + w is subcritical by Proposition 2.5. By Proposition 2.6,

u0(x) = Ex[exp(
∫∞

0 w(ξs))ds] is a bounded w-harmonic function.

Now we show that u0(x) → 1, as |x| → ∞. Similar to the proof of (32) in Zhao,19

we can also prove

u0(x) − 1 =

∫

Rd

G(x, y)w(y)u0(y)dy .

And by (2.1), {
∫

Rd G(x, y)w(y)dy, x ∈ R
d} is uniformly integrable. Since u0 is

bounded, we easily get

lim
|x|→∞

∫

Rd

G(x, y)w(y)u0(y)dy = 0 .

Therefore, lim|x|→∞ u0(x) = 1. By Proposition 2.4, u0 satisfies ∆α(u0 −1) = −wu0

in R
d, which means that u0 is a solution of (3.12).

We are left to prove the uniqueness. Assume that u is a solution of (∆α+w)u = 0

and satisfy lim|x|→∞ u(x) = 0. It suffices to prove that u ≡ 0. By Proposition 2.4

and that lim|x|→∞(u + G(wu)) = 0, we have u + G(wu) ≡ 0, which implies that

u ≡ 0.

4. Proof of the Main Result

For d > αp
p−1 and 1 < p ≤ 2, define

Ip(γ) = (p−1/(p−1) − p−p/(p−1))

∫

|∆α(γ − 1)(x)|p/(p−1)γ(x)−1/(p−1)dx , γ ∈ G .

(4.1)

This definition makes sense because ∀ γ ∈ G, we have

inf
x
γ(x) > 0 ,

∫

Rd

|∆α(γ − 1)(x)|
p

p−1 dx <∞ ,

by which we can get Ip(γ) <∞.
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Lemma 4.1. Suppose d > αp
p−1 , p > 1, and ϕ as in Lemma 3.1. If V ∈ A and

|V | ≤ ϕ, then

lim
t→∞

1

t

∫

u(t, x, V )dx =

∫

[|u(x, V )|p + V (x)]dx(
.
= J(V )) ,

where u is the unique solution of (3.1).

Proof.

1

t

∫

Rd

u(t, x, V )dx =
1

t

∫ t

0

∫

Sα
t−s(|u(s, ·, V )|p + V )(x)dxds

=
1

t

∫ t

0

∫∫

Pα(t− s, x− y)(|u(s, y, V )|p + V (y))dxdyds

=
1

t

∫ t

0

∫

(|u(s, y, V )|p + V (y))dyds .

Since |u(s, V )|p ≤ Cϕ and
∫

Rd ϕ(x)dx <∞, by the dominated convergence theorem,

lim
t→∞

∫

Rd

(|u(t, y, V )|p + V (y))dy =

∫

Rd

(|u(y, V )|p + V (y))dy .

Hence,

lim
t→∞

1

t

∫

Rd

u(t, x, V )dx = lim
t→∞

∫

Rd

(|u(t, y, V )|p + V (y))dy

=

∫

Rd

(|u(y, V )|p + V (y))dy .

Lemma 4.2.

sup
0≤V <ϕ

[
∫

γ(x)V (x)dx − J(V )

]

≤ Ip(γ) , ∀ γ ∈ G , (4.2)

sup
γ∈G

[
∫

γ(x)V (x)dx − Ip(γ)

]

= J(V ) , ∀ 0 ≤ V < ϕ . (4.3)

Proof. By Lemma 4.1,

J(V ) =

∫

[u(x, V )p + V (x)]dx .

Then
∫

γ(x)V (x)dx − J(V )

=

∫

[γ(x)V (x) − u(x, V )p − V (x)]dx

=

∫

{(γ(x) − 1)[V (x) + u(x, V )p] − γ(x)u(x, V )p}dx
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=

∫

{(γ(x) − 1)(−∆αu) − γ(x)u(x, V )p}dx

= E(γ − 1, u) −

∫

γ(x)u(x, V )pdx .

Note that in the third equality above we used the fact that −∆αu = V (x)+u(x, V )p,

which holds by (3.2). By Proposition 2.1, E(γ−1, u) =
∫

(−∆α(γ−1)(x))u(x, V )dx,

and then
∫

γ(x)V (x)dx − J(V ) =

∫

{[−∆α(γ − 1)(x)]u(x, V ) − γ(x)u(x, V )p}dx .

An argument similar to the proof of Lemma 1.8 in Ref. 10 shows that (4.2) holds

and the supremum in (4.3) is attained when γ(x) satisfies

−∆α(γ − 1)(x) = p(sgnu(x, V ))|u(x, V )|p−1γ(x) in R
d .

By Lemma 3.5, there exists a bounded positive solution of the above equation,

written as f(x, u(·, V )), such that infx∈Rd f(x, u(·, V )) > 0. If we can prove that

f ∈ G, then (4.3) holds and the lemma is proved. To prove f ∈ G it suffices to check

that
∫

Rd |∆α(f − 1)|
p

p−1 (x)dx <∞. Obviously, |∆α(f − 1)|
p

p−1 ≤ C|u|p. Recall that

u is a proper solution of (3.2). Then
∫

|∆α(f − 1)|
p

p−1 dx ≤ C

∫

|u|pdx ≤ C

∫

|ϕ|dx <∞ .

With the help of Lemma 3.5 and using the argument of Lemma 1.7 in Ref. 10,

we have

Lemma 4.3. Let V1, V2, . . . , Vn be as in Theorem 1.1 and define

āi = min
x∈Rd

ϕ(x)

Vi(x)
, 1 ≤ i ≤ n

Λ(a1, a2, . . . , an) = J

(

n
∑

i=1

aiVi

)

, −āi ≤ ai ≤ āi .

Then the functional Λ is strictly convex, continuously differentiable and

(∆Λ)(0) =

(
∫

Rd

V1(x)dx,

∫

Rd

V2(x)dx, . . . ,

∫

Rd

Vn(x)dx

)

,

where 0 is the origin in R
d.

In the following we state two lemmas for super α-stable process without proof,

which can be considered as counterparts of the super-Brownian motion case in

Ref. 10.

Lemma 4.4. Suppose p = 2, d > 2α, V ∈ A and 0 ≤ V < ϕ, where ϕ is as in

Lemma 3.1. Then there exist analytic functions F (t, z1, z2, . . . , zn), |z1|, . . . , |zn| <

1, t ≥ 0, such that

F (t, a1, a2, . . . , an) =

∫

Rd

u
(

t, x,
∑

aiVi

)

dx for 0 ≤ t,−1 < a1, . . . , an < 1 .
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Lemma 4.5. Let p = 2 and d > 2α. Suppose u(t, x, V ) is the unique proper solution

of Eq. (3.1). Then for every V ∈ A and |V | < ϕ,

E

{

exp

[
∫ t

0

∫

V (x)Xs(dx)ds

]}

= exp

[
∫

u(t, x, V )dx

]

, t ≥ 0 .

The above two results are the analogues of Lemmas 1.9 and 1.10 in Ref. 10.

Proof of Theorem 1.1. The argument is similar to that of the proof of Theo-

rem 1.1 in Ref. 10. Here we only give an outline for the proof. Set

a = (a1, a2, . . . , an) , ā = (ā1, ā2, . . . , ān) .

From Lemmas 4.1, 4.3 and 4.5, we have

lim
T→∞

1

T
logE{exp(Ta · DT,V )} = Λ(a)

for −āi ≤ ai ≤ āi. Define O ≡ {(∇Λ)(a) : −āi ≤ ai ≤ āi}, which is an open

neighborhood of (∇Λ)(0). A general large deviation result (see Ref. 6, for instance)

ensures two estimates:

lim inf
T→∞

1

T
logP (DT,V ∈ U) ≥ − inf

σ∈U
sup

−āi≤ai≤āi,1≤i≤n
[σ · a − Λ(a)] ,

lim sup
T→∞

1

T
logP (DT,V ∈ C) ≤ − inf

σ∈C
sup

−āi≤ai≤āi,1≤i≤n
[σ · a − Λ(a)] .

The discussion in the proof of Theorem 1.1 in Ref. 10 implies that

inf
γ=σ

I2(γ) = sup
−āi≤ai≤āi,1≤i≤n

[σ · a − Λ(a)] , for σ ∈ O ,

where γ is as in Theorem 1.1. The theorem is proved.
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