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Abstract

We establish a scaling limit theorem for a large class of Dawson–Watanabe superprocesses whose under-
lying spatial motions are symmetric Hunt processes, where the convergence is in the sense of convergence in
probability. When the underling process is a symmetric diffusion with C1

b -coefficients or a symmetric Lévy

process on R
d whose Lévy exponent Ψ (η) is bounded from below by c|η|α for some c > 0 and α ∈ (0,2)

when |η| is large, a stronger almost sure limit theorem is established for the superprocess. Our approach uses
the principal eigenvalue and the ground state for some associated Schrödinger operator. The limit theorems
are established under the assumption that an associated Schrödinger operator has a spectral gap.
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1. Introduction

Let A(x) = (aij (x))1�i,j�d be a symmetric matrix-valued function on R
d that is uniformly

elliptic and bounded:

Λ1|v|2 �
d∑

i,j=1

ai,j (x)vivj � Λ2|v|2 for all v ∈ R
d and x ∈ R

d,

for some positive constants 0 < Λ1 � Λ2 < ∞, and its entries {aij (x),1 � i, j � d} are C1,γ -
smooth on R

d for some γ ∈ (0,1). Assume that b(x) = (b1(x), . . . , bd(x)) is a C1,γ -smooth
R

d -valued function on R
d and define

A = ∇ · A∇ + b · ∇ on R
d .

Consider a super-diffusion {Xt, t � 0} corresponding to the operator Lu := Au + βu − κu2

on R
d , where β and κ � 0 are Cγ -functions. Denote by λc the generalized principal eigenvalue

for operator A+ β on R
d , i.e.,

λc = inf{λ ∈ R: A+ β − λ possesses a Green’s function}
(see [17,18], for example). Let Ã denote the formal adjoint operator of A. The positive eigen-
function of the operator A + β corresponding to λc, if it exists, will be denoted by φ, and the
positive eigenfunction of the operator Ã + β corresponding to λc will be denoted by φ̃. Pinsky
[18] proved that if A+ β − λc is critical and if

∫
φ(x)φ̃(x) dx < ∞, then

lim
t↑∞ e−λctPμ〈Xt,g〉 = 〈μ,φ〉(φ̃, g) for any g ∈ C+

c

(
R

d
)
, (1.1)

where (f, g) := ∫
Rd f (x)g(x) dx, and φ and φ̃ are normalized to have

∫
φ(x)φ̃(x) dx = 1. Here

C+
c (Rd) denotes the space of non-negative continuous functions on R

d having compact support.
Engländer and Turaev [11] proved that if λc > 0, κφ is bounded and the initial state μ is such
that 〈μ,φ〉 < ∞, then for g ∈ C+

c (Rd),

lim
t→∞ e−λct 〈Xt,g〉 = Nμ(φ̃, g) in distribution,

where the limiting non-negative non-degenerate random variable Nμ was identified with the
help of a certain invariant curve. Later, Engländer and Winter [12] improved the above result
to show that the above convergence holds in probability. Very recently Engländer [10] further
extended the above convergence in probability result to some superdiffusions without assuming
that

∫
φ(x)φ̃(x) dx < ∞.

The present paper is devoted to establish that the above convergence in probability result
holds for a large class of Dawson–Watanabe superprocesses whose underlying spatial motions
are symmetric Hunt processes which can have discontinuous sample paths. Moreover, when the
underlying spatial motion is a symmetric diffusion on R

d with infinitesimal generator

A = ρ(x)−1
d∑ ∂

∂xi

(
ρ(x)aij (x)

∂

∂xj

)
, (1.2)
i,j=1
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where A(x) = (aij (x))ij is uniformly elliptic and bounded with aij ∈ C1
b(Rd) and the function

ρ ∈ C1
b(Rd) is bounded between two positive constants, or a symmetric Lévy process on R

d

whose Lévy exponent Ψ (η) is bounded from below by c|η|α for some c > 0 and α ∈ (0,2)

when |η| is large, we can establish an almost sure scaling limit theorem for superprocesses.
Here C1

b(Rd) is the space of bounded continuous functions on R
d that have bounded continuous

first derivatives. Although almost sure limit theorem for branching Markov processes has been
studied by several authors during the past 40 years (see [6] and the references therein), as far as
we know, this is the first time that an almost sure scaling limit theorem has been established for
superprocesses.

Our approach is quite different from that of Pinsky [18], Engländer and Turaev [11] and
Engländer and Winter [12]. Motivated from Chen and Shiozawa [6], where an almost sure limit
theorem is established for branching symmetric Hunt processes, we use the principal eigenvalue
and the ground state of an associated Schrödinger operator to establish a scaling limit theorem in
the sense of convergence in probability for a large class of superprocesses. More specifically, let
ξ be a symmetric Hunt process on state space E with symmetrizing measure m, which can have
discontinuous sample paths. Let A denote the infinitesimal generator of ξ . Consider an (A, β, κ)-
superprocess X, where β and κ are related to mean and variance of the offspring distribution
for the particle model of the superprocess. Under some Kato class condition on β , we show
that A + β has a non-negative L2-eigenfunction h with first eigenvalue −λ1(β). (Observe that
−λ1(β) is the same as the generalized principal eigenvalue λc mentioned above.) Under the
assumption of λ1(β) < 0, we show that for every bounded L2(E,m)-integrable function f ,

lim
t→∞ eλ1(β)t 〈f,Xt 〉 = Mh∞

∫
E

f (x)h(x)m(dx) in probability with respect to Pδx .

Here Mh∞ is the limit of the non-negative martingale Mt := eλ1(β)t 〈h,Xt 〉. When ξ is a diffusion
process in Euclidean space, it is known (see [18]) that λ1(β) < 0 is equivalent to the superprocess
X of no local extinction.

The proof of the limit theorem for superprocesses in the sense of convergence in probability
is very similar to that in Chen and Shiozawa [6], which is applicable to a large class of super-
processes. However there is significant new difficulty in obtaining an almost sure scaling limit
theorem for superprocesses. One of the main steps in [6] to establish the almost sure limit the-
orem for branching symmetric Hunt processes is first to obtain the almost sure limit result at
discrete times and then extend it to all times. But we are unable to carry out this strategy for
superprocesses when the underling spatial motion is a general symmetric Hunt process. When
the underling spatial motion is a symmetric diffusion mentioned above with C1

b -smooth coeffi-
cients or a symmetric Lévy process on R

d whose Lévy exponent Ψ (η) is bounded from below
by c|η|α for some c > 0 and α ∈ (0,2) when |η| is sufficiently large, we can establish an almost
sure scaling limit theorem for superprocesses with the help of an Ito’s formula for superprocesses
developed by Perkins [16].

The remainder of this paper is organized as follows. We start Section 2.1 with a review on
definitions and basic properties of Kato class functions for symmetric Hunt processes as well as
of symmetric Lévy processes. We then show that the working hypothesis of this paper (Assump-
tion 2.1 and condition (2.4)) are satisfied by a large class of symmetric diffusions and symmetric
Lévy processes. The latter extends [6, Remark 2.6] and has its own independent interests, as these
conditions are also the working hypothesis for paper [6] on scaling limit theorems for branching
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Markov processes. Section 2.2 recalls some results established in [6] on Schrödinger semigroups
that will play a crucial role in our approach to scaling limit theorems for superproceses. Ba-
sic properties of Dawson–Watanabe superprocesses and the Ito type formula for superprocesses
established by Perkins are reviewed in Section 2.3. The proof of scaling limit theorems for su-
perprocesses (both convergence in probability version and almost sure convergence version) are
given in Section 3.

Throughout this paper, we will use Cc(R
d) and C∞(Rd) to denote the space of continuous

functions on R
d having compact support and the space of continuous functions on R

d that vanish
at infinity. The space of functions in Cc(R

d) that has continuous first derivatives (respectively,
continuous derivatives up to second order) will be denoted as C1

c (Rd) (respectively C2
c (Rd)). For

a real number a ∈ R, we define a+ := max{a,0} and a− := max{−a,0}.

2. Preliminaries

2.1. Symmetric Hunt processes and Kato classes

Let E be a locally compact separable metric space and EΔ := E ∪ {Δ} its one point com-
pactification. Denote by B(E) and B(EΔ) the Borel σ -fields on E and EΔ, respectively.
Let Bb(E) (respectively, B+(E)) denote the set of all bounded (respectively, non-negative)
B(E)-measurable functions on E. The space of continuous (respectively, bounded contin-
uous) functions on E will be denoted as C(E) (respectively Cb(E)) and for f ∈ Cb(E),
‖f ‖∞ := supE |f (x)|. Let m be a positive Radon measure on E with full support. Let ξ =
(Ω0,G0,G0

t , θt , ξt ,Πx, ζ ) be an m-symmetric Hunt process on E, where {G0
t }t�0 is the minimal

admissible filtration of ξ , {θt , t � 0} is the time-shift operator satisfying ξt ◦ θs = ξt+s identically
for s, t � 0, and ζ = inf{t > 0: ξt = Δ} the lifetime. The L2-infinitesimal generator of ξ will
be denoted as (A,D(A)). The same notation (A,D(A)) will also be used to denote the Feller
generator of ξ when ξ is a Feller process. When (A,D(A)) is used to denote the Feller gener-
ator of a Feller process ξ , we will say so explicitly. Let {Pt , t � 0} be the Markovian transition
semigroup of ξ :

Ptf (x) = Πx

[
f (ξt )

]
for f ∈ B+(E),

where Πx is the distributional law of ξ starting from x. The symmetric Dirichlet form on
L2(E;m) generated by ξ will be denoted as (E,F) (cf. [13]):

F :=
{
u ∈ L2(E,m): lim

t→0

1

t

∫
E

(
u(x) − Ptu(x)

)
u(x)m(dx) < ∞

}
,

E(u, v) := lim
t→0

1

t

∫
E

(
u(x) − Ptu(x)

)
v(x)m(dx) for u,v ∈ F .

The Dirichlet form (E,F) is known to be quasi-regular [15] and hence is quasi-homeomorphic
to a regular Dirichlet form on a locally compact separable metric space [8]. But we will not use
these properties in this paper.

Throughout this paper we assume the following.
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Assumption 2.1. For each t > 0, the process ξ has a bounded symmetric transition density
function p(t, x, y) with respect to the measure m that is continuous in x for every fixed y ∈ E:

Ptf (x) =
∫
E

p(t, x, y)f (y)m(dy) for every f ∈ L1(E,m) and x ∈ E.

It can be shown that Assumption 2.1 is equivalent to the following two properties:

(i) (Strong Feller property) For any f ∈ Bb(E), Ptf is a bounded and continuous function on E.
(ii) (Ultracontractivity) For any t > 0, it holds that ‖Pt‖1,∞ < ∞, where ‖ · ‖p,q denotes the

operator norm from Lp(E,m) to Lq(E,m).

Clearly Assumption 2.1 implies (i) and (ii). Conversely, using Chapman–Kolmogorov equa-
tion and Riesz representation theorem for the dual of L1(E,m), it is easy to see that (i) and (ii)
also imply Assumption 2.1.

For α � 0, let Gα(x, y) be the α-resolvent kernel of ξ defined by

Gα(x, y) =
∞∫

0

e−αtp(t, x, y) dt.

When α = 0, we omit the subscript 0 and denote G0(x, y) by G(x,y). We call G(x,y) the Green
function of ξ . If ξ is transient, its Green function G(x,y) is finite on E × E off the diagonal.

Definition 2.2. (i) A measurable function q is said to be in the Kato class K(ξ) if

lim
α→∞ sup

x∈E

∫
E

Gα(x, y)
∣∣q(y)

∣∣dy = 0.

(ii) If ξ is transient, a measurable function q ∈ K(ξ) is said to be in the class K∞(ξ), if for
any ε > 0, there is a compact set K ⊂ E and a positive constant δ > 0 such that

sup
x∈E

∫
E\K

G(x, y)
∣∣q(y)

∣∣m(dy) + sup
B⊂K

m(B)<δ

sup
x∈E

∫
B

G(x, y)
∣∣q(y)

∣∣m(dy) < ε.

(iii) If ξ is recurrent, we define K∞(ξ) := ⋂
α>0 K∞(ξα). Here for α > 0, ξα denotes the

α-subprocess of ξ killed at rate α. Note that for 0 < α1 < α2, K∞(ξα1) ⊂ K∞(ξα2).

For β ∈ K(ξ), put

eβ(t) := exp

( t∫
β(ξs) ds

)
, t � 0, (2.1)
0
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which is well defined since for every x ∈ E and t > 0,
∫ t

0 |β(ξs)|ds < ∞ Πx -a.s. In fact by
Khasminskii’s inequality (cf. [7, Proposition 2.3]), for every β ∈ K(ξ) and t > 0,

sup
x∈E,s∈[0,t]

Πx

[
eβ(s)

]
< ∞. (2.2)

Let {P β
t , t � 0} be the Feynman–Kac semigroup given by

P
β
t f (x) := Πx

[
eβ(t)f (ξt )

]
, f ∈ B(E).

It is known that the quadratic form associated with the semigroup {P β
t , t � 0} in L2(E,m) is

(Eβ,F), where

Eβ(u,u) := E(u,u) −
∫
E

u2(x)β(x)m(dx) for u ∈ F .

The function β is said to be gaugeable if

sup
x∈E

Πx

[
eβ(ζ )

]
< ∞.

Theorem 2.3. Suppose that β ∈ K∞(ξ). Then the following are equivalent:

(i) β is gaugeable;

(ii) inf

{
E(u,u) +

∫
E

u(x)2β−(x)m(dx);u ∈ F ,

∫
E

u(x)2β+(x)m(dx) = 1

}
> 1;

(iii) sup
x∈E

Πx

[
sup

0�t�ζ

eβ(t)
]

< ∞.

Moreover, if one of the above holds, then

(iv) sup
x∈E

Πx

[ ζ∫
0

κ(ξt )eβ(t) dt

]
< ∞ for any 0 � κ ∈ K∞(ξ).

Proof. Parts (i)–(iii) are proved in Chen [5, Corollary 2.9 and Theorem 5.2]. For 0 � κ ∈ K∞(ξ),
define β1 := β+ + κ and β2 := β− + κ . Then β1, β2 ∈ K∞(ξ) and β = β1 − β2. Assume now
that (ξ,β) is gaugeable and define

τt := inf

{
s � 0:

s∫ (|β| + κ
)
(ξr ) dr � t

}
, t � 0.
0
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Using the above definition for τt and with
∫ ·

0 β1(ξs) ds and
∫ ·

0 β2(ξs) ds playing the role for A+
and A− there, the same proof for [5, Theorem 2.8] yields that

sup
x∈E

Ex

[ ζ∫
0

eβ(t)
(|β| + κ

)
(ξt ) dt

]
< ∞.

This in particular implies (iv). �
For β ∈ K∞(ξ), define

λ1(β) = inf

{
Eβ(u,u): u ∈F with

∫
E

u2(x)m(dx) = 1

}
,

and

λ0 := inf

{
E(u,u): u ∈ F with

∫
E

u2(x)m(dx) = 1

}
.

If

the embedding of (F ,E1) into L2(E;β+)
is compact, (2.3)

where E1(u,u) := E(u,u) + ∫
E

u2(x)m(dx), then by the Friedrichs theorem, the spectrum of
σ(Eβ) less than λ0 consists of only isolated eigenvalues with finite multiplicities. Note that if
A is of the form (1.2), then the generalized principal eigenvalue λc for operator A + β on R

d

equals −λ1(β). Let h be the normalized positive L2-eigenfunction of A + β corresponding to
λ1 := λ1(β) with

∫
E

h2(x)m(dx) = 1. Let λ2(β) denote the second bottom of the spectrum of
σ(Eβ):

λ2(β) = inf

{
Eβ(u,u): u ∈ F ,

∫
E

u2(x)m(dx) = 1,

∫
E

u(x)h(x)m(dx) = 0

}
.

Then λ2(β) − λ1(β) > 0 if λ1(β) < λ0.
In the remainder of this paper, we fix β ∈ K∞(ξ) and a nonnegative function κ ∈ K∞(ξ). We

assume that

the embedding of (F ,E1) into L2(E;β+)
is compact, (2.4)

and

λ1(β) < 0. (2.5)

Note that, since λ0 � 0, the condition that λ1(β) < λ0 is automatically satisfied if λ1(β) < 0.
Now we give some concrete sufficient conditions on symmetric process ξ so that the As-

sumption 2.1 is satisfied and that condition (2.4) holds for every β ∈ K∞(ξ) with non-trivial β+.
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Recall that a Lévy process Z taking values in R
d is a process that has stationary independent

increments. Its one-dimensional distribution and hence the process itself can be characterized by
its characteristic exponent Ψ :

Ex

[
exp

(−iη · (Zt − Z0)
)] = e−tΨ (η) for every t > 0 and η ∈ R

d .

It is known that every Lévy process is a Feller process, that is, for every f ∈ C∞(Rd),
Ptf ∈ C∞(Rd) for every t > 0 and limt→0 Ptf = f uniformly (see, e.g., [3, Proposition I.5]).
Here C∞(Rd) is the space of continuous functions on R

d that converges to 0 at infinity and
{Pt , t � 0} is the transition semigroup of the Lévy process. If for every t > 0, e−tΨ (−η) is L1-
integrable on R

d , then Z has bounded continuous transition density function p(t, x, y) given by
(cf. [3, p. 24])

p(t, x, y) := (2π)−d

∫
Rd

e−i(x−y)·ηe−tΨ (−η) dη. (2.6)

We say a Lévy process Z is symmetric if −(Z − Z0) has the same distribution as that of
Z − Z0. This is equivalent to say that the transition semigroup {Pt , t � 0} of Z is symmetric
in L2(Rd , dx). It is easy to see that a Lévy process Z is symmetric if and only if its character-
istic exponent Ψ is an even function, that is, Ψ (−η) = Ψ (η) for every η ∈ R

d . It follows from
the Lévy–Khintchine formula (cf. [3, p. 3]) that for symmetric Lévy process Z, its characteristic
exponent can be expressed as

Ψ (η) = 1

2

d∑
i,j=1

aij ηiηj +
∫
Rd

(
1 − cos(η · x)

)
J (dx), η = (η1, . . . , ηd) ∈ R

d, (2.7)

where (aij )1�i,j�d is a symmetric semi-positive definite constant matrix and J (dx) is a non-
negative measure on R

d \ {0} with ∫
Rd

(
1 ∧ |x|2)J (dx) < ∞. (2.8)

This implies in particular that the characteristic exponent Ψ of a symmetric Lévy process takes
non-negative real values. The measure J in (2.7) describes the jumps of the Lévy process Z and
is called the Lévy measure of Z. If Ψ has the property that

Ψ (η) = |η|αΨ
(
η/|η|) for every η ∈ R

d \ {0},

where 0 < α < 2, the Lévy process is called an α-stable process. The Lévy exponent Ψ of a
general α-stable process has the form

Ψ (ξ) =
∞∫ ∫

d−1

(
1 − eiξ ·reiθ + iξ · reiθ 1{r�1}

)
r−1−α dr ν(dθ),
0 S



1996 Z.-Q. Chen et al. / Journal of Functional Analysis 254 (2008) 1988–2019
where Sd−1 is the (d − 1)-dimensional unit sphere in R
d and ν is a finite measure on Sd−1. An

isotropically symmetric α-stable process corresponds to the case where ν is the constant multiple
of the surface measure on Sd−1. This corresponds to Ψ (η) = c|η|α , where c > 0. In this case, the
expression for Ψ in (2.7) has aij = 0 and J (dy) = c(d,α)|y|−d−α dy.

For a complex number z = a + ib with a, b ∈ R, set z := a − ib. For u ∈ L2(Rd), let

û(x) := (2π)−d/2
∫
Rd

eix·yu(y) dy

denote the Fourier transform of u. It is known that (see [13, pp. 30, 31]) the Dirichlet form (E,F)

of a symmetric Lévy process Z with characteristic exponent Ψ is given by

E(u, v) =
∫
Rd

û(x)̂v(x)Ψ (x)dx. (2.9)

Thus,

E(u,u) =
∫
Rd

∣∣̂u(x)
∣∣2Ψ (x)dx

= 1

2

∫
Rd

d∑
i,j=1

aij

∂u(x)

∂xi

∂u(x)

∂xj

dx + 1

2

∫
Rd×(Rd\{0})

(
u(x + y) − u(x)

)2
J (dy)dx,

(2.10)

F = {
u ∈ L2(

R
d, dx

)
: E(u,u) < ∞}

. (2.11)

Clearly, C1
c (Rd) ⊂ F . For α > 0, we define

Eα(u,u) := E(u,u) + α

∫
Rd

u(x)2 dx for u ∈ F .

For α ∈ (0,2), let (E (α),F (α)) denote the Dirichlet form for isotropically symmetric α-stable
process in R

d with characteristic exponent Ψ (η) = |η|α . We see from above that

E (α)(u,u) =
∫
Rd

∣∣̂u(η)
∣∣2|η|α dη = c(d,α)

∫
Rd×(Rd\{0})

(u(x + y) − u(x))2

|y|d+α
dx dy, (2.12)

F (α) = {
u ∈ L2(

R
d, dx

)
: E(u,u) < ∞}

, (2.13)

where c(d,α) is a positive constant that depends only on dimension d and α. It is well known
that C∞

c (Rd), the space of smooth functions with compact support on R
d , is E (α)

1 -dense in F (α).

The Hilbert space (F (α),E (α)
1 ) is the Sobolev space (or Bessel potential space) Wα/2,2(Rd) of

fractional order. The following compact embedding theorem is known to experts. However we
are unable to find a direct, explicit reference so we record it here for future reference.
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Theorem 2.4. Let D ⊂ R
d be a bounded open set. For every α ∈ (0,2 ∧ d) and 1 < p < 2d

d−α
,

the map u �→ 1Du is a compact embedding from (F (α),E (α)
1 ) into Lp(D,dx).

Proof. For s > 0, define the Bessel kernel

gs(x) = (2π)−d/2
∫
Rd

e−ix·η(1 + |η|2)−s/2
dη, x ∈ R

d,

which is a decreasing function in |x| (see [1, (1.2.11)]). The Bessel potential space Ls,2(Rd) is
defined to be

Ls,2(
R

d
) := {

u: u = gs ∗ f with f ∈ L2(
R

d , dx
)}

,

with norm ‖u‖s,2 := ‖f ‖L2(Rd ,dx). Here for two functions f,g, f ∗g(x) := ∫
Rd f (x −y)g(y) dy

whenever it is defined. For u = gs ∗ f , since

û(η) = ĝs(η)f̂ (η) = (
1 + |η|2)−s/2

f̂ (η),

by Plancherel’s identity,

‖u‖2
s,2 =

∫
Rd

∣∣f (x)
∣∣2 dx =

∫
Rd

∣∣̂u(η)
∣∣2(1 + |η|2)s dη.

So for α ∈ (0,2), F (α) = Lα/2,2(Rd) and there is a constant c1 > 1 such that

c−1
1 ‖u‖α/2,2 � E (α)

1 (u,u)1/2 � c1‖u‖α/2,2 for every u ∈F (α).

Let Capα be the 1-capacity of Dirichlet form (E (α),F (α)) (cf. [13]). That is, for every Borel
set F ,

Capα(F ) := inf
{
E (α)

1 (u,u): u ∈ F (α) with u � 1 q.e. on F
}
.

Here q.e. is the abbreviation for E-quasi-everywhere, which means that everywhere except for a
set that having zero E1-capacity (cf. [13]). From the norm comparison above, we have

c−1
1 Capα/2,2(F ) � Capα(F ) � c1Capα/2,2(F ) for every Borel set F ⊂ R

d .

Here Capα/2,2 denotes the Bessel capacity of order (α/2,2) defined by

Capα/2,2(F ) := inf
{‖u‖α/2,2: u ∈ Lα/2,2(Rd) with u � 1 q.e. on F

}
for every Borel set F ⊂ R

d . Let μ(dx) := 1D(dx)dx. By Theorem 7.3.1 in [1], the restriction
map u �→ 1Du is a compact embedding from (F (α),E (α)

1 ) into Lp(D,dx) if and only if the
following two conditions are satisfied:

lim
r→0

sup
K⊂Rd

μ(K)

Capα(K)p/2
= 0 (2.14)
diam(K)�r
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and

lim
ρ→∞ sup

K⊂Rd\B(0,ρ)

μ(K)

Capα(K)p/2
= 0. (2.15)

Here B(0, ρ) denotes the ball centered at 0 with radius ρ. Since μ is compactly supported,
condition (2.15) is automatically satisfied for every p � 0. Let m denote the Lebesgue measure
on R

d . It is clear that both m and the capacity Capα are translation invariant. For (2.14) to hold,
it suffices to show

lim
r→0

sup
K⊂B(0,r)

m(K)

Capα(K)p/2
= 0. (2.16)

For 0 < r � 1, with ur(x) := u(rx),

E (α)(ur , ur ) = rα−dc(d,α)

∫
Rd×(Rd\{0})

(u(x + y) − u(x))2

|y|d+α
dx dy = rα−dE(u,u).

This combined with [1, Proposition 5.1.4] yields that there is a constant c2 � 1 such that for
every 0 < r � 1 and Borel set K ⊂ R

d with diam(K) � 2r ,

c−1
2 rd−αCapα

(
r−1K

)
� Capα(K) � c2r

d−αCapα

(
r−1K

)
.

Hence

sup
K⊂B(0,r)

m(K)

Capα(K)p/2
� c2 sup

K⊂B(0,r)

rdm(r−1K)

(rd−αCapα(r−1K))p/2
� c2r

d− (d−α)p
2 sup

F⊂B(0,1)

m(F )

Capα(F )p/2
.

By the Sobolev embedding theorem (see [1, Theorem 1.2.4]), for every p ∈ (1, 2d
d−α

], there is a
constant c3 > 0 such that

‖u‖Lp(B(0,1),dx) � c3E (α)
1 (u,u)1/2 for every u ∈ F (α).

It follows that for every F ⊂ B(0,1),

m(F) � c
p

3 Capα(F )p/2.

Therefore for 1 < p < 2d
d−α

, (2.16) holds and so the map u �→ 1Du is a compact embedding from

(F (α),E (α)
1 ) into Lp(D,dx). �

Lemma 2.5. Let (E,F) be the Dirichlet form of a symmetric Lévy process on R
d . Suppose

φ ∈ C1
c (Rd) and u ∈F . Then uφ ∈F and there is a constant c > 0 independent of u such that

E(uφ,uφ) � c E1(u,u).
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Proof. By (2.8) and Cauchy–Schwarz inequality,

E(uφ,uφ)

= 1

2

∫
Rd

d∑
i,j=1

aij

∂(uφ)

∂xi

∂(uφ)

∂xj

dx + 1

2

∫
Rd×(Rd\{0})

(
(uφ)(x + y) − (uφ)(x)

)2
J (dy)dx

�
∫
Rd

u(x)2
d∑

i,j=1

aij

∂φ

∂xi

∂φ

∂xj

dx +
∫
Rd

φ(x)2
d∑

i,j=1

aij

∂u

∂xi

∂u

∂xj

dx

+
∫

Rd×(Rd\{0})
φ(x + y)2(u(x + y) − u(x)

)2
J (dy)dx

+
∫

Rd×(Rd\{0})
u(x)2(φ(x + y) − φ(x)

)2
J (dy)dx

� c

∫
Rd

u(x)2 dx + 2‖φ‖∞E(u,u) +
∫
Rd

u(x)2
( ∫

{y∈Rd : 0<|y|�1}

(
φ(x + y) − φ(x)

)2
J (dy)

)
dx

+
∫
Rd

u(x)2
( ∫

{y∈Rd : |y|>1}

(
φ(x + y) − φ(x)

)2
J (dy)

)
dx

� c

∫
Rd

u(x)2 dx + 2‖φ‖∞E(u,u) +
∫
Rd

u(x)2
( ∫

{y∈Rd : 0<|y|�1}
‖∇φ‖2∞|y|2 J (dy)

)
dx

+
∫
Rd

u(x)2
( ∫

{y∈Rd : |y|>1}
4‖φ‖2∞ J (dy)

)
dx

� cE1(u,u),

where in the last inequality we used (2.8). This proves that uφ ∈F . Note that the constant c > 0
varies from line to line but it is independent of u ∈ F . �

Recall that for a symmetric Markov process ξ and α > 0, we denote by ξα the α-subprocess
of ξ . As we noted previously, K∞(ξ) ⊂ K∞(ξα). The following theorem extends [22, Theo-
rem 2.7], where the result is established for isotropically symmetric α-stable processes on R

d .

Theorem 2.6. Let ξ be a symmetric Lévy processes on R
d with characteristic exponent Ψ . As-

sume that there are constants c0 > 0, R0 > 0 and α0 > 0 so that

Ψ (η) � c0|η|α0 for |η| � R0. (2.17)

Then Assumption 2.1 holds for ξ and the condition (2.4) holds for every β ∈ ⋃
α>0 K∞(ξα) with

non-trivial β+.



2000 Z.-Q. Chen et al. / Journal of Functional Analysis 254 (2008) 1988–2019
Proof. As for every t > 0, e−tΨ (η) is L1(Rd)-integrable, the Lévy process ξ has a continuous
transition density function

p(t, x, y) = (2π)−d

∫
Rd

e−i(x−y)·ηe−tΨ (−η) dη

with respect to the Lebesgue measure on R
d (see Breiman [4, Theorem 8.39]), which is bounded

in (x, y) for each t > 0. Thus Assumption 2.1 holds for ξ . The proof that condition (2.4) holds
for every β ∈ ⋃

α>0 K∞(ξα) with non-trivial β+ is similar to that for [22, Theorem 2.7] except
that we use Lemma 2.5 above instead of [22, Lemma 2.6]. For reader’s convenience, we spell
out the details of the proof.

Without loss of generality, assume that β is a non-negative non-trivial function in K∞(ξα1)

for some α1 > 0. Note that the Green’s function of ξα1 is Gα1(x, y), the α1-resolvent kernel of ξ .
Since β ∈ K∞(ξα1) ⊂ K(ξα1), by [19], for every α > 0, we have∫

Rd

u(x)2β(x)dx � ‖Gαβ‖∞Eα(u,u) for every α � α1 and u ∈ F . (2.18)

As limα→∞ ‖Gαβ‖∞ = 0, it follows that for every ε > 0, there is a constant Mε > 0 so that∫
Rd

u(x)2β(x)dx � εE1(u,u) + Mε

∫
Rd

u(x)2 dx for every u ∈F . (2.19)

By decreasing the value of α0 in (2.17) if necessary, we may and do assume that α0 ∈ (0, d). De-
note by (E (α0),F (α0)) the Dirichlet form of an isotropically symmetric α0-stable process on R

d .
It follows from condition (2.17) that there is a constant c > 0 so that

1 + Ψ (η) � c
(
1 + |η|α0

)
for every η ∈ R

d .

Thus by (2.10), (2.11),

F ⊂ F (α0) and E1(u,u) � cE (α0)
1 (u,u) for every u ∈ F .

In other words, Hilbert space (F ,E1) embeds continuously into (F (α0),E (α0)
1 ). On the other hand,

by Theorem 2.4, for every k � 1, the restriction map u �→ 1Bk
u is a compact embedding from

(F (α0),E (α0)
1 ) into L2(Bk, dx). Here Bk is the ball in R

d centered at the origin with radius k.
Therefore the restriction map u �→ 1Bk

u is a compact embedding from (F ,E1) into L2(Bk, dx)

for every k � 1.
Let {un,n � 1} ⊂ F with supn�1 E1(un,un) < ∞. Taking a subsequence if necessary, we may

and do assume that un converges weakly to some u in (F ,E1) and 1
n

∑n
j=1 uj converges to some

v in (F ,E1). Clearly u = v ∈F . Furthermore by taking a subsequence if necessary, we may and
do assume that

for every k � 1, un converges strongly to u in L2(Bk, dx) as n → ∞. (2.20)
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Let φk ∈ C1
c (Rd) so that 0 � φk � 1 on R

d and φk = 1 on Bk . Then by (2.19) and Lemma 2.5,
for every ε > 0,∫

Bk

∣∣un(x) − u(x)
∣∣2β(x)dx

�
∫
Rd

∣∣un(x)φk(x) − u(x)φk(x)
∣∣2β(x)dx

� εE1
(
(un − u)φk, (un − u)φk

) + Mε

∫
Rd

∣∣un(x) − u(x)
∣∣2φk(x)2 dx

� εck sup
n�1

E1(un,un) + Mε

∫
Rd

∣∣un(x) − u(x)
∣∣2φk(x)2 dx.

It follows from (2.20) that

lim sup
n→∞

∫
Bk

∣∣un(x) − u(x)
∣∣2β(x)dx � εck sup

n�1
E1(un,un).

On the other hand, by (2.18),∫
Bc

k

∣∣un(x) − u(x)
∣∣2β(x)dx �

∥∥Gα1(1Bc
k
β)

∥∥∞Eα1(un − u,un − u)

� 2
∥∥Gα1(1Bc

k
β)

∥∥∞ sup
n�1

Eα1(un,un).

By the definition of β ∈ K∞(ξα1), for every ε > 0, there is some k0 � 1 such that

2
∥∥Gα1(1Bc

k0
β)

∥∥∞ sup
n�1

Eα1(un,un) < ε.

The above implies that

lim sup
n→∞

∫
Rd

∣∣un(x) − u(x)
∣∣2β(x)dx

= lim sup
n→∞

( ∫
Bk0

∣∣un(x) − u(x)
∣∣2β(x)dx +

∫
Bc

k0

∣∣un(x) − u(x)
∣∣2β(x)dx

)

� εck0 sup
n�1

E1(un,un) + ε.

Since ε > 0 is arbitrary, we have limn→∞
∫

Rd |un(x) − u(x)|2β(x)dx = 0. This establishes the
theorem. �
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Remark 2.7. Examples of symmetric Lévy processes on R
d with characteristic exponent Ψ

satisfying condition (2.17) are the following.

(i) Isotropically symmetric α-stable process on R
d , where Ψ (η) = c|η|α for c > 0 and α ∈

(0,2]. Note that when α = 2, it is just Brownian motion on R
d .

(ii) Relativistic α-stable process on R
d , where Ψ (η) = (c|η|2 + m2)α/2 − mα with c > 0,

α ∈ (0,2) and m > 0. Recall that for 0 < p < 1, we have the reversed triangle inequality:
(a + b)p � ap + bp for a, b � 0. So Ψ (η) � cα/2|η|α .

(iii) Sum of an isotropically symmetric α-stable process on R
d with any independent symmetric

Lévy process on R
d , where α ∈ (0,2].

(iv) Sum of a relativistic α-stable process on R
d with any independent symmetric Lévy process

on R
d , where α ∈ (0,2).

Now we turn to the case that the motion ξ is a diffusion process.

Theorem 2.8. Let ξ be a symmetric diffusion whose infinitesimal generator A is of the form
(1.2) with a global Lipschitz ρ that is bounded between two positive constants. In this case,
(E,m) = (Rd , ρ(x) dx). Then Assumption 2.1 holds for ξ and the condition (2.4) holds for every
β ∈ K∞(ξ) with non-trivial β+.

Proof. Let ξ be a symmetric diffusion whose infinitesimal generator A is of the form (1.2)
with a global Lipschitz ρ that is bounded between two positive constants. Clearly this includes
Brownian motion as a special case. Note that we can rewrite A as

A =
d∑

i,j=1

∂

∂xi

(
aij (x)

∂

∂xj

)
+

d∑
j=1

(
d∑

i=1

aij (x)
∂ logρ

∂xi

)
∂

∂xj

.

By Aronson [2, Theorem 10], the diffusion process ξ has a jointly continuous transition density
function p(t, x, y) such that for every T > 0, there is a constant cT � 1 so that

c−1
T t−d/2 exp

(
−cT |x − y|2

t

)
� p(t, x, y) � cT t−d/2 exp

(
−|x − y|2

cT t

)
(2.21)

for every (t, x, y) ∈ (0, T ] × R
d × R

d . Therefore the symmetric diffusion process ξ satisfies the
Assumption 2.1. When ρ ≡ 1 on R

d , it is known that (see, e.g., [20, (I.0.10)]) that the positive
constant cT in (2.21) can be chosen to be independent of T > 0.

We claim that when ξ is a symmetric diffusion whose infinitesimal generator A is of the form
(1.2), condition (2.4) holds for every measure β ∈ K∞(ξ). Note that for (2.4), we do not need
to assume the function ρ in (1.2) is Lipschitz continuous. The diffusion process ξ is symmetric
with respect to the symmetrizing measure m(dx) := ρ(x)dx on R

d and its Dirichlet form (E,F)

in L2(Rd , ρ(x) dx) is given by

F = W 1,2(Rd) := {
u ∈ L2(

R
d, dx

)
: ∇u ∈ L2(

R
d, dx

)}
, (2.22)

E(u, v) =
∫
d

d∑
i,j=1

ρ(x)aij (x)
∂u(x)

∂xi

∂v(x)

∂xj

dx for u,v ∈ F . (2.23)
R
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For α > 0, define

Eα(u,u) := E(u,u) + α

∫
Rd

u(x)2 m(dx) for u ∈ F .

Clearly there is a constant c � 1 so that for every α � 0 and u ∈ W 1,2(Rd),

c−1
∫
Rd

(∣∣∇u(x)
∣∣2 + αu(x)2)dx � Eα(u,u) � c

∫
Rd

(∣∣∇u(x)
∣∣2 + α u(x)2)dx.

Hence the classical Rellich–Kondrachov compact embedding theorem for Sobolev space
W 1,2(Rd) (or Theorem 2.4) tells us that the restriction map u �→ 1Bk

u is a compact embed-
ding from (F ,E1) into L2(Bk, dx) for every ball Bk . The rest of the proof is the same as that for
Theorem 2.6. �
Remark 2.9. Kato classes K(ξ) and K∞(ξ) can be defined for signed measures, see [5]. The-
orems 2.6 and 2.8 in fact hold for any signed measure β ∈ K∞(ξ) with non-trivial β+, with
exactly the same proof. These two theorems provide more examples for which the main results
in [6] apply.

2.2. h-Transform

Let h be the normalized positive L2-eigenfunction of A + β corresponding to λ1 := λ1(β)

with
∫
E

h2(x)m(dx) = 1. Then

h(x) = eλ1tP
β
t h(x), x ∈ E. (2.24)

The function h is called the ground state for Schrödinger operator A + β . It follows from [6,
p. 379] that h is bounded, continuous and strictly positive.

We do h-transform for Schrödinger operator A+ β . For t > 0 and x ∈ E, define

P h
t f (x) := eλ1t

h(x)
Πx

[
eβ(t)h(ξt )f (ξt )

]
, f ∈ B+(E).

It is easy to check that {P h
t , t � 0} forms a strongly continuous Markovian semigroup in

L2(E,h2m). In fact, for x ∈ E, t � 0 and f ∈ B+(E),

Πh
x

[
f (ξt )

] := P h
t f (x)

defines a family of probability measures {Πh
x , x ∈ E} on (Ω0,G0∞, {G0

t , t � 0}). For emphasis,
the Hunt process ξ under these new probability measures {Πh

x , x ∈ E} will be denoted as ξh. It
is shown [9] that ξh is h2m-symmetric and irreducible. Moreover, if we denote by (Eh,Fh) the
symmetric Dirichlet form of ξh in L2(E;h2m), then we have by [9] that f ∈ Fh if and only if
f h ∈ F and that for f ∈ Fh,
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Eh(f,f ) = E(f h,f h) −
∫
E

f (x)2h(x)2(λ1 + β(x)
)
m(dx)

= Eβ(f h,f h) − λ1

∫
E

f (x)2h(x)2 m(dx).

The constant function 1 belongs to Fh and Eh(1,1) = 0. Consequently, ξh is recurrent. Hence
the bottom of the spectrum of σ(Eh) is 0, that is

λh
1(β) := inf

{
Eh(u,u): u ∈Fh,

∫
E

u2(x)h2(x)m(dx) = 1

}
= 0.

Let λh
2 := λh

2(β) be the spectral gap of the self-adjoint operator associated with (Eh,Fh):

λh
2(β) := inf

{
Eh(u,u): u ∈Fh,

∫
E

u2(x)h2(x)m(dx) = 1,

∫
E

u(x)h2(x)m(dx) = 0

}
.

It follows that

λh
2 = λ2(β) − λ1(β) > 0, (2.25)

which implies the following Poincaré inequality:∥∥P h
t φ

∥∥
L2(E;h2m)

� e−λh
2 t‖ϕ‖L2(E;h2m) (2.26)

for any ϕ ∈ L2(E;h2m) with
∫
E

ϕ(x)h2(x)m(dx) = 0. It is proved in [6] that there exists a
constant C > 0 such that∣∣h(x)P h

t ϕ(x)
∣∣ � Ce−λh

2 t‖ϕ‖L2(E;h2m) for t � 1, (2.27)

for every ϕ ∈ L2(E,h2m) with
∫
E

ϕ(x)h2(x)m(dx) = 0. Taking ϕ(x) = g(x)/h(x) with g being
a function in L2(E,m) and satisfying

∫
E

g(x)m(dx) = 0, we get

eλ1tΠx

[
eβ(t)g(ξt )

]
� Ce−λh

2 t‖g‖L2(E;m) for t � 1.

Therefore by (2.2) for any function g in L2(E,m) ∩ L∞(E,m) satisfying
∫
E

g(x)m(dx) = 0,
we have

eλ1tΠx

[
eβ(t)g(ξt )

]
� Ce−λh

2 t‖g‖L2(E;m) for every t � 0. (2.28)

The following result was proved in [6].

Lemma 2.10. Suppose that conditions (2.4) and (2.5) hold. For any f ∈ L2(E,m), we have

lim
t→∞ eλ1tΠx

[
eβ(t)f (ξt )

] = h(x)

∫
E

f (y)h(y)m(dy), x ∈ E. (2.29)
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2.3. Dawson–Watanabe superprocesses

In this section, assume that ξ is a symmetric Feller process on E; that is, for every f ∈ C∞(E),
Ptf ∈ C∞(E) for every t > 0 and limt→0 Ptf = f uniformly on E. Here {Pt , t � 0} is the tran-
sition semigroup of ξ . The infinitesimal generator of ξ in the Banach space (C∞(E),‖ · ‖∞)

is called the Feller generator, which will (also) be denoted as (A,D(A)). Let MF(E) denote
the set of finite measures on E, and assume that β ∈ K∞(ξ) and 0 � κ ∈ K∞(ξ). Suppose
X = {Xt,� 0,Pμ,μ ∈ MF(E)} is a time-homogeneous (A, β, κ)-super-Markov process corre-
sponding to the operator Au + βu − κu2. More precisely, X is a strong Markov process with
Xt ∈ MF(E), t � 0, and the Laplace functional

Pμ

[
exp

(〈−f,Xt 〉
)] = exp

(〈 − v(t, ·),μ〉)
(2.30)

with μ ∈ MF(E), f ∈ B+
b (E), where v is the unique solution of the integral equation

v(t, x) + Πx

[ t∫
0

κ(ξs)eβ(s)v(t − s, ξs)
2 ds

]
= Πx

[
eβ(t)f (ξt )

]
.

The minimal augmented filtration of X satisfying the standard condition will be denoted as
{Gt , t � 0}. The first two moments for Xt are given as follows: for every f ∈ B+

b (E) and t � 0,

Pμ

[〈f,Xt 〉
] = Πμ

[
eβ(t)f (ξt )

]
, (2.31)

Varμ
(〈f,Xt 〉

) = 2Πμ

[ t∫
0

κ(ξr )eβ(r)
(
Πξr

[
eβ(t − r)f (ξt−r )

])2
dr

]
. (2.32)

Suppose that g is a non-negative, bounded, Borel function on E. Let v(t, x) be the unique
solution of the integral equation: for t � 0 and x ∈ E,

v(t, x) + Πx

[ t∫
0

eβ(r)κ(ξr )v(t − r, ξr )
2dr

]
= Πx

[ t∫
0

eβ(r)g(ξr ) dr

]
. (2.33)

Then

Pμ

[
exp

(
−

t∫
0

〈g,Xr 〉dr

)]
= exp

(〈 − v(t, ·),μ〉)
for t � 0, μ ∈ MF(E). (2.34)

Replacing the above g by θg and then differentiating (2.33) and (2.34) at θ = 0 yields that for
t � 0 and μ ∈ MF(E),

Pμ

[ t∫
〈g,Xr 〉dr

]
= Πμ

[ t∫
eβ(r)g(ξr ) dr

]
(2.35)
0 0
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and

Varμ

( t∫
0

〈g,Xr 〉dr

)
= 2Πμ

[ t∫
0

eβ(r1)κ(ξr1)

(
Πξr1

[ t−r1∫
0

eβ(r2)g(ξr2) dr2

])2

dr1

]
.

(2.36)

In order to adapt the Perkins’ extension of the time dependent martingale problem, let us
describe the martingale problem for X. X is the unique solution of the following martingale
problem:

Pμ(X0 = μ) = 1,

and for every φ ∈ D(A),

Mt(φ) = 〈φ,Xt 〉 − 〈φ,X0〉 −
t∫

0

〈
(A+ β)φ,Xs

〉
ds (2.37)

is a {Gt }-local martingale such that

〈
M(φ)

〉
t
=

t∫
0

〈
κφ2,Xs

〉
ds.

Perkins [16] extends the above result to time dependent functions. For the convenience of
readers, we now recall some definitions and results from [16]. Let P be the σ -field of {Gt }-
predictable sets in R+ × Ω , and define

L2 =
{

g : R+ × Ω × E → R: g is P ×B(E)-measurable,

Pμ

( t∫
0

〈
κg2

s ,Xs

〉
ds

)
< ∞ ∀t > 0

}
.

It is shown in [16, Proposition II.5.4] that there is a martingale measure M(t, x) so that for every
φ ∈ D(A), the Mt(φ) in (2.37) can be expressed as

∫ t

0

∫
φ(x)dM(s, x). Moreover, for g ∈ L2,

stochastic integral Mt(g) := ∫ t

0

∫
g(s, x) dM(s, x) is well defined and is a square integrable {Gt }-

martingale with

〈
M(g)

〉
t
=

t∫
0

〈
κg2

s ,Xs

〉
ds for every t � 0 a.s. (2.38)

Definition 2.11. Let T > 0. A function g : [0, T ] × E → R is said in D( �A)T if and only if:
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(i) For any x in E, t → g(t, x) is absolutely continuous and there is a jointly Borel measur-
able version of its Radon–Nikodym derivative ∂g

∂t
(t, x) which is bounded on [0, T ] × E and

continuous in x for each t ∈ [0, T ].
(ii) For any t ∈ [0, T ], g(t, ·) is in the domain of the Feller generator of A and that Agt is

bounded on [0, T ].

The following result is taken from [16, Proposition II.5.7].

Proposition 2.12. If g ∈ D( �A)T , then a.s. for every t ∈ [0, T ],

〈gt ,Xt 〉 = 〈g0,X0〉 +
t∫

0

∫
g(s, x) dM(s, x) +

t∫
0

〈(
∂

∂s
+A+ β

)
g(s, x),Xs

〉
ds.

3. Limit theorems

Throughout this section, we assume β ∈ K∞(ξ) and κ ∈ K∞(ξ)+, where ξ is a symmetric
Hunt process on state space E with infinitesimal generator A. Let (X,Pμ,μ ∈ MF(E)) be the
Dawson–Watanabe superprocess corresponding to operator Au + βu − κu2.

Lemma 3.1. Assume condition (2.4) holds and that λ1 := λ1(β) < 0. Then for any f ∈ L2(E,m),

lim
t→∞ eλ1tPδx

[〈f,Xt 〉
] = h(x)

∫
E

f (y)h(y)m(dy) for every x ∈ E. (3.1)

Proof. By (2.31),

eλ1tPδx

[〈f,Xt 〉
] = eλ1tΠx

[
eβ(t)f (ξt )

]
.

So (3.1) follows immediately from (2.29). �
Let

Mh
t := eλ1t 〈h,Xt 〉, t � 0 (3.2)

Lemma 3.2. For every x ∈ E, Mh
t is a positive martingale with respect to Pδx , and therefore

there exists a limit Mh∞ ∈ [0,∞), Pδx -a.s.

Proof. By the Markov property of X, (2.31) and (2.24),

Pδx

[
Mh

t+s

∣∣Ft

] = eλ1tPXt

[
eλ1s〈h,Xs〉

] = eλ1t
〈
eλ1sΠ·

[
eβ(s)h(ξs)

]
,Xt

〉 = eλ1t 〈h,Xt 〉 = Mh
t .

This proves that Mh is a positive martingale and so it has an almost sure limit Mh as t → ∞. �
∞
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Proposition 3.3. Suppose that condition (2.4) holds and that λ1 := λ1(β) < 0.

(i) For every f ∈ L2(E;m) ∩Bb(E) and x ∈ E,

lim
t→∞ eλ1t 〈f,Xt 〉 = Mh∞

∫
E

f (x)h(x)m(dx) in probability with respect to Pδx . (3.3)

(ii) Let {tn} be any sequence such that
∑∞

n=1 e−εtn < ∞ for some ε ∈ (0, (−λ − 1) ∧ (2λh
2)).

Then for every f ∈ L2(E;m) ∩Bb(E) and x ∈ E,

lim
n→∞ eλ1tn〈f,Xtn〉 = Mh∞

∫
E

f (x)h(x)m(dx) Pδx -a.s. (3.4)

Proof. The main idea in the following proof is as follows. For any f ∈ L2(E;m) ∩ Bb(E), we
decompose it orthogonally into ch + g and show that eλ1t 〈g,Xt 〉 vanishes as t → ∞.

(i) Let f ∈ L2(E;m) ∩B(E) and g(x) = f (x) − h(x)
∫
E

f (x)h(x)m(dx). Then

eλ1t 〈f,Xt 〉 = Mh
t

∫
E

f (x)h(x)m(dx) + eλ1t 〈g,Xt 〉.

By (2.31) and (2.32),

Pδx

[(
eλ1t 〈g,Xt 〉

)2] = e2λ1t
(
Pδx

[〈g,Xt 〉
])2 + Varδx

(〈g,Xt 〉
) = I + II, (3.5)

where

I := e2λ1t
(
Πx

[
eβ(t)g(ξt )

])2 = (
h(x)P h

t (g/h)(x)
)2

,

and

II := 2e2λ1tΠx

[ t∫
0

κ(ξr )eβ(r)
(
Πξr

[
eβ(t − r)g(ξt−r )

])2
dr

]
.

Note that since g and h are orthogonal in L2(E,m), ϕ := g/h ∈ L2(E,h2m) with∫
E

ϕ(x)h2(x)m(dx) =
∫
E

g(x)h(x)m(dx) = 0.

Therefore by (2.27),

I � c1e
−2λh

2 t‖g/h‖2
2 2 = c1e

−2λh
2 t‖g‖2

2 , t � 1. (3.6)

L (E;h m) L (E;m)
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We rewrite II as

II = 2Πx

[ t∫
0

κ(ξr )eβ+2λ1(r)
(
eλ1(t−r)Πξr

[
eβ(t − r)g(ξt−r )

])2
dr

]
.

Let ε ∈ (0, (−λ1) ∧ (2λh
2)). We have by (3.6)

II � 2c1Πx

[ t∫
0

κ(ξr )eβ+2λ1(r)e
−2λh

2 (t−r) dr

]
‖g‖2

L2(E;m)

� c2e
−εtΠx

[ ζ∫
0

κ(ξr )eβ+2λ1+ε(r) dr

]
‖g‖2

L2(E;m)
.

By definition of λ1 = λ1(β),

inf

{
E(u,u) − (2λ1 + ε)

∫
E

u2 m(dx) −
∫
E

u2β m(dx): u ∈F ,

∫
E

u2(x)m(dx) = 1

}
= −λ1 − ε > 0.

This implies by [21, Lemma 3.5] that

inf

{
E(u,u) − (2λ1 + ε)

∫
E

u2 m(dx) +
∫
E

u2β− m(dx): u ∈F ,

∫
E

u2(x)β+ m(dx) = 1

}
> 1.

Let α := −(2λ1 + ε) and ξα be the subprocess of ξ killed at rate α. Clearly K∞(ξ) ⊂ K∞(ξα).
As the Dirichlet form of ξα is (Eα,F), applying Theorem 2.3(iv) to process ξα , we have

sup
x∈E

Πx

[ ζ∫
0

κ(ξr )eβ+2λ1+ε(r) dr

]
< ∞,

and so

II � c3e
−εt‖g‖2

L2(E;m)
.

We conclude then

Pδx

[(
eλ1t 〈g,Xt 〉

)2] �
(
c1e

−λh
2 t + c3e

−εt
)‖g‖2

L2(E;m)
. (3.7)

This implies that eλ1t 〈f,Xt 〉 − Mh
t

∫
E

f (x)h(x)m(dx) converges to 0 in L2(Pδx ) as t → ∞ and
so (3.3) follows as Mh

t converges to Mh∞ a.s. as t → ∞.
(ii) Let f and g be the same as above, respectively. By (3.7),

∞∑
Pδx

[(
eλ1tn〈g,Xt 〉

)2] � C

∞∑
e−εtn < ∞.
n=1 n=1
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By Borel–Cantelli’s lemma, we have limn→∞ eλ1tn〈g,Xtn〉 = 0 a.s. and so (3.4) holds as
limt→∞ Mh

t = Mh∞ a.s. �
We remark that Proposition 3.3 remains true if condition κ ∈ K∞(ξ) is replaced by

κ ∈ B+
b (Rd). This is because in this case, supx∈E Πx[

∫ ζ

0 κ(ξr )eβ+2λ1+ε(r) dr] in above proof
can be bounded by

‖κ‖∞ sup
x∈E

Πx

[ ζ∫
0

e−δreβ+2λ1+ε+δ(r) dr

]
� c

∞∫
0

e−δr dr < ∞,

where δ > 0 is a sufficiently small constant so that −λ1 − ε − δ > 0. Here in the first inequality,
we used Theorem 2.3(iii) applied to the subprocess ξα with α = −2λ1 − ε − δ.

We now turn our attention to almost sure scaling limit theorem for superprocesses. Throughout
the remainder of this section, we assume that either

(i) (E,m) = (Rd, dx) and ξ is a symmetric Lévy process in R
d with characteristic exponent Ψ

satisfying condition (2.17); or
(ii) (E,m) = (Rd, ρ(x) dx) and ξ is a symmetric diffusion on R

d with infinitesimal generator

A = ρ(x)−1∇ · (ρA∇) = ∇ · (A∇) + A∇(logρ) · ∇, (3.8)

where A(x) = (aij (x))1�i,j�d is bounded and uniformly elliptic on R
d with aij ∈ C1

b(Rd)

and ρ ∈ C1
b(Rd) is bounded between two positive constants.

We further assume that β ∈ K∞(ξ) ∩ Cb(R
d) and κ ∈ B+

b (Rd).
Note that a diffusion process ξ with infinitesimal generator A given by (3.8) is symmetric

with respect to the measure m(dx) := ρ(x)dx and its Dirichlet form (E,F) in L2(Rd,m) is
given by (2.22), (2.23). It is known that in both cases, the process ξ has double Feller property;
that is, it has strong Feller property as well as the Feller property (i.e. Pt (C∞(Rd)) ⊂ C∞(Rd)

for every t > 0 and limt→∞ ‖Ptf − f ‖∞ = 0 for every f ∈ C∞(Rd)). Moreover, C2
c (Rd) is in

the domain of Feller generator A of ξ .
Here is our main result on almost sure scaling limit theorem for superprocesses.

Theorem 3.4. Under the above assumption, suppose that λ1 := λ1(β) < 0. Then there exists
Ω0 ⊂ Ω of probability one (that is, Pδx (Ω0) = 1 for every x ∈ R

d ) such that, for every ω ∈ Ω0
and for every bounded Borel measurable function f on R

d with compact support whose set of
discontinuous points has zero m-measure, we have

lim
t→∞ eλ1t 〈f,Xt 〉 = Mh∞

∫
Rd

f (x)h(x)m(dx). (3.9)

Note that by Theorems 2.6 and 2.8, under the condition of Theorem 3.4 for process ξ , As-
sumption 2.1 is satisfied and the condition (2.4) holds for every β ∈ K∞(ξ) with non-trivial β+.
So Proposition 3.3 applies. To prove Theorem 3.4 we need some lemmas. Let U be a bounded
open set in R

d . For every ε > 0, choose φε ∈ C2(Rd) such that 0 � φε � 1U and φε = 1 on
c
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Uε = {x ∈ U,d(x, ∂U) > ε}, where d(x, ∂U) denotes the distance between x and ∂U . Clearly
we have

〈1Uh,Xt 〉 � 〈φεh,Xt 〉, t � 0. (3.10)

Lemma 3.5. Assume that either:

(i) (E,m) = (Rd , ρ(x) dx) and ξ a symmetric diffusion with infinitesimal generator A given
by (3.8); or

(ii) (E,m) = (Rd , dx) and ξ is a symmetric Lévy process in R
d with characteristic exponent Ψ

satisfying condition (2.17).

Assume that β ∈ K∞(ξ) ∩ Cb(R
d). Then both h and φεh are in the domain of the Feller

generator A of ξ with

M := sup
x∈Rd

∣∣A(φεh)(x)
∣∣ < ∞.

Moreover, A(φεh)(x) ∈ L1(Rd,m).

Proof. Recall that (see Section 2.2) the function h is bounded continuous and strictly positive,
and

h(x) = eλ1tΠx

[
eβ(t)h(ξt )

] = Πx

[
eβ+λ1(t)h(ξt )

]
for every x ∈ R

d and t > 0.

It follows by the Markov property of ξ and the double Feller property of ξ ,

Πx

[
h(ξt )

] − h(x) = −Πx

[ t∫
0

(
β(ξs) + λ1

)
e
∫ t
s (β(ξr )+λ1) drh(ξt ) ds

]

= −Πx

[ t∫
0

(
β(ξs) + λ1

)
h(ξs) ds

]
.

This implies that 1
t
Πx[h(ξt )] − h(x) converges uniformly on R

d to −(β + λ1)h as t ↓ 0; that is
h is in the domain of the Feller generator A of ξ and Ah = −(β + λ1)h.

When ξ is a symmetric diffusion whose infinitesimal generator A is given by (3.8), as
∇(A∇h) = −(β + λ1)ρh, it is known (cf. [14]) that h ∈ C1(Rd). Therefore

1

t
Πx

[(
φε(ξt ) − φε(ξ0) −

t∫
0

Aφε(ξs) ds

)(
h(ξt ) − h(ξ0) −

t∫
0

Ah(ξs) ds

)]

= 1

t
Πx

[ t∫
0

∇φε(ξs) · A(ξs)∇h(ξs) ds

]

converges uniformly on R
d to ∇φε(x) ·A(x)∇h(x) as t ↓ 0. We denote the latter by Γ (φε,h)(x).
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When ξ is a symmetric Lévy process in R
d with characteristic exponent Ψ satisfying condi-

tion (2.17), it is known in this case that C2
c (Rd) ⊂ D(A). Moreover, since for every k � 0 and

p � 1,

|η|ke−tΨ (η) ∈ Lp(Rd) and

t∫
0

|η|ke−sΨ (η) ds ∈ Lp
(
R

d
)

for every t > 0,

we have for every t > 0 and f ∈ L2(Rd), Ptf ∈ C1(Rd) and
∫ t

0 Psf ds ∈ C1(Rd). (Furthermore,
the transition density function p(t, x, y) of ξ , which is given by (2.6), is C∞-smooth in x and
in y.) As Ah = −(β + λ1)h and h ∈ L2(Rd) ∩Bb(R

d), we deduce from the identity

h = Pth −
t∫

0

PsAhds = Pth +
t∫

0

Ps

(
(β + λ1)h

)
ds

that h ∈ C1(Rd). Recall that the characteristic exponent of ξ has decomposition (2.7). The func-
tion

ϕ(x) := 1

2

d∑
i,j=1

aij

∂φε(x)

∂xi

∂h(x)

∂xj

+
∫
Rd

(
φε(x + y) − φε(x)

)(
h(x + y) − h(x)

)
J (dy),

is bounded on R
d , as by mean-value theorem, the last term above can be bounded as∣∣∣∣( ∫

{|y|�1}
+

∫
{|y|>1}

)(
φε(x + y) − φε(x)

)(
h(x + y) − h(x)

)
J (dy)

∣∣∣∣
�

∣∣∣∣ ∫
{|y−x|�1}

(∇φε(zx,y) · y)(∇h(zx,y) · y)J (dy)

∣∣∣∣ + 4‖φε‖∞ ‖h‖∞J
({|y| > 1

})

� c‖∇φε‖∞
(

sup
z∈U

∣∣∇h(z)
∣∣) ∫

0<|y|�1

|y|2 J (dy) + 4‖φε‖∞ ‖h‖∞J
({|y| > 1

})
< ∞,

where zx,y in the second inequality is a point in the line segment that connects x and x + y,
and (2.8) is used in the last inequality. Moreover, a similar calculation shows that ϕ(x) can be
approximated uniformly on R

d by

ϕk(x) := 1

2

d∑
i,j=1

aij

∂φε(x)

∂xi

∂h(x)

∂xj

+
∫

{|y|>1/k}

(
φε(x + y) − φε(x)

)(
h(x + y) − h(x)

)
J (dy)

and so ϕ is bounded and continuous on R
d . Now using the Lévy system of ξ , we see that
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1

t
Πx

[(
φε(ξt ) − φε(ξ0) −

t∫
0

Aφε(ξs) ds

)(
h(ξt ) − h(ξ0) −

t∫
0

Ah(ξs) ds

)]

= cd,α

t
Πx

[ t∫
0

ϕ(ξs) ds

]

converges uniformly on R
d to cd,αϕ(x) as t ↓ 0. We denote the latter as Γ (φε,h)(x).

Thus in both cases of ξ , we have

lim
t↓0

1

t

(
Tt (φεh)(x) − φε(x)h(x)

)
= lim

t↓0

1

t
Πx

[
(φεh)(ξt ) − (φεh)(ξ0)

]
= lim

t↓0

1

t
h(x)Πx

[
φε(ξt ) − φε(ξ0)

] + lim
t↓0

1

t
φε(x)Πx

[
h(ξt ) − h(ξ0)

]
+ lim

t↓0

1

t
Πx

[(
φε(ξt ) − φε(ξ0)

)(
h(ξt ) − h(ξ0)

)]
converges uniformly on R

d to

h(x)Aφε(x) + φε(x)Ah(x) + Γ (φε,h)(x).

This proves that φεh is in the domain of the Feller generator D(A) of ξ . In particular,
‖A(φεh)‖∞ < ∞. That A(φεh)(x) ∈ L1(Rd ,m) follows from the Cauchy–Schwarz inequality
and the fact that E(φε,φε) + E(h,h) < ∞. �
Remark 3.6. The assumption that ξ is either a symmetric diffusion having infinitesimal generator
A of type (3.8) or ξ is a symmetric Lévy process on R

d with characteristic exponent Ψ satisfying
condition (2.17) is only used in this paper to show that φεh is in the domain of the Feller generator
of ξ and that it satisfies the Assumption 2.1 and condition (2.4). The proof above for h being in
the domain of Feller generator of ξ requires only that ξ has double Feller property. Lemma 3.5
is used below in order to apply Ito type formula (Proposition 2.12) for superprocess X.

By Lemma 3.5, we can apply Proposition 2.12 to g(t, x) = eλ1tφε(x)h(x) to get that for every
t ∈ [nδ, (n + 1)δ),

〈
eλ1tφεh,Xt

〉 = eλ1nδ〈φεh,Xnδ〉 +
t∫

nδ

∫
eλ1sφε(x)h(x) dM(s, x)

+
t∫ 〈(

∂

∂s
+A+ β

)
eλ1sφεh,Xs

〉
ds.
nδ
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Note that (
∂

∂s
+A+ β

)
eλ1sφε(x)h(x) = eλ1s

(
A(φεh)(x) + (β + λ1)φε(x)h(x)

)
.

Put g(x) := |A(φεh)(x) + (β + λ1)φε(x)h(x)|, which is bounded and L2(Rd,m)-integrable
by Lemma 3.5. Since β(x) is bounded in U , we have from the above and (3.10) that for
t ∈ [nδ, (n + 1)δ),

eλ1t 〈1Uh,Xt 〉 � eλ1t 〈φεh,Xt 〉 � eλ1nδ〈φεh,Xnδ〉 − ∣∣Dε
t

∣∣ − Sδ,ε
n , (3.11)

where

Dε
t =

t∫
nδ

∫
eλ1sφε(x)h(x) dM(s, x) for t ∈ [

nδ, (n + 1)δ
)
,

and

Sδ,ε
n = eλ1nδ

(n+1)δ∫
nδ

〈g,Xs〉ds.

Lemma 3.7. Under the conditions of Theorem 3.4, for every probability measure μ on R
d and

each fixed ε > 0,

lim
t→∞Dε

t = 0 Pμ-a.s. (3.12)

Proof. By the Borel–Cantelli lemma, it suffices to show that for every ε′ > 0,

∑
k�1

Pμ

[
sup

t∈[kδ,(k+1)δ]

∣∣Dε
t

∣∣ � ε′] < ∞. (3.13)

Since Dε
t is a martingale, we have by Doob’s maximal inequality that for each k � 1,

Pμ

[
sup

t∈[kδ,(k+1)δ]

∣∣Dε
t

∣∣ � ε′] �
Pμ[(Dε

(k+1)δ)
2]

ε′2 .

Recall that for f ∈ Bb(R
d),

P
β
t f (x) = Πx

[
eβ(t)f (ξt )

]
, x ∈ R

d, t � 0.

By (2.24), (2.31), (2.38), and the Markov property of X, for every δ ∈ (0,1),
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Pμ

[(
Dε

(k+1)δ

)2] = Pμ

[( (k+1)δ∫
kδ

∫
eλ1sφε(x)h(x) dM(s, x)

)2]

� e2λ1kδ
Pμ

[ (k+1)δ∫
kδ

〈
κ(φεh)2,Xs

〉
ds

]

= e2λ1kδ

(k+1)δ∫
kδ

Pμ

[〈
P

β
s−kδ

(
κh2),Xkδ

〉]
ds

� ‖κh‖∞e(2k−1)λ1δ

(k+1)δ∫
kδ

Pμ

[〈
eλ1(s−kδ)P

β
s−kδh,Xkδ

〉]
ds

= ‖κh‖∞e(2k−1)λ1δ

(k+1)δ∫
kδ

Pμ

[〈h,Xkδ〉
]
ds

= δ‖κh‖∞e(k−1)λ1δ
〈
eλ1kδP

β
kδh,μ

〉
� ‖κh‖∞e(k−1)λ1δ

〈
h,μ

〉
.

Thus we have

∞∑
k=1

e2λ1kδ
Pμ

[(
Dε

(k+1)δ

)2]
< ∞,

which implies (3.13). �
Lemma 3.8. Under the conditions of Theorem 3.4, for every probability measure μ on R

d ,

lim
n→∞

(
Sδ,ε

n − Pμ

[
Sδ,ε

n

∣∣Gnδ

]) = 0 Pμ-a.s.

Proof. Note that

Pμ

[(
Sδ,ε

n − Pμ

[
Sδ,ε

n

∣∣Gnδ

])2] = Pμ

[
Pμ

[(
Sδ,ε

n

)2∣∣Gnδ

] − (
Pμ

[
Sδ,ε

n

∣∣Gnδ

])2]
.

By the Markov property of X we have

Pμ

[(
Sδ,ε

n

)2∣∣Gnδ

] = e2λ1nδ
PXnδ

( δ∫
〈g,Xs〉ds

)2

,

0
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and

Pμ

[
Sδ,ε

n

∣∣Gnδ

] = eλ1nδ
PXnδ

δ∫
0

〈g,Xs〉ds.

Then we have

Pμ

[(
Sδ,ε

n

)2∣∣Gnδ

] − Pμ

[
Sδ,ε

n |Gnδ

]2 = e2λ1nδ VarXnδ

( δ∫
0

〈g,Xs〉ds

)
.

By the variation formula (2.36), we have for δ ∈ (0,1),

VarXnδ

( δ∫
0

〈g,Xs〉ds

)

= 2ΠXnδ

[ δ∫
0

eβ(s)κ(ξs)

(
Πξs

[ δ−s∫
0

eβ(r)g(ξr ) dr

])2

ds

]

� 2‖κ‖∞‖g‖2∞ΠXnδ

[ δ∫
0

eβ(s)

(
Πξs

[ δ−s∫
0

eβ(r) dr

])2

ds

]

� c1‖κ‖∞ΠXnδ

[ δ∫
0

eβ(s) ds

]

� c2‖κ‖∞ 〈1,Xnδ〉,
where in the last two inequalities, we used (2.2) with t = 1. Therefore together with (2.31),

Pμ

[(
Sδ,ε

n − Pμ

[
Sδ,ε

n

∣∣Gnδ

])2] � c2 ‖κ‖∞e2λ1nδ
Pμ〈1,Xnδ〉

= c2‖κ‖∞e2λ1nδ
〈
Π·

[
eβ(nδ)

]
,μ

〉
= c2‖κ‖∞ eλ1nδ/2〈Π·

[
e 3

2 λ1+β
(nδ)

]
,μ

〉
.

By definition of λ1 = λ1(β),

inf

{
E(u,u) − 3

2
λ1

∫
Rd

u2 m(dx) −
∫
Rd

u2β m(dx): u ∈F ,

∫
Rd

u2(x)m(dx) = 1

}
= −1

2
λ1 > 0.

This implies by [21, Lemma 3.5] that

inf

{
E(u,u) − 3

2
λ1

∫
d

u2 m(dx) +
∫
d

u2β− m(dx): u ∈F ,

∫
d

u2(x)β+ m(dx) = 1

}
> 1.
R R R
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Let α := −3λ1/2 and denote by ξα the subprocess of ξ killed at rate α. Clearly the resolvent of
ξα is dominated by that of ξ and so K∞(ξ) ⊂ K∞(ξα). As the Dirichlet form of ξα is (Eα,F),
by applying Theorem 2.3(iii) to ξα , there is a constant C > 0 such that

sup
x∈Rd ,t�0

Πx

[
e 3

2 λ1+β
(t)

]
� C.

Therefore we have

Pμ

[(
Sδ,ε

n − Pμ

[
Sδ,ε

n

∣∣Gnδ

])2] � C e
1
2 λ1nδ

and consequently

∞∑
n=0

Pμ

[(
Sδ,ε

n − Pδx

[
Sδ,ε

n

∣∣Gnδ

])2]
< ∞.

The lemma follows by an application of Borel–Cantelli’s lemma. �
Lemma 3.9. Under the conditions of Theorem 3.4, we have for every probability measure μ

on R
d ,

lim inf
t→∞ eλ1t 〈1Uh,Xt 〉 � Mh∞

∫
U

h(x)2 m(dx) Pμ-a.s. (3.14)

Proof. Recall inequality (3.11). By Theorems 2.6, 2.8 and Proposition 3.3,

lim
n→∞ eλ1nδ〈φεh,Xnδ〉 = Mh∞

∫
Rd

φε(x)h(x)2 m(dx).

Note that

Pμ

[
Sδ,ε

n

∣∣Gnδ

] = eλ1nδ

δ∫
0

〈
Π·

[
eβ(s)g(ξs)

]
,Xnδ

〉
ds = eλ1nδ

〈 δ∫
0

P β
s g ds,Xnδ

〉
.

It follows from (3.11), Proposition 3.3(ii), Lemmas 3.7 and 3.8 that for every ε > 0,

lim inf
t→∞ eλ1t 〈1Uh,Xt 〉 � Mh∞

∫
Uε

h(x)2 m(dx) − Mh∞
∫
Rd

( δ∫
0

P β
s g(x) ds

)
h(x)m(dx).

First letting δ → 0 and then ε → 0, we obtain the desired result (3.14). �
Proof of Theorem 3.4. Let U = {Uk, k � 1} be a countable base of open sets on R

d that is
closed under finite union. Define

Ω0 :=
{
ω ∈ Ω: lim

t→∞ eλ1t
〈
1Uk

h,Xt (ω)
〉
� Mh∞

∫
h(x)2 m(dx)

}
.

Uk
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By Lemma 3.9, Pδx (Ω0) = 1 for every x ∈ R
d . For any open set U , there exists a sequence of

increasing open sets {Unk
, k � 1} in U so that

⋃∞
k=1 Unk

= U . We have for every ω ∈ Ω0,

lim inf
t→∞ eλ1t

〈
1Uh,Xt (ω)

〉
� lim inf

t→∞ eλ1t
〈
1Unk

h,Xt (ω)
〉 = Mh∞(ω)

∫
Unk

h(x)2 m(dx)

for every k � 1. Letting k → ∞ yields that

lim inf
t→∞ eλ1t

〈
1Uh,Xt (ω)

〉
� Mh∞(ω)

∫
U

h(x)2 m(dx).

The remaining part of the proof is similar to that of [6, Theorem 3.7]. We omit the details. �
Combining Theorem 3.4 with Lemma 3.1, we obtain

Corollary 3.10 (Strong law of large numbers). Suppose that the conditions of Theorem 3.4 hold.
Let Ω0 be the same as in Theorem 3.4. Then

lim
t→∞

Xt(B)(ω)

Pδx [Xt(B)] = Mh∞(ω)

h(x)

for every ω ∈ Ω0, and for every relatively compact Borel subset B in R
d having m(B) > 0 and

m(∂B) = 0.
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