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1 Introduction

Let X = (Xt, Pµ) be a super-process in a polish space E. Let MF (E) denote the space of

finite measures on E, equipped with the topology of weak convergence. The global support

of X, Gsupp(X), is defined as the closure of
⋃

t≥0 suppXt.

Definition 1 For 0 6= µ with compact support, We say that the global support of X

under Pµ is compact if

Pµ (Gsupp(X) is bounded) = 1. (1)

In [1], Perkins pointed out that for a super-Poisson process X with positive constant

branching rate k, the support of Xt will propagate instantaneously to any points to which

the underlying Poisson process can jump. More precisely,

supp(Xt) = {mt,mt + 1, · · ·} a.s. ∀t > 0, (2)

where mt = inf supp(Xt). This result follows from the following associated stochastic dif-

ferential equation:

Xt(j) = X0(j) +
∫ t

0

(Xs(j − 1)−Xs(j))ds +
∫ t

0

√
kXs(j)dBj

s , j ∈ Z+. (3)

Here {Bj
· : j ∈ Z+} is a collection of independent linear Brownian motions, and Xs(−1) ≡ 0.

For a super-random walk, we have similar stochastic differential equations, and

supp(Xt) = ∅ or Zd a.s. ∀t > 0. (4)

In the first part of this paper we concern about the global support of X. We are interested

in the following question: Is it possible to find a spatially dependent branching rate k such

that the global support of super-Poisson process is compact? The interest now is in seeing

whether or not letting k go to infinity fast enough would result in having compact global

support. In section 2, It is proved that the answer for super-Poisson process and super-

random walk is negative. Intuitively, this result is not too surprising as the associated sde’s
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have positive drift from neighboring sites and even if the branching rates get large, over

small time intervals the mass will immediately propagate to any far points. In this paper

the author wants to seek a proof mainly depends on the log-Laplace functional of X.

In section 3, we will discuss the asymptotic extinction of super-Poisson processes and

super-random walks. Let us give the definition of asymptotic extinction.

Definition 2 For 0 6= µ ∈ MF (E), we say that the measure-valued process X under

Pµ exhibits asymptotic extinction if

Pµ

(
lim
t↑∞

Xt(E) = 0
)

= 1. (5)

Our goal is to find necessary and sufficient conditions for each of these two processes to

be extinct in weak sense. It turns out that the asymptotic extinction property depends on

the decay rate of the branching rate k at infinity (see Theorem 3, Theorem 5 and Theorem

7). Moreover, we will also present sufficient conditions on k for super-Poisson processes and

super-random walks to have positive extinction probability. See Theorem 4 and Theorem 6

respectively.

2 Super-Poisson processes and super-random walks with

noncompact global support

Theorem 1 Suppose {Xt, t ≥ 0} is a super-Poisson process with branching rate k(i) >

0, i ∈ Z+, If supp(µ) is compact, then the global support of X is not compact. More

precisely,

Pµ (Gsupp(X) is bounded) = 0. (6)

Proof Without loss of generality, we may and do assume that µ = δ0. Let τn be the

first hitting time of {n}. Note that

Pδ0 (Gsupp(X) is bounded) = lim
n→∞

Pδ0 (Xτn = 0)) . (7)
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Step 1 We first prove that for every integer n > 0

Pδn−1(Xτn = 0) = 0. (8)

By (1.6) and (1.7) in Dynkin [2],

Pδn−1(exp(−λXτn
)) = exp(−un

λ(n− 1)), (9)

where un
λ(·) is the unique solution of the following integral equation:

un
λ(i) + Πi

∫ τn

0

k(ξs)(un
λ)2(ξs)ds = λ, i ≤ n. (10)

In particular,

un
λ(n− 1) + k(n− 1)(un

λ(n− 1))2Πn−1(τn) = λ.

Letting λ →∞, we get

lim
λ→∞

un
λ(n− 1) = ∞.

Letting λ →∞ in (9), we get (8).

Step 2 By the special Markov property and (9),

Pδ0(Xτn
= 0) = Pδ0(Pτn−1(Xτn

= 0))

= Pδ0(Xτn−1 = 0)

= · · · = 0.

Therefore, by (7), we proved (6).

Corollary 1 Suppose {Xt, t ≥ 0} is a super-Poisson process with branching rate k(i) >

0, i ∈ Z+, If supp(µ) is compact, then for every fixed t > 0, the support of Xt is not compact.

Proof Without loss of generality, we may and do assume that µ = δ0. Since for every

n,

Pδ0(Xt∧τn = 0) ≤ Pδ0(Xτn = 0) = 0,

we have

Pδ0 (supp(Xt) is bounded) ≤ lim
n→∞

Pδ0(Xt∧τn = 0) = 0.
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Theorem 2 Suppose {Xt, t ≥ 0} is a super-random walk with branching rate k(x) >

0, x ∈ Zd, If supp(µ) is compact, then

Pµ (Gsupp(X) is bounded) = 0. (11)

Proof We suppose µ = δ0. Let τn be the first hitting time of {x ∈ Zd, ‖x‖ ≥ n}, where

for x = (x1, x2, · · · , xd), we define ‖x‖ =
∑d

k=1 |xk|. As in the proof of Theorem 1, we will

prove that

Pδ0(Xτn
= 0) = 0. (12)

Step 1 We prove that there exists x0 ∈ Bn such that

Pδx0
(Xτn = 0) = 0.

Since, for x ∈ Bn,

Pδx(exp(−λXτn)) = exp(−uλ(x)), (13)

where uλ(·) is the unique solution of the following integral equation:

uλ(x) + Πx

∫ τn

0

k(ξs)(uλ)2(ξs)ds = λ, x ∈ Bn. (14)

Letting λ ↑ ∞, we get

u∞(x) + Πx

∫ τn

0

k(ξs)(u∞)2(ξs)ds = ∞, x ∈ Bn. (15)

where u∞(x) = limλ↑∞ uλ(x), x ∈ Bn. Put

Kn = max
x∈Bn

k(x), M = max
x∈Bn

u∞(x).

It follows from (15) that

M(1 + M Kn Π0τn) ≥ ∞,

which implies M = ∞. Hence there exists x0 ∈ Bn such that u∞(x0) = ∞, which is

equivalent to Pδx0
(Xτn

= 0) = 0.

Step 2 Put n0 = ‖x0‖. We prove that for x ∈ Bn \Bn0 , Pδx(Xτn = 0) = 0. It is easy to

see that for every x ∈ Sn0 = {x ∈ Zd; ‖x‖ = n0}, Pδx(Xτn = 0) = Pδx0
(Xτn = 0) = 0. For

every x ∈ Sm with n0 < m < n, we have

0 = Pδx0
(Xτn = 0) = Pδx0

(PXτm
(Xτn = 0)),
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which implies that PXτm
(Xτn

= 0) = 0 a.s. Pδx0
. Since Pδx0

(Xτm
= 0)(≤ Pδx0

(Xτn
= 0)) =

0, there exists x ∈ Sm such that Pδx(Xτn = 0) = 0, which implies Pδx(Xτn = 0) = 0 for

every x ∈ Sm.

Step 3 By the special Markov property,

Pδ0(Xτn = 0) = Pδx(PXτn0
(Xτn = 0)) = Pδ0(Xτn0

= 0).

To prove (12), we only need to prove that Pδ0(Xτn0
= 0) = 0. Noticing that n0 < n, by the

inductive method, we only need to prove that Pδ0(Xτ1 = 0) = 0, which is obviously true.

Corollary 2 Suppose {Xt, t ≥ 0} is a super-random walk with branching rate k(x) >

0, x ∈ Zd, If supp(µ) is compact, then for every fixed t > 0, the support of Xt is not compact.

Proof The argument is similar to that of Corollary 1.
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3 Asymptotic extinctions of super-random walks and

super-Poisson processes

Theorem 3 Suppose {Xt, t ≥ 0} is a super-Poisson process with branching rate k(i) >

0, i ∈ Z+. Let 0 6= µ ∈ M(Z+).

(1) If
∑∞

i=1 k(i) < ∞, then under Pµ the process X exhibits asymptotic survival with

positive probability, i.e.,

Pµ( lim
t→∞

Xt(Z+) = 0) < 1. (16)

(2) If
∑∞

i=1 k(i) = ∞, then under Pµ the process X exhibits asymptotic extinction.

Proof Note that uc(t, x) = − log Pδx exp(−c〈1, Xt〉) is a solution of

uc(t, x) + Πx

∫ t

0

k(ξs)u2
c(t− s, ξs)ds = c. (17)

By the Markov property, for s < t, we have

Pδx
(exp〈−c,Xt〉/Fs) = PXs

exp〈−c,Xt〉 = exp〈−uc(t, ·), Xs〉 ≥ exp〈−c,Xs〉, (18)

which means that exp〈−c,Xt〉 is a bounded submartingale. Therefore limt→∞ exp〈−c,Xt〉
exists Pδx-a.s. and hence limt→∞〈1, Xt〉 exists Pδx-a.s. By (18), uc(t, x) is non-increasing in

t. Put

uc(x) := − log Pδx
exp(−c lim

t→∞
〈1, Xt〉).

uc(·) is a radial function, i.e., uc(x) = uc(‖x‖). We claim that uc(‖x‖) is increasing in ‖x‖.
Indeed, by the special Markov property,

exp(−uc(x)) = Pδx exp(−c limt→∞〈1, Xt〉)

= Pδx

(
PXs∧τ1

exp(−c limt→∞〈1, Xt〉)
)

= Pδx exp〈−uc, Xs∧τ1〉.

Letting s →∞, we get

exp(−uc(x)) = Pδx
exp〈−uc, Xτ1〉.
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By Jensen’s inequality,

exp(−uc(x)) ≥ exp(−Pδx〈uc, Xτ1〉) = exp(−uc(x + 1)),

which implies uc(x) ≤ uc(x + 1), x ∈ Z+.

(1) Suppose
∑∞

i=0 k(i) < ∞. Letting t → ∞ in (17), by the dominated convergence

theorem, we see that uc satisfies

uc(x) + Πx

∫ ∞

0

k(ξs)u2
c(ξs)ds = c. (19)

Let τn be the nth jumping time of {ξs} and put λ = Πxτ1. Then

λ = Πxτ1 = Πx(τn − τn−1) > 0.

We rewrite (19) in the form:

uc(x) + λ
∞∑

j=x

k(j)u2
c(j) = c, x ∈ Z+. (20)

It is easy to check that uc satisfies

uc(x + 1)− uc(x) = λk(x)u2
c(x), x ∈ Z+. (21)

Hence,

uc(x) ≡ 0 iff uc(x) = 0, ∃x ∈ Z+.

(19) implies that there exists x ∈ Z+ such that uc(x) > 0, and therefore, uc(x) > 0, ∀x ∈ Z+,

which implies

Pδx( lim
t→∞

〈1, Xt〉 = 0) < 1, x ∈ Z+, (22)

which implies eqrefsuvuval.

(2) We only need to prove that if there exists x0 ∈ Z+ such that Pδx0
(limt→∞〈1, Xt〉 =

0) < 1, then
∑∞

i=0 k(i) < ∞.

Since uc(t, x) ≥ uc(x), x ∈ Z+, by (17),

uc(t, x) + Πx

∫ t

0

k(ξs)u2
c(ξs)ds ≤ c, x ∈ Z+.

Letting t →∞, we get

Πx

∫ ∞

0

k(ξs)u2
c(ξs)ds ≤ c, x ∈ Z+.
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Note that Pδx0
(limt→∞〈1, Xt〉 = 0) < 1 is equivalent to u(x0) > 0. Then uc(x0) ↑ u(x0) > 0

implies that there exists c > 0 such that uc(x0) > 0. Since for fixed c > 0, uc(x) is

non-decreasing in x, one has

u2
c(x0)Πx0

∫ ∞

x0

k(ξs)ds ≤ c.

Hence

Πx0

∫ ∞

0

k(ξs)ds < ∞,

which is equivalent to
∞∑

i=0

k(i) < ∞.

Theorem 4 Suppose {Xt, t ≥ 0} is a super-Poisson process with branching rate k(i) >

0, i ∈ Z+. If
∑∞

i=0 k(i) < ∞ and lim supx→∞
k(x)∑∞

j=x+1 k(j)
< ∞, then X has positive

probability of asymptotic extinction, i.e.,

Pδi
( lim
t→∞

Xt(Z+) = 0) > 0, i ∈ Z+.

To prove Theorem 4, we first give two lemmas.

Lemma 1 Suppose k(i) > 0, i ∈ Z+, satisfies the condition of Theorem 4. Then there

is a positive solution of the following problem:




v(x + 1)− v(x) ≤ k(x)v2(x), x ∈ Z+

limx→∞ v(x) = ∞.

(23)

Proof Put

v(x) =
C∑∞

j=x k(j)
, x ∈ Z+.

Then

v(x + 1)− v(x) = Ck(x)/(
∑∞

j=x+1 k(j))(
∑∞

j=x k(j))

≤ C

∑∞
j=x k(j)∑∞

j=x+1 k(j)
k(x)

(
∑∞

j=x k(j))2

=
1
C

(
1 +

k(x)∑∞
j=x+1 k(j)

)
k(x)v2(x).
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The assumption implies that, for sufficiently large C, v(x + 1) − v(x) ≤ k(x)v2(x). It is

obvious that v(x) →∞ as x →∞.

Lemma 2 (Maximum Principle) Suppose k(x) > 0, x ∈ Z+. If v satisfies




v(x + 1)− v(x) ≤ k(x)v2(x), x ∈ Z+

lim supx→∞ v(x) = C1

and u satisfies





u(x + 1)− u(x) = k(x)u2(x), x ∈ Z+

lim supx→∞ u(x) = C2

with constants ∞ ≥ C1 > C2, then v(x) > u(x), x ∈ Z+.

Proof Suppose there exists x0 ∈ Z+ such that v(x0) ≤ u(x0). Then

v(x0 + 1) ≤ v(x0) + k(x0)v2(x0);

u(x0 + 1) = u(x0) + k(x0)u2(x0).

Therefore v(x0 + 1) ≤ u(x0 + 1). By induction we can show that for every x ≥ x0,

v(x) ≤ u(x).

Letting x →∞, we get

lim sup
x→∞

v(x) ≤ lim sup
x→∞

u(x),

which means C1 ≤ C2, we got a contradiction.

Proof of Theorem 4 Let

uc(x) ↑ u(x) = − log Pδx( lim
t→∞

〈1, Xt〉 = 0) (24)

If we can prove that

u(x) < ∞, ∀x ∈ Z+,
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then

Pδx( lim
t→∞

〈1, Xt〉 = 0) > 0, x ∈ Z+. (25)

Using (20) and (21) we can see that uc satisfies




uc(x + 1)− uc(x) = λk(x)u2
c(x), x ∈ Z+,

limx→∞ uc(x) = c.

By Lemma 2, uc(x) < v(x), where v is the solution constructed in Lemma 1 with k(x)

replaced by λk(x). Letting c →∞, we get u(x) ≤ v(x) < ∞, x ∈ Z+.

Now we begin to discuss the asymptotic extinction of super random walk.

Theorem 5 Suppose {Xt, t ≥ 0} is a super-random walk with branching rate k(x) =

k(‖x‖) > 0, x ∈ Zd (d ≥ 3). Let 0 6= µ ∈ M(Zd). Assume that k(i) ↓ as i ↑.

(1) If
∑∞

i=1 ik(i) < ∞, then under Pµ the process X exhibits asymptotic survival with

positive probability, i.e.,

Pµ( lim
t→∞

Xt(Zd) = 0) < 1. (26)

(2) If
∑∞

i=1 ik(i) = ∞, then under Pµ the process X exhibits asymptotic extinction.

Proof The proof essentially requires us to prove the following two facts. The first

one is that if nonnegative radial function u(x) = u(‖x‖) satisfies ∆u(x) = k(x)u2(x) in Zd

(d ≥ 3), then u(r) ( r = ‖x‖ ) is increasing in r and u ≡ 0 if and only if u(0) = 0. The

second one is that

Πx

∫ ∞

0

k(ξs)ds = ∞ iff
∞∑

i=1

ik(i) < ∞. (27)

With these two facts, an argument similar to the one given in the proof of Theorem 3 will

yield the conclusions of the theorem.

We continue then with the proofs of these two facts. First note that

u(1)− u(0) = k(0)u2(0)

and

u(r + 1) + u(r − 1)− 2u(r) ≥ 1
2
∆u(x) =

1
2
k(x)u2(x) > 0.
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Therefore,

u(r + 1)− u(r) ≥ u(r)− u(r − 1) +
1
2
k(r)u2(r), r ≥ 1.

So, u(r) is increasing in r.

Since

Πx

∫ ∞

0

k(ξs)ds =
∫

Zd

k(y)g(x, y)dy,

with g(x, y) being the Green function of ξ and

g(x, y) ∼ Kd

‖x− y‖d−2
( as ‖x− y‖ → ∞),

claim (27) holds.

Theorem 6 Suppose {Xt, t ≥ 0} is a super-random walk with branching rate k(x) =

k(‖x‖) > 0, x ∈ Zd (d ≥ 3). Assume that k(i) ↓ as i ↑, and k satisfies

∞∑

i=1

ik(i) < ∞, lim sup
r→∞

rk(r)∑∞
i=r+1 ik(i)

< ∞. (28)

Then

Pδi( lim
t→∞

Xt(Zd) = 0) > 0, i ∈ Zd.

Proof The argument is similar to that of Theorem 4, by using Lemma 3 and Lemma

4 below instead of Lemma 1 and Lemma 2. We omit the detail.

Lemma 3 Suppose the function k satisfies the conditions of Theorem 6. There exists

a constant C > 0, such that

u(x) =
C

(
∑∞

i=[‖x‖]+1 ik(i))2
(29)

is a solution of 



∆u(x) ≤ k(x)u2, x ∈ Zd,

limx→∞ u(x) = ∞,

where ∆ is the discrete d-dimensional Laplacian:

∆u(x) :=
1
2d

∑

‖y−x‖=1

(u(y)− u(x)), x ∈ Zd.

12



Proof u defined by (29) is radial, i.e., u(x) = u(‖x‖), x ∈ Zd. For x ∈ Zd with

[|x‖] = r > 0,

∆u(x) ≤ 1
2

(u(r + 1) + u(r − 1)− 2u(r)) .

we have

u(r + 1)− u(r) = 2C
(r + 1)k(r + 1)(

∑∞
i=r+1 ik(i) +

∑∞
i=r+2 ik(i))

(
∑∞

i=r+1 ik(i))2 (
∑∞

i=r+2 ik(i))2

≤ 4C
(r + 1)k(r + 1)
(
∑∞

i=r+2 ik(i))3
,

and

u(r)− u(r − 1) = 2C
rk(r)(

∑∞
i=r ik(i) +

∑∞
i=r+1 ik(i))

(
∑∞

i=r ik(i))2 (
∑∞

i=r+1 ik(i))2

≥ 4C
rk(r)

(
∑∞

i=r ik(i))3
.

Then

∆u(x) ≤ 2C

(
(r + 1)k(r + 1)
(
∑∞

i=r+2 ik(i))3
− rk(r)

(
∑∞

i=r ik(i))3

)

= 2C
(r + 1)k(r + 1)(

∑∞
i=r ik(i))3 − rk(r)(

∑∞
i=r+2 ik(i))3

(
∑∞

i=r+2 ik(i))3(
∑∞

i=r ik(i))3

= 2C
(r + 1)k(r + 1)

[
(
∑∞

i=r ik(i))3 − (
∑∞

i=r+2 ik(i))3
]

(
∑∞

i=r+2 ik(i))3(
∑∞

i=r ik(i))3
+

2C
[(r + 1)k(r + 1)− rk(r)]

(
∑∞

i=r ik(i))3

≤ 2C
(r + 1)k(r + 1) [rk(r) + (r + 1)k(r + 1)]

(
∑∞

i=r+1 ik(i))4
[
f3(r) + f2(r) + f(r)

]
+

2C
(r + 1) [k(r + 1)− k(r)] + k(r)

(
∑∞

i=r ik(i))3

where we set

f(r) =
∑∞

i=r+1 ik(i)∑∞
i=r+2 ik(i)

.

Note that

k(r + 1) ≤ k(r), r > 0,
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and there exists M > 1 such that
∞∑

i=1

ik(i) ≤ M, and f(r) ≤ M r > 0.

Hence,

∆u(x) ≤ 2C
k(r)

(
∑∞

i=r+1 ik(i))4
[
6M3(r + 1)2k(r) + M

]

= k(x)u2(x)
[
6M3(r + 1)2k(r) + M

]
/C.

The assumption (28) implies that (r + 1)2k(r) is bounded. Then we can choose C large

enough such that
[
6M3(r + 1)2k(r) + M

]
/C ≤ 1.

And therefore,

∆u(x) ≤ k(x)u2(x), x ∈ Zd.

The following Maximum principle for nonlinear differential equation corresponding to

super-random walk is easy to prove.

Lemma 4 (Maximum Principle) Suppose k(x) > 0, x ∈ Zd. If v satisfies




∆v(x) ≤ k(x)v2(x), x ∈ Zd,

lim supx→∞ v(x) = C1

and u satisfies





∆u(x) = k(x)u2(x), x ∈ Zd,

lim supx→∞ u(x) = C2

with constants ∞ ≥ C1 > C2, then v(x) > u(x), x ∈ Zd.

Theorem 7 Suppose {Xt, t ≥ 0} is a super-random walk with branching rate k(x),

x ∈ Zd (d ≤ 2). If there exists x0 ∈ Zd such that k(x0) > 0, then for every 0 6= µ ∈ MF (Zd),

the process X under Pµ exhibits asymptotic extinction.
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Proof As in the proof of Theorem 3, uc(t, x) := − log Pδx
exp(−c〈1, Xt〉) satisfies

uc(t, x) + Πx

∫ t

0

k(ξs)u2
c(t− s, ξs)ds = c, x ∈ Zd,

and uc(t, x) ↓ uc(x) := − log Pδx exp(−c limt→∞〈1, Xt〉). Then we have

uc(t, x) + Πx

∫ t

0

k(ξs)u2
c(ξs)ds ≤ c, x ∈ Zd.

Letting t →∞, we get

Πx

∫ ∞

0

k(ξs)u2
c(ξs)ds ≤ c, x ∈ Zd. (30)

Because the random walk in Zd with d ≤ 2 is recurrent, (30) implies that for every c > 0,

uc(x0) = 0. Therefore, Pδx0
(limt→∞〈1, Xt〉 = 0) = exp(− limc→∞ uc(x0)) = 1. Then by the

special Markov property, for every 0 6= µ ∈ MF (Zd),

Pµ( lim
t→∞

〈1, Xt〉 = 0) = Pµ

[
PXTx0

( lim
t→∞

〈1, Xt〉 = 0)
]

= 1,

where Tx0 is the first hitting time of x0.
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